Edge-aware simplification of roof and façade point clouds into a uniformly dense point cloud

Graduation professor: Sisi Zlatanova Daily supervisor: Co-reader: MSc student:

cyclomedia

Smart Imagery Solutions

Elmar Eisemann & Bert Buchholz Ben Gorte Jiale (Carl) Chen

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- IV. Implementation, Results, Validation and Limitation
- V. Conclusion and Recommendations

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- IV. Implementation, Results, Validation and Limitation
- V. Conclusion and Recommendations

INTRODUCTION Roof Facade -

MOTIVATION

- Combine roof and façade point clouds
- Outlier removal
 - Pre-processing for simplification
- Simplification
 - Noise smoothing

cvclomedia

- **Edges preservation**: indicate geometry skeleton; useful for reconstruction, segmentation and other applications.
- **Uniform density**: required in multi-level smoothing and texture synthesis

MOTIVATION

- Problems in existing methods

Outlier removal

 Not able to remove both single outliers and small cluster of outliers without over-removing artifacts

Simplification

- Focus only on one or two objectives of Noise smoothing, edges preservation and uniform density
- Some are slow and inefficient for large-size production
- No algorithm considers from data source perspective

RESEARCH QUESTION

• Which algorithms are most suitable to fuse roof and façade point clouds into an edge-aware and uniformly dense color point cloud?

RESEARCH OVERVIEW

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- IV. Implementation, Results, Validation and Limitation
- V. Conclusion and Recommendations

SCANNING METHODS

- Airborne LiDAR, terrestrial LiDAR and panoramic imagery

http://en.wikipedia.org/wiki/Camera lens

TUDelft

ROUGH PRECISION ESTIMATION

- Density weight

- For all point clouds: sparse area
 Larger distortion
 Lower resolution
- For all point clouds:
 Density indicates precision !

cyclomedia

RIGOROUS PRECISION ESTIMATION

• One step further, possible to get mathematical rigorous precision from error propagation theory?

• E.g.
$$\sigma_{s_i}^2 = a_1 \sigma_1^2 + a_2 \sigma_2^2 + ... + a_n \sigma_n^2$$

Category	Error source	Quantitative error estimation for each point
Scanner position	GPS position parameters; INS attitude parameters (not for static terrestrial systems)	Difficult to obtain for each scan
Coordinate difference from scanner to point	Incidence angle of the laser ray	Possible to get if recorded for each point in scanning.
Other factors	Laser reflection and refraction errors	In current methods not possible to derive

TUDelft

cyclomedia

RIGOROUS PRECISION ESTIMATION

- Error sources : Panoramic imagery

	Stereo images from Motion	Ached tures Bundle adjustment Camera Parameters Comera Point cloud
Category	Error source	Quantitative error estimation for each point
Camera position	GPS position parameters; INS rotation parameters	Difficult to obtain for each scan position
Feature points extraction	Object radiometric changes; non-uniform motion blur; non Gaussian-distributed camera structured noise etc.	Currently impossible to estimate precision for all those aspects.
Bundle adjustment	Difference between point positions before and after adjustment.	Possible to derive precision for each point.
Other error sources	Reflection and refraction of material such as glass.	In current methods not possible to derive.

TUDelft

RIGOROUS PRECISION ESTIMATION

- Conclusions

• Not yet possible to derive a mathematical rigorous model ...

- Existing method: from Post-processing NOT data origin
 - e.g. point distance to plane by RANSAC fitting

C. v. d. Sande et al. (2010). Assessment of relative accuracy of AHN-2 laser scanning data using planar features

• Leave as an open research topic...

