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Summary

Introduction
Advanced Driver Assistance Systems (ADAS) have evolved significantly over the years, offering a va-
riety of features designed to enhance road safety and elevate driver comfort. These systems, incorpo-
rating technologies such as adaptive cruise control, automatic emergency braking, and lane departure
warning, providing critical support to drivers in managing complex driving environments. Despite their
potential, challenges such as standardization, driver trust, and over-reliance on automation continue
to hinder their widespread adoption. Among these challenges, ADAS warning signals come in vari-
ous designs, each playing a pivotal role in ensuring effective communication between the system and
the driver, ultimately influencing situational awareness (SA) and driving performance. SA consists of
three levels: perception, comprehension, and projection. It serves as a key framework for evaluating
driver interaction with ADAS signals, providing a structured approach to assessing their effectiveness
in real-world driving scenarios.

Research Gap
While previous research has explored various aspects of ADAS functionality, there remains a gap in un-
derstanding how different ADAS signal designs impact SA across its three levels. Existing studies often
focus on individual components of SA, neglecting the interplay between perception, comprehension,
and projection. Additionally, the majority of studies lack a comprehensive evaluation framework that
integrates subjective assessments, physiological measurements, and task-based performance metrics
to capture the full spectrum of driver awareness. Furthermore, driver variability in responding to ADAS
signals, influenced by factors such as experience, cognitive capacity, and environmental conditions,
remains unexplored. Addressing these gaps is crucial for developing ADAS warning systems that ef-
fectively support driver decision-making and enhance road safety.

Research Questions
The study defined the primary research question and its associated sub-questions as follows:

• How does driver situational awareness differ when responding to existing road speed limit alerts
generated by different ADAS systems?

1. How do different ADAS design-related features influence driver situational awareness across
its three levels: perception, comprehension, and projection?

2. How do internal factors, such as age, gender, and other demographic characteristics, con-
tribute to variations in driver situational awareness under different ADAS signal designs?

3. Based on the results, what design-related features might explain the differences in driver
situational awareness and guide the development of more effective ADAS signal designs?

Research Methods
Data collection was conducted through a real-world driving task in Amersfoort, covering a route of
4.3 km. The methods were designed to align with the specific characteristics of each level of SA
to ensure a comprehensive and accurate analysis. The independent variable in this study was the
ADAS system, which corresponded to different signal designs, while the dependent variables were
the indicators representing each SA level. To compare the differences between ADAS systems, we
used two different brands, ADAS System A and ADAS System B. The most significant difference in
signal design between the two systems is that System A provides more information, displaying both
the current road segment’s speed limit and the speed limit of the upcoming segment, as shown in the
figures.
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(a) ADAS System A Speed Limit Alert
Design

(b) ADAS System B Speed Limit Alert
Design

Figure 1: Comparison of ADAS Speed Limit Alerts for System A and System B

For situation awareness level 1 (SA1), visual attention indicators were measured using image process-
ing techniques. Specifically, the YOLOv8 object detection algorithm was employed to identify and track
eye fixations on ADAS signals, providing insights into drivers’ attention allocation. For situation aware-
ness level 2 (SA2), self-reported questionnaire responses were aggregated and averaged to obtain an
overall comprehension score for each participant, serving as an indicator of their understanding of the
ADAS signals. Regarding situation awareness level 3 (SA3), speed-related indicators were analyzed
using computational methods to detect deviations and patterns in driving speed data. These indicators
reflected drivers’ compliance with speed limits and their responses to ADAS alerts.

The analysis methods applied to the processed data included descriptive statistics, significance tests
(such as t-tests and Wilcoxon rank-sum tests), and correlation analysis to explore the relationships
between different SA levels. Linear Mixed Models (LMM) were utilized in two ways: first, to analyse
the effect of the ADAS system (System A vs. System B) on SA1 and SA3 indicators by treating the
system as a fixed effect while accounting for participant, order, and turn as random effects. Here, order
refers to the sequence in which participants experienced the two ADAS systems, allowing us to account
for potential learning effects. Turn represents the four key observation points along the route where
speed limit changes occurred, ensuring that system effects were evaluated consistently at predefined
locations.

For SA2, given the ordinal nature of the questionnaire data, an ordered logistic regression model was
applied to evaluate the impact of internal factors and system design on driver comprehension.

Results
However, specific indicators reveal notable differences. In SA1, Fixation Count per Turn varies between
the systems, as indicated by the results of t-tests and Wilcoxon rank-sum tests. In SA2, Scores, which
are derived from the self-reported questionnaire and represent drivers’ comprehension of the situation,
also show significant differences based on these statistical tests. These findings suggest that System
A may help drivers reduce cognitive load and better understand the provided alerts.

Additionally, internal factors, particularly familiarity with ADAS technology and driving experience, were
found to have a significant influence on SA. Participants with more driving experience exhibited shorter
fixation durations, indicating reduced cognitive load in SA1, while familiarity with ADAS systems was
associated with faster response times and more efficient visual processing. Familiarity also showed
a marginal influence on SA2 comprehension, suggesting that more familiar participants may evaluate
ADAS alerts more critically. Age displayed a near-significant effect, with younger participants tending
to react more quickly. Another key finding is the weak or non-existent correlation between SA levels,
which suggests that drivers rely not only on ADAS signals but also on external factors such as road
signs and personal driving experience when forming SA.

The differences observed between the results obtained from significance tests and those from LMMs
highlight the importance of adopting multiple analytical approaches to achieve a more comprehensive
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understanding of driver behaviour. Using a combination of methods allows for a more nuanced inter-
pretation of the data, capturing trends that might be overlooked when relying on a single analytical
technique.

Conclusion
This study provides valuable insights into how different ADAS signal designs influence driver SA. While
most indicators showed no statistically significant differences between System A and System B, System
A consistently demonstrated better performance across several key aspects, such as visual attention
and comprehension. This suggests that the design of System A’s alerts provides clearer information,
potentially making it easier for drivers to process speed limit changes accurately and efficiently.

Despite these findings, several limitations should be acknowledged. First, the sample size in this study
was relatively small, which may limit the generalisability of the results. A larger sample would not only
allow for more statistically robust conclusions but also provide a better representation of the natural
variations in driver behaviour, experience levels, and cognitive abilities.

Second, the selection of SA indicators, while covering key aspects of driver awareness, could be ex-
panded to include additional measures. A broader set of indicators may help identify further meaningful
effects of ADAS signals on driver SA and provide deeper insights into how these systems influence sit-
uational processing.

Third, this study was conducted in a real-world driving environment rather than amore controlled setting.
While this approach enhances ecological validity, it also introduces external factors that were not directly
controlled or analysed in this study. Elements such as roadside speed limit signs and environmental
cues may have influenced driver SA independently of ADAS signals, making it challenging to isolate the
precise effects of different ADAS designs. Future studies conducted in controlled environments could
help mitigate these influences and allow for a more precise evaluation of ADAS signal effectiveness.

In addition to addressing the limitations mentioned above, future research could explore how repeated
exposure to different ADAS signal designs influences SA over time, providing insights into drivers’ long-
term adaptation and behavioural changes. Expanding the study to incorporate additional ADAS func-
tionalities, such as lane-keeping assistance and adaptive cruise control, would help assess how mul-
tiple systems interact to support SA. Furthermore, conducting experiments in controlled environments
alongside real-world studies could help isolate the effects of ADAS signals more precisely, offering a
clearer understanding of their role in enhancing driver awareness and decision-making.

The findings of this study offer practical implications for ADAS design and implementation. The re-
sults suggest that providing more comprehensive speed limit information can enhance driver situation
awareness. Specifically, anticipatory speed limit information may help drivers better prepare for speed
changes in advance, reducing cognitive load and improving response efficiency.

Beyond the implications for ADAS design, this study also highlights the value of a layered SA-based
research approach. By structuring the evaluation of driver interaction with ADAS signals across three
levels of SA, this method offers a systematic way to assess how different signal designs influence
attention allocation, comprehension, and decision-making. Future research on ADAS effectiveness
and driver support systems can benefit from this structured framework, ensuring amore comprehensive
understanding of how these systems contribute to driving performance and road safety.
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1
Introduction

Overview
This chapter provides an introduction to the research by outlining the context, scope, and key objectives
of the study. It begins with the research background (Section 1.1), which highlights the advancements in
Advanced Driver Assistance Systems (ADAS) and the challenges related to their adoption, particularly
in the context of warning signal design and driver situational awareness (SA). Section 1.2 defines the
scope of the study, focusing on the evaluation of ADAS warning signals and their impact on SA. Next,
the research problems in (Section 1.3) are identified, emphasising the critical gaps in understanding
how signal design influences driver performance. Finally, the research questions (Section 1.4) are
presented to guide the study, targeting the differences in driver responses to warning signals and the
design features contributing to these variations. Together, these sections set the foundation for the
methodological framework and analyses discussed in the subsequent chapters.

1
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1.1. Research Background
The evolution of Advanced Driver Assistance Systems (ADAS) represents a significant technological
advancement in the field of transportation safety and vehicular automation. The development of ADAS
can be traced back to the mid-20th century, with the introduction of basic driver support features such as
cruise control, which allowed vehicles to maintain a constant speed without manual throttle adjustment.
Over the decades, advancements in sensor technology, computer vision, and machine learning have
enabled the development of more sophisticated ADAS features, including adaptive cruise control (ACC),
automatic emergency braking (AEB), lane departure warning (LDW), and blind-spot detection (BSD)
[1]. These advancements were driven by growing concerns over traffic safety, increased demand for
driver comfort, and the automotive industry’s shift toward vehicle electrification and automation. Key
milestones include the integration of radar and lidar sensors for enhanced environmental perception,
the use of real-time video analysis for lane-keeping assistance, and the development of predictive
algorithms that enable proactive interventions. By the 2010s, many of these features were integrated
into commercial vehicles, with major manufacturers such as Tesla, BMW, and Toyota incorporating
Level 2 ADAS in their flagship models [2]. The ultimate goal of ADAS development has been to improve
road safety, reduce driver workload, and pave the way for higher levels of vehicular autonomy.

Despite the rapid progress in ADAS development, its widespread adoption faces several challenges
that hinder its full potential [3]. One of the most pressing issues is the lack of standardization in ADAS
design and functionality across different manufacturers. While systems like adaptive cruise control and
lane-keeping assistance are broadly available, their operational logic, signal design, and driver interac-
tion models vary significantly. This lack of uniformity increases the cognitive load on drivers, especially
those who switch between vehicles with different ADAS implementations. Another challenge is driver
acceptance and trust. Many drivers remain sceptical of ADAS systems due to concerns over their re-
liability and the fear of relinquishing control to an automated system. Incidents involving high-profile
failures of semi-autonomous systems have further furled public distrust. Building driver confidence re-
quires not only technological reliability but also effective user education and system transparency. A
third critical challenge is driver over-reliance on ADAS. Research indicates that some drivers become
overly dependent on ADAS features, leading to inattentiveness or ”automation complacency.” This
over-reliance can result in slower reaction times during emergencies, especially in situations where
manual intervention is required. Therefore, balancing automation with driver engagement remains a
critical design challenge for system developers. Legal and regulatory issues also pose a challenge to
the adoption of ADAS. Different countries have different regulations governing the use of autonomous
and semi-autonomous systems, which complicates the certification and deployment of ADAS-equipped
vehicles in multiple markets. Inconsistent safety assessment protocols and liability questions in case
of system failure further complicate regulatory acceptance. Lastly, cost and affordability play a sig-
nificant role. The advanced sensors (such as lidar and high-definition cameras) and computational
systems required for ADAS significantly increase production costs. These costs are often transferred
to consumers, making ADAS-equipped vehicles less accessible to budget-conscious buyers. Address-
ing these challenges requires a holistic approach that considers technological development, regulatory
alignment, and consumer education.

The design of ADAS warning signals plays a crucial role in ensuring effective human-machine interac-
tion and, ultimately, traffic safety. These signals act as the primary medium of communication between
the system and the driver, ensuring that critical information is conveyed efficiently. Different ADAS sys-
tems utilize varying designs for warning signals, including visual, auditory, and haptic feedback, each
with unique advantages and limitations. Such variability in design profoundly impacts driver SA and
reaction times, both of which are critical for avoiding potential hazards [4]. Auditory signals, such as
beeps, chimes, or voice alerts, are commonly employed to draw attention but are susceptible to issues
like alarm fatigue or ambiguity in interpretation. Haptic feedback, such as seat vibrations or steering
wheel alerts, provides tactile prompts that are particularly useful in noisy environments where auditory
signals may be ineffective. Meanwhile, visual signals, including flashing icons or text on dashboards,
remain the most widely utilized and intuitive form of communication [5]. However, poorly designed
warning signals—regardless of modality—can lead to confusion, delayed reactions, or even reduced
trust in the system. Understanding the impact of these designs on driver behavior and evaluating their
effectiveness under varying conditions are therefore essential for optimizing ADAS functionality. This
necessity forms the foundation of the current research, which emphasizes the importance of systemat-
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ically comparing different ADAS warning signal designs through the lens of SA as a key metric.

SA has become a critical focus in understanding driver behaviour and performance within complex
systems like ADAS, particularly as drivers interact with increasingly automated technologies. In the
context of ADAS, SA reflects the driver’s ability to perceive critical information from the system, com-
prehend its implications, and anticipate future developments. This cognitive process is directly shaped
by the design of ADAS warning signals, which serve as the primary interface for communicating system-
generated alerts. Unlike traditional usability metrics that focus on superficial attributes such as colour,
shape, or duration, SA provides amore comprehensive framework for evaluating the cognitive demands
placed on drivers. Effective ADAS signals should enhance a driver’s ability to quickly recognize and
prioritize critical information, fostering a heightened state of awareness in dynamic and high-pressure
scenarios. By analysing how different signal designs influence a driver’s SA, this research aims to as-
sess their effectiveness in supporting real-world decision-making and aligning with cognitive processes.
This approach provides a structured and insightful basis for comparing ADAS signals, ensuring they
are intuitive, impactful, and conducive to safer driving experiences.

Measuring SA is a crucial step in understanding driver behaviour and assessing the effectiveness of
ADAS warning signal designs. SA measurement methods are generally classified into three main
categories: subjective assessment, physiological measurement, and task-based performance metrics.
Each of these methods offers unique insights into driver cognitive states and provides a distinct per-
spective on how well ADAS designs support SA.

Subjective assessment methods rely on self-reported data from drivers, typically collected through
questionnaires or interviews after a driving task. These methods allow participants to reflect on their
awareness and cognitive workload, providing qualitative insights into their perception of the ADAS
signals. subjective measures are widely used for their simplicity and cost-effectiveness, but they may
be influenced by memory recall biases or individual differences in self-reporting accuracy.

Physiological measurement methods capture changes in physiological signals, such as heart rate, eye
movement (eye-tracking), pupil dilation, and brain activity (EEG). These indicators provide real-time,
objective data on a driver’s cognitive load and attentional focus. For instance, eye-tracking can re-
veal where the driver is focusing their attention, while pupil dilation can indicate cognitive workload or
stress levels. These methods are valued for their objectivity and granularity, but they often require
sophisticated equipment and may be intrusive to drivers.

Task-based performance metrics assess SA through direct observation of driver actions, reaction times,
or task completion rates. By evaluating how quickly and accurately a driver responds to ADAS signals or
unexpected changes in the driving environment, researchers can infer the level of SA. These measures
are considered practical and reflective of real-world driving performance, but they often require the
design of controlled experiments or simulated driving scenarios.

In our research, we adopt a comprehensive approach that incorporates a combination of these mea-
surement methods to capture a holistic view of driver SA. Each method targets specific layers of SA, en-
suring a more granular and precise assessment. for instance, subjective assessment provides insight
into the driver’s perception and comprehension of the system’s alerts, while physiological measure-
ments offer real-time tracking of cognitive load and attentional focus. task-based performance metrics,
on the other hand, reflect how effectively drivers can act on the information presented by adas warning
signals. by integrating these approaches, we aim to measure multiple layers of sa, from the perception
of information to the driver’s ability to predict and react to changes in the environment. This multifaceted
measurement strategy allows for a more robust assessment of adas signal design, supporting a deeper
understanding of how signal presentation impacts driver cognitive states, decision-making, and driving
performance.

1.2. Research Scope
This research focuses on evaluating how ADAS speed warning signals influence driver SA and provides
insights grounded in real-world applications. By selecting two ADAS systems from actual commercial
brands, the study ensures that its findings are not only theoretically significant but also practically rele-
vant to current ADAS technologies. This approach allows for an exploration of real-world signal designs
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and their impact on driver cognition, offering actionable insights for system developers and industry
stakeholders.

The primary focus of this study is to compare the differences in driver SA elicited by two distinct ADAS
warning signal designs. Using SA as the evaluation framework, the research emphasizes understand-
ing how signal design influences the levels of perception, comprehension, and projection. The com-
parison highlights the nuanced ways in which different warning signals affect driver awareness, with
particular attention to the cognitive processes underlying these effects.

To maintain a controlled and focused investigation, this study is specifically designed around the speed
limit alert function of ADAS systems, which falls under the broader category of driver assistance and
safety alert functions. This targeted approach allows for the isolation of the impact of speed warning
signals on driver SA, avoiding the complexities introduced by analysing multiple ADAS functionalities
simultaneously.

