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Abstract

In this thesis, we investigate a sparse basis for ultrasound images, so that we can use
sparse regularization in imaging. Actually, there are few previous researches explicitly
demonstrating that medical ultrasound images can be sparsified for some dictionary. We
consider various orthogonal transforms such as wavelet transforms, cosine transforms
and wave atom transforms. Then, we perform those transforms on various ultrasound
images and analyzes their sparsity. These ultrasound images include the images of two
computer ultrasound phantoms and beamformed ultrasound images with good quality
from real people. We looked at sparsity of the true pre-beamformed images, as well
as beamformed images. We also consider constructing a specific ultrasound image dic-
tionary using the K-SVD algorithm. We observed that, the pre-beamformed images
hardly haVe no sparse basis, and the sparsity of beamformed images will only increase
slightly if we use different 1D-DWT in each direction. We also found that the wide
overdetermined dictionary generated by K-SVD significantly increases sparsity. After
this, we simulate the ultrasound image reconstruction from the ultrasound RF measure-
ments, and we analyze the effects of the different sparse spaces on the reconstruction
performance. We observed that, the l1-regularization can work for ultrasound imaging
better than l2-regularization, but the orthogonal transforms as well as the dictionary
do not improve the reconstruction image quality much.
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Introduction 1
1.1 Overview

Ultrasound (US) imaging plays an important role in medical imaging. Compared with
many other imaging techniques such as CT and MRI, US imaging is safer and more
convenient and less expensive. Since US is non-ionizing and non-carcinogenic, it is able
to be safely used in the human body, especially fetus. US can also be used for real-time
imaging, because of its fast imaging and easy operation.

Figure 1.1: Sketch of the US pulse propagation during US imaging

Medical US imaging usually uses the transducer arrays to transmit the US pulses
and receive the echos. The imaging procedure can be roughly described as follows. As
Figure 1.1 shows, firstly, the transducers emit the US pulses to the tissue. And the
US pulses are scattered in the tissue. Then, the transducers receive the echos caused
by the scattering. Finally, the US images of the tissue can be reconstructed from the
received echo data. In this way, the US images can show the scattering intensity at
the different positions of the tissue. These US images are also known as the B-mode
(brightness mode) ultrasound images, and what are shown to the doctor are usually
the log-compressed versions of these images.

Currently, delay-and-sum (DS) beamforming is commonly applied to reconstruct
the US image, but the image resolution is not sufficiently high with DS or the other
conventional beamforming techniques. One of the reasons is that the prior knowledge
is not fully exploited. As an example, DS merely utilizes the geometrical information
in the spatial domain.

Therefore, acoustic wavefield theory ought to be considered to reconstruct the US
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images. That is also explained in [21], [37] and [35]. It is known as the inverse scattering
problem in the acoustic theory to reconstruct the US images from the received scattering
echo data. With the Born approximation, the relationship of the variables in this
problem can be expressed as the linear equation (1.1).

y = Ax + n. (1.1)

Where x ∈ RN×1 is the discretized US image in linear scale (N is the number of the
image pixels), y ∈ CM×1 is the received sampled echo data (M is the total number
of the data samples received by all the transducers), A ∈ CM×N is the known array
manifold matrix[12] and n ∈ CM×1 is the additive noise. So the US imaging becomes
linear inverse problem.

However, inverse scattering problems are always ill-posed, so some regularization
methods are necessary to apply. Namely, in (1.1), A is always an ill-conditioned ma-
trix that has very small non-zero singular values. These small singular values badly
increase the impacts of the noise on the US image reconstruction. Proper regulariza-
tion can suppress the effect of these small singular values. The truncated SVD (TSVD)
regularization can be used to remove these small singular values, and the number of the
remaining singular values is a parameter that affects the regularization performance.
Tikhonov regularization is the most commonly used regularization method, which uses
the l2-norm. And l2-regularization is the simplest case of Tikhonov regularization. With
the l2-regularization, the least squares (LS) problem (1.2) can represent the linear in-
version problem for the US imaging. ||·||2 denotes the l2-norm, and ρ is the parameter
that controls the importance of the l2-regularization term.

min
x
{||y −Ax||22+ρ||x||22} s.t. x ∈ RN . (1.2)

Currently, there is an increasing focus on using the l1-norm. One of the reasons
is the proposition of compressive sensing (CS). If the signal to be reconstructed has
a sparse space, the CS can possibly break through the Shannon sampling rate. The
l1-norm plays an important role in the CS. Recently, there are many studies about
applying CS to US imaging. What follow are some studies about applying CS to RF
data. The study in [23] regards the sym8 wavelet transform as the sparse space of the
RF data; the wave atom transform is used as the sparse space for RF data in [22].
Other studies assume that the US image is sparse in some domain. For example, [30]
and [8] have regarded the spatial domain as the sparse space, although it cannot be
always assumed that the US image is sparse in the spatial domain for human tissue;
the compression in [28] is obtained by subsampling the scanning lines in the image and
the k-space is the sparse space; the sparse space in [6] is the curvelet transform; [5] uses
the concatenation of some Daubechies wavelet bases as the sparse space.

Another reason that we are interested in sparsity is that, l1-regularization can also
make the US image reconstruction without compression have better performance, if
there is a good sparse space for the US images. If Ψ ∈ CK×N is assumed to be the
transform matrix of the US image sparse space (K is the number of the transformation
coefficients), (1.3) expresses the linear inversion problem for the US image reconstruc-
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tion, with the l1-regularization in this sparse space.

min
x
{||y −Ax||22+τ ||Ψx||1} s.t. x ∈ RN . (1.3)

In (1.3), ||·||1 denotes the l1-norm, and τ is a parameter to control the weight of the
l1-regularization term.

Since a sparsity-constraint on the image x can improve the imaging performance
both with and without compression, it is very helpful to find a good sparse space of
the US images. However, all the previous studies that assume sparsity of Ψx did not
explicitly demonstrate that US images can be sparsified for some Ψ. Therefore, this
thesis analyzes and experiments the sparsity of the medical US linear-scale image in
the various transform spaces.

1.2 The organization of this thesis

In Chapter 1, the background is introduced and the motivation of this thesis is ex-
plained. Chapter 2 gives the signal model and introduces the image reconstruction
algorithms and describes some linear transformations that are possibly the good sparse
spaces to improve the reconstruction performance, and the dictionary learning algo-
rithm K-SVD is introduced at the end of this chapter. Chapter 3 shows the simulation
results. Section 3.1 in Chapter 3 gives the sparsity analysis for the scattering inten-
sity images of the phantoms before being beamformed, and in Section 3.2, we analyze
beamformed MF images. Section 3.3 contains the analysis for the performance of the
K-SVD on the beamformed carotid US images from several volunteers. The reconstruc-
tion from the simulated US measurements are shown in Section 3.4. Chapter 4 draws
the conclusions for this thesis. Chapter 5 discusses the future work.
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Methods 2
In this chapter, the signal model is firstly described in Section 2.1. Section 2.2 explains
the algorithms used for the image reconstruction such as LSQR[26] and YALL1[40],
and Section 2.3 introduces some transformations and the K-SVD algorithm that are
later used to analyze the US image sparse space.

2.1 The signal model

The signal model here is described by (1.1). y is a vector which contains all the
echo samples received by each transducer. The imaging domain scattering intensity
is discretized in the spatial domain, so the imaging domain is divided into many grid
points, i.e., the US image pixels. The columns of A one-to-one correspond to these grid
points. Each column contains the echo data of the corresponding grid point, and the
echo samples in each column are arranged in same way as y. Therefore, the received
echo data y is approximated by a linear combination of every grid’s echo data, which
is formulated as y = Ax. x contains the scattering intensity of each grid. Here, the
scattering intensity of each grid is represented by the intensity of a point scatterer at
this grid center. However, there are a large number of the signal samples because of
the high sampling rate, which makes A become a very big matrix.

Figure 2.1: Sketch of A matrix construction.

Since the pulse is approximately bandlimited, the amount of data can be reduced
by truncating the FFT of the pulse-echo signals. In this way, the construction of A is
shown as Figure 2.1. In both A and y, the signal samples received by each transducer
are substituted by their FFT coefficients of a limited band. Since the structure of every
A column and y are the same, the constitution of the ith column is explained here as an
example. Suppose the vector s

′

k contains the echo samples from the ith grid point in the
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time domain received by the kth element of the transducer array. F{s′k} is the Fourier
transform of s

′

k. s
′

F,k contains the frequency samples that are selected from F{s′k}
within certain frequency band. At last, the ith column of A is [s

′
F,1

T , s
′
F,2

T , · · · ]
T

.

The environment noise, together with the signal errors caused by the approximation,
is regarded as additive white Gaussian noise (AWGN). So the signal model is formulated
as (1.1). As the FFT coefficients are complex, the AWGN should correspondingly be
complex Gaussian distributed when (1.1) is formulated in Fourier domain.

2.2 The reconstruction algorithms

Having obtained a linear signal model, this section introduces some algorithms for
solving this linear inverse problem (i.e. reconstructing x), namely, the LSQR and
YALL1 algorithms.

The matrix A is always very big due to a large number of the image pixels and
the signal samples. As a result, there are so many computations with the common
algorithms to solve x that it costs a lot of time and computer memory. Therefore, some
fast and sparse algorithms are utilized in this thesis for this linear inverse problem.

2.2.1 An introduction to LSQR

LSQR is a good iterative algorithm for solving the large LS problems. It does not
require much additional computer memory, since it does not store big matrices besides
A and does not need to compute any matrix inversion. It is based on the Golub-Kahan
bidiagonalization process. Algorithm 1 shows the procedure of LSQR.

Algorithm 1 LSQR

1: Given: α1, β1, unit vectors u1 and v1 satisfy β1u1 = y and α1v1 = AHu1; w1 = v1,
x0 = 0, φ̄1 = β1, ρ̄1 = α1.

