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Abstract

Type annotations in Python are an integral part of static analysis. They can be used for code
documentation, error detection and the development of cleaner architectures. By enhancing
code quality, they contribute to the robustness, maintainability and comprehensibility of
codebases. Tools like static type checkers use type annotations to detect bugs early, with
some type checkers like Pyright being capable of inferring annotations statically from source
code.

This thesis uses an innovative approach to further enhance type annotation coverage in
Python codebases by using a combination of machine learning predictions and combinatorial
search. To do this, PyHintSearch was developed. PyHintSearch constructs a search tree
to which a depth-first search is applied to systematically explore potential combinations of
predicted type annotations and validate them using feedback from the Pyright static type
checker. Ultimately, the goal is to identify a branch containing a valid combination of type
annotations. These annotations can then be integrated into Python code, thereby enhancing
the type annotation coverage, which leads to improved static analysis and ultimately better
code quality.

PyHintSearch’s effectiveness is evaluated based on type annotation coverage and correctness,
performance, and practical usability. Experimental results demonstrate different improve-
ments in type annotation coverage, depending on the machine learning model used for type
inference. Type4Py showed an improvement of 62.45% and TypeT5 of 79.93%. The precision
of type annotations from these models are 0.36 and 0.51, respectively. Performance-wise,
PyHintSearch can efficiently explore the exponential search space, annotating 16 diverse
projects, ranging from small to large, in approximately 13.75 hours when using the Type4Py
model. Regarding practical usability, the impact of type annotations on downstream program
analysis is examined through the generation of call graphs. The additional information that
type annotations provide can be used to refine the call graph by eliminating irrelevant calls
to make it more precise.
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1
Introduction

Code quality is important in software development, as it directly impacts the robustness,
maintainability and comprehensibility of a codebase. The higher the quality of the code, the
lower the number of errors that occur, leading to reduced costs for debugging and main-
tenance. This is particularly critical for large tech companies such as Microsoft, Google,
Facebook, Amazon, etc. whose codebases consist of millions of lines of code. For these com-
panies, maintaining well-organised and error-resistant codebases is essential for delivering
high-quality and uninterrupted services to their users.

Many of these companies use Python in their codebases [21], for things like web development
and data science, because of its simplicity, readability and extensive library support. Because
of its versatility, Python has become extremely common in modern software development. In
fact, according to the Stack Overflow Developer Survey 2023 [27] and GitHub Octoverse 2023
[7], Python is one of the most popular programming languages in the world, outranking Java
and C/C++.

However, Python development has a challenge concerning type safety and reliability. As a
dynamically-typed language, Python allows variable types to change during the runtime of a
program, potentially leading to unexpected behaviour and crashes. Type annotations offer a
solution for this by explicitly declaring the expected types for variables, function parameters
and return values. Integrating these annotations improves code maintenance, comprehen-
sion and error detection, thereby elevating code quality. However, despite their importance,
many Python projects lack sufficient type annotations [15].

To address this challenge, this thesis focuses on enhancing the type annotation coverage of
Python code through a validated combinatorial search for probabilistic type inference models.
By incorporating additional type annotations, static analysis has more information available,
enabling more accurate error detection during the development process and contributing to
increased code quality and reliability. These improvements lead to a smoother development
workflow, reduced debugging efforts and improved software reliability, ultimately benefiting
both developers and end-users of products and services.

1.1. Type Annotations in Python
Python’s dynamic typing allows for rapid development and flexible coding styles, but it can
make understanding and maintaining code more challenging, especially in larger projects.
To address this, Python Enhancement Proposal (PEP) 484 [35] was implemented in Python
version 3.5. It introduced type annotations, which can be gradually integrated into existing
Python code. Gradual typing [41] enables programmers to mix typed and untyped code by
incrementally adding type annotations and choosing the level of type safety they want to use.
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2 1. Introduction

These type annotations, which can also be referred to as type hints, are optional in Python
and do not enforce strict typing as Python remains dynamically typed. Instead, they serve as a
form of documentation and can be used by tools like linters and static type checkers to catch
potential errors early in the development process. Furthermore, they provide information
to Integrated Development Environments (IDEs) for syntax highlighting and support during
code development, and they can play a similar role as tests [4, 11].

For a visual understanding of type annotations, see Figures 1.1a and 1.1b. Figure 1.1a illus-
trates a straightforward Python function that adds two numbers and Figure 1.1b presents
an identical example that includes type annotations.

(a) Without type annotations. (b) With type annotations.

Figure 1.1: Identical Python addition function.

As can be seen in line 1 of Figure 1.1b, type annotations serve the purpose of indicating the
types of parameters and the return type of a function. Additionally, as shown in line 2, the
type of the variable in the statement can also be explicitly specified. This designated area
where a type annotation can be added is commonly referred to as a “type slot”. Filling these
type slots is a tedious and time-consuming task. While annotating programs is considered
a good practice, automating this process would save developers valuable time and effort. To
address this challenge, various tools and models have been developed to automatically infer
type annotations.

1.2. Problem Statement
Static type checkers like Pyre [9] and Pyright [24] can infer type annotations from source
code, but they often fall short in determining all available type slots. To address this gap,
machine learning models offer a solution by predicting type annotations for the remaining
slots, enhancing the type annotation coverage of Python code. However, since these models
can predict multiple annotations for the same type slot, it introduces a challenge. Namely,
selecting the highest-rated prediction (top-1) for each type slot may lead to a combination of
annotations that does not fit in the code context. Therefore, exploring different combinations
of predicted type annotations is crucial for finding a valid combination that does fit in the
context. Using more predictions (top-3 or top-5) allows for more exploration, but also leads
to an exponential growth of the search space. Navigating this expanded search space takes
significantly longer due to the increased number of combinations that need to be checked.
For that reason, a fast search strategy is needed to efficiently validate type combinations
based on feedback from a static type checker.

1.3. Research Questions
The primary objective of this thesis is to identify a valid combination of machine learning pre-
dicted type annotations, building upon the Pyright-inferred types. This objective is pursued
through the implementation of a combinatorial search strategy. For this, the PyHintSearch
tool was developed, which evaluates predicted type annotations by leveraging Pyright’s type-
checking capabilities and utilising its feedback for validation. To assess the effectiveness of
PyHintSearch, several questions arise. First of all, this thesis aims to investigate the addi-
tional number of annotations achievable. This leads to the first research question:

• RQ1 (Coverage): What is the overall increase in the number of type annotations
when combining static type inference with a machine learning model?
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Moreover, PyHintSearch must be practically usable. Therefore, not only must the combina-
torial search be effective in identifying a valid combination of type annotations in an expo-
nential search space, but it must also be efficient since long waiting times are undesirable.
The faster the exploration of this search space, the quicker the automation of adding type
annotations becomes. Additionally, understanding the tool’s memory usage provides insight
into the necessary resources that are required for its operation. This brings forth the second
research question:

• RQ2 (Performance): What are the performance characteristics, in terms of speed,
memory usage and scalability, of the PyHintSearch tool?

Lastly, quickly adding many accurate type annotations is beneficial. However, aside from
their value in documentation and bug detection, their potential influence on other aspects
of a program also raises questions. For instance, do type annotations have an impact on
the functionality of a program? And if so, how? Based on this, the last research question is
defined as:

• RQ3 (Use case): How does the presence of type annotations impact downstream
program analysis?

1.4. Main Contributions
The main contributions of this thesis revolve around a search-based validation strategy
aimed at efficiently exploring the exponential space of potential type annotation combina-
tions. These contributions are summarised as follows:

1. Combinatorial Search Strategy The first contribution entails a search technique that
systematically explores numerous potential combinations of predicted type annotations
to identify a final valid combination.

2. PyHintSearch The second contribution is the implementation of PyHintSearch, a com-
prehensive tool that integrates the aforementioned combinatorial search strategy with
various practical components to enhance the process of type annotating Python code-
bases.

1.5. Outline
The structure of this thesis is as follows: Chapter 2 provides background information about
static analysis and type inference topics. Chapter 3 dives into various machine learning type
inference models examined in related work. Chapter 4 details the inner workings of the com-
binatorial search, the components of the developed tool and the used evaluation strategy.
Next, Chapter 5 presents the results regarding type annotation coverage, tool performance
and the practical usage of type annotations for generating call graphs for Python code. Chap-
ter 6 then discusses the main findings and limitations of this thesis and, finally, Chapter 7
concludes this thesis and suggests directions for future research.





2
Background

This background chapter gives an overview of several core concepts, laying the foundation
for a comprehensive understanding of topics related to the research problem. It discusses
topics related to static analysis, the difference between statically-typed and dynamically-
typed languages, classical type inference, and the growing role of machine learning in type
inference. Additionally, it explores call graphs and their utility in program analysis.

2.1. Static Analysis
Static analysis is a software development practice that involves examining source code or
compiled code without executing it. It aims to uncover potential errors, vulnerabilities and
other issues that could lead to bugs or security vulnerabilities in the software. It does this
by analysing code syntax, structure and dependencies to identify potential problems [3, 13].
Although developers can manually perform static analysis, specialised tools are more com-
monly used due to their ability to automate the analysis process. This makes them more
efficient and less prone to human error.

These dedicated static analysis tools are able to flag various issues, including syntax errors,
coding standard violations, code complexity, unused code, null pointer dereferences, security
vulnerabilities and even performance bottlenecks [8, 36, 50]. Static analysis is therefore
useful for catching potential issues early in the development cycle, reducing the likelihood
of bugs and security vulnerabilities, and improving code quality, maintainability and overall
software reliability [2].

Static analysis also aids in improving the overall codebase by highlighting areas of code that
may be overly complex or redundant. This enables code refactoring for better efficiency and
maintainability. Furthermore, it is particularly valuable in the context of code reviews and
collaboration among development teams, since it can serve as an additional inspection layer
that complements the human review process [42]. This helps to ensure that coding standards
are followed consistently.

2.2. Statically-Typed vs. Dynamically-Typed Languages
Statically-typed programming languages like Java and Scala, see Figures 2.1a and 2.1c, offer
a robust mechanism for type safety that catches errors at compile-time rather than waiting
until runtime. This proactive approach reduces the likelihood of encountering common pro-
gramming mistakes that can lead to bugs and crashes [12, 33], thus enhancing the overall
stability and reliability of the codebase. The benefits of type safety are further emphasised by
a comprehensive large-scale user study that suggests that programmers indeed get substan-
tial advantages from using statically-typed languages [16]. Moreover, the type information
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6 2. Background

(a) Java (b) Python

(c) Scala (d) JavaScript

Figure 2.1: Examples of statically-typed programming languages (left) and dynamically-typed languages (right).

provided by statically-typed languages improves code readability and understanding, since
explicitly declaring variable types in the source code serves as valuable documentation. This
documentation helps both developers and maintainers understand the intended usage of the
variables. Additionally, this type information empowers IDEs and other development tools
to offer advanced features such as more precise code completion and comprehensive error
checking [40]. These tools leverage the static nature of the language to provide real-time feed-
back and assistance, contributing to a more efficient and streamlined development process.

Conversely, dynamically-typed programming languages like Python and JavaScript, see Fig-
ures 2.1b and 2.1d, adopt a more flexible approach by determining variable types at runtime.
A variable type is inferred based on the value assigned to the variable when the program runs
[49] and thus these languages either lack or do not require type annotations. This allows de-
velopers to change the type of a variable at any point during the execution of the program [25].
This flexibility can simplify the code-writing process, as developers are not constrained by ex-
plicit type declarations. However, this dynamic typing approach also introduces challenges,
particularly in debugging, as type errors may only surface during runtime. The absence of
compile-time type checking can make it more challenging to catch and address issues early
in the development process, potentially leading to more time-consuming debugging efforts.

2.3. Classical Type Inference
Classical type inference is a process to automatically deduce or infer the types of expressions
and variables without requiring explicit type annotations from the programmer [48]. The
compiler or type checker analyses the program’s syntax and expressions to determine the
types of variables and expressions at compile-time based on their usage and context. It
uses a set of rules and algorithms to infer types and ensure type consistency throughout the
program.

Examples of these rules include type deduction, type inference and type constraints [30, 44,
45]. With type deduction, the compiler analyses the program’s structure, usage and context
to deduce the types of variables and expressions. As for type inference, type information is
propagated through the program, allowing the compiler to determine the types of variables
and expressions based on their usage. Lastly, the inference process may involve generating
and solving constraints that represent relationships between different types. These type
constraints are then integrated to guide the type inference algorithm in determining the most
general and consistent types for variables and expressions.
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A simple example of classical type inference is shown in Figure 2.2 where the Scala compiler
can infer the return type of the function as an integer.

Figure 2.2: Scala multiplication function with inferred integer return type.

2.4. Machine Learning Type Inference
Although classical type inference generally performs well, it does have its limitations. There
are instances where the type inference algorithmmay encounter ambiguous situations where
it cannot determine the precise type of an expression. Furthermore, relying on a set of rules
and constraints may hinder its ability to handle certain advanced language features or com-
plex type systems effectively [5]. Therefore, using machine learning methods for type anno-
tation inference can mitigate some of these limitations of classical type inference, enabling
the determination of type annotations in places where that would otherwise not be possible.

In recent years, there has been a growing interest in applying machine learning methods
to infer type annotations for dynamically-typed languages like Python or JavaScript. Sev-
eral studies, such as [17, 22, 26, 28, 29, 31, 46, 47, 51], have explored these methods to
accurately predict type annotations. These methods make use of function names, parame-
ter names, code comments and other contextual information in the source code to train a
model to predict type annotations. The resulting predictions typically consist of multiple type
annotations along with associated probabilities, where higher probabilities indicate greater
likelihood of correctness for the predicted type slot.

2.5. Call Graphs
Call graphs model the relationships between different functions and methods in a program,
showing how the control flows from one function to another [37, 43]. In this thesis, they
serve as a means to assess the downstream impact on program analysis, as discussed in
Research Question 3. They can be constructed statically or dynamically. Static call graphs
are generated by analysing the source code or intermediate representations of a program
without executing it. Dynamic call graphs, on the other hand, are constructed at runtime
by monitoring the actual function calls during program execution. This research focuses
specifically on static call graphs as those are related to static analysis. Therefore call graphs
are assumed to be generated statically in further references.

Each node in a call graph represents a function or method and the edges between the nodes
indicate the flow of control between these functions. Typically, the caller function is con-
nected to the callee function by an edge, indicating that the caller function invokes or calls
the callee function. Figure 2.3 shows how a program (a) can be represented as a call graph
(b). A call graph is thus able to provide valuable insights into the structure and behaviour
of a program, allowing developers to understand how different parts of the program interact
with each other. On top of that, it can also be used to identify the dependencies between
functions, even from imported packages.
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Figure 2.3: Call graph (b) constructed from corresponding Python code (a). This figure was based on [10].