By adopting this scope, the research not only sheds light on the variability in driver SA across different
signal designs but also identifies potential design factors that contribute to these differences. The
practical significance of the study lies in its ability to bridge theoretical understanding with real-world
applications, providing guidance for the future development and optimization of ADASwarning systems.

1.3. Research Problems
Despite the widespread adoption of ADAS, the methods for accurately understanding and measur-
ing drivers’ SA under different ADAS warning signals remain uncertain. While existing studies have
explored various approaches to SA evaluation, there is a lack of clarity on how to comprehensively as-
sess SA across all three levels: perception, comprehension, and projection. This uncertainty presents
a significant challenge in developing a robust framework for evaluating the cognitive state of drivers
interacting with ADAS.

Another critical issue is the variability in SA among drivers when exposed to the same ADAS signals.
Drivers may exhibit significant differences in their SA depending on factors such as individual cog-
nitive capacity, experience, and driving conditions. These variations underscore the importance of
understanding not only how SA differs across individuals but also how these differences influence their
interaction with ADAS systems and overall driving performance.

Finally, the underlying reasons behind these differences in SA require further investigation. Potential
contributing factors may include the design characteristics of ADASwarning signals, environmental and
situational variables, and driver-specific attributes. Identifying these causal relationships is essential
for advancing the design of ADAS systems that are adaptable to diverse driver needs and capable of
enhancing SA consistently across varied contexts.

1.4. Research Questions
This study is guided by the following primary research question and its associated sub-questions:

• How does driver situational awareness differ when responding to current road speed limit alerts
generated by different ADAS systems?

1. How do different ADAS signal designs influence driver situational awareness across its three
levels: perception, comprehension, and projection?

2. How do internal factors, such as age, gender, and other demographic characteristics, con-
tribute to variations in driver situational awareness under different ADAS signal designs?

3. Based on the results, what design-related features might explain the differences in driver
situational awareness and guide the development of more effective ADAS signal designs?

The research questions aim to investigate the differences in driver SA under two ADAS designs and
identify the internal and design-related factors contributing to these differences.



2
Literature Review

Overview
This chapter explores the impact of Advanced Driver Assistance Systems (ADAS) warning signal de-
signs on driver situational awareness (SA) and aims to provide actionable insights for system improve-
ments. Section 2.1 examines the functionalities of ADAS, with particular attention to speed limit transi-
tion warnings, a critical feature for enhancing SA and road safety. Section 2.2 introduces the concept of
SA, outlining its three-level framework—perception, comprehension, and projection—and emphasising
its relevance to dynamic driving environments. Section 2.3 discusses current methods for evaluating
SA in transportation, categorising them into physiological measurements, memory probe methods, task
performance indicators, and subjective evaluations. Section 2.4 provides a detailed review of the spe-
cific SA evaluation methods used in this study, focusing on eye-tracking for level 1 SA, memory probe
techniques for level 2 SA, and task performance metrics for level 3 SA. Section 2.5 identifies key re-
search gaps, including the need for systematic SA measurement frameworks across all levels and the
lack of standardised metrics for evaluating ADAS effectiveness, which form the basis for this study’s
research objectives. Finally, Section 2.6 outlines the research objectives, detailing how this study ad-
dresses these gaps and contributes to the advancement of SA assessment and ADAS signal design.

5
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2.1. Advanced Driver Assistance Systems (ADAS)
2.1.1. Overview of ADAS
ADAS have made significant strides due to rapid technological advancements utilizing radar, lidar, and
camera technologies. These systems range from simple alerts that use visual, auditory, or haptic
signals to more complex mechanisms that actively intervene during critical driving situations. As car
manufacturers increasingly integrate ADAS, these systems, though generally classified under Level 2
assisted driving systems, exhibit considerable variability in their operational design and functionality
[6].

The classification of ADAS functionalities can be based on their intended purposes, such as safety
improvement or driver convenience [7]. Information assistance systems provide drivers with critical
data to support decision-making without intervening in vehicle control. Examples include traffic sign
recognition (TSR), navigation aids, and speed limit warnings. These systems primarily aim to enhance
drivers’ SA by improving their ability to perceive and comprehend the driving environment. Warning and
alert systems, on the other hand, detect potential hazards and notify the driver, with features such as
lane departure warnings, forward collision alerts, and blind spot monitoring being prominent examples.
These systems aim to reduce accidents by prompting timely driver responses.

Active control systems take intervention a step further by actively mitigating risks or preventing col-
lisions. Functions such as automatic emergency braking (AEB), adaptive cruise control (ACC), and
lane-keeping assistance fall into this category [7]. While safety remains a priority, some ADAS fea-
tures focus on driver comfort, such as automated parking, adaptive headlights, and traffic jam assist,
which help reduce driver workload in complex situations. Finally, integrated systems combine multiple
functionalities, such as forward collision warnings paired with automatic braking, to deliver comprehen-
sive safety and comfort solutions.

The design of HMI within these systems is particularly diverse, especially in how emergency warning
signals are delivered to drivers. Despite the proliferation of studies on ADAS, much of the research
primarily centres on how different drivers react to the same ADAS system, variations in system perfor-
mance across different vehicles, and how these systems behave under various environmental condi-
tions. For instance, some studies have highlighted that while certain ADAS technologies improve driver
safety, their effectiveness can vary significantly based on the design of the interface and the driver’s
ability to understand and respond to the warnings.

2.1.2. Speed Limit Transition Warnings
Speed limit transition warnings are a sub-category of information assistance systems that notify drivers
of changes in speed limits when transitioning between road segments. Given their importance in en-
suring road safety, particularly in areas where speed limits change frequently—such as school zones,
construction sites, and urban-rural boundaries—this study specifically focuses on their impact on driver
SA. By facilitating timely recognition and comprehension of these changes, speed limit transition warn-
ings directly affect the first two levels of SA—perception and comprehension—and play a pivotal role
in driver decision-making.

Investigating speed limit transition warnings provides a targeted analysis of how signal design affects
drivers’ cognitive processes. Existing literature suggests that effective ADAS designs should enhance
all three levels of SA but notes that many systems fall short, particularly in helping drivers project
future states based on current information [8]. Furthermore, variations in the design of these warnings,
such as auditory signals, visual displays, or multimodal combinations, may significantly impact their
effectiveness. By focusing on this functionality, the research aims to provide insights into how HMI
design influences SA, contributing to the development of more effective ADAS solutions.

2.2. Understanding Situational Awareness
Various conceptualizations of SA have been proposed in academic literature, addressing SA at the
individual [9], team [10], and sociotechnical system levels [11]. The formal definition of SA is often
described as three ascending levels [12]:

• Perception of the elements in the environment
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• Comprehension or understanding of the situation
• Projection of future status

SA serves as a crucial metric for evaluating drivers’ performance, particularly in navigating complex
and dynamic environments safely [13]. It encompasses drivers’ ability to accurately perceive their sur-
roundings and adjust their interactions with distracting elements [14]. Enhanced SA enables drivers
to detect potential hazards more effectively during their journeys [15]. In analysing driving behaviour,
researchers often explore its correlation with the likelihood of being involved in traffic accidents, con-
sidering a range of driver actions and decisions behind the wheel [16].

2.3. Current Methods for Evaluating SA in Transportation
Differences in the research orientations and fields of SA lead to significant variations in measurement
methods, with multiple researchers proposing different classifications [17]. However, measurements of
SA can generally be classified into four main categories: (1) Physiological Measurements, (2) Memory
Probe Measurements, (3) Task Performance Measurements, and (4) Subjective Measurements [18].
In this section, we will highlight several measurement methodologies that may offer valuable insights
for the present study.

2.3.1. Physiological Measurements
Physiological measurements provide a direct quantification of bodily responses, offering insights into an
operator’s cognitive and emotional state which are indicative of their SA. Techniques such as heart rate
variability, electroencephalography (EEG), and eye-tracking are commonly utilized. Eye-tracking, for
example, measures where and how long a driver or pilot focuses, which can be critical in understanding
attention allocation in dynamic environments. Studies have shown that such physiological indicators
can effectively predict SA under various operational conditions, highlighting their relevance for safety-
critical tasks in transportation [19, 20, 21].

2.3.2. Memory Probe Measurements
Memory probe techniques assess SA by querying operators about specific elements of their environ-
ment or task at random intervals. This method assumes that accurate recall of information correlates
with high SA. The Situation Present Assessment Method (SPAM) is one such technique where partici-
pants are intermittently asked to report the status of relevant variables or conditions in their environment.
These snapshots of situational data can then be analysed to gauge the accuracy and speed of their per-
ceptions, which are indicative of their SA [22]. The Situation Awareness Global Assessment Technique
(SAGAT) method, widely used in the field, is another excellent example of Memory Probe Measure-
ments [23]. This technique leverages the capability to pause current tasks in a simulated environment.
At randomly determined intervals, which are commonly referred to as task breaks, participants are
prompted with questions. During these intervals, the simulation temporarily hides information about
the current environment from the participant. The accuracy of the participants’ responses to these
questions serves as the basis for evaluating their SA. This method effectively isolates the participant’s
memory and awareness of situational elements, thus providing a direct measure of SA without the
interference of ongoing task performance.

2.3.3. Task Performance Measurements
Task Performance Measurements offer a practical and indirect method to evaluate SA by analysing
how operators handle specific tasks that mirror real-world responsibilities. These measurements, often
conducted through simulator-based assessments, focus on the operator’s ability to respond to prede-
fined scenarios that replicate critical decision-making situations, such as pilots managing unexpected
events during simulations—a robust indicator of their SA [24]. The strength of this approach lies in its
objectivity and non-intrusiveness. By relying on quantifiable task outcomes such as accuracy and com-
pletion time, it provides a reliable proxy for assessing an operator’s SA without disrupting their regular
duties. This method integrates smoothly into the natural workflow, utilizing existing simulations and
operational environments for regular assessments. Such seamless integration is particularly valuable
in high-stakes fields like aviation and driving, where continuous evaluation of SA is crucial [25, 26].
Ultimately, Task Performance Measurements facilitate an authentic and efficient assessment process,
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making them a cornerstone for ongoing safety and performance evaluations in dynamic operational
settings [27, 28].

2.3.4. Subjective Measurements
Subjective methods involve self-assessment scales and questionnaires where individuals report their
perception of their own SA. Although subjective, these measures are invaluable for capturing personal
insights into cognitive processes and the perceived effectiveness of SA-supporting systems. The Sit-
uational Awareness Rating Technique (SART) is one widely used tool that provides a comprehensive
measure of awareness based on factors like complexity, variability, and familiarity of the task [29, 30].

2.4. Detailed Measurement Approaches for SA at Three Levels
2.4.1. Level 1 Measurements: Eye-Tracking
Given that the initial stage of SA relies on perception, and considering that most cockpit information is
visual, analysing eye movements is a viable method for assessing SA. This approach is supported by
the assumption that monitoring an operator’s eye movements can effectively gauge their SA [31]. Xu
et al. [32] specifically evaluated the first stage of SA through the distribution of visual attention. Eye
tracking enables researchers to directly observe how visual information is processed and attended to
during tasks, providing an objective way to connect gaze patterns with perception-related behaviours.

This approach provides the unique benefit of allowing real-time assessments with minimal interference
[33]. Unlike retrospective methods that rely on participants’ memory or verbal explanations, eye track-
ing captures immediate responses, reducing biases caused by memory decay or interpretation errors.
It addresses issues like participants relying on long-term memory, a problem often seen with freeze-
probe methods, to explain subtasks or provide detailed information about specific tasks [28]. Further-
more, the continuous nature of eye-tracking data enables researchers to assess dynamic changes in
attention allocation, making it well-suited for environments where task demands fluctuate over time [34,
35].

To date, eye tracking is one of the most commonly used techniques in SA research [36]. Its popularity
stems from its versatility in capturing perceptual data across a variety of domains, including aviation,
driving, and control room operations [37, 38, 39]. The ability to correlate gaze direction, fixation duration,
and scan patterns with cognitive processes has proven invaluable for understanding how individuals
interact with their environment [40, 41]. Additionally, technological advancements in wearable eye-
tracking systems have made it possible to gather high-fidelity data even in naturalistic settings [42,
43].

Even though there are a few examples of it being used to measure level 3 SA [44, 45, 46], eye tracking
is typically used to measure level 1 SA. The reason lies in its direct alignment with perception, which
forms the foundation for higher SA levels. Therefore, in this research, we employ eye tracking to assess
the first stage of SA, focusing on how operators perceive and attend to critical visual information during
interaction with ADAS systems.

2.4.2. Level 2 Measurements: Memory Probe
Post-assessment evaluations and questionnaires are frequently employed for accessing SA. These
memory probe measurements often facilitate in-depth insights into the operator’s SA, providing detailed
information on various aspects.

The SAGAT stands out as the predominant method utilized for measuring SA through questionnaires
[47]. This approach freezes work tasks at a designated moment, prompting individuals to respond to
situation-specific questionnaires. Discrepancies between the responses and the actual situation indi-
cate the individual’s level of SA [48]. It can address the SA issues of three levels, thereby determining
the extent of SA at three levels for individuals. However, this intrusive method is considered to have a
certain impact on the subjects. Moreover, this method is not suitable for field testing because it requires
the task to be frozen, and therefore it is usually cited in simulated environments.

Therefore, in our project, we aim to design a scale similar to SAGAT to measure the second level of SA
(perception) of the subjects, but this scale will be provided to the subjects after the experiment ends,
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instead of freezing the task during the experiment. Doing so has the advantage of not interfering with
and affecting the field tests, ensuring safety. Additionally, setting questions for the second level SA can
enhance efficiency and yield more accurate results.

2.4.3. Level 3 Measurements: Task Performance
The Task Performance method is typically non-invasive, as it does not interfere with ongoing tasks
and can be automatically documented, making it highly suitable for real-time and naturalistic settings
[49]. This method is widely recognized for its ability to provide objective and quantifiable data on task
outcomes, such as response accuracy, reaction times, and task efficiency [50]. By avoiding subjective
biases often associated with self-reporting methods, task performancemeasures allow for a more direct
assessment of cognitive processes related to SA.

In this research, we aim to utilize task performance indicators to assess subjects’ Level 3 SA, which
relates to their ability to project future states and take proactive actions based on the information avail-
able. Specifically, we focus on driving performance metrics such as the average speed, the deviation
from the designated speed limit, and the percentage of time the vehicle remains within the speed limit.
These indicators provide valuable insights into whether participants notice and respond appropriately
to speed limit changes, reflecting their anticipation and decision-making capabilities. This approach
ensures a more comprehensive evaluation of Level 3 SA in real-world driving scenarios.

Additionally, the use of task performance data allows for seamless integration with other SA measure-
ment methods, such as eye-tracking for level 1 SA and questionnaires for level 2 SA, to form a compre-
hensive evaluation framework. This combined approach ensures that we capture not only the subjects’
actions but also the underlying cognitive processes driving these actions, offering a holistic understand-
ing of SA. The response time metric, in particular, has been validated in prior research as an effective
measure of action readiness in driving and other high-stakes operational environments [51, 52].

By focusing on task performance as an objective and scalable method, this research contributes to the
broader effort of refining SAmeasurement techniques and improving our understanding of driver-ADAS
interactions.

Figure 2.1: Situational Awareness Measurements

2.5. Research Gaps
In light of the findings discussed above, several research gaps can be identified. First, while there
are numerous methods available for monitoring SA, there is a notable lack of research focusing on
the systematic exploration of each SA level—perception, comprehension, and projection—individually.
This gap often leads to incomplete evaluations of SA, making it difficult to fully understand how different
design factors influence each cognitive layer of awareness during driving tasks.

Second, although ADAS have been widely implemented, there remains no standardized framework
for evaluating their effectiveness. This absence of clear evaluation metrics hinders the identification
of specific design elements that contribute to their success or failure. SA offers a measurable and
structured approach to assess the impact of ADAS on driver cognition, providing a potential pathway
for understanding and improving system design.

To address these gaps, we propose a framework that integrates multiple measurement techniques to
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evaluate each level of SA independently within the context of driving tasks. By doing so, this research
aims to provide a comprehensive assessment of how drivers interact with ADAS and how different SA
levels are affected. This approach will enable us to identify key differences in system designs and
propose specific directions for improvement based on SA outcomes.

Furthermore, this study seeks to explore the contribution of internal factors, such as age and gender, to
variations in SA during ADAS-assisted driving tasks. Understanding how these demographic charac-
teristics influence SA under different ADAS conditions can provide valuable insights into personalizing
system designs to accommodate diverse driver populations. Ultimately, this research aims to bridge
the gap between theoretical understanding of SA and practical advancements in ADAS, contributing to
the development of safer and more effective driver assistance systems.

2.6. Research Objectives
The primary objective of this research is to analyse how different ADASwarning signal designs influence
driver SA and to identify design-related factors contributing to observed differences. By conducting real-
world experimental analyses of two existing ADAS systems, this study offers a unique and practical
exploration of their warning signal designs and their impacts on driver SA.

First, the research aims to measure and evaluate driver SA across its three levels: perception, com-
prehension, and projection. This study employs specific methods for each level, including eye-tracking
metrics for perception, questionnaires for comprehension, and task-based performance measures for
projection, to provide a comprehensive assessment of SA under different ADAS signal designs.

