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SUMMARY

Tropical cyclones, often referred to as hurricanes in the Atlantic and Northeast Pacific or
typhoons in the Northwest Pacific, are powerful storm systems characterized by strong
rotating winds, heavy rainfall, and low atmospheric pressure. Cyclones typically form
over warm tropical waters, fueled by the heat and moisture from these waters, and are
one of the most significant drivers of coastal flooding in tropical and subtropical regions.
There are about 50 cyclones annually worldwide reaching hurricane strength (maximum
sustained winds >33 m/s). The flooding that these cyclones induce occurs due to storm
surges combined with heavy rainfall and other relevant drivers. These floods jeopardize
surrounding communities and natural ecosystems. Moreover, risks are only heightened
due to climate change and increased human activities. However, it remains challenging
to accurately predict coastal flooding under the influence of tropical cyclones due to

their complex spatial features, limited record length, and uncertainties in forecasting.

This dissertation aims to determine the extent to which improved tropical cyclone de-
scriptions of wind geometry and their pathways can enhance the reliability of forecasts
and the accuracy of risk analysis for coastal flood assessments. In this thesis, we ad-
dress both operational and strategic flood risk analyses. Both types play a vital role in
understanding and reducing potential environmental threats. Operational risk analysis
is associated with short-term forecasting (several days before and after a cyclone event),
while strategic risk analysis focuses on long-term climate variability assessments on the
scale of decades. Both perspectives are critical for comprehensive climate risk manage-

ment, as they offer different scales and time frames for preparedness and prevention.

A key component for both operational and strategic flood risk analyses is the ability to
accurately represent tropical cyclone conditions in computational methods. By analyz-
ing historical best-track data, we derived empirical stochastic relationships for two tropi-

cal cyclone geometry parameters which are measures of the size of the storms: the radius
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of maximum winds and the radius of gale-force winds. The relationships improved the
estimates of tropical cyclone geometry parameters by up to 25%. Larger improvements
were found for cyclones not impacting the United States since most of the existing rela-
tionships are derived from basins adjacent to the United States. These parameters (ei-
ther based on observations or on derived relationships) were needed to accurately com-
pute the spatial distribution of surface winds with the well-known parametric Holland
wind model. Accurate estimates of tropical cyclone winds are crucial for coastal flood

evaluations.

Strategic risk analyses are often hindered by an insufficient number of historical tracks
for a reliable analysis of flood hazards and risk. We introduce a methodology that uses
the empirical track model based on Markov chains and can simulate thousands of computer-
generated pathways that hypothetical storms might follow (synthetic tracks). The open-
source Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) handles track initial-
ization, evolution, and termination based on historical information. Validation showed
accurate skill compared to historical best-track data and good agreement for observed
extreme wind speeds. Strategic risk analyses benefit from the improved estimate of ex-

treme tropical cyclone conditions.

Subsequently, the data-driven methods were combined with physics-based modeling
to quantify coastal flooding for strategic risk analysis focused on the Southeast Atlantic
Coastal Zone of the United States. In particular, we compared cyclone-induced flooding
relative to non-cyclonic-induced (or extratropical) flooding to place them in perspec-
tive. Non-cyclonic events such as extratropical cyclones were mainly responsible for
frequent flooding events. For example, we found that for the current sea level, extra-
tropical cyclones contributed to half of the flooded area. Tropical cyclones drove the
majority of the infrequent, but more severe, flood hazards. For example, for the 100-year
event, tropical cyclones contributed 96% of the flooded area and likely affected 30 times
the number of people. However, at higher sea levels, the flood risk exclusively driven
by tropical cyclones diminished as areas were flooded regardless of the physical driver.
This analysis underscored the significance of both event types and highlights the need

for future research to consider both flooding factors.

Operational risk assessments are crucial for protecting lives and minimizing economic
impacts days before a storm. We introduced a methodology that uses uncertainties in

track, forward speed, and wind speed/intensity and can simulate thousands of ensem-
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ble members. The open-source Tropical Cyclone Forecasting Framework (TC-FF) han-
dles all major relevant physical drivers, including tide, surge, and rainfall, and consid-
ers cyclone uncertainties through Gaussian error distributions and autoregressive tech-
niques. A comparison of TC-FF and operational ensembles revealed differences of <10%,
suggesting that TC-FF can be employed as an alternative, especially in data-scarce en-
vironments. A case study of Cyclone Idai in Mozambique stressed the need to include a
sufficiently large number of ensemble members (200 members for 3 days of lead time)

for reliable forecasting of tropical cyclone flood hazards.

This thesis provides new insights into tropical cyclones with descriptions of wind geom-
etry, pathways, statistical properties, and their role in compound flooding. In address-
ing future research directions, the importance of enhanced data collection, particularly
from satellites, is crucial for validating models and understanding storm characteristics.
While efficient computational methods used in this dissertation have been foundational
in assessing coastal flood risk, there is an urgent need to incorporate overlooked pro-
cesses, harness the potential of data assimilation, and explore even more efficient meth-
ods. Concurrently, the rise of Deep Learning offers promising opportunities for faster

flood assessment which is paramount to capturing tropical cyclone variability.






SAMENVATTING

Tropische cyclonen, vaak aangeduid als orkanen of tyfonen, zijn krachtige stormsyste-
men die worden gekenmerkt door sterke roterende winden, hevige regenval en lage at-
mosferische druk. Orkanen vormen zich boven warme tropische wateren en zijn een
van de meest belangrijkste veroorzakers van kustoverstromingen. Deze overstromingen
brengen mensen en natuurlijke ecosystemen in gevaar. Klimaatverandering en toegeno-
men menselijke activiteit langs de kust maken deze stormen mogelijk nog gevaarlijker.
Het blijft echter een uitdaging om kustoverstromingen onder de invloed van tropische
cyclonen nauwkeurig te berekenen vanwege hun complexe ruimtelijke kenmerken, be-

perkte gegevens en onzekerheden in de voorspelling.

Dit proefschrift beoogt te bepalen in welke mate verbeterde beschrijvingen van tropi-
sche cyclonen de betrouwbaarheid en de nauwkeurigheid voor kustoverstromingen kun-
nen verbeteren. In dit proefschrift richten we ons zowel op operationele als strategische
risicoanalyses. Beide typen spelen een cruciale rol. Operationele risicoanalyse is geasso-
cieerd met kortetermijnvoorspellingen (enkele dagen voor een cycloon aan land komt),
terwijl strategische risicoanalyse zich richt op de langetermijnbeoordeling van het kli-
maat. Beide perspectieven zijn essentieel voor een grondig begrip van klimaatrisico’s,

omdat ze verschillende tijdskaders bieden voor voorbereiding en preventie.

Een kernonderdeel voor zowel operationele als strategische risicoanalyses is een nauw-
keurige weergave van de condities rondom tropische cyclonen. Op basis van historische
gegevens van tropische cyclonen zijn empirische stochastische relaties afgeleid die de
cycloongeometrie beschreven: de straal van maximale winden en de straal van storm-
kracht winden. Deze relaties verbeterden de schattingen van de geometrische parame-
ters van tropische cyclonen met 25%. Grotere verbeteringen werden specifiek gevonden
voor niet-Amerikaanse cyclonen aangezien de meeste bestaande relaties zijn afgeleid

voor Amerikaanse oceaanbekkens. Cycloongeometrie (gebaseerd op waarnemingen of
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de afgeleide relaties) waren nodig om cycloonwinden nauwkeurig te berekenen met een
parametrisch windmodel. Nauwkeurige inschattingen van tropische cycloon winden

zijn cruciaal voor de evaluatie van kustoverstromingen.

Strategische risicoanalyses worden vaak gehinderd door een onvoldoende aantal histo-
rische cyclonen voor een betrouwbare analyse van de kans op overstroming. We intro-
duceren een methodologie die duizenden plausibele maar hypothetische stormen (syn-
thetische cyclonen) kan generen op basis van historische informatie. De open-source
Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) behandelt de initialisatie,
evolutie en beéindiging van synthetische cyclonen. Bij de validatie bleken synthetische
cyclonen en historische stormen goed overeen te komen. Strategische risicoanalyses
profiteren van de verbeterde inschatting van de kans op extreme tropische cyclonecon-

dities.

Vervolgens werden de datagedreven methoden gecombineerd met op fysica gebaseerde
modellering om kustoverstromingen te kwantificeren voor een strategische risicoana-
lyse gericht op de zuidoostelijke Atlantische kustzone van de Verenigde Staten. We heb-
ben cyclone-geinduceerde overstromingen vergeleken met niet-cyclone (reguliere stor-
men) geinduceerde overstromingen om ze in perspectief te plaatsen. Voor dit gebied wa-
ren reguliere stormen voornamelijk verantwoordelijk voor de meer frequente overstro-
ming. Zo vonden we dat bij het huidige zeeniveau reguliere stormen verantwoordelijk
waren voor de helft van jaarlijks overstroomde gebied. Tropische cyclonen veroorzaak-
ten de meerderheid van de zeldzame maar ernstigere overstroming. Voor de 100 jaar
storm droegen tropische cyclonen 96% bij aan het overstroomde gebied en werden 30
keer zoveel mensen getroffen door cyclonen dan niet-cyclonen. Bij hogere zeeniveaus
verminderde het overstromingsrisico gedreven door alleen tropische cyclonen aange-
zien gebieden overstroomden ongeacht het type storm. Deze analyse benadrukte het
belang van beide soorten stormen en de noodzaak om in toekomstig onderzoek beide

mee te nemen.

Operationele risicoanalyses zijn cruciaal voor het beschermen van levens en het mini-
maliseren van economische schade dagen voor een storm aan land komt. We intro-
duceerden een methodologie die gebruikmaakt van onzekerheden in het cycloonpad,
voorwaartse snelheid en windsnelheid/intensiteit en die duizenden cyclonen kan simu-
leren rondom de hoofdvoorspelling ('ensembles’). Het open-source Tropical Cyclone

Forecasting Framework (TC-FF) neemt alle belangrijke fysica mee en houdt rekening
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met onzekerheden van de cycloonvoorspelling door gebruik te maken van Gaussische
foutdistributies en autoregressieve technieken. Een vergelijking van TC-FF en operati-
onele ensembles onthulde verschillen van <10%, wat suggereert dat TC-FF kan worden
gebruikt als een alternatief. Een casus van Cycloon Idai in Mozambique benadrukte de
noodzaak om een voldoende groot aantal ensembles mee te nemen (bijvoorbeeld 200
ensembles 3 dagen voor de storm aan land komt) voor het betrouwbaar voorspellen van
overstroming als het gevolg van de cycloon.

Dit proefschrift biedt nieuwe inzichten in de parametrische beschrijving en statistische
eigenschappen van tropische cyclonen en hun rol in overstromingen. Voor toekomstig
onderzoek is een verbeterde gegevensverzameling, met name via satellieten, cruciaal
voor het valideren van modellen en het begrijpen van stormkenmerken. Er is ook een
dringende behoefte om missende fysica en processen mee te nemen in de berekening.
Daarnaast is het van belang om het potentieel van gegevensassimilatie en (nog) efficién-
tere methoden te verkennen. De opkomst van Deep Learning is ook een veelbelovende

mogelijkheid voor snellere overstromingsberekeningen.






INTRODUCTION

1.1. THE IMPACT OF COASTAL FLOOD HAZARDS

Flooding can have catastrophic impacts on communities, often resulting in fatalities
and causing substantial economic damage. Globally, over half a billion individuals
live in the coastal zones that lie below 10 meters in elevation relative to mean
sea level (MSL). This number is expected to rise above 1 billion by 2050 due
to urbanization and migration trends (Merkens et al., 2016). Increased economic
activities, such as tourism and infrastructure growth, further amplify the exposure
of these coastal areas. Disastrous hurricanes like Katrina (2005), Harvey (2017),
and Ian (2022) caused a financial loss of more than $400 billiorEl emphasizing the
vulnerability of coastal areas (NOAA, [2023).

Elevated sea levels during high tides can, in conjunction with surges from storm
systems, lead to extensive flooding of low-lying coastal areas. Flooding can be
further intensified when these phenomena coincide with substantial rainfall or high
waves. This interplay of physical processes, ranging from marine (tide, surge, waves),
fluvial (riverine flow), and pluvial (rainfall and infiltration) components, is referred
to as compound flooding (Wahl et al., and can increase the severity of coastal
flooding.

lvalues throughout this dissertation are adjusted to 2022 values and in USD Dollars.
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Climate change will accelerate hazards and impacts from coastal storms, resulting
in increased flooding frequencies due to sea level rise (SLR; Easterling et al., ,
changes in storm frequencies (Vitousek et al., 2017b), and increased and prolonged
precipitation (Trenberth et al, [2003). The socioeconomic impacts of increased
flooding can be immense. Wing et al., estimated that in the entire continental
United States (CONUS), 40 million people might be exposed to 100-year flooding,
causing damages of approximately $1200 billion — numbers that could quadruple by
2100.

1.2. METHODS FOR ASSESSING COASTAL FLOODING

Computing coastal flooding is critical as it helps to predict and assess the impact of
rising sea levels and extreme weather events on coastal areas. Understanding coastal
flood hazards through observations is fundamental for a comprehensive grasp of
the present climate. However, the future remains uncertain, and computational
methods are therefore essential in quantifying, visualizing, and preparing for unseen
challenges. Several methods can be used for this purpose. The most straightforward
and widely used method is an estimation of flooding with a bathtub approach. This
approach assumes that any part of the land located below the extreme (offshore)
water level is inundated, while a hydrological connection restriction is often applied
(e.g., Muis et al., 2016). Typically, bathtub approaches overestimate the flooded area
as storm water levels vary in time during the event, which means that a smaller
volume than expected will inundate the land. On the other hand, this approach
ignores flooding due to rainfall and river drivers. Recent events (e.g., Hurricane
Florence in 2018) serve as a stark reminder of the importance of compound flooding.
Such events have made it evident that traditional computing methods are often
insufficient, underscoring the need for more physics-based modeling approaches to

assess coastal flooding.

A variety of modeling systems exist that allow for physics-based modeling of flood
hazards. For example, the Coastal Storm Modeling System (CoSMoS; Barnard et al.,
makes detailed storm-induced flooding predictions. These modeling systems,
including CoSMoS, use modeling trains of large-scale Delft3D-based hydrodynamic
(Kernkamp et al., and wave models (Booij et al., in combination with
local computationally expensive XBeach (Roelvink et al., models for wave
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runup. A new development is the application of the lower-fidelity models. The
idea is to reduce the complexity of physics in combination with simplified numerics
to allow for much faster physics-based hazard modeling. A reduced computational
expense also allows for more computations. An example of this approach is the
SFINCS model (Super-Fast INundation of CoastS; Leijnse et al., which was

developed for large-scale coastal compound flood assessments.

The advanced capability to assess flood hazards is pivotal for operational and strategic
risk analyses, serving as the foundation for evaluating potential environmental
risks. Operational risk analysis, typically associated with short-term forecasting
(several days), provides immediate preparedness and response for imminent
disasters, ensuring the safety and protection of people and property (Roy and
Kovordanyi, 2012). Conversely, strategic risk analysis focuses on long-term climate
variability assessments, delivering insights into hazards and their socio-economic and
environmental impacts, thus facilitating informed policy decisions and adaptation
strategies (e.g., Bloemendaal et al., [2020). Though distinctly different, both
perspectives are critical for comprehensive climate risk management, as they offer

different scales and time frames for prevention, preparedness, response, and recovery.

1.3. INSIGHTS INTO TROPICAL CYCLONES

Tropical cyclones (TCs) are one of the most significant drivers of coastal flooding
(Peduzzi et al., and have been responsible for many extreme flood events
in tropical and subtropical areas. TCs, also known as hurricanes in the Atlantic
and Northeast Pacific or typhoons in the Northwest Pacific, are powerful storm
systems characterized by strong, rotating winds, heavy rainfall, and low atmospheric
pressure. Cyclone-induced flooding occurs as the cyclone’s strong winds push a
large volume of seawater toward the shore, a phenomenon known as storm surge.
This surge, combined with heavy rainfall, leads to extensive flooding in coastal
and adjacent inland areas. Cyclones typically form over warm tropical waters and
affect a large portion of the globe, including Australia, East Asia, Southeast Asia,
South Asia, East Africa, the Caribbean, and the United States. (Figure Knapp
et al., [2010). Their formation is fueled by the heat and moisture from these waters,
which intensifies their energy and sustains their power over time. Predicting coastal

flooding accurately in the presence of TCs continues to be a challenge due to their
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complex spatial characteristics, the limited duration of historical records, the lack of
accuracy in the knowledge of field conditions such as bathymetry, and the inherent
uncertainties in forecasting. Globally, there are about 50 cyclones annually reaching
a strength >64 kt (or >33 m/s, Saffir—Simpson hurricane wind scale, SSHWS, of 1 or
higher, Klotzbach et al., of which 25 reach category 4 and 5.

160°W 120°w 80PW 40 q 40°E E 120°E 160°E

SSHWS-1
SSHWS-2
SSHWS-3
=== SSHWS-4
= SSHWS-5

160°W 1200w 80PW 40P o 40°E 80°E 120°E 160°E ESRI Gray (light)

Figure 1.1: Global distribution of tropical cyclone tracks provided by IBTrACS (Knapp et al.,
2010). Only tracks after 1980 were included.

1.3.1. STRATEGIC ANALYSIS OF TROPICAL CYCLONE RISKS

The TC track record varies from 50 years worldwide (from the 1970s) to more
than 150 years in the Gulf of Mexico. This data is crucial for conducting strategic
risk analyses centering on evaluations of long-term climate variability. Termed as
best-track data (BTD), this information includes the coordinates of the TC, related
intensity measures such as wind speed or pressure drop, and geometric details,
including the radius of maximum winds (RMW) and the radius of gale-force winds
(AAR35). The reliability of the BTD has been increasing over the years especially
compared to older data. Therefore, depending on the area of interest, the accuracy
and number of events vary greatly. Also, in specific regions, the frequency of TC
landfall is very low, limiting the sample size of observed activity. When using only
a handful of observed TCs in recent history, model estimates for extreme wind
speeds and overland flooding for rare return frequencies will be affected since a few
individual storms will strongly affect the determined extremes and their probability.
Sampling errors in the BTD undermine the accuracy of analysis and can result in

over- and underestimations of hazards in strategic risk analysis. Emulation can be



CHAPTER 1 5

employed through the generation of synthetic TC tracks, thereby augmenting the
data set with plausible cyclone scenarios (see e.g., Vickery and Twisdale, |1995).

In coastal engineering, Global Circulation Models (GCMs) are commonly used as
forcing conditions for computational methods to assess coastal flooding. GCMs
simulate key climate components (atmosphere, land surface, ocean, and sea ice) and
their interactions. Reanalysis products (e.g., ERA5; Hersbach et al, enhance
the strength of GCMs by integrating model data based on physical laws with
observations. These models are vital for predicting and understanding flooding due
to their capability to simulate intricate interactions between climate components,
thus allowing the quantification of climate change. Although model accuracy and
resolution have increased substantially, these are often insufficient to resolve TCs
(e.g., Murakami and Sugi, , resulting in an underestimation of the TC intensity,
and thus GCMs are often unable to assess TC-induced coastal flood hazards.

Alternatively, the spatial distribution of TC surface winds can also be estimated using
parametric wind profiles based on track information. Several (horizontal) parametric
wind profiles (e.g., Fujita, Chavas et al., exist in the literature, with the
original Holland wind profile (Holland, being the most widely used due to
its relative simplicity. However, without calibration, parametric wind profiles are
often unable to accurately reproduce the spatial distribution of winds in TCs (e.g.,
Willoughby and Rahn, 2004). In strategic analysis, the accuracy of TC is paramount
and refers to how close the model’s predictions are to the actual observed outcomes.
A mismatch potentially leads to an under- or overestimation of wind speeds and

associated coastal hazards.

1.3.2. OPERATIONAL ANALYSIS OF TROPICAL CYCLONE RISKS

Accurate and on-time TC forecasts are crucial for saving human lives and reducing
the economic costs of TCs. Forecasting agencies such as the National Hurricane
Center (NHC) have significantly improved operational meteorological risk analyses,
credited to gains made in numerical weather prediction models (e.g., McAdie and
Lawrence, Cangialosi et al., [2020). However, despite these advancements,
operational forecast errors in landfall location, timing and intensity persist. Therefore,

it is vital to account for these inherent uncertainties in TC forecasts for informed
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preparedness decision-making which requires a reliable method (Lamers et al., [2023).
Here, the reliability of the method refers to the consistency or dependability of
the forecast probabilities over time. Reliability in this context does not ensure the
accuracy of a single (deterministic) forecast ensemble member, but refers to the

long-term performance and trustworthiness of the probabilistic forecasts.

The National Hurricane Center (NHC) dynamically models the meteorological
conditions, which yields the official (deterministic) forecast. Moreover, it produces
a probabilistic forecast based on a set of 1,000 ensemble members using the
DeMaria et al., method. Each ensemble member has its intensity forecast
which is computed by randomly sampling from the distributions database with track
and intensity errors of the last five years. While this methodology gives valuable
information on the probability of wind hazards, it has not been developed to
forecast TC-induced coastal flooding. Probabilistic modeling systems for TC-induced
coastal flooding for operational risk analyses are starting to be developed for the US
and Japan. In particular for the US, P-Surge (e.g., Taylor and Glahn, Gonzalez
and Taylor, uses data from the NHC to create synthetic storms but does not
account for several marine and inland relevant processes (e.g. tides, waves, rainfall,
infiltration). The Japan Meteorological Agency (JMA) does deploy a more complete
physics model but only accounts for a limited number of ensemble members (see
Hasegawa et al., for more details).

1.4. RESEARCH AIM AND RESEARCH QUESTIONS

Coastal flooding poses significant societal and ecological risks and is an area of
growing concern due to climate change and increased anthropogenic activities along
coastlines. The challenge lies in accurately and reliably predicting coastal flooding,

especially when considering the influence of tropical cyclones (TCs).

Aim of the dissertation

Determine the extent to which improved tropical cyclone descriptions of
geometry, tracks, and statistical uncertainty can enhance the reliability of
forecasts and the accuracy of risk analyses for coastal flood assessments

This aim is pursued with the following research questions that form the core of this
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dissertation:

1. How to accurately describe TC geometry and winds with parametric
relationships for any oceanic basin in the world?

2. How to reliably include TCs in coastal flood risk assessments in environments
with limited observed activity?

3. How important is the contribution of TCs in coastal flood risk assessments?

4. How to reliably account for TC uncertainty in operational coastal risk analysis?

While accurate and reliable are terms often used interchangeably, they have different
meanings. Accurate refers to how close a computed value is to the true (observed)
value. For example, a single deterministic computation is compared to observed
measurements of wind speeds or water levels, and the model accuracy is determined
by how closely it matches the observations. On the other hand, reliability pertains
to consistency with which the predicted probabilities match the long-term observed
frequencies. For example, if a compound flood model predicts a 70% chance of
flooding in a particular area, and it actually floods on 70 out of 100 days with that

forecast, then the model is considered reliable.

The first question is assessed with the derivation of new relationships to estimate
TC geometry for each oceanic basin with parametric and stochastic relationships,
which improves our ability to describe time and spatially varying TC wind fields.
The second question focuses on a new method to artificially generate paths that
TCs might follow (synthetic tracks), based on historical data to aid strategic risk
assessments. The third question is addressed in a case study form with the
development of a new modeling framework that efficiently combines synthetic TC
tracks and extratropical events to assess and project compound flood hazards across
large regions. The fourth question focuses on a novel forecasting workflow that
addresses the uncertainties and relevant physical drivers of TC-induced compound

flooding for operational risk analysis.

1.5. APPROACH AND STRUCTURE OF THE DISSERTATION

The four research questions are addressed in Chapters 2 to 5, respectively. Various

methods were combined to answer the research questions: decades of data were
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analyzed, computational code was developed for strategic and operational risk
analysis and flooding was modeled with physics-based assessments. The focus
is on the description of TC geometry and wind fields (Chapter [2), strategic risk
analysis (Chapters [3] and [4), and operational risk analysis (Chapter [5). Each chapter
was published independently in the open literature as peer-reviewed articles. The
structure of the papers was maintained for consistency. Figure provides a visual
representation of this dissertation.

Introduction Chapter 1

Chapter 2

Estimation of Tropical Cyclone Geometry Based on Best-Track Data

Strategic Risk Analysis Operational Risk Analysis

- Chapter 6
Concluswns and Outlook i

Figure 1.2: Structure and content of this PhD thesis. White boxes indicate generic chapters.
Black is used for the improved description of tropical cyclones and forms the basis for
follow-up risk analysis. The blue chapters are focused on strategic risk analysis and the green
chapters on operational risk analysis. The respective chapters are indicated at the top right
corner of the boxes.

In Chapter 2} empirical stochastic relationships are derived to describe two important
parameters affecting the TC geometry: the radius of maximum winds (RMW) and
the radius of gale-force winds (AAR35). These relationships are formulated using
historical BTD for all oceanic basins. These relationships make it possible to estimate
these variables when they are unknown and result in improved parametric wind

fields that can be used when the spatial distribution of TC surface winds is unknown.

In Chapter 3} a new method for the generation of synthetic TC tracks based on
(historical) data is proposed. The method has been implemented in the highly
flexible open-source Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE). The

tool can be used to determine the wind extremes, and the output can be used for
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the reliable and accurate assessment of coastal flood hazards. Synthetic tracks are
a valuable source of information for strategic risk analysis to overcome sampling

€errors.

In Chapter [4} a large-scale strategic risk analysis for a case study of the subtropical
Southeast Atlantic Coast of the United States is performed. An unprecedentedly
long and high-resolution data set was created by leveraging the computational
speed of the lower-fidelity model SFINCS. Different flood hazards such as tropical
and extratropical cyclones (ETCs, or migratory cyclones/storms of middle and high
latitudes) are considered. This data set allows for a detailed breakdown of relevant
drivers of flooding and results in an improved understanding of the role of tropical
cyclones and extratropical events in the compound flood hazard, impact, and risk in

the area.

In Chapter |5, a new method for operational risk analysis for coastal flood hazards is
proposed. The method, called the Tropical Cyclone Forecasting Framework (TC-FF),
allows for the consideration of uncertainties in forecasts of compound flooding
induced by tropical cyclones. The open-source method accounts for all major
relevant physical drivers, including tide, surge, and rainfall, uses the computationally
efficient SFINCS model, and considers TC uncertainties in track, forward speed,
and wind speed/intensity through Gaussian error distributions and autoregressive
techniques similar to DeMaria et al.,

Finally, Chapter[6] reevaluates the research questions introduced in Chapter |} aligning
them with the research objective. It concludes with insights, a forward-looking

perspective, and suggestions for subsequent studies.







ESTIMATION OF TROPICAL
CYCLONE GEOMETRY BASED ON
BEST-TRACK DATA

Computational methods for assessing coastal flooding require an estimate of tropical
cyclone winds. However, the spatial distribution of surface winds, crucial for coastal
flood evaluations, is typically undefined. While parametric wind profiles serve to fulfill
this need, they require accurate estimates of tropical cyclone geometry - a frequently
unavailable parameter. In this chapter, best-track data are used to derive empirical
stochastic relationships that can be used when geometry parameters are unknown. The
focus of this chapter is on the ability to produce accurate tropical cyclone wind speeds
for both strategic and operational risk analysis within coastal flood assessments.

This chapter is a revised version of Nederhoff, K., Giardino, A., van Ormondt, M., & Vatvani, D.
(2019). Estimates of tropical cyclone geometry parameters based on best-track data. Natural Hazards
and Earth System Sciences, 19(11), 2359-2370. https://doi.org/10.5194/nhess-19-2359-2019.
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Abstract Parametric wind profiles are commonly applied in a number of engineering
applications for the generation of tropical cyclone (TC) wind and pressure fields.
Nevertheless, existing formulations for computing wind fields often lack the required
accuracy when the TC geometry is not known. This may affect the accuracy of the
computed impacts generated by these winds. In this paper, empirical stochastic
relationships are derived to describe two important parameters affecting the TC
geometry: the radius of maximum winds (RMW) and the radius of gale-force winds
(AAR35). These relationships are formulated using best-track data (BTD) for all seven
ocean basins (Atlantic; S, NW, and NE Pacific; and N, SW, and SE Indian oceans).
This makes it possible to (a) estimate RMW and AAR35 when these properties are
not known and (b) generate improved parametric wind fields for all oceanic basins.
Validation results show how the proposed relationships allow the TC geometry to
be represented with higher accuracy than when using relationships available from
the literature. Outer wind speeds can be reproduced well by the commonly used
Holland wind profile when calibrated using information either from best-track data
or from the proposed relationships. The scripts to compute the TC geometry and

the outer wind speed are freely available.

2.1. INTRODUCTION

Tropical cyclones (TCs) are among the most destructive natural hazards worldwide.
TCs can cause hazardous weather conditions including extreme rainfall and wind
speeds, leading to coastal hazards, such as extreme storm surge levels and wave
conditions. The impact of TCs is different in developed and developing countries.
Generally, the worst effects in the developed world are direct economic losses. In
the United States (U.S.) alone, the mean annual damage due to TCs was estimated
by Willoughby, as $11.0 billion (based on the year 2015). In the developing
world, TCs conflict with immense social costs in terms of destruction and mortality.
For example, between 1960-2004 more than half a million inhabitants of Bangladesh
died as a consequence of TCs, primarily due to storm surge. Additionally, TCs can
also have devastating effects on nature, geomorphology, agriculture, and freshwater
supply. Thus, due to the extensive costs in lives, property, and other damages, the
ability to effectively model these storms is essential.

Numerical models can be applied to quantify the effects of TCs (Giardino et al.,
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[2018b). In hindcasting studies, this is generally done by using surface winds derived
by data assimilation techniques (e.g. HRD Real-time Hurricane Wind Analysis System
or H*WIND; e.g., Powell et al., [1998). However, in multi-hazard risk assessments, the
spatial distribution of surface winds is generally not known. Therefore, wind fields
based on best track data (BTD) or synthetic tracks, are generated using parametric
wind profiles. Several (horizontal) parametric wind profiles (e.g., Fujita,
Willoughby et al., Chavas et al., exist in the literature, with the original
Holland wind profile (Holland, hereafter H80) being the most widely used
due to its relative simplicity. However, without calibration, parametric wind profiles
are often unable to accurately reproduce the spatial distribution of winds in TCs
(e.g., Willoughby et al., 2006). This potentially leads to an under- or overestimation
of wind speeds and associated coastal hazards. Calibration of TC formulations is
possible by applying additional relationships, supported by the use of suitable data.
In particular, information on the wind radii of cyclones can constrain the decay of
wind speeds away from the eye wall and can be included in the most recent version
of the Holland wind profile formulation (Holland et al., hereafter H10).

The radius of maximum winds (RMW), which describes the distance from the center
to the strongest axially symmetric wind in the core of the cyclone, is one of the most
important parameters to define a parametric wind profile. Moreover, the RMW plays
an important role in the assessment of hazards induced by TCs since the storm surge
level increases as a function of the RMW (Loder et al., [2009). Several relationships
exist in literature to estimate the RMW (e.g., Vickery and Wadhera, Knaff et al.,
. However, these relationships are derived either for the Atlantic and/or Eastern
Pacific Ocean (i.e. U.S. coast) and are therefore not necessarily valid for other ocean
basins. Each ocean basin has its own climatological properties and, for example,
there seems to be an observational relationship between (mean) storm size, in terms
of precipitation area (Lin et al., or wind speeds (Chavas et al., and
the relative sea surface temperature (SST). The reason that most relationships are
derived for the U.S. coast is because of the high-quality data availability (i.e. aircraft
reconnaissance data). Relationships that estimate wind radii at different wind speeds
are scarcer. Knaff et al, explicitly describe the TC surface winds using a
modified Rankine vortex, which makes it also possible to compute different wind
radii corresponding to different wind speeds (i.e. 34, 50, 64, 100 knots). However,
these results are derived from BTD of the Atlantic, Northeast Pacific, and Northwest
Pacific Oceans.
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In the last decades, a large amount of higher-quality data has become available
which can be used to improve and validate the relationships and parametric wind
profiles found in the literature. In addition to the RMW, the wind radii of 35 (or
34), 50, 65 (or 64), and 100 knots (hereafter referred to as R35, R50, R65, R100) for
the four geographical quadrants around the cyclone are currently recorded (see also
left panel of Figure 2.1). There are numerous sources that can provide information
on the spatial distribution of surface winds ranging from in-situ observations (e.g.
surface reports and buoy observations) to scatterometry (e.g., QuikSCAT, see Chavas
and Vigh, . Some methods are more reliable than others, but a posteriori
it is not clear which sources were used for individual wind radii estimates in the
best-track data (BTD). However, the currently operationally available satellite-based
wind radii estimates are characterized by higher accuracy than in the past (Sampson

et al., |2017).
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Figure 2.1: Sketch of the terminology used in this dissertation. Left panel difference in wind
radii from different quadrants (NW, NE, SE, SW). Right panel difference in RMW, AR35 and
AAR35

In this chapter, new relationships are proposed to estimate the median RMW and
radius of gale-force winds (AAR35) for each ocean basin. In addition, the standard
deviation of the TC geometry is described explicitly, making it possible to treat
the TC geometry stochastically with a certain probability distribution. This means
that TC geometry is a random variable whose possible values are an ensemble of
different outcomes. This is useful when TC size is not known and the probability
of a relatively large and/or small TC and consequent risks need to be assessed (e.g.
in a Monte Carlo analysis with synthetic tracks). Moreover, the paper demonstrates
how the proposed relationships lead to improved error statistics compared to those
found in the literature. On top of that, validation with QSCAT-R shows that outer

wind speeds can be well reproduced by a parametric wind profile while using the
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newly developed relationships or observed values for RMW and wind radii.

