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Abstract

Bitcoin mixers break the visible trail between incoming and outgoing transactions. By

severing the link between pre-mixing and post-mixing addresses, they provide anonymity

that is attractive for laundering illicit funds. For investigators, this creates two obstacles:

the vast number of outputs that overwhelm capacity, and the lack of knowledge of internal

mixer mechanics that forces reliance on external transaction signals.

This thesis investigates whether transaction patterns before and after mixing can re-

duce the pool of possible post-mixing addresses linked to a pre-mixing address. The aim

is not to prove exact one-to-one links but to narrow the search space so investigators can

focus on the most likely outcomes.

We use a unique dataset seized from Bestmixer.io, a centralised mixer dismantled

in 2019, containing thousands of verified pre- and post-mixing addresses. The analysis

proceeds in two stages. First, we cluster wallets on address-level attributes using HDB-

SCAN, which yields only coarse profiles. Second, we build transaction graphs capturing

how funds move through the mixer, learn graph embeddings with a Graph Autoencoder,

and cluster them with k-means. This graph-based view reveals clearer transaction pat-

terns. Pre-mixing, we identify consolidators pooling funds, straightforward depositors

from exchanges, aggregator funnels combining smaller inputs, and higher-risk users via

unregulated services. Post-mixing, we find splitters dispersing funds, large distributors

sending bigger amounts to fewer addresses, and straightforward users with minimal redis-

tribution.

We then test whether pre-mixing patterns can predict post-mixing outcomes. Using

tree-based ensemble models (Random Forest and Gradient Boosting) with graph embed-

dings and the original deposit amount, the best model achieves 48 percent accuracy across

five classes, more than double the 20 percent baseline. This demonstrates that transaction

graph signals can probabilistically reduce the investigative search space.

The study provides the first ground-truth typology of mixer transaction patterns and

shows that probabilistic “de-mixing” is feasible. Rather than pinpointing a single post-

mixing address, the method highlights a smaller set of likely candidates, offering law

enforcement a way to prioritise leads without access to a mixer’s internal mechanics.
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1 Introduction

This opening chapter follows the path from Bitcoin’s limited, quasi-anonymous privacy

to the rise of mixers that deepen that privacy and, in doing so, enable large-scale illicit

finance. It shows how existing regulation struggles to curb this development, then distils

four gaps in research and practice that emerge from non-regulatory methods to tackle

illicit mixer use. These gaps shape the research objective and help frame one central

research question supported by three sub-questions. The chapter concludes with a brief

roadmap of how the remainder of the research addresses each element.

1.1 Bitcoin’s Anonymity and the Rise of Mixers

Bitcoin is a decentralised digital currency that enables secure, peer-to-peer transactions

without intermediaries like banks (Nakamoto, 2008). Its global adoption has steadily

grown (Sergio & Wedemeier, 2025), driven by various uses. While many adopt Bitcoin as

an investment vehicle (Mattke et al., 2020), it also serves as a store of value in econom-

ically unstable regions (Sergio & Wedemeier, 2025), and potentially as a hedge against

inflation (Blau et al., 2021). Bitcoin has a number of unique properties that make it

attractive to adopt. Firstly, the currency gives some degree of anonymity, but it is not

fully anonymous. We call it quasi -anonymous, because transactions are visible publicly

but linking them directly to individual identities is non-trivial (Campbell-Verduyn, 2018).

Secondly, Bitcoin is decentralised. This means that there is no central authority governing

the blockchain it is on. Third, Bitcoin transactions are quick and not bound by national

borders.

Bitcoin’s quasi-anonymity incentivises its users that desire more anonymity to search

for ways to obfuscate their transactions. One way that Bitcoin owners can obfuscate their

transaction path is to use Bitcoin mixers. Bitcoin mixing involves aggregating Bitcoin

transactions from various sources and redistributing them to obscure their original origins

and destinations1 (Arbabi et al., 2023; Crawford & Guan, 2020). Thus, mixing severs

direct links and severely complicates Bitcoin tracing. This could for example be used to

protect individuals’ assets from theft by obfuscating large coin trails (Silva Ramalho &

Igreja Matos, 2021). However, it is mostly used in the criminal circuit.
1This process can be thought of as putting multiple coloured marbles into a black box, shaking it,

and drawing out random marbles to return to users. It is now unclear which marble originally belonged
to whom.
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1.2 The Illicit Appeal of Mixers and the Limits of Regulation

Blockchain analysts estimate that in 2023, $22.2 billion was laundered through the use of

cryptocurrencies, with most sophisticated criminals using mixers (Chainalysis, 2024). The

practice of mixing has led to the rise of centralised mixing services. Users send Bitcoin

to these services, which pool and shuffle the funds before returning mixed coins (minus

a fee) to specified wallets (Holt et al., 2023; Pakki et al., 2021). While many of these

services are scams (van Wegberg et al., 2018), reputable ones can expand rapidly once

trust is established. (Crawford & Guan, 2020). In addition to obfuscating illicit funds,

there have also been cases where operators of mixing services partnered with darknet

markets, promoting the markets to their users and channelling large volumes of funds to

and from them (United States v. Larry Dean Harmon, 2019; United States v. Sterlingov,

2021). Given the often illicit nature of funds passing through mixers, it is crucial to trace

them so law enforcement can link suspect wallets to real-world identities and apprehend

offenders. We look to regulation as a potential solution.

Anti-money laundering (AML) regulation on cryptocurrency aims to curb this illicit use

but is difficult to implement. Regulatory efforts such as the European Union’s 5th AML

Directive have introduced Know Your Customer (KYC) requirements for custodial service

providers2, a category that includes exchanges and, technically, also centralised mixing

services. However, a centralised mixing service meets the EU definition of a custodial

service provider solely because it can control users’ private keys, not because of its frequent

association with illicit activity. Thus, the regulations only cover mixers “by accident”, not

as a targeted effort to curb illicit use. This omission could create a regulatory gap,

leaving room for interpretation and inconsistent enforcement (Silva Ramalho & Igreja

Matos, 2021). Compounding this regulatory difficulty is the lack of a consistent global

approach: countries classify Bitcoin differently and impose varying regulations (Kethineni

& Cao, 2020; Liu & Dong, 2025). Criminals exploit these discrepancies by relocating to

jurisdictions with minimal or no enforcement (Rysin & Rysin, 2020).

Given the often illicit nature of funds passing through mixers, the key challenge is to

trace these flows so that law enforcement can link suspect wallets to real-world identities.

Rather than seeking to eliminate mixers altogether, our focus lies in developing methods

that allow investigators to follow illicit funds despite the obfuscation they create. Since
2Defined in the directive as entities that safeguard private cryptographic keys (akin to bank PIN

numbers) on behalf of customers, to hold, store, and transfer virtual currencies (AMLD5, 2018)
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regulatory measures alone have been insufficient to aid with this, we explore technical

solutions.

1.3 Research and Societal Gaps in Mixer Analysis

This section identifies one key societal gap and three academic gaps that shape the specific

focus of our research. The societal gap stems from the realities of investigating mixer

activity, while the academic gaps highlight underexplored areas in the literature. Each is

discussed in greater detail in Section 2.2.

1.3.1 Limited Law Enforcement Capacity

Investigating each mixer individually is impractical for law enforcement agencies due

to limited resources and the likelihood of investigative dead ends. It is more efficient

for investigators to focus on promising leads rather than analysing each transaction in

isolation (Goldsmith et al., 2020). Using a method like taint analysis (see e.g. Tironsakkul

et al., 2020) can help in reducing the number of potential output addresses, but these

methods are plagued by the inherent uncertainty of heuristics. Therefore, developing

other ways to link pre- and post-mixing addresses can help law enforcement in focusing

their limited resources on the addresses that are most likely to be linked to an illicit input

address.

1.3.2 Absence of Direct Input-Output Correlation

Despite the potential benefits of linking pre- and post-mixing addresses (which we also call

de-mixing) for law enforcement, research on this topic is limited. Existing methods pre-

dominantly focus on classifying internal mixer addresses and transactions (Shojaeinasab

et al., 2023; Sun et al., 2022; Wu et al., 2021; Ye et al., 2024). The limited research

that is available on de-mixing typically depends on outdated mixers and algorithms (de

Balthasar & Hernandez-Castro, 2017; Hong et al., 2018), or heuristic assumptions (Tiron-

sakkul et al., 2020). Thus, a clear research gap exists for methods capable of correlating

pre- and post-mixing transactions. Addressing this would enable tracing illicit activities

even when mixer configurations remain unknown or rapidly evolve.
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1.3.3 Scarcity of Ground-Truth Data

A possible explanation for the limited research on input-output correlation is the general

scarcity of reliable ground-truth data on mixer transactions, as most studies mentioned

in the previous paragraph use self-labelled data. Since mixers intentionally obscure trans-

action trails, reliably labelling mixer-related addresses or matching pre-mixing addresses

to corresponding post-mixing addresses is very difficult. To mitigate this difficulty, re-

searchers commonly rely on heuristics (Tironsakkul et al., 2020; Wu et al., 2021), which

have limited accuracy. Alternative approaches involve creating self-labelled datasets (Sho-

jaeinasab et al., 2023; Sun et al., 2022; Wu et al., 2021; Ye et al., 2024). Even studies

employing externally verified data, such as Du et al. (2024), highlight the limited dataset

size as a critical constraint. Therefore, lack of ground-truth often leads to less reliable

and smaller datasets, presenting another research gap.

1.3.4 Limited General Analysis of User Transaction Patterns

Given the difficulty of directly linking pre- and post-mixing addresses, analysing user

transaction patterns offers a promising alternative. Current analyses of mixer transactions

often remain narrowly focused, either examining singular hacking events without focusing

on mixers (D. Y. Huang et al., 2018) or specific groups (Goldsmith et al., 2020), thereby

limiting their general applicability. Conversely, studies that do consider the broader con-

text, do this on an abstraction level too high for a focus on mixers (Rosenquist et al.,

2024; Vlahavas et al., 2024), limiting their usefulness when studying mixers. Hence, com-

prehensive analyses examining general transaction patterns across multiple users remain

scarce, yet are essential for better understanding how mixers are used.

In sum, practice and literature point to four intertwined shortcomings that any ef-

fective, non-regulatory response must overcome: (1) investigators lack the capacity to

follow the overwhelming volume of mixer outputs; (2) reliable, generalisable techniques

for correlating deposits with withdrawals remain elusive; (3) progress is hamstrung by the

scarcity of verified, ground-truth data on mixer flows; and (4) broad, cross-user analy-

ses of transaction behaviour (an avenue that could bypass some of these constraints) are

still rare. Addressing these gaps is essential if technical approaches are to complement

regulation and give law enforcement agencies practical methods against illicit mixer use.
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1.4 Research Objective and Questions

Reflecting on the use of mixers, regulation, and the societal and research gaps we identified,

we summarise our findings in a problem statement and use that to formulate a research

objective. After this, we posit research questions to guide our research.

Problem Statement Investigators must trace large volumes of mixer outputs with

limited resources while having no access to mixers’ internal mechanics. Regulatory reme-

dies (e.g., KYC obligations for custodial providers) are uneven across jurisdictions and

do not resolve the technical tracing challenge. Existing academic work on mixer output

prediction requires knowledge on internal mixer mechanics, relies on heuristics that do

not generalise, or requires ground truth at scales that are unavailable. Consequently, the

more practical direction of research is not to prove one-to-one links, but to prioritise likely

post-mixing candidates from observable, external transaction data, so that investigators

can focus effort where it is most productive. This means that, rather than identifying the

single correct address, we aim to select a subset of post-mixing addresses that is much

smaller than the total set of possible outputs and quantify the likelihood that the correct

address is within it3. This approach reduces the search space investigators must examine

while still capturing most of the likely candidates. We pursue this by relying on externally

observable transaction patterns rather than knowledge of a mixer’s internal mechanics,

supporting law enforcement in a way that has the potential to generalise across mixers.

Research Objective This framing leads to the following objective:

Research Objective

To identify externally observable pre- and post-mixing transaction patterns and use

these insights to develop a method that highlights the most probable post-mixing

patterns based on pre-mixing patterns. This probabilistic approach should reduce

the candidate set of post-mixing addresses, enabling investigators to focus their

efforts more effectively.

Reaching this objective addresses the four gaps identified in Section 1.3. We reduce

investigative workload by narrowing the candidate pool of post-mixing addresses (Gap 1).

We replace difficult one-to-one input–output linking with a pattern-based probabilistic
3For example, if there are 100 possible post-mixing addresses, our method might narrow this down to

20 and estimate that there is a 60% probability that the correct address is among them.
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approach (Gap 2). We use the ground-truth data of the now-defunct centralised Bitcoin

mixer called Bestmixer, further explained in Section 3.2 (Gap 3), and we focus on patterns

that can generalise across users rather than isolated cases (Gap 4).

Research Questions Given our research objective, we have established the following

main research question:

Main Research Question

To what extent do pre- and post-mixing Bitcoin transaction networks display pat-

terns that can be leveraged to narrow the pool of plausible post-mixing addresses

linked to a given pre-mixing address?

This study is guided by the following sub-questions:

Sub-question 1: How effectively can pre- and post-mixing wallets be clustered based

on aggregated address-level attributes?

Sub-question 2: How effectively can pre- and post-mixing addresses be clustered

using features drawn from their transaction network graphs?

Sub-question 3: How reliably do clusters formed from pre-mixing transaction pat-

terns predict the corresponding clusters in post-mixing transactions?

The first sub-question focuses on the most basic level: can we meaningfully group (i.e.

cluster) pre- and post-mixing wallets using only features of the individual addresses that

deposit funds into the mixer and receive funds from the mixer (such as activity duration

or balance)? This provides a baseline understanding of whether address-level attributes

alone carry useful patterns. How we define a wallet is further explained in Section 2.1.

The second sub-question adds more context by including the structure of transactions

surrounding a pre- and post-mixing address. By analysing patterns in the broader trans-

action graph (such as how connected an address is or how fast funds move through the

network) we assess whether this information improves clustering. This analysis therefore

includes multiple wallets and transactions as compared to the singular wallets analysed

in sub-question 1.

The third sub-question evaluates the predictive value of the clusters made for sub-
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question 2. Specifically, it asks whether knowing what pattern a user exhibits before

mixing helps us predict the kind of cluster they will fall into after mixing. If so, this

would allow us to reduce the pool of potential post-mixing addresses by focusing only on

those that match the pattern of the pre-mixing cluster.

1.5 Thesis Structure

This thesis is structured as follows. Chapter 2 provides the necessary background on

Bitcoin transactions and address clustering, followed by a review of existing literature on

mixer usage, illicit transaction patterns, detection techniques, and de-mixing approaches.

Chapter 3 outlines the methodology, including the conceptual model, data sources, and

analytical procedures used to address the three sub-questions. Chapter 4 presents the

results of the exploratory data analysis and of each sub-question in sequence. Chapter

5 discusses the findings, their scientific and practical implications, and outlines key lim-

itations and directions for future research. Finally, Chapter 6 concludes the thesis by

summarising the main insights and contributions.
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2 Bitcoin Fundamentals and Research Landscape

Chapter 2 establishes the essential context for this thesis by explaining Bitcoin transac-

tion mechanics, introducing address clustering, Bitcoin services, and reviewing existing

literature on mixing services. This provides the technical foundation for understanding

both the workings of Bitcoin and the research design, and clarifies how the gaps identified

in Chapter 1 were derived.

2.1 Understanding Bitcoin: Concepts and Mechanics

This section explains the core mechanics of the Bitcoin system, emphasising how users

engage with it through wallets and addresses, how value is transferred using the UTXO

model, and providing a brief overview of Bitcoin services. Understanding these concepts

is essential for this thesis, as we rely on wallet and address clustering to identify individual

users and analyse their transaction patterns. Differentiating between individual users and

Bitcoin services is also crucial, which is why this distinction is discussed.