Second, the research seeks to investigate the variability in driver SA between the two ADAS signal
designs. This analysis highlights the unique cognitive and behavioral impacts of each signal, offering
insights into the effectiveness of their design features in promoting driver SA.

Finally, the study explores potential design-related factors that contribute to differences in driver SA. By
focusing on the characteristics of the two ADAS signal designs, the research identifies critical elements
that influence SA, providing valuable guidance for optimizing future warning systems.



3
Experiment Design

Overview
This chapter provides a detailed description of the experiment design, structured into six sections. Sec-
tion 3.1 outlines the experimental objectives and variables, including the independent variable, depen-
dent variables, and moderating variables. Section 3.2 discusses participant recruitment and demo-
graphics, highlighting the sample composition and recruitment process. Section 3.3 describes the ex-
perimental route and environment, focusing on route design, safety measures, and the structure of the
questionnaires. Section 3.4 presents the equipment used for data collection, including eye-tracking
glasses, GPS devices, and electronic questionnaires, and explains their integration into the experi-
ment. Section 3.5 details the experimental procedure, covering pre-test preparation, the driving task,
and post-test assessment. Finally, Section 3.6 addresses ethical considerations, ensuring compliance
with research standards.

11
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3.1. Experimental Objectives and Variables
This study investigates how different ADAS system designs influence driver SA across its three hier-
archical levels: perception (Level 1), comprehension (Level 2), and projection (Level 3). To achieve
this, a field test was conducted on a predefined route, focusing on four road segments where speed
limits changed, referred to as observation areas. Each observation area corresponds to a section of
road following a speed limit transition, where drivers needed to adapt their behaviour to the new speed
regulation.

Data collection and analysis were conducted specifically within these observation areas, capturing
speed variations, eye-tracking data, and questionnaire responses. By examining driver responses
across these segments, the study aims to assess the effectiveness of different ADAS signal designs in
supporting SA at all three levels.

3.1.1. Independent Variable
The independent variable in this study is the ADAS system design, represented by two distinct systems
(System A and System B). These systems differ in their warning signal designs and information delivery
methods, and they are hypothesized to affect SA differently across its three levels.

3.1.2. Dependent Variables
The dependent variables correspond to the evaluation of SA at its three hierarchical levels. Each level
is assessed through specific indicators derived from experimental data.

Level 1 SA (Perception) Level 1 SA reflects the driver’s ability to detect and focus on relevant environ-
mental information. The study uses eye-tracking technology to measure visual attention as participants
approach and enter observation areas. The key indicators for this level include:

• Fixation count: The number of times the participant’s gaze fixates on relevant areas (e.g., speed
limit signs) within an observation area. Data are recorded for each observation area and aggre-
gated across all areas.

• Fixation duration: The cumulative duration of all fixations on relevant areas within an observation
area, measured in seconds. Data are recorded for each observation area and aggregated across
all areas. In this study, the influence of current driving speed on fixation duration was not consid-
ered. Since the driver’s speed may vary within a road segment, accounting for speed-dependent
variations in fixation duration would significantly increase computational complexity.

• Time to first fixation: The time taken for the participant to first fixate on relevant areas after entering
an observation area, measured in seconds. The moment of entering an observation area is
defined as the time when the speed limit transition signals are displayed. Data are recorded for
each observation area.

Level 2 SA (Comprehension) Level 2 SA pertains to the driver’s understanding of the situation and
its implications. To assess this level, a questionnaire-based approach is used, with participants provid-
ing subjective scores after completing the driving task. The primary indicator is:

• Questionnaire scores: Aggregated subjective scores reflecting the participant’s comprehension
of the situation across all observation areas.

Level 3 SA (Projection) Level 3 SA involves the driver’s ability to predict future states based on
current information. GPS data are used to analyse driving behaviour through the following indicators:

• Average speed relative to the speed limit: The deviation of the participant’s average speed from
the designated speed limit, recorded for each observation area.

• Speed compliance percentage: The percentage of time the vehicle’s speed remains within the
speed limit, recorded for each observation area.
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3.1.3. Moderating Variables
To account for individual differences, internal factors such as age, gender, driving experience, ADAS
familiarity, and the order of participation in ADAS system trials (System A first or System B first) are
included as moderating variables. These factors are hypothesized to influence SA outcomes under
different ADAS designs, providing insights into how demographic characteristics, prior exposure to
ADAS technology, and test order affect driver-ADAS interactions.

3.1.4. Controlled Conditions
All data were collected within a single day to minimize the effects of temporal variability, such as dif-
ferences in weather, lighting, or road conditions. This approach ensured that participants experienced
consistent external conditions throughout the experiment, reducing confounding variables and enhanc-
ing the reliability of the results.

Table 3.1: Variables and Indicators

Variable Type Variable Name Indicators / Measurement

Independent Variable ADAS Systems (System A & System B) N/A (Two ADAS systems compared)

Dependent Variable

Level 1 SA (Perception)
Time to first fixation (per area)

Fixation count (per area and total)

Fixation duration (per area and total)

Level 2 SA (Comprehension) Questionnaire scores (total only)

Level 3 SA (Projection)
Average speed relative to the speed limit (per area)

Speed compliance percentage (per area)

Moderating Variable Internal Factors

Age

Gender

Driving Experience

ADAS Familiarity

Order

Table 3.2: Indicators with Descriptions and Units

Indicator Description Unit

Time to first fixation (per area) Time taken for the participant to first fixate on relevant areas after
entering an observation area

Seconds (s)

Fixation count (per area and total) Total number of fixations on relevant areas (per observation area
and aggregated)

Count

Fixation duration (per area and total) Total duration of fixations on relevant areas (per observation area
and aggregated)

Seconds (s)

Questionnaire scores (total only) Subjective scores representing participants’ comprehension of sit-
uations across all observation areas

Subjective Score

Average speed relative to the speed limit (per area) Deviation of average speed from the designated speed limit (per
observation area)

km/h (Speed difference)

Speed compliance percentage (per area) Percentage of time the vehicle’s speed remains within the speed
limit (per observation area)

Percentage (%)

3.2. Participants and Recruitment
This study involved the recruitment of participants to evaluate the influence of different ADAS systems
on driver SA across its three hierarchical levels. The target sample size was 15 participants; however,
due to the complexity of the study design and logistical constraints, a total of 11 participants were
successfully recruited.

The participants were diverse in terms of age and gender, with a nearly equal gender distribution,
ensuring balanced representation. Specific selection criteria included the following:
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• Participants were required to possess a valid driver’s license and have at least one year of driving
experience to ensure familiarity with real-world driving scenarios.

• No prior requirement for ADAS experience was imposed, as the study aimed to include drivers
with varying levels of familiarity to reflect diverse user groups.

• Participants needed to be available for a single-day session to ensure consistency in experimental
conditions.

Despite the relatively small sample size, it is deemed sufficient for this exploratory study. The study
employed a within-subjects design, where each participant interacted with both ADAS systems. This
design enhances the statistical power by reducing variability across participants and allows for a more
controlled comparison of the two systems.

Prior to the experiment, all participants were provided with detailed information about the study and
signed informed consent forms. Ethical considerations were prioritised throughout the study, and mul-
tiple measures were implemented to ensure participant safety. All participants were required to have
at least one year of driving experience to minimise risks associated with novice drivers. Before the
experiment, they were fully informed about the details of the driving task, ensuring they understood the
procedure and potential challenges. The experiment was conducted on roads with relatively low traffic
volume to reduce external hazards, and participants were given the option to stop the experiment at
any time if they felt uncomfortable or unsafe. Additionally, a researcher was present in the back seat
throughout the drive, actively monitoring the situation to identify potential issues and assist in terminat-
ing the experiment if necessary. These precautions collectively ensured a safe testing environment for
all participants.

3.3. Experimental Route and Environment
3.3.1. Route Design
The driving route for this experiment was carefully designed to evaluate the influence of different ADAS
systems on driver SA across varying speed limit conditions. The total length of the route is 4.3 kilome-
tres, starting and ending at the Royal HaskoningDHV premises in Amersfoort, Utrecht Province, Nether-
lands. The route is divided into two sections: a 0.8 kilometre familiarity segment and a 3.5 kilometre
formal experimental segment. The figure below provides an annotated illustration of the experimental
route, which is based on Google Maps.

Familiarity Segment The familiarity segment starts at Point A (Royal HaskoningDHV) and ends at
Point B, covering a distance of 0.8 kilometres. This section allows participants to get accustomed to the
vehicle, ADAS systems, and experimental setup. The speed limit for this segment is 60 km/h. Before
the driving task begins, participants also receive an explanation of the ADAS systems and a briefing
on the driving task. Further details on this process are provided in Section 3.5.

Formal Experimental Segment The formal test recording begins at Point B and follows the sequence
described below, covering four distinct speed limit transition points. Each segment between two points
represents an observation area, where data on speed adaptation and situational awareness were col-
lected:

• B to C: 1.2 kilometres with a speed limit of 50 km/h (Observation Area 1).
• C to D: 0.8 kilometres with a speed limit of 30 km/h (Observation Area 2).
• D to E: 0.4 kilometres with a speed limit of 50 km/h (Observation Area 3).
• E to F: 0.25 kilometres with a speed limit of 30 km/h (Observation Area 4).
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Figure 3.1: Route Design Illustration

This structured route provides opportunities to assess drivers’ responses to speed limit transitions under
real-world conditions. Each speed limit change point represents an observation area where data on
SA indicators are collected.

Table 3.3: Route Segments and Lengths

Section Route Length (km)
Familiarity Segment A-B 0.8

Formal Experimental Segment

B-C 1.2

C-D 0.8

D-E 0.4

E-F 0.25

The experiment was conducted on urban roads in Amersfoort, Utrecht Province, Netherlands. The
selected route included typical urban road characteristics such as clear signage, moderate traffic, and
varying speed limits. While the weather was not strictly controlled, the experiment was scheduled and
conducted under stable and favourable conditions to minimize potential disruptions caused by rain, fog,
or strong winds.

Prior to the formal experiment, the responsible researcher and an additional licensed driver conducted
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pre-tests using both ADAS systems under similar environmental conditions. This pre-test ensured that
the vehicles and systems operated as intended and that the route was appropriate for data collection.
The results confirmed the ADAS systems’ functionality, the clarity of speed limit transitions, and the
suitability of the selected indicators.

To minimise interference with participants’ driving behaviour, navigation was entirely conducted using
Google Maps, which provided both audio and visual directions. A trained researcher, the same as men-
tioned earlier, was seated in the rear seat, responsible for unobtrusively recording data and providing
assistance only when necessary. This setup preserved the naturalistic driving conditions essential for
the study while ensuring real-time monitoring.

Each driving task lasted approximately ten minutes per vehicle, resulting in a total driving duration
of around 20 minutes for both vehicles. In addition, the pre-drive preparation and questionnaire took
approximately ten minutes, and the post-drive questionnaire required another ten minutes. Thus, the
total experiment time for each participant was approximately 40 minutes.

All driving sessions were completed within a single day to maintain consistent lighting, traffic, and envi-
ronmental conditions. The use of a closed circular path starting and ending at the Royal HaskoningDHV
premises ensured logistical convenience for participants and minimised external variability.

3.3.2. Experimental Safety Measures
Safety was a primary concern throughout the experiment. The responsible researcher in the rear seat
monitored all driving tasks and was prepared to intervene if necessary, though their role was primarily
observational to avoid distracting the driver. Participants were required to wear eye-tracking glasses
during the experiment, and data collection was conducted unobtrusively to maintain natural driving
behaviour.

Participants were instructed to drive as they normally would while adhering to traffic rules. Breaks were
provided between the two driving sessions to prevent fatigue and maintain focus. These measures,
combined with the results of the pre-tests, ensured a safe and controlled experimental environment.

3.3.3. Questionnaire Design
The questionnaire was divided into two parts: a pre-drive questionnaire and a post-drive questionnaire.
Its purpose was to collect basic demographic and contextual information and to evaluate Level 2 SA
(Comprehension). All subjective assessment questions were structured using a five-point Likert scale
to facilitate subsequent statistical analysis [53]. The complete questionnaire was preserved digitally
and is available for review upon request.

Pre-Drive Questionnaire The pre-drive questionnaire collected demographic information and base-
line data on participants, including:

• Age group.
• Gender.
• Driving experience (in years).
• Familiarity with ADAS systems.

In addition to collecting key demographic and baseline information, the pre-test questionnaire included
auxiliary questions to better understand participants’ familiarity with and attitudes toward ADAS tech-
nologies. These questions explored their general understanding of various ADAS functionalities, such
as speed limit alerts, lane departure warnings, and adaptive cruise control, without revealing which
specific functionality was the focus of the study to avoid biasing their responses. The questionnaire
also assessed participants’ willingness to adopt and use ADAS in their personal vehicles, as well as
their overall openness to integrating new technologies into their driving routines.

These additional questions provided valuable context about participants’ prior experiences and percep-
tions of ADAS, which could influence their interaction with the systems during the experiment.
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Post-Drive Questionnaire The post-drive questionnaire was administered after each driving session
and focused on evaluating participants’ comprehension of the driving scenarios. The questions were
structured to capture:

• Recognition of speed limit changes and the sequence of transitions along the route.
• Understanding and interpretation of ADAS warning signals in both driving sessions.
• Self-assessment of situational awareness, specifically the ability to understand the current driving
environment during each session.

In addition to the main Level 2-related questions, the post-drive questionnaire included supplementary
questions that addressed other aspects of situational awareness across its hierarchical levels. These
questions explored whether participants noticed speed limit changes and ADAS warning signals during
each session, as well as their confidence in predicting the impact of ADAS alerts on future driving
behaviour. This approach ensured that the questionnaire considered all three levels of SA in a coherent
and structured manner.

The questionnaire also asked participants about their preferences for one of the two ADAS systems
and their perceived overall helpfulness of these systems in supporting driving tasks. These auxiliary
questions were included to provide additional insights into participants’ experiences with the ADAS
systems and their usability.

Both questionnaires were presented in electronic format, allowing participants to complete them on
a tablet or smartphone immediately after each driving session. This approach ensured timely and
accurate data collection while minimizing recall bias.

3.4. Equipment
This section outlines the equipment used in the experiment for data collection across the three levels
of SA. The tools were selected to ensure high data accuracy and minimal interference with participants’
natural driving behaviour.

3.4.1. ADAS Systems
As shown in the figure, the two vehicles differed in both display layout and signal design. System A
follows a more traditional layout, with the primary display positioned behind the steering wheel, while
a separate screen on the right (centrally located between the driver and front passenger) provides
navigation and additional information. Its speed limit signals present both the current road segment’s
speed limit and the speed limit of the upcoming segment.

In contrast, System B features a more innovative design, where the display behind the steering wheel
seamlessly extends into the central screen, creating a unified interface. Unlike System A, its speed
limit signals only show the current road segment’s speed limit without providing information about the
next segment.

(a) ADAS System A (b) ADAS System B

Figure 3.2: Illustration of ADAS System Designs
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3.4.2. Eye-Tracking Glasses
Level 1 SA (Perception) was measured using the Tobii Pro Glasses 3, a widely used eye-tracking
system known for its reliability and precision. These lightweight, unobtrusive glasses recorded gaze
data throughout the experiment, providing detailed information on visual attention, including fixation
counts, fixation duration, and time to first fixation. The Tobii Pro Glasses 3 were chosen based on
their demonstrated improved accuracy compared to earlier models, ensuring robust data quality [54].
The system recorded gaze data at 30 frames per second (fps), meaning data points were collected
approximately every 0.03 seconds. All recordings were processed and analysed using the official
software provided by Tobii for post-experiment data extraction.

Figure 3.3: Tobii Pro Glasses 3

3.4.3. Questionnaire
An electronic questionnaire system, implemented through Microsoft Forms, was used to collect data
related to Level 2 SA (Comprehension) as well as participants’ basic demographic information. The
digital format minimized manual entry errors and facilitated seamless data integration into the analysis
framework.

Once data collection was completed, all responses were consolidated into a unified dataset for anal-
ysis. To ensure participant confidentiality, unique identifiers were assigned to each participant, and
all data were anonymized during processing. This approach safeguarded sensitive information while
maintaining the integrity of the dataset for systematic evaluation.

3.4.4. GPS-Based Speed Tracking
For Level 3 SA (Projection), the GoPro Hero 7 camera was used to record GPS data, including vehicle
position and speed. The device collected data every 0.055 seconds, ensuring a continuous record of
vehicle dynamics. This data was synchronized with predefined observation areas to calculate indicators
such as average speed relative to the speed limit and speed compliance percentage. The entry into
each observation area was determined based on the recorded GPS coordinates, ensuring precise
alignment of speed data with the respective road segments. The GoPro device was mounted securely
inside the vehicle to ensure stable and accurate data collection.

All equipment was carefully configured to minimize interference with participants’ natural driving be-
haviour, ensuring a seamless and safe experimental experience.
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Figure 3.4: GoPro Hero 7 Camera

3.5. Experimental Procedure
This section outlines the step-by-step procedure followed during the experiment, from pre-test prepa-
ration to post-experiment procedures. The procedure was designed to ensure consistency across
participants and accurate data collection for evaluating SA. In addition to participant procedures, this
section also highlights the researchers’ responsibilities before, during, and after the experiment.