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- IV. Implementation, Results, Validation and Limitation
- V. Conclusion and Recommendations

ALGORITHM PIPELINE

- Outlier removal algorithm
- Simplification algorithm
- Integration into one pipeline

ALGORITHM PIPELINE

OUTLIER REMOVAL

- Artifacts of existing methods

cyclomedia

Smart Imagery Solutions

Zhang et al (2009). A new local distance-based outlier detection approach for scattered real-world data Weyrich et al. (2004). Post-processing of scanned 3d surface data

OUTLIER REMOVAL

- Our method: Improved NNR

Algo	orithm 1 Outlier reduction algorithm	
1: 1	procedure OUTLIER REDUCTION (op, c) \triangleright outlier percent op ; max cluster and the second	size a
2:	calculate cluster-adapted LDOF value for each point	
3:	sort points using LDOF value in descending order	
4:	$outliersize \leftarrow inputsize * op$	
5:	$LDOF outliers \leftarrow$ the first <i>outliersize</i> items in sorted result	
6:	for $p_i \in P$ do	
7:	$percent \leftarrow NNR$ unidirectional neighbor ratio of each point	
8:	if $percent \leq op$ then	
9:	if $p_i \notin LDOF$ outliers then	
10:	p_i is inlier	
11:	else	
12:	p_i is outlier	

cyclomedia

Smart Imagery Solutions

Our method

ALGORITHM PIPELINE

- Pipeline

Sub-steps

- Pipeline

 $\overline{\sigma}$

Smart Imagery Solutions

- Precision (Importance) estimation by density

$$\sigma_i = \frac{K}{\pi R_i^2} \qquad Iv_i = e^{-\frac{\overline{\sigma}}{\sigma_i}}$$

1.0

- Pipeline

- Feature extraction: surface variation OR curvature
- Surface variation (Pauly et al, 2002)

$$\sigma_n(\mathbf{p}) = \frac{\lambda_0}{\lambda_0 + \lambda_1 + \lambda_2}$$

where eigen values $0 \le \lambda_0 \le \lambda_1 \le \lambda_2$

• Curvature (Gumhold et al, 2001)

$$\kappa = \frac{2\lambda_0}{D^2}$$

TUDelft

 λ_0 : smallest eigen value D: search radius

mart Imagery Solution

cyclomedia

- Pipeline

- Sub-sampling & smoothing strategy
- Same strategy for features and non-features
- Only difference
 - Feature points first
 - Non-features move with respect to features

- Feature extraction, subsampling and smoothing

- Subsampling

- Smoothing: WLOP Noise smoothing & Keep uniform
- Weighted Locally Optimal Projector (WLOP):
 - Original point cloud P_I ; Projected (subsampled) point cloud X_I
 - Apply several iterations. The next iteration of projection Q is to minimize

Q = G(Q)

$$G(C) = argmin_{X = \{x_i\} i \in I} \{ E_1(X, P, C) + E_2(X, C) \}$$

Lipman et al. (2007) Parameterization-free Projection for Geometry Reconstruction Huang et al. (2009). Consolidation of Unorganized Point Clouds for Surface Reconstruction

$$Q = G(Q)$$

 $G(C) = argmin_{X = \{x_i\} i \in I} \{ E_1(X, P, C) + E_2(X, C) \}$ - Smoothing: WLOP - Noise smoothing & Keep uniform

$$E_1(X, P, C) = \sum_{i \in I} \sum_{j \in J} ||x_i - p_j|| \theta(||c_i - p_j||)$$

Multivariate median (l_1 median) – noise smoothing - Leads to projection points moving toward the local distribution center

$$E_2(X,C) = \sum_{i' \in I} \lambda_{i'} \sum_{i \in I \setminus \{i'\}} \eta(||x_{i'} - c_i||) \theta(||c_{i'} - c_i||)$$

Repulsion term – Keep uniform - Penalizing projection points that get too close to each other

