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“[The sorting hat] only put me in Gryffindor,”
said Harry in a defeated voice,

“because I asked not to go in Slytherin. . . ”
“Exactly,” said Dumbledore, beaming once more.

“Which makes you very different from Tom Riddle.
It is our choices, Harry, that show what we truly are, far more than our abilities.”

From Harry Potter and the Chamber of Secrets, Chapter 18, by J.K. Rowling
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Summary

Introduction and problem statement
The pledge for a carbon-free energy system in 2050 requires significant investments into
renewable energy sources (RES). These new RES capacities need to be planned now to
avoid possible deviations from the 2050 target. The questions are: what technologies to
select, where to build them, how much the capacities are, and at what cost. In order to
answer these techno-economic questions, optimization models are commonly used to
sketch a least-cost future energy system.

However, the energy system is far more complex than a mathematical model. Although
optimization models can provide the least-cost system design, they do not guarantee that
we can realize this design because some key aspects are not captured by such models: the
impact of public acceptance issues, conflicting interests among stakeholders, and the
imperfection of markets. In order to accommodate these aspects, models now need to be
run repeatedly, which does not guarantee finding the overall optimum.

These non-technical aspects are generalized as institutions in this thesis. In a socio-
technical system like the energy system, considering both the social aspects, the institu-
tions, and the technical system, is pivotal. The results of techno-economic models would
become more useful if the institutions could be included. Therefore, the goal of this thesis
is to improve optimization models by including institutions in energy system planning.

Accordingly, the main research question is:

How can institutions be incorporated into optimization models for energy system
planning?

Since institutions are not commonly mentioned in energy system planning models,
this thesis starts with standardizing institutions, and we conducted a literature review. The
goal is to provide a common ground for discussing institutions and find research trends
and gaps in the state-of-the-art. We found that although energy system modelers rarely
use the notion of institutions, there are categories of institutions that have already been
included in optimization models. On the one hand, this fact enhanced our motivation
to bring the institutional perspective explicitly into energy system planning models due
to this lack of awareness. On the other hand, we found that optimization models are
potentially good at modeling these institutions: policies, values of actors, and governance
structures. We identified the following research gaps that need deliberate attention:
spatial policies, collective decision-making, and bilateral trading with externalities. In
this thesis, we developed three models to deal with these institutions, respectively.

xi



xii Summary

Modeling spatial policies
Variable RES are characterized by intensive land-use and variable production. In existing
optimization models that minimize the total cost of the energy system, land-use and land
cover aspects have been largely ignored. To include renewable energy potentials that
consider physical constraints and spatial policies in energy system models, we developed
a spatially explicit planning approach.

In this approach, we located the residents and devised different spatial policies re-
flecting social acceptance. Maximum wind energy potentials were derived based on the
physical constraints and spatial policies, which can be used in any energy system model.

To illustrate the influence of the maximum wind energy potentials, we formulated
an energy system optimization model where the maximum wind energy potentials were
incorporated as a land-use constraint. The Netherlands has been used as an exemplary
case to showcase the approach. We found that with our land-use constraints, the results
led to more realistic outcomes both in terms of social acceptance and physical availability.
We also investigated different spatial policies where various levels of social acceptance
were taken into account.

Modeling collective investment decision-making under conflicting interests
Energy system planning is a complex task where multiple actors contribute simultane-
ously. While social acceptance is an issue from the viewpoint of local residents, there
are interests of other actors which are often conflicting. In the world of energy system
models, various interests could be taken into account by multi-objective optimization
models. This type of conventional modeling shows optimal solution sets regarding the
various interests. However, actors are only implicitly considered. To explicitly model the
actors instead of only the interests, we present an integrated multi-actor multi-objective
energy system planning model.

We considered the following exemplary actors and interests. The three actor groups
are governments, funders, and local residents, who have at least one of these interests,
total capital expenditure, total operation & maintenance costs, land-use, and visually
impacted area. We started with a multi-objective optimization model, where the different
objectives were minimized. Then, the best decisions for the actors were obtained by
further assessing the results by a multi-criteria decision-making method called Technique
for Order of Preference by Similarity to Ideal Solution. The method has the advantage of
simultaneously evaluating the results for multiple actors with different interests. A case
study of Amsterdam has been employed to illustrate the approach.