Although a call graph can provide these valuable insights, it also has a couple of challenges
that it faces. First of all, on large-scale programs, call graphs can become extremely large and
complex. As the program size increases, the number of functions and the complexity of their
interactions grows exponentially. This makes it challenging to visualise and navigate the call
graph effectively, leading to difficulties in identifying specific call paths. Furthermore, pro-
grams that rely heavily on frameworks or libraries are also more troublesome as call graphs
may not capture the interactions with external code accurately. Lastly, constructing accu-
rate call graphs for programs written in dynamic languages can be more challenging since
these languages contain features like dynamic typing, late binding and runtime code modi-
fication. These features make it difficult to determine the exact function calls during static
analysis [38]. To solve several of these aforementioned challenges, this thesis hypothesises
that adding more type annotations in Python code provides additional information to the call
graph generation tool which it can use to generate a more precise call graph.



3
Related Work

The chapter provides an overview of prior research efforts and various methods focused on
enhancing type inference using learning algorithms. Additionally, it identifies a research gap
and provides further elaboration on this.

3.1. Related Work
The integration of type annotations into Python started in 2014 with the proposal of PEP
484 [35] by the Python community, outlining the addition of optional type annotations to
Python programs. This initiative was realised with the release of Python version 3.5, which
introduced optional type annotations alongside the Mypy [20] type checker. Further advance-
ments in the Python ecosystem following the introduction of PEP 484 led to the creation of
other type checkers like Pyre [9], Pytype [14] and Pyright [24].

During this period, machine learning techniques also began gaining traction. They offered
the potential for predicting type annotations that could be integrated into source code. The
best-known machine learning models and their impact on predicting and integrating type
annotations are discussed below.

JSNice The field of learning-based type inference started with an approach by Raychev et
al. [34] in 2015. They learned a probabilistic model from existing data which could predict
the properties of new and unseen programs. This approach was realised in JSNice, a scalable
prediction engine utilising conditional random fields (CRFs) to predict identifier names and
type annotations of variables for JavaScript.

PyProbaTyping Xu et al. [51] propose a Python type inference technique based on proba-
bilistic inference. They observed that Python programs contain numerous type hints, includ-
ing accessed attributes, variable names and explicit type checks, which are often uncertain.
Their idea was to correlate all these uncertain type hints, which are propagated and aggre-
gated among program artefacts (e.g., data flow between variables) in a probabilistic model to
predict probabilities of variable types.

DeepTyper Thereafter, Hellendoorn et al. [17] introduced DeepTyper in response to the
contextual limitations of JSNice. DeepTyper is a sequence-to-sequence neural network model
trained on an aligned corpus of TypeScript code. Although it can use a much wider context
to predict type annotations, its probabilistic nature leads to “type drift”. This occurs when
the probabilities in the type vector of a variable change throughout its definition and usage
in the code, despite the true type of the variable remaining fixed. This results in difficulties
maintaining consistent predictions for the same variable.

9



10 3. Related Work

NL2Type NL2Type [22] was the next proposed model that aimed to predict type annotations
for JavaScript functions. Malik et al.’s key idea was to exploit natural language information
in source code, such as comments, documentation, function names and parameter names to
predict types. They train a recurrent, LSTM-based neural model that is shown to outperform
both JSNice and DeepTyper.

TypeWriter Inspired by the NL2Type model for JavaScript, Pradel et al. [31] introduced
TypeWriter, a deep neural network model designed to predict type annotations for Python.
It incorporates both code context and natural language information from the source code
to infer the return and argument types for functions. Additionally, TypeWriter employs a
combinatorial search strategy to validate the predictions of its neural model by using feedback
from an external type checker.

LambdaNet LambdaNet [47], created by Wei et al., proposes a probabilistic type inference
scheme for TypeScript based on a graph neural network. A lightweight source code analysis
is performed to create a type dependency graph, connecting type variables with logical con-
straints, name and usage information. Then, a pointer-network-like graph neural network
is used to propagate information between related type variables. This enables type predic-
tions for both standard types and user-defined types that were not even encountered during
training.

OptTyper Natural type inference (NTI) uses natural language text within source code to de-
termine valid type annotations. Although techniques based on NTI are empirically effective,
they are not sound by construction. Pandi et al. [28] introduce the first algorithm for NTI
validated with theorems and proofs. Their tool called OptTyper leverages both logical con-
straints (derived from type rules) and natural constraints (arising from the natural language
text associated with a variable and its uses) to be used in a joint optimisation problem to
determine types for TypeScript. The logical constraints are treated as hard constraints and
the natural constraints as soft constraints. This results in a formal proof of soundness that
demonstrates that the algorithm always terminates with either an error or a guaranteed type
annotation for its input.

Typilus Most of the aforementioned learning-based type inference methods utilise a limited-
size type vocabulary, for instance, 1,000 types. This limitation hinders their capability to
deduce user-defined and rare types. To address this issue, Allamanis et al. [1] propose
Typilus, a graph neural network model that predicts types in Python code by probabilistically
reasoning over the program’s identifiers, syntactic constraints and patterns, and semantic
properties like control and data flow. By using one-shot learning, an open vocabulary of
types can be predicted, including rare and user-defined ones. Furthermore, Typilus can also
find incorrect type annotations.

TypeBert Commonly, type inference models use different (hand-engineered) inductive bi-
ases, ranging from simple token sequences to complex graphical neural networks (GNNs),
in order to predict type annotations. Jesse et al. [18] challenge the need for sophisticated
inductive biases, proposing the use of “big data” to learn natural typing patterns instead.
Their TypeBert model, based on a pre-trained transformer model, demonstrates that type
annotation performance of the most sophisticated models can be surpassed with a simple
token-sequence inductive bias used in BERT-style models and enough data.

Type4Py Mir, et al. [26] introduce Type4Py, a hierarchical neural network model that uses
deep similarity learning. This model discriminates between similar and dissimilar type an-
notations in a high-dimensional space, forming clusters of types. The model then infers
likely type annotations for arguments, variables and return values using a nearest neigh-
bour search within these clusters.
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HiTyper Next, a hybrid type inference approach named HiTyper [29] is presented by Peng, et
al. Their main idea is that static and DL-based approaches offer complementary benefits and
thus a novel approach is introduced that integrates both rule-based static inference and deep
learning for precise type annotations. Their key innovation is the use of Type Dependency
Graphs (TDGs) to record type dependencies among variables within functions. TDGs allow
the integration of type inference rules and type rejection rules. This enables static inference
and correctness inspection of deep learning-based predictions until the TDG is fully inferred.
For the deep learning predictions, both the Typilus and Type4Py models are used.

DiverseTyper Although Jesse, et al. showed superior performance in predicting common
type annotations with their TypeBert model, they did notice that the performance on user-
defined types could still be improved upon. So later, they introduced DiverseTyper [19], an
improved TypeBert model using deep similarity learning, in order to predict user-defined
types more accurately.

TypeT5 Wei, et al. [46] introduce TypeT5, a type inference method that utilises CodeT5, a
pre-trained language model for code. TypeT5 treats type prediction as a code infilling task.
Using static analysis, dynamic contexts for each code element are build. For these, the type
signature can then be predicted by the model. Furthermore, it also uses an iterative decoding
scheme that integrates previous type predictions into the model’s input context. This allows
for information exchange between related code elements. Not only does this lead to higher
overall accuracy, especially on rare and complex types, but it also produces more coherent
results with fewer type errors.

OpenTau With the rise of Large Language Models (LLMs) and their general capabilities that
are constantly evolving, it can be wondered whether they can be applied to the task of per-
forming type inference. Challenges such as poor performance in fill-in-the-middle tasks,
context window size limitations, potential type-checking issues in generated types, and the
difficulty in measuring the type quality of the output program are valid concerns related to
LLM type predictions. To address these challenges, Cassano, et al. [6] created OpenTau,
a search-based type prediction approach that utilises LLMs. Their contributions consist of
a fill-in-the-type fine-tuning method for LLMs, a new metric for assessing type prediction
quality and a tree-based program decomposition method for exploring generated types.

CodeTIDAL5 Recent approaches of statistical techniques to predict type annotations based
on machine learning show overall improved accuracy. However, they still perform signifi-
cantly worse on user-defined types than on the most common built-in types. Furthermore,
they rarely integrate with user-facing applications, thus limiting their real-world useful-
ness even more. Because of these constraints, Seidel, et al. [39] developed CodeTIDAL5,
a transformer-based neural type inference model based on CodeT5. This model uses source
code context and extracted usage slices from a program’s code property graph to query vari-
able types in JavaScript/TypeScript. CodeTIDAL5 can predict type annotations and provide
hints on unseen types, thus improving effectiveness on user-defined types. Moreover, the
authors present JoernTI, an integration of their approach into Joern, an open-source static
analysis tool. This availability through Joern improves real-world usefulness as developers
have easier access to it.

3.2. Research Gap
Most of the aforementioned type inference models predict type annotations on user-provided
code, but cannot guarantee the correctness of these predicted types. For instance, a model
may predict three type annotations for a type slot, where only the second prediction is valid
within the context of the codebase. Or even none of the predictions are allowed as they
would result in a syntax error. While improving prediction accuracy helps to mitigate the
correctness issue to some extent, nomodel achieves 100% accuracy. Therefore, incorporating
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methods to verify the correctness of predicted type annotations can lead to improved practical
utility.

TypeWriter [31] already uses this idea of using static type inference for checking the predic-
tions of the machine learning model. However, its machine learning model is outperformed
by other works, its search-based validation cannot correct the wrong types but only filter
them out and the main constraint is the time that it takes to get feedback from the type
checker. OptTyper [28] then improves upon this by incorporating both logical and natural
constraints into a single prediction step. The logical constraints are created by “relying on
a mode of operation where the compiler infers some types from usage on TypeScript code”.
However, the authors do recognise that less information is obtained this way than if they had
used a full type checker. HiTyper [29] also combines both static and DL-based approaches
by using a Type Dependency Graph. The TDG is filled iteratively with predictions from both
static type inference and deep learning-based predictions such that no type inference rules
are violated. This is an alternative approach to the one presented in this thesis.

Ultimately, the identified research gap specifically lies in the need for a fast search strategy
capable of validating combinations of predicted type annotations for Python code. This en-
sures their validity within the context of the codebase and increases the total number of type
annotations.
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Figure 4.1: Situation overview of Pyright vs. PyHintSearch. Currently, Pyright can fill some type slots based on type
propagation, but leaves many unfilled. PyHintSearch can fill the remaining type slots with a searched combination
of ML-predicted type annotations that fits in the code context.

Any Python project compatible with version 3.5 or above can be type annotated. Since the
annotations are optional, developers have the flexibility to decide whether to integrate them
or not. It is even possible to gradually add more types to a project over time, however, due
to the labour-intensive nature of manual type annotation, many projects either lack type
annotations entirely or are only partially annotated. The major advantage of incorporating
type annotations is their utility for static analysis by a static type checker. This type checker
assesses the validity of a program and, if the program passes the check, it is guaranteed
to satisfy some set of type safety properties. Furthermore, such a type checker can often
also infer several type annotations by statically analysing the code, which can then be added
to the codebase. However, this process often leaves many type slots unfilled. Utilising ma-
chine learning predictions and a validated combinatorial search in the developed tool called
PyHintSearch, has the potential to decrease the number of unfilled type slots. Figure 4.1
provides an overview contrasting the original situation using only a type checker, such as
Pyright, with the new situation using PyHintSearch.

4.1. Pyright Static Type Checker
According to the Pyright website [24]: “Pyright is a full-featured, standards-based static type
checker for Python. It is designed for high performance and can be used with large Python
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source bases.” This tool, developed by Microsoft, is primarily used for checking whether
variables and functions are used correctly in the code, although it can also be used to infer
type annotations based on a set of rules. Moreover, Pyright includes a language server,
which can be manipulated in order to provide feedback on the validity of newly added type
annotations. This is especially important during the combinatorial search which tries to
identify a valid combination of type annotations.

As mentioned, Pyright has the ability to infer type annotations. This can be achieved by
opening a terminal and running the pyright --createstub command in order to generate
Python stub files. Python stub files, often referred to as type hint stubs, are files containing
type hints without the actual implementation code. They use the “.pyi” file extension instead
of “.py”. These stub files are used to provide static type information to tools like static type
checkers, IDEs and other tools that analyze Python code without executing it. This command
is intended to give a “first draft” of a type stub, which the user then needs to manually edit
to make it into a workable stub. Although this does sound labour intensive, most of the time
the generated type stub can be used directly.

The main advantage of letting Pyright generate these stub files, is its ability to make a good
guess for the return type of a function. However, since it is only a guess, it gets added as a
comment in the stub file. Note that Pyright is actually rather accurate with its inferred types.
By parsing the return type comments, these annotations can be integrated in the original
code resulting in more type slots being filled in already.

Although Pyright is able to infer type annotations, it can usually not determine all available
type slots, meaning that there are still empty type slots left. Static analysis works best when
Python code has as many annotations as possible, so therefore another method needs to be
used to fill in the remaining type slots.

4.2. Optimized Combinatorial Search
While static type inference techniques are precise, they frequently leave type slots unfilled.
Machine learning approaches, on the other hand, can predict type annotations for each slot,
yet they cannot guarantee the correctness of the predicted types. Therefore, a search strategy
is needed to find a combination of predicted type annotations that is valid within the context
of the codebase.

4.2.1. Machine Learning Top-n Predictions
Commonly, a machine learning model predicts multiple type annotations for each type slot
which are then ranked based on their probability. The type annotation with the highest
probability is the most likely one to fit in that type slot, followed by the second prediction,
third, etc. Figure 4.2 presents several basic Python functions, for which each type slot,
marked in red, has multiple predicted type annotations ranked on their probability from left
to right. For example, for parameter a of the add_numbers function, the most likely type
annotation is int, followed by float.

Figure 4.2: Multiple predicted type annotations for the marked-in-red type slots. Identifying a valid combination of
these for is the goal of the combinatorial search.
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If only the top-1 prediction for each type slot is taken, the add_numbers function would be
annotated as follows:

This is an invalid combination of type annotations, because the return type should be the
second prediction, float, instead of int. Similarly, the concatenate_strings function
would be incorrectly annotated as:

The top-3 or even top-5 predictions can also be used when trying to determine a combination
of valid annotations for the presented functions. This, however, is beginning to show how
finding such a combination of type annotations becomes increasingly more difficult because
of the exponentially growing search space. Let’s take, for example, the top-3 predicted an-
notations to be used. For each type slot, up to 3 annotations could be checked when none
of the predicted types fit. Therefore, for 𝑛 type slots, there are 3𝑛 potential combinations
and for the top-5, this would be 5𝑛. This combinatorial explosion should be avoided to keep
annotating functions feasible.