2: For i =1, 2, 3, · · · iterate:
3: ⇒ βi+1ui+1 = Avi − αiui . The bidiagonalization
4: αi+1vi+1 = AHui+1 − βi+1vi

5: ⇒ ρi =
√
ρ̄2i + β2i+1 . The orthogonal transformation

6: ci = ρ̄i/ρi, si = βi+1/ρi
7: θi+1 = siαi+1, ρ̄i+1 = −ciαi+1, φi = ciφ̄i
8: φ̄i+1 = siφ̄i
9: ⇒ xi = xi−1 + (φi/ρi)wi, wi+1 = vi+1 − (θi+1/ρi)wi . Update x and w

The residuals of the problem can be reduced monotonically, as the number of LSQR
iterations increases. LSQR can solve the least square problems with l2-regularization,
like (1.2) on page 2. In addition, limiting the number of LSQR iterations is similar to
a filtered SVD inverse[15]. The ready-made LSQR solver is available online[25].
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2.2.2 An introduction to YALL1

As for the LS problems with l1-regularization, there are many iterative algorithms that
can save much time and computer memory, such as TwIST[7], FISTA[3], NESTA[4],
SPGL1[34] and YALL1. TwIST (Two-step Iterative Shrinkage/Thresholding Algo-
rithm) is a commonly used solver based on soft thresholding and TwSIM (Two-Step
Iterative Method), for the l1-regularized LS problem like (1.3) on page 3. Similar to
TwIST, FISTA (Fast Iterative Shrinkage-Threshold Algorithm) combines the IST al-
gorithm with Nesterov’s accelerated gradient descent (instead of TwSIM) to solve the
problems like (1.3). Unlike TwIST and FISTA and YALL1, NESTA and SPGL1 solve
the problems that minimize the l1-norm and constrain the l2-norm to no more than a
certain value. For the problems in this thesis, we found that YALL1 converges much
faster and easier to use than the other algorithms. YALL1 is a ready-made solver based
on Alternating Direction Method (ADM). It can solve the l1-regularized linear inverse
problems like (1.3) as well as the l2-regularized problems like (1.2). Besides the LS
problems, YALL1 can also solve the least absolute deviations (LAD). YALL1 can add
the non-negative constraints to the problems as well. In this thesis, it is only used to
solve the LS problems, with l1-regularization in some transform space.

[39] demonstrates the theory of YALL1. YALL1 can solve the unconstrained basis
pursuit denoising (QP) problem, which can be easily obtained by reformulating (1.3)
when τ > 0 and Ψ†Ψ = I (i.e., Ψ is full column rank), † indicates pseudo inverse. Let
z denote the transformation of x, that is, z = Ψx, and let G denote AΨ†. Then (1.3)
can be reformulated as (2.1).

min
z
||z||1+

1

τ
||y −Gz||22. (2.1)

After z is calculated, x can be obtained by x = Ψ†z. As for solving (2.1) by applying
ADM to its dual problem, Algorithm 2 expresses the procedure of YALL1.

Algorithm 2 YALL1 for QP problem

1: Given z0, u0, β > 0 and γ ∈ (0, (
√

5 + 1)/2)
2: For i =0, 1, 2, · · · iterate:
3: vi+1 = PB∞1

(GHui + zi/β)
4: ui+1 = [βGvi+1 − (Gzi − y)]/(0.5τ + β)
5: zi+1 = zi − γβ(vi+1 −GHui+1)
6: Until ||ẑi − ẑi−1||2/||ẑi||2 ≤tolerance

Where H indicates conjugate transpose, B∞1 is a set that B∞1 , {s : ||s||∞ ≤ 1},
PB∞1

(·) computes the orthogonal projection (in Euclidean norm) onto B∞1 .

2.3 The sparse bases

For solving (1.3), a good sparse basis Ψ can improve the performance of the recon-
struction of the medical US image x. This section will introduce several bases that are
chosen as the candidates of the sparse bases and introduce a sparse dictionary learning
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algorithm K-SVD. Furthermore, x is a B-mode image that shows the scattering inten-
sities of the US scatterers, so the characteristics of the medical US scatterers should be
firstly analyzed , which helps to determine the sparse bases.

Section 2.3.1 discusses the model of medical US scatterers to help to select the bases
used as sparse transformations. Then Section 2.3.2 introduces several transformations
that will be experimented in next chapter. At last, K-SVD algorithm is introduced in
Section 2.3.3, which will be simulated in Chapter 3.

2.3.1 The model of medical US phantoms

[18] and [16] describe a model of the medical US scattering intensity, which will be
applied throughout this thesis. There are also some improved models such as [27]
and [20], but they are less general. The phantom can be regarded as the sum of the
strong scatterers and the other weaker scatterers. The strong scatterers are usually
some tissue boundaries and bones. They have very strong scattering intensities due to
an acoustical impedance contrast, and they are usually sparse in the spatial domain.
Subtracting these strong scattering intensities, the rest of the phantom can be regarded
as the product of a scattering strength map and a white Gaussian stochastic process.
Figure 2.2 is a sketch of the phantom model that the strong scatterers plus the product
of the scatter map and a stochastic process.

Figure 2.2: The sketch showing the constitution of the computer medical US phantom.

It is impossible to reconstruct the Gaussian signal but it helps us to see the scatter
map. However, they are usually not sparse in spatial domain, and due to the stochastic
nature of this signal, they are also not sparse in frequency domain. Therefore, some
other transformations should be used. In this thesis, several kinds of the 2D wavelet
transformations as well as the block 2D-DCT are chosen to analyze the sparsity of the
medical US phantoms.

2.3.2 An introduction to several transformations

In this section, several transformations are introduced briefly which will be experi-
mented as the sparse bases in next chapter.

2.3.2.1 The 2D-DWTs with the Haar, Daubechies and Meyer filters

The wavelet transforms can display a combination of the spatial and frequency char-
acteristics, which are used as the sparse spaces in many cases. The filter bank shown
in Figure 2.3 describes one dimension of the DWTs used in this thesis. The 2D-DWT
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is an extensions of the 1D-DWT to the 2-dimensional case. This filter bank is only
a single level of the 1D-DWTs. In Figure 2.3, x[n] is the original signal, and the ap-
proximation and detail coefficients are the result of the DWT transformation. The
approximation coefficients mainly contain the information in the low frequencies and
detail coefficients mainly contain the information of the high frequencies. Since the
lower frequency corresponds to the longer wavelength, the approximation coefficients
can perform the decomposition once again, which is the next level of DWT. The symbol
↓ denotes the downsampling, and the number 2 indicates that the signal is subsampled
by 2. Because of the downsampling, if x[n] has an even number of the signal samples,
x[n] will have the same number of the samples with all of the approximation and detail
coefficients so that the DWT does not change the number of the samples.

Figure 2.3: The filter bank describing the DWTs.

LD and HD denote a low-pass filter and a high-pass filter for the decomposition,
and LR and HR denote the filters for the reconstruction. These filters must satisfy
(2.2)[32]. {

LD(ω)LR(ω) +HD(ω)HR(ω) = 2

LD(ω − π)LR(ω) +HD(ω − π)HR(ω) = 0
. (2.2)

Therefore, the DWTs varies with the different filter banks. There are some com-
monly used filter banks for the DWT, such as the Haar filter bank, the Daubechies
filter banks and the Meyer filter filter bank.

For example, the sequence [1 1]/
√

2 expresses the low-pass filter LD of the Haar
filter bank in 1D, and [1 -1]/

√
2 expresses its high-pass filter HD. The filter length

is only 2, so the edge of its passband is gradual. The Haar DWT is often a sparse
representation of the piece-wise constant signals[31].

The Daubechies DWTs are the extensions of the Haar DWT with longer filters. The
piece-wise linear signals are usually sparse in some Daubechies DWT[31].

As for the Meyer DWT, [36] gives the formulas of its filters. The frequency bands
of its filters have sharp edges. So the bandlimited signals can be sparse in the Meyer
DWT. But, according to the uncertainty principle of Fourier transform, the filter needs
to be long enough in spatial domain to have the sharp edge of the frequency band, so
the Meyer DWT are not a good sparse representation for the sharp edges or thin lines
in spatial domain. The DWT only decompose the approximation coefficients. However,
it can work better if some detail coefficients are also decomposed, which becomes the
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wavelet packet transform[2].

2.3.2.2 The wave atom transform

The wavelet transforms do not make sufficient use of the 2D-image geometrical char-
acteristics, so more multiscale geometric transforms have been proposed, such as the
Ridgelet, curvelet[14], contourlet[10] and wave atom[9] transforms. The wave atom de-
composition is a good sparse representation for the oscillatory patterns. [22] find that
the wave atom is a good sparse transform for the raw RF data. Since the reconstructed
US images are usually oscillatory, the wave atom could also be a sparse space for the
US image.

2.3.2.3 The 2D-DCT and block 2D-DCT

The 2D-DCT is an extension of the 1D-DCT, that is, the 1D-DCT is performed in each
dimensions one after another. It is related to the Fourier transform that it shows the
frequency information as well, but the number of DCT coefficients is about twice the
number of DFT coefficients. Moreover, if the original signal is real, its DCT is also
real.

The computations of one kind of DCT can be described as follows. Suppose a real
finite digital signal s[n], 0 6 n 6 N − 1. Then, it is extended to a symmetric signal
s[|n|], 1−N 6 n 6 N−1. The DFT of the real even signal s[|n|] is also real even, which
is denoted as S[k], 1−N 6 k 6 N − 1. And then, the whole S[k] can be recovered just
from the S[k] at k = 0, 1, · · · , N − 1, which are about half of the entire S[k]. So the
s[n] can be reconstructed from the S[k] at k = 0, 1, · · · , N − 1, which is also known as
the DCT of s[n]. According to DFT is an orthogonal transform, it can be derived that
DCT is also.

As for the block 2D-DCT, it is widely used by the JPEG algorithm[38]. First,
the image is divided into many blocks. Then, the 2D-DCT is computed for each block
individually. The block 2D-DCT is a localized frequency representation. And the block
size need to be chosen. Larger block size means the sparsity of the block 2D-DCT is
closer to that of the frequency domain, and the smaller block size means its sparsity is
closer to the spacial domain.

2.3.3 The K-SVD sparse dictionary learning algorithm

If there are a lot of ultrasound image samples that are reconstructed very well, they
can be used as the training data to find the sparse space of the ultrasound image. The
optimization problem for training the sparse dictionary can be expressed by (2.3).

min
D,Γ
{||Θ−DΓ||2F} s.t. ∀i, ||γi||0 6 T0. (2.3)

Θ ∈ RN ′×M ′ is the set of the training samples. Each of its columns is one training
sample with a data length of N ′. M ′ is the number of the training samples and should be
large enough to make Θ adequately representative. D ∈ RN ′×K′ is the sparse dictionary
matrix to be computed. K ′ is the length of the dictionary and usually equal to or
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larger than N ′. Γ ∈ RK′×M ′ contains the corresponding representation coefficients.
||·||F indicates the Frobenius norm. When applied to a matrix, the Frobenius norm
calculates the square root of the sum of the squares of the singular values of the matrix,
which is equal to the root of the sum of the squares of each element in the matrix. γi
is the ith column of Γ, which contains the corresponding coefficients when the ith
training sample in Θ is represented with the dictionary D. ||·||0 denotes the l0-norm,
which computes the number of the non-zero elements in a vector. T0 is a parameter
constraining the number of non-zero representation coefficients of each training sample.
So the constraint is that the number of the dictionary coefficients for each training
sample cannot exceed T0.