- Smoothing: WLOP Noise smoothing & Keep uniform
- Combine original point Importance value Iv_i into the term

$$G(C) = argmin_{X = \{x_i\} i \in I} \{ E_1(X, P, C) + E_2(X, C) \} +$$

$$E_1(X, P, C) = \sum_{i \in I} \sum_{j \in J} ||x_i - p_j|| \theta(||c_i - p_j||) Iv_{p_j}$$
$$E_2(X, C) = \sum_{i' \in I} \lambda_{i'} \sum_{i \in I \setminus \{i'\}} \eta(||x_{i'} - c_i||) \theta(||c_{i'} - c_i||)$$

- Smoothing: WLOP - Noise smoothing & Keep uniform

• Final weight density adapted WLOP:

$$x_{i}^{k+1} = \sum_{j \in J} p_{j} \frac{\alpha_{ij}^{k} / v_{j}}{\sum_{j \in J} (\alpha_{ij}^{k} / v_{j})} + \mu \sum_{i' \in I \ \{i\}} \delta_{ii'}^{k} \frac{w_{i'}^{k} \beta_{ii'}^{k}}{\sum_{i' \in I \ \{i\}} (w_{i'}^{k} \beta_{ii'}^{k})}$$

where:

TUDelft

$$\begin{aligned} \theta(r) &= e^{-\frac{r^2}{R^2}} \\ \delta_{ii'}^k &= x_i^k - x_{i'}^k \\ v_j &= 1 + \sum_{j' \in J \ \{j\}} \theta\left(\left|\left|p_j - p_{j'}\right|\right|\right) Iv_{j'} \\ w_i^k &= 1 + \sum_{i' \in I \ \{i\}} \theta(\left|\left|x_i^k - x_{i'}^k\right|\right|) \end{aligned}$$

cyclomedia

$$\alpha_{ij}^{k} = \frac{\theta\left(\left|\left|x_{i}^{k} - p_{j}\right|\right|\right) Iv_{j}}{\left|\left|x_{i}^{k} - p_{j}\right|\right|}$$
$$\beta_{ii\prime}^{k} = \frac{\theta\left(\left|\left|x_{i}^{k} - x_{i\prime}^{k}\right|\right|\right)}{\left|\left|x_{i}^{k} - x_{i\prime}^{k}\right|\right|}$$
$$\mu = 0.45$$

- Smoothing: WLOP - Noise smoothing & Keep uniform

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- IV. Implementation, Results, Validation and Limitation
- V. Conclusion and Recommendations

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- **IV. Implementation**, Results, Validation and Limitation
- V. Conclusion and Recommendations

IMPLEMENTATION

- Data & Tools
- Data
 - Simulated point cloud

- Roof point cloud: AHN2 AND Aerial images (luchtfoto)
- Façade point cloud: Cyclomedia imagery OR Fugro terrestrial LiDAR
- Tools
 - Simulation : Rhino / Grasshopper; Blender
 - *Development* : C++; Point Cloud Library (PCL); Qt

IMPLEMENTATION

- Parameters tweaking in simplification

Smart Imagery Solutions

Explanation Para

- Sample radius. Reasonably larger than the input average distance R
- Curvature threshold. Points larger than this value are edge points Т

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- **IV.** Implementation, **Results**, Validation and Limitation
- V. Conclusion and Recommendations

RESULTS

- 4 demos

- House. Simple virtual scene
- Villa. Complicate virtual scene
- OTB building. Terrestrial LiDAR + AHN2
- Amsterdam building. Panoramic imagery point cloud + AHN2

. . .

DEMO 1: HOUSE (VIRTUAL)

- Scanning simulation

cyclomedia Smart Imagery Solutions

Challenge the future 47

cyclomedia Smart Imagery Solutions

TUDelft cyclomedia

Smart Imagery Solutions

Outlier cleaned

Challenge the future 49

- Simulation

cyclomedia

- Result

TUDelft

cyclomedia

- Result

- Result

DEMO 3: OTB BUILDING

- AHN2 + Fugro terrestrial LiDAR (outliers)

DEMO 3: OTB BUILDING

- AHN2 + Fugro terrestrial LiDAR (Simplified)