3.5.1. Pre-Test Preparation
Before the driving task, the research team first ensured that all equipment and vehicles were properly
prepared for the experiment. This involved verifying the functionality of the ADAS systems in both
vehicles, calibrating the systems, and confirming that all experimental equipment, including the Tobii
Pro Glasses 3 and GoPro Hero 7 cameras, was correctly configured and operational. These checks
were conducted to ensure the smooth execution of the driving sessions and to prevent any technical
issues during the experiment.

Once the equipment and vehicles were confirmed to be in proper working condition, participants were
gathered in a designated waiting area. They were provided with the Subject Information Statement and
Informed Consent Form. A researcher explained the purpose of the study, the experimental procedure,
and participants’ roles in detail, ensuring they fully understood the tasks involved. Participants were
given the opportunity to ask questions before completing the consent form and pre-drive questionnaire.

After the pre-test preparation, participants were guided to the experimental vehicle. Inside the vehicle,
the responsible researcher assisted each participant in wearing the Tobii Pro Glasses 3 eye-tracking
system. The glasses were calibrated individually using a standard Tobii calibration process, during
which participants were instructed to fixate on a central target point to ensure accurate gaze data
collection. Simultaneously, the GoPro Hero 7 camera was activated to begin recording GPS data.

Participants were also given time to familiarize themselves with the vehicle in the parking lot at the
starting point before beginning the formal experiment. This ensured they were comfortable with the
vehicle and its controls, minimizing potential distractions during the driving task.

3.5.2. Driving Task
Each participant was required to complete two driving sessions, corresponding to the two ADAS sys-
tems (System A and System B). The order of the systems was alternated among participants, with
an even 1:1 distribution between those starting with System A and those starting with System B. This
ensured balanced testing while recording the actual sequence for analysis.

Participants drove along the predefined route described in the experimental design section, which in-
cluded four observation areas (speed limit transition points). The driving performance in the segments
between these observation areas served as the primary focus for data collection and analysis. Partici-
pants were instructed to drive as they normally would, following general traffic regulations and adhering
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to their usual driving habits.

During the driving task, the Tobii Pro Glasses 3 recorded eye-tracking data, while the GoPro Hero 7
logged GPS data. The researcher in the rear seat ensured that all devices functioned correctly while
providing minimal assistance to reduce interference with participants’ natural driving behaviour.

3.5.3. Post-Test Assessment
After completing each driving session, participants were asked to complete a post-drive questionnaire,
which captured their comprehension of speed limit transitions and understanding of ADAS warnings.
In addition to evaluating comprehension, the questionnaire also included auxiliary questions exploring
their overall impressions of the systems, preferences between the two ADAS designs, and perceived
helpfulness of ADAS in driving tasks. The electronic format of the questionnaire minimized errors and
allowed for direct integration into the analysis framework.

3.5.4. Post-Experiment Procedures
At the conclusion of the experiment, all collected data, including eye-tracking recordings, GPS logs,
and questionnaire responses, were securely stored and organized for analysis.

The Tobii Pro Glasses 3 and GoPro Hero 7 cameras were returned to Royal HaskoningDHV, and the
ADAS-equipped vehicles were returned to their respective owners. The research team conducted a
final review to verify that all data and equipment were accounted for, ensuring a smooth transition to
the data analysis phase.

3.6. Ethical Considerations
This study was conducted in accordance with ethical guidelines and was approved by the Human Re-
search Ethics Committee (HREC) of TU Delft. The ethical approval process included a comprehensive
review of the study’s methodology, participant involvement, and data management practices, ensuring
compliance with institutional and international standards for research involving human subjects. A de-
tailed data management plan was also developed to safeguard participant information and ensure data
integrity.

Prior to participation, all participants were provided with an Informed Consent Form, which outlined the
scope of the study, the types of data being collected, and the purposes for which the data would be
used. The form also explained the anonymization procedures and assured participants of their right to
withdraw from the study at any time without penalty. This process ensured that participants were fully
informed and voluntarily agreed to participate in the research.

To protect participants’ privacy, each participant was assigned a unique identifier based on their exper-
imental group and sequence. For instance, participants were labeled as “Brand_A_1” or “Brand_B_2”
to reflect their assigned ADAS system and the order of participation. This anonymization process en-
sured that no personally identifiable information was associated with the final dataset, and individual
participants could not be identified during analysis or dissemination of results.

By adhering to these ethical and data management practices, and through transparent communica-
tion with participants via the Informed Consent Form, the study ensured participant confidentiality and
compliance with all relevant ethical standards.



4
Data Processing and Analysis

Overview
This chapter focuses on the methodologies used for processing and analysing the data collected dur-
ing the experiment. It begins with an introduction to the raw data in Section 4.1, providing an overview
of the datasets gathered from the eye-tracking system, GPS logs, and questionnaire responses. Sec-
tion 4.2 describes the data processing procedures, organized into subsections for each level of situa-
tional awareness (SA), detailing the methods used to extract meaningful indicators from the raw data.
Section 4.3 presents the analytical approaches applied to the processed data, including descriptive
statistics, significance testing to compare indicators between the two ADAS systems, and linear mixed
models to explore the effects of internal factors on SA outcomes. This chapter serves as the foundation
for the discussions in Chapter 5.

21
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4.1. Introduction to Raw Data
This section focuses on the raw data obtained from three primary sources: eye-tracking data, GPS data,
and questionnaire responses, all of which were recorded and stored in formats suitable for subsequent
processing and analysis.

The eye-tracking data, collected using the Tobii Pro Glasses 3, included MP4 video recordings and
corresponding .gz files containing detailed gaze-related information. The GPS data, recorded using
the GoPro Hero 7 camera, were processed using the GoPro official Telemetry Extractor tool to ex-
tract time-stamped vehicle coordinates and speed data synchronized with the observation areas. The
questionnaire responses were stored in electronic format via Microsoft Forms, capturing participants’
answers and submission timestamps.

The eye-tracking data and GPS-based speed data were analyzed separately to evaluate SA at different
levels. Since these analyses were conducted independently, frame-by-frame synchronization was not
required. However, both data sources included timestamps, allowing us to select data points with the
same starting timestamp to ensure temporal alignment. This ensured that all analyses were based on
data collected simultaneously, providing consistency across driving sessions.

These datasets form the foundation for the subsequent processing and analysis steps, ensuring com-
prehensive coverage of all three levels of SA and enabling a robust evaluation of the research objec-
tives.

4.2. Data Processing
4.2.1. Processing Level 1 SA (Eye-Tracking Data)
Dynamic AOI Identification in Video Frames
The raw data collected using the Tobii Pro Glasses 3 were imported into the Tobii Pro Lab software for
processing. Using this software, gaze data were overlaid onto video recordings, generating annotated
videos where red circles represented fixation points, and red lines indicated the movement trajectories
of fixations (see Figure 4.1). While the fixation trajectories provide additional information, our study
focused exclusively on fixation-related indicators.

Figure 4.1: Annotated video frame showing fixation points (red circle) and gaze trajectories (red lines).

At this stage, the system accurately recorded fixation coordinates and displayed them in the video
with no additional errors beyond those inherent to the equipment itself. However, to proceed with the
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analysis of fixation-related indicators, it became necessary to identify the AOIs relevant to the study.

A critical challenge arises because the Tobii Pro Glasses 3 are worn on the participant’s head, and
natural head movements cause the AOI positions on the dashboard display to shift dynamically. Unlike
a fixed-coordinate video recording, the glasses record from a perspective that moves along with the
participant’s head, resulting in continuous changes in the apparent position of AOIs on the dashboard
display, as illustrated in Figures 4.2a and 4.2b. These figures demonstrate how the same AOI appears
in different locations within the recorded video due to head movements.

(a) First View of the Dashboard Display (b) Second View of the Dashboard Display

Figure 4.2: Examples of AOI Position Shifts on the Dashboard Display due to Head Movements

Initially, the AOI in our study was specifically defined as the speed limit sign displayed on the vehicle’s
dashboard. However, during the study, we decided to expand the AOI to include the entire dashboard
display for the following reasons:

• The dashboard display integrates multiple critical elements, such as speed indicators, ADAS
alerts, and navigation information, which collectively contribute to driver SA.

• The AOI corresponding to the speed limit sign occupies a very small area on the dashboard
display, making precise fixationmeasurements challenging and increasing the risk of inaccuracies.
By expanding the AOI to encompass the entire dashboard display, we ensured more reliable data
extraction while capturing broader interactions with the display.

One possible method to address the dynamic AOI positions would involve recording the initial position of
the glasses and tracking their relative movements throughout the experiment. However, implementing
this would require highly precise instrumentation capable of dynamically capturing relative positional
changes in real-time, which was not feasible for this study. Alternatively, interpolation techniques could
be used to approximate AOI positions based on the initial coordinates and estimated movements over
time. However, this approach is imprecise due to the complex, non-linear nature of head movements,
variations in viewing angles, and differences in the dashboard’s visual structure across frames.

YOLOv8 Image Recognition Model
To overcome these limitations, we implemented a machine learning-based image recognition method
for identifying AOIs within the video frames. This approach provides several advantages:

• It enables precise identification of AOI regions, such as the dashboard display, despite variations
caused by head movements.

• By extracting the video into individual frames, it allows for accurate temporal mapping of AOIs,
with a time resolution of 1/30 seconds due to the video’s 30 frames-per-second (fps) recording
rate.

• The machine learning model generates confidence scores, which help quantify uncertainties and
provide a measure of reliability in AOI detection.

The machine learning model employed for image recognition in this study was Ultralytics YOLOv8,
a state-of-the-art object detection framework known for its accuracy and efficiency [55]. Specifically,
the YOLOv8n.pt pre-trained base model was used, fine-tuned for identifying AOI within the vehicle’s
dashboard display and monitoring the fixation points represented by red circles in the processed videos.
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This dual detection approach was essential for tracking when and how participants’ gaze landed on the
dashboard.

The YOLOv8n model comprises 23 layers arranged sequentially, including convolutional layers, bottle-
neck structures, and detection-specific components. The network begins with convolutional and batch
normalization layers for low-level feature extraction. These are followed by C2f blocks (Cross-Stage
Partial Networks) that integrate bottleneck layers for efficient feature reuse. Detection-specific layers,
including upsampling, concatenation, and spatial pyramid pooling, refine features and enhance detec-
tion precision. The final detection layer outputs bounding boxes, object classifications, and confidence
scores.

YOLOv8 incorporates the following key features [55]:

1. Advanced backbone and neck architectures, resulting in improved feature extraction and object
detection performance.

2. An anchor-free split Ultralytics head, which contributes to better accuracy and a more efficient
detection process compared to anchor-based approaches.

3. Optimized accuracy-speed tradeoff, maintaining a balance between accuracy and speed, suitable
for real-time object detection tasks in diverse applications.

4. A variety of pre-trained models, catering to different tasks and performance requirements, simpli-
fying the process of finding the right model for specific use cases.

In this study, YOLOv8n was employed to detect two distinct classes in the video data:

• The dashboard display, which served as the AOI.
• The fixation point (red circle, see Figure 4.1), which allowed precise temporal mapping of when
the gaze intersected with the dashboard display.

Labelling and Training Results
Before training the YOLOv8 model, the labelling process for gaze points and dashboard displays was
conducted using the LabelImg tool [56]. This tool allowed for the precise annotation of bounding boxes
in video frames. Figure 4.3 illustrates an example of the labelling process, highlighting both the gaze
points and the dashboard display.

Figure 4.3: Example of the labelling
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The dataset for training the YOLOv8 model was created by extracting video frames from the four obser-
vation areas of all participants. A total of 100 frames were randomly sampled from this dataset to serve
as the training set, and 50 additional frames were sampled as the testing set. These frames included
instances of both gaze points and dashboard displays, ensuring balanced coverage of the two target
classes.

Separate training was performed for the two ADAS brands (Brand A and Brand B) using the YOLOv8n
model. Figures 4.4, 4.5, and 4.6 present the results for three key metrics: precision, recall, and F1-
score. Each figure consists of two sub-figures, (a) and (b), corresponding to the results for ADAS Brand
A and Brand B, respectively.

(a) Precision-Confidence Curve for ADAS Brand A. (b) Precision-Confidence Curve for ADAS Brand B.

Figure 4.4: Precision-Confidence Curves

(a) Recall-Confidence Curve for ADAS Brand A. (b) Recall-Confidence Curve for ADAS Brand B.

Figure 4.5: Recall-Confidence Curves
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(a) F1-Confidence Curve for ADAS Brand A. (b) F1-Confidence Curve for ADAS Brand B.

Figure 4.6: F1-Confidence Curves

The final training results, summarized in Table 4.1, highlight strong performance across all evaluated
metrics.

Table 4.1: YOLOv8 Model Training Results for ADAS Brands A and B

Metric Description Brand A Brand B

Precision (P) The proportion of true positives among
all positive predictions 0.981 0.979

Recall (R) The proportion of true positives among
all actual positives 0.974 0.975

F1-Score The harmonic mean of precision and re-
call 0.977 0.972

mAP@50 Mean Average Precision at a 50% IoU
threshold 0.987 0.979

mAP@50-95 Mean Average Precision across IoU
thresholds (50%-95%) 0.727 0.693

Validation of YOLOv8
The performance of the YOLOv8 model was further evaluated on the independent test set to validate
its robustness. Figures 4.7 and 4.8 illustrate the testing results for ADAS Brand A and Brand B, respec-
tively. Each figure includes two sub-figures: (a) the manually annotated bounding boxes, and (b) the
model’s detected results for comparison.
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(a) Manual Annotations (b) Model-Detected Results

Figure 4.7: Testing Results for ADAS Brand A: (a) manually annotated bounding boxes and (b) YOLOv8-detected results

Table 4.2 summarizes the key metrics obtained from the test set for both ADAS brands. These re-
sults further demonstrate the model’s reliability in detecting gaze points and dashboard displays under
diverse conditions.

Table 4.2: YOLOv8 Model Testing Results for ADAS Brands A and B

Metric Brand A Brand B
Precision (P) 0.955 0.949
Recall (R) 1.000 1.000
F1-Score 0.978 0.975
mAP@50 0.998 0.995
mAP@50-95 0.680 0.651

While both models achieved high accuracy, the performance of the machine learning model on ADAS
B was slightly lower than that of ADAS A. This difference may be attributed to varying levels of image
training and adaptation across the two systems. However, this does not impact the validity of the
analysis, as both models reached a high level of precision and recall, ensuring their reliability for eye-
tracking data interpretation in this study.

Calculation of Indicators Based on Detected Results
The indicators described above were derived using the YOLOv8 model as discussed in the previous
sections. For each participant, video frames from the four observation areas were processed by the
model to detect AOIs (dashboard display) and gaze points. The model’s output provides bounding box
coordinates for these regions. By analysing whether the gaze point’s bounding box intersects or is fully
contained within the AOI’s bounding box, we identified instances where the gaze point fell within or
overlapped with the AOI.

To determine the timing information, the model’s detection results included frame numbers. Using the
video frame rate of 30 frames per second (fps), we converted frame indices to time values in seconds.
This allowed us to compute various fixation-related indicators.

The process for deriving these indicators is as follows:
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(a) Manual Annotations (b) Model-Detected Results

Figure 4.8: Testing Results for ADAS Brand B: (a) manually annotated bounding boxes and (b) YOLOv8-detected results

1. Detection: Run the YOLOv8 model on each frame to detect gaze points and AOIs.
2. Overlap Check: For each frame, check whether the gaze point overlaps with the AOI.
3. Time Conversion: Use the frame index and frame rate to calculate precise timing.

An example of the code used to achieve this is included in the Appendix (A).

Below is a detailed breakdown of the derived indicators:

Table 4.3: Indicators Derived from Eye-Tracking Data Processing

Indicator Calculation Methodology Unit

Time to First Fixation_A (per Turn) Time taken for the participant to first fixate on the AOI in
Brand A after entering an observation area Seconds (s)

Time to First Fixation_B (per Turn) Time taken for the participant to first fixate on the AOI in
Brand B after entering an observation area Seconds (s)

Fixation Count_A (per Turn and Total) Total count of fixation behaviours on the AOI in Brand A
(per turn and aggregated) Count

Fixation Count_B (per Turn and Total) Total count of fixation behaviours on the AOI in Brand B
(per turn and aggregated) Count

Fixation Duration_A (per Turn and Total) Total time during which gaze points overlapped with the
AOI in Brand A Seconds (s)

Fixation Duration_B (per Turn and Total) Total time during which gaze points overlapped with the
AOI in Brand B Seconds (s)

These indicators provide a comprehensive view of participants’ gaze behaviour and interaction with the
AOI. This represents the final result of Level 1 SA data processing, which will be analysed alongside
the indicators derived from the other two levels in Section 4.3.
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4.2.2. Processing Level 2 SA (Questionnaire Data)
The data for Level 2 SA (Comprehension) were obtained from participants’ questionnaire responses.
Each response was scored according to a predefined scoring system. The detailed scoring methodol-
ogy for each question, along with the full set of questions, can be found in Appendix (B) and Appendix
(C).