4.2.2. Search Process and Backtracking
Using a greedy approach is a strategy to address this explosion of combinations. Initially,
the type annotation with the highest probability is applied to the type slot. To check the
correctness of this type annotation in the context of the code, the feedback from a static
type checker, such as Pyright in our case, is used. If Pyright deems the type annotation
valid, the process continues to the next type slot. Otherwise, the next predicted annotation is
attempted. This process repeats until a valid annotation is identified, or none of the predicted
annotations prove valid, in which case an empty annotation is inserted. An empty annotation
indicates that the slot remains unfilled, thus satisfying Pyright’s criteria for validity, allowing
for the exploration of the next type slot.

One thing that makes greedily filling in the type slots more complicated is the interdepen-
dencies among functions. Consider two functions, foo and bar for which several type an-
notations are predicted by a machine learning model. The bar function has its return type
slot already annotated with an int annotation, but all other slots are yet to be filled. The
implementation and predicted type annotations of both foo and bar functions are illustrated
in Figure 4.3.

Figure 4.3: Implementation and predicted type annotations for foo and bar functions.

First, the predicted str annotation is tested for the parameter of foo. This is valid accord-
ing to Pyright, thus the process continues to the return type. Here the int, float and
List[bool] annotations are tried, all of which are invalid. However, filling in the empty
annotation, i.e. nothing, is accepted. Then, the parameter x of the bar function is tried.
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Neither int, bool, List[float], nor the empty type annotation are valid due to the depen-
dency on foo in the function body, which expects a str parameter and implicitly returns a
str value. Since none of the tried predictions are valid, backtracking to the previous type
slot is necessary. In this case, the return value of the foo function is visited again. But,
since all the predicted annotations have been tried there already, the need for backtracking
rises once more. This time, it ends at the type slot of foo’s parameter. The next predicted
annotation, int, is now attempted. This is valid, therefore continuing the process to the next
type slot, which is again the return type. All type annotation predictions are retried for this
slot, starting with the first value, int. This annotation succeeds, after which the bar func-
tion is visited. Once again the predicted types are tried, starting with int, which is now valid.
Consequently, all type slots are filled, and a valid combination of predicted type annotations
is identified. This example shows that backtracking was essential for exploring the search
space for a valid combination and an overview of this process is presented in Figure 4.4.

Figure 4.4: Backtracking during the combinatorial search for the interdependent foo and bar functions.

4.2.3. Datastructure
Given the interdependence among functions and the need for backtracking to explore new
combinations, it may be wondered which data structure encapsulates this problem well and
can be used to efficiently search the numerous potential combinations. The answer to this is a
search tree with branches related to the top-𝑛 predictions that are searched. In constructing
the search tree, the first 𝑛 type annotations predicted by the machine learning model are
taken into account. These annotations, ranked by probability, form the branches of the tree
from left to right. Additionally, an extra branch on the right indicates an empty type. Figure
4.5 illustrates a sample search tree featuring the top-3 predicted type annotations, which are
systematically explored during the search process.

The search tree starts from the top node, representing the first available type slot. Initially,
the int type annotation is attempted in the slot. If deemed valid, progression along the
branch continues to the next node, corresponding to the next type slot. In the event of the
int type annotation being invalid, the bool type annotation is considered next. Each time a
valid type annotation is found, progress continues to the next layer of the search tree, thus
creating a branch of valid types. If every layer that represents an available type slot has been
explored, and a valid type annotation has been identified for each type slot, then the branch
that contains a valid combination of type annotations for all type slots is discovered. This
means that the combinatorial search has successfully found additional type annotations for
a file. Note that there is a possibility that a path along a branch is stuck at a certain type
slot with none of the predicted type annotations being valid. In that case, a backtracking
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Figure 4.5: Top-3 predictions search tree. The highest-rated prediction is the leftmost branch of a node, followed
by the other predictions in order of probability. The right-most branch is the empty type, which leaves the type slot
empty. Each layer of nodes corresponds to a type slot to be filled.

approach is used by going up one layer and trying the next type annotation, similar to a
depth-first search.

Ultimately, the goal is to discover a valid combination of machine learning type annotations,
along with those determined by Pyright, to incorporate into the Python code. This combi-
nation results in an increased number of filled type slots, addressing the limitations where
Pyright alone might fall short. Together, these methods complement each other, leading
to enhanced type annotation coverage of Python code, thus contributing to improved static
analysis.

4.3. Components of PyHintSearch

Figure 4.6: Components of the PyHintSearch tool.

The combinatorial search strategy outlined in Section 4.2 is combined with various practi-
cal components in a tool called PyHintSearch. See Figure 4.6 for an overview of its compo-
nents. PyHintSearch’s source code can be found at: https://github.com/FrostMegaByte/
py-hint-search

4.3.1. Gathering Project-Related Types
The PyHintSearch tool that this thesis introduces, works on a user-provided project that con-
sists of Python files that need to be type annotated. Typically, such projects include classes
that can be used as type annotations. Additionally, Python projects often have dependencies,

https://github.com/FrostMegaByte/py-hint-search
https://github.com/FrostMegaByte/py-hint-search
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which can be installed in a virtual environment. These dependencies also contain classes
that can be used as type annotations. Therefore, it is necessary to gather all local project
classes and their corresponding file locations to ensure that a class can be imported when it
is predicted as a type annotation. If a virtual environment is present, the user can specify its
location as a parameter in the command line to allow for the collection of all classes from the
project dependencies including their file location. Similarly to local classes, this information
is needed to import the class when it is predicted as a type annotation.

4.3.2. Pyright Stub Files
As discussed in Section 4.1, Pyright is a static type checker for Python that is also capable
of inferring type annotations with the pyright --createstub command. The output of this
command is a “first draft” of a type stub, containing inferred type annotations for the return
type of the defined functions. The pyright --createstub command only seems to work
properly on packages that can be imported and not on individual Python files. Additionally,
if there is a directory containing Python files with inside that directory other nested subdirec-
tories containing Python files, then the nested subdirectories are skipped when generating
the type stubs. The solution to both of these problems is as follows: 1) Traverse the direc-
tory structure from the bottom up. So start in the most deeply nested directories and work
upwards to the specified directory location. And 2) create a temporary __init__.py file in
each directory, such that type stubs are generated for all Python files in that directory. Both
of these steps have been implemented in the pyright_typestubs_creator.py file which
allows a user to specify the directory location of Python files for which Pyright should create
type stubs that contain inferred return types.

4.3.3. Exclusion of Already Annotated Type Slots
For each type slot, the machine learning model determines one or multiple type annotations
to try during the validated combinatorial search. However, as mentioned before, this search
can grow exponentially based on the number of type slots that are tried. Therefore, speeding
up the search by reducing the number of slots to consider is crucial for efficiency. To achieve
this, all type annotations that are initially present or can be determined by other means are
excluded from the search.

The LibCST1 Python package assists in the exclusion of already annotated type slots. This
tool parses Python code into a concrete syntax tree (CST), enabling the extraction of type
annotations for each type slot. This allows for the identification of type slots that already
contain annotations and slots which do not. Additionally, LibCST can also be applied to
the generated Pyright stub files, creating CSTs from which additional type annotations can
be extracted. These annotations are then integrated into the program CST, enhancing the
number of type annotations and resulting in extra type slots that can be excluded from
consideration. Consequently, this refinement of the search space enables the combinatorial
search to concentrate exclusively on the remaining unfilled type slots.

4.3.4. Machine Learning Model
Several machine learning models, such as Typilus [1], Type4Py [26], HiTyper [29], TypeT5
[46], LambdaNet [47], and others, have been developed to predict type annotations. These
models try to predict one or multiple type annotations for a type slot.

The PyHintSearch tool is designed to be agnostic to the specific machine learning model used
for type annotation prediction. As long as a model can generate type annotation predictions
for type slots in the user-provided code and output its predictions in a specific format, it is
suitable for use with PyHintSearch. The specific format that PyHintSearch uses is Type4Py’s
JSON response convention2. This is chosen as Type4Py is the default model used by Py-
HintSearch and its response works well as a web API. Therefore, as long as a model outputs

1https://github.com/Instagram/LibCST
2https://github.com/saltudelft/type4py/wiki/Using-Type4Py-Rest-API#json-response

https://github.com/FrostMegaByte/py-hint-search/blob/master/src/pyright_typestubs_creator.py
https://github.com/Instagram/LibCST
https://github.com/saltudelft/type4py/wiki/Using-Type4Py-Rest-API#json-response


4.3. Components of PyHintSearch 19

its predictions in this format, PyHintSearch can parse the JSON and use the predictions to
construct a search tree that is used for the combinatorial search.

Although any machine learning type inference model that conforms to the aforementioned
JSON response format can be integrated with PyHintSearch, this thesis primarily focuses
on using Type4Py and TypeT5. Type4Py, a model developed by the Software Engineer-
ing Research Group at Delft University of Technology, has a public API endpoint (https:
//type4py.com/api) to which a file can be uploaded. After analysing the file, it responds
with a JSON object containing the predictions of all type slots. Additionally, the model can be
run as a local Docker container with the same functionality as the public API. This model was
chosen because of its ease of use, making it well-suited for prototyping the tool, the avail-
ability and accessibility of the authors at Delft University of Technology and its accuracy,
although surpassed by newer models, still being rather high.

On the other hand, the TypeT5 model was chosen as it was state-of-the-art at predicting
type annotations when starting the implementation of PyHintSearch. The TypeT5 GitHub
repository3 contains clear installation instructions to get the model up and running, making
it suitable for prototyping and testing its integration into PyHintSearch. While getting the
model to produce predictions is not the challenging part, obtaining predictions for a user-
provided project and making them available in the required JSON format via a web API is.
To address this challenge, TypeT5-API4 was developed. This Flask-based web API converts
predictions from the TypeT5 model into the necessary JSON format required for integration
with PyHintSearch. Since TypeT5 can predict type annotations for function parameters,
return types and variables, whereas PyHintSearch only requires types for parameters and
the return type, the predictions for variables have been disabled to speed up the inference
process. A Dockerfile was created to simplify the deployment of TypeT5-API, allowing users to
easily obtain predictions by providing the project path as a volume parameter when running
the Docker container. As a result, the TypeT5 model is fetched and applied to the project,
generating predictions in the required JSON structure, which are then sent to the http:
//localhost:5000/api endpoint.

4.3.5. Language Server Protocol
Static type checkers like Pyright use type annotations to detect type-related errors such as
type mismatches or incorrect usage of functions or methods. Besides, they can also be
exploited to give feedback on the correctness of inserted type annotations. In this thesis,
Pyright serves as an oracle to determine whether inserting a type annotation is allowed or
would cause an error, prompting the next type annotation to be considered. Given the need to
evaluate a lot of combinations, it is important that feedback from Pyright is received quickly.
Ideally, this means that Pyright’s built-in functions can be used to analyse an inserted type
annotation to get diagnostics fast.

Pyright itself is implemented in TypeScript, making direct access to its internal functions and
data structures inaccessible from Python. However, Pyright also features a language server
that is core to the Pylance5 plugin in VS Code. This language server can be used to analyse
source code files. In VS Code, for example, users can enable the option to let Pylance perform
a strict analysis on opened files to determine any static analysis errors in the code. This aligns
perfectly with the desired functionality of verifying the validity of added type annotations. For
example, a type annotation is inserted in the code and the static analysis indicates that it is
not allowed in that context. This feedback is then used to guide the combinatorial search.

To exploit Pyright and enable this functionality, the approach in this thesis involves faking
being a code editor using the Language Server Protocol (LSP) [23]. The LSP uses the JSON-
RPC protocol to send messages related to specific actions between development tools and the

3https://github.com/utopia-group/TypeT5
4https://github.com/FrostMegaByte/TypeT5-api
5https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance

https://type4py.com/api
https://type4py.com/api
http://localhost:5000/api
http://localhost:5000/api
https://github.com/utopia-group/TypeT5
https://github.com/FrostMegaByte/TypeT5-api
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
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language server. It is predominantly used to power language features in a code editor like
auto-completion, go-to-definition, find-all-references, syntax highlighting and more. Beyond
these functionalities, it also defines which document is currently opened, what changes are
being made to it and when it is closed. Interestingly, the Pyright language server recomputes
its analysis upon detecting changes in the contents of a file. This feature is useful, as it
reanalyses a file after adding an annotation in a type slot, producing diagnostics that are
used to determine the validity of the annotation. The approach to achieve this in practice
involves using the LSP to send commands to Pyright’s language server, effectively simulating
actions such as file opening, content modification and file closure. Hence, Pyright’s analy-
sis is performed, returning diagnostics that provide valuable feedback for the combinatorial
search.

To start the communication between PyHintSearch and Pyright’s language server, the lan-
guage server must first be started. This is accomplished by executing the command pyright-
langserver --stdio, enabling communication via the standard input and output. All fur-
ther communication involves JSON-RPC messages transmitted over the standard input and
output, containing instructions for both the language server and PyHintSearch.

Figure 4.7: LSP communication between PyHintSearch and Pyright’s language server.

Initially, an initialize message is sent, containing information related to the capabilities
of PyHintSearch’s fake editor. The language server then responds with information about the
server, followed by an initialized message back from the editor. Once the connection has
been successfully established, specific actions can be communicated. For PyHintSearch, the
fake editor is designed to be incredibly basic, implementing only file opening, changing and
closing actions. For this purpose, the fake_editor.py file implements functions which

https://github.com/FrostMegaByte/py-hint-search/blob/master/src/fake_editor.py
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correspond to sending textDocument/didOpen, textDocument/didChange and textDocu-
ment/didClose notifications.

The textDocument/didOpen message specifies which file should be opened, along with the
version of the file. Upon receiving this notification, the server processes it and responds with
initial diagnostics related to the file. Next, the textDocument/didChange message specifies
all changes made to a specific file and increments the file version. PyHintSearch sends a
message indicating that all the content in the file has changed, although typically only a single
type annotation changes. While it is possible to specify partial content changes via the LSP,
difficulties were encountered in implementing this. These difficulties relate to the complexity
of specifying the removal of a type annotation. Furthermore, it remains uncertain whether
sending partial changes accelerates the static analysis of a file. If it does, this enhancement
could speed up the validated combinatorial search. Nonetheless, sending changes relating to
all content in a file currently functions effectively, with the server responding with diagnostics
indicating any warnings and errors in the file. These diagnostics are then used to validate the
added or modified type annotation in a file. This feedback emphasises the utility of Pyright
as a tool for validating type annotations, ensuring that no invalid annotations are introduced
to the Python code. Once the search for a valid combination of type annotations for a file is
complete, the textDocument/didClose notification is sent, indicating that the file should be
closed. The language server then follows up with the final diagnostics related to the analysed
file.

