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INTRODUCTION

Roof

Facade
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MOTIVATION

• Outlier removal
• Pre-processing for simplification

• Simplification
• Noise smoothing

• Edges preservation: indicate geometry skeleton; useful for 
reconstruction, segmentation and other applications.

• Uniform density: required in multi-level smoothing and texture 
synthesis

- Combine roof and façade point clouds
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MOTIVATION

• Outlier removal

• Simplification

- Problems in existing methods

• Not able to remove both single outliers and small cluster of 
outliers without over-removing artifacts

• Focus only on one or two objectives of Noise smoothing, edges 
preservation and uniform density

• Some are slow and inefficient for large-size production

• No algorithm considers from data source perspective
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RESEARCH QUESTION

• Which algorithms are most suitable to fuse roof
and façade point clouds into an edge-aware and
uniformly dense color point cloud?
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RESEARCH OVERVIEW
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SCANNING METHODS
- Airborne LiDAR, terrestrial LiDAR and panoramic imagery

Line scanner

Figure from Haala et al. (2008) and Frohlich et al. (2004)
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ROUGH PRECISION ESTIMATION
- Density weight

• For all point clouds: sparse area 
Larger distortion
Lower resolution

• For all point clouds:
Density indicates precision !
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RIGOROUS PRECISION ESTIMATION

• One step further, possible to get mathematical rigorous 
precision from error propagation theory?

• E.g. 



13Challenge the future

RIGOROUS PRECISION ESTIMATION
- Error sources : LiDAR



14Challenge the future

RIGOROUS PRECISION ESTIMATION
- Error sources : Panoramic imagery
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RIGOROUS PRECISION ESTIMATION
- Conclusions

• Not yet possible to derive a mathematical rigorous model …

• Existing method: from Post-processing NOT data origin
• e.g. point distance to plane by RANSAC fitting

• Leave as an open research topic…

C. v. d. Sande et al. (2010). Assessment of relative accuracy of AHN-2 laser scanning data using planar features



16Challenge the future

Content

I. Introduction

II. Background

III. Algorithm pipeline

IV. Implementation, Results, Validation and Limitation

V. Conclusion and Recommendations



17Challenge the future

ALGORITHM PIPELINE

• Outlier removal algorithm

• Simplification algorithm

• Integration into one pipeline
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ALGORITHM PIPELINE
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OUTLIER REMOVAL
- Artifacts of existing methods

Zhang et al (2009). A new local distance-based outlier detection approach for scattered real-world data
Weyrich et al. (2004). Post-processing of scanned 3d surface data

LDOF NNROriginal
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OUTLIER REMOVAL
- Our method: Improved NNR

Our method
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ALGORITHM PIPELINE
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SIMPLIFICATION
- Pipeline

• Sub-steps
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SIMPLIFICATION
- Pipeline
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SIMPLIFICATION
- Precision (Importance) estimation by density

𝜎𝜎𝑖𝑖 =
𝐾𝐾
𝜋𝜋𝑅𝑅𝑖𝑖2

𝐼𝐼𝐼𝐼𝑖𝑖 = 𝑒𝑒−
�𝜎𝜎
𝜎𝜎𝑖𝑖
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SIMPLIFICATION
- Pipeline
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• Surface variation (Pauly et al, 2002)

where eigen values 0 ≤ 𝜆𝜆0 ≤ 𝜆𝜆1 ≤ 𝜆𝜆2

• Curvature (Gumhold et al, 2001)

𝜆𝜆0: smallest eigen value
D: search radius

SIMPLIFICATION
- Feature extraction: surface variation OR curvature
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SIMPLIFICATION
- Pipeline
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SIMPLIFICATION
- Sub-sampling & smoothing strategy

• Same strategy for features and non-features

• Only difference

• Feature points first

• Non-features move with respect to features
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SIMPLIFICATION
- Feature extraction, subsampling and smoothing
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SIMPLIFICATION
- Subsampling
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SIMPLIFICATION
- Smoothing: WLOP - Noise smoothing & Keep uniform

