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NECESSARY AND SUFFICIENT CONDITIONS FOR ASYMPTOTICALLY
OPTIMAL LINEAR PREDICTION OF RANDOM FIELDS ON COMPACT

METRIC SPACES

BY KRISTIN KIRCHNER1,a AND DAVID BOLIN2,b

1Delft Institute of Applied Mathematics, Delft University of Technology, ak.kirchner@tudelft.nl
2CEMSE Division, King Abdullah University of Science and Technology, bdavid.bolin@kaust.edu.sa

Optimal linear prediction (aka. kriging) of a random field {Z(x)}x∈X
indexed by a compact metric space (X , dX ) can be obtained if the mean
value function m : X →R and the covariance function � : X ×X → R of Z

are known. We consider the problem of predicting the value of Z(x∗) at
some location x∗ ∈ X based on observations at locations {xj }nj=1, which

accumulate at x∗ as n → ∞ (or, more generally, predicting ϕ(Z) based on
{ϕj (Z)}nj=1 for linear functionals ϕ,ϕ1, . . . , ϕn). Our main result character-
izes the asymptotic performance of linear predictors (as n increases) based
on an incorrect second-order structure (m̃, �̃), without any restrictive assump-
tions on �, �̃ such as stationarity. We, for the first time, provide necessary and
sufficient conditions on (m̃, �̃) for asymptotic optimality of the correspond-
ing linear predictor holding uniformly with respect to ϕ. These general results
are illustrated by weakly stationary random fields on X ⊂ Rd with Matérn or
periodic covariance functions, and on the sphere X = S2 for the case of two
isotropic covariance functions.

1. Introduction. Optimal linear prediction of random fields, often also called kriging, is
an important and widely used technique for interpolation of spatial data. Consider a random
field {Z(x) : x ∈ X } on a compact topological space X such as a closed and bounded subset
of Rd . Assume that Z is almost surely continuous on X and that we want to predict its value
at a location x∗ ∈ X based on a set of observations {Z(xj )}nj=1 for locations x1, . . . , xn ∈ X
all distinct from x∗. The kriging predictor is the linear predictor Ẑ(x∗) = α0 +∑n

j=1 αjZ(xj )

of Z(x∗) based on the observations, where the coefficients α0, . . . , αn ∈ R are chosen such
that the variance of the error (Ẑ − Z)(x∗) is minimized. By letting m( · ) and �( · , · ) denote
the mean and the covariance function of Z, we can express Ẑ(x∗) as

(1.1) Ẑ
(
x∗)= m

(
x∗)+ c�

n �−1
n (Zn − mn),

where Zn := (Z(x1), . . . ,Z(xn))
�, mn := (m(x1), . . . ,m(xn))

�, �n ∈ Rn×n has elements
[�n]ij := �(xi, xj ) and cn := (�(x∗, x1), . . . , �(x∗, xn))

�.
In applications, the mean and covariance functions are rarely known and, therefore, need

to be estimated from data. It is thus of interest to study the effect, which a misspecification
of the mean or the covariance function has on the efficiency of the linear predictor. Stein [20,
21] considered the situation that the sequence {xj }j∈N ⊂ Rd has x∗ as a limiting point and
the predictor Ẑ is computed using misspecified mean and covariance functions, m̃ and �̃. His
main outcome was that the best linear predictor based on (m̃, �̃) is asymptotically efficient,
as n → ∞, provided that the Gaussian measures corresponding to (m,�) and (m̃, �̃) are
equivalent (see Appendix A). This result in fact holds uniformly with respect to x∗ and,
moreover, uniformly for each linear functional ϕ such that ϕ(Z) has finite variance [21].
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For stationary covariance functions, there exist simple conditions for verifying whether the
corresponding Gaussian measures are equivalent [2, 4, 22], and thus if the linear predictions
are asymptotically efficient. However, for any constant c ∈ (0,∞), the linear predictor based
on (m, c�) is equal to that based on (m,�), whereas the Gaussian measures corresponding to
(m, c�) and (m,�) are orthogonal for all c �= 1. This shows that equivalence of the measures
is a sufficient but not necessary condition for asymptotic efficiency. Less restrictive conditions
have been derived for some specific cases such as periodic processes on [0,1]d and weakly
stationary random fields on Rd observed on a lattice [23, 24]. With these results in mind,
an immediate question is if one can find necessary and sufficient conditions for uniform
asymptotic efficiency of linear prediction using misspecified mean and covariance functions.
The aim of this work is to show that this indeed is the case.

We derive necessary and sufficient conditions for general second-order structures (m,�)

and (m̃, �̃), without any restrictive assumptions such as periodicity or stationarity. These con-
ditions are weaker compared to those of the Feldman–Hájek theorem, and thus clearly exhibit
their fulfillment in the case that the Gaussian measures corresponding to (m,�) and (m̃, �̃)

are equivalent (see Remark 3.4). Furthermore, our results are formulated for random fields
on general compact metric spaces, which include compact Euclidean domains in Rd , but also
more general domains such as the sphere S2 or metric graphs (see Example 2.1). Assum-
ing compactness of the space is meaningful, since in applications the observed locations are
always contained in some compact subset (e.g., a bounded and closed domain in Rd ).

This general setting is outlined in Section 2. Our main results are stated in Section 3 and
proven in Section 4. Section 5 presents simplified necessary and sufficient conditions for the
two important special cases when �, �̃ induce the same eigenfunctions, or when �, �̃ are
translation invariant on Rd and have spectral densities. Section 6 verifies these conditions
for weakly stationary random fields on X ⊂ Rd , where �, �̃ are of Matérn type or periodic
on [0,1]d . We also discuss an example on X = S2 which, to the best of our knowledge, is
the first result on asymptotically optimal linear prediction on the sphere. The Supplementary
Material [9] contains three appendices (Appendix A, B and C) pertaining to this article.

2. Setting and problem formulation. We assume that we are given a square-integrable
stochastic process Z : X × � → R defined on a complete probability space (�,A,P) and
indexed by a connected, compact metric space (X , dX ) of infinite cardinality. In addition, we
let m : X →R denote the mean value function of Z and assume that the covariance function,

� : X ×X →R, �
(
x, x′) := ∫

�

(
Z(x,ω) − m(x)

)(
Z
(
x′,ω

)− m
(
x′))dP(ω),

is (strictly) positive definite and continuous. Let νX be a strictly positive and finite Borel
measure on (X ,B(X )). Here and throughout, B(T ) denotes the Borel σ -algebra on a topo-
logical space T . As the symmetric covariance function � is assumed to be positive definite
and continuous, the corresponding covariance operator, defined by

(2.1) C : L2(X , νX ) → L2(X , νX ), (Cw)(x) :=
∫
X

�
(
x, x′)w(x′)dνX

(
x′),

is self-adjoint, positive definite and compact on L2(X , νX ). Since (X , dX ) is connected and
compact, the set X is uncountable and L2(X , νX ) is an infinite-dimensional separable Hilbert
space. By compactness of C, there exists a countable system of (equivalence classes of) eigen-
functions {ej }j∈N of C, which can be chosen as an orthonormal basis for L2(X , νX ).

Moreover, it can be shown that C maps into the space of continuous functions. For this
reason, we may identify the eigenfunctions {ej }j∈N with their continuous representatives. We
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let {γj }j∈N denote the positive eigenvalues corresponding to {ej }j∈N. By Mercer’s theorem
(see, e.g., [15, 26]), the covariance function � then admits the series representation

(2.2) �
(
x, x′)= ∑

j∈N
γjej (x)ej

(
x′), x, x′ ∈ X ,

where the convergence of this series is absolute and uniform. In addition, we can express the
action of the covariance operator by a series,

Cw = ∑
j∈N

γj (w, ej )L2(X ,νX ) ej , w ∈ L2(X , νX ),

converging pointwise—that is, for all w ∈ L2(X , νX )—and uniformly, that is, in the operator
norm. Finally, we note that square-integrability of the stochastic process implies that C has a
finite trace on L2(X , νX ), that is, tr(C) =∑j∈N γj < ∞.

EXAMPLE 2.1. Examples of covariance functions on a compact metric space (X , dX )

are given by the Matérn class, where

�
(
x, x′) := �M

(
dX
(
x, x′)) with �M(r) := σ 2

2ν−1
(ν)
(κr)νKν(κr), r ≥ 0.

More precisely, one may consider stochastic processes with Matérn covariance functions,
indexed by one of the following compact metric spaces:

(a) X ⊂ Rd is a connected, compact Euclidean domain equipped with the Euclidean
metric for all parameters σ, ν, κ ∈ (0,∞); see [14],

(b) X := Sd = {x ∈ Rd+1 : ‖x‖Rd+1 = 1} is the d-sphere equipped with the great circle
distance dSd (x, x′) := arccos((x, x′)Rd+1) for σ, κ ∈ (0,∞) and ν ∈ (0,1/2]; see [6], Sec-
tion 4.5, Example 2,

(c) X ⊂ RD is a d-dimensional connected, compact manifold (e.g., the d-sphere Sd ),
embedded in RD for some D > d and equipped with the Euclidean metric on RD for any set
of parameters σ, ν, κ ∈ (0,∞); see, for example [7],

(d) X is a graph with Euclidean edges equipped with the resistance metric for the param-
eters σ, κ ∈ (0,∞) and ν ∈ (0,1/2]; see [1], Definition 1, Section 2.3 and Table 1.

We point out that, for ν ∈ (1/2,∞), the function (x, x′) �→ �M(dX (x, x′)) in (b) and (d) is
not (strictly) positive definite, and thus, not a valid covariance function for our setting. We
furthermore emphasize that the Matérn covariance families in (a) and (b) are stationary on Rd

and isotropic on Sd , respectively, but we do not require � to have these properties.

Since the kriging predictor in (1.1) only depends on the mean value function and the co-
variance function of the process Z, it is identical to the kriging predictor for a Gaussian
process with the same first two moments. For ease of presentation, we therefore from now on
assume that Z is a Gaussian process on (X , dX ) with mean value function m ∈ L2(X , νX ),
continuous, (strictly) positive definite covariance function � and corresponding covariance
operator C. Note, however, that all our results extend to the case of non-Gaussian processes,
as their proofs rely only on the first two statistical moments. We write μ = N(m,C) for the
Gaussian measure on the Hilbert space L2(X , νX ) induced by the process Z, that is, for every
Borel set A ∈ B(L2(X , νX )) we have

μ(A) = P
({

ω ∈ � : Z( · ,ω) ∈ A
})

.

The operator E[·] will denote the expectation operator under μ, that is, for an L2(X , νX )-
valued random variable Y with distribution μ and a real-valued, Borel measurable mapping
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ϕ : L2(X , νX ) →R, the expected values E[Y ] ∈ L2(X , νX ) and E[ϕ(Y )] ∈ R (when existent)
are the Bochner integrals

E[Y ] =
∫
L2(X ,νX )

y dμ(y) and E
[
ϕ(Y )

]= ∫
L2(X ,νX )

ϕ(y)dμ(y);

cf. [11], Corollary 5.1. Furthermore, we use the following notation for the real-valued vari-
ance and covariance operators with respect to μ: If ϕ,ϕ′ : L2(X , νX ) →R are Borel measur-
able and g := ϕ(Y ), g′ := ϕ′(Y ), then

Var[g] := E
[(

g − E[g])2], Cov
[
g,g′] := E

[(
g − E[g])(g′ − E

[
g′])].

To present the theoretical setting of optimal linear prediction (kriging) as well as the nec-
essary notation, we proceed in two steps: We first consider the centered case with m = 0, and
then extend it to the general case.

2.1. Kriging assuming zero mean. Let Z0 : X × � → R be a centered Gaussian pro-
cess. Under the assumption that it has a continuous covariance function �, we may identify
Z0 : X → L2(�,P) with its continuous representative. In particular, for each x ∈ X , the real-
valued random variable Z0(x) is a well-defined element of L2(�,P). Consider the vector
space Z0 ⊂ L2(�,P) of finite linear combinations of such random variables,

(2.3) Z0 :=
{

K∑
j=1

αjZ
0(xj ) : K ∈ N, α1, . . . , αK ∈R, x1, . . . , xK ∈ X

}
.

We then define the (Gaussian) Hilbert space H0 (cf. [8]) as the closure of Z0 with respect to
the norm ‖ · ‖H0 induced by the L2(�,P) inner product,(

K∑
i=1

αiZ
0(xi),

K ′∑
j=1

α′
jZ

0(x′
j

))
H0

:=
K∑

i=1

K ′∑
j=1

αiα
′
j E
[
Z0(xi)Z

0(x′
j

)]
,

H0 :=
{
g ∈ L2(�,P)

∣∣∃{gj }j∈N ⊂ Z0 : lim
j→∞‖g − gj‖L2(�,P) = 0

}
.

(2.4)

Continuity of the covariance kernel � on X ×X implies separability of the Hilbert space H0;
see [3], Theorem 32, and [16], Theorem 2C.

By definition (see, e.g., [25], Section 1.2), the kriging predictor h0
n of h0 ∈ H0 based

on a set of observations {y0
n1, . . . , y

0
nn} ⊂ H0 is the best linear predictor in H0 or, in other

words, the H0-orthogonal projection of h0 onto the linear space generated by y0
n1, . . . , y

0
nn.

By recalling the inner product on H0 from (2.4), the kriging predictor h0
n is thus the unique

element in the finite-dimensional subspace H0
n := span{y0

n1, . . . , y
0
nn} ⊂H0 satisfying

(2.5) h0
n ∈ H0

n : (
h0

n − h0, g0
n

)
H0 = E

[(
h0

n − h0)g0
n

]= 0 ∀g0
n ∈ H0

n.

Consequently, h0
n is the H0-best approximation of h0 in H0

n, that is,∥∥h0
n − h0∥∥

H0 = inf
g0
n∈H0

n

∥∥g0
n − h0∥∥

H0 .