Once all the Python files are searched by PyHintSearch, two final LSP messages are sent.
The shutdown request asks the server to shut down, but to not exit (otherwise the response
might not be delivered correctly to the editor). Finally, the exit notification instructs the
server to exit its process, completing the LSP communication. A complete overview of the
communication between PyHintSearch and Pyright’s language server is depicted in Figure
4.7.

4.3.6. Validated Combinatorial Search
The core focus of this thesis lies in the validated combinatorial search, outlined in Section
4.2. This section describes the implementation of the required search tree and the greedy
search approach.

Once the machine learning model returns its predictions as a JSON response, the data must
be structured into a search tree. First, the response is parsed to create a dictionary of all the
type slots in the code and their associated predictions. Next, another dictionary is created to
represent the actual search tree. Here, each type slot corresponds to a layer in the tree, with
each key representing a layer and its associated value being another dictionary containing
information about the type slot and its predictions. This approach minimises information
duplication, as redundant data would otherwise be replicated for every node in the layer.
To illustrate this, look back at Figure 4.5 and notice the three layers of nodes. The second
layer contains four nodes with identical information. By storing this data once, rather than
duplicating it for each node, the memory usage is optimised, preventing memory constraints
caused by the exponential growth of the tree as the number of type slots increases.

The greedy search approach uses a depth-first search (DFS) method to explore the search
tree efficiently. Unlike traditional DFS methods that use a stack to add and pop nodes for
traversal, the tree’s efficient storage in dictionaries requires a different approach. Instead, a
two-pointer system is used. One pointer corresponds to the current layer, i.e. the current
type slot, while the other pointer is in a list of indices that indicate the current prediction for
each layer. This system is used to track the progress throughout the search tree, enabling
DFS functionality without the memory overhead of storing the entire tree.

The search strategy processes the tree from left to right, inserting a type annotation into
the original code that corresponds to an edge in the search tree. Next, the modified code is
sent to the Pyright language server, which generates diagnostics related to the code. If the
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diagnostics confirm the validity of the added type annotation, the layer pointer index is incre-
mented, advancing to the next layer. Conversely, if the diagnostics indicate an invalid type
annotation, the index associated with the predictions for that layer is increased, attempting
the next prediction for the type slot. If the index surpasses the number of top-𝑛 predictions,
including the empty type, it indicates that no valid type annotation was found, thus the layer
index gets decremented to facilitate backtracking. Ultimately, this search should identify a
valid combination of type annotations given sufficient time. Two examples illustrating the
successful role of backtracking in the search process are presented in Appendix A. Given that
backtracking enables the exploration of all potential branches, leading to the examination of
an exponential number of combinations, a 5-minute timeout was implemented for each file
to prevent extremely long waiting times.

4.3.7. Stub Files Creation
Once a valid combination of type annotations is found, the results must saved. Throughout
the combinatorial search, the LibCST concrete syntax tree of the program is continuously
modified with type annotations, which is convenient, because it can eventually be saved as a
fully annotated source code file. However, modifying the original code is not always desired,
especially if it is someone else’s library, for example. Therefore, saving the results as a stub
file is preferable. With a few modifications, the annotated CST can be converted into a final
stub file containing type-hinting information for the originally provided code.

The Mypy [20] static type checker includes the stubgen tool that can automatically generate
stub files. Although stubgen was initially incorporated into the PyHintSearch tool, it had is-
sues with generating stubs for deeply nested folders. This resulted in several projects missing
their final type stubs and was therefore replaced with custom code that transforms a CST
into a type stub file.

4.4. Evaluation Strategy
To answer the proposed research questions, the PyHintSearch tool needs to be evaluated
on its effectiveness and efficiency. This section discusses four ways to evaluate the tool’s
coverage, correctness, performance and practical usage.

4.4.1. Preprocessing
Prior to evaluating the PyHintSearch tool on a project, the following steps are taken either
beforehand or during the execution of the tool:

1. Python has a type stubs repository called “typeshed” [32], containing stub files for sev-
eral Python projects. If stub files are available in typeshed or anywhere else for an
evaluated project, their annotations are merged into the original user-provided project,
creating a “fully annotated” version. Subsequently, PyHintSearch was applied to this
version.

2. The Type4Py model is unable to parse Python code that contains the pipe symbol, i.e.
a | b for union types in the newer syntax. Therefore, these symbols are transformed
into Union[a, b] annotations.

3. In cases where Incomplete type annotations exist in the code prior to the machine
learning model’s prediction of type annotations, these are removed. This action opens
up a type slot that can be filled with a predicted annotation instead.

4.4.2. Coverage Evaluation
In a simplified overview, the PyHintSearch tool consists of three steps. First, the initial step,
in which a user provides a project, which may or may not contain existing type annotations
in its source code. Second, the Pyright step, during which Pyright infers type annotations,
which are then integrated into the code, serving as the baseline for the evaluation. Third,
the validated combinatorial search step, during which a machine learning model performs
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type inference, predicting annotations for any remaining type slots, which are subsequently
validated by a combinatorial search strategy. The results from this step are compared to
the Pyright baseline to assess changes in coverage and determine whether machine learning
complements static type inference. Throughout this process, various metrics are collected to
evaluate the new outcomes against the baseline.

For each file of the user-provided project, the following metrics are collected:

• Filename
• Number of initial annotations
• Number of annotations after Pyright
• Number of annotations after PyHintSearch
• Number of fillable type slots
• Number of unfilled type slots
• Number of total type slots
• Number of extra Pyright annotations
• Number of extra PyHintSearch annotations
• Percentage of extra Pyright annotations
• Percentage of extra PyHintSearch annotations
• Percentage of all extra annotations
• Number of PyHintSearch evaluated type slots
• Percentage of extra PyHintSearch annotations after Pyright
• Number of arguments and return types, categorised into ubiquitous, common and rare
groups, for the initial, after Pyright and after PyHintSearch type annotations. Annota-
tions for Python’s dunder methods are excluded, as these are considered too easy to
determine.

While most of these metrics are fairly straightforward, understanding the “ubiquitous, com-
mon and rare annotations” metric requires further elaboration. For example, a question
might arise regarding the categorisation technique. Since Python allows the same type to
be written in different syntactic forms6, there needs to be a method that can normalise and
categorise annotations into their respective groups. The TypeT5 paper [46] describes a nor-
malisation step that is performed to achieve this categorisation: “We recursively apply the
following steps to normalise a Python type:

1. Rewrite any Optional[T] to Union[T,None].
2. Sort the arguments of Union types and flatten any nested Unions.

e.g., rewrite Union[B,Union[C,A]] into Union[A,B,C].
3. If all type arguments are Any, drop them all. e.g., rewrite List[Any] to List.
4. Capitalise the names of basic types. e.g., rewrite list to List.”

Furthermore, according to the LambdaNet paper [47], the top 100 annotations should cover
98% of all type annotations typically found in a project. Fortunately, the code for retrieving
the TypeT5 model also obtains a list of the top 100 most frequent type annotations. The
only change made to this list for the PyHintSearch tool involves replacing the _MakeClient
annotation with the more commonly encountered LiteralString annotation. This decision
was based on debugging the ubiquitous, common and rare groups and finding that Liter-
alString was used more frequently than _MakeClient, yet consistently being classified as
rare.

Additionally, the Type4Py paper [26] further subdivides the common group by selecting the
top 10 most frequent type annotations and calling these “ubiquitous”. These annotations

6e.g., both Union[int,None] and Optional[int] refer to an integer that can also be None, and both list and
List[Any] refer to a Python list with untyped elements
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include str, int, bool, float, List, Dict, etc. For the evaluation of PyHintSearch, a similar
approach is adopted, albeit with a slight modification. Instead of considering only the top
10 most frequent annotations, the list is expanded to include None and Any annotations
as well. This adaptation is necessary because the correctness metrics discussed in Section
4.4.3 filter out None and Any types, thereby resulting in a revised list of the top 10 ubiquitous
annotations matching the categorisation approach described by Type4Py.

4.4.3. Correctness Evaluation
The PyHintSearch tool merges the type annotations from Pyright with the identified valid
combination of predicted type annotations, forming type stubs. While these determined type
annotations are confirmed as valid through Pyright’s check, it’s important to note that their
correctness is not guaranteed. For example, it can be the case that an int type annotation
is added, whereas afloat type was expected. Because int is a subset of float, it passes
the validation, yet it might not fit in the original context. With this discrepancy in mind, a
way to evaluate the correctness of type annotations is needed.

PyHintSearch takes already type annotated slots into account, such that it does not try to
find new type annotations for them. This decreases the number of combinations that are
searched, but also means that the predicted slots lack a corresponding “groundtruth” label
in the original project code. Because of this, only the type annotations in the original project
code can be used for the comparison against the new annotations. To ensure a fair com-
parison, all annotations from the original project code must be stripped before running the
PyHintSearch tool. This now fills in the type slots that used to have a type annotation. After
successfully running on the stripped project, the predicted types can then be compared to
the original types to check their correctness.

To compare the correctness of the predicted type with the original type, a metric is needed
to determine the quality and accuracy between the two. The TypeT5 paper [46] mentions
three metrics for assessing type annotation accuracy, namely full accuracy, adjusted ac-
curacy and base accuracy. Given that full accuracy does not remove Any and None type
annotations, while the other two metrics do, this thesis opts to exclude full accuracy from
the evaluation. Adjusted accuracy is used for a more meaningful comparison of correct-
ness with prior works. “This metric (1) filters out all None and Any labels, (2) converts fully
qualified names to simple names (e.g., Tensor instead of torch.Tensor), and (3) rewrites
any outermost Optional[T] and Final[T] into T since they tend not to be used consis-
tently across programmers.” The base accuracy metric is the same as adjusted accuracy,
except that it only checks the outermost type (e.g., List[int] will match any List, but not
Sequence.)

Now that the number of added annotations matching the original ones can be determined for
each metric, it becomes possible to calculate the precision and recall for the correct annota-
tions. Following the definitions provided in the TypeWriter paper [31], precision is calculated
as 𝑝𝑟𝑒𝑐 = 𝑛𝑐𝑜𝑟𝑟

𝑛𝑎𝑙𝑙
, where 𝑛𝑐𝑜𝑟𝑟 is the number of correct predictions and 𝑛𝑎𝑙𝑙 represents the to-

tal count of non-empty type slots. Similarly, recall is determined as 𝑟𝑒𝑐 = 𝑛𝑐𝑜𝑟𝑟
|𝐷| , where |𝐷|

represents the total number of type slots.

4.4.4. Performance Evaluation
To address Research Question 2, it is crucial to monitor performance characteristics like
speed and memory consumption. In addition to the list of metrics outlined in Section 4.4.2,
more metrics are gathered for each file of the provided project during the runtime of the
PyHintSearch tool. These additional metrics are:

• Time taken by Pyright
• Time taken by PyHintSearch
• Average time per PyHintSearch evaluated type slot
• Total time taken
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• Peak memory usage of Pyright
• Peak memory usage of PyHintSearch

4.4.5. Call Graph Evaluation
For the evaluation of Research Question 3, the impact of type annotations on downstream
program analysis is assessed. In this evaluation, call graphs are utilised based on the hy-
pothesis that type annotations in Python code provide additional information to the call graph
generation tool. This additional information potentially enables more precise specification of
the edges in a call graph, allowing for the removal of these edges with greater accuracy,
thereby enhancing its precision. These enhancements would consequently improve static
analysis given the relevance of call graphs in that context. The call graph generation tool
used in this thesis is provided by a company called Endor Labs7. Their proprietary tool is
said to be superior to alternatives like PyCG [38] and Jarvis [52], generating more precise call
graphs.

To start the evaluation, a baseline call graph is generated from the original Python code of
a user-provided project. This project may already contain some type annotations or none at
all. The Python code is processed by the Endor Labs call graph generator, which produces a
JSON file detailing the nodes and edges that make up the call graph. Notably, Endor Labs’
tool leverages Pyright to infer type annotations in addition to collecting them from Python’s
typeshed repository [32] prior to generating the call graph. Thus, the baseline call graph is
created from code already annotated with Pyright annotations.

Next, the PyHintSearch tool is applied to the user-provided project, aiming to add as many
validated type annotations into the code as possible. This process is done for the top-1,
top-3 and top-5 predictions. The resulting annotated source code is then given to Endor
Labs’ call graph generator, producing call graphs corresponding to the top-1, top-3 and top-5
predictions, respectively. These call graphs are then compared to the baseline to quantify the
number of similar, added and removed edges, enabling the calculation of the precision and
recall between the two graphs. These values contribute to answering the question of how type
annotations impact downstream program analysis. Ideally, the number of removed edges
is relatively high, indicating that the additional information provided by type annotations
enhances the precision of the call graph.

4.4.6. Experimental Setup
The PyHintSearch tool was evaluated on three Google Cloud Compute Engine VM instances,
each equipped with 2 vCPUs, 1 core and 8 GB of memory. While a single instance could
have sufficed, using three instances enabled the parallel execution of PyHintSearch, thus
speeding up the collection of results.

7https://www.endorlabs.com

https://www.endorlabs.com
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Results

This chapter presents the results obtained from the PyHintSearch tool utilising both the
Type4Py and TypeT5 models. Results related to the coverage and correctness of the added
type annotations are shown, alongside performance metrics for the tool. Additionally, infor-
mation related a call graph that is generated with and without added type annotations by
Type4Py, is also shown.

5.1. Type4Py
Type4Py is the default machine learning model of the PyHintSearch tool for generating pre-
dictions which are searched. This search process is executed across 16 projects, which are
showcased in Table 5.1 with their corresponding commit hash for potential reproduction.

Table 5.1: All projects used for the evaluation of PyHintSearch with the Type4Py model.

Project Commit hash Project Commit hash

Black 632f44b Html5lib 82c2599
Bleach 55d9d60 Matplotlib 26832df
Braintree 282cb0d Pandas 94d575a
Colorama 1368087 Pillow e478775
Dateparser 1d4b058 Redis 1a7d474
Django 0630ca5 Requests 96b22fa
Exifread d60f18d Seaborn b95d6d1
Flask 94e80b3 Stripe 66c96bf

These projects are chosen as they represent a diverse selection of code bases, ranging from
small to large, including both popular and lesser-known projects. They also have already-
existing type stubs, which offer additional information to PyHintSearch and enable compar-
isons to be made against the added predicted types.