This Chapter is outlined as follows: Section [2.2] describes the data used for the study.

The new relationships describing the radius of maximum winds and the radius of

gale-force winds are derived in Section and then validated in Section Finally,
Section [2.4] and [2.5| discuss and summarize the main conclusions of the study.

2.2. DATA UTILIZED FOR DERIVATION

BEST TRACK DATA (BTD)

Two data sources were used to describe the RMW and R35: data from the
North Atlantic and Northeast and North-Central Pacific data sets from the National
Hurricane Center (NHC) and the data set from the Joint Typhoon Warning Center
(JTWC). The second data set includes data from different ocean basins (the
Northwest Pacific Ocean, the South Pacific Ocean, and the Indian Ocean). Note
that the estimation of wind radii is rather subjective and strongly dependent on
data availability as well as different climatology and analysis methods (e.g. aircraft
observations versus the Dvorak method). In this chapter, all the available data were
used and potential shortcomings in the data are disregarded in order to fit new
empirical stochastic relationships with the largest possible data set and for every
ocean basin separately. This approach, with its advantages and disadvantages, is
discussed in Section 2.4] Some of the historical records do not contain values for
either the RMW or R35 and therefore these records are discarded. Although these
BTD are used as ground truth, the errors in the best-track wind radii are estimated
to be as high as 10%-40% (e.g., Knaff and Sampson, 2015). The accuracy of a single
record depends on the quality and quantity of the available observational data. For
example, if in situ observations were available in proximity to the TC or if a complete
scatterometer passed over the TC, the accuracy may increase. However, information

on the accuracy is not available per single data entry.

The archives from the NHC and JTWC contain six-hourly storm positions and
maximum intensity estimates of tropical and subtropical systems. For this analysis,

all data points with a wind speed of 20 m/s or higher were included in the study,
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since the focus is on tropical storms. Moreover, it is expected that parametric wind
profiles cannot capture subtropical systems. Also, data points with an RMW larger
than 100 kilometers (km) were excluded from the analysis because, generally, those
points refer to tropical depressions, with large spatial coverage, which are outside
the scope of this study. Moreover, the averaged value of R35 (R35 over the four
quadrants, similarly to Carrasco et al., was used. Only data entries with
an estimate of R35 for all four quadrants were used. Therefore, all data entries
have both an estimate for RMW and R35. On top of that, using all the six-hourly
storm positions and maximum intensity estimates in the calibration and validation
assumes statistical independence. Lastly, the data used are not continuous but are
highly discretized. In particular, wind speed intensities vary in 5 knots increments

and wind radii have steps of 5 nm.

In this chapter, TC geometry variables RMW and R35 were treated as stochastic
variables. This means that, although physically not realisticc RMW could assume
larger values than R35. In order to overcome this, a new variable was defined: the
average difference in radius of 35 knots (AAR35; similar to Xu and Wang, ,
or radius of gale-force winds, describing the difference between the RMW and the
average radius of 35 knots (AR35), see Equation In practical applications, one
would first retrieve the RMW based on data or estimate the RMW based on an
empirical relationship. Secondly, the R35 would be calculated by adding up the
RMW with the AAR35 (see also right panel of Figure 2.I). An additional advantage of

introducing this new variable is that AAR35 contains considerably less scatter.

AAR35= AR35-RMW (2.1)

QSCAT-R

The QuikSCAT-based QSCAT-R database (Chavas and Vigh, [2014), with data for
the period 1999-2008, was used to validate the computed outer (azimuthal) winds
using H10 wind profile and the new proposed empirical relationship. The data set,
developed by researchers at the NASA Jet Propulsion Laboratory (JPL), is derived
from the latest version of the QuikSCAT near-surface ocean wind vector database. It

includes 690 unique TC profiles and it is optimized specifically for tropical cyclones
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with higher wind speeds. QuikSCAT measurements are accurate in all weather
conditions for winds up to 40 m/s (Stiles et al., , while their precision decreases
for the inner wind speeds in the TC core (Hoffman and Leidner, [2005). Therefore,
QSCAT-R data were only used to validate the outer wind speeds, and not the inner
wind speeds or TC core. The tropical cyclone data set carries a 1-2 m/s positive
bias and a 3 m/s mean absolute error, which is not further discussed or taken into
account in the analysis.

OCEAN BASINS

According to the WMO (World Meteorological Organization), areas of TC formation
were divided into seven basins (Figure - panel A). These include the North
Atlantic Ocean (NAO), the Northwest Pacific Ocean (NWPO), the Northeast Pacific
Ocean (NEPO), the South Pacific Ocean (SPO), the Southwest Indian Ocean (SWIO),
the Southeast Indian Ocean (SWEI) and the North Indian Ocean (NIO). Other ocean
basins (e.g. the South Atlantic Ocean) were not included in this study since weather

systems in these areas rarely form a TC.

DATA CONVERSION

Data were converted to International System of Units (SI) units (wind speeds in m/s
from knots with a conversion of 1 knots = 0.514 m/s and wind radii in kilometers
(km) from nautical mile with a conversion of 1 nm = 1.852 km). Throughout this
chapter, a maximum cyclone sustained wind v,,,, has been determined at a 10-m
elevation over the open sea and a 1-minute average. The reason for this averaging is
to be consistent with the JTWC and NHC which also reports the maximum sustained
surface winds in terms of 1-minute mean wind speed. Other nations, however,
report maximum sustained surface winds averaged over different time intervals,
which in some cases is 10 minutes. Also, numerical models often require 10-minute
averaged winds. For the conversion of 1-minute to 10-minute averaged wind speed,
a conversion factor equal to 0.93 can be used, based on WMO guidelines (Harper
et al., . However, in this study, conversions between 1-minute and 10-minute

wind speeds were not needed.




18 ESTIMATION OF TROPICAL CYCLONE GEOMETRY BASED ON BEST-TRACK DATA
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2.3. RESULTS

2.3.1. DERIVATION OF NEW EMPIRICAL RELATIONSHIPS FOR WIND
RADII

In this subsection, empirical relationships to estimate the radius of maximum winds
(RMW; see Figure - panel B) and the radius of gale-force winds (AAR35; see
Figure - panel C) were derived based on BTD from the calibration period
(2000-2014).

RADIUS OF MAXIMUM WINDS (RMW) The Vickery and Wadhera, relationship,
derived for all major hurricanes (Ap, > 30 hPa or v,,,;x >35 m/s) in the Gulf of
Mexico and Atlantic Ocean (hereafter VWO08), is one of the several relationships in
literature providing an estimate of the RMW. VW08, derived based on H*WIND data,
relates RMW to pressure drop in the eye and latitude. While we acknowledge the
existence of several other relationships to estimate the RMW, VW08 was used due
to its relative simplicity. Figure compares RMW data from the BTD during the
calibration period with results from VW08 in the form of a scatter plot with the
maximum sustained wind speed (v,,4x) indicated by color intensity. The data shows
a large amount of scatter, both for lower and higher RMW values. However, there is
a clear pattern visible that larger maximum sustained wind speeds result in a smaller
RMW. This is in line with other observations (e.g., Willoughby et al., or based
upon idealized Sawyer Eliassen models (e.g., Schubert and Hack, Willoughby
et al., that TC eyewalls generally contract during intensification. There is also
a tendency in the data set for TCs at higher latitudes to have larger eye diameters
(e.g., Knaff et al., not shown here). The large negative bias of 17 km, computed
as a difference between observed and computed RMW is noteworthy, indicating that
VW08 often underestimates the RMW, especially for lower maximum sustained wind

speeds.

Given the large spread in the data, as also shown in Figure it was decided to
treat RMW as a stochastic variable. Instead of directly deriving an empirical equation
that relates RMW to v, using a least-square fitting procedure as typically done in
similar studies, the following approach was used. At first, parameters of a probability
density function (PDF) that fits the variation of RMW for a range of v,,,, and

latitude values were fitted. Then empirical equations were derived that relate these
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parameters to v,,,x and latitude. The benefit of this approach is that it can produce
an estimate of the most probable value for RMW (i.e. mode) or median/mean as

well as its variance (e.g. 90% prediction interval, PI).

First, the RMW for each TC category was fitted to various parent distributions. In
particular, the following fitting parent distributions were tested by visual comparison
and by applying the Kolmogorov-Smirnov test: normal, lognormal, Gumbel, Rayleigh,
and gamma. The lognormal distribution was found to provide the best fit with the
measured data, and therefore further used to describe the distribution of RMW. This
is also consistent with the distribution used for describing AAR35 and findings in
the literature (e.g. Dean et al., [2009). Secondly, the chosen parent distribution was
used to fit the BTD in order to derive the shape (o) and location parameter (u) of
the lognormal distribution, dependent on latitude and wind speed. In particular, the
BTD from the calibration period was divided based on a moving window with a bin
of 10 m/s in wind speed and 10 degrees in latitude (0-10, 1-11, 2-12, etc.). A shape
parameter was used with an exponential decay function, and fitting coefficients
constant per each ocean basin. This resulted in Equation for the p parameter

which, for a log-normal distribution, corresponds to the median value:

Urmw = Aze?mex'B2 (14 C,10)) + D, 2.2)

where pRMW represents the location parameter of the lognormal distribution for
RMW, vp4x is the maximum (1-minute averaged) wind speeds, 0 is the latitude in
degrees, and A2, B2, C2, and D2 are fitting coefficients.

As observed in the literature (e.g. Knaff et al, 2015), the median RMW (uRMW)
in Equation depends on v,y (i.e. higher wind speeds result in lower RMW)
and latitude (i.e. higher latitude result in higher RMW). The addition of storm
duration or the use of the axisymmetric component of the wind speed only as
input parameters resulted in very limited skill improvement in the estimation of
RMW; therefore these variables were discarded. This procedure was applied to the
combined JTWC and NHC BTD from the calibration period at all basins, and then
for each individual ocean basin. Table contains the shape and location values for
the fitting parameters to be used in Equation
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A scatter plot describing the RMW derived from BTD as a function of the maximum
wind speed and for (an arbitrarily chosen) latitude of 10 degrees and computed
according to Equation is shown in Figure The green line shows the
median RMW based on the BTD, whereas the solid blue line represents the mean
RMW obtained from Equation The black lines indicate the 5 and 95 percent
exceedance values computed based on BTD. Finally, the 90% prediction interval
is shown using the filled red color. The figure shows how the variance in RMW
decreases (both in the data and in the empirical relationship) as a function of vy4yx,
indicating that faster-rotating cyclones are characterized by less noise. The new

empirical equation for RMW is evaluated in Section [2.3.2]

100

(o)
o

~
N

80} -

o
N

wv
)]

60 |-

I
®

40}

w
N

.
N I
D o

maximum sustained winds (v,,..) [m/s]

bl L. e ]
'I‘s: % A .

20F--- - B® B

L
=
o

RMSD: 28.8 km
bias: : -17.3 km

RMW: based on Vickery & Wadhera (2008) [km]

L
[ee]

0 j i i j
0 20 40 60 80 100
RMW: based on BTD [km]

|
o

Figure 2.3: Scatter plot describing BTD RMW (x-axis) versus computed RMW based on VW08
(y-axis). Data points are colored-coded based on the maximum sustained wind speeds in the
BTD. The dashed line represents a perfect fit between BTD and computed data based on
VWO08.

RADIUS OF GALE-FORCE WINDS (AAR35) By applying a parametric wind profile, it is
possible to derive the AAR35. Here, the H10 wind profile was applied, in which the
B parameter was computed based on H80 (Equation [2.3), and in which information
on the wind radii of cyclones was used to constrain the decay of wind speeds away
from the eye wall (Equation [2.4). When no additional information on the wind radii




22 ESTIMATION OF TROPICAL CYCLONE GEOMETRY BASED ON BEST-TRACK DATA

100 T T T T T T T T

-------- 90% PI: data
90 || I 90 % PI: relationship
TC data points

Median: data
Median: relationship | _|

Radius of maximum winds (RMW) [km]

20 25 30 35 40 45 50 55 60 65 70
Maximum sustained wind speeds (Vymq,) [m s

Figure 2.4: Scatter plot describing RMW (BTD and computed; y-axis) as a function of the
maximum sustained wind speeds (x-axis; and the latitude; not shown). The blue line is the
median of the proposed relationship derived for all basins at an arbitrarily chosen latitude of
10 degrees. The green line is the median of the BTD. The red area shows the 90% prediction
interval (PI) based on the proposed relationship for all basins. The 5% and 95% exceedance
values from the BTD are presented as black dashed lines. The gray dots are observation
points in which more frequent observations are shown as darker points and less frequent
observations as lighter points

Table 2.1: Fitting coefficients for the lognormal RMW as described in Equation

Shape Location (w)
Basin (0) A2 B2 Cc2 D2 Count

NIO 0.307 1324 146 -0.003 20.4 480

SWIO 0.338 2292 9.5 0.004 284 1889
SEIO 0.343 853 30.7 0.002 5.8 832

SPO 0.364 127.8 11.8 0.016 255 1118
NWPO 0359 153.7 11.5 0.007 289 4836
NEPO 0311 2615 7.0 0.026  29.2 2570
AO 0.395 19.1 241 0.106 23.2 3075
All 0370 448 234 0.030 224 14800
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is provided, H10 reduces to the original H80 wind profile, which is often unable to
accurately reproduce the spatial distribution of winds in TCs (e.g., Willoughby and

Rahn, [2004).

= M (2.3)
100(Ape.) '
_ X, —0.5
x=05+—— (2.4)
»—RM

Here, B represents the Holland pressure profile parameter, p, is the air density
(assumed constant at 1.15kg m™), e is the base of natural logarithms, Ap, is the
pressure drop in the core of the TC in hectopascals, x is the exponent used to
compute the wind profile in H80-H10 and x, represents the adjusted exponent to

fit the peripheral observations at radius r,.

Knaff et al, relationships (hereafter CLIPER, climatology, and persistence
models), derived for the NAO, NWPO and NEPO, are among the few in literature
providing an estimate of the TC surface winds. Knaff et al., fitted a modified
Rankine vortex on the BTD of NHC and JTWC, which also makes it possible to
retrieve the AAR35. Figure compares AAR35 from the BTD, derived from the
calibration period, with results from CLIPER, in which vy is indicated by the color

intensity in the scatter plot.

In order to improve the estimate of the AAR35, generic relations were derived as
part of this study based on BTD from the calibration period from all ocean basins,
as well as data from each individual basin separately. The method followed is similar
to the one applied to estimate RMW. First, a representative parent distribution of
the data was sought, secondly, the parameters of the PDF were determined, and
thirdly the parameters of the PDF were fitted for a range of vy« and latitude values.
The same parent distributions were tested and the lognormal distribution was again
chosen as the most representative, which aligns with Chavas et al.,

Similarly to RMW, the BTD from the calibration period was divided based on a
moving window with a bin width of 10ms™! for wind speed (0-10, 1-11, 2-12,
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Figure 2.5: Scatter plot describing BTD AAR35 (x axis) versus computed AAR35 based on
CLIPER (y axis). Data points are colored-coded based on the maximum sustained wind
speeds in the BTD. The dashed line represents a perfect fit between the BTD and the
computed data based on CLIPER.

etc.) and 10° for latitude. This led to Equations Equations and in which
exponential functions, dependent on the wind speed per oceanic basin, were used
to describe the location parameter and the shape parameter. Additionally, the
analysis of the data showed that AAR35 is dependent on the latitude, with TCs
generally increasing in size at higher latitudes. Adding additional parameters (e.g.
storm duration or intensity change of the wind speed) resulted in very limited skill
improvement for the estimate of AAR35. This procedure was applied to both the
combined JTWC and NHC BTD from the calibration period of all basins and for
each individual ocean basin. Table contains the values for the fitting parameters
for the AAR35 of Equations [2.5] and
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Oaarss = Az +e"mx B3 (14 C310)) (2.5)

AR5 = Ag - (Vmax — 18)5 - (1+ C4101) (2.6)

Here, uaarss and oaarss represent, respectively, the location and shape parameter
of the lognormal distribution for AAR35, and As, A4, Bs, B4, C3, and C4 are fitting
coefficients.

Table 2.2: Fitting coefficients for the lognormal AAR35 as described in Equations and

Shape (o) Location (u)
Basin Aj B3 Cs Ay By Cy Count
NIO 0.1215 —0.0522 0.0329 30.93 0.531 -0.012 480
SWIO 0.1312 —0.0444 0.0023 30.21 0.415 0.022 1889
SEIO 0.1223  —0.0454 0.0133 26.59 0.426 0.029 832
SPO 0.1205 —0.0350 —0.0052 23.88 0.431 0.038 1118
NWPO  0.1561 —0.0417  0.0050 33.27 0.429 0.017 4836

NEPO  -0.2513 -0.0091 -0.0051 18.11 0.486  0.030 2570

A scatter plot describing the AAR35 derived from BTD as a function of the vy, and
latitude and computed according to Equations [2.5| and is shown in Figure
The green line shows the median AAR35 based on the BTD, whereas the solid blue
line represents the mean AAR35 obtained from Equations and 2.6} The black
lines indicate the 5% and 95% exceedance values computed based on BTD. Finally,
the 90% prediction interval is shown using a filled red color. The figure shows how
the median AAR35 increases as a function of vy, while the variance stays fairly

constant. The new empirical equation for AAR35 is evaluated in the next section.

2.3.2. VALIDATION OF WIND RADII AND COMPUTED AZIMUTHAL WIND
SPEEDS

In this subsection, empirical relationships to estimate the RMW and AAR35 were
validated based on BTD from the validation period (2015-2017). Moreover, the outer
wind profile based on the Holland wind profile, in combination with observed wind
radii, was further validated using the QSCAT-R database.
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Figure 2.6: Scatter plot describing AAR35 (BTD and computed, y axis) as a function of
the maximum sustained wind speeds (x axis; and the latitude; not shown). The blue line
is the median of the proposed relationship derived for all basins at an arbitrarily chosen
latitude of 10°. The green line is the median of the BTD. The red area shows the 90%
prediction interval based on the proposed relationship for the standard deviation. The 5%
and 95% exceedance values from the BTD are presented as black solid lines. The gray dots
are observation points in which more frequent observations are shown as darker points and
less frequent observations as lighter points.

WIND RADII A subset of the BTD (from 2015 to 2017) was used to validate the wind
radii. Error statistics are summarized in Table The values indicate that, for all
basins combined, the RMSD between the BTD and the proposed relations for the
RMW is 17% lower than compared to VW08 (RMSD of 18 km compared to 21 km).
In the NEPO basin, VW08 performs relatively better than in other basins. When
comparing the performance of the proposed relations and VW08, it is important to
note that the relation of VW08 was derived for storms with central pressures lower
than 980 hPa, thereby explicitly focusing on the most severe TCs. When the data
were filtered to include only data points with a pressure drop Ap. larger than 30

hPa, the RMSD decreased and differences became much smaller (0%-10% decrease
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in RMSD). Moreover, the bias also decreases.

Table 2.3: Root-mean-square difference (RMSE; first number), bias (second number), and
scatter index (SCI; third number) for RMW in kilometers for the validation period for both
the proposed relationships as for VW08. Statistics are presented for all data points, as well
for data points with a pressure drop (Ap.) larger than 30 hPa.

Basin Proposed VW08

all Apc>30 all Ap:>30
NIO 20.9/-14.2/0.39  25.3/-17.7/0.47 14.0/-4.5/0.43 14.1/-2.5/0.43
SWIO 16.8/-7.0/0.35  20.0/-8.6/0.41 10.4/-0.2/0.34 9.8/0.3/0.32
SEIO 17.9/-10.7/0.35 24.0/-14.0/0.47 9.6/-1.6/0.35 10.9/4.9/0.40
SPO 18.1/-9.1/0.37 22.1/-10.1/0.46 12.9/-3.0/0.39 12.7/1.5/0.39
NWPO 17.2/-6.4/0.36 22.4/-5.5/0.46 12.1/-0.3/0.37 14.7/4.6/0.45
NEPO 16.9/-8.4/0.38  17.5/-6.7/0.39 13.1/-4.8/0.39 11.6/-1.2/0.34
AO 21.0/-8.7/0.41  21.5/-0.8/0.42 17.2/-4.1/0.43  18.2/8.1/0.45
All 18.0 /-7.1/0.37  21.0/-6.5/0.44 13.1/-1.6/0.39  14.2/3.3/0.42

Table shows the error statistics related to the estimation of AAR35. In particular,
the RMSD between the proposed relations and the BTD for all basins combined is
25% lower compared to CLIPER (RMSD of 74km compared to 94km) and there is
a negative bias ranging between 9 and 37km. Remarkably, the deviations of the
AAR35 based on BTD in the NIO and SEIO from CLIPER are significantly smaller
compared to the differences for the AO for which CLIPER was derived. When the
H10 wind profile is applied without additional information to compute the decay
of wind speeds away from the eye wall (H80), the AAR35 is strongly overestimated
(overall bias of 177km).

Table 2.4: Root-mean-square difference (RMSE; first number), bias (second number), and
scatter index (SCI; third number) for AAR35 in kilometers for the validation period for the
proposed relationships, CLIPER (Knaff et al., |2015| and the H80 wind profile.

Basin Proposed CLIPER H80 Count
NIO 48.0/ -17.5/0.43 51.0/+3.3/0.45 275.2/221.9/2.45 146
SWIO 68.9/-31.4/0.43 123.1/-95.3/0.76  248.4/190.9/1.54 365
SEIO 37.2/-9.0/0.33 69.0/ —58.3/0.61 238.8/187.7/2.12 107
SPO 59.6/-16.3/0.41 104/ -74.7/0.71 267.2/214.1/1.83 424
NWPO 83.8/-37.3/0.44 95.0/—-25.6/0.50 294.2/198.8/1.55 1389
NEPO  47.4/-10.3/0.40 86.4/+68.7/0.73 125.4/59.3/1.06 1031
AO 90.0/-16.3/0.49 116.8/+7.1/0.64  552.7/252.4.1/3.02 424
All 74.1/-37.3/0.45 94.2/-13.9/0.58 316.8/177.0/1.94 1389
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OuTeEr WIND SPEEDS The QSCAT-R database was used to validate the computed
(outer) azimuthal wind speeds while using the H10 wind profile in combination
with several sources to constrain the decay of wind speeds. QuikSCAT includes 690
unique tropical cyclones and is known to provide reliable results for outer wind
speeds of lower intensity. Figure displays the error profile, representing the
difference between modeled wind speed and measured data based on QuikSCAT, as
a function of the normalized radius. This means that for all validated TCs the radius
on the x axis is divided by the RMW. A horizontal line equal to zero indicates no
difference between modeled and measured wind speed data, while the solid-colored
lines represent the median difference. The filled area indicates the interquartile
range (IQR).
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Figure 2.7: Wind speed error (observed QSCAT-R minus modeled) profiles for different models
as a function of relative TC radius (r/RMW). A value equal to zero on the y axis indicates a
perfect match between model and observations. Interquartile ranges are shown with shaded
colors and the solid line represents the median. Note: for the proposed relationships the
most probable value for RMW and AR35 was used (i.e., mode).

The figure shows that in combination with the H10 wind profile, the proposed
relationships result in the smallest difference with respect to the measured wind

speeds (green line). However, applying the H10 wind profile with observed values
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for the wind radii (i.e., based on BTD values) results in an underestimation of
the modeled outer winds (blue line). On the other hand, applying the H10 wind
profile, without additional information on the gale-force winds (H80), results in a
strong overestimation of the outer winds (red line). Similarly, a combination of
other existing relationships for RMW (VW08) and AAR35 (CLIPER) results in an
overestimation of the outer winds but to a lesser degree (orange line).

The same information is also shown in Table where the root-mean-square
differences and bias between modeled wind speeds and measurements are
summarized. Using the proposed relationship with the H10 wind profile results in
the lowest RMSD and smallest bias.

Table 2.5: Root-mean-square difference (RMSD) and bias (m/s) between modeled and
measured azimuthally averaged wind speeds based on QSCAT-R data. The data analyzed
in the table refer to all TCs with wind speeds between 40 and 5m/s and a normalized
radius between 3 and 16. Statistics are shown for median values (50%) and the IQR range
(25%-75%). With “H10: observed” the authors refer to the Holland et al., wind profile
in combination with the RMW and AR35 from the BTD.

Wind profiles RMSD Bias
median  low high median low high
(50%) (25%) (75%)  (50%)  (25%) (75%)

H80 11.24 8.32 14.57 10.98 7.89 14.34
H10: observed (BTD) 5.46 3.85 7.04 -4.67 -6.32 -2.6
H10: VW08 + CLIPER 3.60 2.06 5.76 1.64 -1.27 4.16
H10: proposed 2.86 1.71 4.51 -1.04 -3.3 1.39

2.4. DISCUSSION

For clarity, discussion points have been grouped under three main topics, which are

as follows.

DATA

In this study, all available BTD from NHC and JTWC were used and combined into
one data set. This approach was followed to create the largest sample size possible,

in order to derive empirical (stochastic) relationships valid for each ocean basin,
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various latitudes, different TC geometries and strengths. This approach is limited by
the debatable assumption that each 6-hourly data point is statistically independent.
Moreover, errors in the BTD can be quite significant, so previous studies (e.g.,
Holland, selected a specific subset of the BTD in order to ensure the quality of
the data and remove potential inconsistencies. However, the advantage of including
all data entries is that the derived relationships are more widely applicable (.e.,
larger parameter space). Moreover, as they are based on larger data sets, it is
possible to treat TC geometry variables using a stochastic rather than a deterministic

approach.

METHODOLOGY

In order to derive the new empirical relationship for RMW and AAR35, the maximum
sustained wind speed and latitude were used. Although other authors used additional
parameters to describe the TC geometry (e.g. pressure drop, storm duration, rapid
intensification), limited predictive skill improvement was found by incorporating
those additional parameters. This makes the derived relationships relatively
simple for practical applications. Moreover, lognormal statistical distributions in
combination with exponential functions were used to fit all available data and derive
those relationships. For our application, exponentially shaped functions resulted
in the best fit compared to the available data. The choice of lognormal statistical
distributions was based on a comparison of the different cumulative distribution
functions (CDFs) derived using different distributions and the Kolmogorov—Smirnov
test and supported by findings from literature (e.g., Dean et al,, Chavas et al,,
However, different statistical distributions and functions are available in the
literature to fit and describe TC geometry data. The strength of using statistical
distributions to derive these relationships is that TC geometry is treated stochastically,
therefore providing not only mean and median values but also prediction intervals.
This is especially of importance when the TC geometry is not known (e.g. for older
BTD and/or Monte Carlo analysis with synthetic tracks) with numerical models.
Another possibility would be the derivation of wind speed probability estimates. A
possibility to further improve these relationships would be to use machine learning
techniques such as Bayesian neural networks to estimate TC geometry parameters
when enough data are available (via either additional observations or surrogate data

derived by numerical models).
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DIFFERENCES IN MEASURED AND MODELED OUTER WIND PROFILES

QuikSCAT data were used to validate the (outer) azimuthal wind speeds derived
using the new empirical relationships in combination with the H10 wind profile.
The analysis has shown how the proposed relationships in combination with the
H10 wind profile result in the lowest RMSD and smallest bias for the outer winds,
compared to other existing relationships (see Figure [2.6). This gives confidence that
parametric wind models can be used to compute the outer wind speeds. This is of
particular importance for the estimation of coastal hazards (i.e., storm surge and
wave heights).

However, differences were also found for individual TCs, where the Holland wind
profile in combination with the empirical relationships derived in this paper did
not result in a good reproduction of the outer wind speeds. As an example, panel
A of Figure shows computed and measured wind speeds for TC Vaianu (2006),
which was characterized by an extremely large radius of gale-force wind (R35 equal
to 292 km = 10% probability of exceedance). Measured values are shown in Figure
by the black circles. When applying the proposed relationships to compute the
most probable values of the wind radii (red line), an R35 value equal to 162 km
is obtained, resulting in an overall underestimation of the measured outer wind
speeds. Also, when using the observed wind radii information (blue line), TC outer
winds are not well reproduced, which shows that even with the correct wind radii
value, parametric wind models can have the wrong shape. This approach is also
limited when measured wind speeds cannot be represented by an exponential decay,
as is assumed by the Holland wind profile. For example, TCs characterized by two
wind maxima cannot be reproduced by an exponential decay of wind speed (Figure
- panel B). However, the Holland wind profile is widely used due to its relative
simplicity and does, most of the time (80% of the TCs are reproduced with an RMSE
of less than 5 m s™!), reproduce the decay of wind speed fairly well as shown in the
evaluation of 690 unique TCs in Figure [2.6).
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Figure 2.8: Radial wind profiles for measured wind speeds (black circles), computed wind
speeds based on relationships for wind radii (red lines) and computed based on observed
wind radii for tropical cyclones Vaianu (14 February 2006) (a) and Karl (23 September 2004)
(b). Measured data are based on QSCAT-R data, while computed values are based on the H10
wind profile calibrated with the relationships proposed in this paper (red line) or observed
data (blue line). Panels (a) and (b) are examples indicating when a difference between
measured wind speeds and TC size can be encountered.

2.5. CONCLUSION

In this chapter, new empirical relationships are derived that estimate tropical cyclone
(TC) geometry with simple and generic equations and with higher accuracy with
respect to other well-known empirical relationships available from the literature.
Those new relationships are valid for any ocean basin (Atlantic; S, NW, and NE
Pacific; N, SE, and SW Indian oceans). Moreover, the new relationships include a

stochastic description for both the radius of maximum winds (RMW) and the radius
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of gale-force winds (AAR35). This allows the quantification of the prediction interval

around the median estimates, making the estimation more useful.

According to the derived relationships, the RMW is described as a function of the
maximum sustained wind speeds and latitude. The radius of gale-force winds is
estimated using a newly introduced AAR35 parameter (average difference between a
radius of 35 knots and a radius of maximum wind) and is also dependent on the
maximum sustained winds and latitude. Both parameters are fit through simple
exponential functions. Compared to best-track data, the proposed relationships
improve the estimation of RMW and AAR35 by reducing the root-mean-square
difference (RMSD) up to 25%. Larger improvements were found in particular for
non-US TCs since most of the existing relationships are based on data from the

Atlantic Ocean, northeastern Pacific Ocean, and/or northwestern Pacific Ocean.

The new relationships, in combination with the Holland wind profile, were validated
using a subset of the BTD and (outer) azimuthal wind speeds from the QSCAT-R
database. The results showed that (outer) azimuthal wind speeds of the TC can be
reproduced with the H10 wind profile when using either the BTD (“observed”) for
RMW and AAR35 or the relationships derived in this paper. When no additional
information on wind radii was used to calibrate the H10 wind profile, which is
generally done when the radius of gale-force wind is not known, surface wind speeds

were overestimated.

The derived empirical relationships can be used in a variety of applications. For
example, a better estimate of TC pressure and surface wind speeds for Monte Carlo
analysis with synthetic tracks for risk assessments with numerical models can result
in a more accurate description of wave and surge conditions resulting from the
TC. As a result, this can lead to a better quantification of coastal hazards, and
consequent risks and damages. Similarly, an improved assessment of those hazards
can help the design of appropriate adaptation measures. Other fields of application
may vary from improved design parameters for offshore structures to navigation.
The application of the new empirical relationships is presented in Nederhoff et al.,

2021al







GENERATION OF SYNTHETIC
TROPICAL CYCLONES FOR
STRATEGIC RISK ANALYSIS

The results of Chapter [3 revealed that empirical stochastic relationships make it
possible to estimate tropical cyclone geometry when this is not known. These
parameters are paramount to generating accurate parametric wind fields for strategic
and operational risk analysis. Nonetheless, strategic risk analysis is often hindered
by an insufficient amount of historical tracks for a reliable analysis. In this chapter,
we introduce a methodology that focuses on computer-generated pathways that
hypothetical storms might follow. These synthetic tropical cyclone tracks are created
based on analyzing data and patterns from historical real-world cyclone tracks. The
focus of this chapter is to introduce and validate a new methodology called the
Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) that can be used for
strategic risk analysis.