For each participant, individual scores were calculated separately for ADAS Brand A and ADAS Brand
B. The final score for ADAS Brand A was computed as the sum of scores from Questions 1 through
5, while the final score for ADAS Brand B was based on the sum of scores from Questions 1 and 6
through 9.

Since each question was equally weighted, the total score directly reflects participants’ performance
across all relevant questionnaire items for each brand. This represents the final result of Level 2 SA
data processing, which will be analysed alongside the indicators derived from the other two levels in
Section 4.3.

4.2.3. Processing Level 3 SA (GPS Data)
In this section, we process GPS data obtained during the driving tasks. The raw GPS data included
time, latitude, longitude, and calculated instantaneous speed. However, speed limit information was
manually added to the dataset based on predefined road segments. The structure of the raw data,
along with sample entries, is shown in Table 4.4.

Table 4.4: Sample Entries of Raw GPS Data with Speed Limit Information

Date GPS Coordinates GPS Coordinates GPS (2D Speed) Speed Limit
(Lat.) [deg] (Long.) [deg] [m/s] [km/h]

11:38:56.105Z 49.0288035 6.4585172 7.177 60
11:38:56.160Z 49.0288025 6.4585223 7.177 60
11:38:56.270Z 49.0287878 6.4585331 7.166 60
11:38:56.325Z 49.0287945 6.4585324 7.154 60
11:38:56.380Z 49.0287934 6.4585376 7.154 60
11:38:56.490Z 49.0288189 6.4585369 8.889 60
11:38:56.655Z 49.0288552 6.4585492 25.619 60
11:38:56.710Z 49.0288679 6.4585479 25.619 60

To calculate meaningful indicators, such as the average speed difference relative to the speed limit
and the percentage of time spent within the speed limit, we first processed the raw data using a rolling
window technique. This approach ensures smoother transitions in instantaneous speed data by taking
an average over a set window of time. Furthermore, a threshold was applied to exclude outliers, which
typically arise from GPS errors or rapid, unrealistic speed variations. In this study, a threshold of 20
km/h was used to filter out data points with excessive speed differences.

To visualize the effect of the rolling window and the removal of outliers, Figure 4.9 and Figure 4.10
compare the GPS data before and after rolling. The colour coding in the map legend indicates the
magnitude of the speed difference:

• Green: Speed is below or matches the limit.
• Orange: Speed is above the limit by up to 10 km/h.
• Red: Speed exceeds the limit by more than 10 km/h.
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Figure 4.9: GPS Data Before Rolling Window Processing

Figure 4.10: GPS Data After Rolling Window Processing

In Figure 4.9, red segments indicating significant deviations above the speed limit are relatively more
frequent compared to Figure 4.10, particularly near speed limit transition areas. However, red segments
remain less frequent overall when compared to the green and yellow segments. In Figure 4.10, these
red segments are further reduced, demonstrating the effectiveness of the rolling window technique in
minimizing anomalies and providing smoother, more reliable speed data.

After processing the data, we calculated two key metrics:

• Average Speed Difference: The difference between the mean calculated speed and the speed
limit for each road segment.
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• Speed Compliance Percentage: The percentage of time the vehicle speed remained within the
speed limit during each observation area.

This processed dataset forms the basis for deriving Level 3 SA indicators. The final implementation
code for this data processing is included in the appendix. This ensures reproducibility of the results
and provides a reference for further analyses.

4.3. Data Analysis
4.3.1. Descriptive Statistics
The descriptive statistics analysis provides an overview of the data by summarizing key variables across
the three SA levels.

First, basic demographic and moderating variables such as age, gender, driving experience, and fa-
miliarity with ADAS (as outlined in Table 3.1) are summarized using pie charts and other graphical
methods to represent the composition of the participant group.

Next, for each SA level, descriptive statistics (e.g., mean, standard deviation, and range) are calculated
for all dependent indicators listed in Table 3.1. These summary statistics will provide a foundation for
identifying patterns and variations in the data, setting the stage for further statistical analyses.

4.3.2. Significance Testing for Indicators
This section represents a critical part of the analysis, as the primary objective of this study is to explore
the differences in drivers’ SA under varying ADAS systems. Significance testing is therefore essential
to identify whether these differences across the three SA levels (Level 1 SA, Level 2 SA, and Level 3
SA) are statistically meaningful, providing insights into how different systems influence SA.

To test the significance of the dependent indicators identified in Sections 4.2.1, 4.2.2, and 4.2.3 for Level
1 SA (Eye-Tracking Data), Level 2 SA (Questionnaire Data), and Level 3 SA (GPS Data), respectively,
the following methods will be applied:

Level 1 SA (Eye-Tracking Data): Paired t-tests will be conducted on indicators derived from Level 1
SA, such as gaze fixation metrics and time to first fixation. These tests are appropriate for comparing
data with interval or ratio scales across the two ADAS systems, given the within-subject experimental
design.

Level 2 SA (Questionnaire Data): For Level 2 SA, which consists of subjective questionnaire re-
sponses measured on ordinal scales, non-parametric tests will be applied. Specifically, the Wilcoxon
signed-rank test will be used to compare participants’ ratings under the two ADAS systems [57]. This
approach is robust for ordinal data and accounts for any non-normality in the distribution. Moreover,
some studies suggest that the Wilcoxon signed-rank test is particularly suitable for small sample sizes,
further justifying its use in this context [58].

Level 3 SA (GPS Data): Indicators from Level 3 SA, such as speed compliance percentage and
average speed deviation, will be analysed using paired t-tests. These metrics, measured on interval or
ratio scales, are suitable for t-tests given the within-subject comparisons of the two ADAS systems.

By employing these significance testing methods for each SA level, this analysis rigorously evaluates
whether the observed differences in SA indicators are statistically significant.

4.3.3. Correlation Analysis Between SA Levels
A correlation coefficient matrix will be employed to analyze the relationships between the indicators
of SA1 (eye-tracking metrics), SA2 (questionnaire scores), and SA3 (driving behaviour metrics). This
matrix provides a comprehensive overview of pairwise correlations across all indicators identified in
Section 4.2, highlighting potential interconnections and shared patterns between SA levels. The anal-
ysis aims to reveal how different aspects of SA interact under varying ADAS systems.
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4.3.4. Linear Mixed Models (LMMs) Analysis
Methodological Considerations in Model Selection
Several statistical methods were considered before selecting the final approach. GEE (Generalized Es-
timating Equations) was initially explored due to its suitability for repeated measures data; however, it
does not account for individual differences. Given that fixation count and other key metrics exhibit signif-
icant variability between individuals, explicitly modeling these differences became essential. Bayesian
methods, while advantageous for small sample sizes, posed challenges due to their computational
complexity, making them less practical for our dataset. The Permutation Test was also considered be-
cause it is well-suited for small samples, but its inability to capture the effects of multiple variables made
it unsuitable for our study, which aims to examine factors such as age, gender, and driving experience.

Ultimately, we selected LMM as the most appropriate approach. Despite this choice, certain limitations
remain. The small sample size, while unavoidable, is acknowledged as a study limitation. Addition-
ally, the Fixation Count variable in SA1 metrics is not inherently continuous; however, treating it as
approximately continuous (starting from zero) ensures methodological consistency.

Given these considerations, LMM provides the necessary flexibility to account for both individual vari-
ability and contextual influences, making it the most suitable method for our study.

Modelling Systematic Differences Using LMM
LMMs were applied independently to analyse systematic differences in SA indicators for each SA level
across ADAS systems. This modelling approach accounts for individual variability and contextual fac-
tors while isolating the fixed effect of the ADAS system.

For SA1 (Eye-Tracking Data) and SA3 (GPS Data), the model structure is defined as follows:

Indicator ∼ System+ Turn+ (1|Participant)

Where:

• System: a fixed effect representing the impact of the ADAS system (System A or System B) on
the specific SA indicator.

• Turn: a fixed effect accounting for variability across different instances of participant interaction
with ADAS systems, capturing the contextual influence on SA indicators.

• Participant: a random effect accounting for variability across individual participants, summarizing
individual differences and reducing model complexity.

Since the Turn variable is incorporated as a fixed effect, only the per-turn data for SA1 indicators were
utilized in the modeling process. The total indicators for SA1, which represent aggregated values
across all four turns, were excluded from separate LMM modeling, as the influence of turns is explicitly
modeled as a fixed effect. This approach allows for a more direct examination of how ADAS systems
impact participants’ SA indicators across different turns while ensuring that contextual variability is
explicitly accounted for.

For SA2 (Questionnaire Data), we applied ordered logistic regression due to the ordinal nature of the
self-reported scores, which range from 1 to 5. Unlike SA1 and SA3, where mixed-effects models
accounted for random variability, ordered logistic regression does not currently support random effects
unless significant computational complexity is introduced.

Thus, in the analysis of SA2, we focused on the fixed effect of the ADAS Systems A and B. The model
is specified as:

ScoreSA2 ∼ System

The structures facilitate a tailored evaluation of systematic differences in SA indicators for each SA level,
accounting for their unique data characteristics. By modelling each level independently, the analysis
ensures that the differences between System A and System B are evaluated with appropriate controls
for variability at the participant, observation area, and sequence levels.
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Exploring Internal Factors Using LMM
To explore the influence of internal factors such as age, gender, driving experience, and ADAS familiarity
on SA indicators, separate LMMs were applied for each SA level. These models were structured as
follows:

Indicator ∼ Turn+ Age+Gender+ Driving Experience+ ADAS Familiarity+ (System|Participant)

Where:

• Turn: A fixed effect accounting for variability across different turns, capturing contextual influences
on SA indicators.

• Age, Gender, Driving Experience, ADAS Familiarity: Fixed effects hypothesized to influence the
specific SA indicator.

• System | Participant: A random slope effect, allowing the effect of the ADAS system to vary across
participants, thereby accounting for individual differences in system impact.

For variables not explicitly provided with values in previous sections, their encoding for use in the LMM
model is defined in Table 4.5 below. This ensures consistency and clarity in the analysis of demographic
and experiential factors within the models.

Table 4.5: Encoding of Variables for LMM Analysis

Variable Description Encoding
Value and Meaning

Gender Male or Female 0 = Male
1 = Female

Age Group Participant’s age range

1 = Under 18
2 = 18-24
3 = 25-34
4 = 35-44
5 = 45-54
6 = 55-64
7 = 65 or older

Driving Experience Years of driving experience

1 = Less than 1 year
2 = 1-3 years
3 = 4-7 years
4 = 8-15 years
5 = More than 15 years

ADAS Familiarity Familiarity with ADAS systems

1 = Not familiar at all
2 = Slightly familiar
3 = Neutral
4 = Familiar
5 = Very familiar

Order ADAS trial order (System A or System B first) 0 = System A first
1 = System B first

The variable Order represents whether a participant first drove ADAS System A or System B. Although
data for this variable were collected, it was not included in the final model after screening. This decision
wasmade because the learning effect that Order represents is inherently captured within the Participant
variable, which accounts for individual differences in adaptation and performance across trials.

This independent modelling approach quantifies the influence of demographic and experiential factors
on SA performance across different levels. By examining how internal factors, such as age, gender,
driving experience, and ADAS familiarity, interact with SA indicators, the analysis provides a compre-
hensive understanding of their impact on various outcomes. The results offer valuable insights into
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the nuanced interplay between driver characteristics and ADAS system performance, highlighting the
systematic ways in which internal factors shape SA outcomes.

4.3.5. Integration Across Data Sources
In this final stage of analysis, we integrate data from SA1 (eye-tracking metrics), SA2 (questionnaire
responses), and SA3 (driving behaviour metrics) to investigate their interrelationships and infer the im-
plications of these findings for ADAS speed limit signal design. This involves analysing the cross-level
relationships to identify how indicators from different SA levels align or diverge in capturing participants’
SA. Beyond identifying differences, the integration aims to provide plausible explanations for these pat-
terns.

This integrative analysis serves as the ultimate objective of the study. By synthesizing findings across
levels of SA, the research seeks to uncover potential strengths and weaknesses in ADAS system
designs, offering insights to inform future improvements and enhance overall driver-system interaction.



5
Results

overview
The purpose of this chapter is to present the results derived from the data processing and analysis
methods outlined in Chapter 4. It systematically follows the framework established in the Data Anal-
ysis section, reporting key findings for each situational awareness (SA) level. Section 5.1 provides
descriptive statistics for the indicators, summarizing their means, standard deviations, and distribu-
tions. Section 5.2 details the results of significance testing, comparing SA indicators across ADAS
systems using the appropriate statistical tests for each level. Section 5.2.4 explores the relationships
between SA levels through correlation analysis, identifying key patterns and connections. Finally, Sec-
tion 5.2.4 presents the outcomes of the Linear Mixed Models (LMM) analysis, examining systematic
differences in SA indicators and the influence of demographic and experiential factors. The results will
be synthesized to address the research questions, providing a cohesive and detailed understanding of
the findings.

35
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5.1. Descriptive Statistics
This section summarizes the basic statistical characteristics of the key indicators across the three SA
levels, including means, standard deviations, and distributions. Additionally, it provides a graphical
illustration of the moderating variables used in the study to describe the participant demographics and
experimental design.

5.1.1. Graphical Representation of Moderating and Experimental Variables
To provide an overview of the participant demographics, experimental setup, and other influencing fac-
tors, the following figures illustrate the distributions of key variables. These include age, gender, driving
experience, familiarity with ADAS systems, and participants’ preferences for ADAS systems. Although
trial sequence (the order of using System A or System B) is not strictly a result, it is included here as a
moderating variable, similar to the others, to facilitate later explanations and analyses. These graphical
representations provide a comprehensive understanding of the sample composition and experimental
context.

Figure 5.1: Age Group Distribution Figure 5.2: Gender Distribution

Figure 5.3: Driving Experience Distribution Figure 5.4: ADAS Familiarity Level Distribution

Figure 5.5: Trial Sequence Distribution Figure 5.6: ADAS Preference Distribution
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The graphical representations provide an overview of participant demographics, familiarity with ADAS
systems, and experimental setup. Figure 5.1 illustrates the age group distribution, with the majority of
participants falling into the 25–34 age range (50%), followed by the 35–44 group (20%) and the 55–64
group (20%). Figure 5.2 highlights the gender distribution, showing that the sample is predominantly
male (70%), with females comprising 30% of the participants. Figure 5.3 indicates that most participants
have significant driving experience, with 40% having driven for more than 15 years and another 40%
falling into the 8–15 years category. Figure 5.4 reveals that ADAS familiarity is evenly distributed, with
30% of participants reporting familiarity, 30% neutral, and 30% slightly familiar, while only 10% reported
no familiarity at all.

Figure 5.5 shows the trial sequence distribution, evenly split between participants who experienced
ADAS Brand A first (50%) and those who experienced ADAS Brand B first (50%). Finally, Figure 5.6
captures participants’ ADAS preferences, where 40% preferred Brand A, 20% preferred Brand B, and
the remaining 40% expressed no specific preference. These distributions highlight the diversity of the
participant group and provide useful context for interpreting the experimental results.

5.1.2. Descriptive Summary of SA Indicators
The descriptive statistics of SA indicators (Table 5.1) highlight key differences and similarities across
the three SA levels. These observations provide a foundation for understanding the data and identifying
areas for deeper analysis.

Table 5.1: Descriptive Statistics for SA Indicators

SA Level Indicator Count Mean Std Min Max

SA1

Fixation Count per Turn_A 40 1.00 1.13 0.00 4.00
Fixation Count per Turn_B 40 1.48 1.60 0.00 5.00
Time to First Fixation_A 40 20.00 10.06 0.10 30.00
Time to First Fixation_B 40 20.29 9.69 0.13 30.00
Fixation Duration per Turn_A 40 0.15 0.22 0.00 0.77
Fixation Duration per Turn_B 40 0.18 0.21 0.00 0.63
Fixation Count in Total_A 10 4.00 3.23 0.00 9.00
Fixation Count in Total_B 10 5.90 5.22 0.00 15.00
Fixation Duration in Total_A 10 0.59 0.54 0.00 1.50
Fixation Duration in Total_B 10 0.70 0.63 0.00 1.54

SA2 SA2_A 10 2.82 0.48 2.00 3.60
SA2_B 10 2.46 0.57 1.40 3.40

SA3

Speed Difference_A 40 12.77 4.53 3.38 19.01
Speed Difference_B 40 12.71 4.73 4.57 22.41
Speed Compliance Percentage_A 40 78.26 12.27 52.70 99.33
Speed Compliance Percentage_B 40 76.33 11.46 56.40 98.65

For SA1 (Eye-tracking Data), notable differences were observed between System A and System B.
Fixation Count per Turn had a higher mean for System B (mean = 1.48) compared to System A (mean
= 1.00), along with greater variability (std = 1.60 vs. 1.13). Similarly, Fixation Duration per Turn showed
a slightly higher mean and variability for System B (mean = 0.18, std = 0.21) than System A (mean =
0.15, std = 0.22). In the aggregated indicators, Fixation Count in Total_B was substantially higher
(mean = 5.90, std = 5.22) compared to Fixation Count in Total_A (mean = 4.00, std = 3.23), reflecting
potential differences in attention allocation. These findings suggest distinct gaze behaviour patterns
across the two systems.