5.1.1. Coverage
To answer Research Question 1 concerning the overall improvement of additionally deter-
mined type annotations, several statistics from all projects are tracked. For example, the
average number of type slots across all files is logged and, since many projects already con-
tain some type annotations, it means that many of these slots have been filled in already.
Therefore, knowing the average number of remaining fillable type slots gives an indication
of how many type slots can be evaluated by both Pyright and PyHintSearch. After running
Pyright, some slots get filled with a type annotation and similarly for PyHintSearch. Hence, to
elaborate on the overall improvement, it is informative to observe the number of type slots left
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https://github.com/psf/black/tree/632f44bd68b818cbc9dfd57e7485f0e5c3863b76
https://github.com/html5lib/html5lib-python/tree/82c2599585a6119e5afd26e58e754972c79f6734
https://github.com/mozilla/bleach/tree/55d9d60e6b32bb56512157046ab0333a748cf074
https://github.com/matplotlib/matplotlib/tree/26832df75b1455b998b182d6bfee22ee344b2a5b
https://github.com/braintree/braintree_python/tree/282cb0d889e1829a9b5364f1561125c969737231
https://github.com/pandas-dev/pandas/tree/94d575a724f6832c47c896356de201fbe4bfeae5
https://github.com/tartley/colorama/tree/136808718af8b9583cb2eed1756ed6972eda4975
https://github.com/python-pillow/Pillow/tree/e47877587fb8aa1853ef7473285a2964f5e98520
https://github.com/scrapinghub/dateparser/tree/1d4b05875d2ee35987607f8e33efa4c8df74dfb2
https://github.com/redis/redis-py/tree/1a7d474268fe7072686369adc20aa498d63f063e
https://github.com/django/django/tree/0630ca5725ba5b17c61cd1f6a05dce2660c4724e
https://github.com/psf/requests/tree/96b22fa18c00831656ee4b286bf1c9062459b00a
https://github.com/ianare/exif-py/tree/d60f18d3b5f701cd87523c577adacd91175f1365
https://github.com/mwaskom/seaborn/tree/b95d6d1ce9dfed6970015d8bdad9068b5749868a
https://github.com/pallets/flask/tree/94e80b3da9048372ed857f6175a4d5fd1ca8913b
https://github.com/stripe/stripe-python/tree/66c96bfb6813959237635bb0d73d18bc560b127a
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unfilled after running either tool. These results, depicted in Table 5.2, reveal that initially,
there are 17.09 fillable type slots across all projects. Then after Pyright’s type propagation,
13.40 slots remain unfilled. Finally, after running PyHintSearch, this number decreases con-
siderably to 5.03 unfilled type slots, considering the top-1 predictions of the type inference
machine learning model.

Table 5.2: Type slots information for all projects.

Slots Mean type slots

Total type slots 41.10
Fillable type slots 17.09
Unfilled type slots after Pyright propagation 13.40

Unfilled type slots after PyHintSearch
Top-1 5.03
Top-3 5.18
Top-5 5.26

Looking at these results from another perspective, it’s interesting to not only examine the in-
formation related to type slots, but also the actual number of annotations present on average
in a project. Table 5.3 provides this perspective. Initially, the mean number of annotations
in a project is 24.01. However, if Pyright is used to propagate additional type annotations,
this value increases to 27.70. Hence, Pyright is capable of determining, on average, an ad-
ditional 3.69 type annotations, which represents 21.61% of the fillable type slots. Following
Pyright, PyHintSearch is ran, resulting in an additional 8.36 type annotations when consid-
ering the top-1 predictions, thus ending up at an average of 36.07 validated type annotations
per project file. This translates to an additional 48.94% of the fillable type slots being filled by
PyHintSearch. However, more importantly, the machine learning model and combinatorial
search that make up PyHintSearch ultimately enhances the Pyright inferred annotations by
an additional 62.45%. For the top-3 and top-5 scenarios, this increase is slightly lower at
61.32% and 60.75%, respectively.

Table 5.3: Number of annotations for all projects. All values are mean values.

Phase Annotations Added an-
notations

Added an-
notations

(%)

Added an-
notations

after
Pyright (%)

Initial 24.01 - - -
After Pyright propagation 27.70 3.69 21.61 -

After PyHintSearch
Top-1 36.07 8.36 48.94 62.45
Top-3 35.92 8.21 48.06 61.32
Top-5 35.84 8.14 47.62 60.75

To visually demonstrate the improved coverage by PyHintSearch, take a look at Figure 5.1. In
this histogram, each file across all projects is categorised by the number of unfilled type slots,
illustrating the initial distribution. Then, after running PyHintSearch, more annotations get
added, resulting in fewer unfilled type slots, thus showing a shift in the distribution.
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Figure 5.1: Distribution of unfilled type slots before and after PyHintSearch. The distribution is based on the number
of unfilled type slots for each file in all the evaluated projects. The x-axis uses the symlog scale.

Of all the type annotations in the projects, it is also insightful to understand their categorisa-
tion into ubiquitous, common and rare types. Moreover, this categorisation can be specified
even further since PyHintSearch only works for function arguments and return types. Ta-
ble 5.4 offers an absolute overview of this categorisation, while Table 5.5 provides relative
percentages. Interesting to note is that for the initial types, the number of rare annotations
is larger than the number of common annotations, as developers often add project-specific
type annotations which are not in the top-100 most frequent types. Conversely, Type4Py’s
determined type annotations do follow the expected categorisation of ubiquitous, common
and rare. Both tables also point out Pyright’s inability to infer type annotations for function
arguments, highlighting the value of using a machine learning model to address this gap.

Table 5.4: Absolute categorisation of ubiquitous, common and rare type annotations for all projects.

Types Ubiquitous Common Rare

Args Returns Args Returns Args Returns

Initial types 8456 4815 1959 883 4732 3762
Pyright propagated 0 2132 0 512 0 656

PyHintSearch added
Top-1 5920 1746 975 122 414 28
Top-3 5767 1702 942 140 441 49
Top-5 5700 1676 935 157 438 51
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Table 5.5: Relative categorisation of ubiquitous, common and rare type annotations for all projects.

Top-𝑛 Types % Ubiquitous % Common % Rare

Args Returns Args Returns Args Returns

Top-1
Initial types 22.8 13.0 5.3 2.4 12.8 10.0
Pyright propagated 0.0 5.7 0.0 1.4 0.0 1.8
PyHintSearch added 16.0 4.7 2.6 0.3 1.1 0.1

Top-3
Initial types 22.9 13.0 5.3 2.4 12.8 10.2
Pyright propagated 0.0 5.8 0.0 1.4 0.0 1.8
PyHintSearch added 15.6 4.6 2.5 0.4 1.2 0.1

Top-5
Initial types 22.9 13.1 5.3 2.4 12.8 10.2
Pyright propagated 0.0 5.8 0.0 1.4 0.0 1.8
PyHintSearch added 15.5 4.5 2.5 0.4 1.2 0.1

5.1.2. Correctness
While the correctness of the type annotations added by PyHintSearch relies entirely on the
precision of the underlying machine learning model, it remains valuable to assess how many
of these annotations match with the original types. To achieve this, all project files get
stripped from their type annotations, followed by the execution of both Pyright and Py-
HintSearch on the stripped files. Now, the newly added type annotations from either method
can be compared to the original annotations present in the files. As described in Section
4.4.3, there are two accuracy metrics used to perform this comparison, namely the adjusted
accuracy and base accuracy. Across all projects, the mean number of original type annota-
tions is 17.02, serving as the baseline for the comparison.

Both Pyright and the PyHintSearch tool are capable of adding new annotations to the stripped
projects. However, PyHintSearch uses Pyright alongside a validated combinatorial search,
thus enabling it to annotate more files than Pyright could on its own. In mathematical terms,
the output of the PyHintSearch tool is the superset of Pyright’s output. Because of this, in
order to make fair correctness comparisons between the two tools, only the files which Pyright
is able to annotate are considered for the results in Table 5.6.

Table 5.6: Correctness of the added type annotations for all projects, excluding Python dunder methods. All values
are mean values.

Accuracy Phase Original Added Correct Incorrect Precision Recall

Adjusted

After Pyright 17.02 3.74 1.43 15.59 0.38 0.08
After Top-1 17.02 12.40 4.46 12.56 0.36 0.26
After Top-3 17.02 12.14 4.32 12.70 0.36 0.25
After Top-5 17.02 12.11 4.32 12.70 0.36 0.25

Base

After Pyright 17.02 3.74 2.18 14.84 0.58 0.13
After Top-1 17.02 12.40 5.31 11.71 0.43 0.31
After Top-3 17.02 12.14 5.19 11.83 0.43 0.31
After Top-5 17.02 12.11 5.19 11.83 0.43 0.30

In terms of adjusted accuracy, Pyright typically adds an average of 3.74 type annotations,
with only 1.43 of them being correct. Therefore, 15.59 annotations are incorrect, either failing
to match the original types or being absent altogether. On the other hand, the PyHintSearch
tool, using top-1 predictions, demonstrates better performance by adding 12.40 extra types,
of which 4.46 are correct. While this suggests a greater number of type annotations integrated
into the code, a significant portion still does not match the original annotations.
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Regarding base accuracy, the number of Pyright added type annotations is the same, yet
2.18 more annotations are deemed correct due to the relaxed constraint of only matching
the base type. Similarly, across all top-𝑛 predictions, the number of correct type annotations
increases. Specifically, top-1 predictions achieve correctness for 5.31 types, but still leave
11.71 annotations unmatched or missing.

5.1.3. Performance
Time Performance metrics provide insights into the speed, memory usage and scalability
of the developed tool. There are two distinct steps that take place when adding annotations,
namely the Pyright step and the PyHintSearch step. The combined time that the Pyright step
takes is 4,346.51 seconds or approximately 1.25 hours across all files from all the projects.
Meaning that for each file, this step takes on average 3.93 seconds.

Regarding the PyHintSearch step, the time taken is primarily dependent on the top-𝑛 predic-
tions that are explored during the validated combinatorial search. If the majority of machine
learning-predicted annotations are valid according to the feedback from Pyright, then the type
slots can be filled in linear time. However, if the need for backtracking arises, the number of
top-𝑛 annotations significantly affects the time required. Continuously trying only a single
type annotation before filling in a blank or continuing to the next slot goes much faster than
performing the same process for five annotations. The only reason that the times in Table 5.7
do not exhibit exponential growth for larger top-𝑛 values is due to the tool’s 5-minute timeout
per file. This limitation restricts the combinatorial search from taking hours before finding a
valid combination of type annotations, but also results in no combination being found when
the timeout is reached. However, that is the trade-off for having a practically applicable tool
instead of waiting hours, if not days, searching the exponential space of combinations.

Nevertheless, automating annotations for 16 projects during the PyHintSearch step con-
sumes 44,003.46 seconds (∼12.25 hours) for top-1 predictions, increasing to 52,093.32 sec-
onds (∼14.5 hours) for top-5 predictions. Despite the time investment, this automated ap-
proach is still much faster than manual annotation by a developer, particularly for large
projects like Django and Pandas.

Table 5.7: The execution time of each step in the tool.

Step Top-𝑛 Mean time per file (s) Total time (s) Total time (h)

Pyright 3.93 4,346.51 ∼1.25

PyHintSearch
Top-1 39.75 44,003.46 ∼12.25
Top-3 45.74 50,634.29 ∼14
Top-5 47.06 52,093.32 ∼14.5

Total*
Top-1 44.38 49,125.39 ∼13.75
Top-3 50.23 55,603.95 ∼15.5
Top-5 51.56 57,079.13 ∼16

* Total time of the tool, thus including other minor computations in addition to the Pyright and
PyHintSearch steps.

Memory As for memory usage, the maximum values that have been observed during the
execution of the tool are 23.67 megabytes for the Pyright step and 119.99 megabytes for the
PyHintSearch step. These values are relatively small and most computers should be able
to handle this amount of memory usage. It should be noted, however, that PyHintSearch
relies on a machine learning model accessible via a Docker container for its predictions. This
container takes up several gigabytes of memory, thus it’s advisable to allocate a minimum of
8 gigabytes or more of memory to ensure smooth operation.
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Scalability The scalability of the PyHintSearch tool is constrained by several factors to en-
sure practical feasibility. Firstly, there is a hard limit of 100 fillable type slots after the Pyright
step, that the validated combinatorial search tries to find a valid combination of type annota-
tions for. This limitation is set because larger files often have more interdependent functions,
which increases the likelihood of requiring backtracking. Such backtracking results in an
exponential increase in the number of combinations to be explored, often leading to the tool
reaching its timeout threshold of five minutes. This is the second limitation as the search is
stopped and no new annotations are added to the file. Therefore, while removable, without
this timeout limitation, the time for finding a valid combination would scale exponentially,
rendering the tool impractical for usage.

5.1.4. Call Graphs
Following the execution of PyHintSearch, all 16 projects are enriched with type annotations
from the top-1, top-3 and top-5 predictions. These annotated project files are then processed
by Endor Labs’ call graph generation tool to generate corresponding call graphs. These call
graphs are compared to the baseline call graph, generated from the original user-provided
project, to examine the differences in edges between the two graphs. Table 5.8 provides an
overview of each project’s call graph, detailing the number of similar, added and removed
edges.

Table 5.8: Overview of the number of edges present in a call graph.