2.2. Kriging with general mean. Let us next consider the case that the Gaussian process
Z has a general mean value function m : X →R which, for now, we assume to be continuous.
The analytical framework for kriging then needs to be adjusted, since the space of possible
predictors has to contain functions of the form (1.1) including constants.
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Evidently, every linear combination h =∑K
j=1 αjZ(xj ) has a representation h = c + h0

with c ∈R and h0 ∈ Z0 ⊂ H0, where the vector spaces Z0,H0 ⊂ L2(�,P) are generated by
linear combinations of the centered process Z0 := Z − m as in (2.3) and (2.4); namely,

(2.6) h =
K∑

j=1

αjZ(xj ) =
K∑

j=1

αjm(xj ) +
K∑

j=1

αjZ
0(xj ) =: c + h0,

or, more generally, h = E[h] + (h − E[h]). Furthermore, note that zero is the only constant
contained in Z0,H0 ⊂ L2(�,P). This follows from the fact that elements in Z0 are linear
combinations of the process Z0 at locations in X ; see (2.3). A constant c �= 0 in Z0 would
thus imply that the corresponding linear combination c =∑K

j=1 αjZ
0(xj ) has zero variance,

which contradicts the (strict) positive definiteness of the covariance function �. For this rea-
son, the decomposition in (2.6) is unique. This motivates to define the Hilbert space contain-
ing all possible observations and predictors for a general second-order structure (m,�) as the
(internal) direct sum of vector spaces, given by

(2.7) H := R⊕H0 = {h ∈ L2(�,P) : ∃c ∈R, ∃h0 ∈ H0 with h = c + h0},
which is equipped with the graph norm,

(2.8) ‖h‖2
H = |c|2 + ∥∥h0∥∥2

H0 if h = c + h0 ∈ R⊕H0 = H.

Note that, similarly as for H0, the inner product on H equals the inner product on L2(�,P):

(g,h)H = (E[g],E[h])
R

+ (g − E[g], h − E[h])H0 = E[g]E[h] + Cov[g,h] = E[gh].
Now suppose that we want to predict h ∈ H given a set of observations

ynj = cnj + y0
nj ∈ H, where cnj ∈ R, y0

nj ∈ H0, j ∈ {1, . . . , n}.
The kriging predictor of h = c+h0 ∈ R⊕H0 = H based on the observations {yn1, . . . , ynn} is
then hn = c + h0

n, where h0
n is the kriging predictor of h0 based on the centered observations

{y0
n1, . . . , y

0
nn} ⊂ H0, as defined in (2.5). The definition of the norm on H in (2.8) readily

implies that

‖hn − h‖2
H = |c − c|2 + ∥∥h0

n − h0∥∥2
H0 = 0 + inf

g0
n∈H0

n

∥∥g0
n − h0∥∥2

H0 .

Hence, if we, for y0
n1, . . . , y

0
nn ∈ H0, define the subspace Hn ⊂ H by

(2.9) Hn := R⊕H0
n, where H0

n := span
{
y0
n1, . . . , y

0
nn

}⊂ H0,

we have that in either case (centered and noncentered) the kriging predictor of h ∈ H based
on the observations {yn1 = cn1 + y0

n1, . . . , ynn = cnn + y0
nn} is given by the H-orthogonal

projection of h onto Hn, that is,

hn ∈ Hn : (hn − h,gn)H = E
[
(hn − h)gn

]= 0 ∀gn ∈ Hn,

hn ∈ Hn : ‖hn − h‖H = inf
gn∈Hn

‖gn − h‖H.
(2.10)

For this reason, for every h ∈H, the kriging predictor hn is fully determined by the subspace
Hn and we also call hn the kriging predictor (or best linear predictor) based on Hn (instead
of based on the set of observations {yn1, . . . , ynn}).

Finally, since the definitions (2.7), (2.9) and (2.10) of the spaces H, Hn and the kriging
predictor hn are meaningful even if the mean value function is not continuous, hereafter
we only require that m ∈ L2(X , νX ). Note, however, that then the point evaluation Z(x∗),
x∗ ∈X , might not be an element of H.
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2.3. Problem formulation. We assume without loss of generality that the centered obser-
vations y0

n1, . . . , y
0
nn are linearly independent in H0 so that in (2.9) we have dim(H0

n) = n.
Furthermore, we suppose that the family of subspaces {Hn}n∈N generated by the observations
(see (2.9)) is dense in H. More specifically, we require that, for any h ∈ H, the corresponding
kriging predictors {hn}n∈N defined via (2.10) are consistent in the sense that

(2.11) lim
n→∞ E

[
(hn − h)2]= lim

n→∞‖hn − h‖2
H = 0.

For future reference, we introduce the set Sμ
adm, which contains all admissible sequences

{Hn}n∈N of subspaces of H generated by observations which provide μ-consistent kriging,

Sμ
adm := {{Hn}n∈N

∣∣∀n ∈ N : Hn is as in (2.9) with dim
(
H0

n

)= n,

∀h ∈ H : {hn}n∈N as in (2.10) satisfy (2.11)
}
.

(2.12)

Since (X , dX ) is connected and compact, we have Sμ
adm �= ∅. Note that we do not assume

nestedness of {Hn}n∈N. Therefore, we cover situations when the observations are not part of
a sequence and {yn1, . . . , ynn} �⊂ {yn+1,1, . . . , yn+1,n+1}.

EXAMPLE 2.2. Suppose that m and � are continuous and that {xj }j∈N is a sequence in
(X , dX ), which accumulates at x∗ ∈X , that is, there exists a subsequence {x̄k}k∈N ⊆ {xj }j∈N
such that limk→∞ dX (x̄k, x

∗) = 0. Assume further that Hn ⊇ R ⊕ span{Z0(xj ) : j ≤ n} for
all n. Then the kriging predictors {hn}n∈N for h := Z(x∗) are consistent: For n sufficiently

large such that {xj }nj=1 ∩ {x̄k}k∈N = {x̄k}k
∗
n

k=1 is not empty (i.e., k∗
n ∈ N), we have

E
[
(hn − h)2]≤ inf

α0,α1,...,αn∈RE

[(
Z
(
x∗)− α0 −

n∑
j=1

αjZ
0(xj )

)2
]

= inf
α1,...,αn∈RE

[(
Z0(x∗)− n∑

j=1

αjZ
0(xj )

)2
]

≤ E
[(

Z0(x∗)− Z0(x̄k∗
n
)
)2]

= �
(
x∗, x∗)+ �(x̄k∗

n
, x̄k∗

n
) − 2�

(
x̄k∗

n
, x∗)→ 0, as n → ∞.

This shows (2.11) for h = Z(x∗). Note that the kriging predictors based on the sub-
spaces {Hn}n∈N have to be consistent for every h ∈ H so that the sequence is admissible,
{Hn}n∈N ∈ Sμ

adm; see (2.12). Assuming that every H0
n is generated by centered point obser-

vations Z0(x1),Z
0(x2), . . ., the above argument shows that, for any h =∑L

�=1 c�Z(x∗
� ) in

R ⊕ Z0, the kriging predictors {hn}n∈N based on {Hn}n∈N, Hn := R ⊕ H0
n, are consistent

whenever the sequence of observation points {xj }j∈N accumulates at any x∗ ∈ X . Since Z0

is dense in the Hilbert space H0, the same is true for every h ∈ H = R⊕H0.

Suppose that μ̃ = N(m̃, C̃) is a second Gaussian measure on L2(X , νX ) with mean value
function m̃ ∈ L2(X , νX ) and trace-class covariance operator C̃ : L2(X , νX ) → L2(X , νX ).
Let Ẽ[·], Ṽar[·] and C̃ov[·, ·] denote the real-valued expectation, variance and covariance op-
erators under μ̃. We are now interested in the asymptotic behavior of the linear predictor
based on μ̃. That is, what happens if, instead of the kriging predictor hn, we use the linear
predictor h̃n, which is the kriging predictor if μ̃ was the correct model?
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3. General results on compact metric spaces. We first generalize the results of [21],
Section 3, and [25], Chapter 4, Theorem 10 to our setting of Gaussian processes on a compact
metric space (X , dX ). That is, uniformly asymptotically optimal linear prediction under the
assumption that the two Gaussian measures μ and μ̃ are equivalent on L2(X , νX ).

THEOREM 3.1. Let μ = N(m,C) and μ̃ = N(m̃, C̃) be equivalent. Define H0 and H̃0

as in (2.4) with respect to μ and μ̃, respectively. Then H0 and H̃0 are norm equivalent,
Sμ

adm = Sμ̃
adm (see (2.12)), and for all {Hn}n∈N ∈ Sμ

adm the following hold:

lim
n→∞ sup

h∈H−n

E[(h̃n − h)2]
E[(hn − h)2] = lim

n→∞ sup
h∈H−n

Ẽ[(hn − h)2]
Ẽ[(h̃n − h)2] = 1,(3.1)

lim
n→∞ sup

h∈H−n

∣∣∣∣ Ẽ[(hn − h)2]
E[(hn − h)2] − 1

∣∣∣∣= lim
n→∞ sup

h∈H−n

∣∣∣∣E[(h̃n − h)2]
Ẽ[(h̃n − h)2] − 1

∣∣∣∣= 0.(3.2)

Here, hn, h̃n are the best linear predictors of h ∈ H based on Hn and the measures μ and μ̃,
respectively. The set H−n ⊂ H contains all elements with E[(hn − h)2] > 0.

The norm equivalence of H0 and H̃0 guarantees that the best linear predictors {h̃n}n∈N
of h ∈ H based on {Hn}n∈N ∈ Sμ

adm and μ̃ are well-defined. Furthermore, it corresponds to
equivalence of Var[·] and Ṽar[·] on H (see Proposition 3.5 below) so that in combination with
the restriction h ∈ H−n it ensures that the case 0/0 in (3.1) and (3.2) is evaded. Indeed, for
every h ∈H−n, we obtain

Ẽ[(h̃n − h)2] = Ṽar[h̃n − h] ≥ c Var[h̃n − h] ≥ c Var[hn − h] = c E[(hn − h)2] > 0,

with c ∈ (0,∞) independent of n and h.
Equivalence of the Gaussian measures μ = N(m,C) and μ̃ = N(m̃, C̃) implies that m − m̃

is an element of the Cameron–Martin space

H ∗ := C1/2(L2(X , νX )), ( · , · )H ∗ := (C−1/2 · ,C−1/2 · )L2(X ,νX ),

which also is a Hilbert space; see Appendix A in the Supplementary Material [9]. However,
m and m̃ are not necessarily both elements of H ∗. Thus, Theorem 3.1 generalizes ([25],
Chapter 4, Theorem 10) where m = 0 is assumed, even on Euclidean domains.

These results for equivalent measures μ and μ̃ also apply when considering the variances
of the prediction errors. This is subject of the next corollary.

COROLLARY 3.2. The statements of Theorem 3.1 remain true if we replace each second
moment in (3.1) and (3.2) by the corresponding variance. That is, for all {Hn}n∈N ∈ Sμ

adm,
the following hold:

lim
n→∞ sup

h∈H−n

Var[h̃n − h]
Var[hn − h] = lim

n→∞ sup
h∈H−n

Ṽar[hn − h]
Ṽar[h̃n − h] = 1,(3.3)

lim
n→∞ sup

h∈H−n

∣∣∣∣ Ṽar[hn − h]
Var[hn − h] − 1

∣∣∣∣= lim
n→∞ sup

h∈H−n

∣∣∣∣Var[h̃n − h]
Ṽar[h̃n − h] − 1

∣∣∣∣= 0.(3.4)

Theorem 3.1 shows that equivalence of μ and μ̃ is sufficient for uniformly asymptotically
optimal linear prediction. The following (less restrictive) assumptions will subsequently be
shown to be necessary and sufficient.
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ASSUMPTION 3.3. Let �, �̃ : X ×X → R be two continuous, (strictly) positive definite
covariance functions with corresponding covariance operators C, C̃, defined on L2(X , νX )

via (2.1). Assume that C, C̃ and m,m̃ ∈ L2(X , νX ) are such that:

I. The Cameron–Martin spaces H ∗ = C1/2(L2(X , νX )) and H̃ ∗ = C̃1/2(L2(X , νX )) are
norm equivalent Hilbert spaces.

II. The difference between the mean value functions m,m̃ ∈ L2(X , νX ) is an element of
the Cameron–Martin space, that is, m − m̃ ∈ H ∗.

III. There exists a positive real number a ∈ (0,∞) such that the operator

(3.5) Ta : L2(X , νX ) → L2(X , νX ), Ta := C−1/2C̃C−1/2 − aI
is compact. Here and below, I denotes the identity on L2(X , νX ).

REMARK 3.4. We briefly comment on the similarities and differences between Assump-
tions 3.3.I–III and the set of assumptions in the Feldman–Hájek theorem (Theorem A.1 for
E = L2(X , νX ); see Appendix A in the Supplementary Material [9]) that are necessary and
sufficient for equivalence of two Gaussian measures μ = N(m,C) and μ̃ = N(m̃, C̃). Note that
all assumptions are identical except for the third. For equivalence of the measures μ and μ̃,
the operator T1 = C−1/2C̃C−1/2 − I has to be Hilbert–Schmidt on L2(X , νX ). Since every
Hilbert–Schmidt operator is compact, this in particular implies that Assumption 3.3.III holds
for a = 1. This shows the greater generality of our Assumptions 3.3.I–III compared to the
assumption that the two Gaussian measures μ and μ̃ are equivalent.

PROPOSITION 3.5. Let μ = N(m,C), μ̃ = N(m̃, C̃), and define H0, H̃0 as in (2.4) with
respect to the measures μ and μ̃, respectively. The following are equivalent:

(i) Assumption 3.3.I is satisfied.
(ii) The linear operator C̃1/2C−1/2 : L2(X , νX ) → L2(X , νX ) is an isomorphism, that is,

it is bounded and has a bounded inverse.
(iii) The Hilbert spaces H0, H̃0 are norm equivalent. In particular, there exist constants

k0, k1 ∈ (0,∞) such that k0 Var[h] ≤ Ṽar[h] ≤ k1 Var[h], for all h ∈ H, with H as in (2.7).
(iv) There exist constants 0 < k ≤ K < ∞ such that, for all {Hn}n∈N ∈ Sμ

adm, any of the
following fractions is bounded from below by k > 0 and from above by K < ∞, uniformly
with respect to n ∈ N and h ∈ H−n:

(3.6)
Ṽar[hn − h]
Var[hn − h] ,

Var[h̃n − h]
Ṽar[h̃n − h] ,

Var[h̃n − h]
Var[hn − h] ,

Ṽar[hn − h]
Ṽar[h̃n − h] .