• Weighted Locally Optimal Projector (WLOP):

• Original point cloud 𝑃𝑃𝐽𝐽 ; Projected (subsampled) point cloud 𝑋𝑋𝐼𝐼

• Apply several iterations. The next iteration of projection Q is to 
minimize

Lipman et al. (2007) Parameterization-free Projection for Geometry Reconstruction
Huang et al. (2009). Consolidation of Unorganized Point Clouds for Surface Reconstruction
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SIMPLIFICATION

Multivariate median (𝑙𝑙1 median) – noise smoothing
- Leads to projection points moving toward the local distribution center

Repulsion term – Keep uniform
- Penalizing projection points that get too close to each other

- Smoothing: WLOP - Noise smoothing & Keep uniform
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SIMPLIFICATION

• Combine original point Importance value 𝐼𝐼𝐼𝐼𝑗𝑗 into the term

+

- Smoothing: WLOP - Noise smoothing & Keep uniform
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SIMPLIFICATION

• Final weight density adapted WLOP:

where:

- Smoothing: WLOP - Noise smoothing & Keep uniform
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SIMPLIFICATION

Original 
std=0.0092

Subsampling
std=0.0006

WLOP
std=0.0006

- Smoothing: WLOP - Noise smoothing & Keep uniform
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INTEGRATION
- Outlier – Precision - Combine – Simplify



37Challenge the future

Content

I. Introduction

II. Background

III. Algorithm pipeline

IV. Implementation, Results, Validation and Limitation

V. Conclusion and Recommendations



38Challenge the future

Content

I. Introduction

II. Background

III. Algorithm pipeline

IV. Implementation, Results, Validation and Limitation

V. Conclusion and Recommendations



39Challenge the future

IMPLEMENTATION

• Data
• Simulated point cloud

• Roof point cloud: AHN2 AND Aerial images (luchtfoto)

• Façade point cloud: Cyclomedia imagery OR Fugro terrestrial LiDAR

• Tools
• Simulation : Rhino / Grasshopper; Blender

• Development : C++; Point Cloud Library (PCL); Qt

- Data & Tools
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IMPLEMENTATION
- Parameters tweaking in simplification

Para Explanation
R Sample radius. Reasonably larger than the input average distance
T Curvature threshold. Points larger than this value are edge points
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RESULTS

- House. Simple virtual scene

- Villa. Complicate virtual scene

- OTB building. Terrestrial LiDAR + AHN2

- Amsterdam building. Panoramic imagery point cloud + AHN2

- 4 demos
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DEMO 1: HOUSE (VIRTUAL)
- Scanning simulation
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DEMO 1: HOUSE (VIRTUAL)

252890 pts

Std = 0.0341
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DEMO 1: HOUSE (VIRTUAL)
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DEMO 1: HOUSE (VIRTUAL)
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DEMO 1: HOUSE (VIRTUAL)

Result
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DEMO 1: HOUSE (VIRTUAL)

Result (back-face culling)
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DEMO 1: HOUSE (VIRTUAL)

Result (front-face culling)
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DEMO 2: VILLA (VIRTUAL)
- Simulation
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DEMO 2: VILLA (VIRTUAL)
- Result
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DEMO 2: VILLA (VIRTUAL)
- Result
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DEMO 2: VILLA (VIRTUAL)
- Result
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DEMO 3: OTB BUILDING
- AHN2 + Fugro terrestrial LiDAR (outliers)
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DEMO 3: OTB BUILDING
- AHN2 + Fugro terrestrial LiDAR (Simplified)
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DEMO 4: AMSTERDAM BUILDING
- AHN2 + Cyclomedia panoramic imagery point cloud (Outliers)
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DEMO 4: AMSTERDAM BUILDING
- AHN2 + Cyclomedia panoramic imagery point cloud (Outlier cleaned)
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DEMO 4: AMSTERDAM BUILDING
- AHN2 + Cyclomedia panoramic imagery point cloud (Simplified)
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RESULTS
- Efficiency analysis: CPU run time (second)