Project Existing CG New CG Same Added Removed Precision Recall

Black
Top-1 2370 2368 2368 0 2 1 1
Top-3 2370 2368 2368 0 2 1 1
Top-5 2370 2368 2368 0 2 1 1
Bleach
Top-1 816 669 617 52 199 0.92 0.76
Top-3 816 669 617 52 199 0.92 0.76
Top-5 816 669 617 52 199 0.92 0.76
Braintree
Top-1 6027 5719 5603 116 424 0.98 0.93
Top-3 6027 5708 5551 157 476 0.97 0.92
Top-5 6027 5708 5551 157 476 0.97 0.92
Colorama
Top-1 181 181 181 0 0 1 1
Top-3 181 181 181 0 0 1 1
Top-5 181 181 181 0 0 1 1
Dateparser
Top-1 2925 2975 2722 253 203 0.91 0.93
Top-3 2925 3026 2789 237 136 0.92 0.95
Top-5 2925 3026 2789 237 136 0.92 0.95
Django
Top-1 259519 258950 255549 3401 3970 0.99 0.98
Top-3 259519 263875 255587 8288 3932 0.97 0.98
Top-5 259519 264252 255581 8671 3938 0.97 0.98
Exifread
Top-1 414 416 413 3 1 0.99 1
Top-3 414 416 413 3 1 0.99 1
Top-5 414 416 413 3 1 0.99 1

Continued on next page
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Table 5.8 – continued from previous page
Project Existing CG New CG Same Added Removed Precision Recall

Flask
Top-1 1587 1631 1583 48 4 0.97 1
Top-3 1587 1631 1583 48 4 0.97 1
Top-5 1587 1631 1583 48 4 0.97 1
Html5lib
Top-1 5750 5391 5331 60 419 0.99 0.93
Top-3 5750 5351 5292 59 458 0.99 0.92
Top-5 5750 5351 5292 59 458 0.99 0.92
Matplotlib
Top-1 61701 62957 59974 2983 1727 0.95 0.97
Top-3 61701 63039 60048 2991 1653 0.95 0.97
Top-5 61701 63045 60049 2996 1652 0.95 0.97
Pandas
Top-1 87585 87585 87585 0 0 1 1
Top-3 87585 87585 87585 0 0 1 1
Top-5 87585 87585 87585 0 0 1 1
Pillow
Top-1 12877 12705 12341 364 536 0.97 0.96
Top-3 12877 12724 12341 383 536 0.97 0.96
Top-5 12877 12724 12341 383 536 0.97 0.96
Redis
Top-1 14370 14140 14008 132 362 0.99 0.97
Top-3 14370 14140 14008 132 362 0.99 0.97
Top-5 14370 14089 14038 51 332 1 0.98
Requests
Top-1 2306 2166 1956 210 350 0.9 0.85
Top-3 2306 2228 2062 166 244 0.93 0.89
Top-5 2306 2228 2062 166 244 0.93 0.89
Seaborn
Top-1 24970 24529 24281 248 689 0.99 0.97
Top-3 24970 24664 24429 235 541 0.99 0.98
Top-5 24970 24875 24655 220 315 0.99 0.99
Stripe
Top-1 55027 55027 55027 0 0 1 1
Top-3 55027 55027 55027 0 0 1 1
Top-5 55027 55027 55027 0 0 1 1

A noteworthy observation is related to the projects Black, Colorama, Exifread, Pandas and
Stripe. These projects stand out because of their minimal changes in added or removed edges,
with many edges matching exactly with the baseline call graph. This can be attributed to
the extensive integration of type annotations from the corresponding type stubs in the code,
leading to a limited number of available type slots for PyHintSearch to fill. Therefore, running
PyHintSearch over these projects has minimal impact on the number of added annotations,
resulting in nearly identical call graphs.

Moreover, several interesting but also unexpected results can be seen for the Dateparser,
Django, Flask and Matplotlib projects. For these projects, the number of edges added to
the call graph exceeds the number of removed edges. Conversely, in the remaining projects,
the number of removed edges is larger than the number of added edges. This supports
the hypothesis that additional type information contributes to a more precise call graph.
However, to gain a more thorough understanding of why call graphs have added and removed
edges, several edges from different projects were examined. This examination includes the
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project name to which the edge belongs, the name of the examined target edge, a classification
of whether source edges were added or removed for the target edge, and an explanation of my
reasoning behind the addition or removal of the source edges. The results of this examination
are shown in Table 5.9, which can be found on the next page.
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https://github.com/mozilla/bleach/blob/55d9d60e6b32bb56512157046ab0333a748cf074/bleach/sanitizer.py#L321
https://github.com/mozilla/bleach/blob/55d9d60e6b32bb56512157046ab0333a748cf074/bleach/sanitizer.py#L321
https://github.com/mozilla/bleach/blob/55d9d60e6b32bb56512157046ab0333a748cf074/bleach/html5lib_shim.py#L596
https://github.com/mozilla/bleach/blob/55d9d60e6b32bb56512157046ab0333a748cf074/bleach/html5lib_shim.py#L596
https://github.com/scrapinghub/dateparser/blob/1d4b05875d2ee35987607f8e33efa4c8df74dfb2/dateparser/utils/__init__.py#L83
https://github.com/scrapinghub/dateparser/blob/1d4b05875d2ee35987607f8e33efa4c8df74dfb2/dateparser/languages/dictionary.py#L123
https://github.com/scrapinghub/dateparser/blob/1d4b05875d2ee35987607f8e33efa4c8df74dfb2/dateparser/languages/dictionary.py#L123
https://github.com/scrapinghub/dateparser/blob/1d4b05875d2ee35987607f8e33efa4c8df74dfb2/dateparser/languages/dictionary.py#L123
https://github.com/html5lib/html5lib-python/blob/82c2599585a6119e5afd26e58e754972c79f6734/html5lib/_trie/py.py#L10
https://github.com/html5lib/html5lib-python/blob/82c2599585a6119e5afd26e58e754972c79f6734/html5lib/_tokenizer.py#L55
https://github.com/html5lib/html5lib-python/blob/82c2599585a6119e5afd26e58e754972c79f6734/html5lib/_tokenizer.py#L55
https://github.com/html5lib/html5lib-python/blob/82c2599585a6119e5afd26e58e754972c79f6734/html5lib/_tokenizer.py#L55
https://github.com/python-pillow/Pillow/blob/e47877587fb8aa1853ef7473285a2964f5e98520/src/PIL/ImageFile.py#L517
https://github.com/matplotlib/matplotlib/blob/26832df75b1455b998b182d6bfee22ee344b2a5b/lib/matplotlib/tri/_tripcolor.py#L8
https://github.com/matplotlib/matplotlib/blob/26832df75b1455b998b182d6bfee22ee344b2a5b/lib/matplotlib/tri/_tripcolor.py#L8
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5.2. TypeT5
TypeT5 is an alternative machine learning model that can be used by the PyHintSearch tool
for predicting type annotations. While PyHintSearch can theoretically use any model that
predicts multiple type annotations, TypeT5’s implementation yields only a single prediction.
Therefore, PyHintSearch resorts to its top-1 prediction during the combinatorial search pro-
cess. Furthermore, TypeT5 uses all project files at once to improve the precision of its type
annotation predictions. However, its biggest drawback is that it is very slow in predicting
types for all these files when not utilising a GPU. This long prediction time lead to a reduced
number of projects for which results could be obtained. Instead of gathering results for the
original 16 projects, the results are limited to just 4, namely, Bleach, Colorama, Requests
and Seaborn. These are presented in Table 5.10.

Table 5.10: All projects used for the evaluation of PyHintSearch with the TypeT5 model.

Project Commit hash

Bleach 55d9d60
Colorama 1368087
Requests 96b22fa
Seaborn b95d6d1

Similarly to the Type4Py section above, the coverage, correctness and performance results
are gathered for the PyHintSearch tool that utilises the TypeT5 model. Given that TypeT5
generates only one prediction, it is compared to the top-1 predictions of the Type4Py model to
make a fair comparison and to assess the impact of the underlying machine learning model
on the effectiveness of the combinatorial search.

5.2.1. Coverage
To compare TypeT5 against Type4Py on type annotation coverage of the four projects, a
general overview of information about the type slots is required. This overview is displayed
in Table 5.11, showing that the mean number of total type slots is 43.02, with 20.09 slots
yet to be filled. Upon running Pyright across the four TypeT5 projects, this value decreases
to 16.00 unfilled type slots. A further improvement to this value is achieved by running
PyHintSearch. Utilising the Type4Py model decreases the number of unfilled type slots to
5.58, whereas with the TypeT5 model, this number drops even further to 3.21 unfilled type
slots.

Table 5.11: Type slots information for all projects processed by PyHintSearch with TypeT5.

Slots Model Mean type slots

Total type slots 43.02
Fillable type slots 20.09
Unfilled type slots after Pyright propagation 16.00

Unfilled type slots after PyHintSearch Type4Py 5.58
TypeT5 3.21

Instead of looking only at type slot information, the number of type annotations in the code
can also be examined together with their increase after inferring types annotations. Table
5.12 illustrates that initially, the mean number of annotations is 22.93, which rises to 27.02
after Pyright’s propagation. Pyright, therefore, adds an average of 4.09 type annotations,
which is a 20.35% increase based on the number of fillable slots. PyHintSearch improves
upon this value with Type4Py and TypeT5, adding 10.42 and 12.79 annotations respectively.
Therefore, Type4Py can fill an additional 51.88% of the fillable type slots, while TypeT5 fills
63.67%. More importantly, Type4Py improves upon Pyright by 65.35%, but this remarkable
achievement is surpassed by the utilisation of the TypeT5 model, realising an improved score
of 79.93%. This clearly indicates that TypeT5 predicts more accurate, or at least more valid

https://github.com/mozilla/bleach/tree/55d9d60e6b32bb56512157046ab0333a748cf074
https://github.com/tartley/colorama/tree/136808718af8b9583cb2eed1756ed6972eda4975
https://github.com/psf/requests/tree/96b22fa18c00831656ee4b286bf1c9062459b00a
https://github.com/mwaskom/seaborn/tree/b95d6d1ce9dfed6970015d8bdad9068b5749868a
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type annotations according to the Pyright type checker, which are accepted in the validated
combinatorial search compared to Type4Py.

Table 5.12: Number of annotations for all projects processed by PyHintSearch with TypeT5. All values are mean
values.

Phase Model Annotations Added an-
notations

Added an-
notations

(%)

Added an-
notations

after
Pyright (%)

Initial 22.93 - - -
After Pyright propagation 27.02 4.09 20.35 -

After PyHintSearch Type4Py 37.44 10.42 51.88 65.35
TypeT5 39.81 12.79 63.67 79.93

The initial and added type annotations can all be categorised into ubiquitous, common and
rare annotations. Table 5.13 shows the absolute values for this categorisation, while Table
5.14 presents the relative values. It’s worth noting that PyHintSearch with the TypeT5 model
is able to add more rare annotations compared to the Type4Py model. Specifically, while only
1.2% of the added annotations with Type4Py are rare, this value increases to 7.6%when using
TypeT5. Furthermore, the percentage of common types is also higher for TypeT5, showcasing
its capacity to predict more infrequent type annotations compared to Type4Py.

Table 5.13: Absolute categorisation of ubiquitous, common and rare type annotations for all projects processed by
PyHintSearch with TypeT5.

Types Model Ubiquitous Common Rare

Args Returns Args Returns Args Returns

Initial types 362 215 142 50 283 174
Pyright propagated 0 141 0 28 0 14

PyHintSearch added Type4Py 327 93 134 12 21 2
TypeT5 283 96 150 30 122 41

Table 5.14: Relative categorisation of ubiquitous, common and rare type annotations for all projects processed by
PyHintSearch with TypeT5.

Model Types % Ubiquitous % Common % Rare

Args Returns Args Returns Args Returns

Type4Py
Initial types 18.1 10.8 7.1 2.5 14.2 8.7
Pyright propagated 0.0 7.1 0.0 1.4 0.0 0.7
PyHintSearch added 16.4 4.7 6.7 0.6 1.1 0.1

TypeT5
Initial types 17.0 10.1 6.7 2.3 13.3 8.2
Pyright propagated 0.0 6.6 0.0 1.3 0.0 0.7
PyHintSearch added 13.3 4.5 7.0 1.4 5.7 1.9

5.2.2. Correctness
To demonstrate the superior accuracy of the predicted type annotations by TypeT5 compared
to those of Type4Py, the correctness of the added annotations is examined in relation to
the original ones. Table 5.15 reveals that across the four projects analysed by TypeT5, an
average of 26.20 annotations were initially present in the codebase. After stripping these out
and running Pyright, an average of 5.85 annotations were added. According to the adjusted
accuracy metric, 2.40 of these annotations were deemed correct, increasing to 3.50 for the
base accuracy.
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Table 5.15: Correctness of the added type annotations for all projects processed by PyHintSearch with TypeT5,
excluding Python’s dunder methods. All values are mean values.

Accuracy Phase Original Added Correct Incorrect Precision Recall

Adjusted
After Pyright 26.20 5.85 2.40 23.80 0.38 0.07
After Type4Py 26.20 16.48 5.45 20.75 0.33 0.21
After TypeT5 26.20 17.70 9.10 17.10 0.51 0.35

Base
After Pyright 26.20 5.85 3.50 22.70 0.55 0.11
After Type4Py 26.20 16.48 6.68 19.53 0.41 0.25
After TypeT5 26.20 17.70 10.63 15.58 0.60 0.41

After running PyHintSearch with Type4Py, 16.48 annotations were added. Of these annota-
tions, 5.45 were deemed correct based on the adjusted accuracy and 6.68 based on the base
accuracy. Although there was a decrease in precision compared to Pyright, there was an in-
crease in recall. Conversely, the more accurate type predictions by TypeT5 led to the addition
of 17.70 types, with 9.10 deemed correct based on the adjusted accuracy and 10.63 based
on the base accuracy. Looking at these results, it can be seen that TypeT5 has increased
precision and recall compared to both Pyright and Type4Py. This shows the superiority of a
model that offers more accurate type annotations to be used in the combinatorial search.

5.2.3. Performance
Time Although TypeT5’s type predictions are more accurate than those of Type4Py, it also
takes significantly longer to compute them. The time taken for each project can be found in
Table 5.16 and shows that small projects such as Bleach and Colorama require approximately
5 minutes for the computation of the predictions, whereas for a medium-sized project like
Seaborn, the time increased drastically to almost 3 hours. Due to this considerable increase
in time, large projects like Django, Matplotlib, Pillow or Pandas were not attempted, as their
predictions would likely require numerous hours to complete before the combinatorial search
could even start.

Table 5.16: Time taken by TypeT5 to predict type annotations for each project which are used in the validated
combinatorial search.

Project Total time (s) Total time (min)

Bleach 288.34 ∼5
Colorama 279.65 ∼4.5
Requests 1525.50 ∼25.5
Seaborn 10517.79 ∼175.5
Total 12611.28 ∼210.5

Nevertheless, the four projects that TypeT5 was run over, can be used to compare the speed
of TypeT5 to both Pyright and Type4Py. The results of execution time are shown in Table
5.17 which displays that the Pyright step took 155.44 seconds for all files. Comparatively,
PyHintSearch utilising the Type4Py model took 2,697.86 seconds for all files, whereas TypeT5
took much longer at 14,634.88 seconds.
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Table 5.17: The execution time of each step in the tool.

Step Model Mean time per file (s) Total time (s) Total time (min)

Pyright 2.73 155.44 ∼2.5

PyHintSearch Type4Py 47.33 2,697.86 ∼45
TypeT5 256.75 14,634.88 ∼244

Total* Type4Py 51.05 2,910.02 ∼48.5
TypeT5 260.16 14,829.16 ∼247

* Total time of the tool, thus including other minor computations in addition to the Pyright and
PyHintSearch steps.

Memory On the smaller number of projects that were processed by TypeT5, Pyright’s max-
imum memory usage was only 12.92 megabytes. However, when running the combina-
torial search with predictions from Type4Py, the maximum memory usage rose to 107.65
megabytes and increased further to 120.42 megabytes when utilising the TypeT5 model.