This chapter is a revised version of Nederhoff, K., Hoek, J., Leijnse, T., van Ormondt, M., Caires, S.,
& Giardino, A. (2020). Simulating Synthetic Tropical Cyclone Tracks for Statistically Reliable Wind
and Pressure Estimations. Natural Hazards and Earth System Sciences Discussions, 2020, 1-30.
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Abstract The design of coastal protection measures and the quantification of
coastal risks at locations affected by tropical cyclones (TCs) are often based solely on
the analysis of historical cyclone tracks. Due to data scarcity and the random nature
of TCs, the assumption that a hypothetical TC could hit a neighboring area with
equal likelihood to past events can potentially lead to over- and/or underestimations
of extremes and associated risks. The simulation of numerous synthetic TC tracks
based on (historical) data can overcome this limitation. In this paper, a new
method for the generation of synthetic TC tracks is proposed. The method has been
implemented in the highly flexible open-source Tropical Cyclone Wind Statistical
Estimation Tool (TCWiSE). TCWIiSE uses an empirical track model based on Markov
chains and can simulate thousands of synthetic TC tracks and wind fields in any
oceanic basin based on any (historical) data source. Moreover, the tool can be
used to determine the wind extremes, and the output can be used for the reliable
assessment of coastal hazards. Validation results for the Gulf of Mexico show that
TC patterns and extreme wind speeds are well reproduced by TCWiSE.

3.1. INTRODUCTION

Tropical cyclones (TCs) are among the most destructive natural disasters worldwide.
TCs can cause hazardous weather conditions including extreme rainfall and wind
speeds, leading to coastal hazards such as extreme storm surge levels and wave
conditions. In assessing the impacts of these hazards and consequent risks, the
spatial distribution of surface winds is needed. Past observed best-track data (BTD)
can be used to reliably reproduce spatially varying wind conditions during individual
TCs using parametric models (e.g., Nederhoff et al., and consequent hazards
(e.g., Giardino et al., . For TCs, one often refers either to the first-order
hazards due to the TC (e.g. maximum wind speed) or to second-order effects (e.g.
storm surge levels and wave heights). This is required, for example, to define design
conditions for coastal protection measures or to quantify coastal risks. Extreme
value theory is concerned with the distribution of rare events, rather than usual

occurrences.

A wide range of such statistical methods exist, all of which rely on the use of
numerous observational points to derive reliable extreme values. When the data

set covers the return period of the event, the extreme value estimation can be
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based directly on historical values (i.e., non-parametric). However, for the estimation
of extremes associated with longer return periods, one must resort to fitting a
statistical distribution to the data (i.e., parametric). The simplest technique is to fit
either a Gumbel distribution with two parameters (location and scale) under certain
assumptions or a generalized extreme value (GEV) to a time series of annual maxima
(e.g., Coles, [2001). Other methods make better use of the available data, for example,
via a peaks-over-threshold (POT) approach to identify all extremes within a year and
to fit the generalized Pareto distribution (GPD) to them (Caires, [2016).

Worldwide the length of TC track records varies from approximately 50 years (from
the 1970s onward) to more than 150 years in the Gulf of Mexico (GoM), with arguably
increasing accuracy for more recent observations compared to very old data. Thus,
depending on the region, the number (and accuracy) of events recorded in the
direct vicinity of a location varies significantly. Furthermore, in certain regions, the
frequency of occurrence is also very low, making the sample size of historical events
very limited. Only using a handful of observed TCs in recent history has severe
limitations when estimating extreme wind, storm surge, and wave conditions for rare
(e.g. 1000-year) return periods, since individual storms will start to affect the derived
extremes. In particular, biases (both over- and underestimations) will emerge due to

sampling errors.

To overcome this data scarcity problem, one potential approach is to generate
synthetic TC tracks, which increase the amount of data by introducing cyclones
that could potentially occur. Two different types of models are available for the
generation of synthetic tropical cyclones: the simple track model (STM) and the
empirical track model (ETM). STM (e.g., Vickery and Twisdale, was the first
method developed to generate synthetic cyclones. The basic idea is that specific
observed TC characteristics (e.g. wind speed, central pressure deficit, the radius
of maximum winds (RMW), heading (the direction in which the TC is propagating
in degrees), translation speed, coast-crossing position) are obtained and used to
construct probability density functions. Next, these characteristics are sampled from
their distributions using Monte Carlo simulations and passed along a track that does
not vary, ensuring that TC characteristics are kept constant along the track. The
downside of this method is that it is very site-specific as all parameters are gathered
for a single area or coastline. ETM is, in principle, the evolution of STM (e.g., Vickery
et al., [2000). It uses the same technique of gathering the statistics and then sampling
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them, utilizing Monte Carlo simulations. Instead of sampling all parameters once,

the variables can change in their characteristics every time step along the track.

In the recent literature, several synthetic TC databases and/or methods have been
published. Vickery et al., used statistical properties of historical tracks and
intensities to generate a large number of synthetic storms in the North Atlantic
(NA) basin. Six-hour changes in TC properties were modeled as linear functions of
previous values of those quantities as well as position and sea surface temperature.
James and Mason, applied a similar, yet slightly simpler and less data-intensive,
approach since the focus was on synthetic TCs affecting the Queensland coast
of northeastern Australia, where fewer data were available compared to the NA
basin. Arthur, used a fairly similar approach to James and Mason, but
instead focused on the entire continent of Australia, included the fitting of extreme
value distributions, and made the code open-source. Vickery et al., added
a second step in the TC generation by including thermodynamic and atmospheric
environmental variables such as sea surface temperature, tropopause temperature,
and vertical wind shear. Emanuel et al,, also used the ETM; however, for
the generation of the synthetic tracks they applied Markov chains (e.g., Brzezniak
and Zastawniak, with kernel density estimates (KDEs) conditioned on a prior
state, time, and position, instead of using a linear function. Bloemendaal et al.,
developed a synthetic TC database on a global scale following the principles
outlined in James and Mason, Other approaches (e.g., Lee et al,, are less
data-intensive but more environmentally forced.

While there are numerous methods and tools available to generate synthetic TCs,
most of them were developed with a very specific focus in mind and therefore may
not be suitable to use for other areas in the world or different utilizations. Moreover,
none of these methods are yet available open-source for review by other peers, and
all these methods are focused purely on the generation of the track itself. For
example, for coastal engineering or risk-based applications, the possibility to easily
link the track to other processes (e.g., generation of wind profiles, rainfall, hazard

modeling) could offer a wide range of opportunities for different utilizations.

In this chapter, a new method for the generation of synthetic cyclone tracks and
wind fields is described. The method has been implemented in a new tool

to compute synthetic TC tracks, based on the ETM method, for any oceanic
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basin in the world. This new tool, named TCWiSE (Tropical Cyclone Wind
Statistical Estimation Tool), has been made publicly free and open-source via
https://www.deltares.nl/en/software/tcwise/, The tool is set up as a Markov model
where (historical) meteorological data serve as a source to compute synthetic tracks.
Additionally, TCWISE can create meteorological forcings for further use in different
hazard models (e.g. surface wind fields, TC-induced rainfall), including the possibility
of assessing current and future climate variability.

TCWISE has been developed in an attempt to give users flexibility in their choices.
For example, while a comprehensive historical TC database is already included in
IBTrACS (International Best Track Archive for Climate Stewardship; Knapp et al.,
[2010), the tool offers the option to choose from different sources within this data
set. Additionally, variables like the resolution of KDEs and internal parameters can
be optimized if desired. Also, it is possible to choose among several wind profiles
to create temporally and spatially varying wind fields. This approach makes it
feasible to calibrate parameters in TCWIiSE that arguably vary from case study to
case study. TCWISE has been successfully applied in several studies prior to this
publication (e.g., Deltares, Hoek, Bader, [2019). In general, the whole
tool is data-driven, but, due to the usage of Markov chains and KDEs, variability
within the data set can also be explored (i.e., combinations of statistically plausible

parameters that have not occurred historically).

This Chapter is outlined as follows: Section describes the method and code
structure of TCWIiSE. Section presents a validation case study for the GoM.
Finally, Sections and discuss and summarize the main conclusions of the
study.

3.2. TROPICAL CYCLONE WIND STATISTICAL ESTIMATION
TooL (TCWISE)

INTRODUCTION

TCWISE comprises a Monte Carlo method for synthetic TC generation and involves

four main components: track initiation, track evolution, wind field construction, and
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determination of extreme surface wind speeds. Based on the average number of
TCs per year, their monthly distribution, and the distribution of the genesis location,
timestamps, and synthetic genesis locations are generated. Subsequently, an ETM is
used to determine the changes in track and intensity at certain time intervals (i.e.,
3-hourly by default). The ETM is a Markov model where the values of the next
time step solely depend on that of the previous time step, similar to the methods
developed by, for example, Vickery et al., and Emanuel et al., The main
variables it keeps track of are location (latitude and longitude), time, maximum
sustained wind speeds (vmayx), forward speed (¢) and heading (8) of the synthetic TC
track. After the TC tracks have been generated, the temporally and spatially varying
surface wind fields are constructed using the updated Holland wind profile (Holland
et al., with calibrations based on Nederhoff et al., Finally, the generated
data of wind fields are used to estimate TC wind extremes. The main outputs of the
tool are the synthetic tracks, the wind fields per TC, and the wind extremes. The
output wind fields can be used further to derive extremes of associated second-order
effects, such as storm surges and waves. The tool is written in MATLAB and leverages
the Parallel Computing Toolbox to allow the utilization of multi-core processors on

computer clusters.

FLOWCHART

A compact flowchart of the method which is used to generate the synthetic tracks is

shown in Figure The steps of this process are as follows:

1. Define settings. The user specifies the data source, the area of interest,
the number of years that are to be simulated, and a number of numerical
parameters. In particular, the included IBTrACS dataset contains data from
several meteorological agencies from which the user can choose. Also, the
users can define settings such as the kernel size. The user can also define bulk
climate variability parameters such as changes in TC frequency and intensity
due to climate change.

2. Construct statistics of original data. TCWISE processes the (historical) data and
computes the probability of genesis and termination per location on the map.
Moreover, it computes change functions for the three variables of which the

tool keeps track. In particular, KDE of the conditionally dependent changes
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in maximum sustained wind speeds (intensity vmax), forward speed (c), and
heading (0) as a function of the location and the variable itself are determined
and saved for later usage. This information will be used within the Markov
chains during the simulation of synthetic tracks.

3. Compute cyclone genesis. The tool computes the number of storms to be
generated by taking the average number of storms observed per year within
the oceanic basin of interest. The monthly distribution (i.e., seasonality) is

also taken into account by first using a Poisson distribution for the number of

TCs per each year, after which the monthly distribution is taken into account
by giving each track a unique timestamp within the number of years to be
simulated based on a KDE of historical data. For every track, its genesis
location is determined, and each TC track gets an associated initial vy, c,
and 6 associated with the genesis location.

4. Compute new location and intensity. For every track, TCWIiSE samples in
3-hourly intervals change to the three sampled parameters (vmax, ¢, and 0)
until the termination of the track. KDE is used to randomly sample changes to
these parameters as a function of location and the parameter itself. The tool
uses the maximum sustained wind speeds as the intensity parameter. Heading
and forward speed are the location parameters. All these three parameters are
sampled at a use-definable time step (3-hourly by default).

5. Compute landward decay. 1t is possible to include an additional decrease in
intensity on land via relationships developed by Kaplan and DeMaria,
Implicitly, part of the decrease of intensity on land is already accounted for
via the KDE of vpya.x. However, due to search windows, some of this effect is
smoothed out.

6. Terminate track. After each interval of 3 hours, the tool checks if the tracks
should be terminated. The termination criteria are defined in three different
ways: probability, wind speed criteria, and sea surface temperature (SST).

7. Validate track. To make sure realistic TC tracks are generated, the tool checks
if the synthetic track that is terminated has reached a wind speed of at least
17 m/s (default threshold definition TC, but user-definable) during its lifetime
(approximate TC category 1 based on the Saffir-Simpson hurricane wind scale
(SSHWS)). This prevents the generation of extratropical storms that never reach
TC status.

8. Finalize tracks. TCWISE continues with this loop until the last synthetic TC
track has been generated. This is reached once the total number of synthetic
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10.

tracks has been created.

. Create temporally and spatially varying surface wind field maps. The tool

creates meteorological forcing conditions, i.e., the surface wind fields per time
step per TC, for subsequent analysis and the application within numerical
models, currently only Delft3D4 and Delft3D-FM are supported including flow
and wave (Lesser et al., Kernkamp et al., 2011).

Create wind swaths: TCWISE creates maximum surface wind speeds for each
TC by taking the maximum over all the timestamps of the TC. The maximum
surface wind speeds of a single TC are also called wind swaths or wind
extremes. Via non-parametric and parametric estimates probabilities or return
periods can also be given to wind swaths. In particular, output wind speeds are
in units of meters per second and by default 10 min averaged, though this is
user-definable. Note that different meteorological agencies use different wind
speed averaging periods. Harper et al., recommend for at-sea conditions
a conversion factor of 1.05 going from 10 min to 1 min averaged wind speeds.

A more detailed description of the track initialization, track and intensity evolution,

termination, climate variability, and wind fields is described in the paragraphs below.
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Define settings !
e.g. # years, area of interest, point per KDE

Construct statistics of original data
e.g. probability genesis/termination, Markov-chains

Compute cyclone genesis
i.e. time, locationandv__, c,and ©

max’

Simulate synthetic tracks
every time step

Compute new location and intensity
Randomly sample the three TC variables
Intensity (v,.,), forward speed (c) and heading (6)

No

If on land (optional): >

landward decay based on Kaplan & De Maria (2005)

Terminate track?
a. probability, b. wind speed, c. SST

Valid track? Retry

Last track?

Track simulation complete!

Create spatially-varying wind fields maps
via Holland wind profile

Create wind swaths (extreme wind velocities)
Based on defined return periods both non-
parametric and parametric (POT/GPD)

Figure 3.1: Flowchart of the track modeling procedure. Dark blue colors are pre-processing
steps, blue colors are the computational core of TCWiSE, and light blue post-processing
steps. KDE stands for kernel density estimation, SST stands for sea surface temperature and
POT/GPD is the acronym of peak over threshold and generalized Pareto distribution.
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TRACK INITIALIZATION

The track initialization is done through random sampling of the genesis locations
for each track from a spatially varying probability constructed based on (historical)
input data. Only the spatial occurrence of the genesis locations is sampled, as no
temporal variability of genesis locations or other input parameters are included in
the genesis. The spatially varying probability used to sample the genesis locations
is constructed by first drawing a rectangular grid of a user-definable size (default:
1° x 1°) around all historical events under consideration. For each grid point, all
genesis locations within a certain distance (user-definable; default: 200 km) are
counted and normalized with the total number of counted genesis points to obtain

the genesis density at each grid point.

TRACK EVOLUTION

After the generation of the genesis location and parameters, the evolution of the
track and intensity is modeled during its lifetime in (by default) 3-hour intervals.
The propagation is modeled by sampling the change in the heading (A8), forward
speed (Ac), and intensity (Avmax) for each time step.

SEARCH RANGE The KDE is constructed for each grid point based on input data
within a specific search range. This search range is defined by a rectangular
box of a user-definable size (default: 1°x1°) around the point of interest. The
minimum number of data points required within the search range is 250 (default,
user-definable). If less than the specified amount of points is located within the
search range, the search range is increased until the required number of data points

is found or until the maximum is reached (user-definable; default: 5° x 5°).

The change in intensity evolution and track propagation, which includes the heading
and forward speed, are all treated similarly. —Changes are sampled from the
pre-processed KDEs that are conditionally dependent on the previous time step.
Historical occurrences are smoothed since a KDE from raw histograms is used (Wand
and Jones, [1994). This smoothing overcomes possible discrete signals. By default,
the heading is divided into 17 equally large bins and partly overlapping bins of 45°,

forward speed is divided into 17 overlapping bins of 2.5 knots, and wind speed is
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divided into 37 overlapping bins of 5 knots. This ensures that the full parameter
range for TCs is covered. For each variable, the search range (i.e., the range for
which values are included in the bin) is twice the window size (i.e., the difference
per each subsequent bin) to ensure a smooth transition between different bins. All
these settings are user-definable. Data points that are on land can be excluded from

the computation of the intensity evolution.

No additional parameters are defined for the track evolution. Effects such as
intensification, the Coriolis effect, wind shear, and beta drift (Holland, (1983) are not
explicitly defined nor controlled for. The conditionally dependent KDE of change per

variable per location drives the complete track evolution.

EFFECT OF LAND When a TC makes landfall, TCs weaken due to, among other
factors, a lack of heat sources (Tuleya, . This effect should be part of the
conditionally dependent KDE, but due to the possibly large search ranges per
location (and thus blending of on-land and on-water conditions) the effect of land
can be underestimated (and the intensity on water underestimated). Therefore,
the user can exclude data points on land. When this is chosen, one should use
additional formulations to reduce intensity when the synthetic TC is on land. Among
other relationships available in the literature, Kaplan and DeMaria, [1995| created a
simple empirical model for computing cyclone wind decay after landfall. In TCWiSE,
a similar method can be used to compute the decay of wind speed after landfall.
Following the relationships of Kaplan and DeMaria, wind speed decreases
exponentially based on how long a TC is on land. The specific amount of decay as a

function of time is, again, user-definable.

TRACK TERMINATION During each interval of 3 hours, the tool checks if the tracks

should be terminated. The termination criteria are defined in three different ways:

1. when the wind speed is lower than a user-definable low value (default 10
knots)

2. when the synthetic TC is over a user-definable low water temperature (default
10 degrees Celsius)

3. the probability of termination based on (historical) input data.

When different methods of termination are used, the termination of a synthetic TC

is thus not completely similar to the historical probability of termination. Hence,
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termination within TCWIiSE can also be triggered by low wind speeds (due to the
fact the TC is on land) and/or too-low SST.

CLIMATE VARIABILITY Projected effects of climate change on the frequency and
intensity of TCs can also be taken into account via the heuristic implementation of
a factor on both the frequency and intensity. These factors can be defined using
expert assessment of TC climate predictions (e.g., Knutson et al., , allowing, for
instance, the assessment of changes in TC coastal hazards in the next century. The
effect of climate variability on possible shifts of the TC tracks or regional changes of
parameters are not included yet but could be included by modifying the (historical)

KDEs or using global climate models as an input source for TCWiSE.

TEMPORALLY AND SPATIALLY VARYING SURFACE WIND FIELD

After the generation of the track (time, location, and intensity), temporally and
spatially varying wind fields are computed based on the parametric model of Holland
et al., via the Wind Enhanced Scheme (WES; Deltares, [2018). The relationships
of Nederhoff et al,, are used either to compute the most probable TC geometry
(RMW and radius of gale-force winds, also known as the radius of 35 knots or R35)
or to take geometry into account as a stochastic variable. The user has the choice
between generic relationships and calibrations for different basins. This ensures
reliable azimuthal wind speeds. TC asymmetry is considered based on Schwerdt
et al., and assumes a constant inflow angle of 22° (Zhang and Uhlhorn, [2012).
More details on the implementation of the Holland parametric wind model are
provided in Deltares,

WIND SWATHS

After the generation of the wind fields, wind swaths for different return periods
are generated. Both non-parametric and parametric extremes based on a fitted
POT/GPD for different return periods are computed. TCWiSE utilizes the POT
method combined GPD (Caires, for extreme value analysis. In particular,
the choice of the threshold for the POT and the fitting of the coefficients are

automatically performed. Parametric estimates of extremes are preferred when
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statistical uncertainties need to be quantified or when fewer observations are

available on which to base the non-parametric estimates.
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Figure 3.2: Area of interest of the Gulf of Mexico, including the locations of the nine
control points in the GoM (red triangles), NOAA/NDBC measurement location (red dots),
cities (white circles), and milepost (red dashed line). ©Esri, DigitalGlobe, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN and the GIS User Community

3.3. RESULTS

3.3.1. STATISTICAL DATA AND TESTS USED FOR VALIDATION

BACKGROUND The United States (US) is one of the countries most affected by TCs
over the years. In particular, the US Gulf Coast has suffered severely from hurricanes
in the past, which have caused a significant number of casualties and a significant
amount of damage. Among the most notorious, TCs Andrew in 1992, Katrina in
2005, and Harvey in 2012 devastated US territory. In the severe hurricane season of
2017 alone, Harvey, Irma, and Maria resulted in more than $ 250 billion in damage

in the US (NOAA, [2018)

In this subsection, a validation of generation, occurrence, propagation, and
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termination of synthetic TC is carried out, by comparing with historical tracks for
the entire NA basin. A more detailed comparison between historical BTD from
the IBTrACS database and simulated synthetic tracks by TCWiSE is performed for
nine control points in the GoM. Subsequently, extreme wind speed estimates from
TCWISE and from historical data are compared along the coastline and also validated
against the literature. Figure presents the area of interest for the validation case
study, including relevant locations for this analysis.

DaTA The NA basin data from the IBTrACS database are used within the TCWiSE
algorithm to compute 10.000 years of synthetic TCs. Only historical data observed
from 1886 up to 2019 are considered. The cutoff year of 1886 is chosen because
of the increase in accuracy of the observation of the maximum wind speeds. This
yields 955 historical TCs and 71.320 synthetic TCs for the entire NA basin.

Measured winds from a total of nine National Data Buoy Center (NDBC,
https://www.ndbc.noaa.gov, last access: 22 December 2019) buoys across the GoM
have been used in this study to validate the TCWiSE-computed extreme wind speeds.
Computed and observed wind speeds are all converted if needed to 10 m height and
10 min averaged (see, e.g., Harper et al, 2010). This is generally the height and
the averaging period needed for hydrodynamic models (in wave modeling this is
typically the 1 hr average wind speed). Only observations from buoys with at least
20 years of data have been used to validate modeled wind speeds. Furthermore,
only observations within a 200 km radius of an active TC (based on IBTrACS) are
considered. This prevents the inclusion of peak wind speeds due to extratropical

storms instead of TCs in the validation.

Moreover, TCWiSE-computed extreme values are compared to values found in the
literature. For example, Vickery et al., present simulated TC-induced wind
speeds across the US coastline for return periods of 50 up to 2000 years. Following
the methodology of Neumann, 1991, along the US coastline, NOAA (National
Oceanic and Atmospheric Administration) presents hurricane return periods for both
hurricanes (>64 knots) and major hurricanes (>96 knots) within 50 nautical miles
(92.6 km) based on the track information. TCWiSE-computed return periods are
compared to NOAA’s reported values (https://www.nhc.noaa.gov/climo/, last access:
1 February 2019).
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STATISTICAL TEST FOR TC VALIDATION A variety of tests are available for statistical
comparison between computed and historical cyclone parameters. The tests are
used to prove the hypothesis that the historical values come from the same statistical
population as the simulated values. For each parameter, such as forward speed,
a goodness of fit for the historical cumulative distribution function (CDF) can be
performed and compared to the CDF from the synthetic tracks. Strictly, this would
require that different data sets are employed for model fitting and for model testing
so that distributional parameters of the model used to generate the large-sample
CDF are not estimated from the historical sample. However, in this paper, we
utilized all available observational data to include as much climate variability in the
synthetic tracks as possible.

Several tests exist (e.g. Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling,
Kuiper, Watson) to test the null hypothesis that the samples x and y come
from the same (continuous) distribution (Stephens, . In addition, a more
pragmatic approach is available which consists of simply computing the mean
absolute error (MAE) on the historical and computed CDFs. In this paper, we
present a combination of different statistics to test if the synthetic tracks have
similar statistical properties to the BTD. In particular, normalized mean absolute
error (nMAE; MAE divided by variance of BTD), root-mean-square error (RMSE),
and bias are presented. Additionally, the CDFs of several TCs physical properties
are compared for the historical and synthetic tracks. Finally, the Kirchhofer,
method is used for quantifying similarities and differences in spatial patterns (e.g.

TC genesis, evolution).

3.3.2. VALIDATION OF TROPICAL CYCLONE PARAMETERS

In the following subsection, the modeled results of TCWIiSE are compared to
historical BTD. Validation follows the life of a TC first with a visual and qualitative
validation of the generation being presented. Subsequently, the track occurrence,
evolution, and CDFs of the three main parameters of TCWIiSE are compared
quantitatively to historical data. Lastly, a visual and qualitative validation of the

termination is presented.

GENERATION Historical and simulated genesis probability for the entire NA basin is

shown in Figure [3.3] Cyclone genesis is taken as the first point which the BTD
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identifies as such, which means it is the point from where meteorological institutes
started tracking the storm. As shown in Figure panel A, the simulated and the
historical genesis match well visually. A hot spot of TC genesis is illustrated on
the west coast of the African continent. Additionally, two hot spots are visible east
of the Caribbean Sea and in the western part of the Caribbean. Within the GoM
some areas also show cyclone genesis. Genesis in these specific basins is related to
increases in oceanic heat content (Emanuel, . The spatial patterns of genesis
are almost identical while being slightly smoothed out in the simulated synthetic
tracks (Figure - panel B). This visual assessment was quantified and confirmed
by using the Kirchhofer metric score, which provided a value equal to 0.967 (a value
of 1.0 represents a perfect match). In particular, grid cells that are zero (either in
the historical or synthetic data set) are not taken into account in the analysis. This
gives confidence that TCWiSE can reproduce the genesis patterns observed in the
historical BTD.

Historical best-track-data (BTD %10

latitude [°]

probability genesis [-]

latitude [°]

-120 -100 -80 -60 -40 -20 0 0
longitude []

Figure 3.3: Genesis probability of historical BTD (a) and simulated TCs with TCWIiSE (b) for
the NA basin. Occurrence is based on TCs within 200 km per grid cell for historical TCs
from 1886-2019 and 10.000 years of simulated events. ©Microsoft Bing Maps.

TRACK OCCURRENCE, EVOLUTION, AND CDFs Sea surface temperature also plays a
role in the track occurrence and evolution of TCs, providing the necessary energy

for their development and strengthening. This is particularly evident in the warm
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waters of the Caribbean Sea and the Gulf of Mexico, where conditions are optimal
for TC intensification. Additionally, wind shear is a significant factor (Hibbert
et al., [2023). While low wind shear in these regions supports cyclone strengthening,
as systems move northward or are steered into the mid-latitudes, they frequently
encounter cooler ocean waters and increased wind shear. This transition often leads
to a decrease in intensity. Moreover, these northward-moving systems can be caught
up in the mid-latitude westerlies, influencing their path and potentially leading to
extratropical transition (Evans et al., [2017).

Historical and simulated TC intensity tracks are shown in Figure All individual
tracks are plotted with a color code derived from the intensity of the eye of the
storm (i.e., maximum sustained wind speed). Tracks with higher intensity are plotted
on top of those with lower intensity. The figure shows that TCs are generated around
latitudes of +10-20° (see also Figure [3.3). Some of the TCs increase in intensity while
moving towards the northwest, making landfall in the US, in Central America, in the
northern countries of South America, and across the Caribbean. Others turn back
in an eastward direction and propagate towards Europe. Intensities are generally
larger in the Caribbean and GoM, while TCs that propagate northward decrease in
intensity. Similar patterns can be observed in the simulated synthetic TCs (Figure
- panel B). However, higher intensities can be observed for individual simulated
synthetic tracks due to the larger number of years of data that are presented (10,000
years of simulated tracks vs. 134 years for the historical tracks) and thus a larger
likelihood of having a more intense TC. Moreover, it does seem that synthetic TC
tracks have a less clear southwest-northeast orientation in heading on the North

Atlantic Ocean.

The average yearly occurrence of historical and synthetic TCs is presented in Figure
A high occurrence of TCs in the GoM, in the Caribbean, and along the east
coast of the US is observed for both historical and simulated tracks. The simulated
occurrence is quite similar but, as expected, more smoothened for the synthetic
tracks. The Kirchhofer metric score for occurrence confirms the matching of the
patterns with a high score of 0.926. This gives confidence that TCWiSE produces
synthetic TCs with a similar occurrence rate to what has been historically observed.

The generation of synthetic TCs includes three distinct parameters that can be

compared between the historical and synthetic tracks, namely forward speed (c),
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Figure 3.4: Overview of historical tropical cyclone tracks in the IBTrACS database for the
period 1886-2019. (b) 10.000 years of simulated tracks with TCWiSE. Colors indicate the
maximum intensity of the eye. Note that the maximum intensity is the maximum wind
speed at the core of the TC, which is different from the temporally and spatially varying
wind field and/or spatially varying wind swaths. In particular, further away from the TC eye,
gale-force winds can still be present due to the TC. ©Microsoft Bing Maps.

heading (0), and maximum sustained wind speeds (vmax). The CDFs are presented
for these parameters in Figures for the nine locations as shown on the
map in Figure Visually the CDFs of the synthetic data appear to match those of
the historical data rather well. nMAEs of the forward speed (Figure [3.6) vary between
0.02-0.20 with an average RMSE of around 0.43 m/s and with a bias of +0.31 m/s.
Location 3 (WS) and location 9 (NW) have a larger error due to the positive bias.
Statistical errors in the headings (Figure are generally small too. Locations 2
and 9 have larger nMAE than the other control locations (possibly due to the effect
of land), while locations 7 and 8 have the lowest errors. The nMAE of maximum
sustained wind speed (Figure [3.8) varies between 0.00-0.04 with, on average, a RMSE
of around 3.62 m/s and with a bias of -3.10 m/s. These error statistics do reveal
a general tendency for larger deviations closer to land but give confidence in the

synthetic generation and propagation of the TC.
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Figure 3.5: Average occurrence of historical BTD (a) and simulated TCs with TCWIiSE (b) for
the NA basin. Occurrence is based on TCs within 200 km per grid cell for historical TCs
from 1886-2019 and 10,000 years of simulated events. ©Microsoft Bing Maps.
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Figure 3.6: CDFs of forward speed (¢ [m s~!]) of historical (green line) and synthetic (blue
line) TCs at nine locations within the NA basin, as shown on the map in Figure The
75% confidence interval (dashed green line) of historical data is also shown. Historic data
are based on data available between 1886 and 2019, while synthetic data are derived from
10,000 years of simulated events with TCWiSE. Data points within 200 km from the control
location are included in the analysis for both the historical and synthetic data.
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Figure 3.7: CDFs of heading of historical (green line) and synthetic (blue line) TCs at 9
locations within the NA basin
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and synthetic (blue line) TCs at nine locations within the NA basin
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TRACK TERMINATION Historical and simulated termination probability is shown in
Figure In TCWISE, cyclone termination is defined as the last point of TC that is
obtained from the BTD. The figure shows that historically there is a large probability
of termination at the east coast of Canada (i.e., Nova Scotia and the island of
Newfoundland) (see, e.g., Elsner et al., and the east coast of Mexico. In some
cases, TCs terminate after landfall in the US or while propagating on the Atlantic
Ocean. TCs terminate for various reasons primarily due to changes in environmental
conditions that are no longer conducive to sustaining their structure and intensity
(e.g., land interaction, cold water, increased wind shear). Visually, the historical and
simulated termination do not align as well. The reasons for deviations are that
termination can be triggered by several different physical processes and is thus not
so closely related to the input data. In particular, in TCWiSE, synthetic TCs can
terminate due to a low ocean temperature or low wind speed on land. Hence,
the differences in this comparison can be explained due to the schematization of
the physical processes which lead to a different TC termination in TCWiSE than
based on the historical probability alone. Also, errors from the previous steps in
the TC life cycle (i.e., genesis location, propagation) will be compounded in the
track termination. The comparison between historical and simulated termination
probability was quantified by using the Kirchhofer metric score for termination,
which provided a value of 0.622 (compared to 0.967 for genesis and 0.926 for

occurrence).

3.3.3. VALIDATION OF TROPICAL CYCLONE WIND SPEEDS

OBSERVED EXTREME WIND SPEEDS Figure presents the non-parametric 10-year
return value estimates of TC wind speed for the GoM based on synthetic TCs. Cooler
colors depict lower TC wind speeds, and warmer colors have higher wind speeds.
The circles indicate the non-parametric estimates based on buoy observations for
the same return period; given that the observations cover about 40 years, they are
the fourth-highest ever recorded value. The figure shows how the general patterns
of higher wind speeds in the central GoM and lower values near land, as shown
by the data, are reproduced correctly by TCWiSE. The model-computed values are
biased high (i.e., overestimation) for stations near land. This is most likely due
to land-related processes not being fully accounted for in TCWiSE. Also, the data

scarcity (sub-sampling) affects the estimates from the observations.
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Figure 3.9: Termination probability of historical BTD (a) and simulated TCs with TCWiSE (b)
for the NA basin. Occurrence is based on TCs within 200 km per grid cell for historical TCs
from 1886-2019 and 10,000 years of simulated events. ©Microsoft Bing Maps.