• Most expensive: radius neighbor search in CPU
• Suggestion: Adapt to Multi-threading or GPU!
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VALIDATION
- Check list

1. Edge points preservation

2. Uniform density

3. Noise smoothing



62Challenge the future

VALIDATION
- 1. Edge points preservation

• Rely on user input sample radius and curvature threshold

• Check only qualitatively by visualization
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VALIDATION
- 2. Uniform density

• Qualitatively by visualization

• OR Quantitatively by density standard deviation
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VALIDATION
- 3. Noise smoothing

• Qualitatively by visualization

• Quantitatively: distance to intrinsic model (only in virtual)
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LIMITATION
- Holes (only reduce points); Edge extraction sensitive to severe noise
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CONCLUSION
- Answer to research question

Q: Which algorithms are most suitable to fuse roof
and façade point clouds into an edge-aware and
uniformly dense color point cloud?

A: We designed the most appropriate algorithms for fusing roof and
façade point clouds either by developing algorithms ourselves or using
and adapting existing algorithms and integrated into a unified
algorithm pipeline, where outlier removal and simplification are
performed and integrated that can produce an outlier-cleaned, noise-
reduced, edge-aware and uniform point cloud.
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CONCLUSION
- Contributions and difference from other methods

• Outlier removal
- Ours can handle both singly scattered and small cluster of outliers without 

over-removing artifacts and can be applied in processing any point cloud

• Simplification
- Different from others focusing on one or two objectives of noise

reduction, uniform density and edge-awareness, we can achieve them all
in an integrated and unified pipeline

- Suitable for large-size processing

- Consider precision distribution according to data source
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• Data
- Rigorous quantitative precision estimation

• Implementation
- Radius neighbor search in multi-threading or GPU

• Algorithm Components
- Gaps and holes: filled in point clouds matching and registration
- Holes: distinguish between occlusion and real ones
- Edge points extraction: adapt globally to anti severe noise

RECOMMENDATIONS
- Future work
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QUESTIONS / SUGGESTIONS?


	Edge-aware simplification of roof and façade point clouds into a uniformly dense point cloud
	Content
	Content
	INTRODUCTION
	MOTIVATION
	MOTIVATION
	RESEARCH QUESTION
	RESEARCH OVERVIEW
	Content
	SCANNING METHODS
	ROUGH PRECISION ESTIMATION
	RIGOROUS PRECISION ESTIMATION
	RIGOROUS PRECISION ESTIMATION
	RIGOROUS PRECISION ESTIMATION
	RIGOROUS PRECISION ESTIMATION
	Content
	ALGORITHM PIPELINE
	ALGORITHM PIPELINE
	OUTLIER REMOVAL
	OUTLIER REMOVAL
	ALGORITHM PIPELINE
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	SIMPLIFICATION
	INTEGRATION
	Content
	Content
	IMPLEMENTATION
	IMPLEMENTATION
	Content
	RESULTS
	DEMO 1: HOUSE (VIRTUAL)
	DEMO 1: HOUSE (VIRTUAL)
	Slide Number 45
	DEMO 1: HOUSE (VIRTUAL)
	DEMO 1: HOUSE (VIRTUAL)
	DEMO 1: HOUSE (VIRTUAL)
	Slide Number 49
	DEMO 2: VILLA (VIRTUAL)
	DEMO 2: VILLA (VIRTUAL)
	DEMO 2: VILLA (VIRTUAL)
	DEMO 2: VILLA (VIRTUAL)
	DEMO 3: OTB BUILDING
	DEMO 3: OTB BUILDING
	DEMO 4: AMSTERDAM BUILDING
	DEMO 4: AMSTERDAM BUILDING
	DEMO 4: AMSTERDAM BUILDING
	RESULTS
	Content
	VALIDATION
	VALIDATION
	VALIDATION
	VALIDATION
	Content
	LIMITATION
	Content
	CONCLUSION
	CONCLUSION
	RECOMMENDATIONS
	QUESTIONS / SUGGESTIONS?