Scalability The scalability of PyHintSearch using the TypeT5 model is similar to the results
discussed in Section 5.1.3 regarding PyHintSearch with the Type4Py model. However, the
main difference lies in TypeT5’s ability to predict only a single type annotation, thus limiting
the exponential growth during backtracking.





6
Discussion

In this chapter, the importance and consequences of the presented results are summarised.
First, the main findings are discussed, followed by the limitations of the research and the
PyHintSearch tool, and finishing with a threat to the validity of this thesis.

6.1. Main Findings
Coverage and Correctness This thesis demonstrates that PyHintSearch significantly im-
proves the type annotation coverage of Python code by using both Pyright’s static type infer-
ence and a validated combinatorial search strategy for machine learning-based predictions.
PyHintSearch complements Pyright’s static type inference effectively by adding 62.45% more
annotations when using the Type4Py model and 79.93% for the TypeT5 model. This is a no-
table increase in the number of type annotations compared to using only Pyright. However,
mismatches between the original annotations and those added by PyHintSearch highlight
the challenge of achieving perfect correctness. When utilising the Type4Py model, approxi-
mately one-third of the type annotations match according to the adjusted accuracy metric,
whereas for the TypeT5 model, this value increases to approximately half of the type anno-
tations matching. Fortunately, any type inference machine learning model can by used by
PyHintSearch as long as it can provide its predictions in a predefined JSON format. There-
fore, further improvements in the accuracy of machine learning models can minimise the
discrepancies between the original and PyHintSearch-added annotations leading to more re-
liable and correct annotations.

Most Effective Top-n Using the top-1 predictions of the predicted type annotations in the
combinatorial search outperforms both the top-3 and top-5. The search with top-1 predic-
tions fills more type slots, has slightly more correct type annotations, and is overall 1.75
hours faster compared to the top-3 and 2.25 hours faster compared to the top-5. The only
slight downside of using top-1 is having a couple fewer rare type annotations added to the
codebase, but that is negligible compared to the larger number of added ubiquitous annota-
tions. The most likely reason for the top-1 performing better than the top-3 and top-5, which
in essence both include the top-1 predictions, is the fact that if a file needs to be backtracked
to find a valid combination of type annotations, the top-3 and top-5 can backtrack fewer lev-
els up the search tree. This is because more annotations need to be tried per slot, leading to
hitting the 5-minute timeout per file more frequently. Furthermore, if the 5-minute timeout
is hit, no new annotations get added to the project code. The top-1 is thus able to backtrack
more quickly and find a branch in the search tree that can progress the combinatorial search
before hitting the 5-minute timeout, which leads to an increased number of type annotations.
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If no timeout was present and all the time in the world was available, then the top-3 and
top-5 would reach similar or better results. However, that is not the case as PyHintSearch
needs to be feasible for real-world usage.

Performance The performance metrics gathered over sixteen projects indicate that Py-
HintSearch can, on average, annotate a project file in 39.75 seconds after the Pyright-inferred
annotations were added. The total time for the PyHintSearch tool using the top-1 predictions
was 49,125.39 seconds or approximately 13.75 hours to annotate all project files. This is
much faster than a human could annotate these files by hand. Furthermore, the maximum
memory usage that was measured for PyHintSearch was 119.99 megabytes, although this
does exclude the Docker container for the machine learning model that needs to be run at the
same time. The Docker container takes up multiple gigabytes of memory, thus a minimum
of 8 gigabytes of memory is recommended.

Impact and Frequency of Backtracking It turns out that when backtracking is required
for a file, the combinatorial search usually fails because it hits the timeout limit of 5 min-
utes. This is because the backtracking needs to go up multiple levels of the search tree to
correct the annotation that is being a bottleneck lower down the tree. When backtracking,
each branch in the search tree is tried, meaning an exponential number of combinations are
searched before finding a combination of type annotations that can overcome the bottleneck.
Fortunately, many files can be filled in linearly because either the type annotations predicted
by the machine learning model are valid or the functions defined in the file are independent
of one another thus avoiding the need of backtracking. Therefore, only a few files actually
need to be backtracked and the search takes place in linear time. An example of successful
backtracking to find a valid combination of type annotations can be found in Appendix A.

Call Graphs The results concerning call graphs confirm that incorporating type annotations
into Python code enhances the accuracy of the generated call graph by providing additional
information to the call graph generation tool. These annotations enable the removal of edges,
resulting in a more precise call graph that is useful for static analysis purposes. For exam-
ple, annotating a function parameter with the dict annotation resulted in the removal of
13 generic keys functions like, typing.Mapping.keys, collections.OrderedDict.keys,
xml.etree.ElementTree.Element.keys, etc. Contrastingly, edges were also added to the
call graphs of several projects. This typically occurred when an incorrect type annotation
was found by PyHintSearch, leading to function parameters and variables being less specific
in their types. For example, a variable could originally have been inferred as a str type, but
is now inferred as an Any type due to the cascading effect of an incorrect parameter anno-
tation. Interestingly, in some cases, the addition of edges was beneficial as they refined the
call graph even further. For instance, 39 edges related to a generic __next__ function were
removed, while two specific edges related to builtins.list were added. These removed and
added edges were the result of annotating a function parameter as List. Therefore, it can
be concluded that type annotations do indeed impact downstream program analysis as they
influence the generation of call graphs.

6.2. Limitations
The major limitation of the PyHintSearch tool arises when two functions are interdependent.
If the first function is annotated incorrectly but still passes Pyright’s validity check, it becomes
a bottleneck for the second function. Resolving this issue requires backtracking and trying
different annotations until the correct one is found. When these functions are closely located
to one another in the codebase, backtracking does not need to go up many levels of the
search tree to fix the incorrect type annotation. However, if they are distant, then there is
a large number of levels in the tree which are searched exponentially. This usually leads to
the 5-minute timeout being hit and no annotations being added.
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Another limitation lies in the prediction time of the TypeT5 model. Despite its superior ac-
curacy over Type4Py, TypeT5 is considerably slower. While Type4Py can predict type anno-
tations for individual files, TypeT5 requires all project files as input for its predictions. This
means that Type4Py can generate predictions for a file within seconds, whereas that is not
the case for TypeT5. Even for a small project comprising around 10 Python files, TypeT5
takes approximately 5 minutes for its predictions. Scaling up to a medium-sized project of
around 50 files extends the prediction time to nearly 3 hours, excluding the combinatorial
search. Due to these extensive prediction times, the default model used for PyHintSearch
during the thesis was Type4Py. Although less accurate, it took much less time to generate
predictions, which allowed for more rapid prototyping of the search algorithm. Furthermore,
if during development an exception was raised causing the combinatorial search to crash,
the predictions needed to be recomputed again, which would have been impractical given
TypeT5’s lengthy prediction times.

6.3. Threat to Validity
A potential threat to the validity of this thesis is primarily related to the results obtained from
PyHintSearch utilising the TypeT5 model. Given the considerable amount of time required
for TypeT5 predictions, only four projects were evaluated, in contrast to the 16 projects as-
sessed with the Type4Py model. This discrepancy in the number of projects may lead to
overly optimistic results regarding the effectiveness of PyHintSearch with TypeT5. Although
TypeT5’s performance is compared against Type4Py on the same files, a broader evaluation
across more projects would have provided a more representative assessment, similar to the
Type4Py evaluation detailed in Section 5.1.





7
Conclusion and Future Work

This thesis discussed the implementation and usage of a validated combinatorial search for
probabilistic type inference models. This search contributes to enhanced type annotation
coverage of Python code which improves static analysis. This enables more accurate error
detection during the software development process, leading to increased code quality and
reliability.

This chapter concludes this thesis by revisiting the research questions introduced in Chapter
1 and discussing promising directions for future work.

7.1. Conclusion
The PyHintSearch tool was developed to search for a valid combination of predicted type an-
notations from a machine learning type inference model. Type4Py and TypeT5 are two of
these models used in this thesis. Especially the effectiveness and efficiency of PyHintSearch
are evaluated in terms of coverage, performance and practical usage. Through the analy-
sis of the collected results obtained from running PyHintSearch across several projects, the
following three research questions have been answered:

RQ1 (Coverage): What is the overall increase in the number of type annotations when
combining static type inference with a machine learning model?
From an assessment of 16 projects, it was observed that the Pyright static type checker
was able to add 21.61% more type annotations to the initially provided code. Running Py-
HintSearch with the Type4Py model thereafter, yielded an additional 48.94% of validated
type annotations when focusing on the top-1 predictions. These top-1 predictions were pre-
ferred since they added more type annotations to the code compared to the top-3 and top-5
predictions. Ultimately, the machine learning model complemented static type inference by
incorporating 62.45% more annotations than Pyright could have on its own. However, the
precision of the added type annotations is only 0.36, indicating that a significant portion
of validated type annotations were incorrect. Fortunately, this is a limitation that can be
addressed with a more accurate model.

TypeT5 represents such a more accurate model, therby motivating the evaluation of Py-
HintSearch with it. Despite being tested on fewer projects than the Type4Py model, the
results are promising. Pyright inferred 20.35% more type annotations for the initial project,
while PyHintSearch using TypeT5 further improved upon this by filling an additional 63.67%
of fillable type slots. Consequently, PyHintSearch complemented Pyright with 79.93% more
validated type annotations. Moreover, the precision increased to 0.49, showing that Py-
HintSearch becomes better at annotating Python code by using a more accurate model.
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RQ2 (Performance): What are the performance characteristics, in terms of speed, mem-
ory usage and scalability, of the PyHintSearch tool?
To annotate all projects with validated type annotations, the Pyright step requires approxi-
mately 1.25 hours to complete, while the PyHintSearch step takes about 12.25 hours. Con-
sidering that this process annotates over 1000 files, it significantly outpaces the manual
efforts of a developer.

Memory usage remains fairly limited, with Pyright using a maximum of 23.67 megabytes
and PyHintSearch requiring a maximum of 119.99 megabytes for its top-1, top-3 and top-5
predictions.

The scalability of the PyHintSearch tool is dependent on the accuracy of the type predic-
tions generated by the used machine learning type inference model. If the predicted type
annotations are reasonably accurate, the type slots can be filled linearly with a maximum
of 𝑛 attempts per slot based on the top-𝑛 predictions. However, if the combinatorial search
encounters an incorrectly defined function definition and needs to backtrack, it explores all
branches of the search tree, resulting in an exponential execution time. To mitigate this, a
built-in 5-minute timeout per file ensures that the total execution time remains manageable,
regardless of the number of levels that require backtracking in the search tree. Furthermore,
files with more than 100 fillable type slots are excluded from the combinatorial search due
to the increased risk of getting stuck in backtracking caused by interdependent functions.

RQ3 (Use case): How does the presence of type annotations impact downstream pro-
gram analysis?
Type annotations in Python code provide additional information to Endor Labs’ call graph
generation tool. By specifying the type annotations for function parameters and return types,
the tool can remove edges from the call graph related to generic functions. Additionally, this
information can be used to add more precise edges related to specific function calls. The
larger the number of correct type annotations that are added into the source code, the more
precise the call graph becomes, as they enable the tool to identify and eliminate irrelevant
calls. For several projects, the addition of type annotations resulted in the call graph being
reduced by hundreds of edges. Conversely, incorrect type annotations led to the addition of
edges in the call graph. This occurred because the inferred types for variables within a func-
tion were overridden by the cascading effect of an incorrectly annotated function parameter.
Consequently, this led to less precise variable types, which then resulted in the addition of
more generic edges in the call graph. Overall, it can be concluded that the presence of type
annotations influences the generation of call graphs by guiding the tool in making decisions
about which edges to include or exclude. Ultimately, this contributes to a more precise call
graph when type annotations are correct, thus impacting downstream program analysis.

7.2. Future Work
Based on insights gained from implementing PyHintSearch and the results from the evalua-
tion, several directions are suggested for future work. These directions are aimed at another
approach for enhancing type annotation coverage and further refinement of the PyHintSearch
tool.

Genetic algorithm The core concept behind PyHintSearch involves constructing a search
tree and applying a depth-first search method to identify a valid combination of type anno-
tations, guided by feedback from the Pyright type checker. However, there exist alternative
methods designed to navigate through the exponential space of possibilities in search of a
valid combination. One interesting approach involves the usage of a genetic algorithm to
create a random population of type predictions from the machine learning model. This pop-
ulation undergoes modifications through processes such as crossover or mutation and is
evaluated against a fitness function. The most promising individuals (i.e., combinations of
type annotations) are kept and new offspring are created. This iterative process continues



7.2. Future Work 47

until the algorithm converges, ultimately returning the highest-rated combination of type
annotations.

Partial file changes To get Pyright’s feedback on the validity of a newly added type an-
notation, a message is sent via the Language Server Protocol to Pyright’s language server.
This message denotes that the entire content of a file has been changed, rather than only
the specific line where the type annotation is inserted. While not certain, it is expected that
requesting feedback solely on such a minor alteration could potentially speed up the retrieval
of Pyright’s feedback, compared to requesting feedback on the entire file content.

Decreased memory usage For each file, the validated combinatorial search uses an array
that stores complete LibCST trees. The larger the file, the larger the size of this array, because
of the increased size of the trees that it stores, resulting in greater memory consumption. The
only time these trees are used is to revert to a previous state when backtracking. However, a
more efficient approach involves storing only the modifications required to change the original
tree. This method reduces memory usage, as the original LibCST tree can be directly modified
based on the annotations needed at a specific phase in the combinatorial search.