For SA2 (Questionnaire Data), the mean self-reported comprehension scores for System A (mean =
2.82) were marginally higher than those for System B (mean = 2.46). The variability was slightly greater
for SystemB (std = 0.57) than for SystemA (std = 0.48), suggestingmore diverse subjective evaluations
of System B’s interface.

For SA3 (GPS Data), Speed Compliance Percentage showed a slight advantage for System A (mean =
78.26) compared to System B (mean = 76.33). However, variability was similar across systems (std =
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12.27 for System A, std = 11.46 for System B). Speed Differencemetrics were nearly identical between
the two systems, with only a marginally higher variability for System B (std = 4.73) compared to System
A (std = 4.53).

Figure 5.7: Comparison of System A and B Across Indicators

In summary, certain SA indicators appear to show more pronounced differences between the two sys-
tems. These observations are preliminary and will be further examined through significance testing to
validate and deepen the understanding of these differences.

5.2. Significance Testing for Indicators
The significance testing for the indicators was conducted to assess differences between ADAS System
A and System B. For SA1 and SA3, Shapiro-Wilk tests were used to evaluate normality [59], and Lev-
ene’s tests were conducted to check homogeneity of variances [60]. Based on these results, the statis-
tical methods were determined accordingly. Specifically, the Wilcoxon signed-rank test was employed
for indicators that did not meet the assumptions of normality or homogeneity. This non-parametric
test is advantageous over the paired t-test for data with non-normal distributions [58]. Conversely, the
paired t-test was applied to indicators that satisfied the assumptions, enabling robust evaluation of
differences between the two systems.

For SA1, the per-turn indicators (Fixation Count per Turn, Time to First Fixation, Fixation Duration
per Turn) did not meet the assumptions for t-tests in terms of normality or homogeneity. Consequently,
Wilcoxon signed-rank tests were applied. Although the total indicators (Fixation Count in Total, Fixation
Duration in Total) aggregated data across four turns and met the assumptions for t-tests, we chose
to maintain consistency by also applying Wilcoxon signed-rank tests to these aggregated measures,
considering the characteristics of the per-turn indicators.

For SA2, as the indicators represent ordinal self-assessment scores, Wilcoxon signed-rank tests were
applied without conducting normality or homogeneity checks.

For SA3, all indicators (Speed Difference, Speed Compliance Percentage) passed the normality and
homogeneity tests, allowing paired t-tests to be used to evaluate the differences between System A
and System B.

In this study, we adopted a standard threshold for p-value interpretation: results with p < 0.05 were
considered statistically significant, while those with 0.05 ≤ p < 0.1 were regarded as marginally signifi-
cant.
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The statistical tests applied to each indicator and their respective results are summarised in Table 5.2.

Table 5.2: Statistical Test Methods and Results for SA Indicators

SA Level Indicator Statistical Test W/t-Statistic p-value

SA1

Fixation Count per Turn A/B Wilcoxon signed-rank test 45.000 0.0409
Time to First Fixation A/B Wilcoxon signed-rank test 171.000 0.0900
Fixation Duration per Turn A/B Wilcoxon signed-rank test 114.000 0.1918
Fixation Count in Total A/B Wilcoxon signed-rank test 4.000 0.0881
Fixation Duration in Total A/B Wilcoxon signed-rank test 7.000 0.1235

SA2 SA2 A/B Wilcoxon signed-rank test 0.0000 0.0679

SA3 Speed Difference A/B Paired t-test 0.1498 0.8817
Speed Compliance Percentage A/B Paired t-test 0.7865 0.4363

5.2.1. Results of Wilcoxon Signed-Rank Tests for SA Level 1
The Wilcoxon signed-rank tests for SA1 (Eye-Tracking Data) revealed the following findings:

First, there was a statistically significant difference in Fixation Count per Turn (p-value = 0.0409, W-
statistic = 45.000). System B showed higher fixation times on average compared to System A. This
difference indicates that the two ADAS systems influence drivers’ fixation behaviour during turns differ-
ently, suggesting that System Bmay require more sustained visual attention or impose greater cognitive
workload.

Second, indicators with marginal significance included Time to First Fixation (p-value = 0.0900, W-
statistic = 171.000) and Fixation Count in Total (p-value = 0.0881, W-statistic = 4.000). These results
show potential trends but do not meet the threshold for strong statistical significance.

Finally, for the other indicators, including Fixation Duration per Turn (p-value = 0.1918, Statistic =
114.000) and Fixation Duration in Total (p-value = 0.1235, W-statistic = 7.000), no statistically signifi-
cant differences were observed. These findings suggest that, apart from per-turn fixation behaviour,
other aspects of gaze behaviour remain largely consistent between the two ADAS systems.

5.2.2. Results of Wilcoxon Signed-Rank Tests for SA Level 2
The results of the Wilcoxon signed-rank test for the SA2 indicator reveal a p-value of 0.0679, indicating
a marginally significant effect (p < 0.1 but slightly greater than 0.05). Similar to some indicators in SA1,
this demonstrates a marginal correlation, suggesting potential differences in participants’ self-reported
SA between the two ADAS systems.

5.2.3. Results of t-Tests for SA Level 3
The paired t-tests for SA3 indicators revealed no significant differences between ADAS System A and
System B. For Speed Difference, the p-value was 0.8817 (t-statistic = 0.1498), and for Speed Com-
pliance Percentage, the p-value was 0.4363 (t-statistic = 0.7865). These results indicate that both
systems had similar effects on drivers’ speed-related behaviours, suggesting comparable performance
in terms of speed management.

As with the results in Section 5.2.1 and 5.2.2, these findings provide a valuable basis for the final
integration and comprehensive analysis of SA across levels.
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5.2.4. Correlation Analysis Between SA Levels
The correlation matrix presented in Figure 5.8 provides an overview of the relationships between the
indicators across the three SA levels. The results highlight several important patterns:

Figure 5.8: Correlation Analysis Between Indicators

For SA1 (Eye-Tracking Data), the relationship between its indicators and those in SA2 and SA3 appears
minimal. The highest correlation observed is between Fixation Count per Turn and Speed Compliance
Percentage, with a value of 0.22. This weak correlation suggests that eye-tracking metrics are largely
independent of speed compliance behaviours. Similarly, correlations between other SA1 indicators,
such as Total Duration in Total, and Speed Difference or SA2 indicators, are consistently below 0.1,
indicating a lack of meaningful relationships. Overall, SA1 indicators demonstrate very limited cross-
level correlations with SA2 and SA3 metrics.

For SA2 (Self-Reported Data), its association with SA3 (GPS Data) indicators is similarly weak. The
correlation between SA2 and Speed Difference is -0.16, while the correlation with Speed Compliance
Percentage is 0.12. These values suggest no substantial alignment between participants’ self-reported
SA and their speed-related behaviours. This indicates that subjective perceptions of system effective-
ness do not strongly align with objective speed regulation metrics.

In summary, the indicators from SA1, SA2, and SA3 levels exhibit minimal cross-level correlations,
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reinforcing the notion that these dimensions of SA are largely independent and capture distinct aspects
of driver interaction with ADAS systems. This underscores the importance of analysing each level
separately to fully understand the drivers’ SA.

5.3. Linear Mixed Models and Ordered Logistic Regression Results
This section presents and analyses the results of the LMM model. Note that only the most important
data are presented here, and more results can be found in Appendix (D).

5.3.1. LMM Results for SA Level 1
Based on the significance analysis in Section 4.2, we determined that the SA1 data did not follow a
normal distribution. To address this, we applied the Box-Cox transformation, which stabilizes variance
and ensures residuals approximate a normal distribution. This allowed us to evaluate systematic dif-
ferences between ADAS systems while accounting for participant-level random effects. Overall, the
analysis did not reveal statistically significant differences between System A and System B across the
SA1 indicators.

Table 5.3: Mixed Linear Model Results for SA Level 1

Indicator Predictor Estimate (β) Std. Err. z-value p-value 95% CI

Fixation Count

Intercept -1.177 0.675 -1.744 0.081 [-2.500, 0.146]
System B 0.305 0.346 0.881 0.378 [-0.373, 0.983]
Turn 2 -0.092 0.489 -0.189 0.850 [-1.051, 0.867]
Turn 3 -0.361 0.489 -0.737 0.461 [-1.320, 0.599]
Turn 4 -0.470 0.489 -0.961 0.336 [-1.430, 0.489]

Time to First Fixation

Intercept 16.398 2.116 7.750 <0.001 [12.251, 20.545]
System B 0.225 1.305 0.172 0.863 [-2.333, 2.782]
Turn 2 -1.917 1.845 -1.039 0.299 [-5.534, 1.700]
Turn 3 -0.706 1.845 -0.383 0.702 [-3.923, 2.511]
Turn 4 -2.645 1.845 -1.433 0.152 [-6.262, 0.973]

Fixation Duration

Intercept -3.260 0.650 -5.014 <0.001 [-4.535, -1.986]
System B 0.306 0.360 0.849 0.396 [-0.400, 1.012]
Turn 2 -0.545 0.509 -1.071 0.284 [-1.544, 0.453]
Turn 3 -0.327 0.509 -0.642 0.521 [-1.325, 0.671]
Turn 4 -0.800 0.509 -1.570 0.116 [-1.798, 0.199]

For Fixation Count per turn, System B showed a slightly higher Fixation Count than System A (co-
efficient = 0.305). However, this effect was not statistically significant (p = 0.378), suggesting that
differences in visual attention investment between the two systems are not strong enough to be con-
clusive.

For Time to First Fixation, participants using System B identified relevant areas slightly faster than those
using System A (coefficient = 0.225). However, this difference was also not statistically significant (p =
0.863), indicating that system design did not substantially alter the time taken to locate key areas.

For Fixation Duration per turn, System B was associated with a longer Fixation Duration than System
A (coefficient = 0.306), but this effect also failed to reach statistical significance (p = 0.396). This
suggests that any increase in visual attention demand imposed by System B was not sufficiently large
to be distinguished from normal variability.

The random effect of Participant showed variance estimates of 3.060 (Fixation Count), 23.484 (Time
to First Fixation), and 2.607 (Fixation Duration). This highlights the importance of modelling individual
differences in gaze behaviour.

Overall, although System B showed slightly higher cognitive demand than System A across all three
indicators, the differences did not reach statistical significance.
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5.3.2. Ordered Logistic Regression Results for Level 2 SA
The ordered logistic regression results for SA2 reveal differences in participants’ self-reported scores
for ADAS System A and B. Specifically, the coefficient for ADAS System B (-1.0223) indicates that
participants tend to assign lower scores to System B compared to System A. This finding suggests that
participants may perceive System B less favourably in terms of its usability or effectiveness, aligning
with previous observations from SA1.

Table 5.4: Ordered Model Results for SA Level 2

Indicator Predictor Estimate (β) Std. Err. z-value p-value 95% CI
Score System B -1.0223 0.843 -1.213 0.225 [-2.674, 0.629]

Thresholds

1.4/1.8 -3.5558 1.164 -3.855 0.002 [-5.837, -1.275]
1.8/2.0 -0.2538 0.987 -0.257 0.797 [-2.189, 1.681]
2.0/2.6 -0.1659 0.683 -0.244 0.888 [-1.505, 1.173]
2.6/2.8 0.7251 0.294 2.468 0.014 [0.149, 1.301]
2.8/3.2 -0.6925 0.676 -1.024 0.306 [-2.018, 0.633]
3.2/3.4 -1.1701 0.974 -1.201 0.230 [-3.080, 0.740]
3.4/3.6 -1.0221 0.977 -1.046 0.296 [-2.937, 0.893]

The thresholds in Table 5.4 represent the latent boundaries where participants transition between ad-
jacent score levels on a continuous underlying evaluation scale. These boundaries do not correspond
directly to integer scores (e.g., 1, 2, 3) but rather indicate the points at which participants’ ratings shift
more distinctly. The results reveal a clear differentiation pattern: the threshold between 1.4 and 1.8 (β =
-3.5558, p = 0.002) was significantly negative, suggesting heightened sensitivity to lower scores, likely
reflecting stronger perceptions of system shortcomings. Similarly, the threshold at 2.6/2.8 (β = 0.7251,
p = 0.014) was significant, though the positive coefficient indicates a tendency toward higher ratings.
In contrast, thresholds at the upper end of the scale (e.g., 3.4/3.6, p = 0.296) lacked significance, imply-
ing weaker differentiation between adjacent high scores. This pattern of sharper distinctions at lower
ratings and greater ambiguity at higher ratings suggests that participants were more consistent in iden-
tifying system deficiencies, while their positive evaluations were more subjective. These findings align
with the trend that System B received consistently lower ratings, reinforcing potential usability concerns.

While the observed differences in scores for ADAS System B compared to System A did not reach
statistical significance, the consistently lower scores for System B reflect potential underlying issues in
user experience or satisfaction.

5.3.3. LMM Results for SA Level 3
The results for SA3 metrics, Speed Difference and Speed Compliance Percentage, suggest minimal
observable differences between ADAS System A and B.

For Speed Difference, the coefficient for System B is -0.058, indicating a negligible reduction compared
to System A. The p-value (p = 0.923) confirms that this effect is not statistically significant. While Turn 3
and Turn 4 exhibit larger effects (p < 0.05), the lack of significant differences between systems suggests
that speed variation is more influenced by road context rather than the ADAS system itself.

For Speed Compliance Percentage, the coefficient for System B is -1.925, suggesting a slight decrease
in compliance under System B compared to System A. However, this difference is also not statistically
significant (p = 0.447). Similarly, none of the turn-based effects reach statistical significance, indicating
that variations in speed compliance are not systematically linked to the ADAS system.
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Table 5.5: Mixed Linear Model Results for SA Level 3

Indicator Predictor Estimate (β) Std. Err. z-value p-value 95% CI

Speed Difference

Intercept 14.574 0.961 15.167 <0.001 [12.691, 16.458]
System B -0.058 0.594 -0.097 0.923 [-1.233, 1.107]
Turn 2 -5.209 0.841 -6.196 <0.001 [-6.856, -3.561]
Turn 3 2.429 0.841 2.889 0.004 [0.781, 4.076]
Turn 4 -4.450 0.841 -5.293 <0.001 [-6.097, -2.802]

Speed Compliance Percentage

Intercept 77.907 3.137 24.838 <0.001 [71.759, 84.054]
System B -1.925 2.533 -0.760 0.447 [-6.890, 3.041]
Turn 2 0.584 3.583 0.163 0.871 [-6.438, 7.606]
Turn 3 1.598 3.583 0.446 0.656 [-5.424, 8.620]
Turn 4 -0.774 3.583 -0.216 0.829 [-7.796, 6.248]

In conclusion, the observed differences between the two systems in SA3 metrics are minimal. While
Speed Difference shows larger variability across turns, no significant effect of ADAS system type was
found. Similarly, Speed Compliance Percentage exhibited a slight but statistically insignificant decrease
under System B. These findings suggest that factors beyond the ADAS system itself, such as road
conditions and driver variability, may play a more dominant role in shaping speed regulation behaviours.

5.3.4. LMM and Ordered Logistic Regression Results for Internal Factors
To explore the potential influence of internal factors, including age, gender, driving experience, and
ADAS familiarity, on the SA indicators, we incorporated these factors as fixed effects in LMMs. Before
proceeding with the modelling, we calculated the Variance Inflation Factor (VIF) for these variables to
assess potential multicollinearity. VIF is commonly used to identify collinearity issues among predictor
variables in regression analysis. High VIF values indicate multicollinearity, which could distort model
estimates.

The results of the VIF analysis are presented in Table 5.6. While age and driving experience exhibit
high VIF values (37.79 and 43.11, respectively), which suggests multicollinearity, this is expected as
these variables are logically related. Nevertheless, we decided to retain both variables in the models to
allow for a more granular understanding of their individual contributions to the SA indicators. The other
two variables, gender and ADAS familiarity, show acceptable VIF values (1.68 and 5.28, respectively),
indicating limited multicollinearity concerns for these predictors.

Table 5.6: Variance Inflation Factor (VIF) Analysis for Internal Factors

Variable VIF
Age 37.79
Gender 1.68
Driving Experience 43.11
ADAS Familiarity 5.28

Following this analysis, we proceeded to fit separate LMMs for each SA level’s indicators. Each model
includes internal factors as fixed effects and combines other random effects. The results for each level’s
indicators are illustrated as follows.

Based on the results, we first analysed SA1 gaze-relatedmetrics and found significant effects for driving
experience and familiarity, as well as a near-significant effect for age.

For Time to First Fixation, age was nearly significant (p = 0.051), suggesting that younger participants
reacted slightly faster. Additionally, familiarity was strongly associated with faster reaction times (p
= 0.003), indicating that drivers more accustomed to the ADAS system processed visual information
more efficiently.

For Fixation Duration, both driving experience (p = 0.030) and familiarity (p = 0.004) had significant
effects. More experienced drivers spent less time fixating, likely due to better anticipation, while familiar
drivers processed visual information more efficiently. Gender did not have a significant effect on fixation
patterns.
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Overall, the results suggest that experience and familiarity enhance visual efficiency, and younger
drivers tend to react faster.