Figure presents a comparison between observed and TCWiSE-computed TC
extreme wind speeds, for different return periods, at nine locations throughout the
GoM, both based on 134 years of historical and 10,000 years of synthetic tracks.
As could already be seen in Figure there is some scatter between observed,
historical, and synthetic TC wind speeds. For example, the peak in the observed
wind speed, in particular, that of larger return periods, in the east GoM (Figure )
and middle GoM (Figure - panel b) are underestimated by both the historical
and synthetic TCs. These are respectively peaks corresponding to Hurricane Rita
(2005) and Hurricane Kate (1985). Based on the observation record of 40 years, the
non-parametric return period estimate is 40 years, whereas TCWiSE indicates that
the return period associated with those events is higher. The cause of the large
difference between observed wind speeds and values derived from historical and
synthetic TCs wind speed for the west GoM (Figure - panel ¢) is unclear. On
the other hand, wind speed extremes at Venice, FL (Figure - panel e), and Port
Aransas, TX (Figure - panel i), seem to be overestimated by the historical and

synthetic TCs, which could be related to unresolved land-related processes.
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Non-parametric 10-yr TC wind speed
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Figure 3.10: Model estimates for a non-parametric empirical estimate of 10-year TC wind
speed return values based on extreme wind speeds based on 10,000 years of TCWIiSE
computations. The white circles indicate observed TC wind speed extremes based on NDBC
wave buoys and NOAA data. All wind speeds are in meters per second, 10 min averaged,
and determined at a 10 m height. ©Microsoft Bing Maps.

MODELED EXTREME WIND SPEEDS

Figure presents the 1000-year parametric TC wind speed for the GoM, estimated
by fitting a GPD to the POT of the generated data. The figure shows a spatial
pattern similar to that of the 10-year non-parametric TC wind speeds (Figure .
The highest values are found in the Caribbean Sea and central GoM. Lower values
can be found in northwest Florida and in the southwest of the GoM. This is in line
with the literature (e.g., Neumann, 1991). Computed occurrence rates are also in
line with NOAA values for both hurricanes (> 64 knots) and major hurricanes (> 96
knots) within 50 nautical miles (92.6 km). Occurrence rates for major hurricanes
(> 96 knots) are the highest for South Florida and Louisiana, with a respective return

period of 17-20 years. TCWiSE estimates are 19-22 years.

Figure presents the estimated TC wind speed return value swaths versus coastal

milepost which starts at Cancin, Mexico and goes across the GoM in a clockwise

i
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Figure 3.11: Observed and TCWiSE-computed TC extreme wind speeds for different return
periods. Red stars are observed events from NDBC and NOAA wave buoys. Green dots
are historical TCs based on BTD and the Holland wind profile, and blue line are synthetic
modeled events based on synthetic tracks and the Holland wind profile. All wind speeds are
in meters per second, 10 min averaged and determined at a 10 m height.

orientation. Several return periods are depicted in different colors. Moreover, TC
wind speed is presented both averaged over 10 min in units of meters per second
and averaged over 1 min in units of knots. The SSHWS is included as well. TCWiSE
simulation indicates for a return period of 10 years TC wind speed of around 30 m/s
(close to SSHWS-1) near Canctin and large stretches of the US coastline. For a return
period of 1000 years, this increases to values around 60 m/s (around SSHSS-4).
Generally, values near Villahermosa are the lowest for all of the GoM. Vickery et al.,
reported maximum gust TC wind speeds with a return period of 100 years that
vary between 33-57 m/s. TCWiSE indicates values on the same order of magnitude

but with less spatial variability.
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Parametric 1000-yr TC wind speed
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Figure 3.12: Model estimates for the parametric empirical estimate of 1000-year TC wind
speed return values based on extreme wind speeds based on 10,000 years of TCWiSE
computations. All wind speeds are in meters per second, 10 min averaged and determined
at a 10 m height. Black dots are the location of cities as plotted in Figure and
Microsoft Bing Maps.
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Figure 3.13: TCWiSE 10-, 25-, 50-, 100-, 250-, 500- and 1000-year return value estimates of
wind speed. All wind speeds are in meters per second, 10 min averaged and determined at a
10 m height (left axis) or 1 min averaged in knots (right axis). Cities on the x axis are also
depicted in Figure as black circles. Milepost is presented in the same figure as a white
line. Shading shows the 5-95% confidence interval. SSHWS value indicates the corresponding
Saffir-Simpson hurricane wind scale.

i



60 GENERATION OF SYNTHETIC TROPICAL CYCLONES FOR STRATEGIC RISK ANALYSIS

3.4. DISCUSSION

For clarity, discussion points have been grouped under three main topics: the

TCWISE tool, validation study, and computational performance.

Tre TCWISE TtooL The philosophy that guided the development of TCWISE is to
release an open-source tool, giving modelers full control over the track generation,
propagation, and termination. However, this makes TCWiSE also more sensitive
to input errors compared to pre-generated global synthetic TC data products (e.g.,
Bloemendaal et al., [2020). However, the strength of this approach is 2-fold.
First of all, this allows the user of TCWIiSE to rigorously calibrate and validate
assumptions within the code for the user’s own case study site. Secondly, the flexible
MATLAB coding language allows easy adjustments of the tool and implementation

of additional processes. For example, stochastic rainfall was recently added to the
original code by Bader, 2019

TCWISE is an almost completely data-driven tool to simulate synthetic TCs. As
such, output values are highly dependent on the (historical) input data and not
the physical processes describing the genesis, propagation, and termination of these
TCs. This limits the possibility of synthetic TCs computed by TCWISE that are
physically credible but statistically unlikely. Moreover, this assumes stationarity of
the historical record. If cyclone characteristics are expected to behave identically
to the last decades, this method has been proven accurate for the determination
of extremes. However, climate change is expected to influence the frequency and
intensity of future TCs (e.g., Knutson et al., . This can already be accounted
for by a heuristic factor to adjust both the frequency and intensity of the TC (or
other variations implemented by the user) to reflect changes due to climate change.
Other ways to account for this — such as by adjusting the KDE, applying data-driven
probabilities of TC genesis as a function of SST, and/or further use of data sets
derived by global climate models — are currently being investigated.

The effect of land on intensity can be taken into account either directly via the
conditionally dependent KDE or landward decay based on Kaplan and DeMaria,
The latter is beneficial since TC information on land contaminates the KDE of
intensity. In particular, due to the applied search range methodology, information

from decreasing winds on land starts to affect winds on the water. The downside of
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this method is that this does introduce an additional calibration coefficient for the
user and larger deviations in the termination. Moreover, TCWiSE does not include
a boundary layer model, which means that the physical wind response to variable
surface drag and terrain height is not included. In particular, the at-sea TC wind will
extend inland before the TC center crosses the coast and the decay turns on. Done
et al, have shown, however, that the output of parametric wind models can
be used to simulate the near-surface wind swaths of landfalling TCs, accounting for
terrain effects such as coastal hills and abrupt changes in surface roughness due to

coastlines and forested or urban areas.

In TCWISE, track termination can be either be purely based on historical track
termination or via additional formulations based on user-definable cut-off wind
speed and/or SST. While these additional formulations were of importance to get
the track evolution (and thus associated coastal hazards) simulated correctly, they
do result in deviations of simulated track termination compared to historical data.
However, arguably, track termination is not of importance for the simulation of
coastal hazards, and therefore this is deemed an acceptable trade-off for the more

reproductive skill in the track evolution.

TCWISE does not take into account errors in the wind fields or the associated
impact on the confidence interval for the computed return periods for wind speeds.
Nederhoff et al., demonstrated that the Holland wind profile in combination
with reliable estimates of the TC geometry (i.e., the radius of maximum wind and
gale-force winds) to calibrate the wind profile wind has a median root-mean-square
difference of 2.9 m/s. Other approaches (e.g., Vickery et al., do include error
estimates in their estimates of the extreme winds. Vickery et al., conclude that
uncertainty in the estimated 100-year return period wind speed varies by around

6%, which corresponds to about +3 -5m sL.

VALIDATION STUDY Validation results across the NA basin and in particular the GoM
have shown that TCWiSE can reproduce the main patterns seen in the BTD, wind
observations, and literature. This can be done despite the lack of a physical
description of the climate dynamics given that TCWISE is a purely data-driven tool
and does not include specific processes to steer TC propagation.

A comparison of similarities in spatial patterns between synthetic tracks and historic
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tracks, evaluated using the Kirchhofer metric score, shows that TCWiSE can correctly
reproduce genesis and TC occurrence, while differences were found for the TC
termination. These differences can be attributed to TC termination, which can get
triggered by several criteria in TCWiSE. Hence, it is not just related to the historical
probability of termination. At the same time, this has a relatively minor effect on

the track evolution and consequently coastal hazards.

The comparison of CDFs of forward speed, heading, and maximum sustained
wind speed of historical and synthetic tracks shows a good agreement for the
different stations in general. While differences between observed and modeled
CDFs are apparent, results of the goodness-of-fit tests are generally acceptable
(Figure , with a mean nMAE of 0.08. More classical statistical tests such as
Kolmogorov-Smirnov were not presented here and often reject the null hypothesis
that the observed and modeled data are from the same distribution. This is related
to the methodology of providing inputs to the Markov chains. While this method
resulted in reliable probability distributions, it also smoothed out some local spatial
patterns and therefore resulted in differences at the nine control locations. Arguably,
local patterns in the BTD (features <500km) could well be subject to a sampling

error and not necessarily a feature of the TC climate we aim to reproduce.

All BTD, since 1866, have been included as a basis for the generation of synthetic
tracks. Especially for pre-satellite records, errors in the BTD can be quite significant,
so previous studies (e.g., Holland, selected a specific subset of the BTD to
ensure the quality of the data and remove potential inconsistencies. However, the
advantage of including all data entries is that the derived TC climate is more widely
defined (i.e., larger parameter space). Another drawback is that employing the same
dataset for both training and validation diminishes the reliability of the model’s

performance assessment on new, unseen data.

COMPUTATIONAL PERFORMANCES To provide the reader with a rough estimate of
the computation performance of the tool, TCWIiSE simulations for the NA and in
particular GoM were performed on a 16-core Windows machine. The simulation of
10,000 years of synthetic tracks took several hours. The generation of temporally and
spatially varying wind fields, wind swaths, and matching extreme value analysis took
another +15d.
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3.5. CONCLUSION

A new methodology and highly flexible open-source tool have been developed with
which synthetic Tropical Cyclones (TCs) can be generated and used for subsequent
analysis of (coastal) hazards. In particular, TCWiSE handles track initialization,
evolution, and termination based on historical TC information. Subsequently, the
tool creates a temporally and spatially varying wind field based on the Holland wind
profile calibrated for TC geometry. Lastly, TCWiSE computes non-parametric and
parametric wind swaths for user-definable return periods.

The validation study for the NA and in particular the GoM showed reliable skill in
terms of track initialization and evolution compared to the historical Best Track Data
(BTD). A more detailed assessment of the goodness of fit at nine control locations
showed that normalized errors are generally smaller than 10%. Extreme wind speeds
show agreement for more frequent return periods, with possible deviation for the
most extreme cases. This is the result of biases associated with the scarcity of

observed data.

TCWISE can be useful in a variety of applications. Improved estimates of extreme
TC conditions can lead to a better quantification of coastal hazards (e.g. extreme
storm surge levels and waves) and consequent risks and damages resulting from
these hazards. Similarly, an improved assessment of those hazards can help guide
the design of appropriate adaptation measures. Other fields of application may
vary from improved design parameters for offshore structures to navigation. In
all these types of applications, the flexibility of TCWISE to tailor the synthetic TC
generation to user-specific needs and questions makes the tool very well-suited for
coastal engineers. The application of the tool for determining coastal hazards will be
presented as part of a separate paper (Leijnse et al., [2022).







EVALUATION OF TROPICAL
CYCLONE-INDUCED FLOODING IN
THE SOUTHEAST ATLANTIC
COASTAL ZONE OF THE UNITED
STATES FOR STRATEGIC RISK
ANALYSIS

In Chapter[3 we introduced a methodology for performing strategic risk analysis. This
chapter employs such a methodology to quantify coastal flooding and is set up as a
case study focused on the Southeast Atlantic Coastal Zone of the United States. We
compare cyclone-induced relative to non-cyclone-induced flooding to place them in
perspective. This comparative analysis is crucial, as the contribution to flood risk from
these distinct weather phenomena is often not well understood and can be significant.
In particular, these events each possess their unique characteristics and movement
patterns, influencing the duration, intensity, and spatial dispersion of flooding, and
consequently, their associated hazards and impacts.

This chapter is a revised version of Nederhoff, K., Leijnse, T. W. B., Parker, K, Thomas, J.,
O’Neill, A., van Ormondt, M., McCall, R., Erikson, L., Barnard, P. L., Foxgrover, A., Klessens, W.,
Nadal-Caraballo, N. C., & Massey, T. C. (2024b). Tropical or extratropical cyclones: what drives the
compound flood hazard, impact, and risk for the United States Southeast Atlantic coast? Natural
Hazards. https://doi.org/10.1007/s11069-024-06552-x
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Abstract Subtropical coastlines are impacted by both tropical and extratropical
cyclones. While both may lead to substantial damage to coastal communities, it
is difficult to determine the contribution of tropical cyclones in coastal flooding
relative to that of extratropical cyclones. We conduct a large-scale flood hazard
and impact assessment across the subtropical Southeast Atlantic Coast of the
United States, from Virginia to Florida, including different flood hazards. The
physics-based hydrodynamic modeling skillfully reproduces coastal water levels
based on a comprehensive validation of tides, almost two hundred historical storms,
and an in-depth hindcast of Hurricane Florence. We show that yearly flood impacts
are two times as likely to be driven by extratropical than tropical cyclones. On the
other hand, tropical cyclones are thirty times more likely to affect people during
rarer 100-year events than extratropical cyclones and contribute to more than half
of the regional flood risk. With increasing sea levels, more area will be flooded,
regardless if that flooding is driven by tropical or extratropical cyclones. Most of the
absolute flood risk is contained in the greater Miami metropolitan area. However,
several less populous counties have the highest relative risks. The results of this
study provide critical information for understanding the source and frequency of

compound flooding across the Southeast Atlantic Coast of the United States.

4.1. INTRODUCTION

A large and growing share of the world’s population lives in coastal regions and
is vulnerable to extreme events, such as tropical cyclones. Merkens et al.,
estimated that 680 million people live in the low-lying coastal zone worldwide
and that this amount could reach more than one billion by 2050. The high
concentration of people in coastal areas has resulted in many economic benefits,
including improved transportation, industrial and urban development, revenue from
tourism, food production, and many more. However, this also concentrates exposure
to natural hazards in the coastal zone. Moreover, humans are not the only species
in the coastal regions that can be affected by extreme events. Beaches, dunes,
and tidal wetlands are diverse ecosystems in the coastal zone that are sensitive to
climate change and extreme events. For example, Dewald and Pike, showed
that hurricanes affect 97% of the sea turtle nesting beaches in the Northwestern

Atlantic and Northeastern Pacific Oceans.
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Sea-level rise (SLR) increases coastal flooding (e.g., Vitousek et al., Taherkhani
et al., Sweet et al., [2022). Coastal flooding is driven by many complex factors,
including changes in sea level, storms, and high tides (king tides), or a combination
of the three. Storms, both tropical cyclones (TCs) and extratropical cyclones (ETCs),
can result in storm surge, high waves, and rainfall that can contribute to or result in
flooding. Moreover, the intensity, duration, and occurrence of these storm impacts
are expected to change in the coming decades due to climate change. For example,
as a consequence of warmer waters and a warmer, more humid atmosphere, Knutson
et al., showed that global average TC intensity, rainfall rates, and occurrence
of very intense TCs are projected to increase. In addition, global climate models
(GCMs) show a projected poleward shift in midlatitude ETC tracks, with varying
changes in the strength of storms across the globe (Chang et al., [2012).

In recent years, more focus has been given to coastal compound flooding, caused by
the co-occurrence of high tides, coastal storm surges, waves, precipitation, and/or
river discharge (Wahl et al., . Storm events, such as Hurricane Florence (2018),
have highlighted the importance of compound events and the need to include all
relevant drivers of flooding to assess local and regional coastal flood risk. Hurricane
Florence resulted in large amounts of rainfall in North and South Carolina. For
example, locally, Swansboro and Elizabethtown, N.C., recorded close to 90 cm of
rain (Callaghan, [2020). Rainfall together with other drivers resulted in a large
compound flood zone in the low-lying coastal zone where ocean, precipitation,
and river discharge were all of importance (Ye et al., . However, a priori,
the relative contribution of each physical driver to the flooding is often unknown.
Whereas flooding hazards from each physical process may be realized, quantifying
hazards due to the combination of two or more processes is difficult due to a large
number of possible combinations and non-linear physical interactions (e.g., Huang
et al,, 202I). One solution is to apply multivariate extreme value theory, which
requires dynamic downscaling of many events to define the critical region where
flooding occurs. Ideally, all possible combinations need to be simulated by either
the use of extensive computational resources or computationally efficient methods.
Computationally efficient methods can be achieved by an acceleration of the direct
simulations, developing a series of event reduction techniques, or by a combination
of the two, for example, through hybrid downscaling (Bakker et al., .

In addition to the general challenges of modeling compound flooding (Santiago-
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Collazo et al., [2019), estimating return periods (RPs) of TC-included flooding remains
a significant obstacle. This challenge is related to two factors. First, TCs are poorly
resolved in many synoptic-scale and global climate datasets used for meteorological
forcing due to coarse spatial and temporal resolution, causing an underestimation
in TC intensity (Roberts et al., and, consequently, storm surge and wave
conditions (Murakami and Sugi, [2010). Second, the limited record length of available
meteorological forcing data, in combination with the low probability of TCs, means
the number of TCs is too small to estimate RPs robustly (e.g., Lin and Emanuel,
Leijnse et al., . In flood risk assessment, it is possible to overcome some
of these limitations via synthetic emulation of TC tracks (e.g., Vickery et al.,
Bloemendaal et al., Nederhoff et al., or other statistical techniques
such as the joint probability method (JPM; Resio and Irish, Nadal-Caraballo
et al, Still, these approaches suffer from parameterizations of key physics
(e.g., land-sea interactions or seawater temperature) and are based on datasets with
limited temporal length. Alternatives could be the pseudo-global warming approach
(Jyoteeshkumar Reddy et al., or the full dynamical approach (Mori and Takemi,
2016), this last only available to a few nationwide research centers with very high

computing capacity (Mori et al., [2021).

In recent years, the scientific community has increasingly focused on (TC-induced)
compound events. In all these efforts, coupling procedures between marine (tide
and surge) and inland processes (rainfall and riverine discharge) are paramount
to capture the complex physical interactions. For example, at the local-watershed
scale, Bilskie and Hagen, showed local impacts on water levels in the flood
transition zone when considering different techniques for combining marine and
inland flooding. Gori et al., simulated all the physical iterations of multiple
flood drivers for many synthetic TC events to produce probabilistic hazard maps,
including a breakdown of rainfall versus surge-dominated flood zones. Bates et al.,
took this one step further and provided the first integrated and high-resolution
view of the U.S. fluvial, coastal, and pluvial flood hazard, as a single layer, driven by
both TC and ETC events. However, that study did not provide an estimate of the
contribution of TCs to compound flooding. Booth et al,, provided a breakdown
between TCs and ETCs for the U.S. mid-Atlantic and Northeast Coasts based on
observational data and showed that TCs typically dominate the most extreme events
(e.g., 100-year event) while more common events (e.g., yearly) driven by ETCs are

equally important. However, no study has yet estimated the relative contribution
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of TCs and ETCs to compound flooding using an integrated physics-based model
that encapsulates inland and coastal processes across thousands of kilometers. The
contributions of TC and ETC to compound flooding matter because the weather
phenomena have different characteristics and patterns of movement, which affect
the time scale, intensity, and spatial distribution of the flooding and, consequently,

hazards and impacts.

In this chapter, we introduce, validate, and apply a workflow for analyzing and
predicting compound flooding hazards, impacts, and risks for both tropical and
extratropical cyclones. This approach is applied on large spatial scales and for
dozens of realizations in the future climate and for seven SLR scenarios. This work
is part of a broader project led by the U.S. Geological Survey (USGS) to map future
coastal flooding and erosion hazards across the Southeast United States due to SLR
and storms in a changing climate (Barnard et al, Barnard et al.,
Parker et al., [2023). This work focuses on the overland coastal flooding component
of the study. The novelty of this manuscript is investigating the contribution of TC
and ETC events to flood hazards and how this will change with SLR. The paper is
structured as follows. First, we describe the regional domain in this study (Section
[4:2). Second, the materials and methods applied in this workflow are described
(Section . Third, the results are presented, which a) focus on the validation of
tide, historical conditions, and Hurricane Florence, and b) on the application of the
model to assess flood hazards and impacts on the future climate and SLR scenarios

(Section [4.4). Lastly, we present our discussion and conclusions sections.

4.2, CHARACTERIZATION OF THE SOUTHEAST ATLANTIC

COASTAL ZONE

The Southeast Atlantic Coast includes vast stretches of coastal and inland low-lying
areas, the southern reach of the Appalachian Mountains, several high-growth
metropolitan areas (e.g., Miami, Jacksonville, Savannah, Charleston, Wilmington, and
Norfolk), and large rural expanses. This study focuses on the coastal zone of the
Southeast Atlantic Coast, ranging from Biscayne Bay, Florida in the south up to the
mouth of the Chesapeake Bay in the north (gray counties shown in Figure panel

A). The coastal zone is manually defined here as the area between the present-day
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shoreline and about the 10 m elevation contour relative to NAVD88. This Low
Elevation Coastal Zone (McGranahan et al.,, [2007) typically extends about 100 km

inland in this region.

The Southeast Atlantic Coast is rapidly urbanizing. For example, the Southeast
Atlantic Coast contains many of the fastest-growing metropolitan areas in the
country, including several of the top 20 fastest-growing urban regions in 2020
(United States Census Bureau, . This shift is on top of existing sizeable urban
city centers such as the greater Miami area (Miami-Dade, Broward, and Palm Beach
counties). These trends toward a more urbanized Southeast are expected to persist,
creating new vulnerabilities by increasing population exposure to areas in the flood

hazard zone (e.g., 100-year flood map).

Flood hazards are expected to increase significantly in the future due to rising global
sea levels (Vitousek et al., Taherkhani et al., Sweet et al., [2022). The
average global mean sea level (GMSL) has risen about 21-24 cm from 1880 to
2021 and are 97 mm above 1993 levels (NOAA, [2022). Moreover, its rise has been
accelerating since 1990 (Dangendorf et al., Sweet et al., [2022). Moreover, GMSL
rise is projected to continue to accelerate due, for example, to the increased mass
loss of the Antarctic ice sheet (Le Bars et al., . Recent downscaled projections
for the Southeast Atlantic Coast by Sweet et al., suggested rates and an increase
in local sea levels, relative to the 2000 range, of 0.3-0.5 m for 2050, 0.5-1.6 m for
2100, and 0.7-2.7 m for 2150. This will significantly alter flooding frequency in many

already vulnerable communities.

Many cities across the Southeast Atlantic Coast are starting to plan for the impacts
rising waters are likely to have on their infrastructure. For example, flood events in
Charleston, S.C., have been increasing and are projected to increase substantially
more in the future with sea-level rise; the city has prepared a Sea-Level Rise
Strategy Plan (The City of Charleston, [2015). The city is also planning to undertake
subsequential steps to further protect the city and its inhabitants from nuisance

flooding.

Besides high tide events, which will be exacerbated due to SLR, the Southeast
Atlantic Coast is regularly impacted by extreme weather events. TCs can bring strong

winds, heavy rainfall, and high surges and waves in the summer and fall. Some of
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these TCs, such as Hurricane Andrew (1992), were extremely powerful and devastated
communities in the Southeast Atlantic Coast. ETC events can also trigger a large
amount of flooding due to wind and precipitation and subsequent storm surges
and high waves. For example, during October 2015, a significant rainfall nor’easter
caused historic flash flooding across North and South Carolina, resulting in $2.5
billion in damages (NCEI; NOAA National Centers for Environmental Information,
Hurricane Florence in 2018 resulted in $24 billion in wind and water damage
(NHC, [2019).

4.3. RESEARCH METHODOLOGY AND MATERIALS

OVERVIEW

The modeling approach is based broadly on the Coastal Storm Modeling System
(CoSMoS: Barnard et al., Barnard et al., Erikson et al., O’Neill
et al,, , initially developed for the West Coast of the United States, but with
significant modifications and updates to address the need to capture and resolve
TCs as well as pluvial contributions to flooding. Figure shows a conceptual
framework as applied in this study. The numerical computation of overland flooding
is based on the open-source hazard model SFINCS (Super-Fast INundation of CoastS;
Leijnse et al., [2021). Five computational domains were created for the study region
(Figure based on topo-bathymetry, soil type, and land cover data across the
region. Boundary conditions for water levels, discharges, and atmospheric conditions
for tens of thousands of emulated extratropic and tropical storms were provided.
First, we simulated a validation period and compared results to validation data to
determine model skill (Section [4.4.1). Secondly, storms for the climate projection
period were simulated for different sea level rise scenarios. Results per storm were
used in an extreme value analysis to determine their frequency and downscaled at
higher spatial resolution. High-resolution water depth maps were used as input
for the open-source impact model Delft-FIAT (Flood Impact Assessment Tool) to
determine impacts and risks. Compound flood hazards and impacts are described
in Section [£.4.2] The latter includes a breakdown of the contribution of TC versus
ETCs. In subsequent subsections, input data and individual methodological and
model components are described, followed by detailed explanations of the numerical

methods and computational framework.
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Figure 4.1: The study area (shown in gray) consists of the coastal counties in the United
States Southeast Atlantic Coast states of Florida, Georgia, South Carolina, North Carolina,
and parts of Virginia. Also, shown are the SFINCS (Super-Fast Inundation of CoastS) flood
model domains (white outlines), offshore boundary (blue line), sources (green dots), and
observation points (red dots). Model domains typically reach about 100 km inland to about
10 m above NAVD88 (the landward boundary of the model in white). Several major city
names are presented to orient the reader. ©Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA,
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

INPUT DATA

TOPO-BATHYMETRY, SOIL TYPE, LAND COVER Before generating the overland flood
models, elevation datasets were extracted along the entirety of the Southeast Atlantic
Coast from the area’s Coastal National Elevation Database (CoNED) topographic
model (Danielson et al., Tyler et al., [2022), Continuously Updated Digital
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are the eventual outputs used as results.
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Elevation Model (CUDEM; CIRES, [2014), and Coastal Relief Model (NOAA National
Geophysical Data Center, 2001). Topo-bathymetric data were applied in the order
listed to cover the entire area and fill data gaps. The model landward extent was
manually determined to allow for minimal inflow boundary locations and typically
reaches +10m elevation relative to NAVD88. The seaward extent was set to around
NAVD88 -10 m. This depth suffices for overland flood modeling purposes. Maximum
dune elevations along the coast were derived from CoNED and cross-checked with
Doran et al., to include coastal flood defenses in the overland flooding models.

Information from the National Land Cover Database (Homer et al., was
converted to roughness values using Manning’s coefficients and approaches as
described by Nederhoff et al., to define a spatially varying roughness map
across each SFINCS model (see Table [4.2). Friction in open water was set to a typical
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coastal value of 0.020 and was thus not used for calibration purposes.

Data from the U.S. General Soil Map (STATSGO2; United States Department of
Agriculture, provided the input for the Curve Number infiltration method
used in the overland flooding models. STATSGO2 is an inventory developed by the
U.S. Department of Agriculture and includes soil characteristics information across
the Continental U.S. The hydrologic soil group (HSG) information and hydraulic
conductivity (Ks) from the surface layer were used for this study. In particular, HSG
information was combined with a landcover map to estimate the curve numbers
according to United States Department of Agriculture,

BOUNDARY CONDITIONS: WATER LEVELS, DISCHARGES, AND METEOROLOGICAL
CONDITIONS Water level time series were applied at the offshore boundary of the
SFINCS models. These time series were derived from a linear superposition of
the Global Tide and Surge Model (GTSM; Muis et al., outputs and wave
setup; wave setup was computed with a parameterized empirical formula (Stockdon
et al., and waves from the ERA5 reanalysis (Hersbach et al., and
projection time-periods (Erikson et al., 2022). Statistical corrections were applied
to improve modeled water level components. In particular, a correction on the
tidal components, seasonality, and non-tidal residual was performed to improve the
skill of the boundary conditions. For more information on this correction, one is
referred to Parker et al., For the TC simulations, water levels from the coupled
numerical hydrodynamic and wave model setup (ADCIRC+STWAVE), which includes

tide, wind-driven surge, and wave-driven setup, were used.

Discharges for 74 rivers flowing into the study domain were derived from the NOAA
National Water Model (NWM) CONUS Retrospective Dataset (NOAA, [2021). This
river discharge reanalysis dataset was used directly for the hindcast (validation)
period. River discharge for the projection period was derived using a relationship
between NWM discharge and historical precipitation and applying this relationship
to estimate future discharge rates. In particular, the upstream watershed location
of each river was identified from the network of river-reach IDs used by the NWM
(Liu et al., [2018). For each watershed, cumulative precipitation was computed and
the best correlation using a linear fit with a variable time lag between cumulative
daily precipitation and discharge was found. This linear fit was then applied

to the projected precipitation, yielding projected future discharge for each of the
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streams. The projected future discharge was bias-corrected, based on the historical
NWM discharge using empirical quantile matching (Li et al., 2010). A baseflow, as
calculated from NWM using a digital filter method from the HydRun toolbox (Tang
and Carey, , was also applied in the TC simulations. Baseflow was included to

get an estimate of discharge-driven compound flooding during TCs.

All the model domains were forced with the same meteorological conditions (wind,
sea-level pressure, and rainfall). The meteorological conditions used for the hindcast
(validation) period (1980-2018) were based on ERA5 (Hersbach et al., for wind
and pressure. For the same period, the North American Land Data Assimilation
System (NLDAS; Chang et al., was used for rainfall. For the projection period
(2020-2050), conditions were applied from the Coupled Model Intercomparison
Project - Phase 6 (CMIP6). In particular, an ensemble of three CMIP6 models
was used from the High-Resolution Model Intercomparison Project (HighResMIP)
based on the SSP5-8.5 greenhouse gas concentration scenario: CMCC-CM2-VHR4
(Scoccimarro et al., [2017), GFDL-CMC4C192 (Guo et al., [2018), and HadGEM3
(Roberts, . These models were chosen because of their increased atmospheric
and ocean resolution as fine as 25-50 km, which is expected to better resolve coastal
storm events that are not adequately resolved with the native resolution of most
GCMs (Roberts et al., . The chosen CMIP6 models, at the time of this study,
had data from 2020-2050. All 31 years of data of all three models were used for this
study. No bias corrections were performed on the projection period meteorological
conditions (wind, pressure, and rainfall data fields from CMIP6). Implications of the

lack of bias correction for CMIP6 are described in the discussion section.

Multi-decadal-scale hindcast, reanalysis, and General Circulation Models, such as
ERA5 and CMIP6-HighResMIP, allow for an analysis of the long-term evolution of
the climate and how it affects global processes. However, model resolutions are
often insufficient to fully resolve TCs and have a limited temporal length (see
introduction). The U.S. Army Corps of Engineers (USACE) Coastal Hazards System
(CHS; Nadal-Caraballo et al., synthetic TC dataset was applied to overcome
these limitations. The CHS (https://chs.erdc.dren.mil) is primarily a probabilistic
analysis and machine learning framework based on the Joint Probability Method
(JPM). It also encompasses high-resolution numerical simulation of thousands of
synthetic TCs under current and future climates. For more information on the CHS
and the JPM method, refer to Nadal-Caraballo et al., In the present study,
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the probabilities of the CHS synthetic TCs were updated to reflect climate change
in which more intense hurricanes are likely to be observed more frequently in the
study area from northern Florida northward. This change is related to higher sea
surface temperatures. For information on how this was done, one is referred to
Appendix [4.6] Rainfall for TCs was based on the Interagency Performance Evaluation
Task Force Rainfall Analysis (IPET, method. The IPET method relates pressure
deficit to rainfall which decreases exponentially as a function of the TC radius.
Within the eye of the storm, rainfall rates are constant. No asymmetry and/or

rainfall bands are included in this method.

For the historical periods, we assumed that ERA5-NLDAS had sufficient resolution to
resolve TC activity for validation purposes (Dullaart et al., . On the other hand,
for the projection period, we assumed TC events were missing in CMIP6 and only
ETCs were included (Han et al., [2022).

EXPOSURE AND VULNERABILITY DATA Impact computations for computed flood maps
were performed with HydroMT-FIAT, an open-source python wrapper (Eilander and
Boisgontier, for the Delft-FIAT flood impact and risk model. Delft-FIAT (Flood
Impact Assessment Tool) is a flexible open-source toolset for building and running
flood impact models which are based on the unit-loss method (de Bruijn, [2005).
Inputs for FIAT are a hazard layer (water depth), exposure layer (object map with

population), and vulnerability (depth-damage curves).