2.1.1 Bitcoin Addresses, Wallets and the UTXO Model

Bitcoin transactions transfer value between users and are verified through digital signa-

tures using private keys (comparable to a bank PIN). Each recipient is identified by a

Bitcoin address, which is derived from their public key (similar to a bank account num-

ber). A Bitcoin wallet is software or hardware that manages a user’s private keys and

generates new addresses for receiving and sending funds. It allows users to initiate trans-

actions and track their balances. A wallet therefore contains multiple addresses belonging

to one user; this is a very important concept to understand. When we say that we “cluster”

addresses, we often mean that we group addresses as belonging to a single user, i.e. that

those addresses are most likely in the same wallet. In order to prevent confusion between

the concept of clustering in machine learning and Bitcoin address clustering, we will refer

to address clusters as wallets. When mentioning pre- and post-mixing addresses, keep in

mind that those addresses also belong to a wallet.

Bitcoin’s transaction system is based on the Unspent Transaction Outputs (UTXO)

model, where funds are represented as individual outputs from previous transactions

rather than stored in account-like balances. You can think of a UTXO as a cheque

with a certain amount of Bitcoin on it; if you receive three cheques, you can’t just merge
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them together into one big one.

If we look at the example in Figure 1 below, we see on the left that Alice has an address

A with 3 UTXO’s of 0.3, 0.4, and 0.6 BTC respectively. She received these UTXO’s as

transactions, and the address stores these transactions exactly like they were received.

They are therefore not aggregated like in a normal bank account. If Alice wants to send

0.5 Bitcoin (BTC) to Bob, she will have to combine UTXO’s because she does not own

a UTXO with 0.5 BTC. The address therefore chooses UTXO’s 1 and 2 as inputs to the

transaction, totalling 0.7 BTC. The transaction takes the two inputs and uses them to

create two new UTXO’s. Because Alice wants to transfer 0.5 BTC to Bob, one UTXO of

0.5 BTC is created. The amount that is left (0.2 BTC) is transferred to a new address

B belonging to Alice, minus a “transaction fee” that she has to pay. This new address is

called a change address, and belongs to Alice’s wallet.

In sum, Alice spends UTXO 1 and 2 to create UTXO 4 and 5. UTXO 4 is transferred

to Bob, while UTXO 5 is transferred back to Alice’s wallet but into a different address.

This model is essential to understanding the “Change Address Heuristic” discussed in the

next section.

Figure 1: Diagram of the UTXO model

2.1.2 Address Clustering

Although each address is publicly visible on the blockchain, it does not reveal its owner

or whether it is linked to other addresses. This is where address clustering becomes

essential: it allows analysts to infer which addresses likely belong to the same wallet
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or, in some cases, to the same user controlling multiple wallets. Address clustering uses

transaction-level heuristics to group addresses based on patterns that suggest common

control (Meiklejohn et al., 2013). Two commonly used heuristics are:

1. Common Input Heuristic: If multiple addresses are used as inputs in a single

transaction, they are likely controlled by the same user, since spending from them

requires access to all corresponding private keys.

2. Change Address Heuristic: When a transaction returns unspent funds to the

sender (see the UTXO model), this is typically done via a newly generated “change

address.” Identifying these change addresses helps link them to the sender’s wallet.

Once addresses are clustered, transaction analysis can shift from the address level to

a higher abstraction (such as wallets or users) enabling clearer insights into fund flows,

transactional patterns, and potential links to illicit activity. However, these clustering

methods are not foolproof. Users may adopt privacy-enhancing strategies like avoiding

address reuse or deliberately obfuscating transaction patterns to avoid detection. As a

result, clustering remains a process with uncertainty, making validation against ground-

truth data critical.

2.1.3 Bitcoin Services

Whereas an individual Bitcoin user generally controls a handful of addresses that are

activated only when the owner wishes to send or receive funds, Bitcoin services (see Ap-

pendix A.1 for an extensive list) operate as always-on infrastructure for thousands or even

millions of customers. Their wallets aggregate deposits, combine outputs, and forward

transactions at a scale that dwarfs typical personal activity. Because they intermediate

other people’s money, services usually fall under AML and KYC rules, making them at-

tractive choke points for regulation, but also prime targets for circumvention by illicit

actors who seek out no-KYC or lightly regulated providers. From an analytical perspec-

tive, this distinction is crucial: a single service wallet can represent the behaviour of

thousands of end-users, so clustering heuristics must first identify service nodes before

meaningful patterns of individual user behaviour can emerge.

15



2.2 Understanding Mixer Use: Insights from Prior Studies

In Section 1.3 we highlighted one societal and three academic gaps that steer the direction

of this thesis. In this section, we explain how we found those three academic gaps by

reviewing prior research on Bitcoin mixers across four themes. First, we zoom into mixer

users by exploring user security behaviour and perceptions of mixing services. Second, we

examine research pertaining to user transaction patterns associated with illicit activities.

Third, we look at internal mixer mechanics by discussing approaches to distinguish mixer

from non-mixer addresses. Fourth, we assess work related to linking addresses used to

deposit into a mixer (pre-mixing addresses) with those used to withdraw from it (post-

mixing addresses). Finally, we aggregate the findings of this literature review to distil the

three academic gaps that steer the direction of this thesis.

2.2.1 Users of Mixers

Crawford and Guan (2020) investigated the features, public perception, and success rates

of 69 Bitcoin mixing services by analysing public discussions on forums and the operational

characteristics of the mixers. The study revealed that although Bitcoin mixer users pri-

oritised privacy, mixing services faced significant challenges in establishing user trust due

to widespread fraud, with 28% of mixers identified as scams. Users frequently discussed

mixer reliability on forums, and trust was often built through community endorsements.

The authors noted that users often sought features like random delays, randomised fees,

and non-logging policies to ensure anonymity. However, the limited trust in mixers and

the prevalence of scams deterred widespread adoption despite strong privacy demands.

Miedema et al. (2023) analysed ground-truth transaction data from the centralised

mixing service BestMixer to understand user behaviours. The study explored how users

attempted to mitigate risks such as attribution or scams. The findings revealed limited

adoption of security measures like IP obfuscation and the use of multiple output addresses.

Despite this, users trusted the service with substantial funds. The study also highlighted

user reliance on mixers despite significant information asymmetry and potential regulatory

risks. This is an interesting result when compared to Crawford and Guan (2020), and

might be explained by the fact that BestMixer was perceived as a more established and

trusted service.

The limited research on mixer users highlights the central role of trust, yet also suggests
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that users often invest minimal effort into securing their anonymity. The findings indicate

that, despite the emphasis on privacy, many users do not adopt comprehensive strategies

to protect it, relying instead on the perceived trustworthiness of the mixer itself. Notably,

existing studies do not consider users’ full transaction histories when assessing behaviour.

This oversight may obscure important patterns, such as careless routing of Bitcoin into

and out of mixers, which could compromise anonymity.

2.2.2 Transaction Behaviour Involving Illicit Activities

Vlahavas et al. (2024) took a broad view of Bitcoin transactions using an unsupervised

machine learning method, which resulted in multiple distinct user clusters. They showed

that while the largest cluster consisted primarily of low-input, low-output transactions

akin to regular users, other clusters were more indicative of high-volume services, mining

pools, or potentially illicit operations. One smaller subset exhibited comparatively higher

fees and frequent reliance on CoinJoin4-like transactions, underscoring patterns more

aligned with anonymisation or mixing attempts. Although their study did not focus on

mixers specifically, it highlighted how user activity in Bitcoin was far from uniform: some

participants followed ordinary payment habits, while others employed more sophisticated

methods, including features consistent with laundering techniques.

D. Y. Huang et al. (2018) performed a two-year measurement study of ransomware-

related transactions. They followed ransomware payments as they moved across the

blockchain. The authors noted that mixers played an important role in helping ran-

somware operators obscure the destination of ransom payments. Specifically, once victims’

funds reached the ransomware’s wallet cluster, the authors observed that attackers often

moved those Bitcoins to a mixer before cashing out at an exchange, thereby complicating

efforts to link the funds to real-world identities. However, the authors did not describe

specific patterns associated with mixing, i.e. how the attackers moved funds to mixers.

Rosenquist et al. (2024) analysed money flows to and from Bitcoin addresses associated

with a variety of illicit activities and provided a characterisation of transaction patterns.

They found that a small elite of addresses collected the majority of criminal funds and

that mixers acted as the main hub connecting different crime types. Mixing services were

connected to far more counterparties and more funds flowed through fewer wallets than
4CoinJoin is a transaction method that combines multiple senders’ inputs and outputs into one trans-

action, obscuring which inputs paid which outputs. It is a decentralised mixing protocol.
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any other illicit-use category. This pattern implied that either a small number of opera-

tors controlled most mixers or that large numbers of offenders channelled their proceeds

through the same few services. When the authors traced outgoing flows from reported

abuse addresses, they found that mixers functioned as “bottlenecks” for laundering crimi-

nal funds. However, the patterns towards mixers that the authors observed are relatively

basic and do not describe in detail how funds flowed towards the mixers.

Goldsmith et al. (2020) analysed six real-world hack transaction networks to examine

how two distinct hacking groups laundered Bitcoin after compromising exchanges, includ-

ing their use of mixing services. The temporal dynamics of the subnetworks were most

informative: how quickly hackers offloaded their coins and whether they used mixers con-

sistently or only at the final stage. One group (‘alpha’) gradually dispersed stolen funds,

often routing them through intermediary addresses and potentially into mixers over time,

while the other (‘beta’) held large sums and then sent them in bursts to mixers or ex-

changes within a short window. This emphasis on the timing of mixer interactions, not

just their presence, allowed investigators to distinguish between laundering strategies and

clarified when criminals engaged mixing services and how they accelerated the cash-out

process.

Collectively, these studies illustrate that mixers play a key role in obscuring illicit

funds and have spurred initial attempts to characterise how criminals leverage these ser-

vices. Nonetheless, existing work either adopts a high-level perspective on mixer usage or

examines only narrow case studies of specific hacking or ransomware groups. So while re-

search on transaction patterns surrounding mixers does exist, explorations of transaction

patterns of mixer users specifically remain sparse.

2.2.3 Mixer Detection

Shojaeinasab et al. (2023) analysed transaction patterns of three different mixers after

creating their own dataset by using said mixers. They uncovered global patterns that

allowed them to construct an algorithm that could label transactions as belonging to

a mixer. They explicitly mentioned the difficulties of acquiring a large dataset, so they

settled for a smaller dataset. Because of this, the validation of their algorithm was difficult.

Similarly, Wu et al. (2021) proposed both a general abstraction model for mixing ser-

vices, and a heuristic algorithm to identify mixing transactions. They used the algorithm
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to examine real-world mixing services to reveal their mechanisms and role in criminal

activities, shedding light on one part of their three-part abstraction model. They were

able to construct a larger dataset of mixer input and output transactions by performing

experiments and using public APIs. They were therefore able to validate their model,

which had a high accuracy of correctly labelling transactions.

Sun et al. (2022) developed a classifier model based on deep learning that could clas-

sify transactions as either normal or mixing transactions. As input for the model, they

use the entire transaction tree linked to a certain transaction, which is an interesting

approach since it doesn’t just consider local features but places a transaction in a larger

context. They used a larger dataset constructed from a number of heuristics to determine

involvement with a mixing service, which is a limitation as they do not have access to

ground-truth or human-labelled data.

Ye et al. (2024) advanced mixing detection by first clustering mixer addresses into dis-

tinct roles based on their transaction patterns, such as those primarily collecting, redis-

tributing, or aggregating funds. These clusters then informed an ensemble of classification

machine-learning models which evaluate both transaction-specific features (e.g. amounts

and frequencies) and topological properties (like centrality). By mapping each address to

one of the identified roles and then applying this dual-layer classification, they were able

to flag mixing addresses with great accuracy. The authors acknowledged that a limitation

was that they used a relatively small dataset, which could have biased their model.

The research above shows that methods to cluster and classify addresses belonging to

mixers are plentiful. However, a limitation for all of these studies is that there is a lack

of verified and complete ground-truth data to rigorously test the models. To validate

their models, they often use datasets that were labelled based on heuristics, which are

less accurate and robust than ground-truth data.

2.2.4 De-mixing Research

We define de-mixing as the process of analysing and deconstructing a mixer’s operations to

reliably link input transactions with their corresponding output transactions. Achieving

this undermines a mixer’s ability to conceal fund flows, thereby negating its primary

purpose.

de Balthasar and Hernandez-Castro (2017) examined how mixers like Darklaunder, He-
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lix, and Alphabay actually functioned, showing that their reliance on central addresses,

incomplete obfuscation algorithms, and narrow traffic patterns opened them up to practi-

cal de-mixing. By making a series of test transactions and tracing the flows, the authors

revealed how easy it was for an external observer to correlate inputs and outputs, es-

pecially given certain typical mixer behaviours and features. Their findings emphasised

how simple missteps such as storing users’ transaction histories ultimately allowed both

criminals and law enforcement to ‘unwind’ the mixing process. However, mixers have

become more sophisticated since then, so the ease with which the authors were able to

de-mix the mixers has diminished.

Similarly, Hong et al. (2018) proposed a de-mixing algorithm for Helix with a very

high accuracy rate. However, the same limitations applied to this study as they did

to de Balthasar and Hernandez-Castro (2017), as Helix was an old mixing service and

technology has advanced since then.

Tironsakkul et al. (2020) proposed a tracking method called address taint analysis,

which shifted the focus from traditional transaction-level taint analysis to an approach

that tracked Bitcoin at the address level. By applying this technique to different mixing

transaction samples, the study demonstrated that the technique held promise for recon-

necting deposited Bitcoins with their withdrawn counterparts. However, the authors

acknowledged limitations such as the relatively high number of potential outputs, chal-

lenges in performing the technique effectively without internal knowledge of the mixer,

and potential inaccuracies or false positives due to improper use of filtering criteria.

Du et al. (2024) set out to unmask users of Tornado Cash, the best-known mixer

on Ethereum (the second-largest cryptocurrency after Bitcoin) that criminals frequently

used to launder stolen crypto. The authors first converted every Tornado deposit and

withdrawal into a graph with user addresses as nodes and interactions with the mixer

as edges. They also attached basic facts to each node: how many times it interacted

with the mixer, when, how much fee it paid, etc. The authors then trained a Graph

Neural Network link-prediction model to link pre-mixing to post-mixing nodes. To train

and test the model, they obtained 103 examples of known pre- and post-mixing address

pairs, along with larger artificial sets. Their model correctly linked hidden pairs far better

than earlier methods (up to 64% higher accuracy) and ran efficiently even on millions of

transactions. The work showed that simple timing and usage patterns around Tornado
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Cash provided promising leads for de-mixing, though the authors conceded that their pool

of “ground-truth” examples was still small and that future mixers might adapt.

In sum, there has been limited (recent) research on de-mixing mixers, though de-mixing

research of Ethereum-based mixer Tornado Cash comes very close. While traditional

taint analysis could hold promise for Bitcoin-based mixers, other methods rely on old and

error-prone mixing algorithms to de-mix. Besides that, ever-evolving mixing algorithms

make it difficult to establish a reliable, generalisable approach to de-mixing that remains

effective against newer, more sophisticated mixing techniques. Finally, even for successful

de-mixing models, obtaining ground-truth data for training and testing remains difficult.

2.2.5 Academic Gaps

As discussed in Section 1.3, this chapter identifies three key academic gaps based on the

analysis of the four thematic areas.

Absence of Direct Input-Output Correlation The first gap arises from the dis-

cussion on mixer detection and de-mixing in the final paragraphs of this chapter. While

a substantial body of research focuses on identifying addresses associated with mixing

services, far less attention has been paid to the direct correlation between pre-mixing and

post-mixing addresses. Existing studies on this topic are either limited in scope, outdated,

or focus on blockchains other than Bitcoin.