Modeling bilateral trading with external costs
Although the interests of the actors have been addressed using the multi-objective op-
timization model, the previous method only provides a basis for discussions toward
collective decision-making. However, in a liberalized electricity market, the planning
decisions are directly influenced by the expected costs and benefits from trading in the
market. In this part of the thesis, we focused on bilateral trading with external costs in the
market.

Common energy system optimization models assume a perfectly competitive market
where marginal costs decide the merit order. However, consider the motivating example
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where two actors, say a large wind farm developer and an equally large industrial load, in a
power system engage in bilateral trades. These energy volumes will be outside the market,
and an energy system optimization model would arrive at different outcomes than if
they were included. To make the cost and benefits of the actors explicit, we presented
an equilibrium model first, and then a centralized optimization model was cast. In these
models, different external costs have been incorporated. They are capacity-based costs,
production-based costs, and bilateral trades-based costs, which can be used to represent,
e.g., the social costs of technologies, carbon taxes/RES subsidies, willingness to pay, or
trading barriers, respectively.

The model was demonstrated using a proof-of-concept case study of the highly renew-
able Dutch power system in 2030. The case study illustrated the external costs associated
with bilateral trading in two different ways. Firstly, the bilateral external costs have been
used to represent transaction costs. It was found that incorporating bilateral trading
changed the results when compared with the conventional cost-optimal energy system
optimization model in different ways. The capacity of wind energy decreased while that
of solar PV increased. Regarding the geographical distribution, the generation capacities
were more local regardless of the weather conditions. Secondly, we studied a situation
where a group of regions had to decide on their investments to reach a common invest-
ment goal. An assumed unwillingness to invest in wind energy has been considered. It
was shown that bilateral trading with external costs could work as a negotiation simulator
to inform the regions about the consequences of such a preference.

Conclusions
Energy system modelers and economists currently operate worlds apart. This thesis
has the objective to improve optimization models by including institutions in energy
system planning. We conclude that optimization models are fully equipped to study
institutions. This thesis has improved current models with a techno-economic focus
to incorporate spatial policies, collective decision-making, and bilateral trading with
externalities. Since these institutions are indispensable in a socio-technical system,
including them in optimization models results in socio-technically optimal future energy
system designs beyond only the techno-economic optimums.





Samenvatting

Inleiding en probleemstelling
De belofte voor een koolstofvrij energiesysteem in 2050 vereist aanzienlijke investeringen
in hernieuwbare energiebronnen (HEB). De capaciteit van deze nieuwe HEB moet nu
worden gepland om het behalen van de doelstelling 2050 niet in gevaar te brengen. De
belangrijkste vragen hierbij zijn: welke technologieën moeten worden geselecteerd, waar
moeten ze worden gebouwd, wat is de gewenste capaciteit, en wat zijn de verwachte
kosten. Om deze technisch-economische vragen te beantwoorden, worden gewoonlijk
optimalisatiemodellen gebruikt waarmee een toekomstig energiesysteem met de minste
kosten kan worden geschetst.

Het energiesysteem is echter veel complexer dan deze wiskundige modellen. Hoewel
optimalisatiemodellen een systeemontwerp tegen de laagste kosten kunnen opleveren,
garanderen zij niet dat wij dit ontwerp kunnen verwezenlijken omdat dergelijke modellen
geen rekening houden met een aantal belangrijke aspecten: het effect van problemen
in verband met publiek draagvlak, tegenstrijdige belangen tussen belanghebbenden, en
de imperfectie van de markten. Om met deze aspecten rekening te houden, moeten de
modellen nu herhaaldelijk worden uitgevoerd onder verschillende condities, hetgeen niet
garandeert dat het algemene optimum wordt gevonden.