The exposure layer used in Delft-FIAT was based on a method that combines the
Global Urban Footprint (GUF; Esch et al., for the presence of buildings and the
Global Human Settlement Layer (GHSL; Florczyk et al., for population density.
In other words, the GHSL estimates the number of people in certain areas, which
are distributed over the building footprints provided by GUE The result is a method
that can produce an exposure layer for any place on the globe. In this chapter, we
calibrated the population per county using the 2020 Census, which resulted in a total
population size of 18,828,520 for the area of interest. Vulnerability curves are based
on Huizinga et al., Flood impact is defined here as the population affected via
the vulnerability curve. Flood risk is defined as the product of the probability of a

flood event and potential adverse consequences for humans (Kron, 2005).
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VALIDATION DATA

A comprehensive set of validation data was used to assess model skill. First, all
observed 6-minute interval water levels from all long-term National Oceanic and
Atmospheric Administration (NOAA) water level stations (CO-OPS - NOAA Tides and
Currents, between 1980 and 2018 for the area of interest were collected and
processed into continuous time series. In total, 24 NOAA stations were included in
the validation (see Figure Figure or Figure for their locations).

The observed water levels were used to determine tidal constituents using UTide
(Codiga, for each NOAA gauge. In addition, the XTide database (retrieved via
Delft Dashboard; van Ormondt et al., was also used to identify 68 locations
with observed tidal amplitude and phases for model validation. See Figure for
the location of both the NOAA and XTide stations.

Special attention was given to validating Hurricane Florence (2018), which made
landfall near Wilmington, N.C. For this singular event, an additional 156 pressure
gauges and 396 high water marks (HWM) made available by the U.S. Geological
Survey (USGS) were also used to validate the model (U.S. Geological Survey,
see Figure for their locations).

NUMERICAL METHOD: OVERLAND FLOODING WITH SFINCS

OvervIEWSFINCS (Leijnse et al., [2021) was successfully applied to simulate
compound flooding, including dynamic hydraulic processes such as tidal propagation,
rainfall, and river runoff while maintaining computational efficiency (e.g., Sebastian
et al, 2021) and was therefore chosen to predict overland flooding for this
study. The physics model dynamically computes water propagation throughout the
domain with a computational time step of several seconds (varies per simulation).
High-resolution topo-bathymetry and land roughness were included in the native 1x1
meter resolution utilizing subgrid lookup tables (Leijnse et al., 2020). The continuity
and momentum computations were performed on a coarse 200x200 meter resolution
grid to save computational expense. Sub-grid bathymetry features were included
to account for maximum dune height based on the DEM to control overflow
during storm conditions. Leijnse et al., showed water level computations for
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Hurricane Irma (2017) were still accurate when including subgrid features based on
the high-resolution elevation data. The SFINCS model was not calibrated but instead
applied with default parameters throughout this study. Advection was deactivated
to save computational time but was not found to influence the results (typical in
non-wave-driven flooding applications; Leijnse et al., [2021).

Derived overland maximum flood levels were subsequently downscaled to 10x10
meter resolution water depths using the nearest neighbor interpolation for the
water level in combination with a box filter of 3 neighboring grid cells. The five
computational SFINCS domains overlap to overcome any possible boundary effects.
Results from overlapping model domains were merged by taking the average water
level.

The water levels (described by the tide, non-tidal residual; NTR, and wave setup
components) were imposed at the offshore boundary (see Figure [4.1]for the location).
Hence, we apply SFINCS not just as an overland flood model but also to propagate
water levels through the domain, solving the same governing equations describing
overland flooding as well as being responsible for tidal propagation (Leijnse et al.,
2021). In particular, the model accounts for various factors influencing propagation,
such as bathymetry (water depth), bottom friction, Coriolis force, wind stress, and
external boundary conditions. Water levels were imposed approximately every 500
meters along-shore at the ocean boundary. Incoming short and infragravity waves
were not accounted for (except through statistical downscaling of wave setup from
offshore wave conditions) since dynamically downscaling this was computationally
prohibitive (increasing computation times about 1000-fold). Implications of the
model setup are described in the discussion section. River discharges are accounted
for as a vertical point source, linked to the closest grid cell center, and at each time

step mass according to the discharge time series is added.

CURVE NUMBER METHOD Infiltration was computed at every computational time
step with the newly implemented Curve Number method in SFINCS. This method is
based on the SCS (Soil Conservation Service, currently known as Natural Resource
Conservation Service) Curve Number method for evaluating the volume of rainfall
resulting in direct surface runoff. SCS was first developed in 1954 and is described
in most hydrology handbooks and textbooks (e.g., Bedient et al.,[2013). This method

was added to SFINCS to take advantage of most practicing engineers’ familiarity
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with this method and the availability of tabulated curve numbers for a wide range
of land use and soil groups. The Curve Number method is a combined loss method
that estimates the net loss due to interception, depression storage, and infiltration
to predict the total rainfall excess from a rainfall event.

The Curve Number model uses the following equation to relate total event runoff Q
to total event precipitation P.

_ (P - Iu ) Smax)z

= 4.1

Q P+ (1 - Iu)smax ( )
100

Smax = (C_N - 10) x 0.0254 (4.2)

in which Ia is the initial abstraction percentage (default 20%), CN is the Curve
Number, and S is the retention after runoff begins. Note that here we directly
convert the original curve number in inches to meters via the computation of Smax.
Since SFINCS is a continuous model, the Curve Number computation is done at a
time-step level (order of seconds). It computes the infiltration rate by subtracting the

total precipitation with runoff and dividing by the time step (forward differences).

The moisture storage capacity of the soil can be depleted during wet periods and
replenished during dry periods. To model this behavior with the Curve Number
method, whether it rains or not, we implemented the effective storage capacity (Se),
which is tracked during the simulation. During rainfall, the capacity is slowly filled
(Equations and [4.2). During a period with no precipitation, the effective moisture
storage capacity is assumed to be replenished at a rate proportional to Smax. Here,
we related the recovery constant to the soil saturation akin the approach used in the
Storm Water Management Model (SWMM; U.S. US Environmental Protection Agency
(US EPA), . In particular, the continuous recovery kr is estimated with the
following equation k, = v/K;/75, in which Ks is the hydraulic conductivity in inch/hr
and kr is the recovery in the percentage of Smax per hour. At the start of new
simulations, the cumulative variables are reset to 0, and Se is set equal to 50% of
Smax. Implications of the 50% saturation assumption are described in the discussion

section.
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The Curve Number infiltration methodology goes hand-in-hand with precipitation.
In particular, we first compute the gross rainfall rate per grid cell. Second, we
compute the infiltration rate with the methodology outlined in this paragraph. Lastly,
we compute the effective rainfall rate by subtracting the infiltration rate from the
gross rainfall. The effective rainfall is accounted for by adding the net water volume
at each grid cell and each time step as part of the continuity updating step in
SFINCS.

COMPUTATIONAL FRAMEWORK

STORM SELECTION Two slightly different approaches were followed to define the
storms. The first one is used to define storms to be run in the validation period.
The second one is used for the climate projection period.

First, using all the observed water level data between 1980 and 2018 retrieved from
all NOAA tide gauges within the region, the observed linear sea level trend was
removed from each individual gauge. In particular, for stations with at least 10 years
of data, we determined the linear trend and corrected this trend so all observations
are applicable to the current MSL. Next, unique observed storm peaks were detected
via the peak-over-threshold method by finding, on average, three maximum water
levels yearly per gauge (39 years x 3 peaks = 117 peaks for most gauges). The
threshold was detected automatically on a gauge-by-gauge basis and set at a
relatively low value of three. This ensures the inclusion of all significant events over
decadal time periods, while keeping computational constraints in mind of not being
able to model all events. A minimum of seven days between peak events at each
gauge was imposed to guarantee independence between the storms. This resulted
in a total of 198 historical storms, used here for validation purposes. In regard
to duration, each validation storm is simulated for at least seven days around the
middle of the peak when the storm is characterized by a single peak, and for longer
in case of containing multiple peaks. In this case, the minimum and maximum peak
date defines the duration of the storm and, consequently, the simulation time. In
regard to the hydrograph characterization of the storm, the simulation starts at low
water of NAVD88 — 0.5 m to avoid low-lying flooding areas since SFINCS initializes

water levels across the domain based on the starting water level.
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Second, for the 31 years of climate projection record, particular storms per CMIP6
model, were selected based on three independent criteria. In a similar fashion as
for the observed data, for each offshore water level boundary point, we detect water
level peaks in which the threshold is set to identify, on average, three extreme water
level events yearly. A similar method was used for discharge and rainfall. The peaks
were identified for all 74 discharge points and for the total rainfall per SFINCS
domain, combined, and run similarly to the validation runs. Common peaks were
found as a result of these methods; however, only the unique storms were combined
per SFINCS domain, resulting in 263 to 347 events per domain per CMIP6 model.
This method was chosen to reduce computational expense since, in this way, we
simulated around 20% of the total record and could run simulations in parallel.
The main difference between both periods is that fluvial and pluvial data were
included as criteria for selecting storms in the climate projection period. However,
for the validation period the available validation data were limited to tide gauges

and therefore, only these data were used to define storms.

For the TC simulations, a total of 1059 tracks were included. Each track had a
probability, location of landfall, heading, forward speed, and intensity based on the
synthetic dataset from Nadal-Caraballo et al., Specific TCs were neglected if a
track resulted in less than 20 cm of storm surge everywhere in each domain. The
number of neglected tracks varies per domain (799 to 933 from the total of 1059

were included).

EXTREME VALUE ANALYSIS Flood hazards per numerical (SFINCS) grid cell were
determined using empirical estimates of exceedance probabilities, without regressing
return period estimates using any extreme value parametric distribution. In this
way, the full set of potential candidates for compound flooding is simulated without
making any a priori inference on the underlying processes beyond compound
flooding. The maximum computed water level, maximum depth-averaged flow
velocity, and wet duration per event and per grid cell were stored. Each storm is
ranked on maximum water level, gives the same frequency resulting in an estimate
of the probability of m/(n+1) in which m is the ranking and n is the number of years,
here 31 (i.e., Weibull plotting position; Weibull, 1939). TC probability per simulation
is derived from the CHS JPM-based input dataset, and the probability is estimated
by integrating the discrete storm probability weights over the range of predicted

water levels. Per sorted event, the associated maximum depth-averaged flow velocity
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and wet duration are provided to inform possible conditions during these events.

To combine ETC and TC runs, we first determined the extreme value distribution for
high water per grid cell for ETC and TC runs separately. For the three CMIP6 models,
we determined the extreme value distribution per model and used the ensemble
mean as the estimate for ETC. Afterward, the extremes were combined by taking
the inverse of the sum of the TC and ETC yearly exceedance frequency. We follow
Dullaart et al., and for a given high water, we calculated its return period as

follows:

RP(x) =

- 4.3)

RPErc ¥ RPrcto
where RP is the return period in x years of high water. RPr¢c and RPgrc refer
to the return period of the TC and ETC water level at the same value of water
level. Examples of the probability of high water levels by ETC, TC, and jointly for
six stations throughout the domain can be found in the Appendix (Figure [£.15). No
storm conditions were based on a simulation with a spring-neap tidal cycle of 30
days. During this stimulation, a baseflow from rivers was included but the effects of
waves and rainfall were excluded. No-storm simulations were included to provide an

estimate of nuisance flooding.

SIMULATION PERIODS AND COMPUTATIONAL EXPENSE

Flood predictions were made for two time periods: historical (1980-2018) and future
projections (2020-2050).

For validation of the model skill, historical conditions were simulated for 1980-2018.
First tidal conditions were simulated and compared to NOAA and XTide stations
across the U.S. Southeast. This simulation is based on a 365-day-long simulation
without meteorological conditions and baseflow discharge rates for the year 2016.
Secondly, 198 historical storms were simulated to assess model skill in reproducing
extreme water levels. Thirdly, an in-depth analysis of Hurricane Florence (2018) was

performed.
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Flood hazard, impact, and risk computations were performed for 2020-2050 using
CMIP6 ETC storm events outlined above and TCs from the USACE-CHS framework.
Additionally, all ETC and TC model simulations were repeated for seven SLR
scenarios: 0-, 0.25-, 0.50-, 1.00-, 1.50-, 2.00- and 3.00-meter compared to the year
2005. These scenarios cover the range of plausible sea level projections for the U.S.
Southeast through 2100, as reported by Sweet et al.,

Model simulations were performed on the Deltares Netherlands Linux-based
High-Performance Computing platform using 54 Intel Xeon CPU E3-1276 v3. On
average, a 7-day simulation (typical duration for an individual event) took about 41
minutes on a single core. Running all 80,000 events (all TCs + ETCs for seven SLR

scenarios) took 31 days.

MODEL SKILL

To quantify the skill of the model to reproduce water levels, several accuracy
metrics were calculated: model bias, mean-absolute-error (MAE; Equation [4.4),
root-mean-square-error (RMSE; Equation and unbiased RMSE (uRMSE; RMSE

with bias removed from the predicted value)

1
MAEZNZ|yi—xi| (4.4)

RMSE =4/ %Z(y,- - xi)? (4.5)

where N is the number of data points, yi is the i-th predicted (modeled) value, x is
the i-th measurement.

4.4, RESULTS

4.4.1. MODELING SYSTEM VALIDATION

TIDAL VALIDATION Model skill in reproducing tidal amplitudes and phases is assessed

at 24 NOAA stations and 56 XTide stations across the area of interest and presented in
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Figure and Table in the Appendix. The model framework can reproduce tide
with a median MAE of 8.3 cm and a median RMSE for high water of 9.9 cm (median
computed over the different stations). Across the region, MAE is typically lower than
20 cm (80% of the stations). The most significant model error is shown at Savannah,
GA, (MAE of 32 cm). The model error generally increases farther away from
the ocean boundary in narrow estuaries and harbors. The model-computed tidal
amplitude at these locations is typically underestimated compared to observations.
We hypothesize that the underestimation of tidal amplitudes has to do with the
a) SFINCS model resolution and b) high roughness values from land that may be
mapped to the channel in some locations due to the coarse resolution of the land

cover map.

STORM VALIDATION ACROSS THE REGION Four examples of time series of modeled
and observed water levels are presented in Figure for large historical hurricanes
for stations from north to south: Irene (2009), Hugo (1989), Matthew (2006) and
Wilma (2008). Observed and modeled water levels and tides are shown. Tides
are based on astronomical components only. The tidal component of the water
levels visually match well the observations before the hurricane arrival, except for
Money Point, VA. (8639348). At this station, there is an underestimation of the
tidal amplitude, and the tide arrives too late (i.e., overestimating phase). The lower
skill for tidal modeling at 8639348 can also be seen in Table The peak water
levels are particularly skillful. Computed NTR is also found to match well with the
observations since the median MAE increased from 8.3 cm for tide only to 11.9 cm

for the water level signal over all storms.

The accuracy of the proposed model framework is presented in Table and
Figure Model skill is good, with a median MAE between 8 and 20 cm (25-75
percentile). However, biases per station do exist. For example, Duck, N.C. (8651370),
has a median bias of +25 cm, while I-295 Buckman Bridge, FL (8720357) has a
median bias of -19.2 cm. We hypothesize that Duck’s overestimation is driven by
the inclusion of an open-coast wave setup, which is not measured at the NOAA
station (see Parker et al., [2023). On the other hand, the underestimation at the
I-295 bridge, being situated inland along the St. John’s River, might be driven by an

underestimation of pluvial/fluvial processes or by underestimation of tide.
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Table 4.1: Overview of skill scores (mean-absolute-error; MAE, unbiased root-mean-square
error; uRMSE and bias) for 24 NOAA observations across 198 events from 1980-2018. The
number of storms simulated is listed as 'n’. Skill scores are in cm and computed as the
median over the storm events (first value) and the standard deviation is presented as the
(second value).

IDcode Name n MAE [cm] uRMSE [cm] bias [cm]
8638610 Sewells Point 84 11.7+4.4 10.6 + 1.6 -8.0 £ 84
8639348 Money Point 52 222 +35 20.2 + 2.7 -15.0 £ 6.9
8651370 Duck 84 29.0£10.9 225+5.1 25.2 + 13.5
8652587 Oregon Inlet Marina 60 14757 96=%35 -13.8 £ 7.2
8656483 Beaufort 84 9.7+3.1 94 +28 -25+73
8658120 Wilmington 68 239+4.4 26.3 £ 3.7 -3.0 £ 13.6
8658163 Wrightsville Beach 45 17.7 £+ 8.3 12.8 + 4.7 16.2 + 9.7
8661070  Springmaid Pier 68 145+ 6.6 13.8 + 4.1 11.3 £ 9.5
8662245 Opyster Landing 25 105+28 11.2 £ 2.2 -0.5 +6.4
8665530 Charleston 69 12.1 £4.2 11.0 + 2.8 -85+ 84
8667633 Clarendon Plantation 16 41.4+7.38 47.1 + 8.3 -11.9+£ 7.0
8670870 Fort Pulaski 86 14.4 +3.3 14.9 + 3.0 -3.1 + 8.4
8720030 Fernandina Beach 50 10.2 +4.8 10.2 + 4.1 -1.4 +9.1
8720145 Edwards Creek 7 14.6 + 1.9 14.2 £+ 1.9 -49 + 8.5
8720218 Mayport 34 8.6+4.2 9.0 £33 -0.8 £ 8.5
8720357 1-295 Buckman Bridge 30 176+ 7.1 7.0 £27 -19.2 £ 12.4
8721147 Ponce De Leon Inlet 7 6.6 + 2.5 6.2 +1.5 4.4 + 3.6
8721604 Trident Pier 29 105+3.4 11.0 + 1.6 2.7 +8.1
8722548 Palm Beach 7 11.6 £ 4.2 122 £+ 5.5 48 +7.6
8722588 Port of West Palm Beach | 7 10.3 £ 6.3 13.3 +6.9 103+ 7.9
8722669 Lake Worth ICW 7 12.4 + 5.2 11.1 + 4.7 12.4 + 6.8
8723214  Virginia Key 39 8.8+47 7.8 +29 4.3 + 8.8
8725110 Naples 57 8.8 +35 8.6 + 3.1 -1.9 + 8.0
8725520 Fort Myers 59 8243 7.7 2.7 -3.2 + 8.0
Median 11.9 11.1 -1.6

HURRICANE FLORENCE In this subsection, the SFINCS model setup is validated for
Hurricane Florence (2018). The spatial extent of this detailed validation covers
about 500 km alongshore and centered around Wilmington, N.C., where Florence
made landfall, and includes all data available within the cross-shore extent of the
SFINCS domains (in the order of 100 km). Figure panel A shows the orientation
compared to the rest of the study area including the track of Florence. Merged model
results for SFINCS domains 4 and 5 were used in this section. Figure panel B
presents the stations used for the in-depth validation of Florence, a combination of
permanent NOAA gauges and USGS deployed rapid deployment gauges and high
water marks (HWMs; U.S. Geological Survey, . The validation focuses first on
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Figure 4.3: Time series of observed (red), computed (blue), and tidal (green) still water level
for four events across the area of inter-est. Panel A depicts Hurricane Irene (2009) in time
series at Money Point, Virginia. Panel B shows Hurricane Hugo (1989) at Charleston, South
Carolina, C Hurricane Matthew (2016) at Fernandina Beach, Florida, and D depicts Hurricane
Wilma (2005) at Virginia Key, Florida. Stations are listed from north to south. Skill scores are
presented in the top left corner.

reproducing six time series in the area, after which the HWMs are discussed. These
time series are randomly chosen across a range of stations to show coastal, riverine,

and mixed locations with various degrees of model skill

The time series of the water levels for six gauges around the landfall of Hurricane
Florence are shown in Figure The first gauge shows Oyster Landing, N.C.
(8662245). At this station, the model reproduces the tide well (as shown in previous
sections). Oyster Landing is located southwest of the location of landfall, which
explains the decrease in water levels (setdown) caused by offshore directed wind after
landfall of the TC. The second gauge, USGS SCHOR14330, located in a local creek
and about 1 km from the shoreline, mainly shows the impact of rainfall runoff, albeit
slightly influenced by tides. The model can reproduce both signals. Gauges 3, 4, and

6 show a similar pattern of tidal oscillation with a slight increase in mean water level
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A) Overview B) Area of interest Hurricane Florence (2018)
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Figure 4.4: Observational data and model extent for the detailed validation of Hurricane
Florence (2018). Panel A: overview figure for the entire study area showing the five different
SFINCS (Super-Fast INundation of CoastS) domains, the track of Hurricane Florence (green)
and the area of interest Panel B: USGS stations used for the validation of Hurricane Florence
model re-sults. USGS gauges have been divided into coastal (pink) and inland (orange)
locations based on the classification given when the data were released. Gauges and high
water marks (HWM) are marked, respectively, with upward-pointing and downward-pointing
triangles. The best track is based on International Best Track Archive for Climate Stewardship
(IBTrACS; Knapp et al., 2010).The coordinate system of this figure is WGS 84 / UTM 17 N
(EPSG 32617). ©Microsoft Bing Maps.

with the hurricane’s landfall. These temporarily placed gauges were only partially
inundated, so they only provided a signal to compare the model with at higher water
levels. Gauge 5 was in a salt marsh near the town of Sneads Berry, N.C., close to
the New River estuary. The observations show a tidally influenced riverine behavior
where the water level rises due to rainfall until several days after landfall, after which
time the water level slowly falls again. The model underestimates the peak of the
water level, possibly due to the underestimation of the TC precipitation boundary
condition. Moreover, the model drains too quickly compared to observations, which
could be caused by hydrological processes such as infiltration via the Curve Number

method or underestimation with friction.
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High water marks are compared to modeled water depth and water level in Figure
A clear flooding pattern of the hinterland is both computed and observed (Figure
- panel A). The model underestimates the HWM - panel B). Based on the
division between coastal and riverine points, the under-estimation is already present
in the coastal points (30 cm); however, the bias reaches 91 cm for the riverine points.
These biases affect the model skill, resulting in a MAE for all the points of 69 cm. A
similar result is shown for the linear regression fit (green line), which has an offset
that gets worse with higher water levels. It is hypothesized that this underestimation
is driven by a difference in modeled (input) and actual precipitation (modeled max
70 cm versus more than 90 cm observed) and river discharge. This situation would
explain why the time-series model skill is higher than HWM skill.
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Figure 4.5: Water level time series as observed (red) and modeled (blue) during Hurricane
Florence (2018). Dashed black line is mo-ment of landfall. The location of the six gauges is
shown on the map in Figure and stations are listed from west to east.
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Figure 4.6: Validation of the maximum water depth and level for Hurricane Florence (2018).
Panel A: maximum water depth with high water marks (HWMs; circles) compared to spatial
color for model. Panel B: maximum water level for the same HWMs. Different colors
represent either coastal (pink) or riverine (orange) points. ‘Linear’ is a least-squares linear
fit on all the data points and shows tendency for underestimation of the modeled HWM
(negative bias) that increases with water level. Note the increasing dealignment between the
green line and dashed black line. Model estimates of extreme water levels have substantial
scatter and bias which increases with water level. The latter explains the higher error for
riverine versus coastal points. The coordinate system of this figure is WGS 84 / UTM 17 N
(EPSG 32617). ©Microsoft Bing Maps.

4.4.2. STRATEGIC ANALYSIS OF FLOODING

Froop nazarDs While flood hazards are calculated on a high detail level (tens of
meters) for over 1000 km of coastline, for clarity only a limited region around
Charleston, S.C. are presented, as an example of the output (Figure [£.7). Panels A
and B show the water level (A) and Panel B the water depth, both (A and B) for a
return period of 50 years and the SLR scenario of 100 cm. Panel C presents the
range of flooding for progressively larger events for the SLR scenario of 100 cm with
colors indicating a flooded grid cell and associated lowest return frequency. Finally,
panel D presents the progressing effects of sea level for a 50-yr storm. The color
represents which SLR scenario, given a 50-year event (2% chance per year), results in
flooding. Data for all return periods and SLR scenarios can be accessed via Barnard

et al., |2023al and Barnard et al., |2023b
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Figure 4.7: Example output for Charleston, S.C.. Panel A: Water level for a 50-year return
period storm in combination with a 100 cm SLR. Panel B: Water depth 50-year return
period storm in combination with a. Panel C: progressing flood extent for different storm
frequencies for a SLR scenario of 100 cm. Panel D: Progressing flood extent for different SLR
scenarios for a 50-year return period. The progressing flood extent (C and D) shows with
which lowest storm frequency or sea level rise scenario the area gets flooded. The coordinate
system of this figure is WGS 84 / UTM 17 N (EPSG 32617). ©Microsoft Bing Maps.

A regional analysis of flood-hazard area (minimum threshold water depth of 10 cm)
over the entire U.S. Southeast is shown in Figure Only grid cells with a bed
level above NAVD88 + 1 m are considered, to exclude low-lying flooding of natural
systems. The area of interest is defined as the Low Elevation Coastal Zone above
NAVD88 +1 m. Flood hazards can occur during no-storm conditions (i.e., flooding
during regular tides together with SLR, consider here as nuisance flooding, shown
in panel A) or storm conditions with a specific return period (panel B). A relatively

small area currently gets flooded under regular (non-storm) conditions, representing
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2,000 km2 or 1% of the area of interest. This flood hazard area increases significantly
with SLR. The increases with SLR are initially small but increase at more than a
linear rate. For example, an increase of the mean sea level from the current level
to 50 cm increases the non-storm flood hazard by 560 km2 (+26%). The same
mean sea level increase from 100 to 150 cm results in an increase of flooded area
by >4,200 km2 (+750% increase). In other words, increasing sea level inundates
disproportionally more and more area. Storm hazards increase with return period
and rising sea level (Figure - panel B). Yearly storm events without SLR (SLR of 0
m) flood around 13,000 km2 or 6.2% of the study area and are projected to increase
to 8.0 and 11.7% for 100 and 200 cm of SLR, respectively. The 100-year flood event,
without SLR, floods almost 4.5 times as much area compared to the annual event.
Moreover, Figure panel B of4.8| shows a well-described phenomenon in the scientific
literature (e.g., Vitousek et al., , where, for instance, a 20-year flood hazard at
current sea level will, with 200 cm SLR, be the new 3-year event (i.e., decreased
return period).
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Figure 4.8: Flood hazard for the no storm (daily; tide-only) condition (left panel A) and
storms (right panel B). Color depicts different sea level scenarios of current sea level (red),
25 cm (blue), 50 cm (green), 100 cm (orange), 150 cm (yellow), 200 cm (brown) and 300
cm (pink). Note that A and B share the same y-axes. For absolute numbers use the left
y-axis and for a relative of the total the right y-axis. Hazards increase with increasing SLR
scenarios, which means that the same area is flooded with lower return periods and that the
same storm return period gets more severe. The relative increase in surface area is larger for
lower return periods than for higher return periods and increase more than linear for higher
SLR scenarios.

Analyzing the entire area of interest together allows for the quantification of flood

impact in number of people affected for both non-storm (i.e., nuisance flooding;
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- panel A) and storm conditions (Figure - panel B). Model results indicate that
on average 150,000 people are currently affected yearly by compound flooding in
the coastal zone. People are impacted as a function of the hazard (water depth),
exposure (where people are located), and vulnerability (depth-damage curve; see
also Section . This increase grows to 2,210,000 for a 100-year event (1% chance).
That is an increase from 1 to 14% of the total population of the area of interest. A
100-year flood impact today will be a yearly impact with a 200 cm SLR. Moreover,
the 20-year impact increased from 1.4 to 3.3 million people for 150 cm of SLR. This
is an increase of 132% and is substantially higher than the increase in flood hazard
for the same return period and SLR scenario (14%). Also, the number of people
expected to be negatively affected by non-storm conditions (i.e., nuisance flooding)
is likely to increase to almost 3 million for 300 cm of SLR.
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Figure 4.9: Flood impact in terms of people affected for the no storm condition (left panel A)
and storms (right panel B). Note that A and B share the same y-axes. For absolute numbers
use the left y-axis and for a relative of the total the right y-axis. Color depicts different sea
level scenarios of current sea level (red), 25 cm (blue), 50 cm (green), 100 cm (orange),
150 cm (yellow), 200 cm (brown) and 300 cm (pink). Impacts increase with increasing SLR
scenarios and have a large relative increase compared to hazards (Figure .

Flood impacts per return period can be integrated over frequency to provide an
estimate of annual risk. This process, which will be referenced throughout the rest
of the paper as (absolute) flood risk, is used in generating the results shown in
Figure through The non-storm scenario is not included in the flood risk
estimate. In particular, we integrated the affected people per storm frequency and
compute the Expected Annual Affected People (EAAP; Giardino et al., [2018b). Figure
presents the EAAP as a function of SLR for the 14 most populous counties in
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the area of interest. The most considerable contribution of the total compound flood
risk is for the three southeast Florida counties of Miami-Dade, Broward, and Palm
Beach Counties (i.e., greater Miami metropolitan area), which comprise 62-72% of
the total EAAP.

Similar to flood hazards, there is a stronger than linear increase of impact of flood
risk as a function of SLR. The first 50 cm SLR results in an increase in EAAP from
480,000 to 700,000 people. That is an increase of 220,000 people (+45%). SLR
scenarios of 100, 150, and 200 cm result in increases of 360,000, 530,000 and 840,000
EAAP (+119, +240, and +413% or fourfold increase).
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Figure 4.10: Flood risk in Expected Annual Affected People (EAAP) as a function of
sea-level-rise (SLR) for absolute numbers (left y-axis) and percentage of total (right y-axis).
Color depicts the top affected 14 counties, including the 15th color for all the other counties
(gray). EAAP increases strongly with SLR, and the Florida’s Miami-Dade, Broward, and Palm
Beach Counties account in absolute as relative terms for the largest EAAP.

Absolute flood risk or EAAP strongly follows exposure; thus, densely populated areas
generally have the most significant flood risk in this analysis. Relative flood risk can
be computed by dividing the EAAP by the county’s total population (Figure [£.11).
Vulnerable counties such as Miami-Dade and Broward Counties are both populous
and have a high relative flood risk. However, a county like Poquoson in Virginia does
not show up in the previous (absolute) analysis but does in terms of relative risk
because a high percentage of the population would be exposed to flooding (Figure
4.11). In a situation without SLR, these communities can be negatively affected
during rare but severe storms (e.g., 100-year events). For the example of Poquoson

County, with 1.6-meter of SLR, what is currently a 100-year flood impact event will
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become the new yearly event with dire consequences regarding relative flood risk.
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Figure 4.11: Relative flood risk as a function of population size for a SLR projection of 1 m
color-coded in Expected Annual Affected People (EAAP). The bar shows the change from the
current sea level to 1 meter (lower value) and the increase from 1 to 2 meter. Several smaller,
less populous counties have the highest relative risk of the area.

Relative flood risk provides a framework to identify when significant proportions of
counties will start to face negative consequences because of SLR. Figure shows
the relative flood risk per county for the different SLR scenarios analyzed (25 cm
SLR results are not shown, for conciseness of the figure). Higher sea levels result
in more relative risk. In particular, only one county (Hyde County) has a relative
compound flood risk greater than 10% for the current sea level. This value is
expected to increase to 12 counties for a SLR of 100 cm and 41 for 300 cm for a
total of 94 counties analyzed. Similarly, no county has a 20% or higher flood risk
for the current sea level (see also Figure . With 100 cm of SLR, four counties
(Poquoson, Tyrrell, Monroe, Hyde) will have this level of relative flood risk, and this
increases to 29 counties with 300 cm of SLR. Note a low risk does not mean that
a county cannot be impacted by floods. It means there is a lower likelihood that a

large percentage of the county’s population is negatively impacted by flooding.

TROPICAL VERSUS EXTRATROPICALThe relative portion of TCs, ETCs, or either
physical driver can be determined by the differences between the combined results
and the TC- or ETC-only results for flood hazards (Figure - panel A; flooded
area), flood impact (Figure - panel B; impacted people), and flood risk (Figure
- panel C; EAAP). For example, the combined flood hazard zone of the whole
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Figure 4.12: Color-coded relative flood risk per county as a function of sea-level-rise (SLR).
Different panels (A-F) represent different SLR scenarios (no SLR to 300 cm). 25 cm SLR
results are not shown, for conciseness of the Figure. Relative flood risk is projected to
increase with SLR. The coordinate system of this figure is WGS 84 / UTM 17 N (EPSG 32617).
©Microsoft Bing Maps.

area with 100 cm of SLR and an annual return period event is 16,489 km2. Only
considering TCs results in a hazard area of 7,360 km2 and ETCs alone gives 9,201
km2. Combining the TC-only and ETC-only areas gives an area larger than the
combined flood hazard zone by 72 km2, indicating the portion of the combined
flood hazard zone that can be flooded by either driver (0.4%). Of the combined
flood hazard zone, the portion that is due to ETCs-only is thus 55.4% (9,129 km?2),
and the portion due to TCs only is 44.2% (7,288 km2). Therefore, we estimate that
ETCs dominate the annual flood hazards compared to TCs (division is 55.6% ETC
and 44.4% TCs). The division between TCs and ETCs are computed by dividing the
area flooded uniquely by ETCs compared to the total area that is uniquely flooded
by ETC and TCs.