Scarcity of Ground-Truth Data The second gap concerns the consistent reliance

on internal or proprietary knowledge of mixers in studies on detection and de-mixing.

Many of these studies explicitly cite the lack of ground-truth data as a major limitation,

highlighting its scarcity. Incorporating ground-truth data could significantly enhance the

validity and robustness of such analyses.

Limited General Analysis of User Transaction Patterns The third gap emerges

from the broader literature on mixer usage and illicit transaction behaviour. Although

extensive research exists on transaction patterns related to illicit activity, fewer studies

specifically examine the transaction behaviour of mixer users. Moreover, there is a general

lack of research on how users interact with mixing services, both in terms of individual

behaviour and broader usage patterns.
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3 Research Design

This chapter presents the methodological approach used to investigate transaction pat-

terns of mixer users. The chapter begins by outlining the conceptual framework, followed

by a detailed description of the data sources, preprocessing steps, and analytical methods

used to cluster and compare pre- and post-mixing data.

3.1 Conceptual Framework of Clustering Mixer Users

The conceptual framework provides a structured lens to systematically analyse the pre-

and post-mixing patterns of users. It breaks down the mixing process into distinct phases

and clarifies how these phases may relate to each other. This is essential to this research,

as it ensures that our analysis is grounded in a clear, theory-informed understanding of

mixer use.

Hypotheses and Conceptual Model Wu et al. (2021) abstract mixing as a three-

phase sequence: (1) receiving inputs, (2) mixing, and (3) producing outputs. While Wu

et al. (2021) focus on Phase 2, this research concentrates on Phases 1 and 3 and broadens

their scope.

We posit two hypotheses that are coupled to our research questions:

H1 Contextual patterns: users exhibit stable pre- and post-mixing transaction patterns

beyond the singular deposit/withdrawal.

H2 Phase linkage: characteristics observed in Phase 1 are informative about those in

Phase 3 (i.e., what Phase 1 looks like says something about what Phase 3 looks

like).

In Wu et al. (2021), Phase 1 refers narrowly to transferring funds into the mixer and

Phase 3 to the mixer sending funds to new addresses. We hypothesise that meaningful

transactional patterns exist in the wider context around these actions. Put differently,

how funds are wired towards a mixer and how users manage them afterwards may reveal

characteristic patterns. This is embedded within broader behavioural routines rather than

being reducible to a single deposit and withdrawal and shapes H1.

To reflect this broader scope, we redefine Phase 1 as “Input preparation and transfer”

(the build-up and the deposit), and Phase 3 as “Output handling and redistribution” (the
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withdrawal and subsequent distribution). Each phase is analysed in a 60-day window

before the deposit and after the withdrawal as described in Section 3.5.1. With these

newly defined phases we shape H2. The plausibility of H2 is consistent with evidence

that many criminal cash-out procedures follow relatively simple, repeatable routines (e.g.,

Nazzari (2023) on Conti’s laundering patterns).

Figure 3.1 visualises our conceptual model. For each mixing event, Phases 1 and 3

comprise transaction networks5 that respectively precede and follow the core mixing op-

eration in Phase 2. Phase 2 is taken as a 72-hour interval (the maximum retention time

reported for Bestmixer). Bestmixer is our principal data source; see Section 3.2.

The transaction networks of Phases 1 and 3 are grouped into clusters using three

feature families: address-level, transaction-level, and graph-level characteristics. Address

and transaction attributes describe individual wallets and their histories; graph attributes

capture the structural properties of the local network. Table 1 summarises the features;

details follow in Sections 3.2.3 and 3.5.2.

Figure 2: Conceptual Model

Defining Clustering Clustering is an important concept for answering the research

questions because it lets us group mixer-users that exhibit similar patterns. Fung (2001)

defines clustering as “the grouping together of similar data items into clusters”. Witten

et al. (2017) extends this idea: “These [obtained] clusters should reflect some mechanism

at work in the domain from which instances or data points are drawn, a mechanism that
5A transaction network in Bitcoin is a directed graph: nodes represent wallets (or addresses, depending

on the aggregation level) and edges represent transfers, capturing the flow of funds.
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Table 1: Overview of variables by attribute type

Address Graph Transaction

balance n_nodes value
totalSent n_edges timeDelta
totalReceived density
totalTxIn diameter
totalTxOut average_degree
totalAddresses max_degree
average_received average_betweenness
average_spent average_closeness
activity_duration degree_assortativity
transaction_frequency num_output_addresses
spent_txo_ratio

causes some instances to bear a stronger resemblance to one another than they do to the

remaining instances”.

Following these definitions, we are looking for Bitcoin wallets (for sub-question 1) and

transaction graphs (sub-question 2) that bear similar attributes and can therefore be

clustered. The goal is to see whether a user belonging to a certain pre-mixing cluster has

a higher likelihood of belonging to a certain post-mixing cluster. If so, this would unveil

a mechanism where the way users route funds into a mixer says something about the way

they redistribute their mixed funds. We therefore use clusters as a concrete representation

of the transactional patterns we aim to analyse.

3.2 Data Sources and Pre-processing

This study relies on two primary sources:

1. Bestmixer Data Bestmixer was a centralised mixing service that was taken down

in 2019. The dataset is provided by law enforcement, and gives us a large amount

of ground-truth data to work with. The dataset contains

• an orders file (customer requests sent to Bestmixer),

• a list of Bestmixer wallet addresses, and

• the transaction history of those wallets.

2. Chainalysis Reactor Reactor is a blockchain investigation platform developed by

Chainalysis that provides address and wallet data. We distinguish between non-
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exposure and exposure data. A list of non-exposure data used is shown later in

Table 4. Exposure data shows direct and indirect exposure of addresses to certain

categories. A full list of these categories can be found in Appendix A.1. Direct

exposure indicates that an address directly transacts with another address with a

category label. Indirect exposure identifies the services or entities that ultimately

transact with an address; even when the funds first pass through one or more ordi-

nary addresses on the way.

The goal of the pre-processing in this chapter is to construct a list of valid Bestmixer

orders that link pre-mixing addresses to corresponding post-mixing addresses, each con-

verted into a wallet and enriched with relevant attributes from the Chainalysis API. The

following subsections explain this process in three steps: (1) describing the raw data,

(2) filtering the Bestmixer orders to retain only valid transactions, and (3) aggregating

the pre-mixing and post-mixing addresses into one wallet using address clustering as de-

scribed in Section 2.1.2. The resulting dataset contains one pre-mixing wallet and one

post-mixing wallet per order, both belonging to the same user.

3.2.1 Bestmixer Data

The Bestmixer dataset provides ground-truth information that enables us to analyse real-

world mixer usage. It consists of three files.

Orders A court-authorised wiretap captured network traffic for order placement to

Bestmixer.io during four intervals:

2018-07-18 – 2018-08-13 clear-web only

2018-11-12 – 2019-01-06 clear-web only

2019-02-07 – 2019-03-06 clear-web only

2019-03-21 – 2019-05-22 clear-web only

2019-04-15 – 2019-05-22 Tor only

Each captured request yielded the variables listed in Table 2. “Clear-web only” refers

to orders placed with the clear-web website that people were able to access through the

“regular” internet. For the last time period mentioned, network traffic was observed for

orders placed from the TOR browser. The TOR browser can be used to access the dark

web anonymously, which is an unregulated form of the internet.
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Table 2: Order-file fields

Field Description

deposit_address Unique address generated by Bestmixer for the customer’s deposit
datetime Timestamp in Central European Time when the order page was served
ip_address Source IP of the HTTP request
status Last status displayed to the customer
deposit_amount Amount received at deposit_address
coin Cryptocurrency used (BTC, BCH, or LTC)
language UI language chosen
application Browser cookie identifying the session
uid Customer identifier (supplied or auto-generated)
user_agent Full HTTP User-Agent string
order_id Mixer-side numeric order identifier
out_address[n ] One or more payout addresses specified by the customer

Wallet Addresses A list of roughly 200,000 Bitcoin, Bitcoin Cash, and Litecoin ad-

dresses belonging to Bestmixer.

Transaction History The Bestmixer transaction log comprises roughly 250,000 rows

(Table 3). It shows the internal transactions of Bestmixer. We use this log together with

the orders file to confirm which orders were actually received by Bestmixer.

Table 3: Wallet-log fields

Field Description

confirmed Boolean flag; true if the transaction settled
date Block time of the transaction
type Type of transaction: sent to, received with, or payment to yourself
address Bestmixer wallet involved in the transaction
amount Value transferred in the transaction
id Mixer-side transaction identifier

3.2.2 Obtaining Valid Orders

Because not all orders captured by the wiretap were actually paid for and executed, we

don’t know which orders are actually valid. To determine this we use both the orders file

and the transaction log. We first check the transaction log for validity to be used later on

in the process. We then use the orders file to determine which orders are valid. Detailed

pre-processing steps including how many data points were removed in each step are found

in Appendix A.2.
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Transaction Log We start with 241,713 unverified data points. After removing un-

confirmed datapoints and internal or irrelevant payments, we are left with 241,270 valid

data points detailing internal Bestmixer transactions.

Orders We start with 36,083 orders, and only keep Bitcoin orders, remove duplicates

and cancelled orders, and cross-verify orders with the previously cleaned transaction log.

This leaves us with 26,092 valid orders. However, in Section 3.2.3 we find that we can’t

obtain information on a number of post-mixing addresses associated with an order and

therefore have to remove 186 orders. Thus, our final dataset contains 25,680 unique orders.

Note that this is not a dataset on unique users, as some orders are placed by the same

user at different times.

3.2.3 Creating Pre- and Post-Mixing Wallets

We aggregate deposit and withdrawal addresses into wallets (address clusters; see Section

2.1.2) to analyse patterns at the user level.

Pre-mixing Wallets For each validated order we start from the deposit_address,

which is unique per order. Using the Chainalysis Reactor API, we retrieve all funding

transactions into this address and aggregate the funding addresses into a single pre-mixing

wallet using the Common-Input Heuristic. Because each deposit address is order-unique,

these funding addresses belong to the ordering user. We then enrich this wallet with

non-exposure and exposure attributes used later in the analyses. We extract exposure

data directly from the Chainalysis API. For non-exposure data, we use both Chainalysis

API output and derive several variables ourselves. Table 4 lists all non-exposure features

we use.

Post-mixing Wallets When placing an order, users specified the address(es) to receive

their mixed funds. Because Chainalysis does not cluster these post-mixing addresses

(lacking access to the Bestmixer dataset thereby not knowing that these addresses likely

belong to the same user), we aggregate individual post-mixing addresses ourselves to form

custom post-mixing wallets.

However, it is not guaranteed these addresses all belong to the same person or entity

as the original order. There are five possibilities:
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Feature Description

balance Total balance of the wallet (# BTC)
totalSent Total sent amount (# BTC)
totalReceived Total received amount (# BTC)
totalTxIn Number of incoming transactions
totalTxOut Number of outgoing transactions
totalAddresses Number of addresses in the wallet
average_received Average received per transaction (# BTC / tx)
average_spent Average sent per transaction (# BTC / tx)
activity_duration Active duration (days)
transaction_frequency Transactions per day
spent_txo_ratio Output-to-input transaction ratio

Table 4: Overview of features of wallets.

1. All post-mixing addresses belong to the original ordering entity.

2. They belong to a different entity.

3. They belong to a mix of the original entity and another non-service entity.

4. They belong to a service (e.g., NGO, darknet market, etc.).

5. They are a combination of service and non-service entities.

For our research, differentiating between the first three cases is unnecessary. Our focus

is on identifying pre- and post-mixing patterns and assessing whether pre-mixing clusters

can predict post-mixing clusters, regardless of who owns the post-mixing addresses.

The fourth case (payments to a service) does not affect our analysis but does prevent

the creation of complete transaction graphs. This is because services have too high a

transaction volume to model into a usable graph. The fifth case is problematic, as service

wallets (due to high transaction volume) would distort our variables. Excluding only

service wallets would misrepresent the data, so we choose to remove these mixed cases

entirely. This affects 186 data points (0.7% of our data).

3.3 Exploratory Data Analysis

Prior to clustering, we conduct an Exploratory Data Analysis (EDA) to better understand

the structure and distribution of the variables included in the wallet datasets. The primary

aims of the EDA are: (1) to assess the presence of outliers and data sparsity, (2) to evaluate

differences between service and non-service wallets, and (3) to inform appropriate feature
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engineering6 choices for subsequent analyses. We perform the same analyses for both pre-

and post-mixing wallets.

We begin by distinguishing service wallets (e.g., exchanges, darknet markets) from non-

service wallets, as service wallets tend to significantly differ from non-service wallets. For

wallets without a Chainalysis-provided category label, we introduce a separate missing

category to retain these data points for further analysis. We then visualise the category

distribution on a log scale and examine the empirical cumulative distribution functions

(ECDFs) for both non-exposure and exposure attributes. The non-exposure attributes

are normalised prior to ECDF plotting, due to their widely differing scales. In contrast,

exposure attributes are plotted without normalisation, as they are already expressed as

percentages. The results of the EDA are found in Section 4.1.

3.4 Clustering Wallet Attributes

The first sub-question is the following:

SQ 1

How effectively can pre- and post-mixing wallets be clustered based on aggregated

address-level attributes?

After pre-processing, we retain 25,680 pre-mixing wallets and 18,487 post-mixing wal-

lets (we only look at post-mixing wallets linked to an order without a service pre-mixing

wallet). To address this sub-question we use the unsupervised algorithm HDBSCAN,

which groups wallets with similar attributes while labelling unassigned cases as noise.

Clustering of wallets on the blockchain is a well-established approach as demonstrated by

for example Vlahavas et al. (2024), Chordia and Shinde (2024), or Kehinde et al. (2024).

3.4.1 Clustering Method

Algorithm: HDBSCAN Although several clustering methods are available, we choose

the HDBSCAN algorithm to answer this sub-question (McInnes et al., 2017). This is a

clustering method that identifies clusters of data points based on density. Put simply,

HDBSCAN looks for places in the data where many points are packed closely together
6Feature engineering refers to the process of creating, transforming, or selecting variables to improve

the performance of machine learning models. It helps ensure that the input data is in a useful form for
analysis.
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and defines these as clusters, while points that are scattered too far from any cluster are

labelled as noise and left unassigned.

There are several reasons why HDBSCAN is well suited for the dataset we are using:

1. Classifying noise: the HDBSCAN algorithm does not include noisy points into

clusters, but classifies them as ’noise’. This is useful for our data since we know

that it is quite sparse and has a lot of noise because of this.

2. Size of clusters : HDBSCAN allows for the creation of clusters of differing sizes.

This is well suited to our dataset since we know that the dataset is quite skewed,

so the formation of clusters of equal size is unlikely.

3. Intuitive hyperparameters : the inputs for HDBSCAN are the minimum number

of points a cluster should include (min_cluster_size) and the minimal amount of

neighbours a core point needs (min_samples). These hyperparameters are generally

intuitive to use because they simply allow us to directly influence the size and the

specificity of the clusters (Hunt & Reffert, 2021).

3.4.2 Feature Selection and Data Preparation

Before clustering data, it must first be carefully prepared. This section explains how

relevant features were selected, how the data was grouped for analysis, and which other

preparation steps were applied to make the variables suitable for clustering.

Variables and Clustering Scope We use variables that are externally observable (see

Table 4), deliberately excluding those unique to Bestmixer. This ensures generalisability

to other mixers for which only open-source data is available.

Because service entities (e.g. exchanges, gambling sites) dominate many attribute

values, their high values can overshadow that of individual users. To counter this, we run

the clustering algorithm both on the full dataset and on a subset restricted to Chainalysis’

missing category, which typically captures smaller, less visible wallets likely to belong to

individuals.