DEMO 4: AMSTERDAM BUILDING

- AHN2 + Cyclomedia panoramic imagery point cloud (Outliers)

DEMO 4: AMSTERDAM BUILDING

- AHN2 + Cyclomedia panoramic imagery point cloud (Outlier cleaned)

DEMO 4: AMSTERDAM BUILDING

- AHN2 + Cyclomedia panoramic imagery point cloud (Simplified)

RESULTS

TUDelft

- Efficiency analysis: CPU run time (second)

	House(252915)	Villa(1668625)	OTB(4204626)	Amst(833584)
Outlier removal	N/A	24.19	57.91	14.09
Weight calculation	0.61	4.11	12.24	2.15
curvature estimation	0.17	0.91	2.44	0.47
Subsample	5.02	6.82	1.01	0.30
WLOP initialization	12.25	155.71	525.57	27.81
WLOP iteration x 3	0.60	11.94	28.19	4.95
Color	0.01	0.08	0.19	0.06
Total	18.66	203.76	627.55	35.74

- Most expensive: radius neighbor search in CPU
- Suggestion: Adapt to Multi-threading or GPU!

cyclomedia

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- **IV.** Implementation, Results, Validation and Limitation
- V. Conclusion and Recommendations

- Check list

- 1. Edge points preservation
- 2. Uniform density
- 3. Noise smoothing

- 1. Edge points preservation

cyclomedia

- Rely on user input sample radius and curvature threshold
- Check only qualitatively by visualization

- 2. Uniform density
- Qualitatively by visualization
- OR Quantitatively by density standard deviation

	House	Villa	OTB	Amst
Original point cloud	0.0506	7.4009	2.7294	0.6384
After Sub-sampling	0.0016	0.0217	0.0044	0.0053
After WLOP smoothing	0.0016	0.0212	0.0047	0.0052

Table 5-2: Density standard deviation changes for different phases.

- 3. Noise smoothing
- Qualitatively by visualization

cyclomedia

Smart Imagery Solution

• Quantitatively: distance to intrinsic model (only in virtual)

	Max	Avg	Std
Noisy input	0.478	0.077	0.059
Noisy input simplified result	0.434	0.055	0.054

Table 5-3: Noise smoothing effect analysis for House demo added with Gaussian noise.

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- **IV.** Implementation, Results, Validation and Limitation
- V. Conclusion and Recommendations

LIMITATION

- Holes (only reduce points); Edge extraction sensitive to severe noise

Content

- I. Introduction
- II. Background
- III. Algorithm pipeline
- IV. Implementation, Results, Validation and Limitation
- V. Conclusion and Recommendations

CONCLUSION

- Answer to research question

mart Imagery Solution

Q: Which algorithms are most suitable to fuse roof and façade point clouds into an edge-aware and uniformly dense color point cloud?

A: We designed the most appropriate algorithms for fusing roof and façade point clouds either by developing algorithms ourselves or using and adapting existing algorithms and *integrated into a unified* algorithm pipeline, where outlier removal and simplification are performed and integrated that can produce an *outlier-cleaned, noisereduced, edge-aware and uniform* point cloud.

CONCLUSION

- Contributions and difference from other methods

Outlier removal

- Ours can handle both singly scattered and small cluster of outliers without over-removing artifacts and can be applied in processing any point cloud

Simplification

- Different from others focusing on one or two objectives of noise reduction, uniform density and edge-awareness, we can achieve them all in an integrated and unified pipeline
- Suitable for large-size processing

cvclomedia

- Consider precision distribution according to data source

RECOMMENDATIONS

- Future work

• Data

Í UDelft

- Rigorous quantitative precision estimation

Implementation

- Radius neighbor search in multi-threading or GPU

Algorithm Components

cvclomedia

- Gaps and holes: filled in point clouds matching and registration
- Holes: distinguish between occlusion and real ones
- Edge points extraction: adapt globally to anti severe noise

QUESTIONS / SUGGESTIONS?