To solve (2.3), there are many kinds of the sparse dictionary learning algorithms,
such as MOD[13], K-SVD[1], etc. However, because (2.3) is a non-convex and NP-hard
problem[33], these algorithms cannot guarantee a globally optimal solution to (2.3). In
this thesis, the K-SVD algorithm is chosen to train the the sparse dictionary, since it is
widely used for the sparse dictionary learning and there are many off-the-shelf K-SVD
programs on the internet. In this thesis, we use the K-SVD decribed in [29]. For (2.3),
K-SVD alternately iterates the dictionary D and the representation coefficients Γ. For
each iteration, Γ is calculated from the Θ and updated D and constrained to have no
more than T0 non-zero elements in each column. Matching pursuit (MP) is always used
to compute it. For updating D, each of its columns is iterated sequentially. And the
principle of the calculations is that each column should fit the current residuals of Θ as
much as possible. To achieve this, the SVD can be performed on the current residuals
of Θ and the singular vector corresponding to the largest singular value is used to
update the column of D. In addition, to keep the sparsity of Γ, only the residuals
that correspond to non-zero representation coefficients of the column participate in the
calculation.

Assume γT,k′ indicates the k′th row of Γ, then the K-SVD algorithm flow is described
as Algorithm 3.

Algorithm 3 K-SVD

1: Given: training data set Θ, sparsity constraint parameter T0, length of dictionary K ′,
initial dictionary matrix D(0) ∈ RN ′×K′

2: For i =0, 1, 2, · · · iterate:
3: • Solving (2.3) by MP to get the representation coefficient matrix Γ(i)

4: • For k′ =1, 2, · · · , K ′ iterate:

5: - Compute Θ’s residuals Ξ
(i)
k′ without D(i)’s k′th column d

(i)
k′ by

Ξ
(i)
k′ = Θ−

∑
j 6=k′

d
(i)
j γ

(i)
T,j = Θ−D(i)Γ(i) + d

(i)
k′ γ

(i)
T,k′

6: - Selecting Θ’s columns θj satisfying j ∈ {j ∈ N+|1 6 j 6M ′, [γ
(i)
T,k′ ]j 6= 0}, then

Θ
(i)
R,k′ consists of these columns.

7: - Performing SVD as Θ
(i)
R,k′ = USVT . The updated column d

(i+1)
k′ is U’s column

corresponding to the largest singular value. The non-zero coefficients in γ
(i)
T,k′ are

updated as the multiplication of the largest singular value and its corresponding
column in V.
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Simulation results and analysis 3
In this chapter, the transformations introduced in Chapter 2 are performed on several
phantom images and their sparsity is analyzed, and the performance of the K-SVD
on the US images is analyzed. In Section 3.1, several transforms are performed on
the scattering intensity linear interpolation images of a fetus phantom and a kidney
phantom to analyze their sparsity. In Section 3.2, some transforms are performed on a
simulated fetus phantom MF image and a real carotid MF image. Section 3.3 performs
the K-SVD on some beamformed carotid US images from the real people. Section 3.4
shows the reconstructions from the simulated US measurements and analyzes the effects
of the selected sparse spaces on the reconstruction image quality.

3.1 The sparse space of the linear interpolation images of the
phantom US scattering intensity

On the Field II[17][19] website, there are several computer phantoms typically used
for simulating ultrasound imaging. The fetus and kidney computer phantoms are used
here to analyze the sparsity level of the linear interpolation images of the medical US
scattering intensity. Some transformations, such as the 2D-DCT and the 2D-DWTs,
are performed on these two US scattering intensity images to compare the sparsity of
these transformations. At the end of this section, the sparsity of these two scattering
intensity images is analyzed.

As usual, what is shown to the operator is the log-compression of the absolute values
of the ultrasound images, because taking logarithms will magnify the dim part of the
image. Before converting into the logarithm or decibels, the absolute values of the
image are usually normalized. Suppose matrix X represents the linear-scale image.
Then, the magnitudes of the image X are normalized and converted into decibels as
(3.1), and the image X′ is usually displayed in certain decibel range to the operator.
[·]ij means the matrix element at the ith row and the jth column, and ||·||max indicates
the max norm of a matrix (i.e., ||X||max = max

ij
[X]ij).

[X′]ij = 20 log10(|[X]ij|/||X||max). (3.1)
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3.1.1 The fetus phantom US scattering intensity linear interpolation image

(a) Linear scale (b) The log-compressed image

Figure 3.1: The linear interpolation image of the fetus phantom US scattering intensity.

In this part, the sparsity of many transforms for fetus phantom interpolation image are
compared, and the reconstructions from their maximal 15% coefficients in the transform
domain are shown respectively to compare their reconstruction performance for the
interpolation image of the fetus phantom US scattering intensity.

Figure 3.1 shows the 192×384 linear interpolation image of the fetus phantom US
scattering intensity in linear scale and its log-compressed image from -40dB to 0dB.
Here 20dB is equal to 10 times.

To compare the sparsity of the different orthonormal transforms, the curves are
drawn between the percentage of the number of the maximum coefficients and the
normalized RMSE. The horizontal axis of the curve is the percentage of the number
of the maximum coefficients used for the reconstruction, i.e., the ratio between the
number of the maximum coefficients used for the reconstruction and the total number
of the coefficients. The vertical axis of the curve is the normalized RMSE between the
reconstruction and original image, which is formulated as (3.2).

ε = ||x̂− x||2/||x||2. (3.2)

Where ε is the normalized RMSE and x is the original image vector and x̂ is the
reconstructed image vector.
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(a) The different levels of the Haar 2D-DWT (b) The different levels of the Meyer 2D-DWT

Figure 3.2: Comparison among the different levels of the Haar 2D-DWT and the Meyer
2D-DWT.

In general, the smaller the under region of the curve is, the sparser the transform
is. Figure 3.2(a) shows the curves of the Haar 2D-DWT from level 1 to level 6 respec-
tively. The level 1 Haar DWT is sparser than the others, but the difference is little.
Figure 3.2(b) shows the curves of the discrete Meyer 2D-DWT from level 1 to level 6
respectively. The level 1 discrete Meyer 2D-DWT is sparser than the others, but the
difference is little as well. The other DWTs, such as the Daubechies, are used, and
the level 1 is always the best. All the DWTs are in periodical mode, so that the total
number of the coefficients is always equivalent to the number of the image pixels.

Figure 3.3(a) shows the curves of the level 1 2D-DWTs with the filter banks from
Daubechies1 to Daubechies6 respectively. The Daubechies1 2D-DWT, also known as
the Haar 2D-DWT, is sparser than the others. To combine the spatial characteris-
tics and frequency characteristics, another transformation is implemented in which the
image is divided into a number of small blocks, each of which performs 2D-DCT sepa-
rately. Figure 3.3(b) shows the curves of the block 2D-DCT with the block size 1× 2,
2 × 1, 2 × 2, 4 × 4, 8 × 8 and 16 × 16 respectively. The block 2D-DCT with block
size 1× 2 is sparser than the others. The smaller the blocks are, the more the spatial
characteristics are emphasized. Since the block size 1×1 means that the block 2D-DCT
is equivalent to the spatial domain, the block size 1× 1 will not be considered here.
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(a) The different Daubechies in level 1 (b) The block 2D-DCT with the different block sizes

Figure 3.3: Comparison among the different Daubechies in level 1 and comparison among the
block 2D-DCT with the different block sizes.

Figure 3.4: Comparison among the spatial domain, the 2D-DCT, the Haar 2D-DWT, the
discrete Meyer 2D-DWT, block 2D-DCT and 2D-FFT.

Figure 3.4 shows the curves of the spatial domain, 2D-DCT, 2D-FFT and the spars-
est transformations in Figures 3.2(a), 3.2(b), 3.3(a) and 3.3(b) respectively. The spars-
est is the spatial domain. That is, as for the fetus phantom interpolation image, the
original image is sparser than the other transformations. From Figure 3.1(a), we can
also see that the spatial domain looks sparse. Because of the multiplicative white
Gaussian process described in Section 2.1, the scattering intensity interpolation image
is hard to be sparser in other transform space.

Figure 3.5 shows the normalized spectrum from -40dB to 0dB of the 2D-DCT and
the 2D-FFT of the fetus phantom interpolation image.
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(a) 2D-FFT normalized spectrum in dB (b) 2D-DCT normalized spectrum in dB

Figure 3.5: The 2D-FFT and 2D-DCT normalized spectrum in dB of the fetus phantom
interpolation image.

(a) The level 1 Haar DWT normalized envelop in dB (b) The maximum 15% coefficients of level 1 Haar
DWT

Figure 3.6: The level 1 Haar DWT of the fetus phantom interpolation image, and its maximum
15% coefficients.

Figure 3.6 shows the level 1 Haar 2D-DWT normalized spectrum from -40dB to
0dB of the fetus phantom interpolation image and the position of the maximum 15%
coefficients in this spectrum.
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(a) The reconstruction in dB from the maximum 15%
coefficients of level 1 Haar DWT

(b) The log-compression of the maximum 15% pixels
of the interpolation image

Figure 3.7: The normalized absolute values from -40dB to 0dB of: (a) the reconstruction
from the maximum 15% level 1 Haar DWT coefficients; (b) the maximum 15% pixels of the
fetus phantom interpolation image.

Figure 3.7(a) shows the log-compression of the reconstruction from the maximum
15% coefficients of the level 1 Haar 2D-DWT shown in Figure 3.6(b). Figure 3.7(b)
shows the maximum 15% pixels in the fetus phantom interpolation image. In both
images, many details of the true image are distorted, such as the details in the face.

Figures 3.8(a) and 3.8(b) indicate the maximum 15% 2D-FFT coefficients and 2D-
DCT coefficients of the fetus phantom interpolation image.

(a) The maximum 15% 2D-FFT coefficients (b) The maximum 15% 2D-DCT coefficients

Figure 3.8: The maximum 15% 2D-FFT and 2D-DCT coefficients of the fetus phantom
interpolation image.

Figures 3.9(a) and 3.9(b) show the normalized absolute values from -40dB to 0dB of
the reconstructions from the 2D-FFT and 2D-DCT coefficients shown in Figures 3.8(a)
and 3.8(b) respectively. The reconstructions are distorted.
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(a) The log-compression of the reconstruction from the
maximum 15% 2D-FFT coefficients

(b) The log-compression of the reconstruction from the
maximum 15% 2D-DCT coefficients

Figure 3.9: The log-compression from -40dB to 0dB of the reconstruction from the maximum
15% 2D-DCT coefficients and 2D-FFT coefficients respectively.