Scaling The dataset also has a large number of features with very different scales and

highly skewed distributions, which is further highlighted in Section 4.1. If untreated, this

can distort clustering: large-valued features dominate distance calculations, and heavy
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tails cause outliers to overwhelm clusters. We therefore apply the Yeo–Johnson transfor-

mation (Yeo & Johnson, 2000) using scikit-learn’s PowerTransformer. This method

reshapes skewed distributions to be more symmetric, bringing all features closer to a com-

parable, bell-shaped form. This makes it easier for the clustering algorithm to compare

features fairly.

Dimensionality Finally, we split the variables into two groups: non-exposure (11 vari-

ables) and exposure (63 variables). Analysing all 74 variables at once would lead to

the “curse of dimensionality” (Aggarwal et al., 2001): as the number of dimensions grows,

data points become increasingly spread out, making distances less meaningful. This means

that the clustering algorithm can group the data points less effectively. By separating the

feature sets, we reduce this effect and allow for more stable clustering.

3.4.3 Parameters and Model Evaluation

Parameter selection To select the optimal HDBSCAN parameters, we perform a grid

search7 over both min_cluster_size and min_samples, varying each from 2 to 1002 in

steps of 50. We choose a grid search because it is a straightforward method to test a large

number of parameters. We evaluate the parameters on clustering performance metrics

(described in the next section). Since the metric scores level off before reaching 1002, we

do not expand the range beyond that point. Full grid search results are covered in Section

4.2.

For the full dataset, we use both metric scores and visual inspection of the results

to choose the most suitable parameter combinations. In particular, we look at whether

the resulting clusters align with the known Chainalysis service categories. In some cases,

a slightly lower-scoring model is preferred if it produces clearer and more meaningful

groupings; for instance, if exchanges are placed in their own cluster rather than being

merged with unrelated services. This balance between statistical fit and interpretability

allows us to select clustering results that are both technically sound and analytically

useful.

We repeat this process separately for the subset of missing wallets. Since all of these

wallets fall under the same category and lack service labels, we cannot assess cluster
7A grid search is a systematic way of finding the best parameters for a model by trying out all possible

combinations within a predefined set, and comparing their performance.
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quality based on known types. Instead, we focus on whether the clustering output shows

enough variation to reveal different patterns. For example, we avoid results where almost

all wallets are grouped into just two or three large clusters with one dominating cluster,

as this would offer little insight into the diversity of wallet attributes.

Model evaluation With unsupervised machine learning such as clustering, there are

no true labels given in the data. As a result, you cannot directly measure how “correct”

the model’s classifications are. Instead, clustering metrics must be used. However, as

Brun et al. (2007) point out, it can be challenging to find metrics that effectively evaluate

unsupervised models. We look towards the literature to find three metrics that are used

often: the Silhouette Score, Davies-Bouldin Index, and Calisnki-Harabasz Index.

The Silhouette Score has been used before in clustering users in Bitcoin transaction

networks (Vlahavas et al., 2024). The other metrics have been used alongside the Sil-

houette index before to evaluate clustering algorithms (Ahmed Al-Kerboly & Al-Kerboly,

2024; Ashari et al., 2023; Pecuchova & Drlik, 2022). The metrics describe the following:

1. Silhouette Score: Measures how well each data point fits within its assigned

cluster compared to other clusters. A high score (closer to 1) means that points are

close to others in their own cluster and far from points in other clusters, indicating

that clusters are well-separated (Rousseeuw, 1987).

2. Davies-Bouldin Index: Compares how spread-out each cluster is and how far

apart clusters are from one another. A lower score indicates that clusters are com-

pact and clearly separated (Davies & Bouldin, 1979).

3. Calinski-Harabasz Index: Measures how distinct and dense the clusters are by

comparing the variation within clusters to the variation between clusters. A higher

score indicates better-defined, well-separated clusters (Caliński & Harabasz, 1974).

Finally, we compute a ranking of parameter-combinations which result in the most

desirable combination of all three evaluation metrics. This means that we consider all

three metrics evenly: we sum the ranking of all three metrics and then pick the highest

ranking to determine the best parameters.
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3.5 Creating and Clustering Transaction Graphs

The second sub-question is the following:

SQ 2

How effectively can pre- and post-mixing addresses be clustered using features

drawn from their transaction graphs?

To answer this question, we convert each raw Bestmixer order into a three-step pipeline:

1. Build a directed Bitcoin wallet graph that captures all transactions preceding the

deposit or following withdrawal;

2. Compress that graph into a compact numerical representation (an embedding) using

a Graph Autoencoder (GAE);

3. Group the resulting embeddings into clusters with k-means clustering algorithm.

This methodology is well established in prior work on Bitcoin and other networks.

Graph topological features are frequently used for clustering (Gaihre et al., 2019), and

graph embeddings provide richer structural information. Several studies apply nearly the

same pipeline: Shah et al. (2021) use a similar workflow with a different embedding model;

Nan and Tao (2018) combine a GAE with k-means to detect mixing services; and Emane

et al. (2024) cluster Bitcoin embeddings from a graph neural network. Together, these

examples show that our approach is firmly grounded in existing research.

This section explains how and why we execute the three methodological steps of this

sub-question.

3.5.1 Graph Construction

Our objective is to link pre-mixing patterns to post-mixing patterns at the user level.

Wallet attributes alone (balances, counts, frequencies) miss how funds are routed. By

constructing transaction graphs we capture connectivity and flow context around each

mixer interaction. This structural signal is exactly what our hypotheses require: if Phase 1

behaviour says something about Phase 3, that information will be reflected in the graph

patterns rather than in isolated attributes. This is why we construct transaction graphs.

We want to cluster these graphs to uncover patterns to analyse. Clustering algorithms
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need the data to be in a certain format to work, but graphs are irregular and not numerical

so clustering algorithms don’t work in it. A GAE turns each graph into a compact

embedding (list of numbers) that preserves the structure of the graph and with that the

information that it carries. How exactly that works is explained later in this section.

Data Preparation We exclude every order whose pre-mixing or post-mixing wallet is

tagged by Chainalysis as an exchange, darknet market, or other high-volume service. Such

wallets send and receive hundreds of transactions per hour, so any graph rooted in them

would explode in size, thereby introducing far too much noise for meaningful analysis.

After this filter the working set shrinks from 25,680 wallets to 18,487 pre-mixing graphs

and 13,237 post-mixing graphs.

The filter runs in two passes. Starting with 25,680 orders, we first drop any whose

pre-mixing wallet is a service, leaving 18,487 usable pre-mixing graphs. From that subset

we then drop orders whose post-mixing wallet is a service, ending with 13,237 post-mixing

graphs. This two-stage pruning gives us a clean set where each order has both a complete

pre-mixing graph and a complete post-mixing graph ready for comparison.

Creating the Graph For each order we build a directed multigraph in networkx, a

Python library for graph analysis. A directed multigraph is a network in which every

edge has a direction and any two nodes can share multiple parallel edges. We model the

graph as follows:

• Nodes represent Bitcoin wallets and carry the attributes mentioned previously in

Table 4.

• Edges are arrows between the nodes that represent transaction. They carry two

attributes: the amount of bitcoin transferred (value_per_tx) and the time before

the Bestmixer deposit or withdrawal from Bestmixer (timeDelta).

We model wallets (addresses grouped by Chainalysis address clustering heuristics) as

nodes rather than individual transactions. We do this because it keeps one node per

object we ultimately want to cluster and lets us attach address-level features such as

active duration, balance, and transaction frequency. If every transaction were a node, the

same wallet would explode into hundreds of nodes, introducing more noise.
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Graph Constraints Even after removing obvious service wallets, some wallets still act

as busy hubs. For example, there might be multiple service wallets present deeper in the

transaction graph. We need to find a balance between having enough information to find

patterns and preventing adding too much noise. To stop any single graph from blowing

up we apply three pragmatic limits.

Table 5: Graph construction constraints and rationale

Constraint Value Why

Transaction cap 189 incoming transac-
tions (95th percentile)

Removes extreme heavy-tailed wallets while
retaining the vast majority (95%) of cases
within the observation window.

Time window 60 days (pre-deposit
and post-withdrawal)

Limits including a wallet’s entire transaciton
history and thereby graph blow-up. Trade-off
between graph size and relevant information
(see Appendix A.3).

Depth limit 5 steps (hops) from
starting wallet

Balances reach with computational tractabil-
ity and aligns with prior work (Rosenquist et
al., 2024).

3.5.2 Graph Autoencoder

Clustering methods cannot directly analyse graph data. Therefore, we use graph embed-

dings. These embeddings simplify complex graphs into compact vectors (lists of numbers)

that preserve essential information about the graph’s structure and its attributes.

Graph Autoencoder Operation We generate graph embeddings using a Graph Au-

toencoder (GAE), specifically the implementation from the Pytorch Geometric library

(Kipf & Welling, 2016).

First, the GAE transforms the graph data into a mathematical representation called

an adjacency matrix. In this matrix, each row and column represent a node (a Bitcoin

wallet), and each entry indicates whether two nodes are connected by a transaction (an

edge). This provides a clear overview of the graph’s structure.

Next, the GAE incorporates additional features, such as transaction amounts and tim-

ing information. It does so by assigning these features to the nodes (for example, the

balance of an address) and edges (the transaction amounts or timing). Together, the

adjacency matrix and these features form the complete input to the GAE.

The GAE then learns embeddings through two stages:
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1. The encoder compresses the information from the adjacency matrix and node fea-

tures into compact embeddings for each node. Initially, the embeddings are ran-

domly assigned, but the GAE continuously adjusts them during training to better

reflect the structure and attributes of the graph.

2. The decoder takes these embeddings and attempts to reconstruct the original adja-

cency matrix as accurately as possible. After reconstruction, the decoder compares

its output with the true adjacency matrix. The difference between the reconstructed

and true matrices is called the loss. The GAE then adjusts the embeddings to reduce

this loss, thereby improving the quality of the embeddings.

The goal is simple: if the embeddings allow the decoder to accurately rebuild the

original graph, they must contain valuable information about the graph’s structure and

node characteristics. We stop training the GAE when its performance on a separate,

unseen part of the data no longer improves, meaning it has stabilised. This ensures the

embeddings capture general patterns rather than memorising specific training examples,

which is called overfitting.

Feature Selection and Graph Metrics To create useful embeddings, each node and

transaction in our graph is associated with certain features. Nodes have the same charac-

teristics as described in sub-question 1 for the same reasons mentioned there. Transactions

(edges) include two additional features: the transferred amount (value_per_tx) and the

time difference relative to when the deposit to or withdrawal from Bestmixer occurred

(timeDelta). Additionally, we calculate several metrics that describe the overall structure

of each graph, as summarised in Table 6.

Table 6: Graph-level metrics derived from transaction networks

Metric Description

n_nodes Number of wallets (nodes) in the graph
n_edges Number of directed transactions (edges)
density Ratio of actual to possible edges; network interconnectedness
diameter Longest shortest path between any two nodes
mean_degree Average number of connections per node (incoming + outgoing)
max_degree Maximum number of connections for a single node
avg_betweenness Average number of shortest paths passing through each node
avg_closeness Average closeness of each node to all other nodes
degree_assortativity Indicates if nodes tend to connect to nodes with similar degrees

(positive number), or nodes with different degrees (negative number)

36



Parameter Selection Three main choices affect the quality of the embeddings pro-

duced by the GAE:

• Number of embeddings : how many numbers each embedding should have. More

numbers can capture more details, but too many can cause the model to overfit

(memorise training data instead of generalise).

• Number of hidden dimensions : the complexity of patterns the GAE can learn inter-

nally. More layers help the model capture detailed patterns, but too many layers

also risk overfitting.

• Learning rate: how fast the model adjusts itself during training. A high learning

rate can speed up training but might cause unstable results; a low learning rate

leads to more stable but slower learning.

We determine the best settings through a grid search, testing different combinations as

shown in Table 7. The quality of each combination is judged by how accurately the GAE

can reconstruct graphs. This accuracy is measured by the total loss, which represents the

difference between the original graph and its reconstruction. A lower loss indicates that

the embeddings effectively capture the graph’s essential information.

Table 7: Hyperparameter Configuration

Parameter Values

Number of embeddings 2, 3, 4, 5, 6, 7, 8
Number of hidden dimensions 32, 64, 128
Learning rate 0.01, 0.005, 0.001

3.5.3 Clustering Method

Embeddings generated by GAEs typically do not form well-separated clusters. Instead,

they often occupy a single dense region (Kipf & Welling, 2016; Pan et al., 2018). Therefore,

the HDBSCAN clustering algorithm we used in sub-question 1 is not suited for this

analysis. HDBSCAN is a density-based clustering method that is designed to find clusters

of varying densities and shapes, and it tends to group uniformly dense data into a single

large cluster; exactly what we want to avoid.

Algorithm: k-means The k-means clustering method (MacQueen, 1967) is better

suited for this type of distribution, as it assumes that clusters are spherical and evenly
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sized. Since our embedded data is compact, continuous, and lacks clear density-based

separations, k-means can more effectively partition it into a predefined number of clusters.

Parameter Selection To choose the number of clusters (k) used in k-means clustering,

we employ the elbow method. The elbow method involves plotting the total variance within

clusters, called the within-cluster sum of squares (WCSS), against different values of k. As

k increases, WCSS naturally decreases. However, at some point, the improvement from

adding more clusters diminishes significantly. This point, where the curve sharply changes

direction (an “elbow”), indicates a suitable balance between complexity and explanatory

power. We select the number of clusters corresponding to this elbow point as the optimal

k.

Model Evaluation The embeddings created by the GAE tend to be evenly spread out

in space, without forming tight, separate groups (Kipf & Welling, 2016). This happens

because the GAE is designed to capture general patterns in the graph, not to create clearly

separated clusters. As a result, standard clustering evaluation scores like the Silhouette

Score do not work well here, because they rely on there being clear gaps between clusters.

To check whether the resulting clusters are meaningful, we use a statistical test called

ANOVA (Analysis of Variance). This test tells us whether the variables we are analysing

are significantly different between the clusters. If they are, that suggests that the clusters

reflect real differences. Finally, we inspect the clusters manually to see if we can describe

clear profiles for each one based on their features.

3.6 Post-Mixing Cluster Prediction

The final sub-question is:

SQ 3

How reliably do clusters formed from pre-mixing transaction patterns predict the

corresponding clusters in post-mixing transactions?

To answer this, we use the cluster labels previously assigned to each pre- and post-

mixing transaction graphs (from sub-question 2). By linking each pre-mixing graph to

its corresponding post-mixing cluster, we can directly evaluate how closely the pre- and

post-mixing clusters align.
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The use of graph embeddings as input to prediction models is well established in

the literature. For instance, Z. Huang et al. (2023) generated embeddings with a graph

neural network to predict the service category of a given address. Likewise, Lo et al.

(2023) employed graph embeddings in a classification model to distinguish between licit

and illicit wallets and Koronaios and Koloniari (2025) used embeddings as features in

a classifier to label addresses as malicious or non-malicious. Overall, numerous studies

demonstrate that graph embeddings can serve as effective features for supervised machine

learning models.

Only some post-mixing addresses (those labelled as missing) are clustered in sub-

question 2. Post-mixing addresses belonging to known services (e.g., exchanges or darknet

markets) were previously excluded from clustering. To account for these addresses, we

group all known service addresses into a separate third cluster. Additionally, some post-

mixing graphs contained just a single node (due to no further transactions within our

60-day observation window), which could not be embedded by the GAE. We assign these

1,522 single-node addresses to a distinct fourth cluster. This ensures each pre-mixing

graph is linked to exactly one post-mixing cluster.

In this section, we first statistically evaluate the strength of association between pre-

and post-mixing clusters. Then, we build predictive models to classify post-mixing clusters

based on pre-mixing information. Finally, we discuss the evaluation methods and metrics

used to assess the performance of these predictive models.