Here, hn, h̃n are the best linear predictors of h based on Hn and μ, respectively, μ̃.

Proposition 3.5 elucidates the role of Assumption 3.3.I: As previously noted, the norm
equivalence of the spaces H0 and H̃0 in (iii) ensures that, for any h ∈ H, the best linear
predictors {h̃n}n∈N based on {Hn}n∈N ∈ Sμ

adm and the measure μ̃ are well-defined. Further-
more, uniform boundedness of the fractions in (iv) guarantees that the sequence {h̃n}n∈N is
μ-consistent,

lim
n→∞ Var[h̃n − h] ≤ sup

�∈N
sup

g∈H−�

Var[g̃� − g]
Var[g� − g] lim

n→∞ E
[
(hn − h)2]= 0,

which clearly is necessary for asymptotically optimal linear prediction.
Including one more assumption, namely Assumption 3.3.III, yields necessary and suffi-

cient conditions for uniform asymptotic optimality of linear predictions, when the quality of
the linear predictors is measured by the variance of the error. This result is formulated in the
following theorem.
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THEOREM 3.6. Let μ = N(m,C) and μ̃ = N(m̃, C̃). In addition, let hn, h̃n denote the
best linear predictors of h based on Hn and the measures μ and μ̃, respectively. Then, any
of the assertions,

lim
n→∞ sup

h∈H−n

Var[h̃n − h]
Var[hn − h] = 1,(3.7)

lim
n→∞ sup

h∈H−n

Ṽar[hn − h]
Ṽar[h̃n − h] = 1,(3.8)

lim
n→∞ sup

h∈H−n

∣∣∣∣ Ṽar[hn − h]
Var[hn − h] − a

∣∣∣∣= 0,(3.9)

lim
n→∞ sup

h∈H−n

∣∣∣∣Var[h̃n − h]
Ṽar[h̃n − h] − 1

a

∣∣∣∣= 0,(3.10)

holds for all {Hn}n∈N ∈ Sμ
adm if and only if Assumptions 3.3.I and 3.3.III are fulfilled. The

constant a ∈ (0,∞) in (3.9) and (3.10) is the same as that in (3.5) of Assumption 3.3.III.

REMARK 3.7. Theorem 3.6 shows, in particular, that either all of the four asymptotic
statements (3.7)–(3.10) hold simultaneously or none of them are true.

Finally, when measuring the quality of the linear predictors in terms of the mean squared
error, additionally the behavior of the difference m − m̃ between the mean value func-
tions matters, and all three of Assumptions 3.3.I–III are necessary and sufficient for uni-
form asymptotic optimality in this sense. This characterization is formulated in Theorem 3.8,
which is our main result.

THEOREM 3.8. Let μ = N(m,C) and μ̃ = N(m̃, C̃). In addition, let hn, h̃n denote the
best linear predictors of h based on Hn and the measures μ and μ̃, respectively. Then any of
the assertions,

lim
n→∞ sup

h∈H−n

E[(h̃n − h)2]
E[(hn − h)2] = 1,(3.11)

lim
n→∞ sup

h∈H−n

Ẽ[(hn − h)2]
Ẽ[(h̃n − h)2] = 1,(3.12)

lim
n→∞ sup

h∈H−n

∣∣∣∣ Ẽ[(hn − h)2]
E[(hn − h)2] − a

∣∣∣∣= 0,(3.13)

lim
n→∞ sup

h∈H−n

∣∣∣∣E[(h̃n − h)2]
Ẽ[(h̃n − h)2] − 1

a

∣∣∣∣= 0,(3.14)

holds for all {Hn}n∈N ∈ Sμ
adm if and only if Assumptions 3.3.I–III are satisfied. The constant

a ∈ (0,∞) in (3.13) and (3.14) is the same as that in (3.5) of Assumption 3.3.III.

4. Proofs of the results. Throughout this section, we abbreviate L2(X , νX ) by L2,
L(L2) is the space of bounded linear operators on L2 and the subspaces K(L2) ⊂ L(L2)

as well as L2(L2) ⊂ L(L2) contain all compact and Hilbert–Schmidt operators, respectively
(see Appendix A in the Supplementary Material [9]).

Recall that Z0 = Z − m, where Z is a Gaussian process on (X , dX ) with corresponding
Gaussian measure μ = N(m,C), and that {ej }j∈N is an orthonormal basis for L2 consisting
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of (the continuous representatives of) eigenfunctions of the covariance operator C, with cor-
responding positive eigenvalues {γj }j∈N. In the next lemma, a relation between the (dual of
the) Cameron–Martin space for μ and the Hilbert space H0 in (2.4) is established, similarly
as in [16], Theorem 5D, or [3], Theorem 35. This relation will be crucial for proving all
results.

LEMMA 4.1. For each j ∈ N, define vj := 1√
γj

ej as well as the real-valued random

variable zj := (Z0, vj )L2 . Then the following hold:

(i) {vj }j∈N is an orthonormal basis for H := C−1/2(L2), which is the dual of the
Cameron–Martin space H ∗ = C1/2(L2) with (v, v′)H := (C1/2v,C1/2v′)

L2
.

(ii) {zj }j∈N is an orthonormal basis for the Hilbert space H0 equipped with the inner
product ( · , · )H0 = E[ · · ] = Cov[ · , · ], see (2.4).

(iii) The linear operator

(4.1) J : H → H0, satisfying J v = (Z0, v
)
L2

∀v ∈ L2 ⊂ H,

is a well-defined isometric isomorphism and, for all v, v′ ∈ H , we have

(4.2)
(
v, v′)

H = (C1/2v,C1/2v′)
L2

= Cov
[
J v,J v′]= E

[
J vJ v′]= (J v,J v′)

H0 .

PROOF. Since L2 ⊂ H and vj = C−1/2ej , claim (i)—orthonormality and the basis prop-
erty of {vj }j∈N in H—follows directly from the corresponding properties of {ej }j∈N in L2.

To prove the second assertion (ii), we first note that vj : X → R is continuous for every
j ∈N. Thus, by Lemma B.3 (see Appendix B in the Supplementary Material [9]) we find that
zj ∈ H0 for all j ∈ N. Next, we prove that {zj }j∈N constitutes an orthonormal basis for H0.
For this, we need to show that (zi, zj )H0 = δij (orthonormality) and

(h, zj )H0 = 0 ∀j ∈ N ⇒ h = 0 (basis poperty).

Due to the identities E[zizj ] = Cov[(Z0, vi)L2, (Z
0, vj )L2] = (Cvi, vj )L2 = (vi, vj )H , ortho-

normality follows from (i). Now let h ∈ H0 be such that (h, zj )H0 = 0 vanishes for all j ∈ N.
By Fubini’s theorem, we then obtain that, for all j ∈N,

0 = E
[
h
(
Z0, ej

)
L2

]= ∫
X

E
[
hZ0(x)

]
ej (x)dνX (x) = (E[hZ0( · )], ej

)
L2

.

Since {ej }j∈N is an orthonormal basis for L2 and the mapping X � x �→ E[hZ0(x)] ∈ R is
continuous, this shows that E[hZ0(x)] = 0 for all x ∈ X , which implies (due to strict positive
definiteness of �) that h ∈ H0 has to vanish. We conclude (ii), {zj }j∈N is an orthonormal
basis for H0.

It remains to prove (iii). Clearly, J vj = zj for all j ∈ N. Thus, the linear mapping
J : H → H0 is well-defined and an isometry, since by (i) and (ii) {vj }j∈N and {zj }j∈N are
orthonormal bases for H and H0, respectively. Furthermore,

(v, v′)H = (Cv, v′)L2 = Cov[(Z0, v)L2, (Z
0, v′)L2] = Cov[J v,J v′]

= E[J vJ v′] = (J v,J v′)H0

holds for all v, v′ ∈ L2, completing the proof of (iii) by density of L2 in H . �

PROOF OF PROPOSITION 3.5. We first show (i) ⇒ (ii) ⇒ (iii) ⇒ (i), followed by the
proof of the equivalence (iii) ⇔ (iv):

(i) ⇒ (ii): Under Assumption 3.3.I, the norms on H ∗ and H̃ ∗ are equivalent, that is, there
are c0, c1 ∈ (0,∞) such that ‖C−1/2u‖L2 ≤ c0‖C̃−1/2u‖L2 and ‖C̃−1/2u‖L2 ≤ c1‖C−1/2u‖L2
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for all u ∈ H ∗ = H̃ ∗. Thus, for any w ∈ L2, C̃1/2w ∈ H ∗ with ‖C−1/2C̃1/2w‖L2 ≤ c0‖w‖L2

and, in addition, C1/2w ∈ H̃ ∗ with ‖C̃−1/2C1/2w‖L2 ≤ c1‖w‖L2 . This shows that C−1/2C̃1/2,
and thus, also its adjoint C̃1/2C−1/2 are isomorphisms on L2, and (ii) follows.

(ii) ⇒ (iii): Let the Hilbert space H and the isometry J : H → H0 be defined as in
Lemma 4.1(iii). In addition, define H̃ := C̃−1/2(L2) and the isometry J̃ : H̃ → H̃0 in
the obvious analogous way. If c0 := ‖C̃1/2C−1/2‖L(L2) and c1 := ‖C1/2C̃−1/2‖L(L2) are fi-
nite, then H and H̃ are norm equivalent, that is, c−1

1 ‖v‖H ≤ ‖v‖H̃ ≤ c0‖v‖H holds for
all v ∈ H = H̃ , and the inclusion mapping IH→H̃ of H in H̃ is continuous. Thus, we
obtain ‖J̃ IH→H̃J −1h0‖H̃0 = ‖IH→H̃J −1h0‖H̃ ≤ c0‖J −1h0‖H = c0‖h0‖H0 for every
h0 ∈ H0. Next, let h0 ∈ H0 and set vh := J −1h0 ∈ H . Then we observe the identities
‖J̃ IH→H̃J −1h0‖2

H̃0 = ‖J̃ vh‖2
H̃0 = Ṽar[J̃ vh] = Ṽar[J vh] = Ṽar[h0], which combined with

the above show that Ṽar[h] = Ṽar[h0] ≤ c2
0‖h0‖2

H0 = c2
0 Var[h] for all h ∈ H, where we set

h0 := h−E[h] ∈ H0. Similarly, we derive ‖J IH̃→H J̃ −1h̃0‖H0 ≤ c1‖h̃0‖H̃0 for all h̃0 ∈ H̃0,
and we may change the roles of H and H̃ (resp. of H0 and H̃0) to conclude that also the
relation Var[h] ≤ c2

1Ṽar[h] holds for all h ∈ H̃ =R⊕ H̃0.
(iii) ⇒ (i): We prove that the dual spaces, H = C−1/2(L2), H̃ = C̃−1/2(L2), are norm

equivalent, which implies the result for H ∗ and H̃ ∗. Norm equivalence of H0 and H̃0 im-
plies continuity of the inclusion maps IH0→H̃0 , IH̃0→H0 , which similarly as above, yields
continuity of J̃ −1IH0→H̃0J : H → H̃ and of J −1IH̃0→H0J̃ : H̃ → H . Thus, it follows
that ‖v‖H̃ ≤ c0‖v‖H and ‖ṽ‖H ≤ c1‖ṽ‖H̃ hold for all v ∈ H , ṽ ∈ H̃ with some constants
c0, c1 ∈ (0,∞), since ‖J̃ −1IH0→H̃0J v‖H̃ = ‖v‖H̃ and ‖J −1IH̃0→H0J̃ ṽ‖H = ‖ṽ‖H .

(iii) ⇒ (iv): Suppose that k0 Var[h] ≤ Ṽar[h] ≤ k1 Var[h] holds for every h ∈ H = H̃ and
let {Hn}n∈N ∈ Sμ

adm. Then, for every n ∈ N and all h ∈ H−n, k0 ≤ Ṽar[hn−h]
Var[hn−h] ≤ k1 as well as

k−1
1 ≤ Var[h̃n−h]

Ṽar[h̃n−h] ≤ k−1
0 readily follow. Subsequently, we find that

(4.3) 1 ≤ Var[h̃n − h]
Var[hn − h] = Var[h̃n − h]

Ṽar[h̃n − h]
Ṽar[h̃n − h]
Ṽar[hn − h]

Ṽar[hn − h]
Var[hn − h] ≤ k−1

0 k1,

and a similar trick shows that also Ṽar[hn−h]
Ṽar[h̃n−h] ∈ [1, k1k

−1
0 ] for all n and h.

(iv) ⇒ (iii): We first show necessity of (iii) for uniform boundedness (from above and
below) of the first two fractions in (3.6). For this, let h ∈ Z0 \ {0}. By positive definiteness of

�, there exists φ ∈ Z0 so that {h,φ} are linearly independent. Define ψ ′
1 := φ − (φ,h)H0

(h,h)H0
h,

ψ1 := 1
‖ψ ′

1‖H0
ψ ′

1 and ψ̃ ′
1 := φ − (φ,h)H̃0

(h,h)H̃0
h, ψ̃1 := 1

‖ψ̃ ′
1‖H0

ψ̃ ′
1, and note that h ∈ Z0 is or-

thogonal to ψ1 ∈ Z0 in H0 and to ψ̃1 ∈ Z0 in H̃0. By separability of H0, there exist se-
quences {ψj }j≥2 and {ψ̃j }j≥2 such that {ψj }j∈N and {ψ̃j }j∈N are orthonormal bases for H0.
For n ∈ N, define the spaces H�

n := R ⊕ span{ψ1, . . . ,ψn}, H�
n := R ⊕ span{ψ̃1, . . . , ψ̃n}.