Flood hazards (Figure - panel A), regardless of the driver, increase considerably
as a function of the return period from 16,500 km2 for annual return period (8%
area) to about 60,000 km2 (29% area) for the 100-year event. For higher return
periods, TCs drive an increasingly larger share of the division. For example, a
2-year event (50% annual probability) is 47.2% driven uniquely by TCs versus 24.5%
uniquely by ETC and 28.3% by either driver. This percentage of uniquely flooded
areas results in a breakdown of 66% for TCs and 34% for ETCs. This breakdown
increases to 96% for TCs and 4% for ETCs for the 100-year event (1% annual
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probability). The increasing dominance of the third category, either physical driver
(Figure — blue colors), is due to the binary nature of flood hazards (i.e., wet or
dry). In other words, low-lying areas will get flooded for the most extreme events
regardless if the driving force is a TC or ETC. The analysis only reveals if areas
get flooded uniquely by TCs or ETCs. We apply the ratio to establish the division
between ETC and TC. For a visual impression of this analysis, see in the Appendix
a detailed breakdown for Charleston, S.C., flooding with annual frequency, 10-year,

100-year (Figure [4.16).

A similar trend emerges for the flood impacts (Figure - panel B). For an SLR
scenario of 100 cm, it is estimated that 530,500 people (3.4%) are negatively affected
annually by flooding. This impact increases to almost 3,743,000 people (or 24.3% of
the population) for the 100-year event. The annual impact is about 22.7% uniquely
driven by TCs, 42.8% by ETCs, and 34.5% by either driver. In other words, ETCs
result in almost twice the amount of negative impact with a yearly frequency based
on the division estimate (division TC/ETC 35-65%). However, for the 100-year event,
58.3% is driven by TCs versus 2.0% by ETCs and 39.8% by either driver (i.e., 30x more
TC-driven impact). The lack of a linear correlation between hazards and impacts is

noteworthy.

Regarding flood risk (Figure - panel C), TCs generally dominate over ETCs.
For the current sea level, 52.2% of the flood risk is uniquely related to TCs. In
comparison, 24.1% is related to ETCs and 23.7% to either driver. In other words,
TC-induced flood risk is about twice that of ETCs based on the division TC/ETC. This
distribution of risk decreases to 17.3% TCs, 14.0% ETCs, and 68.7% for either driver
for the 300 cm SLR scenario. Higher SLR scenarios result in more and more flood
risk regardless of the ETCs or TCs. Moreover, the contribution of TCs to compound
flood risk decreases from 70 to 55% from no SLR to 300 cm (or 30% and 45% ETCs).

4.5. DISCUSSION

The validation shows that the presented workflow and the developed five SFINCS
domains can skillfully reproduce tidal (median MAE 8.3 cm; Figure and
coastal extreme water levels (median MAE 11.9 cm; Figure [4.18). It is hypothesized

that this model skill has been achieved by 1) nesting the overland flow domains
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Figure 4.13: The division TC/ETC (black line) and contribution of TC-only (red) versus
ETC-only (green) or either (blue) for compound flooding. Panel A. Flood hazard as a
function of return period for SLR scenario of 100 cm. Panel B. Flood impact as a func-tion
of return period for SLR scenario of 100 cm. Panel C. Flood risk in EAAP for different SLR
scenarios. The contribution of TCs increase with return period for both hazards and impacts
but decreases for flood risk as function of SLR.

into large-scale hydrodynamic and wave models that provide statistically corrected
boundary conditions and 2) including relevant bathymetry features. Computational
efficiency was prioritized to allow for the deterministic computation of flood hazards
and impacts of thousands of events. Limited computational resources did constrain
the utilized approach to a relatively coarse model resolution of 200x200 meters in
combination with subgrid lookup tables that resolve fine-scale flood features at the
resolution of the 1-m Digital Elevation Model. Similar to other approaches (e.g.,
Volp et al,, Sehili et al., 2014), the subgrid approach substantially reduced
computational cost without significant accuracy loss. The underestimation of tides
at several stations is likely driven by incorrect friction, as derived from the landcover
map, and not a limitation in the subgrid method itself. The accuracy of the
boundary conditions could also play a role (see Parker et al., . Moreover,

as part of sensitivity testing, it was found that model skill versus computational
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cost seems optimal at a model resolution of 200x200 meters. More refined model
simulations did minimally increase model skill but with a considerable increase in
computational cost. The near-continuous computations allowed for the usage of
empirical extreme value statistics on a cell-by-cell basis. This method eliminated the
need to fit statistical distributions that could potentially yield incorrect results when
limited data points are presented. The latter mainly occurs for overland compound
flooding, where only several (rare) storms result in flooding.

The version of SFINCS applied in this manuscript does not include a stationary wave
solver, infra-gravity waves, sediment transport, or morphology. Wave setup was used
at the offshore boundary based on the empirical formula of Stockdon et al., and
presented in Parker et al., Still, the accuracy of this correction was not able to
be assessed. A more in-depth validation at a case study site with good observational
data might provide insight. The lack of infragravity waves, sediment transport, and
morphological change is a limitation since breaches and overtopping are commonly
reported during extreme events (e.g., during Hurricane Florence; Biesecker and
Kastanis, or more recently during Ian and Nicole in the 2022 season). This
restriction would, most likely, result in underestimating the computed flood hazards
and impacts. Moreover, in this chapter, we have assessed flood hazards and impacts
given SLR scenarios but without taking into account morphological and societal
changes such as population dynamics and construction of flood risk management
features. The natural system will respond given changes in climate (Antolinez et al.,
, for example, shorelines are projected to undergo a large recession (e.g., Bruun,
Ranasinghe et al., [2012). Moreover, the U.S. Southeast is projected to continue
its economic growth (Hauer, 2019), but any local mitigation and adaptation measures
taken will be beholden to the question of how flood hazards and risks develop in the
future. These changes are not considered in this chapter. Moreover, no validation of
the impact computation was performed. Lastly, Lockwood et al., showed that
sea level rise and changes in the meteorological conditions correlate; however, in
this chapter, they were assumed independent to allow for the computation of several

sea level rise scenarios under one future projected climate.

Hydrological processes were resolved in this chapter by 1) applying the NWM
for riverine inflow into the SFINCS domains and 2) computing rainfall run-off
by including rainfall and estimating infiltration with the Curve Number method.

Validation for Hurricane Florence did show clear observed and modeled inland
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flooding, including raised water levels in the analyzed time series of observations
and models due to precipitation and riverine flow (Figure [4.6). However, the error
in reproducing the HWM with an MAE of 63 cm is much higher than the other
errors presented in this chapter, but they are in the same order as other Hurricane
Florence validations (e.g., Ye et al,, reported an average MAE of 73 cm). In
addition, dynamic processes such as groundwater and (managed) urban drainage
systems are not included, which could substantially influence results locally. For
example, South Florida is known for its permeable karst substrate in combination
with regulated channels, which affects the risk of flooding (Czajkowski et al.,
Sukop et al.,, [2018). Moreover, it is unclear how the assumption of 50% saturation
in the Curve Number at the start of each simulation has influenced the results.
Sensitivity testing showed that the soil saturation assumption influences results
for milder more-frequent storms. Nonetheless, the impact of more substantial
events, such as Hurricane Florence, was restricted due to the considerable overall
precipitation relative to the infiltration capacity (see for example sensitivity testing
in Appendix [4.6). Moreover, the 50% saturation value was held constant for the sea
level rise scenarios, although one might expect increased soil saturation through
changes in precipitation patterns and rising temperatures associated with a warming
climate. Continuous, deterministic, simulations could overcome this limitation but
were deemed computationally too expensive for this large-scale study. Besides
these limitations, the SFINCS-based estimate of flood hazards and impacts across
the region provides valuable information to coastal managers and policymakers
on an unprecedented scale and resolution. In particular, we hypothesize that
reported hazards, impacts, and risk values can provide relative insights due to the

physics-based derivation despite model shortcomings.

The simulation and detailed analysis of both TCs and ETCs allowed quantifying the
contribution of tropical and extratropical events. Similar to Dullaart et al., this
paper also found that it is vital to include TCs, especially for infrequent events. Here,
we estimate a dominance in TC risk across the study area to be around 55-68%,
which is in the same order of magnitude as Dullaart et al., who provided
estimates for storm surge across the globe or Booth et al,, who provided its
estimate based observational water level data. A limitation of our study is the record
length of 31 years for ETCs and, therefore, implicitly assuming dominance of TCs for
higher return periods. However, in this study, we do see that TCs dominate the

signal earlier in the frequency range for the Southeast Atlantic Coast. For other areas
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(e.g., West Coast or New England states), this dominance of TCs is most likely not

the case, and another method needs to be explored.

In this study, we directly applied an ensemble of three high-resolution CMIP6 models
to determine ETC-driven flooding for the projected climate. This was done because
historical high-resolution CMIP6 data were not available at the time of this study,
which would have allowed for bias correlation or an assessment of percent change
between the historical and future periods. However, GCMs are known to have biases,
which propagate and can thus influence the simulations (e.g., Xu et al,, 2021). On
the other hand, high-resolution CMIP6 models (in the order of 25 km) are starting
to be sufficient to resolve the relevant meteorological features for large-scale flood
assessments (e.g., Roberts et al., . For example, a recent study by Muis et al.,
showed a positive bias of 10% in computed storm surge levels corresponding
to a 10-year return period between a HighResMIP ensemble and ERA5 reanalysis
along the eastern North Atlantic U.S. coast which gives confidence these products
start to resolve relevant features flood assessments. Moreover, taking an ensemble,
as was done in this study, is expected to perform better than individual members
(Tebaldi and Knutti, 2007), and preserves event consistency among meteorological
forcings for projected storm events (wind, pressure, and rain). We do acknowledge
the limitation of bias and are exploring the possibility of incorporating historical
and projected scenarios based on the same CMIP6 models to overcome possible
biases in meteorological forcing. Other methods include working with historical
climate forcing such as the ERA5 reanalysis to overcome these potential biases.
Additionally, the CMIP6 projections utilized in this study are based solely on the
SSP5-8.5 scenario, which represents the upper limit of potential outcomes and is
deemed improbable in light of current emission trends.

4.6. CONCLUSION

Using well-calibrated numerical models, it is shown that predicting both tropical
and extratropical cyclones is vital for accurately assessing coastal hazards and
impacts. Extratropical cyclones are mainly responsible for frequent flooding events.
In particular, we find that for the current sea level, extratropical cyclones contribute
to half of the flooded area. However, these events affect almost twice the amount

of people compared to tropical cyclones with a yearly frequency. However, tropical
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cyclones drive the majority of the infrequent flood hazards. For example, for the
100-year event, tropical cyclones contribute 96% of the flooded area and likely affect
30 times the number of people. Moreover, we find that tropical cyclones contribute
to more than half of the total coastal compound flood risk. The relative importance

of tropical cyclones to compound flood risk does decrease with sea level rise.

The relative impact of flood hazards from annual storm events is limited to 6.3%
of low-lying areas of U.S. Southeast Atlantic coast at the current sea level. In
comparison, 100-year events flood 27.2% of the considered area. With sea-level rise
(SLR), flooding increases significantly. In particular, annual hazards increased from
6.3% today to 8.0 and 11.7% with 100 and 200 cm, respectively, of sea level rise. This
change makes rare events more severe and decreases the return period for current
extreme events. For example, a 100-year flood impact today will be a yearly impact
with a 200 cm SLR. Also, flood impacts are projected to have a larger relative increase
compared to flood hazards for the same return period and SLR scenario. Flood risk
is expected to grow non-linearly from roughly 3.1% (0.5 million people) today to 6.9
and 16.1% (1.1 and 2.6 million people) for 100 and 200 cm, respectively, of sea level
rise. Impacts are mainly driven by exposure in the most populous counties in the
area (Miami-Dade, Broward, and Palm Beach County together comprise 62-70% of
the total risk in the area). However, several smaller, less populous counties have
the highest relative risk of the study area compared to the high absolute flood risk
for the populated southeast Florida region. This implies that relative risk (people
affected divided by the total population in the county) could prove a valuable metric

for policy decisions.

While our methodology is targeted at coastal flooding, precipitation and hydrology
are included to capture coastal compound flooding. In particular, the model
framework developed in this study can skillfully reproduce coastal water levels.
Model errors in these areas are driven by errors in tide (median mean-absolute-error,
MAE, 8.3 cm) and storms (median MAE 11.9 cm). As demonstrated in the
validation of Hurricane Florence, the model error increased farther inland due to less

well-resolved hydrological processes such as rainfall, infiltration, and riverine flow.
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APPENDICES ASSOCIATED WITH THIS CHAPTER

UPDATING SYNTHETIC TROPICAL CYCLONE PROBABILITIES TO REFLECT
CLIMATE CHANGE

We conducted a comparative analysis of tropical cyclone (TC) characteristics in
a CMIP6 multi-model ensemble for historical (1980-2014) and future (2016-2050)
periods to assess the need for modifying probabilities in the USACE CHS synthetic
TC dataset. For the TC comparisons between the historical and future model
ensembles, we examined TC storm parameters (frequency, location, heading, forward
speed, radius of maximum winds, and intensity based on central sea level pressure
deficit) at a 600 km radius around USACE shoreline locations. In particular, we
utilized eight atmosphere-ocean coupled CMIP6 models and the tracks of TCs using
the TRACKS method (Roberts, [2019). Our analysis revealed a change in the sea
level pressure deficit for the most intense storms within our region. The other TC
parameters did not change. The strongest 2% of storms in the 8-model ensemble
showed increased storm strength from northern Florida north-ward, indicating more
frequent intense TCs in this area. These alterations were incorporated into the
USACE CHS synthetic TC dataset, leading to recalculated probabilities that reflect

this intensification.

SENSITIVITY TESTS FOR SATURATION PERCENTAGE

In this study, we assessed the sensitivity of the Curve Number method to the
assumption of 50% saturation focused on the computed flood extents for Hurricane
Florence (Section 4.1.3). A series of tests were conducted using saturation percentages
that varied from 0% (indicative of full saturation, yielding a Se value of 0) to
100% (representing complete insaturation, leading to a Se value of Smax) in 25%
increments. Throughout the study, we applied a 50% value (see Section 3.4.2). The
sensitivity analysis of this parameter for Hurricane Florence revealed a maximum
variation in flood extent ranging from +2.6% to -0.3% (Figure - panel B).
Notably, the most pronounced disparities were observed in the range of 0 to 50%
saturation, indicating the fully saturated spectrum of the parameter. Furthermore,
these differences were predominantly evident further inland and further away from
the hurricane’s landfall (Figure - panel A). We hypothesize that such variations
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can be attributed to the substantial cumulative rainfall concentrated within the
storm’s eye, which surpasses infiltration capacity irrespective of the initial saturation
percentage. Additionally, further inland, the primary flooding source tends to be
rainfall-induced, in contrast to coastal areas where tidal surges pre-dominantly

contribute to flooding events.
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Figure 4.14: Sensitivity testing on the saturation percentages on the flood extent computed
for Hurricane Florence (2018). Panel A: overview figure for spatial difference in flood
extent (colors), domains (gay) and the track of Hurricane Florence (black dashed). Panel B:
Difference in relative flood extent area relative to a 50% saturation percentage. The best track
is based on International Best Track Archive for Climate Stewardship (IBTrACS; Knapp et al.,
2010).The coordinate system of this figure is WGS 84 / UTM 17 N (EPSG 32617).
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ADDITIONAL FIGURES AND TABLES

Table 4.2: Lookup table for conversion of National Land Cover Database Land to roughness
values using Manning'’s coefficients

NLCD class | Description Manning n
11 Open water 0.020
21 Developed, Open Space 0.070
22 Developed, Low Intensity 0.100
23 Developed, Medium Intensity 0.120
24 Developed, High Intensity 0.140
31 Barren land 0.070
41 Deciduous Forest 0.120
42 Evergreen Forest 0.150
43 Evergreen Forest 0.120
52 Evergreen Forest 0.050
71 Grassland/Herbaceous 0.034
81 Sedge/Herbaceous 0.030
82 Cultivated Crops 0.035
90 Woody Wetlands 0.100
95 Emergent Herbaceous Wetlands 0.035
Other 0.020
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Figure 4.15: Extreme water level return levels and periods for TC-only simulation (red),
EC-only (green) and the combined results (black dashed lines). The return values presented
throughout this study are the yearly, 2-year, 5-year, 10-year, 20-year, 50-year and 100-year
estimates and are shown as black dots. The dominance of ETC versus TC varies per station
and return period.
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Figure 4.16: Breakdown of flooding for Charleston, South Carolina, for annual, 10-year and
100-year flooding. Color-coded is the source of the flooding. Most of the grid cells are
flooded by both TC & ETC (either driver; blue color). Flooding with a yearly frequency is
driven more by ETC-only drivers (green) while 100-year events are driven more by TC-only

(red).
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Table 4.3: Overview of tidal skill scores for 68 stations (part 1)

Short name MAE [cm] | uRMSE [cm] | bias [cm] | RMSE HW [cm]
8638610 6.6 7.5 -0.4 3.3
8639348 194 22.3 -0.5 25
8651370 12.8 14.7 -0.1 21
8652587 26.2 30.2 0.2 29.8
8656483 6.5 7.5 -0.6 11.5
8658120 26.9 30.5 0.7 35.5
8658163 4.6 5.6 -0.1 6
8661070 4 4.8 0 7.6
8662245 9.8 11.7 -1.5 14.6
8665530 4.5 5.3 -0.9 9.3
8667633 28.9 32.8 -5 26.1
8670870 8.3 9.8 0.1 14.3
8720030 4.4 5.5 -0.8 10.6
8720059 21.6 24.4 0.1 34.2
8720145 16.6 19.3 -0.5 23.6
8720218 3.6 4.3 0.1 6.2
8720357 5.2 6.3 0.1 8.2
8721147 9.2 10.9 -1.2 9.1
8721604 20.7 24.8 -1.9 25.5
8722548 5 6.1 0.6 4.4
8722588 1.6 1.9 -0.1 2.6
8722669 12.5 14.5 5 8.5
8723214 6.1 7.1 0.3 4.4
8725110 4.2 5.1 0.1 4.4
8725520 2.2 3.1 0.1 2.6
Bear Cut 6.2 7.2 0.3 4.2
Bings Landing | 16.9 20.2 -0.6 19.5
Buffalo 8.1 9.5 -0.2 13.2
Canaveral 24.2 29.2 -1.6 32.1
Capers 25.5 29.1 -2.1 35.1
Chesapeake 3 3.6 -0.2 2.3
Cooper 26.7 30.2 0.5 37.6
CoreSound 20 23.1 0.7 22.3
Crescent 25 28.9 -3.8 32.3
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Table 4.4: Overview of tidal skill scores for 68 stations (part 2)
Dame Point 11.7 | 13.4 | 0.1 16.6

Daytona 4.5 5.4 01 | 7.3
Fernandina 6.4 7.7 -0.9 | 13.1
Hatteras 19.8 | 23 -04 | 29.2
Haulover 6.2 7.5 0 8.6
Jacksonville 9.2 10.6 | 0.7 12.9
Kingsbay 12.2 | 143 | -1.2 | 20.6
Kingsmill 13.2 | 15 -0.1 | 14.7
LakeWorth 3.9 4.7 0.2 | 6.1
Matanzas 17.1 | 204 | 0.4 21.8
Mayport 4.1 4.9 0 6.9

MiamiBeach 8.3 9.8 0.1 10.6
MiamiHarbor | 12.6 | 15.1 | -0.1 | 15.2

NavalStation 2 2.5 0 2.6
Ocracoke 253 1293 | 05 | 293
Oregon 8.3 9.9 -09 19
Palatka 8.3 9.8 0.1 13.3
Ponce 10.1 | 12.2 | -1 10.5
Portsmouth 11.4 | 13.1 | -0.7 | 124
RacyPoint 7.2 8.4 -0.1 | 11.1
RedBay 5.5 6.6 -0.1 | 8.7
Rudee 8.2 9.6 0.2 9.9
Savannah 32.2 | 36.3 | -2.5 | 48.7
Scotland 11.5 | 13 0.1 11.1
Southport 6.5 7.5 -0.3 | 10.2
StAugustine 4.3 5 -0.1 | 6.6
StHelena 7.7 9.1 -23 | 159
StJohns 10.1 | 11.6 | 0.4 15.6
StMarys 8 9.7 -1 13.4
StSimons 15 18.2 | -0.3 | 18.2
Sunset 4.7 5.8 0 7.2
Vilano 2251262 | -0.2 | 25
Welaka 3.9 5.6 -0.6 | 7.1

Wrightsville 252 | 304 | -14 | 294
Median 8.3 9.9 -0.1 | 12.7
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EVALUATION OF UNCERTAINTY IN
OPERATIONAL TROPICAL CYCLONE
RISK ANALYSIS

Whereas the prior two chapters focused on strategic risk analysis, this chapter shifts
the focus to operational risk analysis related to tropical cyclones. Accurate tropical
cyclone forecasts are crucial for safeguarding lives and minimizing economic impacts.
However, the methodologies used by the National Hurricane Center do not yet address
predictions for coastal flooding. In this chapter, we introduce a methodology that
focuses on creating operational and probabilistic forecasts of compound flooding
induced by tropical cyclones. The ensemble members are created based on a forecasted
track and take into consideration uncertainties in track, forward speed, and wind
speed. The focus of this chapter is to introduce and apply a new methodology called
the Tropical Cyclone Forecasting Framework (TC-FF) that can be used for operational
risk analysis.

This chapter is a revised version of Nederhoff, K., Van Ormondt, M., Veeramony, J., Van Dongeren, A.,

Antolinez, J. A. A., Leijnse, T, & Roelvink, D. (2024c). Accounting for Uncertainties in Forecasting
Tropical Cyclone-Induced Compound Flooding. Geoscientific Model Development, 17(4), 1789-1811.
https://doi.org/10.5194/gmd- 17-1789-2024
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Abstract Tropical cyclone impacts can have devastating effects on the population,
infrastructure, and on natural habitats. However, predicting these impacts is
difficult due to the inherent uncertainties in the storm track and intensity. In
addition, due to computational constraints, both the relevant ocean physics and the
uncertainties in meteorological forcing are only partly accounted for. This paper
presents a new method, called the Tropical Cyclone Forecasting Framework (TC-FF),
to probabilistically forecast compound flooding induced by tropical cyclones,
considering uncertainties in track, forward speed, and wind speed/intensity. The
open-source method accounts for all major relevant physical drivers, including
tide, surge, and rainfall, and considers TC uncertainties through Gaussian error
distributions and autoregressive techniques. The tool creates temporally and spatially
varying wind fields to force a computationally efficient compound flood model,
allowing for the computation of probabilistic wind and flood hazard maps for any
oceanic basin in the world, as it does not require detailed information on the
distribution of historical errors. A comparison of TC-FF and JTWC operational
ensembles, both based on DeMaria et al., 2009, revealed minor differences of
<10%, suggesting that TC-FF can be employed as an alternative, for example, in
data-scarce environments. The method was applied to Cyclone Idai in Mozambique.
The underlying physical model showed reliable skill in terms of tidal propagation,
reproducing the storm surge generation during landfall and flooding near the city of
Beira (success index of 0.59). The method was successfully applied to forecast the
impact of Idai with different lead times. The case study analyzed needed at least 200
ensemble members to get reliable water levels and flood results three days before
landfall (<1% flood probability error and <20 cm sampling errors). Results showed
the sensitivity of forecasting, especially with increasing lead times, highlighting
the importance of accounting for cyclone variability in decision-making and risk
management.

5.1. INTRODUCTION

Tropical cyclone (TC) induced compound flooding, which occurs when storm surge,
heavy rainfall, high tide, and river discharge coincide, can have devastating impacts
on coastal communities (Wahl et al,, 2015). This type of flooding is particularly
concerning as it can result in higher water levels and increased inland flooding,
leading to damage and loss of life (e.g., Resio and Irish, . The increased
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frequency and severity of compound flooding events are expected to worsen due
to climate change included sea level rise (e.g., Easterling et al., changes in
extreme storm surges and wave climates (e.g., Lin et al., Mori and Shimura,
2023), increased and prolonged precipitation (e.g., Trenberth et al., as well
as ongoing coastal development and population growth (e.g. Neumann et al.,
[2015). Mitigation and preparedness strategies require a sound toolbox for assessing
TC-induced compound flooding on coastal communities that enhance short to

long-term decision-making.

Operational and strategic risk analyses are instrumental in analyzing and mitigating
potential environmental risks. Operational risk analysis, typically associated with
short-term forecasting (order of several days), provides immediate response and
preparedness for imminent disasters, ensuring the safety and protection of people
and property (Roy and Kovordanyi, 2012). Conversely, strategic risk analysis focuses
on long-term climate variability assessments, delivering insights into hazards and
their socio-economic and environmental impacts, thus facilitating informed policy
decisions and adaptation strategies (e.g., Nederhoff et al., [2021a). Though distinctly
different, both perspectives are critical for comprehensive climate risk management,
as they offer different scales and timeframes for prevention, preparedness, response,

and recovery.

Forecasting agencies such as the National Hurricane Center (NHC) have significantly
improved operational meteorological risk analysis, credited to gains made in
numerical weather prediction models (McAdie and Lawrence, Cangialosi et al.,
2020). Despite advancements, operational forecast errors remain significant enough
to necessitate considering the inherent uncertainties in these forecasts for informed
preparedness decision-making (Lamers et al., [2023). A common probabilistic
approach is to represent the resulting uncertainty in track prediction by a cone
envelope as a graphical representation that illustrates the possible track variation
of the TC center (National Hurricane Center, 2023). The shape of the cone can
be derived from the historical error data of the forecast and typically represents
a 66.7% probability that the track will be within the cone (i.e., 33.3% chance the
track falls outside the cone). The cone increases in size with lead time as the
errors in the prediction accumulate. While the cone gives valuable insight into
the potential range of TC variability of the core, it can be easily misinterpreted as

the corresponding impacted area, which can be substantially larger. Quantification
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of the uncertainty in track prediction can be computed with several methods.
For example, DeMaria et al., introduced a Monte Carlo method to generate
1,000 realizations by randomly sampling from historical error distribution functions
from the past 5 years for both the track and intensity. DeMaria et al,
improved their method so that the track uncertainty is estimated on a case-by-case
basis using the Goerss predicted consensus error (GPCE; Goerss, 2007), where the
uncertainty is estimated based on the spread of a dynamical model ensemble
instead of historical averages. Other methods exist and for example Chen et al.,
introduced a deep-learning ensemble approach for predicting tropical cyclone
rapid intensification. However, these methods were all derived to provide insight,
before landfall, into the uncertainty of the wind speeds and not designed to force

hydrodynamic or wave models and can thus result in too erratic forcing conditions.

Early Warning Systems (EWS) for coastal compound flooding are sensitive to
uncertainties in the TC, including nonlinear interactions between the TC size,
forward speed, location of landfall, tides, rainfall, and infiltration. However, often
EWS for coastal flooding use physics-based and, due to computational constraints,
deterministic approaches in which the best track is used to force a hydrological and
hydrodynamic model that computes the storm surge and the complex interactions
between coastal, fluvial, and pluvial processes. For example, the Global Storm
Surge Information System (GLOSSIS) is based on Delft3D Flexible Mesh (Kernkamp
et al., and run operationally 4 times daily to produce 10-day water level
and storm-surge forecasts for the entire globe. GLOSSIS is typically forced with
NOAAs GFS forcing although there is also functionality in place to use hurricane
tracks. Another example is the Coastal Emergency Risks Assessment (CERA) based
on ADCIRC (Luettich et al., [1992). CERA is an effort providing operational advisory
services related to impending hurricanes in the United States only and uses the NHC
official advisory every 6 hours. Neither GLOSSIS nor CERA accounts for uncertainties

in the meteorological forcing.

Several examples of probabilistic coastal flood methods do capture uncertainty
in forcing. For example, the Global Flood Awareness System (GloFAS; Alfieri
et al., is a modeling chain run by the European Centre for Medium-Range
Weather Forecasts (ECMWF) based on the LISFLOOD hydrological model forced by
51 ensemble members. While GloFAS is an excellent resource for communities

worldwide, it operates at a large scale with a relatively coarse resolution of 0.1
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degrees (order of 10 km), is thus not designed explicitly for TCs that require high
spatial resolutions (Roberts et al., and neither account for relevant coastal
processes such as tides. Higher resolution and the inclusion of coastal processes can
be found in several regional applications. For example, the Stevens Flood Advisory
System (SFAS; Ayyad et al., is an ensemble-based probabilistic forecasting of
tide, surge, and riverine flow across the US Mid-Atlantic and Northeast coastline
and runs for 96 different atmospheric forcing datasets. Other examples include
forecasting systems from the UK Met Office (Flowerdew et al., and the Royal
Netherlands Meteorological Institute (de Vries, [2009). All these systems rely on
coarser numerical forecasting products, focus on mid-latitude regions, and are thus
not explicitly designed to forecasts hazards related to TCs.

Probabilistic modeling systems for TC-induced coastal flooding for operational risk
analyses in the US and Japan include P-Surge (Taylor and Glahn, Gonzalez and
Taylor, [2018), which uses data from the NHC to create a set of synthetic storms
by perturbing the storm’s position, size, and intensity based on past errors of the
advisories. Subsequently, the Sea, Lake, Overland, Surge from Hurricanes model
(SLOSH; Jelesnianski et al., is run and forecasts storm surge in real-time
when a hurricane is threatening. However, SLOSH does not account for several
relevant (coastal) processes (e.g., tides, waves, rainfall, infiltration) and thus lack
their interactions. The Japan Meteorological Agency (JMA) does use a dynamic tide
and storm surge model (Nakagawa, but only accounts for a limited number of
11 ensemble members (Hasegawa et al., . Moreover, both methods are created

with a specific region in mind and are not easily transferable to other locations.

Besides probabilistic physics-based techniques, statistical machine-learning tech-
niques (e.g., Lecacheux et al., or Nguyen and Chen, are becoming
increasingly popular in reducing the computational expense of forecasting compound
flooding. However, these machine learning downscaling methods lack nonlinear
interactions between relevant coastal processes driving compound flooding. Hybrid
methods focus on reducing the number of tracks simulated and proved capable of
accurately representing a larger set of scenarios (Bakker et al., [2022).

As introduced by Suh et al, [2015, the constraints in real-time forecasting for
operational risk analysis are around both ’accuracy’ and 'promptness. In other

words, the time constraints associated with forecasting dictate that some modeling
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systems use a purely deterministic approach or a limited number of ensemble
members to perform more detailed compound flooding predictions and thus simplify
the meteorological uncertainty (e.g., GLOSSIS, CERA, JMA). On the other hand,
probabilistic approaches for meteorology with a large number of ensemble members
use simplified hydrodynamics or have an insufficient resolution for TCs and thus
do not account for the processes needed to forecast TC-induced coastal compound
flooding (e.g., GIloFAS, SFAS, NHC). In summary, the current shortcomings of
existing methodologies include the absence of high-resolution models specifically
tailored for analyzing coastal compound flooding. Additionally, there is a notable
deficiency in probabilistic assessments of tropical cyclone flooding that incorporate
the uncertainties inherent in forecasting cyclone tracks. Moreover, there is a need
for a universally applicable methodology that can be seamlessly adapted to various

case studies globally.

To address the limitations listed, we propose a method to generate probabilistic
wind and compound flood hazard maps by using, for the first time, ensembling
techniques via statistical emulation of TCs combined with physics-driven modeling
for coastal compound flooding. The workflow emulates the TC evolution using
an autoregressive technique in combination with reported mean errors in track
and intensity, similar to DeMaria et al., but without the need for historical
error distribution functions. Next, this emulator produces an ensemble of several
(herein thousands) TC members. Then, for each ensemble member, a time-
and spatially-varying wind field is generated and used to force a computationally
efficient compound flood model SFINCS (Leijnse et al, 2021). The output consists
of probabilistic wind and flood hazard maps that can be forecast on time with
limited computational resources anywhere in the world. This paper refers to the TC

forecasting framework as the Tropical Cyclone Forecasting Framework, TC-FE

The paper is structured as follows. Section [5.2|introduces the Monte Carlo forecasting
methodology. Section describes the case study site and historical event of
interest. The materials and methods used in this paper are described in Section
Validation in terms of tides and storms and application of the forecasting
methodology are presented in Section [5.5] Finally, Sections and discuss and
summarize the main conclusions of the study.
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5.2. TROPICAL CYCLONE FORECASTING FRAMEWORK
(TC-FF)

In this paper, we introduce the probabilistic Tropical Cyclone Forecasting Framework,
TC-FE to compute TC-induced compound flooding for operational risk analysis. Our
approach integrates a TC emulator using a Monte Carlo-based ensemble sampling
generation with an autoregressive technique, which is a simplified adaptation of
DeMaria et al., The ensemble members are generated around the forecasted
official track, considering the average historical errors in intensity, cross-track, and
along-track. We deem these variables as the primary source of track uncertainty
(e.g. Fossell et al., . Other variables (e.g. information on wind radii) can be
(stochastically) correlated to them. The ensemble members are provided as input
for the fast compound flood model called SFINCS. Additionally, TC-FF considers
tidal movements, storm surge, precipitation, and infiltration. The outcomes are
consolidated into a unified probability product. By choice, each member has an
equal likelihood of occurrence. The Python code for this method is accessible on
GitHub via the following link: https://github.com/Deltares-research/cht_cyclones or
one is referred to Zenodo (Nederhoff and van Ormondt,

TC-FF FLOWCHART

A compact flowchart of TC-FF used to generate the ensemble member is shown in
The steps of this process are as follows:

1. Define settings: The user specifies the data source, period, time step of the
ensemble generation, and the number of ensemble members requested.