Statistical Testing for Cluster Association We first perform a statistical test,

known as the Chi-squared test of independence, to evaluate if there’s a meaningful rela-

tionship between pre- and post-mixing cluster assignments (Pearson, 1900). To measure

the strength of any observed relationship, we use Cramér’s V, a metric ranging from 0

(no association) to 1 (perfect association), which helps interpret the degree of association

intuitively (Cramér, 1946).

Prediction Supervised machine learning models used for prediction require input vari-

ables that are used as predictors. Since we already combined structural and attribute

information into embeddings (from sub-question 2), we directly use these embeddings

as predictors because they directly represent our transaction graphs. Additionally, we

include the original deposit_amount, as we expect it to strongly predict post-mixing
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activity (since post-mixing transaction values are closely tied to pre-mixing amounts).

Lastly, we include pre-mixing cluster labels to test whether the original cluster assign-

ments themselves provide predictive value.

Tree-based ensemble methods such as Random Forests and Gradient Boosting are

well-suited for our classification task. These models handle mixed-type data effectively

and do not require a lot of feature engineering. The models use a collection of simple

decision-making rules to classify data points into different groups. They decide on these

rules by trial-and-error. Random Forests offer strong baseline performance, robustness to

overfitting, and interpretable metrics for feature importance (i.e. which features drive the

prediction) (Breiman, 2001). We also use a Gradient Boosting prediction model. This

model iteratively corrects the errors of previous trees and performs well on structured

data (Chen & Guestrin, 2016).

Parameter Selection To choose the right parameters for the models, we ran the

grid search seen in Table 8. Given the large number of hyperparameters and the wide

range of possible values, an exhaustive grid search would be computationally infeasi-

ble. To overcome this, we use a method called Randomized Search Cross-Validation

(RandomizedSearchCV). This method randomly samples a manageable number of pos-

sible settings and then evaluates each combination systematically.

Specifically, we perform 500 random trials, each time testing a unique combination

of settings. To make sure the results are reliable, we use a process called 5-fold cross-

validation. This means we first split our training data into five smaller parts (folds). We

then train our model five times; each time using four parts for training and the remaining

fifth part for validation (testing how well it performs). By averaging the results across

these five trials, we gain a reliable measure of how well each setting combination works.

This helps avoid overfitting (James et al., 2013). The best-performing combination is

then chosen to make our final predictions.

Model Evaluation To assess how well the prediction models perform, we divide the

dataset into two parts: one for training the model (80%) and one for testing how well it

performs on unseen data (20%). This ratio is often used for supervised machine learning

models (Satrya et al., 2022).

We use several standard metrics to assess prediction quality:
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Table 8: Hyperparameter Configuration for Random Forest and Gradient Boosting

Parameter Value Range / Options

Random Forest (RF)
Number of trees 100–200 (uniform integers)
Maximum tree depth 5–20 (uniform integers)
Minimum samples to split a node 2–4 (uniform integers)
Minimum samples at a leaf node 1–2 (uniform integers)
Maximum number of features sqrt, log2
Bootstrap sampling True, False

Gradient Boosting (GB)
Number of trees 100–200 (uniform integers)
Learning rate 0.005–0.2 (log-uniform)
Maximum tree depth 3–15 (uniform integers)
Minimum samples to split a node 2–4 (uniform integers)
Minimum samples at a leaf node 1–2 (uniform integers)
Subsample ratio 0.6–1.0 (uniform)

• Accuracy measures the proportion of correct predictions. Although easy to interpret,

accuracy can be misleading if clusters differ substantially in size (the model could

achieve high accuracy by simply predicting the largest cluster) (Powers, 2011).

• Precision measures the fraction of correct predictions within each predicted cluster.

Precision matters when the cost of incorrectly classifying transactions into the wrong

post-mixing clusters is high.

• Recall measures how completely the model identifies all true members of a cluster.

Recall is essential if missing true cluster members (false negatives) carries significant

consequences.

• The F1-score balances precision and recall, giving a unified metric that equally

weighs both measures.

Since our clusters differ significantly in size, we report macro-averaged precision, re-

call, and F1-score metrics, ensuring each cluster equally influences the overall evaluation,

irrespective of their relative frequency in the dataset.

Finally, we assess feature importance, identifying which features (embeddings, deposit

amounts, or pre-mixing cluster labels) contribute most to the prediction. Understanding

feature importance helps clarify what aspects of pre-mixing patterns are most useful for

predicting subsequent post-mixing patterns (Breiman, 2001).
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4 Results

This chapter presents the results of our analyses. It begins with the Exploratory Data

Analysis (EDA), followed by the results for sub-questions 1 and 2, which are organised into

separate sections focusing on pre-mixing and post-mixing wallets, respectively. This helps

us determine pre- and post-mixing transaction patterns and quantifies them. Sub-question

3 brings these two perspectives together and considers patterns across both wallet sets,

resulting in a method that can predict (with a degree of probability) which post-mixing

pattern will be exhibited given a pre-mixing pattern.

4.1 Exploratory Data Analysis

This section describes the distributional characteristics of the pre- and post-mixing wal-

lets based on category labels, non-exposure variables, and exposure data. Please refer

to Section 3.2 for an explanation on exposure and non-exposure data. All accompanying

figures, including category distributions and Empirical Cumulative Distribution Function

(ECDF) plots, are provided in Appendix B.1. This chapter is important because in-

vestigating the skew and sparsity of the data is necessary to inform our methodological

decisions.

Chainalysis Categories The category distribution for both pre- and post-mixing wal-

lets follows a long-tailed pattern. In the pre-mixing set, wallets labelled as missing and

various types of exchanges are the most common. In the post-mixing set, a similar shape

is observed, though with a higher share of wallets linked to darknet market services.

Non-Exposure Variables Most wallets have very low values for non-exposure features

such as balance, transaction volume, and activity duration, with a small number of high-

value outliers. This sparsity is even stronger among post-mixing wallets, where values are

more concentrated near zero. These variables are therefore highly skewed.

Exposure Variables Exposure data shows similar skew. Direct exposure is concen-

trated in the exchange and Unknown categories, so most wallets directly received funds

from an exchange or a non-service wallet. Indirect exposure is dominated by various

exchange types. In the post-mixing set, there is a slight increase in exposure to illicit

services.
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A comparison of descriptive patterns is shown in Table 9. We use this to conclude that

the initial data we are working with is very skewed and sparse.

Table 9: Summary of descriptive patterns in pre- and post-mixing wallets

Characteristic Pre-Mixing Wallets Post-Mixing Wallets

Category distribution Dominated by missing and
exchange-related labels; long-
tail shape

Similar distribution; higher
prevalence of darknet market

Non-exposure vari-
ables

Skewed distributions with
most values near zero; some
high outliers

More skewed; values further
concentrated at the lower end

Direct exposure High share of exchange and
Unknown categories

Similar pattern; slightly more
exposure to illicit services

Indirect exposure Mostly exchange-related; few
wallets exposed to other ser-
vices

Comparable to pre-mixing;
more frequent darknet
market exposure

4.2 User Profiles from Address Attribute Clusters

The first sub-question reads as follows:

SQ 1

How effectively can pre- and post-mixing wallets be clustered based on aggregated

address-level attributes?

By answering this question we gain a baseline understanding of the relationship between

pre- and post-mixing wallets and how users interact with the mixer. It forms a starting

point for the rest of this research and gives us more insight into the data.

We previously made a distinction between exposure and non-exposure features. We

conclude that exposure data is not well suited for clustering pre- and post-mixing bitcoin

wallets, so we exclude it from this chapter. The full results of this analysis can be found

in Appendix B.2. Additionally, the full results of the grid search we ran to determine the

best HDBSCAN algorithm parameters can be found in Appendix B.3.

4.2.1 Pre-Mixing Wallets

We apply the HDBSCAN algorithm to the pre-mixing dataset with both min_cluster_size

and min_samples set to 602. Although this is not the top-ranked configuration (ranking

score: 95.17 vs. 73.33), it is the highest-ranked setting that yields six clusters instead of
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three. This is preferred because it allows us to differentiate more between clusters and

identify more detailed profiles. The resulting clusters are shown in Table 10, with Clus-

ter –1 representing outliers. It shows the total count of wallets in a certain cluster, and

which percentage of those wallets fall into a certain Chainalysis category (see Appendix

A.1 for the full list). Evaluation scores are as follows:

• Silhouette Score: 0.610

• Davies-Bouldin Score: 0.361

• Calinski-Harabasz Score: 7,324.745

These scores fall in a moderate range for unsupervised clustering (e.g. Silhouette >

0.6 is often seen as acceptable (Rousseeuw, 1987)).

Table 10: Category distribution per pre-mixing cluster (in %)

Cluster missing exchange p2p exchange sanct. entity other Total Count

Cluster -1 22 60 0 0 18 3,488
Cluster 0 0 0 100 0 0 1,280
Cluster 1 100 0 0 0 0 17,726
Cluster 2 0 0 0 78 12 700
Cluster 3 0 100 0 0 0 662
Cluster 4 0 100 0 0 0 641
Cluster 5 0 100 0 0 0 1,183

The first thing we can notice is that Cluster 1 is by far the largest and contains only

addresses of the missing category, so most of these addresses are very similar and have no

discernible attributes compared to the entire dataset. Besides that, we see that clusters

are mostly differentiated by category, so the clusters do not give us a lot more extra

information besides the fact that wallets belonging to different categories differ from each

other. To gain more insight into individual users, we separately analyse the missing

wallets.

For the subset of missing addresses, we set min_cluster_size to 652 and min_samples

to 402. These parameters rank second-best. The top-ranked parameters produce 696

more outliers, so we favour fewer outliers over marginally higher cluster quality. The

resulting scores are:

• Silhouette Score: 0.260

• Davies-Bouldin Score: 1.300

• Calinski-Harabasz Score: 4,797.243
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These scores are substantially lower, indicating weak clustering due to limited differ-

ences in variable values. The resulting distribution is shown in Table 11. It shows the

total number of wallets per cluster and the percentage of wallets that fall into a cluster.

Table 11: Pre-mixing clusters in the missing category

Cluster Count Percentage

Cluster -1 (outliers) 10,935 59.2%
Cluster 0 813 4.4%
Cluster 1 2,483 13.4%
Cluster 2 4,256 23.0%

Although the algorithm labels more than half of wallets as outliers, we compare the

remaining clusters in Figure 3. This figure shows a strip-plot, indicating the normalised

values of the non-exposure variables. This means that the lowest value of each variable

corresponds to 0 and the highest to 1, and all other data points are divided onto that

new scale relatively. Each dot on the plot represents one wallet with a certain value. This

allows us to compare the three clusters, even though their variables are on different scales.

While the three clusters do not look entirely well-defined (resulting in low evaluation met-

ric scores), they do show some clear differences. Using these differences we can construct

three profiles:

• Cluster 0 — “Dormant Whales”: Wallets with a long activity duration but infre-

quent activity. They have handled large total transaction volumes over time, yet

individual transactions are relatively small on average.

• Cluster 1 — “Casual Users”: Contains wallets with few total transactions, short

active duration, and low averages. It seems like the wallet was created for the

specific purpose of depositing funds into the mixer, which could explain why this

cluster has a specific spent_txo_ratio.

• Cluster 2 — “High-Volume Bursts”: The final cluster distinguishes itself by con-

taining high-volume addresses with a short duration of activity. The addresses in

this cluster make few, but large deposits to the mixer.

Creating these profiles is valuable because, even with only weak separation between

groups, we already see distinct patterns emerging before mixing. This suggests that a

broader analysis could help anticipate post-mixing behaviour.
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Figure 3: Strip plot of pre-mixing features by cluster

4.2.2 Post-Mixing Addresses

To analyse the post-mixing addresses, we apply the HDBSCAN clustering algorithm using

min_cluster_size and min_samples set to 402. This parameter combination yields the

highest evaluation metrics:

• Silhouette Score: 0.360

• Davies-Bouldin Score: 0.883

• Calinski-Harabasz Score: 8,367.212

The evaluation metrics are worse than for the pre-mixing clusters, indicating that post-

mixing wallets are more difficult to cluster (i.e. have very similar values). The resulting

clusters are shown in Table 12, with Cluster –1 denoting outliers.

The algorithm identifies relatively few outliers (10.4%), suggesting that most post-
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Table 12: Category distribution per post-mixing cluster (in %)

Cluster missing exchange p2p exchange darknet market other Total Count

Cluster -1 64 1 4 6 25 1,961
Cluster 0 0 100 0 0 0 1,906
Cluster 1 100 0 0 0 0 2,705
Cluster 2 100 0 0 0 0 10,592
Cluster 3 0 0 0 67 33 863
Cluster 4 0 0 99 0 1 765

mixing addresses share similar attributes. Cluster 2 contains the majority of missing

addresses, again indicating that this category lacks distinguishing characteristics. In con-

trast, Cluster 3 combines multiple categories, suggesting that some post-mixing addresses

from different known services have similar attribute values. However, the clustering algo-

rithm again splits wallets mostly based on their categories.

Therefore, we also analyse the missing addresses separately. The best-scoring param-

eter combination in this subset uses min_cluster_size = 2 and min_samples = 802.

The resulting distribution is shown in Table 13.

Table 13: Post-mixing clusters in the missing category

Cluster Count Percentage

Cluster -1 (outliers) 807 5.5%
Cluster 0 538 3.7%
Cluster 1 2,699 18.5%
Cluster 2 10,509 72.2%

Figure 4 visualises the clusters using a strip plot of the normalised feature values. Com-

pared to the pre-mixing clustering, the post-mixing clusters appear significantly noisier.

As a result, it becomes difficult to construct clear behavioural profiles. Attempting to

label these clusters risks oversimplifying or misrepresenting the underlying variation in

the data. We therefore opt not to do that, and refrain from creating user profiles. This

is important because it raises the question of whether distinct profiles will also emerge

when analysing full transaction graphs rather than individual wallets.
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Figure 4: Strip plot of post-mixing features by cluster

4.3 User Profiles from Transaction Graph Clusters

Now that we know that at least pre-mixing wallets have some differentiating patterns,

we look to see whether we can differentiate them even more. We have learned that post-

mixing wallets themselves have less differentiating properties, but perhaps that changes

when expanding the scope of the analysis. Therefore, the wallets we created for sub-

question 1 form the starting point for the following analysis. The second sub-question

reads as follows:

SQ 2

How effectively can pre- and post-mixing addresses be clustered using features

drawn from their transaction graphs?

By extracting features from the pre- and post-mixing transaction graph with the GAE,
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we look to quantify the transaction graph of different users. This allows us to cluster those

quantified graphs and examine transaction patterns, which we can then use for prediction

in sub-question 3.

4.3.1 Pre-Mixing Transaction Graphs

Quantifying and clustering the pre-mixing transaction graph provides us with insights

into the users of this mixing service, and forms the input for the prediction model we

develop in sub-question 3.

Embeddings and Clustering Following the grid search found in Appendix B.4, we

choose to use 8 embedding dimensions, 128 hidden dimensions, and a learning rate of

0.0005 to create the embeddings for pre-mixing graphs. The result of the GAE is that we

reduced every graph to a list of 8 numbers (embeddings) which we can then cluster.