Then {H�
n}n∈N, {H�

n }n∈N ∈ Sμ
adm and, if h1 denotes the best linear predictor of h based

on H�
1 and μ, and h̃1 denotes the best linear predictor of h based on H�

1 and μ̃, then
h1 = h̃1 = 0 follows. By boundedness of the first or second fraction in (3.6) (with n = 1),
we have that Ṽar[h]

Var[h] = Ṽar[h1−h]
Var[h1−h] ∈ [k,K] or Var[h]

Ṽar[h] = Var[h̃1−h]
Ṽar[h̃1−h] ∈ [k,K]. Thus, in both cases

k0 Var[h] ≤ Ṽar[h] ≤ k1 Var[h] holds, where k0 := min{k,K−1} and k1 := max{K,k−1}.
Since h ∈ Z0 was arbitrary and since the constants k,K ∈ (0,∞) do not depend on h (as
the fractions in (3.6) are bounded uniformly in {Hn}n∈N, n and h), assertion (iii) follows by
density of Z0 in H0 and in H̃0.

Assume next that the third fraction in (3.6) is bounded, uniformly with respect to
{Hn}n∈N ∈ Sμ

adm, n ∈ N and h ∈ H−n. In either of the two cases, α0 = 0 or α1 = ∞,

where α0 := infh∈H0∩H̃0
Ṽar[h]
Var[h] , α1 := suph∈H0∩H̃0

Ṽar[h]
Var[h] , it follows as in [5], Proof of The-

orem 5, that there exist sequences {h(�)}�∈N, {ψ(�)
1 }�∈N ⊂ H0 ∩ H̃0, normalized in H0, with
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Var[h̃(�)
1 −h(�)]

Var[h(�)
1 −h(�)] ≥ � for all � ∈ N, where h

(�)
1 , h̃

(�)
1 are the best linear predictors of h(�) based

on μ, respectively, μ̃ and H(�)
1 := R ⊕ span{ψ(�)

1 }. By separability of H0, for each � ∈ N,

we may complement ψ
(�)
1 to an orthonormal basis {ψ(�)

j }j∈N for H0. Thus, for all � ∈ N,

{H(�)
n }n∈N ∈ Sμ

adm holds, where H(�)
n := R⊕ span{ψ(�)

1 , . . . ,ψ
(�)
n } and

sup
�∈N

sup
n∈N

sup
h∈H(�)

−n

Var[h̃(�)
n − h]

Var[h(�)
n − h] ≥ sup

�∈N
Var[h̃(�)

1 − h(�)]
Var[h(�)

1 − h(�)] = ∞,

contradicting uniform boundedness of the third fraction in (3.6). We therefore conclude that
α0, α1 ∈ (0,∞), H0 ∩ H̃0 =H0 = H̃0 and (iii) follows.

Finally, assuming uniform boundedness of the last fraction in (3.6), analogous arguments
show that α̃0 := infh∈H0∩H̃0

Var[h]
Ṽar[h] , α̃1 := suph∈H0∩H̃0

Var[h]
Ṽar[h] satisfy α̃0, α̃1 ∈ (0,∞), again

yielding (iii). �

REMARK 4.2. The arguments in the proof of Proposition 3.5 imply, in particular, that
under Assumption 3.3.I we have, for all v, v′ ∈ H = H̃ , that

(4.4)
(
v, v′)

H̃ = (C̃1/2v, C̃1/2v′)
L2

= C̃ov
[
J v,J v′].

LEMMA 4.3. Suppose Assumption 3.3.I is satisfied and let {Hn}n∈N be a sequence of
subspaces of H such that, for all n ∈ N, Hn is of the form (2.9). Then, for every h ∈ H, the
kriging predictors {hn}n∈N based on {Hn}n∈N and the measure μ are μ-consistent if and only
if the kriging predictors {h̃n}n∈N based on {Hn}n∈N and μ̃ are μ̃-consistent. In particular, the
sets Sμ

adm and Sμ̃
adm are equal, Sμ

adm = Sμ̃
adm.

PROOF. Let {Hn}n∈N ∈ Sμ
adm. By Proposition 3.5(i) ⇔ (iii), H0 and H̃0 are norm equiv-

alent. Thus, Ẽ[(h̃n − h)2] = Ṽar[h̃n − h] ≤ Ṽar[hn − h] ≤ k1 Var[hn − h] = k1E[(hn − h)2]
holds, for any h ∈ H = H̃, where k1 ∈ (0,∞) is independent of n and h. This shows that
Sμ

adm ⊆ Sμ̃
adm. Analogously, E[(hn − h)2] ≤ k−1

0 Ẽ[(h̃n − h)2] follows for {Hn}n∈N ∈ Sμ̃
adm,

with k0 ∈ (0,∞) independent of n and h, showing the reverse inclusion Sμ̃
adm ⊆ Sμ

adm. �

PROPOSITION 4.4. Let μ = N(m,C) and μ̃ = N(m̃, C̃). Suppose that Assumptions 3.3.I
and 3.3.III are satisfied and let a ∈ (0,∞) be the constant in (3.5) of Assumption 3.3.III. In
addition, let hn, h̃n denote the best linear predictors of h based on Hn and the measures μ

and μ̃, respectively. Then (3.7)–(3.10) hold for all {Hn}n∈N ∈ Sμ
adm. If, in addition, Assump-

tion 3.3.II is fulfilled, then (3.11)–(3.14) hold for all {Hn}n∈N ∈ Sμ
adm.

PROOF. Let {Hn}n∈N ∈ Sμ
adm. As shown in Proposition C.2 (see Appendix C in the Sup-

plementary Material [9]), we can without loss of generality assume that μ has zero mean and
that μ̃ has mean m̃ − m. We first show that Assumptions 3.3.I and 3.3.III imply that (3.9)
and (3.10) hold. To this end, let n ∈ N and recall that hn is the kriging predictor of h based
on Hn = R⊕H0

n and μ. We let {ψ(n)
1 , . . . ,ψ

(n)
n } be an H0-orthonormal basis for H0

n, that is,

E[ψ(n)
k ψ

(n)
� ] = δk�. Since H0 is a separable Hilbert space there exists a countable orthonor-

mal basis of the orthogonal complement of H0
n in H0, which will be denoted by {ψ(n)

k }k>n.

Then, by construction {ψ(n)
k }k∈N is an orthonormal basis for H0. We identify ψ

(n)
k ∈ H0

with v
(n)
k := J −1ψ

(n)
k ∈ H , where J : H → H0 is the isometric isomorphism in (4.1) from
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Lemma 4.1(iii). Due to (4.2), {v(n)
k }k∈N is then an orthonormal basis for H = C−1/2(L2). Fur-

thermore, we note that, for every h ∈ H−n, the vector hn − h ∈ H0 can be written as a linear
combination of {ψ(n)

k }k>n, that is, hn − h =∑∞
k=n+1 c

(n)
k ψ

(n)
k with

∑∞
k=n+1 |c(n)

k |2 < ∞.
We recall the identities in (4.2) and (4.4) from Lemma 4.1(iii) and Remark 4.2 and rewrite

the term (A) := |Ṽar[hn − h] − a Var[hn − h]| as follows:

(A) =
∣∣∣∣∣

∞∑
k,�=n+1

c
(n)
k c

(n)
�

(
C̃ov

[
ψ

(n)
k ,ψ

(n)
�

]− a Cov
[
ψ

(n)
k ,ψ

(n)
�

])∣∣∣∣∣
=
∣∣∣∣∣

∞∑
k,�=n+1

c
(n)
k c

(n)
�

((
C̃1/2v

(n)
k , C̃1/2v

(n)
�

)
L2

− a
(
C1/2v

(n)
k ,C1/2v

(n)
�

)
L2

)∣∣∣∣∣.
Since {v(n)

k }k∈N is an orthonormal basis for H = C−1/2(L2), so is {w(n)
k }k∈N for L2, where

w
(n)
k := C1/2v

(n)
k . We set wh

n :=∑∞
k=n+1 c

(n)
k w

(n)
k and obtain

(A) = ∣∣((C−1/2C̃C−1/2 − aI
)
Q⊥

n wh
n,Q⊥

n wh
n

)
L2

∣∣,
where Q⊥

n := I − Qn and Qn : L2 → Wn denotes the L2-orthogonal projection onto the
subspace Wn := span{w(n)

1 , . . . ,w
(n)
n }. By Assumption 3.3.III, Ta = C−1/2C̃C−1/2 − aI is

compact on L2. For this reason, there exists an orthonormal basis {bj }j∈N for L2 consisting
of eigenvectors of Ta with corresponding eigenvalues {τj }j∈N ⊂ R accumulating only at zero.
For J ∈N, we define VJ := span{b1, . . . , bJ }. We write PJ : L2 → VJ for the corresponding
L2-orthogonal projection and set P ⊥

J := I − PJ . Then, by invoking the chain of identities

‖wh
n‖2

L2
=∑∞

k=n+1 |c(n)
k |2 = E[(hn − h)2] = Var[hn − h], we estimate

(A) ≤ Var[hn − h] sup
‖w‖L2=1

∣∣(TaQ
⊥
n w,Q⊥

n w
)
L2

∣∣.
Clearly, if Ta = 0, we obtain that (A) = 0. Thus, from now on we assume that ‖Ta‖L(L2) > 0.
Since I = PJ + P ⊥

J and P ⊥
J TaPJ = PJ TaP

⊥
J = 0, we find

(A)

Var[hn − h] ≤ sup
‖w‖L2=1

∣∣(P ⊥
J TaP

⊥
J Q⊥

n w,Q⊥
n w
)
L2

+ (PJ TaPJ Q⊥
n w,Q⊥

n w
)
L2

∣∣
≤ sup

‖w‖L2=1

∣∣(TaP
⊥
J w,P ⊥

J w
)
L2

∣∣+ sup
‖w‖L2=1

∥∥Q⊥
n PJ TaPJ Q⊥

n w
∥∥
L2

.

(4.5)

Here, we have used self-adjointness of Ta , PJ , P ⊥
J and Q⊥

n on L2 in the last step. Now fix
ε ∈ (0,∞). Since limj→∞ τj = 0, there exists Jε ∈ N with

(4.6) sup
‖w‖L2=1

∣∣(TaP
⊥
Jε

w,P ⊥
Jε

w
)
L2

∣∣= sup
j>Jε

|τj | < ε

2
.

In addition, for w :=∑k∈N α
(n)
k w

(n)
k ∈ L2 and hw :=∑k∈N α

(n)
k ψ

(n)
k ∈ H0, with some square-

summable coefficients {α(n)
k }k∈N, we find that

(4.7)
∥∥Q⊥

n w
∥∥2
L2

=
∞∑

k=n+1

∣∣α(n)
k

∣∣2 =
∥∥∥∥∥

∞∑
k=n+1

α
(n)
k ψ

(n)
k

∥∥∥∥∥
2

H0

= ∥∥hw
n − hw

∥∥2
H.

Because of this relation and thanks to the assumption that {Hn}n∈N ∈ Sμ
adm, there exists

nε ∈ N such that max1≤j≤Jε ‖Q⊥
n bj‖L2 < ε

2‖Ta‖L(L2)

√
Jε

holds for every n ≥ nε; cf. (2.12).
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Therefore, for all n ≥ nε , we obtain that

∥∥Q⊥
n PJεw

∥∥
L2

<
ε

2‖Ta‖L(L2)

√
Jε

Jε∑
j=1

∣∣(w,bj )L2

∣∣≤ ε

2‖Ta‖L(L2)

‖PJεw‖L2 ∀w ∈ L2.

The norm identities ‖PJε‖L(L2) = ‖Q⊥
n ‖L(L2) = 1 thus imply that, for every n ≥ nε , and for

all w ∈ L2,

(4.8)
∥∥Q⊥

n PJεTaPJεQ
⊥
n w
∥∥
L2

<
ε

2‖Ta‖L(L2)

∥∥PJεTaPJεQ
⊥
n w
∥∥
L2

≤ ε

2
‖w‖L2

holds. Combining (4.5), (4.6) and (4.8) shows that suph∈H−n

(A)
Var[hn−h] < ε for every n ≥ nε

and, since ε ∈ (0,∞) was arbitrary,

lim
n→∞ sup

h∈H−n

(A)

Var[hn − h] = lim
n→∞ sup

h∈H−n

∣∣∣∣ Ṽar[hn − h]
Var[hn − h] − a

∣∣∣∣= 0,

and (3.9) follows. Furthermore, C̃−1/2CC̃−1/2 − a−1I is compact on L2 by Lemma B.1 (see
Appendix B in the Supplementary Material [9]) and Sμ

adm = Sμ̃
adm by Lemma 4.3 so that, after

changing the roles of the measures μ and μ̃, (3.9) implies (3.10).
Next, we show validity of (3.13) under Assumptions 3.3.I–III. To this end, we first split

|Ẽ[(hn − h)2] − aE[(hn − h)2]| ≤ (A) + (B) in term (A), which is defined as above, and term
(B) := |Ẽ[hn − h]|2. By the Cauchy–Schwarz inequality,

(B) =
∣∣∣∣∣

∞∑
k=n+1

c
(n)
k Ẽ

[
ψ

(n)
k

]∣∣∣∣∣
2

≤ E
[
(hn − h)2] ∞∑

k=n+1

∣∣Ẽ[ψ(n)
k

]∣∣2.
For each k ≥ n + 1, we let {ψ(n)

kj }j∈N be the coefficients of ψ
(n)
k when represented with

respect to the orthonormal basis {zj }j∈N from Lemma 4.1(ii). We then find (recall that we
have centered μ so that μ̃ has mean m̃ − m):

∞∑
k=n+1

∣∣Ẽ[ψ(n)
k

]∣∣2 =
∞∑

k=n+1

∣∣∣∣∑
j∈N

ψ
(n)
kj Ẽ[zj ]

∣∣∣∣2

=
∞∑

k=n+1

∣∣∣∣∑
j∈N

ψ
(n)
kj Ẽ

[(
Z0, vj

)
L2

]∣∣∣∣2

=
∞∑

k=n+1

∣∣∣∣∑
j∈N

ψ
(n)
kj

(
m̃ − m,C−1/2ej

)
L2

∣∣∣∣2

=
∞∑

k=n+1

(
C−1/2(m̃ − m),w

(n)
k

)2
L2

,

since w
(n)
k = C1/2v

(n)
k = C1/2J −1ψ

(n)
k = ∑

j∈N ψ
(n)
kj ej and this series converges in L2.