Table 5.7: Mixed Linear Model Results for Internal Factors (SA1)

Indicator Predictor Estimate (β) Std. Err. z-value p-value 95% CI

Fixation Count

Intercept 14.748 5.228 2.821 0.005 [4.502, 24.994]
Turn 2 -0.092 0.488 -0.189 0.850 [-1.048, 0.863]
Turn 3 -0.361 0.488 -0.740 0.460 [-1.316, 0.595]
Turn 4 -0.470 0.488 -0.965 0.335 [-1.426, 0.485]
Age 0.827 0.717 1.153 0.249 [-0.579, 2.232]
Gender -1.427 1.108 -1.288 0.198 [-3.598, 0.744]
Driving Experience -3.122 1.319 -2.366 0.018 [-5.707, -0.536]
Familiarity -1.927 0.639 -3.015 0.003 [-3.180, -0.674]

Time to First Fixation

Intercept -31.570 14.094 -2.240 0.025 [-59.194, -3.947]
Turn 2 -1.917 1.828 -1.040 0.294 [-5.500, 1.666]
Turn 3 -0.706 1.828 -0.386 0.699 [-4.289, 2.877]
Turn 4 -2.645 1.828 -1.447 0.148 [-6.228, 0.939]
Age -3.928 2.012 -1.953 0.051 [-7.871, 0.015]
Gender 4.958 3.345 1.482 0.138 [-1.598, 11.514]
Driving Experience 10.537 3.555 2.964 0.018 [3.569, 17.505]
Familiarity 6.236 2.033 3.067 0.003 [2.251, 10.221]

Fixation Duration

Intercept 10.585 5.000 2.117 0.034 [0.785, 20.385]
Turn 2 -0.545 0.507 -1.075 0.282 [-1.540, 0.449]
Turn 3 -0.327 0.507 -0.645 0.519 [-1.321, 0.667]
Turn 4 -0.800 0.507 -1.576 0.115 [-1.794, 0.195]
Age 0.891 0.715 1.246 0.213 [-0.510, 2.293]
Gender -1.052 1.101 -0.956 0.339 [-3.210, 1.106]
Driving Experience -2.807 1.290 -2.176 0.030 [-5.336, -0.279]
Familiarity -1.791 0.618 -2.898 0.004 [-3.002, -0.580]

For SA2 ordinal data, an ordered logistic regression was conducted. None of the fixed effects were
statistically significant, but familiarity (p = 0.073) showed a marginal effect, suggesting that participants
familiar with the ADAS system might rate SA2 slightly lower.

Table 5.8: Ordered Logistic Regression Results for Internal Factors (SA2)

Indicator Predictor Estimate (β) Std. Err. z-value p-value 95% CI

Score

Age -0.6469 0.703 -0.921 0.357 [-2.024, 0.730]
Gender -1.8498 1.257 -1.472 0.141 [-4.313, 0.613]
Driving Experience 1.5931 1.407 1.133 0.257 [-1.164, 4.350]
Familiarity -1.2108 0.676 -1.792 0.073 [-2.535, 0.113]

Thresholds

1.4/1.8 -3.7767 5.375 -0.703 0.482 [-14.311, 6.758]
1.8/2.0 -0.1285 0.968 -0.133 0.894 [-2.025, 1.768]
2.0/2.6 -0.0234 0.676 -0.035 0.972 [-1.348, 1.301]
2.6/2.8 1.0713 0.303 3.541 0.000 [0.478, 1.664]
2.8/3.2 -0.3320 0.689 -0.482 0.630 [-1.682, 1.018]
3.0/3.2 -1.0321 0.978 -1.056 0.291 [-2.948, 0.884]
3.4/3.6 -0.7951 0.968 -0.822 0.412 [-2.692, 1.102]

For SA 3 indicators Speed Difference and Speed Compliance Percentage, none of the fixed effects
were statistically significant (p > 0.05), suggesting that age, gender, experience, and familiarity had
limited influence.
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Table 5.9: Mixed Linear Model Results for Internal Factors (SA3)

Indicator Predictor Estimate (β) Std. Err. z-value p-value 95% CI

Speed Difference

Age 1.024 1.708 0.549 0.323 [-2.323, 4.371]
Gender 0.173 1.028 0.168 0.867 [-1.843, 1.188]
Driving Experience -0.497 2.125 -0.234 0.815 [-4.661, 3.667]
Familiarity 0.948 1.284 0.738 0.460 [-1.569, 3.465]

Speed Compliance Percentage

Age -2.743 3.556 -0.771 0.441 [-9.713, 4.227]
Gender -1.425 2.774 -0.514 0.608 [-6.862, 4.013]
Driving Experience 1.626 5.360 0.303 0.762 [-8.879, 12.131]
Familiarity -3.917 4.249 -0.922 0.357 [-12.246, 4.412]

The analysis of internal factors (age, gender, driving experience, and ADAS familiarity) revealed varying
influences across SA levels. Driving experience and familiarity significantly enhanced visual efficiency
in SA1, while age showed a marginal association with faster initial responses. For SA2 subjective rat-
ings, no predictors reached significance, though familiarity approached a marginal effect. In SA3, none
of the factors significantly impacted speed-related metrics. Despite collinearity between age and driving
experience, retaining both variables provided nuanced insights. Overall, user characteristics played a
stronger role in early-stage SA (e.g., visual processing) but diminished in later stages, underscoring
context-dependent impacts on situational awareness.



6
Discussion and Conclusion

Overview
This chapter provides a comprehensive discussion of the study’s results and their implications, while
also addressing key research questions and situating the findings within the broader literature. Sec-
tion 6.1 summarizes the main findings, highlighting the comparative effectiveness of Advanced Driver
Assistance Systems (ADAS) Systems A and B in influencing driver situational awareness (SA). Sec-
tion 6.2 addresses the research questions, demonstrating how specific ADAS signal designs impact
SA at different levels and identifying the role of internal factors such as driving experience. Section 6.3
connects the study’s findings to existing literature, emphasizing the methodological and content contri-
butions of analyzing speed limit signals across SA levels. Then Section 6.4 discusses the limitations
of the study and proposes future directions for enhancing the understanding and application of SA in
ADAS contexts. Finally, some practical implications are shown in Section 6.5.
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6.1. Key Findings
Based on the methodologies outlined in Chapter 4 and the analyses presented in Chapter 5, several
key findings can be summarized as follows:

1. Most situational awareness indicators across different levels do not show statistically significant
differences between ADAS System A and ADAS System B. The analyses of significance testing
and mixed linear models (LMMs) jointly reveal that the alert signals provided by these systems
during speed limit changes have comparable effects on drivers’ situational awareness, indicating
no substantial differences in their effectiveness. This conclusion highlights that both systems are
equally reliable in the functionality emphasized in this study.

2. Certain indicators exhibit significant or marginally significant differences. For instance, as dis-
cussed in Sections 4.2.1 and 4.2.2, the Fixation Count per Turn in level 1 of situational aware-
ness (SA1) and the Scores in level 2 of situational awareness (SA2) show variability between
systems. These findings suggest that drivers’ performance differs between ADAS systems at
the first and second levels of situational awareness. Specifically, the Fixation Count in SA1 in-
dicates that System B imposes a higher cognitive load. The marginally significant differences in
SA2 Scores further support this observation. As shown in Figure 5.6, more participants tend to
prefer ADAS System A, perceiving its assistance as clearer and more effective. These findings
suggest that ADAS System A and ADAS System B differ in how they shape drivers’ situational
awareness, even though these differences do not ultimately impact driving performance. How-
ever, in terms of cognitive load, ADAS System A likely provides clearer and more explicit cues,
helping drivers more quickly comprehend the current speed limit. Meanwhile, other indicators,
including those related to level 3 of situational awareness (SA3), show no statistically significant
differences between systems.

3. Observing all the indicators, ADAS System A consistently scores higher than ADAS System B
across nearly all measures. From a general statistical perspective, ADAS System A appears
to require lower cognitive load, receive higher understanding-level scores, and assist drivers in
achieving better speed compliance rates. These results collectively suggest that ADAS System
A’s signal design provides clearer and more effective guidance, enhancing its utility for drivers.

4. As analysed in Section 4.2.1, the indicators of SA1, SA2, and SA3 are not significantly corre-
lated. This is an important and somewhat unconventional finding, as conventional understanding
suggests that these levels represent different layers of situational awareness and should be in-
herently connected. However, within the scope of this study, where these levels are separately
examined, the independence across levels is both interpretable and acceptable. In the driving
task, drivers’ understanding of the environment (e.g., speed limit conditions) is not solely derived
from ADAS signals but also from environmental observations, road signs, and their own expe-
rience and knowledge. In this study, SA1 focuses on drivers’ visual attention to ADAS signals,
which is only one component of situational awareness. SA2 captures drivers’ understanding of
these alerts, which may also stem from the aforementioned sources. Nonetheless, the lack of
or weak correlations with SA3 highlights an important insight: drivers’ comprehension of road
information still largely relies on external tools, such as physical speed limit signs or in-car navi-
gation apps, rather than solely on ADAS signals. A detailed comparison of all indicators further
illustrates this finding (see Figure 5.7).

5. Internal factors influence certain aspects of situational awareness, particularly familiarity and driv-
ing experience. In SA1, familiarity with the ADAS system is associated with faster response
times, while driving experience reduces fixation duration, suggesting that experienced and famil-
iar drivers process visual information more efficiently. Age also shows a near-significant effect,
indicating that younger participants tend to react faster. In SA2, familiarity has a marginal effect,
with more familiar participants rating their understanding of ADAS alerts lower, possibly due to
stricter self-evaluation. Other internal factors show no significant influence. Overall, experience
and familiarity enhance visual efficiency, while the impact of internal factors on SA2 assessments
and SA3 speed-related performance is limited.

6. The differences between the results of significance tests (including t-tests andWilcoxon tests) and
LMMs demonstrate that model selection has a significant impact on the outcomes. By combining
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multiple methods, a more comprehensive analysis of the data can be achieved, ensuring that
both simple and complex patterns are effectively captured.

6.2. Answers to the Research Questions
Based on the analysis in Chapter 4 and the findings in Section 5.1, we can now address the research
question and its sub-questions.

Firstly, the sub-questions:

• How do different ADAS signal designs influence driver situational awareness across its three
levels: perception, comprehension, and projection?

From the results of significance testing, the ADAS signal designs of different systems showed no statis-
tically significant differences in shaping situational awareness levels of perception and projection. How-
ever, certain SA1 indicators exhibited significant differences. Based on these findings, we can conclude
that the signal designs of the two ADAS systems underlying this study influence drivers’ reception of
signals, especially regarding the frequency of observing ADAS signals in different regions. While only
a few indicators showed significant or marginally significant results for overall situational awareness,
the collected data suggest that drivers performed better across all three levels of situational awareness
when using System A. This implies that although subtle, System A exhibits a potential advantage.

• How do internal factors, such as age, gender, and other demographic characteristics, contribute
to variations in driver situational awareness under different ADAS signal designs?

Internal factors influence the shaping of situational awareness, with familiarity and driving experience
playing key roles. Participants with more driving experience exhibited shorter fixation durations, indicat-
ing reduced cognitive load, while familiarity with the ADAS system was associated with faster response
times in SA1. Age also showed a near-significant effect, suggesting that younger participants tended
to react more quickly. Other internal factors, including gender, did not exhibit strong significant effects.

• Based on the results, what design-related features might explain the differences in driver situa-
tional awareness and guide the development of more effective ADAS signal designs?

By observing the ADAS systems A and B, we can identify that ADASSystemA provides both the current
road speed limit and a semi-transparent indicator of the speed limit for the upcoming road section in
the upper left corner. In contrast, ADAS System B uses a flashing red speed limit sign to indicate a
new speed limit section. Comparatively, ADAS System A offers more comprehensive and easier-to-
understand information. ADAS System B’s signalling design may create potential confusion for drivers,
making it unclear whether the signal refers to the current road or the upcoming road. This explains why
drivers observed the area of interest more frequently in System B.

Next, we integrate the above conclusions to answer the main research question:

• How does driver situational awareness differ when responding to current road speed limit alerts
generated by different ADAS systems?

In general, the two ADAS systems’ speed limit signaling designs had no significant differences in their
effects on driver situational awareness. However, the more comprehensive information provided by
System A (current and next road speed limit information) potentially reduces drivers’ cognitive load,
making it easier for them to identify and comprehend. Additionally, both driving experience and fa-
miliarity with the ADAS system play critical roles in influencing a driver’s ability to use these systems
effectively. Experienced drivers are better at noticing and understanding ADAS prompts, while familiar
drivers process ADAS information more efficiently, leading to quicker responses. The observed lack
of correlations between overall situational awareness levels further indicates that drivers’ final driving
behaviour does not primarily rely on their perception and understanding of ADAS systems. At present,
drivers may still prefer to rely on traditional tools, such as physical speed limit signs and their own
experience, for driving decisions.
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6.3. Integration with Existing Literature
Recent years have witnessed significant advancements in the study of situational awareness, marked
by two key trends: the proliferation of measurement methods enabling more precise evaluations of
situational awareness and the application of situational awareness concepts across a broader range
of fields. While situational awareness research initially focused on domains such as aviation, nuclear
power generation, and military systems, driving has long been a critical area of application [61]. Early
studies demonstrated how situational awareness is essential for understanding the impact of technolo-
gies on driver performance by addressing spatial, temporal, goal, and system awareness [62]. This
foundational work set the stage for integrating situational awareness into ADAS and human-machine
interaction (HMI), which have become central to transportation research.

One key area of focus in recent research is the role of ADAS information displays in enhancing driver
situational awareness. Kim et al. [63] highlighted that SA-based displays, especially in urgent situa-
tions, significantly improve driver trust, reduce cognitive workload, and enhance situational awareness,
particularly at SA3 (projection). Their findings demonstrated that well-designed displays can enhance
system transparency and situational trust, offering critical insights for ADAS design. Expanding on this,
Biswas et al. [64] emphasized the use of eye-tracking data to capture drivers’ attention and awareness
dynamically. Their work underscored the value of gaze metrics, such as fixation duration, in assessing
SA1. These studies collectively underscore the importance of tailored methods for evaluating situa-
tional awareness across its levels.

Additional insights into situational awareness evaluation come from Lu et al. [65], who investigated
how drivers regain situational awareness after periods of inattention in automated driving. Their find-
ings showed that spatial awareness (SA1) is typically achieved within 7–12 seconds, while assessing
relative speeds requires over 20 seconds. This highlights the temporal nature of situational awareness
development and the necessity of level-specific measurement approaches. Similarly, Avetisyan et al.
[66] demonstrated that explanation modalities influence situational awareness differently across levels:
visual explanations were most effective for SA 1 and SA2, while combining visual and auditory expla-
nations enhanced SA3. Physiological responses provide invaluable insights into drivers’ attention and
cognitive processes during the takeover [67], further supporting the role of dynamic monitoring in sit-
uational awareness evaluation. In some studies, eye movement metrics such as gaze duration have
even been directly utilized for the measurement and calculation of situational awareness [68]. These
studies reinforce the need to select assessment methods that align with the specific cognitive demands
of each level of situational awareness.

Our research builds on these insights with a methodological innovation: integrating different measure-
ment approaches tailored to each level of situational awareness. For SA1, we utilize eye-tracking data
to capture drivers’ perceptual awareness. For SA2, we employ self-assessment methods with targeted
questions to evaluate comprehension. For SA3, task performance metrics are used to reflect drivers’
predictive capabilities and their control over driving tasks. This approach ensures that each level of
situational awareness is measured using the most appropriate method, addressing the limitations of
prior studies that often relied on single-measurement techniques.

From a content perspective, unlike traditional studies that either assess situational awareness as a
whole or use a single method such as SAGAT to measure all three levels [69, 70, 71], our study adopts
a layered analysis to examine the impact of ADAS information displays on different levels of situational
awareness. We focus specifically on speed limit signals, which complement and extend existing studies
on the effects of ADAS functionality on situational awareness.

In summary, recent research highlights the increasing relevance of situational awareness in ADAS
and underscores the importance of tailored assessment methods. Our study builds on these develop-
ments by introducing a framework that evaluates situational awareness at all levels using level-specific
methods and by examining how ADAS signals influence each level. The recency of related studies
demonstrates the growing attention this field is receiving, and our work provides valuable insights to
further advance research and inform the design of ADAS systems that enhance driver performance
and safety.
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6.4. Limitations and Future Directions
This study, while providing valuable insights into the relationship between ADAS information displays
and situational awareness, has several limitations that should be acknowledged, alongside avenues
for future research.

A key methodological limitation lies in the indicators selected for measuring situational awareness
across different levels. Although robust methods were employed, incorporating additional indicators
could enhance the comprehensiveness of the analysis. For instance, combining physiological mea-
sures such as heart rate variability with eye-tracking data for SA1 could provide a more nuanced under-
standing of perceptual awareness. Similarly, using behavioural observations (including eye-tracking
and driving behaviour) alongside self-assessments for SA2 might unify various factors influencing com-
prehension into a cohesive framework. Expanding the self-assessment questions for SA2 to cover
more aspects of comprehension would also improve the depth and breadth of the insights gained.

Another limitation relates to the size and diversity of the dataset. While the sample allowed for mean-
ingful analysis, it was not sufficiently large to ensure broad generalizability. Additionally, all participants
were recruited from Royal HaskoningDHV, which may have introduced sample representativeness is-
sues. For instance, participants might have had greater familiarity with ADAS technology than the
general driving population, potentially influencing their responses and interactions with the system.