For k-means clustering of the embeddings, we choose 4 clusters as the optimal number

following the elbow-method graph in Appendix B.5. Running the algorithm results in

clusters of the following sizes:

Table 14: Cluster sizes for pre-mixing transaction graphs

Cluster Count Percentage

Cluster 0 6,181 33.5%
Cluster 1 2,968 16.1%
Cluster 2 6,071 32.9%
Cluster 3 3,242 17.6%

Variables An ANOVA test confirms that all variables discussed below vary significantly

between clusters (p < 0.05). Table 15 summarises the topological graph metrics for

each cluster, while Table 16 shows the wallet- and transaction-level metrics. Metrics are

expressed in relative terms to enable straightforward comparison across variables before

developing user profiles. Definitions of all variables were previously provided in Tables 4

and 6.
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Table 15: Cluster Characteristics Graphs

Metric Cluster 0 Cluster 1 Cluster 2 Cluster 3

Nodes Moderate Low High Low
Edges Moderate Low High Low
Density Low-Moderate Moderate–High Low High
Diameter Moderate Low High Low
Avg. Degree Moderate Low Moderate Low
Max Degree Low-Moderate Low High Low
Avg. Betweenness Moderate High Moderate High
Avg. Closeness Moderate-Low Moderate–High Low High
Assortativity Moderate Low Moderate Low

Table 16: Cluster Characteristics Wallets and Transactions

Metric Cluster 0 Cluster 1 Cluster 2 Cluster 3

Balance Low Very High Low Low
Total Sent & Received Low High Low High
Total Tx. Low Moderate Low High
Total Tx. In Low Moderate Low High
Total Tx. Out Low Moderate Low High
Total Addresses Low Moderate Low Very High
Avg. Received High Moderate High Low
Avg. Spent High Moderate High Low
Activity Duration Low High Moderate High
Tx. Frequency Low Moderate Low Very High
Spent TxO. Ratio Moderate Moderate Moderate Moderate
Value per Tx Moderate-High Moderate High Low
Time Delta Moderate-High Moderate High Moderate

Services Composition In addition to wallet and graph metrics, the presence and types

of services in each graph help explain variations in metrics, thereby supporting cluster

interpretation. Table 17 shows the number of graphs per cluster that have one or more

service. A high percentage means that many of the graphs in a certain cluster contain

at least one service. This indicates that the money deposited into a mixer likely (partly)

originated from that service. Figure 5 shows the number and kind of services in the

graphs per cluster. Each colour represents a different cluster. The y-axis shows the kinds

of services that are present in graphs of a certain cluster, with the x-axis denoting how

often those services show up in the graphs. This is important because it gives us an idea

of how many and what kinds of services often show up in the graphs of a different cluster,

which helps interpret them.
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Table 17: Number and percentage of graphs with at least one service per cluster

Cluster Count with Service Percentage

Cluster 0 2,933 47.45%
Cluster 1 2,954 99.53%
Cluster 2 4,308 70.96%
Cluster 3 3,122 96.30%

Figure 5: Horizontal bar chart showing service count per pre-mixing cluster

Cluster profiles The structural metrics (Table 15), wallet- and transaction-level met-

rics (Table 16), and service counts (Table 17 and Figure 5) combine to reveal four distinct

user types:

• Cluster 0: “Consolidator”.

– Graph structure. Graphs have moderate node and edge counts, low–moderate density,

and a moderate diameter. This indicates lightly connected, average-sized structures.

– Wallets and transactions. Wallets contain few addresses and low total volume, but

high average transaction values. Funds trickle slowly to the mixer in occasional
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high-value bursts.

– Service usage. 2,933 of 6,181 graphs (47.45%) include at least one service, usually a

single exchange.

We see that not a lot of services are used, but the low-moderate degree values indicate

there must be some hub-like wallets in the graphs. The high values therefore most

likely come from both service and non-service wallets. From this, we conclude that

these users consolidate larger sums (shown from the high value per transaction) from

one or two sources before mixing.

• Cluster 1: “Straightforward Depositor”.

– Graph structure. Graphs are small, with the lowest node and edge counts and mod-

erate–high density. Centrality scores are the highest of all clusters.

– Wallets and transactions. These wallets have the highest balances, long activity

durations, and high volume. However, individual transactions are moderate in size

and spread out over time.

– Service usage. 2,954 of 2,968 graphs (99.53%) contain a service, typically one or two

exchanges.

Users seem to fund the mixer directly from an exchange in few hops, as we see that

almost all graphs have at least one service, likely an exchange. The compact graph

shape and strong centrality suggest minimal routing beyond the deposit. Therefore, we

characterise this pattern as straightforward.

• Cluster 2: “Aggregator Funnels”.

– Graph structure. The largest graphs, with high node/edge counts and low density.

Several nodes act as high-degree hubs funnelling funds.

– Wallets and transactions. Address-level metrics are low, but average transaction size

is high, with a long time-delta to the mixer. Funds move slowly in sizeable chunks.

– Service usage. 4,308 of 6,071 graphs (70.96%) include a service; mostly exchanges.

The pattern suggests that many small wallets forward service withdrawals into central

hubs, reflected in the high degree values. These then take a long time, shown by the high

diameter and time delta, before depositing large amounts into the mixer, as evidenced

by the high value per transaction. Users aggregate funds and then slowly funnel them
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to the mixer.

• Cluster 3: “Higher-Risk User”.

– Graph structure. Similar to Cluster 1 but with many more addresses and much higher

transaction frequency. Density is the highest of all clusters.

– Wallets and transactions. Wallets have low balances and make frequent low-value

transfers. Activity duration is high, likely due to service involvement.

– Service usage. 3,122 of 3,242 graphs (96.30%) contain a service, relatively more

peer-to-peer or no-KYC exchanges.

These users resemble Cluster 1 because of their compact graph shape and presence of

services. They rely more heavily on higher-risk (no-KYC and peer-to-peer) exchanges

to fund their deposits into the mixer, which is why we denote them as having a higher

risk than Cluster 1.

These profiles and their quantified graph characteristics form one half of the research

objective of identifying pre-mixing patterns that can help predict post-mixing patterns.

4.3.2 Post-Mixing Transaction Graphs

The results of this part of the sub-question provide the output of the prediction model we

develop in sub-question 3. Instead of all the user profiles we construct in this section, our

prediction model will narrow it down to one of the profiles constructed in this section.

Embeddings and Clustering We choose to use 8 embedding dimensions, 128 hidden

dimensions, and a learning rate of 0.001 to create the embeddings for pre-mixing graphs.

The elbow plot in Appendix B.5 points to either three or four natural groupings. Visual

inspection of both options shows that a three-cluster solution provides clearer separation,

so we proceed with k = 3. Cluster sizes and their corresponding percentages relative to

the total are given in Table 18.

Table 18: Cluster sizes for post-mixing transaction graphs

Cluster Count Percentage

Cluster 0 4,909 40.9%
Cluster 1 4,706 39.2%
Cluster 2 3,622 19.9%
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Variables The results of the clusters are shown in Tables 19 and 20. An ANOVA test

confirms that every variable in both tables varies significantly across clusters (p < 0.05).

Table 19: Cluster Characteristics Graphs

Metric Cluster 0 Cluster 1 Cluster 2

Nodes High Moderate Moderate–Low
Edges High Moderate Moderate–Low
Density Low High High
Diameter Moderate Moderate Moderate
Avg. Degree Moderate Moderate Moderate
Max Degree High Moderate Low
Avg. Betweenness Moderate Moderate-Low Moderate
Avg. Closeness Moderate Moderate Moderate
Assortativity Moderate Moderate Moderate

Table 20: Cluster Characteristics Addresses

Metric Cluster 0 Cluster 1 Cluster 2

Balance Moderate High Moderate
Total Sent & Received Moderate–Low Moderate Moderate
Total Tx. Moderate Moderate Moderate
Total Tx. In Moderate Moderate Moderate
Total Tx. Out Moderate Moderate Moderate
Total Addresses Moderate Moderate Moderate
Avg. Received Low High Low
Avg. Spent Low High Low
Activity Duration Moderate Moderate Moderate
Tx. Frequency Moderate Moderate Moderate
Spent TxO. Ratio Moderate Moderate Moderate
Value per Tx Low High Low
Time Delta Moderate Moderate Moderate

Service Composition As with the pre-mixing analysis, service composition is an ad-

ditional lens for interpretation. Table 21 lists how many graphs in each cluster contain at

least one service node, while Figure 6 breaks down the mix of service types.

54



Table 21: Number and percentage of graphs containing ≥1 service

Cluster Count with Service Percentage

Cluster 0 4,662 94.97%
Cluster 1 3,197 88.27%
Cluster 2 4,284 91.03%

Figure 6: Horizontal bar chart showing service count per post-mixing cluster

Cluster profiles The graph-level metrics, address-level metrics, and service composi-

tions combine to reveal three distinct post-mixing user types:

• Cluster 0: “Splitter”.

– Graph structure. Graphs are large and sparse: high node/edge counts, low density,

moderate diameter, and the highest max-degree. A few hub nodes split funds to

many others.

– Wallets and transactions. Wallet metrics are moderate, but average transaction size

is low. Funds leave the mixer in many small payments fanning out from hubs.

– Service usage. Nearly all graphs (95%) touch at least one service; this cluster has

the highest total service count.
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These patterns suggest users who split funds into many small wallets. The high max

degree indicates money is funneled to one or more hubs, while the high node count

and low value per transaction values suggest funds are split toward many wallets and

services in small amounts. The user most likely cashes out at multiple different services.

• Cluster 1: “Big-Time Distributor”.

– Graph structure. Mid-sized graphs with moderate nodes/edges, high density, and

moderate max-degree. Fewer hubs, shorter, more interconnected paths.

– Wallets and transactions. Highest average transaction values of all clusters; other

metrics are moderate. Funds move in large hops.

– Service usage. About 88% of graphs include a service; slightly lower than others.

This pattern reflects a user operating a compact, tightly linked wallet network (indicated

by high density), funnelling large amounts to downstream services.

• Cluster 2: “Straightforward User”.

– Graph structure. Smallest, densest graphs: low node/edge counts, high density,

lowest max-degree. No hubs, short paths.

– Wallets and transactions. Moderate–low values across all metrics; similar to Cluster

0.

– Service usage. Over 91% include a service, with slightly more illicit categories than

Cluster 1.

These users appear to withdraw and cash out without complex routing, indicated by

the small dense graphs with lower node counts. The absence of hubs and the tight,

small graphs point to direct usage with minimal redistribution.

Although the cluster profiles are less distinct than the pre-mixing user profiles, particularly

regarding wallet values, the differences remain sufficient to define meaningful profiles.

These profiles represent the patterns we aim to predict in line with our research objective:

given a pre-mixing transaction graph, determine which post-mixing profile is most likely

to occur.

4.4 Post-Mixing Cluster Prediction

The final sub-question is as follows:
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SQ 3

How reliably do clusters formed from pre-mixing transaction patterns predict the

corresponding clusters in post-mixing transactions?

The results in this section introduce the probabilistic dimension of our approach: given

a pre-mixing transaction graph, we can estimate the likelihood that its corresponding post-

mixing graph belongs to a particular user profile. While this does not yield a definitive

match, it significantly narrows the search space; from all possible post-mixing outcomes

to a smaller, more targeted set of likely profiles.

Model Parameters Presenting the full set of grid search results is impractical due to

the scale of the search space; the resulting output spans over 2,500 unique parameter-value

pairs. It is therefore impractical to show the results of the full grid search in a graph or

table. The best scoring parameters can be found in Table 22.

Table 22: Best Parameter Configuration (RandomizedSearchCV)

Parameter Selected Value

Gradient Boosting (GB)
Learning rate 0.026
Maximum depth 10
Minimum samples at a leaf 1
Minimum samples to split a node 2
Number of trees 156
Subsample ratio 0.667

Random Forest (RF)
Bootstrap sampling False
Maximum depth 16
Maximum number of features sqrt
Minimum samples at a leaf 1
Minimum samples to split a node 2
Number of trees 146

Independence Test The chi-squared independence test and Cramér’s V association

resulted in the following values:

• Chi-Squared Test Statistic: 1096,9410

• p-value: 0.000

• Cramér’s V: 0.1407
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We can see that there is a significant (p < 0.05) relationship between pre- and post-

mixing cluster labels. However, the Cramér’s V value is relatively low, as a value of 0

indicates no association and a value of 1 a perfect association.

Prediction We have five post-mixing cluster labels: Clusters 0-2 are outlined in Section

4.3.2. We denote Cluster 3 as a service address, and Cluster 4 is an address that has no

activity 60 days from the day the mixer had paid out the deposited funds (see Section

3.6).

Table 23 shows the weighted average scores per metric and the accuracy score for the

Random Forest, Gradient Boosting, and the Ensemble model combining the two. The

ensemble model scores best on all metrics, though just slightly. Table 24 shows the results

of the Ensemble model. The metrics have been explained in Section 3.6, and the “Support”

column indicates how big the sample was that the model tested its predictions on.

Model Precision Recall F1-Score Accuracy

Random Forest 0.48 0.47 0.45 0.47
Gradient Boosting 0.47 0.47 0.45 0.47
Ensemble 0.50 0.48 0.46 0.48

Table 23: Classification report for post-mixing clusters

Post-Mixing Cluster Precision Recall F1-Score Support

0 0.48 0.64 0.55 981
1 0.49 0.41 0.45 724
2 0.45 0.63 0.53 941
3 0.48 0.28 0.35 744
4 0.72 0.14 0.23 303

Accuracy 0.48 3693
Macro Avg 0.53 0.42 0.42 3693
Weighted Avg 0.50 0.48 0.46 3693

Table 24: Ensemble model classification report for post-mixing clusters

Besides the overall accuracy of 0.48, some patterns in the results are worth pointing

out. For Clusters 0 and 2, the model performs quite well: it correctly finds most of the

real cases (recall of 0.64 and 0.63), and when it does make a prediction, it’s fairly often

right (precision of 0.48 and 0.45). Because of this, both clusters get an F1-score above

0.50, which shows a good balance between finding cases and being correct. Cluster 4 is

different: it has high precision (0.72), meaning its predictions are usually right, but very
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low recall (0.14), meaning it misses most of the true cases. So the model is cautious with

Cluster 4; it only predicts it when it’s very sure, but it often overlooks it.

Finally, Figure 7 shows the feature importances per feature included in the prediction

model. We see that deposit_amount has the highest predictive power, followed by the

embeddings produced in sub-question 2. The figure also shows that the four pre-mixing

clusters that we identified barely contribute to the prediction. This is important because

it allows us to refine our models in the future to reduce noise and focus on the variables

that are actually contributing to the prediction.

Figure 7: Feature importances for ensemble model
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5 Discussion

The goal of this thesis was to identify pre-and post-mixing transaction patterns and use

those patterns to develop a method that highlights the most probable post-mixing patterns

based on pre-mixing pattern. This approach should be able to aid law enforcement efforts

in combating illicit cryptocurrency usage. In this section, we reflect on the study’s results,

examine their scientific and operational implications, outline the study’s limitations, and

identify directions for future research.

5.1 Reflection on the Results

The main research question we set out to answer is the following:

Main Research Question

To what extent do pre- and post-mixing Bitcoin transaction networks display pat-

terns that can be leveraged to narrow the pool of plausible post-mixing addresses

linked to a given pre-mixing address?

We did this by first looking at pre- and post-mixing wallets, then analysing transaction

graphs, before developing a prediction model. We will reflect on these sub-questions in

this section.

Clustering Based on Address Attributes The results for sub-question 1 show that

clustering based on pre- and post-mixing wallet attributes has limited utility. A high

proportion of outliers and the dominance of a single large cluster indicate little variation

in the selected features.

Nevertheless, three pre-mixing profiles, “Dormant Whales,” “Casual Users,” and “High-

Volume Bursts,” provide an initial, albeit noisy, view of possible usage patterns. However,

with more than half of wallets left unclustered, these profiles cannot serve as a reliable

general typology. The short activity duration observed in many pre-mixing wallets sug-

gests they are created solely for depositing funds, likely to minimise address reuse and

hinder traceability when handling potentially illicit transactions. This behaviour limits

the available transaction history per wallet, making meaningful clustering challenging due

to a lack of data.

Post-mixing clustering proved even less informative. The data was more homogeneous,
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clear profiles did not emerge, and many addresses were linked to illicit services, a pattern

consistent with the role of mixers in obscuring criminal proceeds.

Overall, these findings indicate that a single-wallet perspective provides too little trans-

actional data for effective clustering. This insight underlines the need to analyse richer

structures, such as transaction graphs, to identify distinctive patterns in mixer use.