3.1.2 The kidney phantom linear interpolation image

In this paragraph, the simulations are performed on the kidney phantom interpolation
image.

Figure 3.10 shows the 512×512 linear interpolation image of the kidney phantom
scattering intensity in linear scale and its normalized absolute values from -40dB to
0dB.

(a) linear scale (b) The log-compressed image in dB

Figure 3.10: The linear interpolation image of the kidney phantom scattering intensity.

Figure 3.11(a) shows the curves of the Daubechies2 DWT from level 1 to level 6
respectively. The level 1 Daubechies2 DWT is sparser than the others. Figure 3.11(b)
shows the curves of the discrete Meyer DWT from level 1 to level 6 respectively. The
level 1 discrete Meyer DWT is sparser than the others.

19



(a) The different levels of the Daubechies2 DWT (b) The different levels of the discrete Meyer DWT

Figure 3.11: Comparison among the different levels of the Daubechies2 DWT and the discrete
Meyer DWT.

Figure 3.12(a) shows the curves of the level 1 DWTs with the filters from Daubechies
1 to Daubechies 6 respectively. The Daubechies2 DWT is sparser than the others.
Figure 3.12(b) shows the curves of the block 2D-DCT with some different block sizes.
The block 2D-DCT with block size 1× 2 is sparser than the others.

(a) The different Daubechies in level 1 (b) The block 2D-DCT with the different block sizes

Figure 3.12: Comparison among the different Daubechies in level 1 and comparison among
the block 2D-DCT with the different block sizes.

Figure 3.13(a) shows the curves of the spatial domain, 2D-DCT, 2D-FFT and the
sparsest transformations in Figures 3.11(a), 3.11(b), 3.12(a) and 3.12(b) respectively.
For the kidney phantom, the original interpolation image is sparser than the other
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transformations as well. Figure 3.13(b) shows the comparison of the sparsity between
the fetus phantom and the kidney phantom. Their sparsity is different but similar.

(a) The different transforms of the kidney phantom (b) The spatial domain and the 2D-DWT of the fetus
phantom and the kidney phantom

Figure 3.13: Comparison of the sparsity among the spatial domain, the 2D-DCT, the Haar
DWT, the discrete Meyer DWT, block 2D-DCT and 2D-FFT of the kidney phantom and
comparison of the sparsity between the fetus phantom and the kidney phantom.

Figure 3.14 shows the normalized absolute values from -40dB to 0dB of the 2D-DCT
and the 2D-FFT of the kidney phantom interpolation image.

(a) 2D-FFT normalized spectrum in dB (b) 2D-DCT normalized spectrum in dB

Figure 3.14: The 2D-FFT and 2D-DCT normalized spectrum in dB of the kidney phantom
interpolation image.
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Figure 3.15 shows the level 1 Daubechies2 DWT spectrum of the kidney phantom
interpolation image and the position of the maximum 15% coefficients in the spectrum.

(a) The log-compression of level 1 Daubechies2 (b) The maximum 15% coefficients of level 1
Daubechies2 DWT

Figure 3.15: The level 1 Daubechies2 DWT of the kidney phantom interpolation image, and
its maximum 15% coefficients.

(a) The log-compression of the reconstruction from the
maximum 15% coefficients of level 1 Daubechies2 DWT

(b) The normalized envelop in dB of the maximum 15%
pixels of the interpolation image

Figure 3.16: The normalized absolute values in dB of the reconstruction from the maximum
15% coefficients in level 1 Daubechies2 DWT, and the maximum 15% pixels of the kidney
phantom interpolation image.
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Figure 3.16(a) shows the normalized absolute values from -40dB to 0dB of the
reconstruction from the maximum 15% coefficients of the level 1 Daubechies2 2D-DWT
shown in Figure 3.15(b). Figure 3.16(b) shows the maximum 15% pixels in dB of the
kidney phantom interpolation image.

(a) The maximum 15% 2D-FFT coefficients (b) The maximum 15% 2D-DCT coefficients

Figure 3.17: The maximum 15% 2D-FFT and 2D-DCT coefficients of the kidney phantom
interpolation image.

(a) The log-compression of the reconstruction from the
maximum 15% 2D-FFT coefficients

(b) Thelog-compression of the reconstruction from the
maximum 15% 2D-DCT coefficients

Figure 3.18: The normalized absolute values in dB of the reconstruction from the maximum
15% 2D-FFT and 2D-DCT coefficients.
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Figure 3.17 indicates the maximum 15% 2D-FFT and 2D-DCT coefficients of the
kidney phantom interpolation image.

Figure 3.18 shows the normalized absolute values from -40dB to 0dB of the recon-
structions from the maximum 15% 2D-FFT and 2D-DCT coefficients.

3.1.3 Analysis

As for the linear interpolation images of the fetus and the kidney phantom scatter-
ing intensity, the spatial domain is sparser than the other transforms, but the spatial
sparsity is still insufficient. Therefore, the sparse space of the ultrasound reconstructed
images is researched.

3.2 The sparse space of the ultrasound reconstruction images

The scattering intensity interpolation images are not sparse enough in the common
transforms. They are very impulsive. That is, they are not smooth. As a result,
they are hard to compress. We can hardly reconstruct them because of this impulsive
structure. So it is more realistic to focus on beamformed images. Moreover, in this
report, the aim is to improve the reconstruction performance with transmitting 1 PW
(plane wave). Therefore, the ultrasound images reconstructed with multiple PWs by
the conventional beamforming techniques can be regarded as the true image to research
the sparse space. The fetus phantom MF (matched filter) image and carotid MF image
are simulated. The fetus image is a computer simulation, and the carotid image is the
experimental data.

3.2.1 The fetus phantom 21-PW MF image

This simulation is done in MATLAB. To be convenient, the imaging domain is set as
Figure 3.19. The imaging domain is approximately a 17.53mm×8.77mm rectangular
area. The size of the fetus phantom shrinks about 5.48 times to fit the imaging domain.

24



Figure 3.19: The imaging domain.

The parameters are listed in Table 3.1.

sampling frequency fs = 50MHz

pulse wave frequency f0 = 5MHz

ultrasound wave speed c0 = 1540m/s

wavelength λ = c0/f0 = 0.308mm

the width of array element 0.2mm

the height of array element 2mm

kerf 0.04mm

the number of array elements 128

the length of array 30.68mm

imaging domain |x| < 8.77mm, 9.64mm < z < 18.41mm

Table 3.1: Parameters of the fetus phantom MF image

In this case, the US pulse is a 2-circle 5MHz sine pulse with Hanning window, the
time response of which is formulated as equation (3.3).

p(t) = (0.5− 0.5 cosπf0t) · sin 2πf0t, t ∈ [0, 2/f0]. (3.3)

Figure 3.20 shows the time response and the normalized frequency spectrum of the
US pulse. Since the frequency domain of the real signals is conjugate symmetric with
respect to the origin, only the spectrum of the non-negative frequencies is shown.
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(a) The time response (b) The normalized frequency spectrum in dB

Figure 3.20: The time response and the normalized frequency spectrum of the US pulse.

Figure 3.21 shows the normalized envelops from -40 to 0dB of the 3-PW and 6-PW
MF images.

(a) 3-PW MF image (steering angles 0o, ±15o) (b) 6-PW MF image (steering angles ±3o, ±9o, ±15o)

Figure 3.21: The normalized envelops in dB of the noiseless fetus phantom 3-PW and 6-PW
MF images.

The 256×512 noiseless 21-PW MF image is shown as Figure 3.22, and Figure 3.23
shows the normalized envelop from -40dB to 0dB of its z-directional Hilbert transform.
There are nearly 9 pixels per wavelength. The steering angles of the 21 PWs are 0o,
±1.5o, ±3o, · · · , ±15o. Compared with the 3-PW and 6-PW images in Figure 3.21, the
21-PW image is not improved much. It is concluded that more PWs with the different
steering angles between ±15o will not significantly improve the image quality. So here
the 21-PW image is regarded as the true image.
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Figure 3.22: The normalized absolute values in dB of the noiseless fetus phantom 21-PW MF
image.

Figure 3.23: The normalized envelop in dB of the z-directional Hilbert transformation.

The 2D-FFT and 2D-DCT of the MF image are shown in figure 3.24. It shows that
the image is over-sampled. Oversampling can make some transforms (like DCT and
FFT) sparse. However, the sparsity caused by oversampling cannot improve the image
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quality and such sparsity is unnecessary and avoidable. Therefore, this over-sampled
image should be down-sampled to the Nyquist sampling rate. This can reduce the
interference in finding a good sparse space of the US image.

(a) 2D-FFT normalized spectrum in dB (b) 2D-DCT normalized spectrum in dB

Figure 3.24: The 2D-FFT and 2D-DCT normalized envelop of the fetus phantom 21-PW MF
image.

Figure 3.25 shows the normalized absolute values from -40dB to 0dB of the Nyquist
sampling MF image. The normalized RMSE between the over-sampled image and the
Nyquist sampling image is about 6.87%, so it is a good approximation.

(a) 2D-FFT (b) 2D-DCT (c) The Nyquist-sampled fetus phantom 21-PW MF image in dB

Figure 3.25: The normalized absolute values in dB of Nyquist sampling fetus phantom MF
image and its 2D-FFT and 2D-DCT.

Figure 3.26 shows the envelop in dB of the Hilbert transformation with the Tukey
window in z-direction of the Nyquist sampling fetus phantom MF image. The ratio

28



of the Tukey window is 0.2. The most details shown in Figure 3.23 is also shown
in Figure 3.26, such as the umbilical cord and the edges of the spine. Therefore,
Figure 3.25(c) is chosen as the true image, to which the reconstructions are compared.

Figure 3.26: The normalized envelop from -40dB to 0dB of the Hilbert transformation with
Tukey window in z-direction of the Nyquist sampling fetus phantom MF image.

(a) The different levels of symlet6 (b) The different levels of Coiflet3

Figure 3.27: Comparison among the different levels of the symlet6 and the Coiflet3.

Figure 3.27(a) shows the curves of the symlet6 from level 1 to level 5 respectively.
The level 1 symlet6 is not as sparse as the others, and the difference from level 2 to
level 5 is little. Figure 3.27(b) shows the curves of the Coiflet3 from level 1 to level 5
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respectively. The level 1 Coiflet3 is also not as sparse as the others. For many other
2D-DWTs, the sparsity also varies little from level 2 to level 5. So, for this fetus MF
image, the level of 2D-DWT can be chosen as 5.