Deze niet-technische aspecten, de instituties, worden in dit proefschrift daarom
geïntegreerd in de modellen. In een socio-technisch systeem als het energiesysteem is het
van cruciaal belang rekening te houden met zowel de sociale aspecten, de instituties, als
met het technische systeem. De resultaten van techno-economische modellen zouden
bruikbaarder worden als de instituties integraal konden worden meegenomen in de
optimalisatie. Daarom is het doel van deze dissertatie om optimalisatiemodellen te
verbeteren door instituties integraal mee te nemen in de planning van energiesystemen.

De hoofdonderzoeksvraag is:

Hoe kunnen instituties worden opgenomen in optimalisatiemodellen voor de planning
van energiesystemen?

Aangezien instituties niet eenduidig worden gedefinieerd in planningsmodellen voor
energiesystemen, begint deze dissertatie met het standaardiseren van instituties, en
hebben we daarvoor een literatuurstudie uitgevoerd. Het doel is om een gemeenschap-
pelijke basis te creëren voor het bespreken van instituties en om onderzoekstrends en
hiaten in de state-of-the-art te vinden. We vonden dat, hoewel modelspecialisten van
energiesystemen het begrip instituties zelden gebruiken, er categorieën van instituties
zijn die al in optimalisatiemodellen zijn opgenomen. Enerzijds versterkte dit feit onze
motivatie om het institutionele perspectief expliciet in te brengen in planningsmodellen
voor energiesystemen vanwege dit gebrek aan bewustzijn. Anderzijds stelden wij vast dat

xv
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optimalisatiemodellen potentieel goed zijn in het modelleren van deze instituties: beleid,
waarden van actoren, en bestuursstructuren. Wij identificeerden de volgende onder-
zoekshiaten die extra aandacht behoeven: ruimtelijk beleid, collectieve besluitvorming,
en bilaterale handel met externaliteiten. In dit proefschrift hebben we drie modellen
ontwikkeld om met deze instituties om te gaan.

Modellering ruimtelijk beleid
Variabele HEB worden gekarakteriseerd door intensief landgebruik en variabele produc-
tie. In bestaande optimalisatiemodellen die de totale kosten van het energiesysteem
minimaliseren, zijn aspecten van landgebruik en landbedekking grotendeels genegeerd.
Om hernieuwbare-energiepotentiëlen op te nemen die rekening houden met fysieke
beperkingen en ruimtelijk beleid in energiesysteemmodellen, hebben wij een ruimtelijk
expliciete planningsbenadering ontwikkeld.

In deze benadering hebben we de bewoners gelokaliseerd en hebben we verschillende
ruimtelijke beleidsmaatregelen ontworpen die de sociale acceptatie weerspiegelen. Op
basis van de fysische beperkingen en het ruimtelijk beleid werden maximale windener-
giepotentiëlen afgeleid, die in elk energiesysteemmodel kunnen worden gebruikt.

Om de invloed van het maximale potentieel aan windenergie te illustreren, hebben
we een optimalisatiemodel voor het energiesysteem geformuleerd waarin het maximale
potentieel aan windenergie is opgenomen, gegeven een beperking van het landgebruik.
Nederland is gebruikt als voorbeeld om de aanpak te illustreren. We lieten zien dat
met onze randvoorwaarden inzake landgebruik, de resultaten leidden tot meer realisti-
sche uitkomsten, zowel in termen van sociale acceptatie als van beschikbaarheid. We
onderzochten ook verschillende ruimtelijke beleidsmaatregelen waarbij rekening werd
gehouden met verschillende niveaus van sociale acceptatie.

Modellering van collectieve investeringsbeslissingen bij tegenstrijdige belangen
Energiesysteemplanning is een complexe taak waarbij meerdere actoren tegelijkertijd
een bijdrage leveren. Terwijl de maatschappelijke acceptatie vanuit het oogpunt van de
omwonenden een issue is, zijn er belangen van andere actoren die vaak conflicterend
zijn. In de wereld van de energiesysteemmodellen kan met verschillende belangen re-
kening worden gehouden door middel van multi-objective optimalisatiemodellen. Dit
type conventionele modellen toont optimale oplossingsreeksen met betrekking tot de
verschillende belangen. Actoren worden echter slechts impliciet in aanmerking genomen.
Om de actoren expliciet te modelleren in plaats van alleen de belangen, ontwikkelden wij
een geïntegreerd multi-actor multi-objective energiesysteem-planningsmodel.