The experimental design, conducted in real-world settings, presents another challenge. While field
experiments offer high ecological validity, they also introduce confounding variables that are difficult
to control. For instance, the presence of roadside speed limit signs or variations in traffic conditions
could have influenced participants’ responses to the ADAS signals. Conducting similar experiments in
controlled environments, such as simulators or closed test tracks, could help minimize these external
influences and offer more precise evaluations of the relationship between ADAS displays and situational
awareness.

Furthermore, this study focused on speed limit signals as the primary ADAS functionality, which, while
providing in-depth insights, does not capture the full range of ADAS capabilities. Future research could
explore additional features, such as lane-keeping assistance, adaptive cruise control, or collision warn-
ing systems, to provide a more comprehensive understanding of how various functionalities interact
with situational awareness at different levels.

Finally, the cross-sectional nature of this study limits its ability to capture changes in situational aware-
ness over time. Longitudinal studies could examine how drivers adapt to ADAS systems and how their
situational awareness evolves with prolonged use. Additionally, real-time data analysis during driving
could provide dynamic feedback on how situational awareness changes in response to ADAS cues,
offering richer insights into the relationship between drivers and these systems.

In addressing these limitations, future research can build on the findings of this study to deepen the
understanding of situational awareness in ADAS contexts. By expanding methodological approaches,
increasing dataset diversity, refining experimental designs, and broadening the scope of analysis, future
work can contribute to the development of more effective and user-friendly ADAS systems, ultimately
enhancing driver performance and safety.

6.5. Practical Implications
The findings of this study provide practical insights for both ADAS developers and transportation policy-
makers. The key difference between the two systems is that System A presents both the current road
segment’s speed limit and the upcoming segment’s speed limit, whereas System B only displays the
current limit. The results suggest that including anticipatory speed limit information enhances driver
situational awareness, allowing them to prepare in advance for speed changes. This could reduce
cognitive load and improve response efficiency, leading to smoother driving adjustments.

For ADAS manufacturers, these results suggest that signal design should prioritise clarity and anticipa-
tion. Displaying upcoming speed limits can help drivers make smoother transitions, potentially reducing
sudden braking or unintended speeding. Future ADAS designs could integrate context-aware speed
recommendations, adjusting alerts based on road type, traffic conditions, or driver behaviour.
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For government agencies and transportation policymakers, these findings highlight the potential safety
benefits of standardising speed limit transition warnings. While physical road signs remain essential,
reinforcing these changes through ADAS displays could improve compliance, particularly in areas with
frequent speed limit variations, such as school zones or construction sites. Policymakers may con-
sider collaborating with ADAS developers to align digital alerts with official traffic regulations, ensuring
consistency between in-vehicle warnings and roadside signage.
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A
Source Code

This section records the main codes used for visual detection and data processing in this study. The
specific instructions and functions are described below.

1 """
2

3 The following code is used to train the yolov8 model and apply it to the detection task
4

5 """
6

7 """
8 bibtex
9 @software{yolov8_ultralytics ,
10 author = {Glenn Jocher and Ayush Chaurasia and Jing Qiu},
11 title = {Ultralytics YOLOv8},
12 version = {8.0.0},
13 year = {2023},
14 url = {https://github.com/ultralytics/ultralytics},
15 orcid = {0000-0001-5950-6979, 0000-0002-7603-6750, 0000-0003-3783-7069},
16 license = {AGPL -3.0}
17 }
18 """
19

20 from ultralytics import YOLO
21

22 model = YOLO('yolov8n.pt')
23 model.train(data='dateset.yaml', epochs=30, batch=10, imgsz=1080)
24

25 metrics = model.val(data='dataset.yaml')
26 print(metrics)
27

28 results = model.predict(source= 'video_frames')
29

30 for index, result in enumerate(results): # Add index to track the current image number
31 boxes = result.boxes
32 focus_box = None
33 screen_box = None
34 image_name = result.path # Assuming the result object has a 'path' attribute for image

name
35

36 for box in boxes:
37 cls = int(box.cls[0]) # Get the class index
38 name = model.names[cls] # Use the class index to get the class name
39

40 if name == 'focus':
41 focus_box = box.xyxy[0] # Get bounding box for 'focus'
42 elif name == 'screen':
43 screen_box = box.xyxy[0] # Get bounding box for 'screen'
44

56
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45 # Check if both 'focus' and 'screen' are detected and determine if 'focus' is within '
screen'

46 if focus_box is not None and screen_box is not None:
47 if (focus_box[0] >= screen_box[0] and # Top-left of 'focus' is inside 'screen'
48 focus_box[1] >= screen_box[1] and
49 focus_box[2] <= screen_box[2] and # Bottom-right of 'focus' is inside 'screen'
50 focus_box[3] <= screen_box[3]):
51 print(f"Image␣{index␣+␣1}␣({image_name}):␣'!!!focus'␣is␣inside␣'screen'")
52 # else:
53 # print(f"Image {index + 1} ({image_name}): 'focus' is not inside 'screen '")
54 # else:
55 # print(f"Image {index + 1} ({image_name}): 'focus' or 'screen' not detected")
56

57

58

59 """
60

61 The following code is used to process the speed data related to SA Level3
62

63 """
64

65 import pandas as pd
66 from datetime import timedelta
67

68 # Path to your Excel file
69 file_path = 'example.xlsx'
70

71 # Load the data from the first sheet
72 data = pd.read_excel(file_path)
73

74 # Convert the "Time" column to datetime objects
75 data['Time'] = pd.to_datetime(data['Time'], format='%H:%M:%S.%f')
76

77 # Add two hours to the "Time" column (keep it as a full datetime object)
78 data['Time'] = data['Time'] + timedelta(hours=2)
79 print(data.head())
80

81 # Set the "Time" column as the index (full datetime format)
82 data = data.set_index('Time')
83

84 # Perform a rolling window operation on the 'calculated_speed' column
85 # Rolling window of 2 seconds
86 rolling_window = data['calculated_speed'].rolling('2s', closed="right", center=True).mean()
87

88 # Merge the result back into the original DataFrame
89 result = pd.merge(data.reset_index(), pd.DataFrame(rolling_window).reset_index(), on="Time",

suffixes=('', '_rolling_mean'))
90

91 data = result
92

93 # Rename the existing 'speed_difference' column for clarity
94 data = data.rename(columns={'calculated_speed_rolling_mean': 'rolling_speed'})
95

96 # Create a shifted version of the 'calculated_speed' column
97 data['previous_speed'] = data['calculated_speed'].shift(1)
98

99 # Calculate the mean speed between the current and previous points
100 data['mean_speed'] = (data['calculated_speed'] + data['previous_speed']) / 2
101

102 # Remove the first row where previous_speed is NaN due to the shift operation
103 data = data.dropna(subset=['mean_speed'])
104

105 # Create a new column for the difference between actual speed and rolling speed
106 data['rolling_actual_speed_difference'] = data['rolling_speed'] - data['calculated_speed']
107

108 # Rename the existing 'speed_difference' column for clarity
109 data = data.rename(columns={'speed_difference': 'speed_limit_difference'})
110

111 def filter_unreliable_data(data, threshold):
112 """
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113 Filters out unreliable data points based on the absolute value of
rolling_actual_speed_difference.

114

115 Parameters:
116 data (DataFrame): The input DataFrame containing the rolling_actual_speed_difference

column.
117 threshold (float): The threshold value for filtering unreliable data.
118

119 Returns:
120 DataFrame: The filtered DataFrame.
121 """
122 # Filter out rows where the absolute value of rolling_actual_speed_difference is greater

than the threshold
123 filtered_data = data[abs(data['rolling_actual_speed_difference']) <= threshold]
124

125 return filtered_data
126

127 # Example usage with a threshold of 20 (adjust as needed)
128 threshold_value = 20
129 filtered_data = filter_unreliable_data(data, threshold_value)
130

131 import folium
132 from branca.element import Template , MacroElement
133

134 def df(data, speed_diff_column='calculated_speed_difference', threshold=10, file_name='
colored_map.html'):

135 ""
136 This function takes in a DataFrame 'data', a column name for speed difference ,
137 a speed difference threshold , and a file name to generate a folium map.
138

139 Parameters:
140 data (DataFrame): The input DataFrame containing GPS coordinates and speed data
141 speed_diff_column (str): The name of the column containing the speed difference
142 threshold (int): The threshold to classify speed differences
143 file_name (str): The name of the file where the map will be saved
144 ""
145

146 # Function to generate a color based on the speed difference
147 def get_color(diff, threshold):
148 if diff <= 0:
149 return 'green'
150 elif 0 < diff <= threshold:
151 return 'orange'
152 else:
153 return 'red'
154

155 # Initialize a map centered at the average location
156 center_lat = data['GPS␣(Lat.)␣[deg]'].mean()
157 center_long = data['GPS␣(Long.)␣[deg]'].mean()
158 mymap = folium.Map(location=[center_lat , center_long], zoom_start=14)
159

160 # Draw lines between consecutive GPS points
161 for i in range(1, len(data)):
162 prev_row = data.iloc[i-1]
163 curr_row = data.iloc[i]
164

165 # Dynamically use the speed difference column passed as a parameter
166 speed_diff = curr_row[speed_diff_column]
167

168 # Get the color for the line based on speed difference
169 color = get_color(speed_diff , threshold)
170

171 # Extract latitude and longitude for the previous and current point
172 coordinates = [
173 [prev_row['GPS␣(Lat.)␣[deg]'], prev_row['GPS␣(Long.)␣[deg]']],
174 [curr_row['GPS␣(Lat.)␣[deg]'], curr_row['GPS␣(Long.)␣[deg]']]
175 ]
176

177 # Draw a line between the two points
178 folium.PolyLine(
179 locations=coordinates ,



59

180 color=color,
181 weight=5, # Line thickness
182 opacity=0.8,
183 popup=f"Speed␣difference:␣{speed_diff}␣km/h"
184 ).add_to(mymap)
185

186 # Add a legend to the map
187 legend_html = """
188 <div style="position: fixed;
189 bottom: 50px; left: 50px; width: 200px; height: 130px;
190 background -color: white; z-index:9999; font-size:14px;
191 border:2px solid grey; padding: 10px;">
192 <b>Speed Difference Legend </b><br>
193 <i style="background:green; width:20px; height:20px; float:left; margin-right:5px"></

i> Below or at Limit <br>
194 <i style="background:orange; width:20px; height:20px; float:left; margin-right:5px

"></i> 0 < diff <= {threshold} <br>
195 <i style="background:red; width:20px; height:20px; float:left; margin-right:5px"></i>

Above {threshold} <br>
196 </div>
197 """.format(threshold=threshold)
198

199 # Add legend to the map as a custom HTML element
200 mymap.get_root().html.add_child(folium.Element(legend_html))
201

202 # Save the map to an HTML file
203 mymap.save(file_name)



B
Scoring Approach for SA Level 2

This section records the main codes used for visual detection and data processing in this study. The
specific instructions and functions are described below.

Question 1: Sequence of Speed Limit Changes
The first question in the post-drive questionnaire aimed to evaluate participants’ awareness of ADAS
alerts and their comprehension of overall speed limit transitions during the experiment. Participants
were presented with multiple-choice options, including the correct sequence and some plausible alter-
natives, as well as the option to indicate they did not notice any speed limit change. This question was
scored based on the participants’ response accuracy.

The scoring method for this question is summarized in Table B.1. Participants who selected the option
”I did not notice any speed limit change” were given the lowest score of 1. For those selecting one of the
speed limit sequences, the score was determined based on the percentage of correct speed limits in
their chosen sequence compared to the actual sequence observed during the experiment. The scoring
breakdown is as follows:

Table B.1: Scoring for Question 1: Sequence of Speed Limit Changes

Option Score
60-50-30-50-30 (Correct Sequence) 5
60-30-50-60-40 (Partially Correct) 3
60-50-60-30-50 (Partially Correct) 2
I did not notice any speed limit change 1

Question 2: Understanding of ADAS Brand A Warning Signals (a)
Question 2 in the post-drive questionnaire assessed participants’ understanding of ADAS Brand A’s
warning signals. Specifically, participants were asked to identify the position of the speed limit warning
on the display. The scoring method for this question is summarized in Table B.2. Selecting the correct
position earned a score of 5, while selecting an incorrect position or indicating they did not notice the
warning resulted in a score of 1.

Table B.2: Scoring for Question 2: Understanding of ADAS Brand A Warning Signals (a)

Option Score
Upper left (Correct Answer) 5
Lower right (Incorrect Answer) 1
I didn’t notice this warning (Incorrect) 1

60
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Question 3: Understanding of ADAS Brand A Warning Signals (b)
This question assessed participants’ understanding of ADAS Brand A’s warning signals during speed
limit transitions from high to low. The correct answer was ”A flashing speed limit sign on the upper left
of the present sign,” which was assigned the highest score of 5. Other options received lower scores,
as shown in Table B.3.

Table B.3: Scoring for Question 3: Understanding of ADAS Brand A Warning Signals (b)

Option Score
A flashing speed limit sign on the upper left of the present sign 5
A flashing speed limit sign in red numbers 3
An arrow in the direction of down 2
I didn’t notice any signals 1

Question 4: Confidence in Understanding ADAS Brand A Warnings
This question assessed participants’ confidence in understanding the warnings provided by ADAS
Brand A during the experiment. Participants rated their confidence levels using a five-point Likert scale
ranging from ”Very confident” to ”Not confident at all.” The scoring method is presented in Table B.4.

Table B.4: Scoring for Question 4: Confidence in Understanding ADAS Brand A Warnings

Option Score
Very confident 5
Confident 4
Neutral 3
Slightly confident 2
Not confident at all 1

Question 5: Comfort with ADAS Brand A Assistance
This question evaluated participants’ comfort levels while driving with the assistance of ADAS Brand
A’s speed change warnings. Similar to the previous question, participants rated their comfort using a
five-point Likert scale. The scoring is summarized in Table B.5.

Table B.5: Scoring for Question 5: Comfort with ADAS Brand A Assistance

Option Score
Very comfortable 5
Comfortable 4
Neutral 3
Slightly comfortable 2
Not comfortable at all 1

Question 6: Understanding of ADAS Brand B Warning Signals (a)
The following four questions mirror the structure and content of Questions 2–5, but focus on partici-
pants’ understanding and comfort with ADAS Brand B. Each question’s scoring method and options
are identical to those used for ADAS Brand A, except that the context refers to Brand B. The scoring
breakdown for each question is summarized below.
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Table B.6: Scoring for Question 6: Understanding of ADAS Brand B Warning Signals (a)

Option Score
Increase speed limit (Correct Answer) 5
Decrease speed limit (Incorrect Answer) 1
Maintain current speed (Incorrect Answer) 1
I didn’t notice this warning (Incorrect) 1

Question 7: Understanding of ADAS Brand B Warning Signals (b)

Table B.7: Scoring for Question 7: Understanding of ADAS Brand B Warning Signals (b)

Option Score
A flashing speed limit sign in red numbers 5
A flashing speed limit sign on the upper left of the present sign 3
An arrow in the direction of down 2
I didn’t notice any signals 1

Question 8: Confidence in Understanding ADAS Brand B Warnings

Table B.8: Scoring for Question 8: Confidence in Understanding ADAS Brand B Warnings

Option Score
Very confident 5
Confident 4
Neutral 3
Slightly confident 2
Not confident at all 1

Question 9: Comfort with ADAS Brand B Assistance

Table B.9: Scoring for Question 9: Comfort with ADAS Brand B Assistance

Option Score
Very comfortable 5
Comfortable 4
Neutral 3
Slightly comfortable 2
Not comfortable at all 1



C
Questionnaire

This section records the questionnaire used to collect data in this study, which consists of two parts:
pre-drive questionnaire and post-drive questionnaire.
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Figure C.1: Pre-Drive Questionnaire Part 1
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Figure C.2: Pre-Drive Questionnaire Part 2
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Figure C.3: Post-Drive Questionnaire Part 1
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Figure C.4: Post-Drive Questionnaire Part 2
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Figure C.5: Post-Drive Questionnaire Part 3
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Figure C.6: Post-Drive Questionnaire Part 4



D
LMM Model Results

This appendix contains the detailed results of the LMM models.

Figure D.1: Mixed Linear Model Regression Results for Fixation Count per Turn
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Figure D.2: Mixed Linear Model Regression Results for Time to First Fixation

Figure D.3: Mixed Linear Model Regression Results for Fixation Duration
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Figure D.4: Ordered Logistic Regression Results for SA2 Scores

Figure D.5: Mixed Linear Model Regression Results for Speed Difference
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Figure D.6: Mixed Linear Model Regression Results for Speed Compliance Percentage

Figure D.7: LMM Results for SA1 Indicator with Internal Factors: Fixation Count
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Figure D.8: LMM Results for SA1 Indicator with Internal Factors: Time to First Fixation

Figure D.9: LMM Results for SA1 Indicator with Internal Factors: Fixation Duration
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Figure D.10: Ordered Model Results for SA2 Indicators with Internal Factors

Figure D.11: LMM Results for SA3 Indicator with Internal Factors: Speed Difference
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Figure D.12: LMM Results for SA3 Indicator with Internal Factors: Speed Compliance
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