2. Input best track: The code either determines the best track based on gridded
time and spatial-varying wind and pressure fields (e.g., COAMPS-TC; Doyle
et al, or reads in the forecasted track by one of the forecasting centers
(e.g., NHC or other agencies).

3. Error matrices for along-track, cross-track, and intensity: The tool first
computes random realizations based on the along-track, cross-track, and
intensity standard deviations imposed for the time steps requested. The
imposed mean absolute error is scaled with the timestep to overcome any time

step dependency.
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4. Generate ensemble members: Following the approach of DeMaria et al., a
Monte Carlo method generates numerous ensemble members based on error
matrices of the previous step in combination with an autoregressive technique
for the along-track, cross-track, and intensity error.

5. Generate wind, pressure, and rain fields: Generate meteorological forcing
conditions, i.e., the surface wind and pressure fields per time step per
ensemble member, based on parametric methods (e.g., Holland et al., for
subsequent analysis and application within numerical models. Rainfall can be
included as well via intensity relationships.

6. Simulation and post-processing: In this study, the compound flood model
SFINCS is applied, but in principle, other hydrodynamic models can also be
applied, albeit typically at a higher computational expense. Data from the
different ensembles are combined into several probabilistic outputs ranging
from the probability of gale-force winds (wind speed > 35 knots or >18 m/s),
compound flooding (water depth> 15 cm) to quantile estimates (e.g., 1%

exceedance water level).

In the subsequent paragraphs, we describe in more detail the pre-processing, the
computation of the ensemble members (track and intensity variations), and the

determination of time- and spatially-varying wind fields.

PRE-PROCESSING AND INPUT DATA

The pre-processing of TC-FF comprises three components.

First, one specifies the period they would like to simulate, including the total time
period over which wind fields need to be generated and the time period over which
the ensembles need to be generated. In addition, a timestep for ensemble generation
(default 3 hours) needs to be specified. At this stage, one also specifies the mean
absolute error and auto-regression coefficients for the along-track, cross-track, and
intensity. When these values are unknown, calibration needs to be performed to
determine them by comparing them with the reported errors of the forecast center
(see calibration in Section [5.5.2] At this stage, one also specifies the number of
ensemble members requested. The influence of the number of ensemble members
is discussed in Section [5.5.3
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Second, since TC-FF creates random realizations around the best track, an input
track is needed. Depending on the application, TC-FF reads a forecast bulletin that
generates the track or determines the best track from the output of a high-resolution
regional meteorological model. The determination of a track from a meteorological
model is based on an algorithm that finds the minimum pressure in an area of
interest. It takes in grid values, u and v wind components, pressure, minimum
distance for clustering, and returns lists of x and y coordinates of cyclone eyes, the

maximum wind speed plus pressure around each eye.

Third, before the generation of the ensemble members, TC-FF creates random
errors with a normal distribution based on the provided average errors. Matrices
are two-dimensional, with one dimension being the number of time stamps and
the other the number of ensemble members. The imposed mean absolute error is
scaled with the timestep to overcome any time step dependency and converted into

a standard deviation.
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Figure 5.1: Flowchart of the Tropical Cyclone Forecasting Framework (TC-FF). Pre-processing
stages are represented in light blue, the computational core of ensemble generation
is denoted in orange, the parametric wind field generation is portrayed in green, the
hydrodynamic simulation and analysis of winds are marked in purple and outcomes in red.
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ENSEMBLE MEMBERS

TRACK REALIZATIONS AND CALIBRATION An important component in TC-FF is the
generation of track realizations (or ensemble members) from the official track
forecast. The official positions are interpolated with a spline function to include
values at all requested times. Our approach for the track realization largely follows
DeMaria et al., We decompose the track error into the along-track (AT) and
cross-track (CT) components and account for the track error serial correlation via
autoregressive regression (Equations m and .

AT, = a, AT _; + By ng G.1)
Cth CtCTt—i+Drnd (5.2)

in which ATt and CTt are the AT and CT error at time steps t, at and ct are constants,
ATt-3 and CTt-3 are errors of the previous time step (typically i=3 hours), and B
and D are random numbers that are normal (Gaussian) distributed, scaled with the
mean absolute error but are limited to +/- 20.

Unlike DeMaria et al., we do not access the probability distributions of
historical errors. Instead, we calibrate the parameters (at, ct, and mean absolute
errors for B and D) based on the reported historical errors from the agency
responsible for the issued forecast (see Section This is a simpler methodology
and requires substantially less data (which is also typically not accessible outside
the forecast centers). These historical errors are routinely reported by the forecast
centers (e.g., see Section for information on the data sources used in this paper).
Note that errors in our implementation (neither the error nor the auto-regressive
coefficient) vary with lead time. We calibrate a constant mean absolute error in
combination with a single auto-regression coefficient (see Section [5.5.2] for calibration
and for the influence of simplifications). Moreover, the mean absolute error is
converted into a standard deviation using a fixed relationship assuming a normal
distribution of the error and scaled with the applied time step to allow the user
flexibility in the applied time step.
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The determination of the ensemble members is subsequently based on the sum of
the forecast and random error components. In other words, we add the along-track
and cross-track error to forecasted along- and cross-track. An example of the first 20
ensemble members is presented in Figure panel B. Using this procedure, 10,000
ensembles are generated for each forecast case within this study; however, it is
possible to use fewer ensemble members to reduce the computational cost but at
larger statistical uncertainty (see Section for trade-offs).

INTENSITY REALIZATIONS AND CALIBRATION Similar to the track realization, the
maximum wind speed (intensity) at a specific interval is determined using a random
sampling approach. The starting point is the official forecast of intensity that is
interpolated to include values at all requested times, and a random error component
(VEt) is added.

VE;=e;VTi3+Frna (5.3)

in which VEt at time steps t, et is a constant, VEt-3 are errors of the previous time
step (typically 3 hours) and F is random numbers that are normally distributed,
scaled with the mean absolute error and is limited to +/- 20.

The inland wind decay model adjusts the maximum intensity as a function of
the distance inland, is directly based on DeMaria et al., and is computed
with Equation [5.4] If the intensity of any inland ensemble member exceeds this
predetermined value at any forecast time, the intensity is adjusted to match this
value. Subsequently, the intensity errors are recalculated based on the adjusted
intensity. Additionally, if the intensity of an inland ensemble member falls <7.7 m/s
(15 knots) at any point in time, the TC intensity is reset to zero for all subsequent
periods to overcome any unrealistic reintensifying TCs. All these criteria follow

DeMaria et al., 2009

V; = 20 + 120000350 (5.4)

in which the maximum wind speed (Vi) in knots and the distance to land (D) in
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kilometers (with negative values indicating inland cyclones) are given, the intensity

of an inland cyclone can be determined.

The intensity implementation differs from DeMaria et al., in the following
ways. We remove the dependency that the error scales with wind intensity and
bias correction. Again, the determination of the ensemble members is based on
the sum of the forecasted and random components computed with Gaussian mean
absolute errors and an auto-regressive constant over lead time. Similar to the track
realization, intensity errors are scaled with the time step to overcome any time step
dependency. The influence of the simplifications and the difference compared to
NOAA operational code based on the original DeMaria et al., and DeMaria
et al., implementation are discussed in Section [5.5.2

PARAMETRIC WIND FIELDS After the determination of the ensemble members, the
time and spatial varying wind fields are constructed and written in a polar coordinate
system. Several (horizontal) parametric wind profiles have been presented in the
literature (e.g., Fujita, Chavas et al., [2015), with the original Holland wind
profile (Holland, being the most widely used due to its relative simplicity.
Several codes have been developed for storm surge models to provide time and
spatial wind and pressure fields (e.g., Hu et al., for ADCIRC). Deltares,
has developed the Wind Enhance Scheme (WES) to generate TC wind and pressure
field around the specified location of a tropical cyclone center and given a number
of TC parameters. In its current implementation, information on wind radii (radius
of gale-force winds) can be considered in the Holland et al., formulation
using information either from best track-data or from the proposed relationships of
Nederhoff et al., which increases the accuracy of the method. Furthermore, the
asymmetry of the wind field in a TC is also implemented, as delineated by Schwerdt
et al., Winds throughout this study are converted from 1-minute to 10-minute
using a conversion factor equal to 0.93 (Harper et al., Additionally, tropical
cyclone-induced precipitation can be incorporated using empirical relationships such

as IPET, 2006
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SFINCS SIMULATION AND POST-PROCESSING

After the determination of the wind fields for all the requested ensemble members,
TC-FF runs a hydrodynamic model. In this study, we apply the compound flood
model SFINCS (Leijnse et al., 2021), which lends itself well to a large number of
simulations in a reasonable amount of time due to its reduced complexity. SFINCS
reads the tidal boundary conditions and wind, pressure, and rainfall conditions
from the wind fields. Once all the ensemble member simulations have finished,
probability products regarding wind and flood hazards are created. These products
are created by sorting the results for each grid cell and providing estimates for either
specific intervals (e.g. wind speeds > 35 knots or water depth> 15 cm) or quantile
estimates (e.g., 1% exceedance water level). Only track uncertainty is considered in

these estimates.

5.3. INSIGHTS FROM CYCLONE IDAI: A CASE STUDY

The TC forecasting framework is applied to a historical event that took place in
Mozambique’s Sofala province: Cyclone Idai, in March 2019. Mozambique is a
country located in southeastern Africa (Figure [5.2). The country has a diverse
population of over 31 million people, of which 2 million live in the Sofala province
in central Mozambique. Sofala is primarily rural, with small communities along the
Pungwe and Buzi river deltas (Emerton et al., [2020). Beira is the province’s largest
city, home to over 500,000 people, and an important port linking the hinterland
to the Indian Ocean. The city is prone to flooding, particularly during the rainy
season, which generally extends from October to April or May. This period coincides
with the cyclone season, as cyclones often bring intense rainfall to the region. The
vulnerability of Beira to flooding is exacerbated by factors such as climate change,

rapid urbanization, and limited infrastructure.

Cyclone Idai was an example of a compound flood event that affected large parts
of the coastal delta of Sofala (Eilander et al., . The storm began as a tropical
depression in the Mozambique Channel, causing extensive flooding after its first
landfall in early March. It later intensified as it moved back over the sea, developing
into a tropical cyclone with 10-minute sustained wind speeds of 165 km/h. Idai

made landfall near the port city of Beira, bringing powerful winds, resulting storm
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surge, and heavy rains that caused widespread flooding and destruction. Large areas
were flooded, first around the coast and a few days later, more inland in the Buzi
and Pungwe floodplains. The total rainfall across the five days from March 13-18
ranged from 250-660 mm (NASA GPM, [2019). Over 112,000 houses were destroyed,
and an estimated 1.85 million people were affected (UN OCHA,

world view

Sofala, Mozambique view

SFINCS extent

water level boundary
area of interest

tidal validation
ensembles
best-track

0 20 40
elevation [m+MSL]

Figure 5.2: View of the study site: (A) Mozambique’s Sofala Province is situated in
the southeastern region of Africa in the Southern Hemisphere. (B) Geographical and
hydrodynamic representation of the study area. The SFINCS model extent, highlighted in
Panel B, encompasses a portion of the Sofala region, forced offshore with a water level
boundary, and is validated at seven tidal stations (indicated by orange circles; see Section
8.1). The best track is represented by a solid dark line, with the first 20 ensemble
members 5 days before landfall demonstrated as gray lines. (C) The area of interest is the
Pungwe estuary, situated near the city of Beira. Model validation also takes place at two
high-water-marks close to the city (signified by a purple box), with model outcomes depicted
at three diverse locations across the estuary (marked by circles).
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5.4. RESEARCH METHODOLOGY AND MATERIALS

MATERIALS

ELEVATION DATASETS Several topographic and bathymetric datasets were collected
and combined to develop a merged DEM. Data includes field survey data
points collected during three campaigns in November-December 2020 across Beira,
locally-collected LiDAR with a resolution of 2 meter, bathymetric charts, MERIT
(Yamazaki et al., 90 meter) and GEBCO19 (IHO and BODC, 450 meter).
Careful consideration was given to prioritize specific datasets in space to ensure the
most detailed, recent, and accurate datasets were used in a given area. For example,
survey and LiDAR data is bare earth and prioritized over the usage of MERIT and
GEBCO19. The merged DEM was produced on medium-resolution (50 m) regional
DEM, and a fine-resolution (5 m) local DEM in Beira. For more information on
merging the data, one is referred to Deltares,

FORCING coNDITIONS Tidal boundary conditions were based on harmonic con-
stituents provided by TPXO 8.0 (Egbert and Erofeeva, 2002), and tidal amplitudes
and phases for all available 13 components were applied. The best track data (BTD)
by the Joint Typhoon Warning Center (JTWC) is used throughout this study for
meteorological forcing conditions (Joint Typhoon Warning Center, 2022). Reported
error statistics by the JTWC for the 5-year average from 2016-2020 were used to
inform the ensemble generation (Joint Typhoon Warning Center, [2021). Ensemble
members from TC-FF were compared to 1,000 members produced with the code
from NOAA, NHC, and JTWC based DeMaria et al., and DeMaria et al.,
that is used operationally (Buck Sampson, personal communication; June 5, 2023).

VALIDATION DATA Observed tidal coefficients near the city of Beira were used for
the calibration and validation of the model (van Ormondt et al,, see Figure
for locations). The validation of the event Cyclone Idai (2019) consisted of
comparing both, observed and modeled flood extent in deltas of the Pungwe and
Buzi rivers and high-water marks in the city of Beira. The observed flood extent was
derived from Sentinel-1 synthetic aperture radar data (Eilander et al., [2022); and two
observed high water marks (Deltares, were used, one at Praia Nova, in the
western side of the city, and another one at the open coast beach in the southeast

(see Figure for locations). Correspondingly, values of modeled flood extent and
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high water marks were output at the same locations.

METHODS

AREA SCHEMATIZATION For this study, we employed the Super-Fast INundation
of CoastS (SFINCS) model, which solves the simplified equations of mass and
momentum for overland flow in two dimensions (Leijnse et al., . The goal
was to create one continuous compound flood area model that computes tidal

propagation, storm surge, pluvial and fluvial flooding.

The area schematization builds upon Eilander et al., but varied in three ways.
First, we extended the model alongshore and in deeper water to alleviate the
need to nest in a large-scale regional coastal circulation model and generate tidal
propagation and storm surge within the domain. The model was extended 500
km alongshore from Beira to ensure that a cyclone hitting Beira is fully resolved
within the domain. Moreover, the model was extended into 1000-meter water depth
where wind shear has a negligible impact on the storm surge. Using a quadtree
implementation (e.g., Liang et al., [2008), we applied a variable model resolution
ranging from 8000 to 500 meters. A quadtree is a technique in which the refinement
from one level to another is based on the original cell but divided into 4 smaller
cells with 2 times smaller grid size and allows extending the model setup into
deeper water without having time step restrictions in deeper water based on the
explicit numerical scheme of SFINCS. Second, high-resolution topo-bathymetry and
land roughness were included in the native resolution utilizing subgrid lookup tables
(Leijnse et al., [2020). However, the hydrodynamic computations were performed on
a coarser resolution to save computational time. Up to 10 meter DEM information
was included in the 500 meter grid cells (i.e., factor 50 refinement). Lastly, subgrid
bathymetry features were included to account for maximum dune height based on
the DEM to control overflow during storm conditions around Beira. For both the
subgrid lookup tables and features, the elevation datasets from Deltares, on
5-meter resolution were used (see Section for more information). For the lookup
tables, we linearly interpolated the high-resolution DEM onto the subgrid. For the
subgrid features, the lines element had a resolution of 500 meters and per vertices

the highest point in a radius of 500 meter was used.




128 EVALUATION OF UNCERTAINTY IN OPERATIONAL RISK ANALYSIS

A spatially-varying roughness and infiltration was used based on land elevation. All
points above mean sea level (MSL) have a high Manning friction coefficient of 0.06
s/m1/3, and an infiltration rate of 1.9 mm/hr (typical values from HSGs Group C;
United States Department of Agriculture, 2009), and all other points have lower
friction of 0.02 to represent water and do not have any infiltration. The SFINCS
model was forced with tidal boundary conditions and time- and spatially varying
winds, pressure, and rainfall fields. At the offshore boundary, tidal water levels
were imposed and inverted barometer effect accounted for. We refer to Appendix
for calibration of the tides, in which we show that the area model reproduces
tides with a median MAE of 21 cm. Wind and pressure fields were created with
the Holland wind profile (Holland et al., based on the BTD (see Section
for details). Rainfall for TCs was based on the Interagency Performance Evaluation
Task Force Rainfall Analysis (IPET, method. Comparison with the reported
rainfall total revealed a significant underestimation of cumulative rainfall during Idai
based on IPET. Based on the magnitude of the underestimation, rainfall estimates
by IPET were tripled, resulting in a cumulative rainfall in the area of interest of 495
mm for the best track, which is in a similar order of magnitude as observed (see
Section [5.3). For fluvial processes, rather than using data sources like river discharge
measurements or a hydrological model, our model only relies on a rain-on-grid with
infiltration methodology to simulate surface runoff and its subsequent accumulation,

thus providing an first-order estimate of fluvial flooding.

SIMULATIONS PERIODS The validation of the area schematization focused on two
time periods. First, 3 spring-neap cycles (January 13, 2022, until February 26, 2022)
were used for the tidal calibration and validation in the area of interest (see Appendix
[6.7). Second, Idai was hindcasted forced with the JTWC BTD and compared to
observational data for flood extent and high-water levels (Section [5.5.1). After
validation of the area schematization, the new forecasting methodology introduced
in Section was applied. Various lead times ranging from 1 to 5 days before the
second landfall for 10,000 ensemble members were computed (Section |5.5.3).

Model runs were performed on the Deltares Netherlands Linux-based High-
Performance Computing platform using 10 Intel Xeon CPU E3-1276 v3. The
simulations were run on CPU with openMP enabled to utilize the 4 cores per Xeon
processor. On average, a 7-day Idai simulation took about 4 minutes on a single

processor. Running all 50,000 events took 15 days using all 10 processors.
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MODEL SKILL Several accuracy metrics were calculated throughout this study: model
bias, mean-absolute-error (MAE; Equation [5.5), root-mean-square-error (RMSE;
Equation [5.6), unbiased RMSE (uRMSE; RMSE with bias removed from the predicted
value). These error metrics are used for comparison in water levels, wind speed and

track errors.

1
MAE=NZ(|y,~—xi|) (5.5)

/1
RMSE = NZ(yl-—xi)z (5.6)

where N is the number of data points, yi is the i-th prediction (modeled) value, xi is
the i-th measurement.

Moreover, skill is quantified by binary flood metrics (Wing et al.,, 2017). The model
output (M) is converted to one of two states: wet (1) or dry (0), using a commonly
used threshold of 15 cm (e.g., Wing et al, and compared to the Sentinel
benchmark data (B). The Critical Success Index (C; Equation accounts for
both overprediction and underprediction and can range from 0 (no match between
modeled and benchmark data) to 1 (perfect match between modeled and benchmark
data).

oo M, B,
B MiB;+ MyB,. M;By

(5.7)

For the comparison of cumulative distribution functions (CDF) of cross-track,
along-track and intensity, we also applied the Continuous Ranked Probability Score
(CRPS; Matheson and Winkler, . CRPS measures how good forecasts are in
matching observed outcomes; where CRPS = 0, the forecast is wholly accurate, and

CRPS = 1, the forecast is wholly inaccurate.

o0

CRPS(F,x):f [F(y)-Fo]*dy (5.8)

—00
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where F(y) is the CDF is associated with an empirical probabilistic reference and

prediction.

ANALYSIS METHOD The analysis of forecasting results was undertaken using several
methods. Initially, extreme wind speeds and water levels were assessed by charting
them as time-series data, inclusive of quantile estimates such as the 95% confidence
interval (CI). Following this, the maximum values registered during the simulation
were organized into cumulative distribution functions (CDFs). This process offered
insights into their exceedance probability. Finally, the mean probability of flooding
was computed. The method to derive this value entailed counting the instances
where computational cells registered a minimum of 15 cm of water. Only cells

positioned above mean sea level (MSL) were incorporated into the area estimates.

5.5. RESULTS

This section is organized into three parts, each addressing a crucial aspect of
our study on Cyclone Idai’s compound flooding. First, we assess the model’s
accuracy in simulating tidal, storm surge, and combined pluvial and fluvial impacts
(Section [5.5.1). Next, calibration of TC-FF to average errors for the along-track,
cross-track, and intensity for the Southern Hemisphere and validation of TC-FF
for Idai specifically to the implementation from NOAA, NHC and JTWC that are
used operationally is presented (Section [5.5.2). Lastly, we delve into forecasting
uncertainties and their effects on flood predictions, using ensemble simulations with

various lead times (Section |[5.5.3).

5.5.1. VERIFICATION OF NUMERICAL MODELING

Computed water levels near Beira show the strong tidal modulation and the
wind-induced storm surge during the landfall of the cyclone (Figure — panel A;
blue line for water level and vertical line for moment of landfall). Based on the
difference between the predicted astronomic tide and the total modeled water level,
we estimate a storm surge of >3.5m due to the 45 m/s wind speeds (Figure

— panel B). The storm surge at Beira is driven by wind setup as well as pluvial
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and fluvial drivers. Deeper in the estuary, in the Pungwe flood plains, water levels
peaked several days after landfall due to intense upstream rainfall and subsequent
runoff. Water levels near Buzi Village seem to be a combined result of first marine

and second riverine-driven water levels.
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Figure 5.3: Time series of water levels, wind speed, and precipitation within the study area.
(A) Computed water levels at various locations (blue for Beira, red for Buzi village, and
green for upstream in the Pungwe estuary (see Figure - panel C for their location) and
the black dashed line representing the astronomical prediction at Beira. (B) Simulated wind
speed (blue) and rainfall rate (red) over the same period. Idai made landfall on March 15,
and its powerful winds and rainfall resulted in marine flooding at Beira and riverine-driven
flooding upstream in the estuary. The vertical line represents the moment of landfall.

Validation of the SFINCS model for the observed extent (blue colors in Figure
- panel A) gives confidence in the ability to simulate the compound flooding
(Figure [5.4). The model can reproduce the Sentinel-1 derived extent with a Critical
Success Index of 0.59. This skill score is comparable to previous work by Eilander
et al., albeit somewhat lower. Based on the differences between the modeled
and satellite-derived extent, it becomes apparent that the model underestimates the
flooding around the Buzi River (false negative; orange colors in Figure around
660-7800 km). We hypothesize this is due to the lack of river inflow related to an
underestimation of rainfall further upstream and/or overestimation of infiltration
due to soil saturation which is not considered. Moreover, the comparison with
satellite-derived flood extent indicates an overestimation of the flooding at Beira
(false positive; red colors in Figure [5.4). Here, we suspect that the benchmark data
might be off, and the coastal flooding already receded before the Sentinel data

recorded the extent. The observed high-water marks near Beira ranged from 3.6 m
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within the estuary to 2.9 m+MSL at the open coast and are reproduced by SFINCS
with respectively 3.8 and 3 m+MSL. This difference suggests a positive bias of the
model results at the coast of 10-20 cm, similar to the tidal validation (see Appendix
[5.7), which revealed a median MAE of 21 cm.
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Figure 5.4: Maximum computed water depth (Panel A) and binary skill of flood extents for
Idai (Panel B). Water depths are downscaled from the model resolution to the 10x10 meter
resolution of the topo-bathymetry. The binary skill evaluation (Panel B) assists in determining
the model’s accuracy and dependability, and the Sentinel-1 radar data is used as a reference
to determine skill. A true-positive (T-P) outcome denotes a correct flood prediction by the
model compared to Sentinel-1 derived extent, whereas a false-positive (F-P) occurs when the
model forecasts a non-existent flood. In contrast, a false-negative (F-N) indicates where the
model overlooks an actual flood, and a true-negative (T-N) result occurs when the model
accurately predicts the lack of a flood event. The model produces large-scale flooding, which
is largely also observed in the data, but local differences of over- and underestimation exist.
The coordinate system of this figure is WGS 84 / UTM 36 S (EPSG 32736). ©Microsoft.

5.5.2. CALIBRATION AND IMPACT OF SIMPLIFICATIONS

This study used JTWC-reported errors for the along-track, cross-track, and intensity
for the Southern Hemisphere to calibrate our methodology (Joint Typhoon Warning
Center, [2021). For other case studies, for example, based on different forecasting
agencies or in other ocean basics), these reported errors can be used instead.
Calibration is performed by minimizing the square-root difference between computed

and reported mean absolute values for various lead times using the Nelder-Mead
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method. This effort resulted in mean absolute errors for B and D of 68.5 and 55.3
km and autoregression coefficients a;, c¢;, of 1.214 and 1.181 (Figure - panels
A and B) for the along-track and cross-track. Moreover, we calibrated the mean
absolute error and regression coefficients for the intensity, which resulted in mean

absolute errors for F of 9.28 m/s and autoregression coefficient e; of 0.624 (Figure

- panel C).
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Figure 5.5: Comparison of calibration results for the probabilistic forecasting method TC-FF
(solid blue line) and the Joint Typhoon Warning Center (JTWC) reported error statistics based
on the 5-year average (2016-2020) in the Southern Hemisphere (dashed orange line). Panel
A represents the along-track error, Panel B demonstrates the cross-track error, and Panel C
exhibits the wind speed or intensity error. Modeled errors are based on 1,000 ensemble
members. Modeled absolute average errors are similar to JTWC.

Errors produced by TC-FF are compared to the implementation from NOAA, NHC
and JTWC that are used operationally. Minor differences between the TC-FF and full
implementation based on DeMaria et al., and DeMaria et al., exist and are
attributed to the simplifications used in the error distribution (including the lack of
GPCE). The distribution in along-track, cross-track, and intensity error is typically in
the same order (Figure [5.6), which is confirmed by a median CPRS over various lead
times from 0 to 120 hours of 0.07, 0.05, 0.10 and median MAE of 37 km, 21 km, and
7 m/s of for respectively the along-track, cross-track, and intensity. At the same time,
TC-FF has by design no bias corrections in terms of cross-track, along-track and
intensity errors, whereas the operational system does, leading to the positive median

along-track error in red compared to the blue line in Figure and a median bias
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of -16 km. Besides the median estimates, the interquartile range (25-75%) and 95%
CI match relatively well for the along-track and cross-track errors. Larger differences
are found for the intensity error. In general, the wind intensity error looks visually
erratic and doesn't start at zero for no lead time, which is the result of the inland
wind decay model. Both JTWC and TC-FF have a negative bias due to the effect of
land, but TC-FF does have a median bias of +6.7 m/s compared to JTWC, suggesting
that TC-FF overestimates. However, more substantial differences are found for the
interquartile range and 95% CI. These findings for the along-track, cross-track, and
intensity are supported by a more detailed analysis of the CDF for the different
parameters as a function of lead time (Figure Figure Figure [5.14). For
the along-track and cross-track, we observe an increase in the MAE and uRMSE as
a function of lead time but a decrease in the CPRS. The increasingly larger error
distribution influences this pattern. Moreover, TC-FF produces Gaussian-distributed
errors while the JTWC error distribution differs since it is based on historical error
distribution and adjusted based on the GPCE. Similar to Figure larger differences
are found for the intensity error, which is influenced by the bias correction that

increases with lead times.

5.5.3. FORECASTING INSIGHTS FROM CYCLONE IDAI

This section presents the application of forecasting Idai using the TC-FE

UNCERTAINTY THREE DAYS BEFORE LANDFALLThe TC-FF method with 10,000
ensemble members is applied to the case of Cyclone Idai. The results reveal that
accounting for the uncertainty of the TC track and intensity of eye three days before
landfall results in considerable uncertainty regarding wind speeds and water levels
near Beira (Figure or the region (Figure [5.8). In particular, the wind speeds
show a 95% CI of about 7-40 m/s at the moment of landfall (Figure - panel A)
versus 45 m/s or a Saffir-Simpson Hurricane Wind Scale (SSHWS) of 2 of the best
track. Moreover, TC category 1 wind speeds could occur as early as March 14 at
07:30 UTC or as late as March 15 at 11:10 UTC. This spread of possible maximum
wind speeds at Beira results from the large uncertainties in intensity and a difference
in landfall location and time. Based on the same model simulations, the empirical
cumulative distribution function (CDF) of the maximum wind speed at Beira ranges

from 8.8 to 59.2 with a median wind speed of 25.5 m/s, while the best track has a
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Figure 5.6: Comparison of validation results for the probabilistic forecasting method TC-FF
(blue line) and the Joint Typhoon Warning Center (JTWC) operational product (red line).
Panel A represents the along-track error, Panel B demonstrates the cross-track error, and
Panel C exhibits the wind speed or intensity error. Errors computed for both the TC-FF and
JTWC are based on 1,000 ensemble members. Solid lines are median estimates, shaded areas
the interquantile range (25-75% CI) and dashed line the 95% CI. TC-FF and JTWC produce
broadly similar error distributions for different lead times.

5.9% exceedance probability (Figure - panel B). Consequently, water levels vary
greatly (Figure - panel C). For example, ensemble members can exhibit a sizeable
wind-driven setup due to TC wind blowing from offshore into the estuary, pushing
water up in the estuary and at Beira. For landfall locations west of the estuary, the
wind blows offshore, resulting in a large set-down. Note that Beira is in the Southern
Hemisphere, and due to the Coriolis effect, TCs spin clockwise. The highest water
levels occur when high tide and wind-driven setup coincide, which explains the
three peaks in the 95% CI water level given the semi-diurnal tide and the highest
possible wind speed for 1.5 days (Figure - panel C). The maximum water levels
are dominated by the tide except in the situation of cyclone impact (see the CDF in
Figure - panel D and the minimum value of 3.5m+MSL around 90%, which is

influenced by the tide and time window over which it is determined). The specific
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track of Idai resulted in relatively extreme conditions compared to other possible
combinations (both for winds and water levels). A similar pattern can be observed
in the spatial maps shown in Figure The average probability of flooding in the
area is 26%, with higher probabilities of flooding found in the lower-lying portions of
the estuary (note we are excluding points below MSL; Figure - panel A). The 1%
exceedance flood depth threshold shows a large extent and is quite similar to the
computed extent due to Idai (see Figure - panel A for comparison with Figure
- panel B). The main difference is that there is more flooding near the city of
Beira and somewhat less near Buzi Village. The match between the 1% exceedance
flood depth and the best track with Idai suggests that the event was relatively severe
and implies that even though many other potential scenarios could have unfolded,
they likely would not have resulted in the same extensive flooding caused by Idai.
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Figure 5.7: Multi-panel Analysis of wind and water Levels three days before landfall: (A)
time series of wind speeds, (B) maximum wind speeds, (C) time series of water levels near
Beira, and (D) maximum water levels. Data is derived from 10,000 ensemble members (black
transparent line; every 10th plotted) with red shading representing the 95% CI. The best
track (blue line) and the Saffir-Simpson Hurricane Wind Scale are included for comparison
(panels A and B only). There is substantial uncertainty in wind speeds and water levels near
Beira three days prior to landfall.
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Figure 5.8: Probabilistic flood analysis for Cyclone Idai three days before landfall: (A) Spatial
distribution of flooding probability; (B) Corresponding 1% exceedance water depth estimates,
highlighting areas at most significant hazard. Results in panel A are determined from 10,000
ensemble members on the original 500-meter model resolution, while water depth in panel
B is downscaled to the original 10x10-meter bathymetry resolution. Higher probabilities of
flooding are found in the lower-lying portions of the estuary. The coordinate system of this
figure is WGS 84 / UTM 36 S (EPSG 32736). ©Microsoft.

INFLUENCE OF SAMPLING SIZE As described by Cashwell and Everett, and
DeMaria et al., the precision of Monte Carlo techniques is proportional to the
number of ensemble members (N). The convergence rate typically shows a slower
progression than 1/N, constituting a limitation intrinsic to all Monte Carlo methods.
To investigate the convergence rate and the error induced by employing a finite
number of ensemble members, the Idai forecasting case three days prior to landfall is
used, analogous to the preceding section, albeit with a variable number of ensemble
members. Additionally, bootstrapping is employed to approximate convergence rates
and the accompanying uncertainty.

The estimation of the 95% exceedance maximum water levels in proximity to
Beira exhibits convergence with the number of ensemble members, albeit with
considerable deviations compared to a fully converged solution with 10,000 members
when implementing a low number of ensemble members (Figure - panel A). For
instance, employing merely 50 ensemble members results in an interquartile range

(25-75%) of -0.28 to +0.10 m. Increasing the number of ensemble members reduces
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this sampling uncertainty to a range of -0.09 to +0.06 m for 200 ensemble members.