Minimum probability threshold The machine learning model used by PyHintSearch is
able to return multiple type annotations, along with their associated probabilities. These
annotations are then searched during the combinatorial search. However, this approach
also allows for the inclusion of type annotations with very low probabilities of correctness.
For instance, if a type annotation has a probability of only 10%, it is still considered in the
combinatorial search when taking a large number of top-𝑛 predictions. This scenario could
potentially lead to the insertion of type annotations into the source code that are considered
valid by the static type checker but are not optimal in practice. In fact, it is better to refrain
from adding an annotation than to include one that is incorrect in the source code. Therefore,
future work could implement a minimum probability threshold that a type annotation must
meet before being considered in the combinatorial search.
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A
Examples of Successful Backtracking

An example run of PyHintSearch (top-3) where backtracking succeeded. This is for the Redis
project, specifically the “connection.py” file: (See lines 2-40)

1 Processing file: .\connection.py
2 0: (’PythonRespSerializer’, ’__init__’)-buffer_cutoff -> str
3 1: (’PythonRespSerializer’, ’__init__’)-encode -> str
4 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[List[Any]]
5 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> dict
6 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[str]
7 2: (’AbstractConnection’, ’_construct_command_packer’)-packer ->
8 1: (’PythonRespSerializer’, ’__init__’)-encode -> Optional[str]
9 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[List[Any]]

10 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> dict
11 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[str]
12 2: (’AbstractConnection’, ’_construct_command_packer’)-packer ->
13 1: (’PythonRespSerializer’, ’__init__’)-encode -> bool
14 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[List[Any]]
15 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> dict
16 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[str]
17 2: (’AbstractConnection’, ’_construct_command_packer’)-packer ->
18 1: (’PythonRespSerializer’, ’__init__’)-encode ->
19 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[List[Any]]
20 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> dict
21 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[str]
22 2: (’AbstractConnection’, ’_construct_command_packer’)-packer ->
23 0: (’PythonRespSerializer’, ’__init__’)-buffer_cutoff -> int
24 1: (’PythonRespSerializer’, ’__init__’)-encode -> str
25 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[List[Any]]
26 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> dict
27 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[str]
28 2: (’AbstractConnection’, ’_construct_command_packer’)-packer ->
29 1: (’PythonRespSerializer’, ’__init__’)-encode -> Optional[str]
30 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[List[Any]]
31 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> dict
32 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[str]
33 2: (’AbstractConnection’, ’_construct_command_packer’)-packer ->
34 1: (’PythonRespSerializer’, ’__init__’)-encode -> bool
35 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[List[Any]]
36 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> dict
37 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[str]
38 2: (’AbstractConnection’, ’_construct_command_packer’)-packer ->
39 1: (’PythonRespSerializer’, ’__init__’)-encode ->
40 2: (’AbstractConnection’, ’_construct_command_packer’)-packer -> Optional[List[Any]]
41 3: (’AbstractConnection’, ’_construct_command_packer’)-return -> dict
42 3: (’AbstractConnection’, ’_construct_command_packer’)-return -> Dict[str, str]
43 3: (’AbstractConnection’, ’_construct_command_packer’)-return -> str
44 3: (’AbstractConnection’, ’_construct_command_packer’)-return ->
45 4: (’AbstractConnection’, ’_register_connect_callback’)-callback -> Callable
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46 5: (’AbstractConnection’, ’_register_connect_callback’)-return -> None
47 6: (’AbstractConnection’, ’_deregister_connect_callback’)-callback -> Callable
48 7: (’AbstractConnection’, ’_deregister_connect_callback’)-return -> None
49 8: (’AbstractConnection’, ’_connect’)-return -> None
50 9: (’AbstractConnection’, ’_host_error’)-return -> None
51 10: (’AbstractConnection’, ’_error_message’)-exception -> Exception
52 11: (’AbstractConnection’, ’_error_message’)-return -> None
53 12: (’AbstractConnection’, ’_send_ping’)-return -> None
54 13: (’AbstractConnection’, ’_ping_failed’)-error -> BaseException
55 14: (’AbstractConnection’, ’_ping_failed’)-return -> None
56 15: (’Connection’, ’_connect’)-return -> str
57 15: (’Connection’, ’_connect’)-return -> Tuple[bytes, int]
58 15: (’Connection’, ’_connect’)-return -> int
59 15: (’Connection’, ’_connect’)-return ->
60 16: (’Connection’, ’_host_error’)-return -> str
61 17: (’Connection’, ’_error_message’)-exception -> Exception
62 18: (’Connection’, ’_error_message’)-return -> str
63 19: (’SSLConnection’, ’__init__’)-ssl_ca_certs -> bool
64 19: (’SSLConnection’, ’__init__’)-ssl_ca_certs -> str
65 19: (’SSLConnection’, ’__init__’)-ssl_ca_certs -> Tuple[str, int]
66 20: (’SSLConnection’, ’__init__’)-ssl_ca_data -> bool
67 20: (’SSLConnection’, ’__init__’)-ssl_ca_data -> str
68 20: (’SSLConnection’, ’__init__’)-ssl_ca_data -> Optional[str]
69 21: (’SSLConnection’, ’__init__’)-ssl_ca_path -> bool
70 21: (’SSLConnection’, ’__init__’)-ssl_ca_path -> Union[str, Iterable[str]]
71 22: (’SSLConnection’, ’__init__’)-ssl_cert_reqs -> bool
72 23: (’SSLConnection’, ’__init__’)-ssl_certfile -> bool
73 23: (’SSLConnection’, ’__init__’)-ssl_certfile -> str
74 23: (’SSLConnection’, ’__init__’)-ssl_certfile -> Optional[bool]
75 24: (’SSLConnection’, ’__init__’)-ssl_keyfile -> bool
76 24: (’SSLConnection’, ’__init__’)-ssl_keyfile ->
77 25: (’SSLConnection’, ’__init__’)-ssl_ocsp_context -> bool
78 26: (’SSLConnection’, ’__init__’)-ssl_ocsp_expected_cert -> str
79 27: (’SSLConnection’, ’__init__’)-ssl_password -> str
80 27: (’SSLConnection’, ’__init__’)-ssl_password -> Union[str, List[str]]
81 28: (’SSLConnection’, ’_connect’)-return -> str
82 28: (’SSLConnection’, ’_connect’)-return -> Optional[bool]
83 28: (’SSLConnection’, ’_connect’)-return -> bool
84 28: (’SSLConnection’, ’_connect’)-return ->
85 29: (’UnixDomainSocketConnection’, ’__init__’)-socket_timeout -> int
86 30: (’UnixDomainSocketConnection’, ’_connect’)-return -> str
87 30: (’UnixDomainSocketConnection’, ’_connect’)-return -> Tuple[bytes, int]
88 30: (’UnixDomainSocketConnection’, ’_connect’)-return -> int
89 30: (’UnixDomainSocketConnection’, ’_connect’)-return ->
90 31: (’UnixDomainSocketConnection’, ’_host_error’)-return -> str
91 32: (’UnixDomainSocketConnection’, ’_error_message’)-exception -> Exception
92 33: (’UnixDomainSocketConnection’, ’_error_message’)-return -> str
93 34: (’ConnectionPool’, ’from_url’)-cls -> Optional[str]
94 35: (’BlockingConnectionPool’, ’get_connection’)-command_name -> str
95 36: (’BlockingConnectionPool’, ’release’)-connection -> psycopg2.extensions.connection
96 Found a combination of type annotations!

And another run of PyHintSearch (top-5) where backtracking succeeded. This is for the
Django project, specifically on the “db/backends/ddl_references.py” file: (See lines 19-57)

1 Processing file: db\backends\ddl_references.py
2 0: (’Reference’, ’references_table’)-table -> str
3 1: (’Reference’, ’references_column’)-column -> List[str]
4 2: (’Reference’, ’references_column’)-table -> List[str]
5 3: (’Reference’, ’rename_table_references’)-new_table -> str
6 4: (’Reference’, ’rename_table_references’)-old_table -> str
7 5: (’Reference’, ’rename_column_references’)-new_column -> str
8 6: (’Reference’, ’rename_column_references’)-old_column -> str
9 7: (’Reference’, ’rename_column_references’)-table -> str

10 8: (’Table’, ’__init__’)-quote_name -> str
11 9: (’Table’, ’__init__’)-table -> str
12 10: (’Table’, ’references_table’)-table -> str
13 11: (’Table’, ’references_table’)-return -> Dict[str, Sequence[str]]
14 11: (’Table’, ’references_table’)-return -> str
15 11: (’Table’, ’references_table’)-return -> Dict[str, Any]
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16 11: (’Table’, ’references_table’)-return ->
17 12: (’Table’, ’rename_table_references’)-new_table -> str
18 13: (’Table’, ’rename_table_references’)-old_table ->
19 14: (’TableColumns’, ’__init__’)-columns -> int
20 15: (’TableColumns’, ’__init__’)-table -> str
21 16: (’TableColumns’, ’references_column’)-column -> dict
22 16: (’TableColumns’, ’references_column’)-column -> List[Dict[str, Any]]
23 16: (’TableColumns’, ’references_column’)-column -> Dict[str, bool]
24 16: (’TableColumns’, ’references_column’)-column -> List[str]
25 16: (’TableColumns’, ’references_column’)-column -> tuple
26 16: (’TableColumns’, ’references_column’)-column ->
27 15: (’TableColumns’, ’__init__’)-table -> List[List[str]]
28 16: (’TableColumns’, ’references_column’)-column -> dict
29 16: (’TableColumns’, ’references_column’)-column -> List[Dict[str, Any]]
30 16: (’TableColumns’, ’references_column’)-column -> Dict[str, bool]
31 16: (’TableColumns’, ’references_column’)-column -> List[str]
32 16: (’TableColumns’, ’references_column’)-column -> tuple
33 16: (’TableColumns’, ’references_column’)-column ->
34 15: (’TableColumns’, ’__init__’)-table -> Optional[str]
35 16: (’TableColumns’, ’references_column’)-column -> dict
36 16: (’TableColumns’, ’references_column’)-column -> List[Dict[str, Any]]
37 16: (’TableColumns’, ’references_column’)-column -> Dict[str, bool]
38 16: (’TableColumns’, ’references_column’)-column -> List[str]
39 16: (’TableColumns’, ’references_column’)-column -> tuple
40 16: (’TableColumns’, ’references_column’)-column ->
41 15: (’TableColumns’, ’__init__’)-table -> Optional[List[str]]
42 16: (’TableColumns’, ’references_column’)-column -> dict
43 16: (’TableColumns’, ’references_column’)-column -> List[Dict[str, Any]]
44 16: (’TableColumns’, ’references_column’)-column -> Dict[str, bool]
45 16: (’TableColumns’, ’references_column’)-column -> List[str]
46 16: (’TableColumns’, ’references_column’)-column -> tuple
47 16: (’TableColumns’, ’references_column’)-column ->
48 15: (’TableColumns’, ’__init__’)-table ->
49 16: (’TableColumns’, ’references_column’)-column -> dict
50 16: (’TableColumns’, ’references_column’)-column -> List[Dict[str, Any]]
51 16: (’TableColumns’, ’references_column’)-column -> Dict[str, bool]
52 16: (’TableColumns’, ’references_column’)-column -> List[str]
53 16: (’TableColumns’, ’references_column’)-column -> tuple
54 16: (’TableColumns’, ’references_column’)-column ->
55 14: (’TableColumns’, ’__init__’)-columns -> List[str]
56 15: (’TableColumns’, ’__init__’)-table -> str
57 16: (’TableColumns’, ’references_column’)-column -> dict
58 17: (’TableColumns’, ’references_column’)-table -> dict
59 18: (’TableColumns’, ’rename_column_references’)-new_column -> str
60 19: (’TableColumns’, ’rename_column_references’)-old_column -> str
61 20: (’TableColumns’, ’rename_column_references’)-table -> str
62 21: (’Columns’, ’__init__’)-col_suffixes -> str
63 22: (’Columns’, ’__init__’)-columns -> str
64 22: (’Columns’, ’__init__’)-columns ->
65 23: (’Columns’, ’__init__’)-quote_name -> str
66 24: (’Columns’, ’__init__’)-table -> str
67 25: (’IndexName’, ’__init__’)-columns -> str
68 25: (’IndexName’, ’__init__’)-columns -> Dict[str, Any]
69 25: (’IndexName’, ’__init__’)-columns ->
70 26: (’IndexName’, ’__init__’)-create_index_name -> str
71 27: (’IndexName’, ’__init__’)-suffix -> str
72 28: (’IndexName’, ’__init__’)-table -> str
73 29: (’IndexColumns’, ’__init__’)-col_suffixes -> str
74 30: (’IndexColumns’, ’__init__’)-columns -> str
75 31: (’IndexColumns’, ’__init__’)-opclasses -> str
76 32: (’IndexColumns’, ’__init__’)-quote_name -> str
77 33: (’IndexColumns’, ’__init__’)-table -> str
78 34: (’ForeignKeyName’, ’__init__’)-create_fk_name -> str
79 35: (’ForeignKeyName’, ’__init__’)-from_columns -> Dict[str, Any]
80 36: (’ForeignKeyName’, ’__init__’)-from_table -> Dict[str, Any]
81 37: (’ForeignKeyName’, ’__init__’)-suffix_template -> str
82 38: (’ForeignKeyName’, ’__init__’)-to_columns -> str
83 39: (’ForeignKeyName’, ’__init__’)-to_table -> str
84 40: (’ForeignKeyName’, ’references_table’)-table -> Dict[str, Dict[str, str]]
85 41: (’ForeignKeyName’, ’references_table’)-return -> str
86 41: (’ForeignKeyName’, ’references_table’)-return -> bool
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87 42: (’ForeignKeyName’, ’references_column’)-column -> Optional[List[str]]
88 42: (’ForeignKeyName’, ’references_column’)-column -> Dict[str, str]
89 43: (’ForeignKeyName’, ’references_column’)-table -> Optional[List[str]]
90 43: (’ForeignKeyName’, ’references_column’)-table -> Dict[str, str]
91 44: (’ForeignKeyName’, ’rename_table_references’)-new_table -> str
92 45: (’ForeignKeyName’, ’rename_table_references’)-old_table -> str
93 46: (’ForeignKeyName’, ’rename_column_references’)-new_column -> str
94 47: (’ForeignKeyName’, ’rename_column_references’)-old_column -> str
95 48: (’ForeignKeyName’, ’rename_column_references’)-table -> str
96 49: (’Statement’, ’__init__’)-template -> str
97 50: (’Statement’, ’references_table’)-table ->
98 51: (’Statement’, ’references_column’)-column -> List[str]
99 52: (’Statement’, ’references_column’)-table -> List[str]

100 53: (’Statement’, ’rename_table_references’)-new_table -> str
101 54: (’Statement’, ’rename_table_references’)-old_table -> str
102 55: (’Statement’, ’rename_column_references’)-new_column -> str
103 56: (’Statement’, ’rename_column_references’)-old_column -> str
104 57: (’Statement’, ’rename_column_references’)-table -> str
105 58: (’Expressions’, ’__init__’)-compiler -> Optional[str]
106 59: (’Expressions’, ’__init__’)-expressions -> str
107 60: (’Expressions’, ’__init__’)-quote_value -> str
108 61: (’Expressions’, ’__init__’)-table -> str
109 62: (’Expressions’, ’rename_table_references’)-new_table ->
110 63: (’Expressions’, ’rename_table_references’)-old_table -> Mapping[str, Any]
111 63: (’Expressions’, ’rename_table_references’)-old_table ->
112 64: (’Expressions’, ’rename_column_references’)-new_column -> List[str]
113 65: (’Expressions’, ’rename_column_references’)-old_column -> str
114 66: (’Expressions’, ’rename_column_references’)-table -> str
115 Found a combination of type annotations!
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