Therefore,
∑∞

k=n+1 |Ẽ[ψ(n)
k ]|2 = ‖Q⊥

n C−1/2(m − m̃)‖2
L2

follows. By Assumption 3.3.II, the

difference of the means m − m̃ is an element of the Cameron–Martin space H ∗ = C1/2(L2).
Consequently, C−1/2(m − m̃) ∈ L2 and the norm on the right-hand side converges to zero as
n → ∞ by (4.7) and (2.11). This shows that also

(4.9) lim
n→∞ sup

h∈H−n

(B)

E[(hn − h)2] = lim
n→∞ sup

h∈H−n

|Ẽ[hn − h]|2
E[(hn − h)2] = 0.
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We thus conclude with (3.9) and (4.9) that, uniformly in h,∣∣∣∣ Ẽ[(hn − h)2]
E[(hn − h)2] − a

∣∣∣∣≤ ∣∣∣∣ Ṽar[hn − h]
Var[hn − h] − a

∣∣∣∣+ |Ẽ[hn − h]|2
E[(hn − h)2] → 0 as n → ∞,

and (3.13) follows. Again, by virtue of Lemma 4.3 and Lemma B.1 (see Appendix B in the
Supplementary Material [9]) we may change the roles of μ and μ̃ which gives (3.14).

To derive (3.11), note that E[(hn − h)2] ≤ E[(h̃n − h)2] as hn is the μ-best linear pre-
dictor. For the same reason, we obtain Ẽ[(h̃n − h)2] ≤ Ẽ[(hn − h)2], and the estimates
1 ≤ E[(h̃n−h)2]

E[(hn−h)2] ≤ E[(h̃n−h)2]
Ẽ[(h̃n−h)2]

Ẽ[(hn−h)2]
E[(hn−h)2] follow similarly as in (4.3). By (3.14) and (3.13), the

last two fractions converge to a−1 and to a, uniformly in h, as n → ∞ and (3.11) follows.
Changing the roles of μ and μ̃ implies (3.12).

Finally, note that if μ = N(m,C) and μ̃ = N(m̃, C̃) are such that Assumptions 3.3.I
and 3.3.III are satisfied, then the centered measures μc = N(0,C) and μ̃c = N(0, C̃) satisfy
Assumptions 3.3.I–III so that (3.11), (3.12) hold for the pair μc, μ̃c and (3.7), (3.8) follow
from the identities in (C.2) and (C.3); see Appendix C in the Supplementary Material [9]. �

PROOF OF THEOREM 3.1 AND COROLLARY 3.2. If the measures μ and μ̃ are equiv-
alent, then by the Feldman–Hájek theorem (see Theorem A.1 in Appendix A of the Sup-
plementary Material [9]) Assumptions 3.3.I–II hold and T1 = C−1/2C̃C−1/2 − I ∈ L2(L2).
Since every Hilbert–Schmidt operator is compact, this implies that also Assumption 3.3.III is
fulfilled for a = 1. Therefore, for every {Hn}n∈N ∈ Sμ

adm, all assertions in (3.1), (3.2), (3.3),
(3.4) follow from Proposition 4.4. �

LEMMA 4.5. Let μ = N(m,C), μ̃ = N(m̃, C̃). In (3.7)–(3.10), let hn, h̃n denote the best
linear predictors of h based on Hn and the measures μ, μ̃. Then validity of any of the state-
ments (3.7), (3.8), (3.9) or (3.10) for all {Hn}n∈N ∈ Sμ

adm implies that the Assumptions 3.3.I
and 3.3.III are satisfied, and the constant a ∈ (0,∞) in (3.9), (3.10) is the same as in (3.5).

PROOF. By (C.2)–(C.5) (see Appendix C in the Supplementary Material [9]), we can
without loss of generality assume that m = m̃ = 0. Then Var[h̃n − h] = E[(h̃n − h)2]
and Ṽar[hn − h] = Ẽ[(hn − h)2] follow. Furthermore, Var[hn − h] = E[(hn − h)2] and
Ṽar[h̃n − h] = Ẽ[(h̃n − h)2] always hold by unbiasedness of the kriging predictor. Recall
from Lemma 4.1 the orthonormal bases {ej }j∈N for L2, {vj }j∈N for H = C−1/2(L2), and
{zj }j∈N for H0 as well as the isometry J : H → H0, which identifies vj with zj .

If any of the statements (3.7), (3.8), (3.9) or (3.10) holds for every {Hn}n∈N ∈ Sμ
adm, then

by Lemma B.4 (see Appendix B in the Supplementary Material [9]), all four assertions of
Proposition 3.5 and, in particular, part (i) hold, that is, Assumption 3.3.I is satisfied.

Next, we prove that validity of (3.8) for all {Hn}n∈N ∈ Sμ
adm implies Assumption 3.3.III.

For n ∈ N, define En := span{e1, . . . , en} ⊂ L2 and Hn := span{v1, . . . , vn} ⊂ H , and let
E⊥

n = span{ej }j>n as well as H⊥
n = span{vj }j>n be their orthogonal complements in

L2 and H , respectively. Note that En = Hn and E⊥
n ⊂ H⊥

n . Now suppose that, for all
a ∈ (0,∞), the linear operator Ta = C−1/2C̃C−1/2 − aI is not compact on L2, and define
α := ‖C1/2C̃−1/2‖−2

L(L2)
, α := ‖C̃1/2C−1/2‖2

L(L2)
. Then, by Lemma B.2 (see Appendix B in

the Supplementary Material [9]) there exist δ ∈ (0,∞) and, for every n ∈ N, an, an ∈ [α,α]
and wn,wn ∈ E⊥

n \ {0} such that, for all n ∈ N, we have an − an ≥ δ and∣∣∣∣(C−1/2C̃C−1/2wn,wn)L2

(wn,wn)L2

− an

∣∣∣∣< δα2

3α2 ,

∣∣∣∣(C−1/2C̃C−1/2wn,wn)L2

(wn,wn)L2

− an

∣∣∣∣< δα2

3α2 .

We set cn := a−1
n , cn := a−1

n , and vn := C−1/2wn, vn := C−1/2wn. Then we obtain that, for
all n ∈ N, cn, cn ∈ [α−1, α−1], and cn − cn ≥ δ′ := δα−2. The vectors vn, vn ∈ H⊥

n satisfy
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L2

‖C̃1/2vn‖2
L2

− cn

∣∣∣< δ′
3 and

∣∣∣‖C1/2vn‖2
L2

‖C̃1/2vn‖2
L2

− cn

∣∣∣< δ′
3 . We then define φ

n
:= J vn ∈ H0 as well as

φ̄n := J vn ∈ H0 and find that

E[φ2
n
]

Ẽ[φ2
n
] = ‖C1/2vn‖2

L2

‖C̃1/2vn‖2
L2

∈
(
cn − δ′

3
, cn + δ′

3

)
,

E[φ̄2
n]

Ẽ[φ̄2
n]

= ‖C1/2vn‖2
L2

‖C̃1/2vn‖2
L2

∈
(
cn − δ′

3
, cn + δ′

3

)
.

As in [5], Proof of Theorem 5, it follows that there exist h(n),ψn ∈ span{φ
n
, φ̄n} such that

(4.10)
Ẽ[(h(n)

1 − h(n))2]
Ẽ[(h̃(n)

1 − h(n))2] = (θ̃n + �̃n)
2

4θ̃n�̃n

holds, where h
(n)
1 and h̃

(n)
1 are the best linear predictors of h(n) based on the subspace

Vn := R⊕ span{ψn} ⊂H and the measures μ and μ̃, respectively. Moreover,

θ̃n := min
{
E
[
h2]/Ẽ

[
h2] : h ∈ span{φ

n
, φ̄n}, h �= 0

}
,

and �̃n ∈ (0,∞) is defined as θ̃n with min replaced by max. Clearly, these definitions yield
that θ̃n ≤ E[φ2

n
]/Ẽ[φ2

n
] < cn + δ′

3 and �̃n ≥ E[φ̄2
n]/Ẽ[φ̄2

n] > cn − δ′
3 , which implies that

�̃n − θ̃n > cn − cn − 2δ′
3 = δ′

3 . As we have already derived fulfillment of Assumption 3.3.I,

Proposition 3.5(i) ⇔ (ii) shows that �̃n ≤ suph∈H0\{0} E[h2]
Ẽ[h2] ≤ ‖C1/2C̃−1/2‖2

L(L2)
< ∞. De-

fine H�
1 := V1 and, for n ≥ 2, set H�

n := R ⊕ span{z1, . . . , zn−1,ψn}. By the basis prop-
erty of {zj }j∈N in H0 (see Lemma 4.1(ii)), the so constructed subspaces are admissible, that
is, {H�

n}n∈N ∈ Sμ
adm. Since h(n),ψn ∈ span{φ

n
, φ̄n} and since φ

n
, φ̄n are H0-orthogonal to

z1, . . . , zn−1, we obtain h
(n)
n = h

(n)
1 , where h

(n)
n is the best linear predictor of h(n) based on

H�
n and μ. Thus, by using (4.10) we obtain, for all n ∈N,

Ẽ[(h(n)
n − h(n))2]

Ẽ[(h̃(n)
n − h(n))2] − 1 ≥ (�̃n − θ̃n)

2

4θ̃n�̃n

>
δ′2

36�̃2
n

≥ δ′2

36‖C1/2C̃−1/2‖4
L(L2)

,

a contradiction to (3.8) for the sequence {H�
n}n∈N ∈ Sμ

adm, which proves that (3.8) holding for
all {Hn}n∈N ∈ Sμ

adm implies Assumption 3.3.III.
Next, we show that validity of (3.9) for all {Hn}n∈N ∈ Sμ

adm also implies that Assump-
tion 3.3.III is satisfied. To this end, suppose that this assumption does not hold. It then again
follows from Lemma B.2 (see Appendix B in the Supplementary Material [9]) that there
are δ ∈ (0,∞) and, for all n ∈ N, an, an ∈ [α,α] and vn, vn ∈ H⊥

n , linearly independent,

such that
∣∣∣‖C̃1/2vn‖2

L2
‖C1/2vn‖2

L2

− an

∣∣∣< δ
3 ,
∣∣∣‖C̃1/2vn‖2

L2
‖C1/2vn‖2

L2

− an

∣∣∣< δ
3 , and an − an ≥ δ for all n ∈ N. Define

h̄(n) := J vn ∈ H0 and h(n) := J vn ∈ H0. Then, for H�
n := R⊕ span{z1, . . . , zn} ⊂ H,

(4.11) ∀n ∈N : Ṽar[h̄(n)
n − h̄(n)]

Var[h̄(n)
n − h̄(n)] − Ṽar[h(n)

n − h(n)]
Var[h(n)

n − h(n)] = Ṽar[h̄(n)]
Var[h̄(n)] − Ṽar[h(n)]

Var[h(n)] ≥ δ

3
.

Note that, if (3.9) holds for all sequences {Hn}n∈N ∈ Sμ
adm, then, in particular,

∀{Hn}n∈N ∈ Sμ
adm : lim

n→∞

(
sup

g∈H−n

Ṽar[gn − g]
Var[gn − g] − inf

h∈H−n

Ṽar[hn − h]
Var[hn − h]

)
= 0
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follows. Therefore, (4.11) contradicts (3.9) for the sequence {H�
n}n∈N ∈ Sμ

adm, and thus, As-
sumption 3.3.III is satisfied if (3.9) holds for all {Hn}n∈N ∈ Sμ

adm.
Finally, necessity of Assumption 3.3.III for validity of (3.7) (or (3.10)) holding for all

{Hn}n∈N ∈ Sμ
adm follows from changing the roles of μ and μ̃: If μ and μ̃ are such that (3.7)

(or (3.10)) holds for every {Hn}n∈N ∈ Sμ
adm, then (3.8) (or (3.9)) is true for the pair μ̃, μ

and every {Hn}n∈N ∈ Sμ
adm. Since necessity of Assumption 3.3.I has already been derived, by

Lemma 4.3 we have Sμ
adm = Sμ̃

adm so that the above arguments combined with Lemma B.1 in
Appendix B of the Supplementary Material [9] show that Assumption 3.3.III also holds. �

PROOF OF THEOREM 3.6. Sufficiency and necessity of Assumptions 3.3.I and 3.3.III
for (3.7)–(3.10) to hold for all {Hn}n∈N ∈ Sμ

adm have been proven in Proposition 4.4 and
Lemma 4.5, respectively. �

LEMMA 4.6. Define the Gaussian measures μc = N(0,C) and μs = N(m̃ − m,C), with
corresponding expectation operators Ec and Es. Let hc

n and hs
n denote the best linear pre-

dictors of h based on Hn ∈ {Hn}n∈N ∈ Sμ
adm and the measures μc and μs, respectively.

For n ∈ N and h ∈ H−n, consider the errors of the predictors, ec = ec(h,n) := hc
n − h and

es = es(h,n) := hs
n − h. Then

(4.12)
Ec[e2

s ]
Ec[e2

c ]
− 1 = Es[e2

c ]
Es[e2

s ]
− 1 =

∣∣∣∣Es[e2
c ]

Ec[e2
c ]

− 1
∣∣∣∣= ∣∣∣∣Ec[e2

s ]
Es[e2

s ]
− 1
∣∣∣∣= |Es[ec]|2

Ec[e2
c ]

.

Furthermore, for all {Hn}n∈N ∈ Sμ
adm, this term is bounded, uniformly with respect to

n ∈ N and h ∈ H−n, if and only if Assumption 3.3.II is satisfied. Under Assumption 3.3.II,

limn→∞ suph∈H−n

|Es[ec(h,n)]|2
Ec[ec(h,n)2] = 0 holds for all {Hn}n∈N ∈ Sμ

adm.