Similarly, the standard deviation for several quantiles of maximum water level
estimates at Beira reduces with more ensemble members. It exhibits a similar
pattern from higher to lower quantiles (Figure - panel B). In essence, estimating
rare events necessitates executing more ensemble members to attain comparable
convergence. This study found that the 95% exceedance maximum water level at
Beira when utilizing 200 ensemble members has a standard deviation of 21 cm (blue
line Figure - panel B). This level of convergence seems acceptable since it is in a

similar order as the skill of the hydrodynamic model (see Section [5.5.1).

The probability of error in flood potential is expressed as a function of N on a
log-log plot (Figure - panel C). Compared to a fully converged solution with
10,000 members, for N=200, the mean error constitutes 0.95%, and the maximum
error amounts to 1.53%. Note that this estimate is without considering the model
error. In the log-log diagram, the errors exhibit near-linear correlations with N and
could serve as a basis for determining the number of ensemble members needed for
a specified confidence level. For instance, to achieve a maximum error of 1% in

flood probability, it would be necessary to utilize 500 ensemble members.
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Figure 5.9: Sampling size effects on flood estimation accuracy. (A) Quantiles of sampling error
for the 5% exceedance water level. (B). Standard deviation of 75%, 95%, and 99% quantiles,
illustrating the uncertainty in estimation. (C) Comparison of maximum and average error in
flood probability predictions. All panels were generated using 10,000 ensemble members and
a 1000-bootstrap resampling approach. Using more ensemble members reduces the sampling
uncertainty.
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IMPORTANCE OF LEAD TIME Thus far, the probabilistic TC forecasting framework has
been implemented three days prior to the landfall of Idai. Nevertheless, the forecast’s
results fluctuate with lead times, consequently influencing the associated evaluations
of water levels (Figure and flood probabilities (Figure [5.11).

The predicted water levels (tide + surge) vary with lead times (Figure - panels A
and C). Specifically, at a lead time of five days before landfall, an (unsurprisingly)
larger spread between the ensemble members is observed compared to lead times
of, for example, one or three days. Moreover, as landfall approaches, the time series
converges since increasing ensemble members produce highly similar predictions.
For example, notice how individual ensemble members 1 day before landfall show
similar storm surges and still water levels (i.e., the concentration of lines which
becomes more apparent in Figure |5.10). Moreover, the 5% and 95% exceedance
values become less spread out and more peaked around landfall (dashed lines in
Figure [5.10). This convergence is more apparent for the storm surge. The CDF of
the maximum storm surge levels increases with reducing lead time (Figure [5.10] -
panel B). For example, the median storm surge increases from 0.5m five days before
landfall to 0.9 and 2.0m for lead times of three days and one day, respectively (notice
the increasing median estimate in the CDF plot from 5 to 1 day in Figure -
panel B). This increase in maximum storm surge shows the increasing certainty that
the TC will land near Beira. However, for other locations, the opposite may occur as
the landfall shifts away from it. The still water levels are influenced by both tidal
motions and the influence of the TC (Figure - panel C). This strongly influences
the maximum computed still water level (Figure - panel D). For instance, the
lowest maximum water level for all simulations is around 2 m above MSL, resulting
from the maximum tidal range rather than the TC itself. The 95th quantile of the
maximum still water level is 3.4 m + MSL five days prior to landfall, which increases
to 3.6 and 4.0 m+MSL for lead times of three days and one day, respectively. The
best track of Idai is included as a reference and estimated to have a 9% probability

of exceedance 1 day before landfall.

A large portion of the Sofala province faces a minor flood risk five days before the
actual landfall. The flood probability for the estuary near Beira increases as lead
times reduce (Figure - panel B). In particular, the average probability of flooding
five days before landfall is 15%, increasing to 17 and 24% for lead times of three

and one day, respectively. Conversely, for the entire model domain, a probability of
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greater than 1% flooding declines from 97 to 94 and 64 km2 for lead times of five,
three, and one day (Figure - panel A). In other words, five days before landfall,
less confidence in predictions translates into more spatial variability on flooding
probability tied to a larger impact area. Closer to the actual landfall, there is more

certainty over which area will be affected.
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Figure 5.10: Forecasted water levels in Beira for 1-5 day lead times: temporal evaluation and
cumulative distribution. Panel A and C: Time series illustrating the forecasted water levels
in proximity to Beira with lead times ranging from 1 to 5 days prior to landfall showcasing
both individual ensemble members (solid transparent lines; every 100th plotted), tide-only
(brown), best-track (black) and quantile estimates (95% dashed lines). Panels A and C use the
same colors and line styles. Panel B and D: Cumulative distribution function (CDF) showing
the maximum water levels in ascending order for all ensemble members, providing insights
into the probability of occurrence for various water level thresholds. Panels B and D use the
same colors. Panels A and B show the storm surge levels (computed still water levels minus
predicted tidal levels), while Panels C and D present the still water level (tide and surge).

5.6. DISCUSSION

This paper describes a new probabilistic method to forecast TC-induced coastal

compound flooding by tide, surge, and rainfall using Monte Carlo sampling. Due
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Figure 5.11: Evolution of the flood probability prior to landfall: Panels A-E depict the spatial
distribution of flooding probabilities at 5, 4, 3, 2, and 1 day(s) before landfall, respectively.
Color gradients represent the varying probability. The top panels focus on the entire area
simulated and the bottom panels on the Pungwe and Buzi river deltas. With decreasing
lead time, the area that could be affected decreases while there is an increased probability
of flooding near Beira. The coordinate system of this figure is WGS 84 / UTM 36 S (EPSG
32736). ©Microsoft.

to the limited number of observations on TC evolution, for short-term operational
analyses, an autoregressive technique that imposes potential errors on top of the
forecasted track is preferred over those parametric sampling techniques used for
long-term strategic risk assessments based on historical records (e.g., Nederhoff
et al., [2021a). In addition, for the same scarcity of observation, there is limited
knowledge of the underlying joint distribution between TC and ocean characteristics,
which makes Monte Carlo sampling preferred compared to sampling techniques
that are highly efficient for complex multivariate patterns such as cluster analysis
(e.g., Choi et al., and MDA methods (e.g., Bakker et al., [2022). However,
exploring the possibility of increasing efficiency via the aforementioned methods is
important, especially since the error space increases as a function of lead time, and
estimating these events requires increasing amounts of ensemble members (Figure

5.9). However, this is a topic that requires an in-depth analysis and is beyond the
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scope of the present study.

Compared to the implementation of DeMaria et al., and DeMaria et al.,
, the ensemble generation is simplified by removing bias corrections, applying a
single normal error distribution calibrated on historical errors (Figure [5.5), and
does not account for the uncertainty of the track forecasts on a case-by-case basis
via GPCE. While we acknowledge these simplifications, this method does make it
possible to account for TC forecasting errors for any ocean basin based on reported
average historical errors alone. Nevertheless, the behavior of a specific tropical
cyclone (TC) does not necessarily conform to the "average" pattern, and differences
between the operational JTWC model were found (Figure [5.6). For Beira, we found
minor differences in the comparison of TC-FF and JTWC operational ensembles
that do account for the uncertainty of the track forecasts on a case-by-case basis.
Thus the case study presented in this paper, suggests that the universal historical
error statistics versus a TC-dependent error sampling might be acceptable, however,
follow-up work will be needed to test if this findings holds for other TCs. Moreover,
the system only accounts for uncertainty in track parameters and does not account
for uncertainty in, for example, rainfall or computed storm surge. The implications
of these assumptions on the precision and predictive proficiency of our approach
for coastal compound flooding remain undetermined. Our implementation has been
recently integrated into an operational system tailored for the contiguous United
States. Verification of the reliability of this operational system is currently pending.
Regardless, TC-FF compares well with the predictions provided by ECMWEF of Idai
that showed a probability of 50 to 90% of severe flooding four to one day before
landfall (Figure 5.10). We hypothesize that track uncertainties dominate several
days before landfall while <1-day other sources of uncertainty start to become more

important and should ideally be accounted for.

In the introduced methodology, we apply the compound flooding model SFINCS.
The validation gave confidence that the hydrodynamic model reproduces the main
tidal motions and flooding during Idai. Differences did exist compared to the
(limited) validation data (Figure . Additional data sources to assess the model’s
spatiotemporal accuracy and reliability in simulating the compound flooding event
would be advantageous but were unavailable (when this study was performed).
The model skill could be improved by including additional wind radii information

in the parametric wind model (e.g. radius of gale-force winds along different
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quadrants) and more accurately resolving on-land winds, rainfall, and infiltration
processes. For example, Done et al., present a methodology to account for
terrain effects by adjusting winds from a parametric wind field model by using a
numerical boundary layer model. Here, we applied the IPET empirical relationship
that relates pressure drop to rainfall intensity. We chose IPET over other methods
since this relatively simple method demonstrated the highest skill at reproducing
storm-total precipitation in Brackins and Kalyanapu, However, deployment
showed the necessity to triple the rainfall rate due to severe underestimation of the
total rainfall and associated flooding. We hypothesize this does influence model
skill from SFINCS but suspect limited influence in results geared towards TC-FF
applicability and sensitivity regarding sample size and lead time. Improvement
(deterministic or stochastic parametrizations) of TC rainfall could overcome this
limitation. For example, we acknowledge that there are other computationally
efficient TC rain models in the literature that might perform better (e.g., Lu et al,,
and are exploring incorporating these methods in TC-FE Moreover, SFINCS
was run with a constant infiltration rate and does not account for drainage systems,
fluvial discharge from the large catchment and flood protection measures besides the
frontal levee. It is also unknown how the topo-bathymetry that was collected before
Idai influenced results. Lastly, the effects of waves (e.g., setup, runup, overtopping)
and morphological change were not considered. All these limitations affect the
model skill and could explain some mismatches observed compared to Sentinel-1
data and high-water marks at Beira. However, the computational efficiency of
SFINCS allowed us to run thousands of ensemble members on limited computational
resources. We accept the loss of some model accuracy with this gain of speed. For
future developments, we do envision accounting for these uncertainties in addition

to variability in track parameters.

The focus of the development of TC-FF has been geared to the computation of
overland flooding. However, TCs pose significant hazards through both water and
wind. A study by Rappaport, indicated that from 1963 to 2012 in the United
States, approximately 90% of fatalities associated with tropical cyclones were due
to water-related incidents. The wind-related fatalities were about 8%. This does
not provide insight into the cause of damage associated with landfalling TCs, nor
does it provide insight into how these ratios vary across the globe. Regardless,
TC-FF does provide the possibility to estimate extreme wind speeds and link this to

potential damage as an additional data product. Including wind damage as part of
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our framework is something we are planning to work on in the future. Moreover,
while this study was written from an operational short-term risk analysis perspective,
the same methodology can also be used within strategic long-term risk analysis to
explore perturbations to the track and perform ‘what if’ sensitivity testing to coastal

flooding (e.g., Rye and Boyd, [2022).

5.7. CONCLUSION

A new method and highly flexible open-source tool was developed to perform
probabilistic forecasting of tropical cyclone-induced coastal compound flooding.
The Tropical Cyclone Forecasting Framework, TC-FE computes a set of ensemble
members based on a simplified DeMaria et al., method. In particular, TC-FF
uses gridded time- and spatially-varying wind and pressure fields or forecasted tracks
and combines this with historical observed error on the along-track, cross-track, and
intensity. Subsequently, the tool creates a temporally and spatially varying wind
field, including rainfall, to force a computationally efficient compound flood model.
This approach allows for the inference of probabilistic wind and flood hazard maps
calibrated to any ocean basin in the world with limited computational resources.
In contrast to the current practice, TC-FF allows uncertainty analysis using large
ensembles produced with physics-based models, narrowing down confidence bands

on forecasting coastal compound flooding focused on operational TC risk analyses.

The validation of the quadtree SFINCS model for Mozambique’s Sofala province
showed reliable skill in terms of tidal propagation in the area of interest (median
MAE of 21 cm), including good skill in reproducing the observed flood extent for
the case of the flooding caused by Cyclone Idai (2021). The model was able to
reproduce the storm surge generation during landfall and flooding near the city of
Beira, including the subsequent compound flooding resulting from rainfall runoff
in the Pungwe estuary (critical success index of 0.59). Moreover, the model runs
efficiently with a wall clock time of 4 minutes for a 7-day event allowing it to be

deployed in probabilistic operational assessments when using multiple cores.

TC-FF was calibrated with the average reported errors for the southern hemisphere via
the Nelder-Mead method to determine the mean absolute errors and autoregression
coefficients. A comparison between TC-FF and JTWC (based on the complete
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implementation of DeMaria et al., and DeMaria et al., revealed minor
differences. In particular, for various lead times from 0 to 120 hours, a median
Continuous Ranked Probability Score (CRPS) of 0.07, 0.05, 0.10 and median MAE of
37 km, 21 km, and 7 m/s for respectively the along-track, cross-track, and intensity
error were found. These findings give confidence that the TC-FE including the
simplified DeMaria et al., implementation, can be used for more generalized

applications in data-scarce environments.

TC-FF provides valuable insights into the uncertainty of wind speeds, water levels,
and potential flooding due to Idai, revealing the impacts of track and intensity
uncertainties. This is demonstrated in the wide array of possible maximum wind
speeds and significant fluctuations in water levels, which are primarily affected by
tidal influences and the cyclone. For instance, even just three days prior to landfall,
there’s a broad spread in the predicted flood areas. This suggests that there is still a
significant chance that Idai may not hit the anticipated area or may not generate a

substantial storm surge.

The precision of forecasts is directly related to the number of ensemble members
used. A mean error in flood probability of less than 1% and <20 cm sampling errors
for the 1% exceedance water level at Beira required 200 members. Based on that,
we determine that at least 200 ensemble members are needed to get reliable water
levels and flood results three days before landfall. A higher number of ensemble
members reduces sampling uncertainty and increases the accuracy of water level

and flood potential estimates.

The lead time before landfall has a considerable impact on the forecast’s precision.
As the lead time decreases, the variability of forecasts diminishes, and the forecasts
converge to similar predictions. Similarly, the probability of flooding in certain areas,
such as the estuary near Beira, increases as the lead time shortens, providing more

certainty over the areas that will be affected by the event.

TC-FF offers a significant advancement compared to the current status quo of
a single deterministic simulation when forecasting tropical cyclone compound
flooding hazards. This approach facilitates a comprehensive understanding of
complex interdependencies and uncertainties. By quantifying the likelihood of

various outcomes (e.g. by estimating the probability of major flooding in a given
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neighborhood days before landfall) probabilistic methods enable stakeholders to
make more informed decisions, allocate resources better, and enhance preparedness

and resilience in the face of these catastrophic natural phenomena.

APPENDICES ASSOCIATED WITH THIS CHAPTER

TIDAL CALIBRATION AND VALIDATION

A tidal calibration was performed on the SFINCS computed tidal constituents
compared to the tidal constituents at Beira. Constituents with an amplitude of
more than 5 cm (M2, S2, N2, K2, and K1) were adjusted in terms of amplitude
(multiplication) and phase (addition). Amplitude changes varied between 0.84 and
1.07 while phase difference changed on average by 40o. These calibration steps
of adjusting the tidal constituents substantially reduced tidal errors at the Beira
from a MAE of 43 to 17 cm. Secondly, model skill in reproducing tidal amplitudes
and phases is assessed at 7 tide stations across the area of interest (including the
calibration station of Beira). The SFINCS model reproduces tide with a median MAE
of 21 cm, median RMSE of 25 cm, and median difference in M2 and S2 amplitude
and phase of respectively -10 and -1 cm and -10 to -12o0 (median values computed
over the different stations). Our hypothesis is that the reduction in tidal error
observed at Beira throughout the calibration process might be due to a misalignment
in the amplitudes and phases of the TPXO model which were used to generate the
tidal boundary conditions (see Section [5.3). Presumably, the bathymetry contributes

to the error observed in the validation process.
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Table 5.1: Evaluation of model proficiency in replicating tides near the Sofala province.
Stations are ordered south to north. Columns one and two present the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE), respectively, as error metrics for the comparison
between observed and simulated tidal time series. The final four columns display the
discrepancy (A) in amplitude (A) and phase difference (¢) for the two most prominent tidal
constituents in the area (M2 and S2), where A is calculated as the difference between
observed and simulated values

Name MAE [m] RMSE [m] AM2A [m] AM2 ¢ [o] AS2 A [m]
Bazaruto 0.13 0.15 -0.1 -7 0.01
Bartolomeu | 0.12 0.15 -0.14 1 -0.11
Chiloane 0.3 0.41 0.2 -10 0.08
Beira 0.17 0.2 0 0 0
Chinde 0.21 0.25 -0.08 -13 -0.01
Quelimane 0.26 0.32 -0.14 -15 -0.09
Pebane 0.21 0.25 -0.14 -11 -0.09
Median 0.21 0.25 -0.1 -10 -0.01
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Figure 5.12: Comparison between the cumulative distribution function (CDF) of the
along-track-error (ATE) for JTWC (red; reference) and TC-FF (blue; modeled). The different
panels represent different lead times.
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Figure 5.13: Comparison between the cumulative distribution function (CDF) of the
cross-track-error (CTE) for JTWC (red; reference) and TC-FF (blue; modeled). The different
panels represent different lead times.
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Figure 5.14: Comparison between the cumulative distribution function (CDF) of the intensity
error (VE) for JTWC (red; reference) and TC-FF (blue; modeled). The different panels
represent different lead times



CONCLUSIONS AND WAY FORWARD

This dissertation seeks to determine the extent to which improved tropical cyclone
(TC) descriptions of geometry, tracks, and statistical uncertainty can enhance the
reliability of forecasts and the accuracy of risk analysis for coastal flood assessments.
In this synthesis, the main conclusions and findings are summarized in view of
the objective defined in Chapter Additionally, an outlook is given, addressing

remaining challenges and future directions of research.

6.1. CONCLUSIONS

The main insights are structured as responses to the research questions laid out in
Chapter For every research question, an initial brief response (emphasized in

italics) is provided, followed by a more detailed description of the findings.

Research question 1. How to accurately describe TC geometry and winds with
parametric relationships?

TC geometry can be described accurately when using estimates of the radius of
maximum winds (RMW) and the radius of gale force winds (AAR35). Observed
estimates for RMW or AAR35 or relationships defined in this thesis are accurate

sources. When TC geometry can accurately be defined, parametric wind profile models
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can reproduce time and spatially varying winds.

In Chapter [} historical data from TCs were used to derive simple but universal
equations to estimate TC geometry when the radius of maximum winds and/or
radius of gale force winds is unknown. The relationships derived had a higher
accuracy with respect to other well-known empirical relationships available from
literature (e.g. Vickery and Wadhera, and Knaff et al., and relate geometry
to wind speed and latitude. Moreover, these relationships include a stochastic
description for both the radius of maximum winds (RMW) and the radius of gale
force winds (AAR35). This allows the quantification of the prediction interval around

the median estimates, making the estimation more useful.

The new relationships, in combination with the Holland wind profile model (Holland
et al., can accurately reproduce the (outer) azimuthal wind speeds from the
QSCAT-R database (Chavas and Vigh, [2014). This gives confidence that the computed
TC wind speeds can be used in computational methods for assessing coastal flooding
in both operational and risk assessments. However, when no additional information
on wind radii was used to calibrate the wind profile, the surface wind was not well
resolved.

Research question 2. How to reliably account for TCs in coastal flood risk

assessments?

For reliable coastal flood risk assessments a sufficiently large number of events needs
to be included to accurately assess the flood risk. This importance stems from the
sensitivity of coastal impacts to the specific characteristics and trajectories of TCs. To
capture the full range of potential responses, it’s crucial to account for the variability
in TC behavior. There are several approaches available in the literature for TCs but
the presented Monte Carlo-based approach in which artificially generated paths that
TCs might follow (synthetic tracks) is easy to use since each track has the same storm
probability and allows for reliable flood risk assessment when used in combination

with a computationally efficient method to asses coastal flooding.

In Chapter |3} an open-source method for the generation of synthetic tracks was
introduced called the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE).
TCWiSe is an empirical track model (ETM; Vickery et al.,, [2000) and is set up as a
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Markov model where (historical) meteorological data serve as a source to compute
synthetic tracks. In particular, the main variables it keeps track of are location
(latitude and longitude), time, maximum sustained wind speeds (vmax), forward
speed (c), and heading (0).

The validation study showed accurate skill in terms of track initialization and
evolution compared to the historical Best Track Data (BTD). For example, an
assessment of the goodness of fit showed that normalized errors are generally smaller

than 10%. Also, extreme wind speeds showed good agreement.

The main advantage of this approach is that many more (artificially generated) TCs
are included in the analysis compared to the limited record length of observed TCs
worldwide. Including more estimates of TC conditions will overcome any sampling
biases and result in more reliable quantification of coastal hazards (e.g., extreme
storm surge levels and waves) and consequent risks and damages resulting from
these hazards.

Research question 3. What is the contribution of TCs in strategic coastal flood
risk assessments?

The contribution of TCs varies worldwide depending on their frequency and
magnitude. For a case study in the Southeast Atlantic Coast of the United States,
yearly flood impacts are two times as likely to be driven by extratropical cyclones than
TCs. On the other hand, TCs are thirty times more likely to affect people during rarer
100-year events than extratropical cyclones and contribute to more than half of the
regional flood risk.

In Chapter [4 this question was addressed using a large-scale flood hazard and
impact assessment across the subtropical Southeast Atlantic Coast of the United
States, from Virginia to Florida. The physics-based hydrodynamic modeling used was
based on the lower-fidelity model SFINCS (Leijnse et al., that allowed for the
simulation of tens of thousands of emulated tropical cyclones (TCs) and extratropical
cyclones (ETCs, or migratory cyclones/storms of middle and high latitudes). The
model framework developed could skillfully reproduce coastal water levels with

errors for tides of 8.3 cm and storms with 11.9 cm.
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In the case study explored, the relative impact of flood hazards from annual storm
events was limited to 6.3% of low-lying areas of the U.S. Southeast Atlantic coast at
the current sea level. In comparison, 100-year events flooded 27% of the considered
area. Extratropical events dominated the annual flood hazards with 56% driven by
ETCs versus 43% by TCs. For higher return periods, TCs drove an increasingly
larger share of the division. For example, a 2-year event (50% annual probability)
was 66% driven by TCs versus 34% for ETCs. This breakdown increased to 96% for
TCs and 4% for ETCs for the 100-year event. A similar trend emerged for the flood
impact. ETCs resulted in almost twice the amount of negative impact with a yearly
frequency. However, for the 100-year event, TC-driven impact is 30x as significant.
With rising sea levels, the flooding risk solely attributed to TCs lessens, as areas
became susceptible to flooding irrespective of the cause. This evaluation emphasized
the importance of both event types and accentuated the need for subsequent studies

to account for both flooding drivers.

Research question 4. How to reliably account for TCs in operational coastal risk

analysis?

In operational coastal risk analysis it is essential to integrate uncertainties related
to forecasting TCs, such as track, speed, and intensity in order to account for them
reliably. The Tropical Cyclone Forecasting Framework (TC-FF) offers an innovative
approach that relies on a Monte Carlo method and generates hundreds or thousands
of realizations. The framework accounts for all relevant drivers of compound
flooding while leveraging Gaussian error distributions and auto-regressive techniques
to account for the uncertainty regarding the forecast tracks. When utilizing Monte
Carlo-based methods, such as TC-FE enough realizations need to be included to

achieve reliable water levels and flood predictions.

Chapter [4] introduced the open-source Tropical Cyclone Forecasting Framework
(TC-FF), a method designed to forecast compound flooding due to TCs that account
for uncertainties. TC-FF computes a set of ensemble members based on a simplified
implementation of DeMaria et al., In particular, the tool uses historical
observed error on the along-track, cross-track, and intensity and creates a temporally
and spatially varying wind field to force the computationally efficient compound
flood model SFINCS.
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TC-FF can be calibrated with the average reported errors for any oceanic basin via
the Nelder-Mead method to determine the mean absolute errors and auto-regression
coefficients used in the computation. A comparison between TC-FF and the
complete implementation of DeMaria et al., and DeMaria et al., revealed
minor differences which gives confidence that the TC-FF can be used for more

generalized applications in data-scarce environments.

TC-FF was utilized for a case study of Cyclone Idai (2021) in Mozambique’s Sofala
province. The method gave valuable insights into the uncertainty of wind speeds,
water levels, and potential flooding due to Idai, revealing the impacts of track and
intensity uncertainties and how this changed as a function of lead time. The
precision of the forecasts is influenced by the number of ensemble members used
within the tool. Three days before landfall, a mean error in flood probability of less
than 1% and <20 cm sampling errors for the 1% exceedance water level at Beira
required 200 members to be included. Therefore, we concluded that at least 200
ensemble members are needed to get reliable water levels and flood results with
TC-FE A higher number of ensemble members reduced sampling uncertainty and
increased the reliability of water level and flood potential estimates but at greater

computational expense.

6.2. REMAINING CHALLENGES AND WAYS FORWARD

In this subsection, we move away from addressing the main research question
and conclusions and toward reflection focused on practical applications and future
research directions.

6.2.1. DATA COLLECTION AND MODEL VALIDATION

Observed TC geometry and best-track data underpin the description of TC wind
fields (Chapters [2] and used in both strategic (Chapter and operational
assessments (Chapter [5). However, the quality and quantity of this information have
been increasing due to the rise of observations through satellites. During the course
of this work, at least five more years of best-track data were collected. Moreover,

more reliable data will allow for a more accurate description of TCs using methods



154 CONCLUSIONS AND WAY FORWARD

deployed in this thesis or the possibility for other, more data-intensive, methods (e.g.

Kumar et al., |2023).

The pivotal role of data collection both in real-time and in measuring the hazard and
impact of storm events can also not be overstated. While physics-based models have
a good track record and we have a basic understanding of how water moves going
back to Navier, and Stokes, comprehensive and accurate data still serve as
the linchpin that underpins robust analysis. Typically, compound flood models are
compared at (permanent) water level stations on open coasts and high water marks
on land (e.g. see Chapter [4). However, model skill in, for example, computed area
flooded is typically not considered due to the lack of information. Satellite-derived
flood extents and duration could serve an essential role in the validation. Precise
data not only enhance our understanding of storm characteristics and behaviors
but also empower researchers to calibrate and validate models effectively. This is
especially relevant for inland hydrological processes such as infiltration which is

strongly influenced by soil saturation which is typically unknown.

6.2.2. IMPROVING COMPUTATIONAL ASSESSMENTS

Computational methods for assessing coastal flooding are the foundation for our
ability to accurately assess coastal flood risk. In this thesis, we have relied on the
model SFINCS model (Leijnse et al., . The model accounts for major relevant
physical drivers, including tide, surge, and rainfall, and showed good skill in the
literature (e.g. Sebastian et al., Eilander et al., including several validation
cases presented in this thesis. The reduced computational expense compared to
traditional computational assessments and increased computational power allow for
a more rigorous assessment in strategic (Section E[) and operational risk assessments
(Section [5) as presented in this thesis. Conducting more simulations allows for a
comprehensive exploration of climate variability, providing a richer and more reliable
understanding of conditions instead of basing this on a limited set of simulations
that might overlook crucial nuances. For example, the case study of Section [
explored, the relative impact of tropical cyclones on the U.S. Southeast Atlantic
coast. Conducting a similar analysis for other coastal areas would be beneficial to

see how these findings translate to other areas.



CHAPTER 6 155

However, several processes are absent or only partly accounted for in the
lower-fidelity SFINCS model that are accounted for in other high-fidelity ones. The
non-exhaustive list of physical processes that are absent but relevant for flooding
is wave runup, detailed groundwater processes such as infiltration or exfiltration,
urban drainage, identification of primary and secondary levees (e.g. elevated roads)
and morphological change. It is paramount to continue to explore computationally
efficient methods to include these processes to ensure that model predictions are
accurate and reliable. The proposed path forward is twofold. First, by an increased
understanding of the importance, physics and dynamics of these processes in, for
example, high-fidelity models. Secondly, through the exploration of (simplified)
methods to describe the relevant drivers of flooding and couple or integrate them
in computational assessments in lower-fidelity models. Continuing to explore to
what extent multilevel multi-fidelity Monte Carlo methods (MLMF; Clare et al.,
could be used as a trade-off is also worth exploring in the context of efficiency and

accuracy.

Throughout this thesis, we have largely relied on a parametric wind model developed
by Holland et al,, including an estimate of the averaged value of gale force
winds (R35 over the four quadrants). However, surface friction in the tropical
cyclone boundary layer creates asymmetries in the wind structure over the ocean.
This results in stronger winds on the right side in the Northern Hemisphere and
on the left in the Southern Hemisphere, due to the combination of the cyclone’s
translation movement and cyclonic flow. These effects were estimated using the
approach of Schwerdt et al., but were not explicitly validated. Moreover, this
estimate does not capture changes in the structure, for example, those occurring
during landfall (e.g. see Hlywiak and Nolan, [2022), along with other unaccounted
asymmetric effects. The continued development of more accurate parametric wind
models that account for cyclone asymmetry, including factors such as estimates for
cyclone rainfall, is recommended to further refine computational assessments of
hazards.

Climate change is anticipated to affect future TC frequency and intensity, as warmer
sea surface temperatures are known to contribute to more intense storms with
greater rainfall rates (e.g., Knutson et al, [2010). The synthetic tropical cyclone
tracks generated by TCWISE (as introduced in Chapter can partially account
for this shift through a heuristic factor that adjusts the frequency and intensity
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of TCs to reflect climate change-related alterations. However, TCWiSE’s purely
data-driven approach does not facilitate the direct incorporation of changes in ocean
temperature. Consequently, re-engineering TCWiSE or exploring alternative methods,
such as adjusting the KDE, could prove beneficial in the context of climate change.

Another avenue of exploration is more effective usage of the ever-increasing amount
of data that is available (in real-time). Operational storm surge forecasting has
benefited from data-assimilation techniques, such as Kalman filtering (e.g. Verlaan
et al,, and similarly did shoreline modeling with an automatic adjustment of
model parameters to best fit any available observed data at the concurrent time
step (e.g. Vitousek et al., Despite a few novel applications (e.g. Mufioz
et al,, , data assimilation for compound flood assessment is still a relatively
untapped potential. Assimilating data could be explored as part of operational risk
assessments (Chapter [5), however, faster computations make it also possible to use
data assimilation of historical data for automatic parameter estimation in strategic
risk assessments (Chapter [4).

Lastly, throughout this dissertation, we relied on Monte Carlo-based assessments
for strategic and operational risk analyses (Chapters [4] and [5). These assessments
involved generating a large number of random samples to make probabilistic
estimates. It is paramount to move away from the deterministic analysis, however,
there are more efficient methods than Monte Carlo for multivariate patterns such as
cluster analysis (e.g., Choi et al.,, [2009b), stratified sampling (e.g. Nadal-Caraballo
et al., and MDA methods (e.g., Bakker et al, [2022). Exploring efficient
methods while still capturing the full range of probabilistic outcomes is worth further

exploring.

6.2.3. HARNESSING DEEP LEARNING

Deep Learning (DL) refers to the use of neural networks to model and process
large sets of data. Neural networks are not new, but due to the increased
computational power, bigger data sets, and open-source algorithmic advancements,
it feels that the Age of Deep Learning has begun (Goodfellow et al., [2017). Despite
these developments, DL had a limited impact on the methodologies used in this

thesis. This thesis has relied on more traditional statistical methods such as curve
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fitting, kernel density estimation (KDE), Markov chains, and auto-regression error

estimations in combination with physics-based assessments.

However, the ever-increasing amount of data collected through satellites could
improve our ability to represent and estimate TCs. DL techniques such as Artificial
Neural Networks (ANN) could be used for parameter estimation of wind geometry in
Chapter [2] (e.g. Snaiki and Wu, [2019). Another possibility is the use of Convolution
Neural Networks (CNN) that were initially developed for computer vision problems
for the estimation of spatial TC structure and thus moving away from parametric
wind models (e.g. Pradhan et al., or occurrence locations in Chapter [3| (e.g.
Nath et al., [2016). While a TC that makes landfall for a single coastal community is
a relatively rare event, worldwide there are about 50 TCs which gives ample data to

support these DL techniques.

For flood assessments, data is typically less abundant but DL techniques have shown
promising results in hydrology (e.g. Guo et al., Lowe et al., and coastal
engineering (e.g., Athanasiou et al., Bentivoglio et al,, [2022). The typical
approach for more data-poor environments is the emulation of modeled data. In
that case, DL techniques are especially interesting for operational forecasting settings
where uncertainties in the forcing require the simulations of 100-1000s ensemble
members within a limited time window and with limited computational expense.
Therefore, the use of ANN could be beneficial in the estimation of storm surge levels
or morphological change based on a library of pre-run physics-based assessments.
Moreover, the use of CNN can be used to compute spatial flood patterns or provide

warning levels for different communities.

A remaining challenge is that DL-based parameterizations should not only be
accurate but also credible. Non-credible results, for example, a DL algorithm that
computes flooding behind a levee, undermine confidence from the public and
thus its usefulness. Hence, the exploration of physics-incorporated DL frameworks
(e.g. Yao et al, should be a path of further research for the coastal science

community.
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