Figure 3.28(a) shows the curves of the level 5 2D-DWTs with the filters Haar,
symlet4, symlet6 Coiflet3, Coiflet4 and Meyer respectively. The difference of their
sparsity is little.

According to Figure 3.24, the fetus MF image has different frequency characteristics
in the x and z direction. So one idea for improving the sparsity is that the 2D-DWT can
apply different filters in x and z directions. Another idea is that two different 1D-DWTs
can be used in x and z directions with different filters and different levels, which is a kind
of wavelet packet transform but with different filters in different dimensions. We will
refer to this technique as ’wavelet packet’ for the remainder of this thesis. Therefore,
the level 5 2D-DWT with the symlet6 and Coiflet3 filters in x and z directions is
compared with the level 5 symlet6 and Coiflet3 2D-DWTs, and the wavelet packet
transform which performs level 1 Coiflet4 and level 3 Coiflet3 1D-DWTs in x and z
directions is compared with the 2D-DWTs and the wavelet packet transforms with
the single filters. Figure 3.28(b) shows the comparison of their sparsity. We can see
that 2D-DWT with the symlet6 and Coiflet3 filters in x and z directions is sparser than
symlet6 and Coiflet3 2D-DWTs, and the wavelet packet transform which performs level
1 Coiflet4 and level 3 Coiflet3 1D-DWTs in x and z directions is the sparsest transform
among these transforms. Therefore, as for the sparse space of the ultrasound images,
the 2D-DWT with different filters in two directions can work better than the normal
2D-DWTs and the wavelet packet can also have better performance with different filters
in two directions, and the wavelet packet transform can work better than the 2D-DWT
but the subband tree needs selecting.

(a) The different 2D-DWTs in level 5 (b) improved 2-dimensional DWT

Figure 3.28: Comparison of the different 2D-DWTs.

Figure 3.29(a) shows the curves of the block 2D-DCT with the block size 8 × 6,
8×4, 8×8, 4×6, 16×6 and 16×12 respectively. In this case, the block 2D-DCT with

30



block size 8× 6 is sparser than the others. Figure 3.29 shows the curves of the spatial
domain, 2D-DCT, 2D-FFT, different 1D-DWTs in two directions, block 2D-DCT with
block size 8×6 and wave atom respectively. As the number of wave atom coefficients
is larger than that of the image pixels, so it uses the same number of coefficients as
the other transformations. According to the curves, the wave atom and the block 2D-
DCT and different 1D-DWTs in two dimensions are sparser than the others. But, since
the wave atom coefficients are more than the image pixels, it is not as good as block
2D-DCT and different 1D-DWTs in two directions.

(a) The block 2D-DCT with the different block sizes (b) The sparsity of some transformations

Figure 3.29: The sparsity of block 2D-DCT and some other transformations.

Figure 3.30 shows the level 5 Meyer DWT spectrum of the fetus phantom 21-PW
MF image and the positions of its maximum 15% coefficients.

(a) The normalized envelop in dB of level 5 discrete
Meyer DWT

(b) The positions of maximum 15% level 5 discrete
Meyer DWT coefficients

Figure 3.30: The level 5 discrete Meyer DWT of the fetus phantom 21-PW MF image, and
the positions of its maximum 15% coefficients.
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(a) Normalized amplitude in dB of the wavelet packet (b) The positions of the maximum 15% coefficients

Figure 3.31: The wavelet packet performing level 1 symlet6 and level 3 Coiflet3 1D-DWTs in
x and z directions of the fetus phantom 21-PW MF image, and the positions of its maximum
15% coefficients.

Figure 3.31 shows the wavelet packet transform which performs level 1 symlet6 and
level 3 Coiflet3 1D-DWTs in x and z dimensions of the fetus phantom 21-PW MF image
and the positions of its maximum 15% coefficients.

Figure 3.32 shows the block 2D-DCT spectrum with block size 8 × 6 of the fetus
phantom 21-PW MF image and the positions of its maximum 15% coefficients.

(a) The normalized envelop in dB of block 2D-DCT
with block size 8 × 6

(b) The positions of maximum 15% block 2D-DCT co-
efficients

Figure 3.32: The block 2D-DCT in dB with block size 8× 6 of the fetus phantom 21-PW MF
image, and the positions of its maximum 15% coefficients.

Figure 3.33 shows the wave atom spectrum of the fetus phantom 21-PW MF image
and the positions of its maximum coefficients. We can see that the number of wave
atom coefficients is 160× 160, which is larger than the number of image pixels. So the
wave atom is not an orthogonal transform for this case.
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(a) The normalized envelop in dB of wave atom (b) The positions of maximum wave atom coefficients

Figure 3.33: The wave atom in dB of the fetus phantom 21-PW MF image, and the positions
of its maximum coefficients.

Figure 3.34(a) shows the normalized absolute values in dB of the reconstruction
from the maximum 15% level 5 Meyer 2D-DWT coefficients shown in Figure 3.30(b).
Figure 3.34(b) shows the normalized absolute values in dB of the reconstruction from
the maximum 15% coefficients of the wavelet packet shown in Figure 3.31(b). Fig-
ure 3.34(b) has better contrast than Figure 3.34(a).

(a) The log-compression of the reconstruction from the
maximum 15% coefficients of level 5 Meyer DWT

(b) The log-compression of the reconstruction from
maximum 15% coefficients of the wavelet packet

Figure 3.34: The reconstruction from the maximum 15% coefficients in level 5 discrete Meyer
DWT and the wavelet packet performing level 1 symlet6 and level 3 Coiflet3 1D-DWTs in x
and z directions.

Figure 3.35(a) shows the reconstruction from the maximum 15% coefficients of the
block 2D-DCT shown in Figure 3.32(b). We can see some block artifacts. It is because
the image is divided into many blocks to perform the 2D-DCT on each block. Fig-
ure 3.35(b) shows the reconstruction from the maximum 15% wave atom coefficients
shown in Figure 3.33(b).
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(a) Log-compression of reconstruction from maximum
15% coefficients of block 2D-DCT with block size 8×6

(b) The log-compression of the reconstruction from the
maximum 15% coefficients of wave atom

Figure 3.35: The reconstructions from the maximum 15% pixel number coefficients in block
2D-DCT with block size 8× 6 and in wave atom of the fetus phantom 21-PW MF image.

Figure 3.36(a) shows the normalized absolute values in dB of the maximum 15% pix-
els in the fetus phantom MF image. Choosing spatial domain as sparse space will cause
the weak scatterers ignored, since weak scatterers are usually not sparse in spatial do-
main. However, because we often see the log-compressed US image and log-compression
will emphasize the weak scatterers, ignoring weak scatterers will severely influence the
image quality. So Figure 3.36(a) looks bad. Figure 3.36(b) indicates the maximum
15% 2D-DCT coefficients of the fetus phantom MF image, and Figure 3.36(c) shows
the reconstruction from them. The reconstruction is distorted. Because the 2D-DCT
is not good at representing the local spatial characteristics, the reconstruction has bad
contrast.

(a) The log-compression of the maximum 15%
pixels of the 21-PW MF image

(b) DCT
coefficients

(c) The reconstruction from the maximum 15%
2D-DCT coefficients

Figure 3.36: The maximum 15% pixels of the fetus phantom 21-PW MF image, and the
maximum 15% 2D-DCT coefficients of the fetus phantom MF image, and the normalized
absolute values in dB of the reconstruction from the maximum 15% 2D-DCT coefficients.

3.2.2 The experimental carotid MF image

Next, we analyze a beamformed US image from an in vivo measurement. Some imaging
parameters are listed in table 3.2.
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sampling frequency fs = 20.832MHz

ultrasound wave speed c0 = 1540m/s

pitch 0.150mm

Table 3.2: Parameters of the experimental carotid MF image

The pixel length in x-direction and z-direction is equal to the pitch and c0/2fs
respectively. The normalized amplitudes from -50dB to 0dB of the 901 × 246 carotid
ultrasound image is shown as Figure 3.37(a), and Figure 3.37(b) shows the normalized
envelop from -50dB to 0dB of its z-directional Hilbert transform. In this part, the dB
range for the images is from -50dB to 0dB.

(a) The normalized envelop in dB (b) The z-directional Hilbert transformation

Figure 3.37: The 901× 246 carotid ultrasound image.

The 2D-DCT and 2D-FFT of the 901 × 246 carotid ultrasound image are shown
in Figures 3.38(a) and 3.38(d) respectively. The image is approximately band-limited,
so truncating the 2D-DCT will only change the image envelop a little. To avoid the
unnecessary sparsity, the 2D-DCT matrix is truncated from the 225th row to the 640th
row and from the first column to the 128th column. To eliminate the discontinuities
caused by truncation, a window shown in Figure 3.38(b) is multiplied to the cropped
2D-DCT. The window in z-direction is the Tukey window with ratio 0.1, and it in
x-direction is half of the Tukey window with ratio 0.05. Figure 3.38(c) shows the
truncated and windowed 2D-DCT.
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(a) Normalized DCT
spectrum in dB

(b) The window in
linear scale

(c) The cropped and
windowed 2D-DCT

(d) The 2D-FFT be-
fore cropping the 2D-
DCT

(e) The 2D-FFT af-
ter cropping the 2D-
DCT

Figure 3.38: The normalized 2D-FFT and 2D-DCT spectrum from -50dB to 0dB of both the
carotid ultrasound images before and after truncating and windowing in the 2D-DCT.

(a) The carotid image from the cropped 2D-DCT (b) The z-directional Hilbert transform of the image

Figure 3.39: The carotid image from the cropped and windowed 2D-DCT and its z-directional
Hilbert transform envelop in dB.

Figure 3.39(a) shows the normalized amplitude in dB of the inverse 2D-DCT from
the truncated and windowed 2D-DCT. Figure 3.39(b) shows the z-directional Hilbert
transform normalized envelop in dB of the 2D-IDCT image. The 2D-IDCT image re-
mains most details in original carotid ultrasound image and the normalized RMSE be-
tween original 2D-DCT and windowed truncated 2D-DCT is only about 1.92%. There-
fore, it is better to look for the sparse space of the truncated 2D-DCT. In other words, it
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is better for analyzing the sparse space of the ultrasound images to regard the 2D-IDCT
carotid image from the truncated 2D-DCT as the true image.