PROOF. Let n ∈ N and h ∈ H−n. By H-orthogonality of ec = hc
n − h to Hn, we obtain

Ec
[
e2

s
]− Ec

[
e2

c
]= Ec[esec] + Ec

[
es
(
hs

n − hc
n

)]− Ec[eces] = Ec
[(

hs
n − hc

n

)2]
.

Since μc and μs have the same covariance operator, we can combine the above equality with
(C.1) from Lemma C.1 (see Appendix C in the Supplementary Material [9]), which gives
Ec[e2

s ]
Ec[e2

c ] − 1 = Ec[(hs
n−hc

n)2]
Ec[e2

c ] = |Es[ec]|2
Ec[e2

c ] . Noting that |Ec[es]| = |Es[ec]| and Es[e2
s ] = Ec[e2

c ] due

to the identical covariance operators of μc, μs yields the relation Es[e2
c ]

Es[e2
s ] − 1 = |Es[ec]|2

Ec[e2
c ] . Next,

again by equality of the covariance operators, we find that Es[e2
c ] − Ec[e2

c ] = |Es[ec]|2 and
Ec[e2

s ] − Es[e2
s ] = |Ec[es]|2 = |Es[ec]|2, which completes the proof of (4.12).

Now suppose that Assumption 3.3.II is satisfied and let {Hn}n∈N ∈ Sμ
adm. Then we obtain

limn→∞ suph∈H−n

|Es[ec(h,n)]|2
Ec[ec(h,n)2] = 0 as in (4.9) with C = C̃. In particular, there exists a constant

K ∈ (0,∞) such that supn∈N suph∈H−n

|Es[ec(h,n)]|2
Ec[ec(h,n)2] ≤ K .

Finally, assume that m − m̃ /∈ H ∗ = C1/2(L2), that is, Assumption 3.3.II is not satisfied.
For n ∈ N, define Hn = span{v1, . . . , vn}, where {vj }j∈N is the orthonormal basis of H from
Lemma 4.1(i), and let H⊥

n be the H -orthogonal complement of Hn. Since m − m̃ /∈ H ∗
and L2 is dense in H , we can find {vn}n∈N ⊂ L2 \ {0} such that (m − m̃, vn)L2 ≥ n‖vn‖H .
Furthermore, we may pick vn in H⊥

n ⊂ H , since dim(Hn) < ∞. In summary,

∀n ∈ N ∃vn ∈ L2 ∩ H⊥
n , vn �= 0 : (m − m̃, vn)L2 ≥ n‖C1/2vn‖L2 .

By (4.2), h(n) := J vn ∈ H0 is H0-orthogonal to H0
n := span{z1, . . . , zn} if {zj }j∈N is the

orthonormal basis for H0 from Lemma 4.1(ii). Therefore, the kriging predictor of h(n)

based on H�
n := R ⊕ H0

n and μc = N(0,C) vanishes, h
(n),c
n = 0. Thus, there exist square-

summable coefficients {c(n)
j }j>n such that h(n) =∑j>n c

(n)
j zj and vn =∑j>n c

(n)
j vj , and we
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find that

|Es[h(n),c
n − h(n)]|2

Ec[(h(n),c
n − h(n))2] = |Es[h(n)]|2

Ec[|h(n)|2] = |Es[∑j>n c
(n)
j (Z0, vj )L2]|2

‖C1/2vn‖2
L2

= (m̃ − m,vn)
2
L2

‖C1/2vn‖2
L2

≥ n2.

Furthermore, {H�
n}n∈N ∈ Sμ

adm so that this yields a contradiction. �

PROOF OF THEOREM 3.8. In this proof, all references starting with “C” are referring
to Appendix C in the Supplementary Material [9]. As shown in (C.2)–(C.5) (see Propo-
sition C.2), we can equivalently prove the claim for the pair of measures μc = N(0,C)

and μ̃s = N(m̃ − m, C̃) in place of μ = N(m,C) and μ̃ = N(m̃, C̃). Sufficiency of Assump-
tions 3.3.I–III for each of the assertions (3.11)–(3.14) to hold for all {Hn}n∈N ∈ Sμ

adm is shown
in Proposition 4.4.

Conversely, if (3.11) (or (3.12)) holds for μc, μ̃s and all {Hn}n∈N ∈ Sμ
adm, then by (C.7) the

relation (3.7) (or (3.8)) holds for the pair μ, μ̃ and all {Hn}n∈N ∈ Sμ
adm. By Lemma 4.5, As-

sumptions 3.3.I and 3.3.III have to be satisfied. Subsequently, necessity of Assumption 3.3.II
for (3.12) follows from (C.8) combined with Lemma 4.6. Since we have already derived As-
sumption 3.3.I, we have Sμ

adm = Sμ̃
adm by Lemma 4.3, and we may also combine (C.8) with

Lemma 4.6 applied for μ̃c and μ̃s, showing necessity of Assumption 3.3.II for (3.11).
If (3.13) holds for μc, μ̃s and all {Hn}n∈N ∈ Sμ

adm, then the first identity in (C.6) combined
with Lemma 4.6 (see also Remark C.3) show that Assumption 3.3.II has to be satisfied.
Subsequently, again the first identity in (C.6) implies that (3.9) holds for the pair μ, μ̃ and all
{Hn}n∈N ∈ Sμ

adm and Assumptions 3.3.I and 3.3.III follow from Lemma 4.5. For (3.14) we
may proceed analogously, since uniform boundedness of the terms in the second identity of
(C.6) in particular implies that Sμ̃

adm ⊆ Sμ
adm, so that Lemma 4.6 is applicable for the pair of

measures μ̃c and μ̃s. �

5. Simplified necessary and sufficient conditions. In order to exploit Theorem 3.8 to
check if two models provide uniformly asymptotically equivalent linear predictions, one has
to verify Assumptions 3.3.I–III. Depending on the form of the covariance operators, this may
be difficult. In this section, we provide equivalent formulations of Assumptions 3.3.I and III
for two important cases: 1. the two covariance operators diagonalize with respect to the same
eigenbasis, and 2. �, �̃ : X × X → R are covariance functions of weakly stationary random
fields on X ⊂ Rd , a priori defined on all of Rd , which have well-defined spectral densities
f, f̃ : Rd → [0,∞).

5.1. Common eigenbasis. In the case that the two covariance operators diagonalize with
respect to the same eigenbasis, conditions I and III of Assumption 3.3 can be formulated as
conditions on the ratios of the eigenvalues. We consider this scenario in the next corollary.

COROLLARY 5.1. Suppose that C, C̃ are self-adjoint, positive definite, compact opera-
tors on L2(X , νX ), which diagonalize with respect to the same orthonormal basis {ej }j∈N for
L2(X , νX ), that is, there exist corresponding eigenvalues γj , γ̃j ∈ (0,∞), j ∈ N, accumulat-
ing only at zero such that Cej = γj ej and C̃ej = γ̃j ej for all j ∈ N. Then Assumptions 3.3.I
and 3.3.III are satisfied if and only if there exists a ∈ (0,∞) such that limj→∞ γ̃j /γj = a.

PROOF. We start by showing that limj→∞ γ̃j /γj = a ∈ (0,∞) is sufficient for Assump-
tions 3.3.I and 3.3.III. By Proposition 3.5, Assumption 3.3.I is equivalent to requiring that
C̃1/2C−1/2 is an isomorphism on L2. If C and C̃ admit the same eigenbasis {ej }j∈N, then
these are also eigenvectors of the self-adjoint, positive definite linear operator C−1/2C̃C−1/2
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with corresponding eigenvalues {γ̃j /γj }j∈N. By assumption, this sequence converges. Hence,
‖C̃1/2C−1/2‖2

L(L2)
= sup‖v‖L2=1(C−1/2C̃C−1/2v, v)L2 = supj∈N γ̃j /γj ∈ (0,∞) follows, and

limj→∞ γj/γ̃j = 1/a implies that ‖C1/2C̃−1/2‖2
L(L2)

= supj∈N γj/γ̃j ∈ (0,∞) by the same
argument. Thus, Assumption 3.3.I is satisfied. Furthermore, also Assumption 3.3.III follows,
since Ta = C−1/2C̃C−1/2 −aI diagonalizes with respect to {ej }j∈N with corresponding eigen-
values {γ̃j /γj − a}j∈N which by assumption accumulate only at zero, and hence, Ta is com-
pact on L2(X , νX ). Conversely, if Assumptions 3.3.I and 3.3.III are satisfied, then by the
latter there exists a ∈ (0,∞) such that Ta is compact and {γ̃j /γj − a}j∈N is a null sequence,
that is, {γ̃j /γj }j∈N converges to a ∈ (0,∞). �

5.2. Weakly stationary random fields. We consider a connected, compact subset X of Rd

equipped with the Euclidean metric and the Lebesgue measure λd . For brevity, we omit λd

in the notation L2(X ), L2(R
d). We assume that the operators C, C̃ : L2(X ) → L2(X ) are in-

duced by continuous, (strictly) positive definite kernels �|X×X and �̃|X×X , which are restric-
tions of translation invariant covariance functions �, �̃ : Rd ×Rd →R. Translation invariance
of � implies that there exists an even function �0 : Rd → R such that �(x, x′) = �0(x − x′)
for all x, x′ ∈ Rd , and similarly �̃0 is defined for �̃. We assume �0, �̃0 ∈ L1(R

d), so that the
corresponding spectral densities f, f̃ : Rd → [0,∞) exist. Recall that the spectral density f

and �0 relate via the inversion formula (see, e.g., [25], page 25): For all ω ∈Rd , we have

(5.1) f (ω) = 1

(2π)d
(F�0)(ω), (F�0)(ω) :=

∫
Rd

exp(−iω · x)�0(x)dx.

Using this convention for the Fourier transform F , its inverse becomes(
F−1v̂

)
(x) = 1

(2π)d

∫
Rd

exp(iω · x)v̂(ω)dω, x ∈ R
d .

Let the linear operator FX : L2(X ) → L2(R
d;C) be the composition FX := F ◦ E0

X , where
E0
X is the zero extension L2(X ) � w �→ E0

Xw ∈ L1(R
d) ∩ L2(R

d) that sets (E0
Xw)(x) = 0

for all x ∈ Rd \ X . We then consider the following subset of the space of complex-valued
square-integrable functions L2(R

d;C), which itself is a vector space over R,

FX
(
L2(X )

)= {ŵ : Rd →C
∣∣∃w ∈ L2(X ) : ŵ = FXw

}⊂ L2
(
R

d;C),
and define the Hilbert space Hf (over R) as the closure of FX (L2(X )) with respect to norm
induced by the weighted L2(R

d;C)-inner product with weight f ,

(5.2) (v̂1, v̂2)Hf
:=
∫
Rd

f (ω)v̂1(ω)v̂2(ω)dω, Hf := FX
(
L2(X )

)‖·‖Hf .

We recall the Hilbert space H = C−1/2(L2(X )) with ( · , · )H = (
C1/2 · ,C1/2 · )L2(X ) from

Lemma 4.1(i) and find by invoking (5.1) that, for all v1, v2 ∈ L2(X ),

(FX v1,FX v2)Hf
= 1

(2π)d

∫
Rd

(F�0)(ω)(FX v1)(ω)(FX v2)(ω)dω

= 1

(2π)d

∫
Rd

F
(
�0 ∗ (E0

X v1
))

(ω)F
(
E0
X v2

)
(ω)dω(5.3)

= (�0 ∗ (E0
X v1

)
,E0

X v2
)
L2(R

d ) = (Cv1, v2)L2(X ) = (v1, v2)H .

By density of L2(X ) in H and of FX (L2(X )) in Hf , FX thus admits a unique continu-
ous linear extension to an inner product preserving isometric isomorphism between H and
Hf . Its inverse F−1

X : Hf → H is the unique continuous linear extension of RX ◦F−1 :
FX (L2(X )) → L2(X ) ⊂ H , where RX : L2(R

d) → L2(X ) denotes the restriction to X .
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PROPOSITION 5.2. Suppose that the self-adjoint, positive definite, compact operators
C, C̃ : L2(X ) → L2(X ) are induced by restrictions (to X × X ) of translation invariant co-
variance functions �, �̃ : Rd × Rd → R, which have spectral densities f, f̃ : Rd → [0,∞)

defined via (5.1). Then, Assumptions 3.3.I and 3.3.III are satisfied if and only if:

(I’) The spaces Hf and Hf̃ are isomorphic with equivalent norms, that is, there exist
constants 0 < k ≤ K < ∞ such that

(5.4) k‖v̂‖2
Hf

≤
∫
Rd

f̃ (ω)
∣∣v̂(ω)

∣∣2 dω ≤ K‖v̂‖2
Hf

∀v̂ ∈FX
(
L2(X )

)
.

(III’) There exists a constant a ∈ (0,∞) such that the linear operator T̂a := S − aIHf
is

compact on Hf , where IHf
denotes the identity on Hf and S : Hf → Hf is defined by

(5.5) (Sv̂1, v̂2)Hf
=
∫
Rd

f̃ (ω)v̂1(ω)v̂2(ω)dω ∀v̂1, v̂2 ∈ Hf .

PROOF. (I’) Let v̂1, v̂2 ∈ FX (L2(X )) and v1, v2 ∈ L2(X ) be such that v̂1 = FX v1 and
v̂2 = FX v2. Applying the inversion formula (5.1) for f̃ gives, similarly as in (5.3),

(5.6) (C̃v1, v2)L2(X ) =
∫
Rd

(F �̃0)(ω)

(2π)d
v̂1(ω)v̂2(ω)dω =

∫
Rd

f̃ (ω)v̂1(ω)v̂2(ω)dω.

Therefore, (5.4) is equivalent to k(Cv, v)L2(X ) ≤ (C̃v, v)L2(X ) ≤ K(Cv, v)L2(X ) holding for
all v ∈ L2(X ), which by density of L2(X ) in H can be reformulated as the relation
‖C̃1/2C−1/2w‖2

L2(X ) ∈ [k,K] for all w ∈ L2(X ) with ‖w‖L2(X ) = 1, that is, C̃1/2C−1/2 is an
isomorphism on L2(X ). By Proposition 3.5(i) ⇔ (ii) this is equivalent to Assumption 3.3.I.