Wij hebben de volgende actoren en belangen als voorbeeld genomen. De drie groe-
pen actoren zijn overheden, financiers en lokale bewoners, die ten minste één van de
volgende belangen hebben: totale kapitaaluitgaven, totale exploitatie- en onderhouds-
kosten, landgebruik en visueel beïnvloed gebied. We begonnen met een multi-objective
optimalisatiemodel, waarbij de verschillende doelstellingen werden geminimaliseerd.
Vervolgens werden de beste beslissingen voor de actoren verkregen door de resultaten
verder te evalueren met behulp van een multicriteria besluitvormingsmethode, genaamd
‘Technique for Order of Preference by Similarity to Ideal Solution’. Deze methode heeft
het voordeel dat de resultaten voor meerdere actoren met verschillende belangen tege-



Samenvatting xvii

lijkertijd kunnen worden geëvalueerd. Een casestudy van Amsterdam is gebruikt om de
aanpak te illustreren.

Modellering van bilaterale handel met externaliteiten
Hoewel de belangen van de actoren aan de orde zijn gesteld met behulp van het multi-
objective optimalisatiemodel, biedt de vorige methode slechts een basis voor discussies
in de richting van collectieve besluitvorming. Echter, in een geliberaliseerde elektriciteits-
markt worden de planningsbeslissingen direct beïnvloed door de verwachte kosten en
baten van handel op de markt. In dit deel van het proefschrift hebben we ons gericht op
bilaterale handel met externe kosten in de markt.

Gangbare optimalisatiemodellen voor energiesystemen gaan uit van een perfect con-
currerende markt waar de marginale kosten de ‘merit order’ bepalen. In het voorbeeld
waarbij twee actoren (bijvoorbeeld een grote ontwikkelaar van een windmolenpark en
een even grote industriële speler), in een energiesysteem bilaterale handel aangaan, geldt
deze perfecte concurrentie echter niet meer: deze energievolumes zullen immers bui-
ten de markt vallen, en een model voor optimalisering van het energiesysteem zou tot
andere resultaten komen dan wanneer zij wel zouden worden meegerekend. Om de
kosten en baten van de actoren expliciet te maken, hebben wij eerst een evenwichtsmodel
ontwikkeld, en dit vervolgens omgezet in een gecentraliseerd optimalisatiemodel. In
deze modellen zijn verschillende externe kosten opgenomen. Het gaat om op capaciteit
gebaseerde kosten, op productie gebaseerde kosten en op bilaterale handel gebaseerde
kosten, die kunnen worden gebruikt om respectievelijk de maatschappelijke kosten van
technologieën, koolstofbelastingen/HEB-subsidies, betalingsbereidheid of handelsbe-
lemmeringen weer te geven.

Het model werd gedemonstreerd aan de hand van een proof-of-concept casestudy van
het hernieuwbare Nederlandse elektriciteitssysteem in 2030. De casestudy illustreerde de
kosten die gepaard gaan met bilaterale handel op twee verschillende manieren. Ten eerste
werden de bilaterale externaliteitskosten gebruikt om de transactiekosten weer te geven.
Het bleek dat het incorporeren van bilaterale handel de resultaten in vergelijking met het
conventionele kostenoptimale energiesysteemoptimalisatiemodel op verschillende ma-
nieren veranderde. De capaciteit van windenergie nam af, terwijl die van fotovoltaïsche
zonne-energie toenam. Wat de geografische spreiding betreft, waren de opwekkingsca-
paciteiten meer lokaal, ongeacht de weersomstandigheden. Ten tweede bestudeerden
we de situatie waarin een groep regio’s moest beslissen over hun investeringen om een
gemeenschappelijk investeringsdoel te bereiken. Er is rekening gehouden met een ver-
onderstelde onwil om in windenergie te investeren. Tevens lieten we zien dat bilaterale
handel met externe kosten kan werken als een onderhandelingssimulator om de regio’s te
informeren over de gevolgen van een dergelijke voorkeur.