Figure 3.40(a) shows the curves of the discrete Meyer 2D-DWT from level 1 to level
5 respectively. The level 5 is also one of the sparsest among them. Therefore, as for
2D-DWTs, level 5 is one of the sparsest levels. Figure 3.40(b) shows the curves of the
level 5 Meyer and different Daubechies 2D-DWTs. The Meyer 2D-DWT is sparser than
the Daubechies 2D-DWTs.

(a) The different levels of the discrete Meyer 2D-DWT (b) Level 5 Meyer and Daubechies 2D-DWT

Figure 3.40: Comparison of the different levels the Meyer 2D-DWT and different level 5
Daubechies 2D-DWT.

(a) The different 2D-DWTs (b) The block 2D-DCT with the different block sizes

Figure 3.41: Comparison of the different 2D-DWTs and comparison of the block 2D-DCT
with the different block sizes.
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Figure 3.41(a) shows the curves of three level 5 2D-DWTs with the filters Meyer,
symlet6, Coiflet3, and the level 5 2D-DWT with symlet6 and Coiflet3 in x and z direc-
tions, and the wavelet packet performing level 2 symlet6 and level 5 Coiflet3 1D-DWTs
in x and z directions. The wavelet packet is sparser than others. According to Fig-
ure 3.38(e), carotid MF image also has different frequency characteristics in x and z
directions, so it can be sparser than the normal 2D-DWTs to use different 1D-DWTs
in two directions or use the 2D-DWT with different filters in two dimensions, which is
corresponding to Figure 3.41(a). Figure 3.41(b) shows the curves of the block 2D-DCT
with the block size 8×8, 4×4, 8×4, 4×8, 8×16 and 16×8 respectively. In this case,
the block 2D-DCT with block size 8× 8 is sparser than the others. Here the pixel size
is about 0.29mm in x-direction and about 0.08mm in z-direction. The physical size of
the 8× 8 block is about 2.31mm in x-direction and 0.64mm in z-direction.

Figure 3.42(a) shows the curves of the spatial domain, 2D-DCT, 2D-FFT, wavelet
packet, block 2D-DCT with block size 8× 8 and wave atom respectively. The wavelet
packet with different filters in two directions is sparser than the other transforms. But
the improvement of the sparsity is not much compared to spatial domain. In frequency
domain, the sparsity is worse. It is typically difficult to sparse represent an image with
strong boundaries in frequency domain. Theoretically, the spatial sparsity and the
frequency sparsity of one image observe an uncertainty principle.[11] Namely, since the
carotid MF image is fairly sparse in spatial domain, its frequency domain is not that
sparse. Figure 3.42(b) shows the comparison of the sparsity between the fetus phantom
MF image and the carotid ultrasound image. The carotid ultrasound image is much
sparser than the fetus phantom MF image.

(a) The different transforms of the carotid ultrasound
image

(b) Level 5 Meyer 2D-DWT and block 2D-DCT of the
fetus phantom MF image and the carotid MF image

Figure 3.42: Sparsity of some other transformations and comparison of the sparsity between
the fetus phantom MF image and the carotid ultrasound image.

In this case, the transformation applying two different 1D-DWTs in two directions
and the block 2D-DCT are sparser than the others.
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Figure 3.43 shows the level 5 Meyer 2D-DWT normalized spectrum in dB of the
carotid image and the positions of its maximum 15% coefficients.

(a) The normalized spectrum in dB of level 5 Meyer
2D-DWT

(b) The positions of maximum 15% level 5 discrete
Meyer DWT coefficients

Figure 3.43: The carotid image level 5 Meyer 2D-DWT normalized spectrum in dB, and the
positions of its maximum 15% coefficients.

Figure 3.44 shows the normalized spectrum in dB of the wavelet packet which per-
forms level 2 symlet6 and level 5 Coiflet3 1D-DWTs in x and z directions and the
positions of its maximum 15% coefficients.

(a) The normalized spectrum in dB of level 2 symlet6
and level 5 Coiflet3 1D-DWTs in x and z

(b) The positions of maximum 15% coefficients of level
2 symlet6 and level 5 Coiflet3 1D-DWTs in x and z

Figure 3.44: Normalized spectrum in dB of wavelet packet performing level 2 symlet6 and level
5 Coiflet3 1D-DWTs in x and z direction, and the positions of its maximum 15% coefficients.
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Figure 3.45 shows the block 2D-DCT normalized spectrum in dB with block size
8× 8 of the carotid image and the positions of its maximum 15% coefficients.

(a) The normalized spectrum in dB of block 2D-DCT
with block size 8 × 8

(b) The positions of the maximum 15% block 2D-DCT
coefficients

Figure 3.45: The block 2D-DCT normalized spectrum in dB with block size 8 × 8 of the
carotid image, and the positions of its maximum 15% coefficients.

Figure 3.46 shows the normalized wave atom spectrum in dB of the carotid image
and the positions of its maximum 7987 coefficients.

(a) The normalized spectrum in dB of wave atom (b) The positions of maximum 7987 wave atom coeffi-
cients

Figure 3.46: The wave atom in dB of the fetus phantom 21-PW MF image, and the positions
of its maximum coefficients.

Figure 3.47(a) shows the normalized amplitude in dB of the reconstruction from the
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maximum 15% coefficients shown in Figure 3.43(b). Figure 3.47(b) shows the maximum
15% pixels in the carotid image.

(a) The log-compression of the reconstruction from the
maximum 15% coefficients of level 5 Meyer 2D-DWT

(b) The normalized amplitudes in dB of the maximum
15% pixels of the carotid image

Figure 3.47: The reconstruction from the maximum 15% coefficients in level 5 Meyer 2D-
DWT, and the maximum 15% pixels of the carotid image.

Figure 3.48(a) shows the reconstruction from the maximum 15% coefficients shown
in Figure 3.45(b). Figure 3.48(b) shows the reconstruction from the maximum 15%
coefficients shown in Figure 3.46(b).

(a) Log-compression of reconstruction from maximum
15% coefficients of block 2D-DCT with block size 8×8.

(b) The normalized amplitudes in dB of the reconstruc-
tion from the maximum coefficients of wave atom

Figure 3.48: The reconstructions from the maximum 15% pixel number coefficients in block
2D-DCT with block size 8× 8 and in the wave atom of the carotid image.
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Figure 3.49 shows the reconstruction from the maximum 15% coefficients shown in
Figure 3.44(b).

Figure 3.49: The reconstruction from the largest 15% coefficients of level 2 symlet6 and level
5 Coiflet3 1D-DWTs in x and z directions

Figures 3.50(a) and 3.50(c) indicate the maximum 15% 2D-DCT and 2D-FFT coeffi-
cients, and Figures 3.50(b) and 3.50(d) show their reconstructions. The reconstructions
are distorted.

(a) Max DCT
coefficients

(b) The reconstruction from the max-
imum 15% 2D-DCT coefficients

(c) Max FFT
coefficients

(d) The reconstruction from the max-
imum 15% 2D-FFT coefficients

Figure 3.50: Maximum 15% coefficients and their reconstructions for 2D-DCT and 2D-FFT
of carotid image.

3.3 Sparse dictionary learning for the US images

The above simulations do not find a enough good sparse space for the US images,
so in this paragraph, the K-SVD algorithm described in Section 2.3.3 on page 10 is
performed on several experimental beamformed carotid US images to train a good
sparse dictionary of the carotid US images. The experimental data used for the learning
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are from two healthy volunteers, and then the obtained sparse dictionary is tested on
the beamformed carotid US image of a third volunteer. Figure 3.51 shows the carotid
US images used for the learning, the experimental carotid US image I and II, and their
2D-DCTs.

(a) experimental carotid US image I (b) DCT I

(c) experimental carotid US image II (d) DCT II

Figure 3.51: The experimental beamformed carotid images used for training, and their 2D-
DCTs.

From Figure 3.51(a) and 3.51(c), we can see that there are strong boundaries in
these two images, which are the interesting part of the longitudinal carotid images.
Figure 3.51(b) and 3.51(d) are the 2D-DCTs of these two carotid US images, and they
show that these two US images are mostly band-limited along z-direction in k-space. So
their 2D-DCTs can be cropped to reduce the unnecessary sparsity. As an example, the
2D-DCT in Figure 3.52(a) is obtained by cropping the 2D-DCT in Figure 3.51(b). The
US image1 and 2 in Figure 3.52(b) and 3.52(c) are gained by respectively performing
2D-IDCT on the cropped 2D-DCTs of the US image I and II. Both image1 and 2 are
the 288× 128 matrices.
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(a) Cropped (b) experimental carotid US image1 (c) experimental carotid US image2

Figure 3.52: The cropped 2D-DCT of the carotid US image I, and the training images recon-
structed from their cropped 2D-DCTs (image1 and 2 correspond to image I and II).

The K-SVD algorithm is used for sparse dictionary learning. Due to the computation
complexity and the limitation of the computer memory, we divide the training images
into a number of patches and K-SVD can only learn the sparse dictionary of these
patches. These patches are usually overlapped for training so that we can get much
more training samples.

If the digital size of the patch is chosen as 24 × 16, two beamformed carotid US
images shown above can provide 59890 training samples. The physical size of these
patches is about 1.95mm × 4.77mm, so we can get local sparse representations. The
pixel number of the patch is 384 and it is far smaller than the number of the training
samples, so the sample number is sufficient. The training sample set Θ in (2.3) on page
10 will be a 384 × 59890 matrix. In Θ, the patches have different scattering energy,
some are very large and some are very small. Since K-SVD is used to minimize the
MSE as (2.3), the dictionary will focus on the patches with high energy. However, these
low-energy patches may still show important details in a log-compressed US images, so
we will enhance the pixel intensities of these patches. Therefore, the log-compression is
applied among the pixel intensities of all the patches. Assume RdB is the dB range of
the log-compression and Imax = max{||θ1||2, ||θ2||2, · · · } indicates the maximal root of
mean energy of the patches, where θ is one patch. So the intensity amplification ratio
of the ith patch θi is calculated as (3.4). In this case, dB range is RdB = 50.

Amplification ratio = max{ Imax

||θi||2
(1 +

20

RdB

log10

||θi||2
Imax

), 1}. (3.4)

We choose the length of dictionary equal to the pixel number of the patches (i.e.,
384), then the D in (2.3), the sparse dictionary matrix for one patch, will be a 384×384
square matrix. The sparsity constraint T0 is chosen to be 77, i.e., about 20% of the
number of pixels in a patch. So we can get a dictionary by the K-SVD algorithm with
the above parameters.
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Figure 3.53: A experimental beamformed carotid image used for testing the dictionary.

The obtained dictionary will be tested on another experimental carotid US image
shown in Figure 3.53. The 2D-DCT of this image is also cropped and its pixel number
is 288× 128 as well.