(III’) We proceed as illustrated below: We prove that Ta can be expressed as the compo-
sition Ta = C1/2F−1

X T̂aFXC−1/2. Since C−1/2 : L2(X ) → H and FX : H → Hf are inner
product preserving isometric isomorphisms, this shows that Ta ∈ K(L2(X )) is equivalent to
compactness of T̂a on Hf .

(L2(X ), ( · , · )L2(X )) (L2(X ), ( · , · )L2(X ))

(H, (C1/2 · ,C1/2 · )L2(X )) (H, (C1/2 · ,C1/2 · )L2(X ))

(Hf , ( · , · )Hf
) (Hf , ( · , · )Hf

)

Ta = C−1/2C̃C−1/2 − aI

C−1C̃ − aIH

T̂a = S − aIHf

C−1/2 C1/2

F ◦ E0
X RX ◦F−1

Part (I’) implies that b(v̂1, v̂2) := ∫
Rd f̃ (ω)v̂1(ω)v̂2(ω)dω defines a continuous, coercive

bilinear form on the real Hilbert space Hf . Thus, for every v̂1 ∈ Hf , existence and uniqueness
of Sv̂1 satisfying (5.5) follows from the Riesz representation theorem, and S : Hf → Hf is
well-defined, linear and bounded. For v1, v2 ∈ L2(X ) and v̂1 := FX v1, v̂2 := FX v2, we have((

C−1C̃ − aIH

)
v1, v2

)
H = ((C̃ − aC)v1, v2

)
L2(X )

=
∫
Rd

(
f̃ (ω) − af (ω)

)
v̂1(ω)v̂2(ω)dω

= ((S − aIHf
)v̂1, v̂2

)
Hf

= (T̂av̂1, v̂2)Hf
= (F−1

X T̂aFX v1, v2
)
H ,

where we used (5.2), (5.3) and (5.6). By density of L2(X ) in H and continuity of F−1
X T̂aFX

on H , this equality holds also for all v1, v2 ∈ H . Consequently, we obtain the chain of iden-
tities Ta = C−1/2C̃C−1/2 − aI = C1/2(C−1C̃ − aIH )C−1/2 = C1/2F−1

X T̂aFXC−1/2. �
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REMARK 5.3. We emphasize that the Hilbert spaces H0 in (2.4), H from Lemma 4.1(i)
and Hf in (5.2) are mutually isomorphic, with inner product preserving isomorphisms
J : H → H0 and FX : H → Hf .

For two continuous functions g, g̃ : Rd → [0,∞), the notation g � g̃ indicates that there
exist k,K ∈ (0,∞) such that the relations kg(ω) ≤ g̃(ω) ≤ Kg(ω) hold for all ω ∈ Rd .

COROLLARY 5.4. Suppose the setting of Proposition 5.2.

(i) Assumption 3.3.I is satisfied whenever f � f̃ .
(ii) Suppose that �0 : Rd →R related to f : Rd → [0,∞) via (5.1) is not infinitely differ-

entiable in at least one Cartesian coordinate direction. Then, in either of the cases f̃ (ω)
f (ω)

→ 0

or f̃ (ω)
f (ω)

→ ∞ as ‖ω‖Rd → ∞, Assumption 3.3.I is not satisfied.

PROOF. (i) Clearly, the relation f � f̃ in (i) implies that (5.4) holds. Therefore, by
Proposition 5.2(I’) Assumption 3.3.I is satisfied.

(ii) Without loss of generality, we may assume that X contains an open subset containing
the origin and pick L ∈ (0,∞) with [−L−1,L−1]d ⊆ X . By assumption on the differentia-
bility of �0, there exist j ∈ {1, . . . , d} and p ∈ N such that

∫
R

fj (ωj )ω
2p
j dωj = ∞, where

fj : R→ [0,∞) is defined by

fj (ωj ) :=
∫
Rd−1

f (ω1, . . . ,ωj , . . . ,ωd)dλd−1(ω1, . . . ,ωj−1,ωj+1, . . . ,ωd).

Let r( · ) be the rectangular function, defined as r(x) = 1 for |x| ≤ 1
2 and r(x) = 0 for |x| > 1

2 .
For n ∈ N such that n > pL, consider the forward difference operator �n : L2(R) → L2(R),
[�ng](x) := n(g(x + 1/n) − g(x)), and set

vn(x) := nd [�p
nr](nxj − 1

2

) ∏
k �=j

r
(
nxk − 1

2

)
, n ∈ N, n > pL.

Each function vn has compact support in [−L−1,L−1]d ⊆ X and vn ∈ L2(X ). Furthermore,
its Fourier transform is v̂n(ω) := (FX vn)(ω) = np(eiωj /n − 1)p

∏d
k=1 e−iωk/2 sinc( ωk

2πn
),

where sinc(x) := sin(πx)
πx

for all x ∈ R, and by basic trigonometric identities

(5.7)
∣∣v̂n(ω)

∣∣2 =
[
2n sin

(
ωj

2n

)]2p d∏
k=1

sinc2
(

ωk

2πn

)
follows. Fix � ∈ N. By assumption, there exists a constant M� ∈ (0,∞) such that one of the
following holds for all ω with ‖ω‖Rd > M�: (a) f̃ (ω) < 1

2�
f (ω) or (b) f̃ (ω) > 2�f (ω). Next,

define the infinite strip A� := {ω ∈ Rd : |ωj | ≤ M�}. Then, for every n > pL, we find by (5.7)∫
A�

f (ω)
∣∣v̂n(ω)

∣∣2 dω ≤
∫
A�

f (ω)ω
2p
j dω ≤ M

2p
�

∫
Rd

f (ω)dω = M
2p
� �0(0),

since 2n sin(
ωj

2n
) = sinc( ωj

2πn
)ωj and | sinc(x)| ≤ 1 for all x ∈ R. By the same arguments,∫

A�
f̃ (ω)|v̂n(ω)|2 dω ≤ M

2p
� �̃0(0) holds for all n > pL. In addition, for every n ∈ N with

n > max{pL,M�/π}, define the set

Bn
� := {ω ∈R

d : M� < |ωj | < nπ, |ωk| < nπ ∀k �= j
}⊂ Ac

� := R
d \ A�.

Since sinc2(θ/(2πn)) > (2/π)2 for θ ∈ (−πn,πn), we obtain again by (5.7) that∫
Bn

�

f (ω)
∣∣v̂n(ω)

∣∣2 dω >
4d

π2d

∫
Bn

�

f (ω)

[
2n sin

(
ωj

2n

)]2p

dω >
4d+p

π2(d+p)

∫
Bn

�

f (ω)ω
2p
j dω.



LINEAR PREDICTION FOR MISSPECIFIED RANDOM FIELDS 1059

Furthermore, note that limn→∞
∫
Bn

�
f (ω)ω

2p
j dω = ∫Ac

�
f (ω)ω

2p
j dω = ∞, since the integral∫

Rd f (ω)ω
2p
j dω = ∫

R
fj (ωj )ω

2p
j dωj = ∞ diverges and

∫
A�

f (ω)ω
2p
j dω ≤ M

2p
� �0(0) is fi-

nite. For this reason, there exists an integer n0 = n0(�) > max{pL,M�/π} such that∫
Ac

�

f (ω)
∣∣v̂n(ω)

∣∣2 dω ≥
∫
Bn

�

f (ω)
∣∣v̂n(ω)

∣∣2 dω > 2�M
2p
� max

{
�0(0), �̃0(0)

}
,

for all n ≥ n0. We then obtain, for every n ≥ n0, in case (a) the estimate∫
Rd f̃ (ω)|v̂n(ω)|2 dω

‖v̂n‖2
Hf

≤
∫
A�

f̃ (ω)|v̂n(ω)|2 dω∫
Ac

�
f (ω)|v̂n(ω)|2 dω

+
∫
Ac

�
f̃ (ω)|v̂n(ω)|2 dω∫

Ac
�
f (ω)|v̂n(ω)|2 dω

< �−1,

and in case (b) we have, for all n ≥ n0,∫
Rd f̃ (ω)|v̂n(ω)|2 dω

‖v̂n‖2
Hf

≥
∫
Ac

�
f̃ (ω)|v̂n(ω)|2 dω∫

A�
f (ω)|v̂n(ω)|2 dω + ∫Ac

�
f (ω)|v̂n(ω)|2 dω

=
∫
Ac

�
f̃ (ω)|v̂n(ω)|2 dω∫

Ac
�
f (ω)|v̂n(ω)|2 dω

(∫
A�

f (ω)|v̂n(ω)|2 dω∫
Ac

�
f (ω)|v̂n(ω)|2 dω

+ 1

)−1

≥ 2�

(
1

2�
+ 1
)−1

= 4�2

1 + 2�
≥ �.

Since � ∈ N was arbitrary, in case (a) there is no constant k ∈ (0,∞) such that the lower
bound in (5.4) holds and in case (b) we cannot find K ∈ (0,∞) for the upper bound in (5.4).
Thus, the result follows by Proposition 5.2(I’). �

In what follows, we let W�R denote the class of Fourier transforms Fv of square-
integrable functions v ∈ L2(R

d;C) with support supp(v) ⊆ �R inside the bounded paral-
lelepiped �R = {x ∈Rd : −Rj ≤ xj ≤ Rj , j = 1, . . . , d}.

COROLLARY 5.5. Suppose the setting of Proposition 5.2, f � f̃ , and furthermore that
there exists ϕ0 ∈ W�R such that f � |ϕ0|2. Then Assumptions 3.3.I and 3.3.III are satisfied

whenever there exists a constant a ∈ (0,∞) such that f̃ (ω)
f (ω)

→ a as ‖ω‖Rd → ∞.

PROOF. By Corollary 5.4(i), f � f̃ implies that Assumption 3.3.I holds.
Next, recall the bounded linear operator S : Hf → Hf from (5.5) and, for � ∈ N, define

the self-adjoint linear operator T̂ �
a : Hf → Hf similarly via(

T̂ �
a v̂1, v̂2

)
Hf

=
∫
B�

(
f̃ (ω) − af (ω)

)
v̂1(ω)v̂2(ω)dω ∀v̂1, v̂2 ∈ Hf ,

where B� := {w ∈ Rd : ‖ω‖Rd < �} is the ball around the origin with radius �. By Proposi-
tion 5.2(I’), T̂ �

a is bounded with ‖T̂ �
a ‖L(Hf ) ≤ a + ‖S‖L(Hf ) for all � ∈ N. We now proceed

in two steps: We first show that, for every � ∈ N, T̂ �
a is compact on Hf . Second, we prove

convergence lim�→∞ ‖T̂ �
a − T̂a‖L(Hf ) = 0, which implies that T̂a = S − aIHf

is compact on
Hf , since K(Hf ) is closed in L(Hf ). Then Assumption 3.3.III holds by Proposition 5.2(III’).

By Proposition 5.2(I’), Hf and H|ϕ0|2 are isomorphic and c‖v̂‖2
Hf

≤ ‖v̂‖2
H|ϕ0|2

≤ C‖v̂‖2
Hf

for some constants c,C ∈ (0,∞) independent of v̂ ∈ Hf . For this reason, the operator T̂ �
a is

compact on Hf if and only if it is compact on H|ϕ0|2 . To see that, for every � ∈ N, the operator
T̂ �

a is compact on H|ϕ0|2 , we prove the stronger result that T̂ �
a is Hilbert–Schmidt on H|ϕ0|2 .
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Let {v̂j }j∈N be an orthonormal basis for H|ϕ0|2 . Then we note that the relations f � f̃ and
f � |ϕ0|2 imply equality of the supports, supp(f̃ ) = supp(f ) = supp(ϕ0), and estimate

C−1
∑
j∈N

∥∥T̂ �
a v̂j

∥∥2
H|ϕ0|2

≤ ∑
j∈N

∥∥T̂ �
a v̂j

∥∥2
Hf

= ∑
j∈N

sup
‖ŵ‖Hf

=1

∣∣(T̂ �
a v̂j , ŵ

)
Hf

∣∣2
= ∑

j∈N
sup

‖ŵ‖Hf
=1

∣∣∣∣∫
supp(ϕ0)∩B�

f̃ (ω) − af (ω)

|ϕ0(ω)|2
∣∣ϕ0(ω)

∣∣2v̂j (ω)ŵ(ω)dω

∣∣∣∣2

≤ ∑
j∈N

sup
‖ŵ‖Hf

=1
‖ŵ‖2

H|ϕ0|2

∫
supp(ϕ0)∩B�

|f̃ (ω) − af (ω)|2
|ϕ0(ω)|4

∣∣ϕ0(ω)
∣∣2∣∣v̂j (ω)

∣∣2 dω

≤ C

∣∣∣∣ sup
ω∈supp(ϕ0)

f̃ (ω) + af (ω)

|ϕ0(ω)|2
∣∣∣∣2 ∫

supp(ϕ0)∩B�

∣∣ϕ0(ω)
∣∣2 ∑

j∈N

∣∣v̂j (ω)
∣∣2 dω.

Since f � |ϕ0|2 and f � f̃ , the supremum in this bound is finite. Furthermore, as ϕ0 ∈ W�R

by [19], Lemma on page 34, we obtain the bound

∣∣ϕ0(ω)
∣∣2 ∑

j∈N

∣∣v̂j (ω)
∣∣2 ≤ CR,K, where CR,K :=

d∏
j=1

(Rj + Kj)

π
,

and �K is a parallelepiped enclosing the compact set X ⊆ �K. Consequently,∑
j∈N

∥∥T̂ �
a v̂j

∥∥2
H|ϕ0|2

≤ C2(2�)dCR,K

∣∣∣∣ sup
ω∈supp(ϕ0)

f̃ (ω) + af (ω)

|ϕ0(ω)|2
∣∣∣∣2 < ∞,

that is, for every � ∈ N, T̂ �
a is Hilbert–Schmidt on H|ϕ0|2 , and thus, compact on Hf .