Conclusies
Modelleurs van energiesystemen en economen opereren momenteel in behoorlijk ge-
scheiden werelden. Deze dissertatie heeft als doel optimalisatiemodellen te verbeteren
door instituties integraal mee te nemen in de planning van energiesystemen. We conclude-
ren dat optimalisatiemodellen geschikt zijn om instituties te bestuderen. Deze dissertatie
heeft bestaande modellen met een techno-economische focus aanzienlijk verbeterd door



xviii Samenvatting

ruimtelijk beleid, collectieve besluitvorming, en bilaterale handel met externaliteiten op
te nemen. Aangezien deze instituties onmisbaar zijn in een socio-technisch systeem, leidt
het opnemen ervan in optimalisatiemodellen tot socio-technisch optimale toekomstige
energiesysteemontwerpen die verder gaan dan alleen de techno-economische optima.
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1
Introduction

1.1. Future energy systems need a socio-technical change
1.1.1. Investments into renewable energy are pivotal
Global warming is one of the greatest challenges of our times. Reducing greenhouse gas
emissions in the long term requires a fundamental change in the energy system, from
fossil fuels to clean energy. According to [1], for a net zero-carbon energy system in 2050,
two-thirds of the primary energy supply comes from renewable energy sources (RES),
consisting of wind, solar, hydro, and bioenergy.

The role of RES is even more significant in the electricity sector. Electricity will become
the most crucial energy carrier in 2050, which contributes directly to electricity end-use
or indirectly to other carriers such as methane, hydrogen, and heat through electrification.
Compared to today, electricity production will grow threefold where 90% is provided by
RES [2].

1.1.2. Techno-economic modeling overlooks barriers for investments
Techno-economic approaches are widely used to determine the future energy design, i.e.,
what technologies to choose, where to build them, and how much capacity is needed.
The resulting ideal investments are renewable rich, technically feasible, and cost optimal,
which correspond to the United Nations Sustainable Development goals of sustainability,
reliability, and affordability [3].

While the ideal future energy system is pictured, the current investments are far from
enough for that picture. The 2021 projection shows that for the net-zero energy scenario,
investments into clean energy need to grow from one trillion dollars to four trillion
dollars annually by 2030. However, this ambition is overshadowed since the announced
investments from the globe need to be increased 75% to reach the required level [4].

From a pure techno-economic perspective, one might argue that the costs of RES
need to be lower so that the investments would come. This is only partly true because cost
reduction is undoubtedly one of the main drivers for the cost-optimal renewable-rich
future energy systems. However, RES are already cost-competitive with their fossil-fuels

1
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counterparts in 2020 [2], but the required investments are still yet to come. This indicates
that there are non-techno-economic barriers that hinder the investments for RES [5],
which we briefly discuss below.

• Permits and spatial issues

The difficulty of obtaining permits for RES investments significantly hampers the
investment processes. This happens mostly for onshore wind energy, partly due
to the administrative efficiency of the jurisdiction and partly due to the increasing
concerns over land availability and public acceptance [6].

• Policy uncertainty

Investments may be held back due to a lack of policy support schemes and the
uncertain institutional environment, e.g., the change of carbon targets. For example,
the Netherlands announced in 2019 an emission target of 49% by 2030 [7] and
changed that to 55% in 2022 [8].

• Ownership and finance

Financing is another issue. Both private parties, such as generation companies and
financiers, and public actors, such as state-owned utilities, play a crucial part in
providing funding [4]. The provision of funding is closely related to the ownership
structures, market signals, and policies set by the governments.

• Markets & governance

With the increasing share of decentralized generation, the traditional market design
tailored to centralized power plants needs fundamental changes to incentivize
RES-based generations. Different governance structures from markets, such as
centralized decision-making, may play a role in local energy systems or energy
systems where the markets have not yet been dominant.

1.1.3. Interactions between cost optimality and rules
All these barriers can be roughly considered as rules of the energy system. The energy
system can be viewed as a socio-technical system where a technical and a social subsystem
interweave. The design of the technical subsystem follows a techno-economic logic
aiming for cost optimality. The social subsystem consists of actors and their decision-
making under rules that need to be designed.

