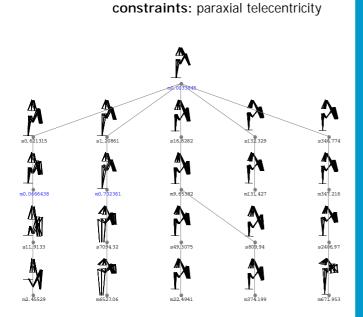
Networks of local minima for EUV mirror systems

Oana Marinescu, Florian Bociort, Joseph Braat

Optics Research Group, Delft University of Technology, The Netherlands Phone: (+31) 15 278 8109 Fax: (+31) 15 278 8105 E-mail:<u>O.Marinescu@tnw.tudelft.nl</u>

Introduction

Local minima situated in a multidimensional merit function space are connected via links that contain saddle points and form a network¹.


Network detection

- 1) start from a local minimum
- 2) detect all saddle points connected with the local minimum
- local optimization downwards on both sides of each saddle point -> new local minima
- 4) perform 2) and 3) for all new local minima
- 5) select the best solutions

Application

The best systems (represented in blue in Fig.1 and Fig.2) remain in the network even when the number of constraints is changed.

Conditions: variables: 6 curvatures

Fig.1 Network structure of a six-mirror system search, situated in a five-dimensional merit function space. S represents the saddle points. M represents the minima. The value of the merit function is also shown.

Conditions: variables: 6 curvatures constraints: paraxial telecentricity magnification

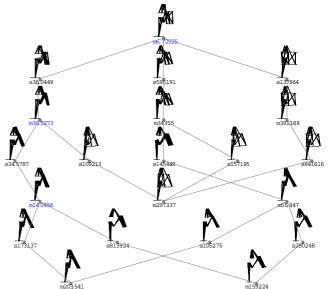


Fig.2 Network structure of a six-mirror system search, situated in a fourdimensional merit function space.

The best local minimum is then reoptimized with all variables and all constraints (**Fig. 3**).

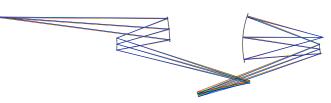


Fig.3. Six-mirror microlithographic projection system with object heights between 114 and 118 mm, a numerical aperture of 0.25, a magnification of 0.25, distortion below 1 nm and all incidence angles on the surfaces below 15°.

The network method provides insight in the topography of the merit function space.

We gratefully acknowledge the financial support of this research by ASML and TNO Science and Industry.

Reference

1. F. Bociort, E.van Driel, A. Serebriakov, "*Networks of local minima in optical system optimization*", Optics Letters **29**, 189-191 (2004)