Graph-Based Clustering Graph-based clustering produced more distinct and inter-

pretable patterns than address-based clustering, particularly for pre-mixing transaction

graphs. Incorporating structural features of the transaction network added valuable in-

formation, enabling the identification of clear user profiles pre-mixing and broader trans-

action strategies post-mixing.

Pre-mixing graphs. Four profiles emerged: “Consolidator,” “Straightforward Deposi-

tor,” “Aggregator Funnels,” and “Higher-Risk Users.” The “Consolidator” collects funds

from a few services, both low- and high-risk, before routing them to the mixer. However,

fewer than half of these graphs contain a service, suggesting that some consolidation activ-

ity may occur entirely outside known service infrastructure. The “Straightforward Deposi-

tor” sends funds directly from a KYC-regulated exchange. This is one of the most distinct

clusters, with low within-cluster variety. The presence of KYC-regulated exchanges could

allow for easy identification of these mixer users. The “Aggregator Funnels” have large,

complex graph structures in which funds pass through intermediary hub-like wallets, of-

ten from many licit and illicit sources. Their high service presence suggests a possible

layering strategy to obscure origins, though the lower service percentage indicates this

pattern is not universal throughout the cluster. The “Higher-Risk User” deposits more

frequently from peer-to-peer exchanges with weaker KYC, though its structure and at-

tributes closely resemble the “Straightforward Depositor.” This may indicate overlap in

user patterns despite differing source types, which makes this cluster less reliable.

Post-mixing graphs. Classification was more challenging, leading to the choice of three

profiles: “Splitter,” “Big-Time Distributor,” and “Straightforward User.” The “Splitter”

disperses funds from a central hub to many addresses shortly after mixing, potentially as

an obfuscation tactic. The “Big-Time Distributor” also uses hub-like structures but with

fewer output addresses, each receiving larger amounts, resulting in more concentrated

withdrawals. Both of these patterns suggest deliberate structuring of post-mixing flows,
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though the exact intent remains speculative. The “Straightforward User” sends funds from

the mixer to only one or a few addresses, sometimes directly to an exchange, reflecting

either low-risk or casual use. Across all three profiles, the consistent presence of both

illicit services and regulated exchanges challenges the assumption that anonymity-seeking

users avoid KYC endpoints, and may reflect either confidence in the mixer’s obfuscation

or the use of mixed funds for legitimate purposes.

Reflection on uncertainty. The certainty (i.e. uniformity) of cluster assignment varies

notably across profiles. Well-defined clusters allow for more confident interpretation and

prediction, while others require caution due to overlapping characteristics or incomplete

service attribution. This highlights that although graph-based clustering offers richer

insights than address-based methods, not all profiles can be applied equally. Recognising

where patterns are robust and where they are ambiguous helps avoid over-interpretation

and prioritise clusters in downstream analysis. Table 25 summarises the uncertainty

levels for each profile. These levels are not quantified, but they are estimated using visual

inspection of the profile variable values and ranges.

Table 25: Profiles by graph type with indicative clustering uncertainty

Graph Type Profile Name Cluster Uncertainty

Pre-mixing Consolidator High
Pre-mixing Straightforward Depositor Low
Pre-mixing Aggregator Funnels Medium
Pre-mixing Higher-Risk User High
Post-mixing Splitter Low
Post-mixing Big-Time Distributor Medium
Post-mixing Straightforward User Medium

Prediction of Post-Mixing Clusters The classification results show that the ensem-

ble model performs substantially better than random guessing, even though the overall

accuracy is moderate. In this task, there are five possible target clusters. If someone had

no information and simply guessed a cluster at random, the probability of being correct

would be one out of five, or 20%, assuming the clusters are roughly balanced in size. This

20% therefore serves as a baseline for comparison. The model achieves 48% accuracy,

meaning it predicts the correct cluster more than twice as often as random guessing. This

improvement demonstrates that the model is identifying real and consistent patterns in

the data that can be used to make informed predictions.
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Feature importance. However, the feature importance analysis reveals a crucial nuance:

the pre-mixing cluster labels contribute very little to predictive performance. This sug-

gests that the profiles derived from clustering do not drive the model’s success. Instead,

the graph embeddings (i.e. quantified graph structure) carry the bulk of the predictive

power. In practical terms, the model is learning from the topology of each graph, rather

than from its membership to a profile category. This finding firstly reinforces the value of

constructing rich graph embeddings, as they retain relevant discriminative information.

Second, it highlights that while pre-mixing profiles are useful for understanding general

user types, they are less effective as direct predictive features in linking to post-mixing

behaviour as much information is lost between embeddings and clusters.

Reflection on probabilistic results. The modest performance of the model should be

interpreted in its operational context, where the goal is not to make high-stakes binary

decisions but to generate investigative leads. In such scenarios, false positives and false

negatives are less critical than in applications like medical diagnostics or cyberattack

prevention, and even with imperfect recall and precision the model can significantly narrow

the search space. However, the evaluation metrics still reveal risks: low precision means

many predicted addresses in a cluster will be incorrect, potentially diverting resources,

while low recall means many true instances are missed, risking the loss of important

leads. These trade-offs vary by cluster, and the optimal balance depends on operational

priorities, whether it is more important to minimise false leads or to capture as many true

cases as possible. Recognising these limitations is essential for responsible interpretation

and for integrating the model into a broader, multi-source investigative workflow.

5.2 Implications

In this section we cover both the academic and practical implications of this research.

5.2.1 Scientific Contributions

This thesis adds to the literature primarily in four ways: an understanding mixer users,

the usage of extensive ground-truth data, an extension of the conceptual model of (Wu

et al., 2021), and the adoption of a new methodology.

Understanding Mixer Users This study offers more insights into how mixers interact

with mixers. Firstly, we underscore that users adopt minimal privacy tactics. We thereby
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expand on Miedema et al. (2023) by adding that the origins and destinations of funds are

also often not obfuscated, and reaffirm the conclusion by Crawford and Guan (2020) that

users place a lot of trust in the mixing service.

Additionally, not only do users not use privacy tactics, they appear to exhibit consis-

tent trends and patterns. This is confirmed by our ability to partly predict post-mixing

patterns based on pre-mixing patterns, which means these users show non-random, per-

haps even habitual patterns in their interactions with the mixer. This could suggest that

users also exhibit this behaviour while using other mixers, not just our dataset. How-

ever, these differences in patterns are likely more nuanced than captured here, as our

transaction graphs represent fund flows toward the mixer rather than direct user actions.

We did not verify whether all wallets in a graph belonged to the same user, since this

was unnecessary for our prediction task. We can therefore conclude that although the

observed transaction patterns are clearly distinct, we cannot say with certainty that this

is entirely attributable to a single user.

Data Source We assert that a persistent challenge in the academic study of Bitcoin

mixers is the scarcity of ground-truth data, which hampers the ability to rigorously val-

idate research findings. This thesis is based on a unique data source derived from law

enforcement access to actual mixer records. This represents a significant improvement

in terms of data reliability. Unlike previous work that had to infer mixer detection and

de-mixing attempts more indirectly, this dataset contains confirmed links between users,

deposits, and withdrawals. The presence of such verified information provides a solid

foundation for analysing address behaviour and transaction graphs, and it strengthens

the internal validity of our results.

Conceptual Contribution Only a limited number of studies focus directly on the

individuals who use Bitcoin mixers, even though understanding user behaviour is essential

for interpreting how these systems are used in practice. Some research has examined user

perceptions on trust and mixers (Crawford & Guan, 2020), while studies such as Miedema

et al. (2023), have looked at the security behaviour of mixer users. However, there is a

clear gap in the literature when it comes to analysing the actual transactional patterns

that mixer users exhibit on the blockchain.

This study addresses that gap by starting from the assumption that mixer users are
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not a uniform group. We propose that different types of users exist, each with distinct

transactional patterns. As posited in Section 3.1, we adjusted the conceptual model of

Wu et al. (2021) by expanding their input and output phases to include pre- and post-

mixing transaction patterns. We hypothesised that there was a relationship between the

patterns exhibited pre-mixing (Phase 1) and those exhibited post-mixing (Phase 3). We

conclude that this relationship does exist, and that the way the pre-mixing phase looks

says something about the way the post-mixing phase looks. We showed that we can even

predict what Phase 3 looks like based on Phase 1, without considering Phase 2 (the mixing

process).

Therefore, we assert that expanding the conceptual model as proposed by Wu et al.

(2021) would more accurately capture the mixing system and its different actors. This

would reveal the mechanism where not just the mixing process plays a part in obfuscation;

the user itself also plays a big role. Adopting this new perspective should broaden the

perspective we have on mixers and how they work and open up new areas to research how

to circumvent their obfuscation.

Probabilistic Method Most existing studies that attempt to link mixer inputs to

outputs focus on establishing direct, deterministic correlations. This approach underlies

many earlier efforts in tracing through mixers on different blockchains (de Balthasar &

Hernandez-Castro, 2017; Du et al., 2024; Hong et al., 2018).

In this study, we propose a broader, probabilistic approach to de-mixing. Rather than

attempting to pinpoint exact withdrawal addresses, we aim to decrease the pool of candi-

date post-mixing addresses on a probabilistic basis. By shifting from a deterministic to a

probabilistic framework, our methodology acknowledges the limitations of perfect trace-

ability through a mixer. It has the advantage of not needing internal mixer knowledge, at

the cost of some uncertainty. However, this uncertainty is nuanced when compared to de-

terministic methods. Unlike deterministic models, which might identify one address out of

100 with 70% certainty but still risk being wrong, a probabilistic model might narrow 100

candidates to 20 with 50% confidence, increasing the chance of pursuing the right lead.

The choice between the two approaches depends on the investigator’s priorities. While

we don’t claim that the probabilistic approach is better than the deterministic approach,

we do conclude that it offers a very different, complementary perspective on de-mixing,

depending on what the de-mixer needs and what information they have available to them.
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5.2.2 Practical Implications

The practical implications of this research stem primarily from its confirmation that pre-

mixing transaction patterns can provide meaningful insight into post-mixing patterns,

and from the subsequent development of a prediction model. While the user profiles

generated in this study offer a view into how users interact with mixers and the flows of

funds around them, their direct utility for law enforcement is limited. This is partly due

to the uncertainty in the clusters themselves, as each still encompasses a wide range of

user behaviours. Applying these profiles without caution risks oversimplifying the diverse

transaction patterns present in the data.

In contrast, the prediction model could have significant operational value. Given access

to a user’s pre-mixing transaction graph, an investigator could embed it, feed the embed-

ding into the model, and receive a predicted cluster label. Post-mixing graphs could then

be embedded and clustered, allowing investigators to prioritise those post-mixing graphs

with the same label as the prediction. This targeted approach increases the likelihood

of identifying a promising lead without exhaustively checking every post-mixing graph.

With an accuracy of 48%, this method could meaningfully improve investigative effi-

ciency. Moreover, because the approach does not rely on internal knowledge of a mixer’s

operations, it may be generalisable to other mixers, although this remains to be tested.

There are, however, important caveats. The first is that an investigator must wait at

least 60 days before embedding and clustering the candidate set of post-mixing graphs,

due to the graph-construction constraints used in this study. Also, to apply the profiles

developed here, the exact same embedding model that was trained on the original dataset

must be used along with the same graph constraints. This is essential because GAEs

learn a specific mathematical representation of the data during training. A different

model, even if trained on similar data, would produce embeddings that are positioned

and scaled differently, making them incompatible with the original clusters. The 60-day

time window is therefore not just a data requirement but also a methodological constraint,

raising the question of how quickly investigative leads must be pursued.

The second caveat is that an investigator still needs to identify where the mixer’s

outputs occur in order to track outgoing funds. This requires detailed knowledge of which

addresses belong to the mixer and which don’t. While mixer detection and classification

techniques have advanced considerably (as discussed in Section 2.2), perfect accuracy is
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unlikely and any errors here introduce further uncertainty into the method.

5.3 Limitations and Future Research

5.3.1 Limitations

Several limitations should be considered when interpreting the results of this research.

We distinguish limitations in four areas.

Data Limitations The majority of the data originates from orders placed via Best-

mixer’s clear-web interface. These users may be less privacy-conscious than those using

the more anonymous Tor browser, which could influence transactional patterns. As a

result, the identified user profiles and clustering outcomes may not generalise to more

anonymity-focused users, placing the findings in a specific behavioural context.

Methodological Constraints Methodological constraints stem from the limitations

in constructing the graph and the use of the GAE.

Transaction graphs were limited to a maximum depth of five hops from the deposit

address. While this choice follows previous research (Rosenquist et al., 2024), it prevents

full reconstruction of user transaction chains and may omit relevant obfuscation strategies

that unfold at greater depths. Additionally, to manage computational load and reduce

noise, the analysis excluded addresses with more than 189 incoming transactions and

limited the transaction window to 60 days after deposit. Although these thresholds were

justified, they potentially excluded some meaningful patterns and may have truncated

graphs in non-obvious ways.

Secondly, the GAE is not strictly reproducible. Due to stochastic elements in neural

network training, repeated runs may produce slightly different embeddings even with the

same parameters. Additionally, the constraints mentioned above have to be used when

applying the GAE to other datasets. This offers a trade-off; on the one hand, increasing

the constraints (especially the time-window) offers more information to the model, which

could improve prediction performance. On the other hand, a long time-window means that

an investigator has to wait a long time before being able to use the model (as discussed

previously). It is unclear what the ideal parameters are that balance practical utility with

predictive power.
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Explainability The GAE used for creating graph embeddings captures complex struc-

tural and feature-based information, but the resulting embeddings are abstract and diffi-

cult to interpret. This makes it challenging to link specific user patterns directly to clus-

ter assignments. Additionally, it hampers our ability to fully understand our prediction

model. We saw that the embeddings had a high feature importance, so they contribute

a lot to the prediction, but other than that the numbers don’t tell us much. When used

in real-life contexts, this can be dangerous since human oversight (and understanding) is

reduced.

Cluster Overlap As mentioned previously, most clusters that were created show over-

lapping ranges of attributes. This reduces the practical utility of the cluster labels. Addi-

tionally, overlap in cluster ranges means a prediction model has more difficulties correctly

classifying a point. The results of this research should therefore function as a stepping

stone to more distinct clusters that have clearer boundaries.

5.3.2 Further Research

Given the identified limitations and scope of this research, we identified a number of areas

for further research.

Model Refinement We believe a lot of gains can be made by further refining the em-

bedding prediction model. Future research could explore alternative graph embedding

strategies, such as using a higher number of embeddings or experimenting with different

hyperparameters to better capture subtle differences. Additionally, evaluating other em-

bedding methods may yield more interpretable or discriminative representations than the

GAE used in this study. This might then also increase the prediction accuracy of the

probabilistic de-mixing method.

Broaden Dataset Second, future research should seek to validate these findings using

a broader set of mixer services to assess their generalisability across different user groups.

Although one might hypothesise that users do not significantly vary their behaviour across

mixers, testing this on additional services would strengthen the robustness of the current

results. Moreover, given the rapid evolution of this field, a dataset from 2019 may no

longer fully reflect present-day practices. Repeating this analysis on more recent data

could therefore provide valuable insights and enhance the relevance of the findings.
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User Motivations An interesting and challenging direction for future research con-

cerns the underlying motivations that lead users to fall into different behavioural groups.

This line of inquiry is based on the conclusion that mixer users make conscious choices

about how they interact with the service. However, the reasons behind these choices

remain unclear. Understanding these motivations is difficult, primarily due to the lack

of direct data on users’ intentions or contextual factors. As a result, uncovering the

drivers behind distinct transactional patterns will likely require alternative data sources

or complementary methods such as interviews, surveys, or forum analyses.