The sparsity curve of the dictionary is drawn in Figure 3.54(b), which is the rela-
tionship between the number of non-zero coefficients and RMSE of the reconstruction
with these coefficients. Since the dictionary matrix is not necessarily orthogonal or full
column rank, the OMP algorithm is used to find a certain number of best representation
coefficients of an image. Figure 3.54 compares the sparsity of the dictionary with some
other transformations. We can see the dictionary is not that sparse. Some transforms
are even sparser than the learned dictionary. Next, we will see the reconstruction image
qualities with 10% number of coefficients of the obtained dictionary.

(a) different 2D-DWTs (b) The learned dictionary and some other domains

Figure 3.54: The sparsity curves of the learned sparse dictionary and some other transforms.

Figure 3.55 and Figure 3.56 show the reconstructions from the largest 10% coeffi-
cients of several transforms. Then, they will be compared with the reconstruction from
the largest 10% representation coefficients of the obtained dictionary.
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(a) Largest 10% pixels (b) Largest 10% 2D-DCT coefficients

Figure 3.55: Reconstructions from largest 10% coefficients in spatial domain and 2D-DCT.

(a) Level 2 symlet6, level 5 Coiflet3 1D-DWTs in x, z (b) block 2D-DCT with block size 24 × 16

Figure 3.56: Reconstructions from the largest 10% coefficients of the different 1D-DWT in
each direction and the block 2D-DCT with block size 24× 16.

(a) Reconstruction log-compressed image (b) Reconstruction error (Top-right block is a patch)

Figure 3.57: Reconstruction from 10% number of the representation coefficients of the learned
dictionary with patch size 24× 16, and the error between reconstruction and true image.
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Figure 3.57(a) shows the reconstruction from the 10% number of representation
coefficients of the learned sparse dictionary, and Figure 3.57(b) shows the reconstruction
error. The error is divided by the maximum pixel strength in the true image. The white
block at top-right of the error image shows the patch size. In Figure 3.57(a), we can see
the boundaries are reconstructed very well. Compared with Figure 3.55, Figure 3.57(a)
looks much better. Compared with Figure 3.56, it has better performance on the weak
scatterers. However, there are block artifacts in the reconstructed image. So smaller
patch may reduce the block artifacts.

Then, the dictionary learning is performed with patch size 8 × 8. We perform two
simulations. One is performed with the length of dictionary equal to the pixel number
of a patch, so the dictionary matrix D of one patch is a 64× 64 square matrix. For the
other simulation, the length of dictionary is 8 times number of the pixels in one patch,
so the dictionary matrix D of a single patch becomes a 64 × 512 fat matrix. This is
because the sparsity can increase with longer dictionary. The sparsity curves of these
three dictionaries are drawn in Figure 3.58.

Figure 3.58: Sparsity comparison of three different sparse dictionaries.

From Figure 3.58, we can see that the long dictionary is sparser than the other two
dictionaries. As for the two square dictionary matrices corresponding to patch sizes
24×16 and 8×8, their sparsity are similar. Therefore, we will then compare the recon-
structions from a limited number of their representation coefficients. Figure 3.57(a) uses
the 10% representation coefficients, so we will use the same number of the coefficients
of the other two dictionaries for the reconstructions. As the total coefficient number is
36864, its 10% is about 3686. The total number of coefficients in 8 times fat dictionary
is 294912, so its 1.25% number of coefficients is equal to 3686. As for the patch size
8× 8, Figure 3.59(a) shows the reconstruction from the 10% representation coefficients
of the square dictionary matrix, and Figure 3.60(a) shows the reconstruction from the
1.25% representation coefficients of the fat dictionary matrix.
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(a) Reconstruction log-compressed image (b) Reconstruction error (Top-right block is a patch)

Figure 3.59: Reconstruction from about 10% number of the total 36864 representation coef-
ficients (3686 coefficients) of the square dictionary matrix with patch size 8× 8.

(a) Reconstruction log-compressed image (b) Reconstruction error (Top-right block is a patch)

Figure 3.60: Reconstruction from about 1.25% number of the total 294912 representation
coefficients (3686 coefficients) of the 8 times fatter dictionary matrix with patch size 8× 8.

From Figure 3.59(a), we can see that the small patch does reduce the block artifacts
and the image quality is good. Comparing Figure 3.59(a) with Figure 3.60(a), their
image quality looks similar. But, Comparing Figure 3.59(b) with Figure 3.60(b), we
can see that the error shown in Figure 3.60(b) is less.

Above, the dictionary learning have been analyzed for the carotid longitudinal-
sectional US image, but the carotid longitudinal-sectional images have simple structures
that are mainly some lines. To check whether the dictionary learning can work well
on the US images with more complicated structures, then, the simulations will be
performed on the beamformed carotid cross-sectional US image. Figure 3.61 shows two
beamformed carotid cross-sectional US images. We can see the lines and round holes
in the images that are more complicated structures.
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(a) experimental carotid US cross-sectional image1 (b) experimental carotid cross-sectional US image2

Figure 3.61: The experimental beamformed carotid cross-sectional US images used for train-
ing.

Figure 3.62: experimental beamformed carotid cross-sectional US image used for testing
dictionary.

The images in Figure 3.61 will be used for training the sparse dictionary, and the
image in Figure 3.62 will be used to test the learned dictionary. The 2D-DCTs of these
three images are all cropped like what we did on the longitudinal-sectional images. The
number of image pixels after cropping are also 288× 128.

The patch size is chosen to be 8 × 8. And the dictionary length is chosen to be
respectively the number of the pixels and 8 times thereof, so that two dictionaries
are obtained with the same procedures as described above. The sparsity curves are
compared in Figure 3.63. The long dictionary is sparser than the others.
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Figure 3.63: Comparison of sparsity of the dictionaries and sparsity in soome other domains.

Figure 3.64 and Figure 3.65 show the reconstructions from the largest 3686 coeffi-
cients of some domains respectively.

(a) Largest 10% pixels (b) Largest 10% 2D-DCT coefficients

Figure 3.64: Reconstructions from largest 10% coefficients in spatial domain and 2D-DCT.
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(a) Level 2 symlet6, level 5 Coiflet3 1D-DWTs in x, z (b) block 2D-DCT with block size 24 × 16

Figure 3.65: Reconstructions from the largest 10% coefficients of the wavelet packet perform-
ing different 1D-DWTs in two directions and the block 2D-DCT with block size 8× 8.

Figure 3.66 shows the reconstruction from about 10% coefficients (i.e., 3686 coef-
ficients) of the dictionary whose length is equal to the image pixel number. It has
many block artifacts. Compared with Figure 3.65(b) which also has many block arti-
facts, the image quality of Figure 3.66(a) is better. Compared with Figure 3.65(a), in
Figure 3.66(a), the weak scatterers are reconstructed better.

(a) Reconstruction log-compressed image (b) Reconstruction error (Top-right block is a patch)

Figure 3.66: Reconstruction from about 10% number of total 36864 representation coefficients
(i.e., 3686 coefficients) of the square dictionary matrix.

51



(a) Reconstruction log-compressed image (b) Reconstruction error (Top-right block is a patch)

Figure 3.67: Reconstruction from about 1.25% number of total 294912 representation coeffi-
cients (i.e., 3686 coefficient) of the 8 times fat dictionary matrix.

Figure 3.67 shows the reconstruction from about 1.25% coefficients (i.e., 3686 coef-
ficients) of the long dictionary whose length is 8 times the number of the pixels. It has
very good image quality.

Therefore, to be the sparse space of the beamformed carotid US images, the dic-
tionary learned by K-SVD works better than the normal transformations. And as the
dictionary gets longer, the sparsity increases.

3.4 Reconstruction from the simulated US measurements

In this section, we show ultrasound reconstructions from simulated raw RF data, using
l1-regularization with different bases. The simulation is performed in MATLAB. The
imaging domain is approximately a 17.53mm×8.77mm rectangular area shown as figure
3.19 at page 25. The parameters here are the same as the parameters listed in table
3.1 at page 25. The transmitted ultrasound pulse here is also the same as that in
Section 3.2.1, the response of which is formulated as (3.3) and shown as figure 3.20 at
page 26. Here only 1 plane wave with a steering angle of 0o is transmitted. Here the
SNR is defined as (3.5), where y is the vector consisting of all the received signals and
σn is the standard deviation of the additive white Gaussian noise (AWGN). The SNR
here is 20dB.

SNR = 20 lg(||y||∞/σn). (3.5)

To save the computer memory, the received signal y and the system matrix A is
formulated in band-limited Fourier domain from +3.5MHz to +6.5MHz, which is shown
as figure Figure 3.68.
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Figure 3.68: The frequency band from +3.5MHz to +6.5MHz.

The imaging grid is 160 × 96 that 160 pixels in z-direction and 96 pixels in x-
direction. So the pixel size is about 54.79µm × 182.62µm that z-directional and x-
directional pixel lengths are about 54.79µm and 182.62µm. There are about 5.62 and
1.69 pixels per wavelength in z-direction and x-direction respectively. LSQR algorithm
solves (1.1) without l1-regularization. According to the experiments, it is found that
the reconstructed image of 14 LSQR iterations is one of the results with best quality.
The 14-iteration LSQR reconstruction is shown in Figure 3.69. The outline of the fetus
phantom can be seen, but the image is distorted and has bad contrast.

(a) Log-compression of the LSQR reconstruction (b) Normalized envelop in dB of its Hilbert transform

Figure 3.69: The 14-iteration LSQR reconstruction.

The YALL1 solver is used here to solve the l1-regularization problem, because of
its high convergence speed. Figure 3.70 shows the reconstructions l1-regularized in the
block 2D-DCT (block size 8× 6) with τ equal to 0.0002, 0.002 and 0.006 respectively.
Since the empty area in Figure 3.70(b) is darker and clearer than that in Figure 3.70(a),
the reconstruction performance with τ = 0.0002 is better than that with τ = 0.002.
In Figure 3.70(c), the image is distorted much and the intensity of background is not
uniform along z-direction, so τ = 0.006 is too large for the reconstruction. Therefore,
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τ is equal to 0.002 in the remainder of the simulations.

(a) τ = 2 × 10−4 (b) τ = 2 × 10−3 (c) τ = 6 × 10−3

Figure 3.70: The YALL1 reconstruction l1-regularized in the block 2D-DCT (block size 8×6)
with different τ .

The reconstruction l1-regularized in the spatial domain is shown as Figure 3.71. The
image has many impulses and is much sparser than the true image, which is distorted.
But compared with the LSQR result, it has better contrast.