Incorporating rules in techno-economic models may change the way these are built
and thus lead to different techno-economic designs of future energy systems. For exam-
ple, the effects of various policies need to be understood in techno-economic terms. A
conservative carbon target will slow down the efforts to mitigate climate change, while
a too ambitious one would result in unnecessary costs that would have to be paid by
everyone. Failing to consider spatial issues would result in optimistic installed capaci-
ties that are infeasible. Different governance structures, e.g., liberalized market versus
vertically-integrated utilities and conventional market designs versus new market designs,
will change the economic incentives for the investors so that the future energy system
will be shaped accordingly.
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1.2. This thesis
1.2.1. Problem description
In order to design a cost-optimal future energy system under carbon constraints, opti-
mization models are often employed. Optimization models are strong at giving normative
results, i.e., what the future energy system should be. However, they do not guarantee that
we can realize this design because some key institutions are not captured. The institutions
include actors and the rules that govern them, such as policies, ownership structures, and
market designs.

Engineers who do the energy system’s techno-economic design generally do not
pay attention to the institutions. Vice versa, economists that focus on the institutions
lack an understanding of the techno-economic modeling. Hence, the interlink between
optimization models and institutions is poorly understood.

Techno-economic optimums are set to deviate in reality because of the socio-technical
nature of the energy system. Therefore, including institutions in optimization models for
energy system planning is crucial.

1.2.2. Research objective and questions
The question thus arises of how institutions can be included in optimization models for
energy system planning. Therefore, the objective of this thesis is to improve optimization
models by including institutions in energy system planning.

Accordingly, the main research question is formulated:

How can institutions be incorporated into optimization models for energy system
planning?

To help answer this main research question, four sub-questions are formulated. Sub-
question 1 is answered through a literature review in Chapter 2. In addition, this chapter
provides the theoretical background for understanding this thesis and motivates the
remaining three sub-questions.

1. What is the state-of-the-art on optimization-based institutional modeling for energy
system planning?

2. How can renewable energy potentials that consider physical constraints and spatial
policies be included in energy system optimization models?

3. How can collective energy system planning be modeled using multi-objective
optimization?

4. How can decentralized planning processes considering bilateral trading be mod-
eled?
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1.2.3. Audience
Due to the interdisciplinary research objective, this thesis is relevant for multiple practi-
tioners in the energy transition and academics.

Firstly, academics from different fields, particularly energy system modelers and
economists, can obtain insights from the other disciplines and deepen their understand-
ing in their own field of expertise. On the one hand, this thesis sheds light on how these
two fields are combined, and they can be inspired to further their research. On the other
hand, it provides a common ground to foster collaborations and innovations.

Secondly, multiple actors in the energy transition may find the thesis helpful. Policy-
makers can assess the influences of the institutions on the future energy system design
so that they can make more informed decisions. Furthermore, other actors such as
market participants, investors, and local residents may find this thesis interesting since it
provides a methodological contribution for quantifying their values in different forms of
decision-making.

1.2.4. Reading ahead
Figure 1.1 shows the structure of the thesis. After the introduction, Chapter 2 provides
the theoretical background and a literature review. Chapters 3 - 5 are modeling chapters.
Three optimization models incorporating different institutions that have been developed
during the Ph.D. research are presented.

Introduction
Chapter 1

Theoretical background 
and literature review 

Chapter 2
Sub-question 1

Spatially explicit model
Chapter 3

Sub-question 2

Multi-objective multi-actor 
model 

Chapter 4
Sub-question 3

M
od

el
in

g 
ch

ap
te

rs

Conclusions
Chapter 6

Equilibrium and centralized 
models with bilateral trading

Chapter 5
Sub-question 4

Figure 1.1: Structure of the thesis.

• Chapter 2 is based on [9]. It first equips the fundamental knowledge to understand
this thesis by giving an energy system description from the socio-technical view-
point and presenting several generic mathematical formulations of optimization
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models. It then treats sub-question 1 through a literature review. The state-of-the-
art is analyzed, and several research gaps that motivate sub-questions 2 - 4 are
identified.