Finally, let ε ∈ (0,∞) and �ε ∈ N be such that supω∈Bc
�
| f̃ (ω)
f (ω)

−a| < ε for all � ≥ �ε , where

Bc
� := Rd \ B�. Then, for every � ≥ �ε and all v̂1, v̂2 ∈ Hf ,((

T̂a − T̂ �
a

)
v̂1, v̂2

)
Hf

=
∫
Bc

�

(
f̃ (ω) − af (ω)

)
v̂1(ω)v̂2(ω)dω ≤ ε‖v̂1‖Hf

‖v̂2‖Hf
.

Thus, lim�→∞ ‖T̂ �
a − T̂a‖L(Hf ) = 0 and T̂a is compact on Hf . �

6. Applications. In the following, we exemplify the results of Section 3 and Section 5
by three specific applications. Corollary 5.4 and Corollary 5.5 can be used to check for uni-
formly asymptotically optimal linear prediction in the case of weakly stationary processes on
compact subsets of Rd , using their spectral densities. As an explicit example, we consider the
Matérn covariance family in Section 6.1. Corollary 5.1 is applicable, for example, to periodic
random fields on X = [0,1]d as considered by Stein [23]; see Section 6.2. Moreover, as The-
orem 3.8 it also holds for random fields on more general domains. As a further illustration,
we consider an application on the sphere X = S2 in Section 6.3.

6.1. The Matérn covariance family. The Matérn covariance function �|X×X on X ⊂ Rd

with parameters σ, ν, κ ∈ (0,∞) (see Example 2.1(a)) has the spectral density

(6.1) fM(ω) = 1

(2π)d
(F�M)(ω) = 
(ν + d/2)


(ν)πd/2

σ 2κ2ν

(κ2 + ‖ω‖2
Rd )

ν+d/2
, ω ∈ R

d;
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cf. [25], equation (32) on page 49. Assume that �̃ is a further Matérn covariance function
with parameters σ̃ , ν̃, κ̃ ∈ (0,∞) and corresponding spectral density f̃M. Since

f̃M(ω)

fM(ω)
= 
(̃ν + d/2)


(̃ν)


(ν)


(ν + d/2)

σ̃ 2κ̃2ν̃

σ 2κ2ν

(κ2 + ‖ω‖2
Rd )

ν+d/2

(κ̃2 + ‖ω‖2
Rd )

ν̃+d/2
, ω ∈ R

d,

we conclude with Corollary 5.4(ii) that Assumption 3.3.I can only be satisfied if ν̃ = ν. In
this case, fM � f̃M and, since by [10], Remark 4.1, also fM � |ϕ0|2 holds for some ϕ0 ∈ W�R

and some parallelepiped R, Corollary 5.5 is applicable and shows that Assumptions 3.3.I

and 3.3.III hold, with a = σ̃ 2κ̃2ν

σ 2κ2ν in (3.5). Thus, misspecifying the second-order structure
(0, �) by (0, �̃) yields uniformly asymptotically optimal linear prediction if and only if ν = ν̃.
For equivalence of the corresponding Gaussian measures, a = 1 is necessary, that is, the
microergodic parameter σ 2κ2ν has to coincide for the two models. This is in accordance with
the identifiability of this parameter under infill asymptotics; see [28].

6.2. Periodic random fields. A stochastic process {Z(x)}x∈X indexed by X := [0,1]d is
said to be weakly periodic if its mean value function E[Z] ≡ m is constant on [0,1]d and,
in addition, its covariance function �(x, x′) only depends on the difference x − x′, where
the difference is taken modulo 1 in each coordinate (see [23]). Let Zd+ denote all elements
k = (k1, . . . , kd)� ∈ Zd such that at least one element in the vector is nonzero, and the first
nonzero component is positive. A weakly periodic process admits the series expansion

Z(x) = X0 + ∑
k∈Zd+

[
Xc

k cos(2πk · x) + Xs
k sin(2πk · x)

]
,

where X0, Xc
k, Xs

k are pairwise uncorrelated random variables such that E[X0] = E[Z] = m

and, for all k ∈ Zd+, one has E[Xc
k] = E[Xs

k] = 0 as well as E[|Xc
k|2] = E[|Xs

k|2]. Define
f : Zd → [0,∞) by f (0) := Var[X0], f (k) := 1

2 Var[Xc
k] for k ∈ Zd+, and f (−k) = f (k).

Then we can represent the covariance function of Z as

�
(
x, x′)= ∑

k∈Zd

f (k)
[
cos(2πk · x) cos

(
2πk · x′)+ sin(2πk · x) sin

(
2πk · x′)]

= ∑
k∈Zd

f (k) cos
(
2πk · (x − x′))=: �0

(
x − x′).

For this reason, f can be viewed as the spectral density with respect to the counting measure
on Zd . It is not difficult to show that the set{

1, ec
k, es

k : k ∈ Z
d+
}
, ec

k(x) := √
2 cos(2πk · x), es

k(x) := √
2 sin(2πk · x),

forms an orthonormal basis for L2([0,1]d). Moreover, it is an eigenbasis of the covariance
operator with kernel �. Indeed,

∫
X �(x, x′)dx′ = f (0) and

∀k ∈ Z
d+ :

∫
X

�
(
x, x′)eι

k
(
x′)dx′ = f (k)eι

k(x), ι ∈ {c, s}.

Since �0(0) = ∑
k∈Zd f (k) < ∞ and f (k) ≥ 0, it is clear that f (k) accumulates only at

zero. Thus, for any two weakly periodic random fields on [0,1]d with corresponding spectral
densities f, f̃ : Zd → [0,∞) defined as above, we are in the setting of Corollary 5.1: As-
sumptions 3.3.I and 3.3.III are satisfied if and only if f̃ (k)/f (k) → a for some a ∈ (0,∞)

as |k| → ∞. This result holds without any further assumptions on the spectral densities, and
can be viewed as a version of [25], Chapter 3, Theorem 10, for periodic random fields.
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6.3. Random fields on the sphere. Due to the popularity of the Matérn covariance family
on Rd (see Example 2.1(a) and Section 6.1) it is highly desirable to have a corresponding
covariance model also on the sphere S2. A simple remedy for this is to define the covariance
function as in Example 2.1(c), that is, via the chordal distance dR3(x, x′) = ‖x − x′‖R3 .
One reason for why this is a common choice is that the (more suitable) great circle distance
dS2(x, x′) = arccos((x, x′)R3) results in a kernel � which is (strictly) positive definite only
for ν ≤ 1/2; see Example 2.1(b) and [6]. As this severely limits the flexibility of the model,
several authors have suggested alternative “Matérn-like” covariances on S2.

Guinness and Fuentes [7] proposed the Legendre–Matérn covariance,

(6.2) �1
(
x, x′) := ∞∑

�=0

σ 2
1

(κ2
1 + �2)ν1+1/2

P�

(
cosdS2

(
x, x′)), x, x′ ∈ S

2,

where σ1, ν1, κ1 ∈ (0,∞) are model parameters and P� : [−1,1] → R is the �th Legendre
polynomial, that is,

P�(y) = 2−� 1

�!
d�

dy�

(
y2 − 1

)�
, y ∈ [−1,1], � ∈N0 := {0,1,2, . . .}.

This choice is motivated first by the Legendre polynomial representation of positive definite
functions on S2 (see [17]), and second by the fact that the spectral density fM(ω) for the
Matérn covariance on Rd is proportional to σ 2(κ2 + ‖ω‖2

Rd )
−(ν+d/2); see (6.1). However,

note that the parameter σ 2
1 in (6.2) is not the variance since

�1(x, x) =
∞∑

�=0

σ 2
1

(κ2
1 + �2)ν1+1/2

.

Another plausible way of defining a Matérn model on S2 is to use the stochastic partial dif-
ferential equation (SPDE) representation of Gaussian Matérn fields derived by Whittle [27],
according to which a centered Gaussian Matérn field {Z0(x) : x ∈ Rd} can be viewed as a
solution to the SPDE

(6.3)
(
κ2 − �

)(ν+d/2)/2(
τZ0)= W on R

d,

where the parameter τ ∈ (0,∞) controls the variance of Z0, W is Gaussian white noise
and � is the Laplacian. Lindgren, Rue and Lindström [12] proposed Gaussian Matérn fields
on the sphere as solutions to (6.3) formulated on S2 instead of Rd . In this case, � is the
Laplace–Beltrami operator.

In order to state the corresponding covariance function �2 : S2 × S2 → R, we introduce
the spherical coordinates (ϑ,ϕ) ∈ [0, π] × [0,2π) of a point (x1, x2, x3)

� ∈ R3 on S2 by
ϑ = arccos(x3) and ϕ = arccos(x1(x

2
1 + x2

2)−1/2). For all � ∈ N0 and m ∈ {−�, . . . , �}, we
then define the (complex-valued) spherical harmonic Y�,m : S2 →C as (see [13], page 64)

Y�,m(ϑ,ϕ) = C�,mP�,m(cosϑ)eimϕ, m ≥ 0,

Y�,m(ϑ,ϕ) = (−1)mY �,−m(ϑ,ϕ), m < 0,

where, for � ∈ N0 and m ∈ {0, . . . , �}, we set C�,m :=
√

2�+1
4π

(�−m)!
(�+m)! and P�,m : [−1,1] → R

denotes the associated Legendre polynomial, given by

P�,m(y) = (−1)m
(
1 − y2)m/2 dm

dym
P�(y), y ∈ [−1,1].

The spherical harmonics {Y�,m : � ∈ N0,m = −�, . . . , �} are eigenfunctions of the Laplace–
Beltrami operator, with corresponding eigenvalues given by λ�,m = −�(� + 1). In addition,
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they form an orthonormal basis of the complex-valued Lebesgue space L2(S
2, νS2;C); see

[13], Proposition 3.29. Here, νS2 denotes the Lebesgue measure on the sphere which, in
spherical coordinates, can be expressed as dνS2(x) = sinϑ dϑ dϕ.

The covariance function of the solution Z0 to the SPDE (6.3) on S2 can thus be represented
using the spherical harmonics via the series expansion (cf. [13], Theorem 5.13 and page 125)

�2
(
x, x′)= ∞∑

�=0

τ−2

(κ2 + �(� + 1))ν+1

�∑
m=−�

Y�,m(ϑ,ϕ)Y �,m

(
ϑ ′, ϕ′),

where (ϑ,ϕ), (ϑ ′, ϕ′) are the spherical coordinates of x and x′, respectively. Then, by ex-
pressing also the Legendre–Matérn covariance function in (6.2) in spherical coordinates and
by using the addition formula for the spherical harmonics ([13], equation (3.42)) we find that

�1
(
x, x′)= ∞∑

�=0

σ 2
1

(κ2
1 + �2)ν1+1/2

P�

((
x, x′)

R3

)

=
∞∑

�=0

σ 2
1

(κ2
1 + �2)ν1+1/2

4π

2� + 1

�∑
m=−�

Y�,m(ϑ,ϕ)Y �,m

(
ϑ ′, ϕ′).

Thus, the covariance functions �1, �2 are similar, but not identical. Due to the SPDE repre-
sentation of �2, we believe that this is the preferable model. However, an immediate question
is now if the two models provide similar kriging predictions. The answer to this is given by
Corollary 5.1: Since

∑�
m=−� Y�,m(ϑ,ϕ)Y �,m(ϑ ′, ϕ′) =∑�

m=−� v�,m(ϑ,ϕ)v�,m(ϑ ′, ϕ′), where

v�,m(ϑ,ϕ) :=

⎧⎪⎪⎨⎪⎪⎩
√

2C�,−mP�,−m(cosϑ) cos(mϕ) if m < 0,

(1/
√

4π)P�(cosϑ) if m = 0,√
2C�,mP�,m(cosϑ) sin(mϕ) if m > 0,

the two covariance operators have the same (orthonormal, real-valued) eigenfunctions in
L2(S

2, νS2;R). Thus, we are in the setting of Corollary 5.1 and consider the limit of the
ratio of the corresponding eigenvalues:

lim
�→∞

(κ2
1 + �2)ν1+1/2(2� + 1)

(κ2 + �(� + 1))ν+1

1

τ 2σ 2
1 4π

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if ν1 < ν,

∞ if ν1 > ν,
1

τ 2σ 2
1 2π

if ν1 = ν.

We conclude that the models will provide asymptotically equivalent kriging prediction as
long as they have the same smoothness parameter ν (and positive, finite variance parameters).
By the same reasoning, it is easy to see that one may misspecify both τ and κ as well as σ1 and
κ1 for the two covariance models and still obtain asymptotically optimal linear prediction.

7. Discussion. For statistical applications, it is crucial to understand the effect that mis-
specifying the mean or the covariance function has on linear prediction. We have addressed
this by providing three necessary and sufficient conditions, Assumptions 3.3.I–III, for uni-
formly asymptotically optimal linear prediction of random fields on compact metric spaces.

There are several directions in which this work can be continued in the future. An interest-
ing question is whether Assumptions 3.3.I–III can be relaxed if the uniformity requirement
on the optimality is dropped. Furthermore, the results of Section 5.2 can likely be refined to
obtain necessary and sufficient conditions on the spectral densities f and f̃ . This should be
possible at least in the case that f � |ϕ0|2 holds for some ϕ0 ∈ W�R .
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A more challenging problem would be to generalize our results to the setting of locally
compact spaces. This extension is conceivable, but it would require substantial changes to
both the problem formulation and the methods of proving. For the current setting of compact
metric spaces, there are several additional applications that can be considered. For example,
the application to Gaussian Matérn fields on the sphere in Section 6.3 can easily be extended
to SPDE-based Gaussian Matérn fields on more general domains, since our arguments de-
pend only on the asymptotic behavior of the eigenvalues of the Laplace–Beltrami operator,
which is also known, for instance, on compact Riemannian manifolds; see, for example, [18],
Theorem 15.2.

Acknowledgments. The authors thank S.G. Cox and J.M.A.M. van Neerven for fruitful
discussions on spectral theory, which considerably contributed to the proof of Lemma B.2;
see Appendix B in the Supplementary Material [9]. In addition, we thank the Editor and an
anonymous reviewer for their valuable comments.
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AOS2138SUPP; .pdf). Three appendices of the manuscript.
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