Returning Users Finally, this study did not account for returning users, though they

are present in the dataset. Users of Bestmixer would receive a “user_id” they could enter

after a first order to make sure they didn’t receive their own coins back. Future research

could investigate whether individual users exhibit consistent transaction patterns over

different uses, providing insight into the evolution (or stability) of patterns over time.

This puts the focus even more on individual, unique user behaviour. It could also provide

more insight into whether the transaction graphs reflect actual user behaviour instead of

just the flow of funds.
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6 Conclusion

This thesis set out to determine whether pre- and post-mixing Bitcoin transaction net-

works display patterns that can be used to narrow the pool of plausible post-mixing

addresses for a given pre-mixing address. Using a law-enforcement–seized, ground-truth

dataset from Bestmixer.io, we approached the problem in three steps. First, we tested

whether aggregated address-level attributes suffice to identify patterns around mixing.

Second, we constructed transaction graphs around deposits and withdrawals, learned

graph embeddings with a graph autoencoder, and clustered those embeddings to uncover

structural typologies before and after mixing. Third, we examined whether pre-mixing

information could predict post-mixing patterns with a supervised model.

SQ1

How effectively can pre- and post-mixing wallets be clustered using aggregated

address-level attributes?

Address-level clustering offers only limited separation. On the pre-mixing side, wallets

form a small number of coarse profiles with many borderline cases; on the post-mixing

side, wallets appears relatively homogeneous and cluster assignments are influenced by

service categories rather than distinctive transaction routines. In practical terms, address-

only features do not provide the discriminatory power needed to meaningfully narrow

candidates after mixing, which motivates a shift toward graph-level analysis.

SQ2

How effectively can pre- and post-mixing addresses be clustered using features from

their transaction graphs?

Graph embeddings followed by k -means produce distinct, interpretable clusters that

capture how funds are routed and redistributed. Before mixing, we observe Consolidator,

Straightforward Depositor, Aggregator Funnels, and Higher-Risk User. After mixing, pat-

terns include Splitter, Big-Time Distributor, and Straightforward User. These structural

signals, derived from graph connectivity and flow, provide substantially clearer differ-

entiation than address-level attributes. We show that this method is suited to analyse

transaction patterns, though cluster overlap is still present.
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SQ3

How reliably do clusters formed from pre-mixing patterns predict corresponding

post-mixing clusters?

Using pre-mixing graph embeddings together with the deposit amount, a tree-based

ensemble predicts post-mixing clusters with an accuracy of 0.48 across five classes, which

is well above a naive random baseline. Feature-importance analysis shows that deposit

size and graph embeddings carry most of the predictive signal, while the pre-mixing cluster

label itself adds little incremental value. These results support a probabilistic strategy

that focuses follow-up on post-mixing candidates consistent with the predicted patterns.

Main Research Question

To what extent do pre- and post-mixing Bitcoin transaction networks display pat-

terns that can be leveraged to narrow the pool of plausible post-mixing addresses

linked to a given pre-mixing address?

Pre- and post-mixing networks do exhibit systematic patterns that are actionable once

graph structure is taken into account. Graph embeddings reveal interpretable typologies

on both sides of the mixer, and, combined with the deposit amount, support a supervised

model that achieves 0.48 accuracy across five classes. This is sufficient to reduce the

investigative search space in a probabilistic manner, prioritising a smaller set of plausible

post-mixing patterns for further inquiry.

Taken together, these findings imply a practical workflow in which investigators em-

bed a user’s pre-mixing graph, obtain a predicted post-mixing label, then embed and

cluster candidate post-mixing graphs to prioritise those matching the prediction, thereby

improving efficiency without relying on internal mixer knowledge and with potential (yet

untested) generalisability to other mixers. Key caveats for application are the need to wait

at least 60 days before embedding and clustering candidate post-mixing graphs due to

the graph-construction setup, the requirement to use the same trained embedding model

and graph constraints for compatibility, and the necessity of accurately locating mixer

outputs on-chain. More broadly, interpretation and transfer are bounded by the predomi-

nance of clear-web orders in the dataset, graph-construction constraints, less interpretable

GAE embeddings, and overlapping cluster boundaries. These limitations indicate where

validation on other mixers, periods, and parameter settings is most needed.
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A Research Design Appendix

A.1 Chainalysis Category Labels

ATM Cash–crypto kiosks with tiered KYC and higher fees; fast but risk

money laundering if KYC is weak.

Bridge Protocols linking different blockchains for token and data transfers,

either via trusted relays or trustless swaps.

Child abuse

material

Hidden forums trading illegal child sexual content, typically on the

dark web.

Darknet

market

Marketplaces unreachable from the “normal” internet selling illicit

goods (drugs, weapons, stolen data) using crypto, often with escrow

and ratings.

Decentralised

exchange

Smart-contract platforms for peer-to-peer token swaps without cus-

tody or intermediaries.

Exchange Centralised sites for buying, selling, and trading crypto—the source

of about 90% of on-chain volume.

Fraud shop Single-vendor sites selling stolen personal information, cards, ac-

counts; accept deposits only, making outflows traceable.

Gambling Crypto betting (casino games, sports) with often lax KYC, posing

laundering risks; common in permissive jurisdictions.

High risk

exchange

Exchanges with no/weak KYC, AML convictions, or unusually high

illicit-service exposure.

Hosted wallet Custodial wallets hold users’ keys; convenient but expose users to

counterparty and security risks.

ICO Token crowdfunding events; unregulated IPO analogs, often used for

scams.

Illicit actor/org Persons or groups engaged in illegal activities (darknet, hacking, ex-

tremist funding).

Infrastructure

as a service

VPNs, VPS, domain registrars, etc.; funds may support bulletproof

hosting or legit infrastructure.

Lending Platforms (centralised or via smart contracts) for borrowing against

collateral and earning interest.

Malware Software (viruses, trojans, ransomware) designed to steal data, disrupt
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systems, or hijack resources.

Merchant

services

Crypto payment processors converting to fiat; generally low risk but

occasionally abused by scammers.

Mining Computational process validating blocks and minting new coins.

Mining pools Collective mining to share rewards; low risk unless they accept non-

mining deposits.

Mixing Services that shuffle funds to break transaction links, used for privacy

or laundering.

NFT platform

& collection

Marketplaces for unique digital assets; collections are themed token

groups by creators.

Online

pharmacy

Web vendors of prescription or research chemicals, sometimes without

proper licensing.

Other Miscellaneous entities (donations, bots, seized addresses) with variable

risk.

P2P exchange Peer-to-peer trading sites, often non-custodial and low-KYC, suscep-

tible to laundering.

Protocol

privacy

Native privacy features (zero-knowledge proofs, shielded pools) that

hide transaction details.

Ransomware Malware that encrypts data and demands crypto payment for decryp-

tion.

Sanctioned

entity

Persons or organizations on official embargo lists; transactions with

them are prohibited.

Sanctioned

jurisdiction

Services based in fully sanctioned regions (e.g. Iran, North Korea,

Cuba).

Scam Fraudulent schemes impersonating legitimate services or promising un-

realistic returns.

Seized funds On-chain addresses holding assets confiscated by law enforcement.

Smart contract Self-executing code on blockchain that enforces agreements without

third parties.

Special

Measures

Entities designated under FinCEN section 311 as primary money-

laundering concerns, subject to restrictions.

Stolen funds Crypto stolen in hacks or breaches, typically moved from compromised

wallets.
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Terrorist

financing

Crypto used to finance designated terrorist groups and their opera-

tions.

Token smart

contract

Contracts (e.g. ERC-20) that define, issue, and manage blockchain

tokens.

Unnamed

service

Unattributed clusters showing service-like transaction patterns, pend-

ing identification.

UTXO Model where coins exist as discrete outputs that can be spent only

once, underpinning Bitcoin-style ledgers.

A.2 Detailed Pre-processing

This appendix provides the pre-processing steps in more detail.

Transaction Log We start with 241,713 unverified data points. We do the following:

1. Remove all data points where confirmed = False (-312 data points).

2. Remove rows where type = payment to yourself or amount = 0 (dusting trans-

actions8). These transactions are definitely not associated with either incoming or

outgoing transactions related to orders, so they are not relevant to the analysis (-131

data points).

Orders We start with 36,083 orders, and do the following:

1. Discard Bitcoin Cash and Litecoin orders because they are out of our scope (-985

data points).

2. Drop records where order_id is duplicated. This duplication appears to have been

caused by a wiretap fault (-5,677 data points).

3. Exclude rows whose status = Cancelled indicating a cancelled order (-157 data

points).

4. Cross-verify from transaction log: remove an order if its deposit_address is not

present in the transaction log with a matching amount and Chainalysis can’t report

a transaction that matches the deposit_amount for the deposit_address of the
8In the case of Bestmixer, these transactions with near-0 values are likely advertisements, with a

message attached to the transaction promoting Bestmixer.
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order indicating the order never happened (-3,172 data points).

5. Correct entries where deposit_amount was recorded as 0 while the order was valid

by retrieving the actual value from Chainalysis data (3,227 data points corrected).

A.3 Graph Modelling Cut-off

Figure 8 shows how deep our transaction graphs were able to grow under two different time

windows: 30 days and 60 days after the deposit into Bestmixer. Each bar represents how

many graphs reached a certain depth, and the colors indicate whether the graph includes

a known Chainalysis-labeled service node (such as an exchange or darknet market) or not.

We began with a 30-day window, based on earlier analysis showing that most pre-

mixing wallets receive any follow-up transactions within that period. After 30 days,

activity tends to level off. Still, around 15% of wallets (2,000) received no follow-up

transactions within that window.

Applying the 30-day limit, only about half of the graphs reached the structural depth

we aimed for. To test whether the time limit was the main constraint, we extended the

window to 60 days. This led to only a slight improvement—around 56% of graphs now

met the requirement, indicating that time alone is not the main bottleneck.

Upon closer inspection, we found that many graphs stopped growing early because

they reached a known service, which we deliberately filtered out to avoid noisy, high-

volume nodes (by implementing the maximum of 189 inbound transactions). However,

about 2,000 graphs stopped prematurely without hitting any known service node. Two

possible reasons for this are: (1) the 60-day window might still be too short (although

the earlier plateau makes this less likely), or (2) our limit of including only the 189 most

recent incoming transactions might be cutting off useful links too early.

Looking at the figure:

• For depths 1 through 5, we actually see fewer graphs when using the 60-day window.

This is likely because more graphs are able to grow deeper, which is positive.

• At depth 6 (the maximum allowed), we see a clear increase in the number of graphs,

especially those including a service node. This suggests that the longer window

helps more graphs reach full depth.
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Even so, many graphs still stop at shallow depths. While early terminations from

depth 2 onward can often be explained by hitting a known service, it is more puzzling

that some graphs stop already at depth 1, and do not include any labeled service. The

reason these graphs end so quickly is unclear; it could be due to actual user behavior, or

limitations in our data or graph construction.

Figure 8: Stacked Bar Chart showing graph types by depth and threshold

B Results Appendix

B.1 Exploratory Data Analysis Figures

Figure 9 shows the distribution of category labels for pre-mixing wallets on a log scale.

The data follows a long-tail distribution: a few categories dominate, with most wallets

labelled as missing or associated with exchanges.

Figure 10 shows the same distribution for post-mixing wallets. The shape is similar,

though there is a noticeably higher share of wallets labelled as darknet market.

Figure 11 displays ECDFs for the non-exposure attributes of pre-mixing wallets. The

curves indicate a high level of sparsity: most wallets have low values for all variables,

with a small number of high-value outliers. This pattern is particularly pronounced for

the missing category.
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Figure 9: Distribution of pre-mixing categories (log-scale)

Figure 10: Distribution of post-mixing categories (log-scale)

Figure 12 shows the ECDFs for direct and indirect exposure attributes. The majority of

wallets have very low exposure values, except for exchange and Unknown, which dominate

both exposure types.

Figure 13 shows similar ECDFs for post-mixing wallets. These curves are even steeper
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Figure 11: Normalised ECDF of pre-mixing wallet descriptives

Figure 12: ECDF of pre-mixing wallet exposures

at the lower end, indicating stronger sparsity than in the pre-mixing set.

Figure 13: Normalised ECDF of post-mixing wallet descriptives
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Figure 14 shows that post-mixing wallets exhibit a similar exposure pattern: most

values are low, with concentration in exchange and Unknown, and slightly higher repre-

sentation of darknet market in the indirect exposures.

Figure 14: ECDF of post-mixing wallet exposures

B.2 SQ1: Exposure Data

B.2.1 Pre-Mixing Wallets

Analysing the exposure data confirms that high dimensionality lowers the effectiveness

of the clustering algorithm. The top ranking parameters from our grid search were a

min_cluster_size of 252 and min_samples of 502. This parameter combination yields

the following evaluation scores:

• Silhouette Score: 0.905

• Davies-Bouldin Score: 0.310

• Calinski-Harabasz Score: 112,304.391

Although these scores are strong (a silhouette of 1 indicates perfect separation), Figure

15 reveals many outliers (Cluster -1).

The high prevalence of outliers makes it difficult to draw conclusions on the types

of pre-mixing wallets, and could suggest that using exposure data is not suitable for

clustering bitcoin wallets. Especially the fact that there are so few wallets from the

missing category that were clustered hampers our ability to conclude anything on user

86



Figure 15: Stacked bar chart of pre-mixing exposure clusters

patterns, as these wallets have a high chance of belonging to an actual person instead of

a service (because it would have been labelled as such by Chainalysis).

B.2.2 Post-Mixing wallets

Exposure data Analysing the exposure data for post-mixing wallets also confirms that

exposure data might not be the best data to use when clustering bitcoin wallets. The

top ranking parameters were a min_cluster_size of 2 and min_samples of 802. This

parameter combination yields the following evaluation scores:

• Silhouette Score: 0.942

• Davies-Bouldin Score: 0.161

• Calinski-Harabasz Score: 46,637.791

Just like the pre-mixing wallets, these scores are very good (a silhouette of 1 indicates

perfect separation). However, Figure 16 also reveals many outliers (Cluster -1).

The high prevalence of outliers gives the same conclusion as for pre-mixing wallets;

that exposure data might not be suitable to use for answering our research question.

87



Figure 16: Stacked bar chart of post-mixing exposure clusters

B.3 Sub-question 1 Grid Search

The results of the grid search for sub-question 1 are shown in this section. The xaxis

denotes the min_cluster_size parameter and the yaxis the min_samples parameter.

The number inside the square denotes the ranking of the parameter combination. Darker

numbers indicate a higher ranking.

B.3.1 Pre-Mixing Wallets

Both exposure and non-exposure wallets have good local optimums, as we can see in Figure

17. This is shown by the darker areas in the figure. While the non-exposure data shows

some interesting behaviour from a min_samples of 852 and min_cluster_size of 352

onwards, there is also a local optimum at a min_samples of 602 and min_cluster_size

of 552 and 602. The data with a missing label seems very difficult to cluster. This is

likely due to the sparsity of the data.
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Figure 17: Grid search results of HDBSCAN algorithm on pre-mixing wallets

B.3.2 Post-Mixing Wallets

Figure 18 shows that the post-mixing wallets have a less obvious local optimum, and it has

more difficulty with clustering the non-exposure data. Similar to the pre-mixing wallets,

the wallets with a missing label are difficult to cluster.
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Figure 18: Grid search results of HDBSCAN algorithm on post-mixing wallets

B.4 Sub-Question 2 Grid Search

Both grid searches show the same results. Learning rate does not have an effect on the

total loss of the model, and higher hidden and embedding dimensions result in a lower

total loss. Higher hidden and embedding dimensions could result in an even lower loss.
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Figure 19: Grid search results of GAE on pre-mixing graphs

B.5 K-means Test

The figures below show the two elbow graphs for pre- and post-mixing wallets. Both

graphs show 4 as the optimal number of clusters, though that is less clear for the post-

mixing figure.

Figure 20: Elbow method for pre-mixing graphs
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Figure 21: Elbow method for post-mixing graphs
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