(a) Normalized amplitude in dB of the reconstruction (b) Normalized envelop in dB of its Hilbert transform

Figure 3.71: The YALL1 reconstruction l1-regularized in the spatial domain and its Hilbert
transform.

(a) Normalized amplitude in dB of the reconstruction (b) Normalized envelop in dB of the Hilbert transform

Figure 3.72: The YALL1 reconstruction l1-regularized in the block 2D-DCT (block size 8×6)
and its Hilbert transform.

The reconstruction l1-regularized in the block 2D-DCT with block size 8×6 is shown
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as Figure 3.72. Compared with LSQR result, large empty regions have good contrast,
but the contrast of small empty regions are not good and the image has some block
artifacts. This is because that the block size is not small enough.

(a) Normalized amplitude in dB of the reconstruction (b) Normalized envelop in dB of the Hilbert transform

Figure 3.73: The YALL1 reconstruction l1-regularized in the level 5 Meyer 2D-DWT and its
Hilbert transform.

The reconstruction l1-regularized in the level 5 Meyer 2D-DWT is shown as Fig-
ure 3.73. The empty regions do not have good contrast. This is because the Meyer
filter is very long so that its spatial resolution is not good enough.

The reconstruction l1-regularized in the level 5 Haar 2D-DWT is shown as figure
Figure 3.74. The image has better contrast in empty regions than Figure 3.72 and 3.73
except the block artifacts. The good contrast of empty region is because that the length
of the Haar filter is only 2. Since the Haar filter coefficients have the same absolute
values, the Haar 2D-DWT may be a good sparse representation of the homogeneous
tissues.

(a) Normalized amplitude in dB of the reconstruction (b) Normalized envelop in dB of the Hilbert transform

Figure 3.74: The YALL1 reconstruction l1-regularized in the level 5 Haar 2D-DWT and its
Hilbert transform.

Since increasing the dictionary length can increase the sparsity, [5] uses a concatena-
tion from Daubechies1 to Daubechies8 2D-DWTs as the sparse dictionary. Figure 3.75
shows the reconstruction of the fetus phantom in this thesis if using this dictionary.
The image quality is not improved much compared with the above reconstructions.
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(a) Normalized amplitude in dB of the reconstruction (b) Normalized envelop in dB of the Hilbert transform

Figure 3.75: The YALL1 reconstruction l1-regularized in the concatenation from Daubechies1
to Daubechies8 2D-DWTs and its Hilbert transform.

The sparsest transformation of the MF US images which is found in this study is
the wavelet packet performing level 1 symlet6 and level 3 Coiflet3 in x and z directions.
Figure 3.76 shows the reconstruction with it. The image quality is not much better
than the above reconstructions. This is because that its sparsity is still not enough to
improve the image quality of the reconstructions.

(a) Normalized amplitude in dB of the reconstruction (b) Normalized envelop in dB of the Hilbert transform

Figure 3.76: The YALL1 reconstruction l1-regularized in the wavelet packet transform and
its Hilbert transform.

Then, to increase the sparsity, we use the concatenation of the sparse domain and
block 2D-DCT and wavelet packet. The block size of the block 2D-DCT is 8× 6. The
wave packet is the same as the transform used for Figure 3.76. The reconstruction is
not improved much. Although increasing dictionary length can increase sparsity, the
problem also becomes more complex as there are more variables to solve. Moreover,
even though the three transforms are the sparsest, their concatenation is not necessarily
the sparsest dictionary with this longer length.
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(a) Normalized amplitude in dB of the reconstruction (b) Normalized envelop in dB of the Hilbert transform

Figure 3.77: The YALL1 reconstruction l1-regularized in the concatenation from Daubechies1
to Daubechies8 2D-DWTs and its Hilbert transform.

57



58



Conclusions 4
In this thesis, we first modeled the US imaging as a linear inverse problem and explain
that a good sparse space of the US image can improve the US image reconstruction
performance. This motivated us to find such a sparse space in this thesis. Next, we
introduced two reconstruction algorithms LSQR, which can be used to l2-regularized
linear inverse problem, and YALL1, which is used to solve the l1-regularized linear
inverse problem. We also described a model for the US scattering intensity of a medical
phantom. The inside of the tissue is modeled as the point-wise product of a scatter
map and a zero-mean white Gaussian stochastic process, and some boundaries of the
tissue are modeled as strong scatterers. Then, we introduced the 2D-DWT, wave atom,
2D-DCT and block 2D-DCT that are potentially good sparse transforms of medical US
images, and we introduced a sparse dictionary learning algorithm, K-SVD.

After this, we computed and analyzed the sparsity of the US scattering intensity im-
ages before beamforming in the different transform spaces for both a fetus phantom and
a kidney phantom. We also computed and analyzed the sparsity in different transform
spaces of a beamformed fetus MF US image, simulated by computer, and a experimen-
tal carotid MF US image. Then, we performed the K-SVD sparse dictionary learning
algorithm on several experimental beamformed carotid US images to obtain several dic-
tionaries with different parameters, and we computed and analyzed the sparsity of the
other experimental carotid US images in these dictionaries. At last, we reconstructed
the US images from the simulated US measurement data using the LSQR and YALL1
algorithms, and we selected some transforms to use for the l1-regularization in the
YALL1. We analyzed the effects of these transforms on reconstructed image quality.

There are four conclusions as below.
1. It is difficult to find a good sparse space of the pre-beamformed US scattering

intensity images. The US scattering intensity can be modeled as the point-wise product
of a scatter map and a white stochastic process. Due to this white stochastic process,
a good sparse space hardly exists. This study does not find a transform sparser than
its spatial domain.

2. As for the MF US images, its frequency characteristics are different in x and z
directions, so the wavelet transforms with different filters in x and z directions can be
sparser than the wavelet transforms with the same filters in two directions. However,
the sparsity improvement is very little, though it typically presents a sparser transform
than most 2D-DWT decompositions.

3. If there are suitable and sufficient samples for the sparse dictionary learning,
the K-SVD algorithm can find a good square dictionary matrix from the experimen-
tal beamformed carotid US images. Compared with many other transforms, in this
dictionary, we can use fewer coefficients to reconstruct a good-looking beamformed
carotid US image. For the beamformed carotid US image with simpler structures, the
dictionary works better. So it can be a good dictionary for the compression of these
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images.
4. Increasing the dictionary length can make the images have much sparser rep-

resentations. However, as for the reconstruction from the US measurements, longer
dictionary might make the problem more complex, but this has not been investigated
in this thesis. Actually, there is not a single transform in this study that results in a
large image quality improvement of the reconstruction from raw RF data compared to
the spatial domain and some other normal transforms.
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Future work 5
There are four works that can be done in the future.

1. The wavelet packet transform in this study is not the best wavelet packet trans-
form for the US images. Since wavelet packet has a lot of decomposition methods,
also known as subband trees, the best subband tree can be selected according to some
decomposition criteria. So future work can use suitable samples and decomposition
criteria to find sparser wavelet packet transforms. For instance, the decomposition cri-
teria are the l1-norm of the coefficient vector. Namely, the decomposition will not be
performed if it will increase the l1-norm. In this way, we can obtain sparser wavelet
packet transforms.

2. The sparse dictionary learning in this thesis does not involve the matrix A. In
future work, we can take account of A when training the sparse dictionary. As an
example, the optimization problem of the dictionary learning can be written as (5.1).
Y is the set of the samples of the measurement data. A should be the array manifold
matrix with wider bandwidth or multiple PWs so that it can reconstruct better US
images. Other variables are explained in Section 2.3.3 in page 10.

min
D,Γ
{||Y −ADΓ||2F} s.t. ∀i, ||γi||0 6 T0. (5.1)

However, this problem is too large to use the K-SVD algorithm. So we need to use
the other algorithms or reduce the computation complexity of this problem.

3. Future work can focus on finding the optimal dictionary length. We can also try
finding a good concatenation of well=known transforms to be the sparse dictionary.

4. Figure 2.2 on page 8 shows that the model of US scattering intensity is the
point-wise product of a scatter map and a white Gaussian process. Scatter map can be
regarded as an ideal image. Usually, it is easy to find good sparse spaces for the scatter
map of the US images. In this study, the sparsity of the scatter map is not utilized to
find a sparse space of the medical US images, so future work can take advantage of the
sparsity of the scatter map. The following is a possible research direction to make use
of this sparsity.

According to Section 2.1 in page 5, the scattering intensity image can be approxi-
mated as (5.2), where x is the scattering intensity image vector and mx ∈ RN×1

≥0 is the

scatter map vector and wx ∈ RN×1 is the stochastic process. ◦ indicates the Hadamard
product, which is an element-wise product of two vectors and can also be expressed as
the product of a diagonal matrix and a vector.[24] Λmx ∈ RN×N and Λwx ∈ RN×N are
two diagonal matrices with mx and wx as their leading diagonals. If the sparse trans-
form of the scatter map is known, mx can be expressed as (5.2), where Ψmx ∈ CN×K

denotes the sparse dictionary matrix of mx and cx ∈ RK×1 indicates the representation
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coefficient vector.

x = mx ◦wx = Λmxwx = Λwxmx, mx = Ψmxcx. (5.2)

Therefore, (1.1) in page 2 can be rewritten as (5.3). We are not interested in wx,
so ŵx does not have to be very close to wx. Then, sufficient dimensionality reduction
or a good sparse space of ŵx can help us to find a good sparse space of the US images,
which is explained below.

y = AΛmxŵx + n = AΛŵx
mx + n = AΛŵx

Ψmxcx + n. (5.3)

Assume Dŵx = [eŵx,1 · · · eŵx,Ñ
]N×Ñ is a dictionary matrix of ŵx and cŵx,i

are its representation coefficients. Then, (5.3) can be rewritten as (5.4). If we
can find a dictionary Dŵx of ŵx that can make cŵx,i sparse enough or can make

Ñ small enough, vector [cŵx,1cx
T · · · cŵx,Ñ

cx
T ]1×ÑK can be very sparse so that

[Λeŵx,1
Ψmx · · · Λeŵx,Ñ

Ψmx ]N×ÑK may be a good sparse dictionary of the medical

US images. In addition, some assumptions can be used to constrain the stochastic
process ŵx, such as stationarity, mean, variance, auto-correlation, PSD, etc.

y = AΛŵxΨmxcx + n = A
Ñ∑
i=1

cŵx,iΛeŵx,i
Ψmxcx + n

= A
[
Λeŵx,1

Ψmx · · · Λeŵx,Ñ
Ψmx

] [
cŵx,1cx

T · · · cŵx,Ñ
cx

T
]T . (5.4)
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