• Chapter 3 is based on [10] which answers sub-question 2 by proposing a spatially
explicit energy system model.

• Chapter 4 is based on [11]. It copes with sub-question 3 by presenting a multi-
objective optimization model combined with a multi-criteria decision-making
technique for collective decision-making.

• Chapter 5 deals with the last sub-question, which is based on [12]. An equilibrium
formulation considering bilateral trading is first described, and then, an equivalent
centralized model is cast.

Chapter 6 ends the thesis with conclusions, reflections, and recommendations. A
complete list of publications can be found at the end of the thesis.





2
Theoretical background and

literature review

2.1. Introduction
The transition to a carbon-free energy system faces significant challenges. While advances
in renewable energy sources (RES) technology drive the energy transition, there are
challenges from socio-economic, environmental, and institutional aspects. Firstly, the
high initial costs of RES technologies act as a barrier to investments. Governments are
working on various financial incentives such as RES subsidies to help tackle the problem.
Secondly, RES integration becomes a spatial issue increasingly. According to [10], land
use is a critical factor for estimating RES potentials, and thus, spatial policies need to be
carefully designed and examined. Thirdly, there is a need for changes in market regulation,
re-bundling, and forms of governance in order to promote and make full use of local RES
[13]. The above are examples of the critical non-technical issues in the transition to a
future energy system with a high share of RES, indicating the need for a paradigm change
for the conventional fossil fuel-based energy system to accommodate increasing RES
investments [14]. These aspects are generalized as institutions of the energy system, which
relate to concepts such as actors, values, regulations, and their governance. Most existing
literature on institutional designs is qualitative, but there is a need to align institutions
with technology [15] and the current practice of techno-economic modeling should be
enhanced to include institutions [16].

Optimization models are widely used in energy systems research, from which optimal
generation and network investment can be derived. They are considered powerful tools
to guide the decision-making for relevant stakeholders [17]. For example, national and
international energy system optimization models are deployed by policy-makers to figure

This chapter is based on the paper N. Wang, R. A. Verzijlbergh, P. W. Heijnen, and P. M. Herder, “A review and
analysis on the institutional paradigms in optimization models for energy system planning”, Submitted, 2022.
The first author of the paper, also the author of this thesis, conceptualized and conducted the research. The
other authors performed an advisory role.

7



2

8 2. Theoretical background and literature review

out the cost-optimal investment portfolio to reach a carbon target, from which they may
design specific policies to incentivize promising technologies. Generation companies
or network operators would treat the model outcomes as a basis for their generation or
network expansion plans. Considering institutions in optimization models can enhance
their capabilities for investment and policy decision-support where policies, actors, and
values play an indispensable role.

Due to this broad area of applications, optimization models applied to energy systems
have been reviewed extensively in the literature in recent years. However, most reviews
present general challenges and state-of-the-art in energy system modeling, such as [18],
[19], where social and policy aspects are only partially discussed. Several reviews focus on
specific aspects regarding institutions, e.g., [20] for multi-level governance and [21] for
social factors. So far, existing literature reviews do not systematically review and analyze
optimization models applied in energy systems from the institutions’ viewpoint.

To assess the state-of-the-art, this chapter has two goals. The first goal is to give the
theoretical background that is necessary for understanding this thesis. To start with,
the energy system is described from a socio-technical system viewpoint. Then, three
typologies of mathematical formulations of optimization models are presented. The
second goal is to provide a literature review and find research trends and knowledge gaps
that motivate the sub-questions 2 - 4.

This thesis focuses on the planning of power systems. By planning, we mean the
capacity expansion of generation technologies, storage technologies, and networks from
either a greyfield assumption or a greenfield assumption. Accordingly, the geographical
scope of the reviewed literature ranges from regional models to continental models.

The remainder of the thesis is structured as follows. First, Section 2.2 gives a socio-
technical system description. Next, Section 2.3 presents generic mathematical formu-
lations for three optimization typologies. Afterward, Section 2.4 reviews the existing
literature and highlights the trends and research gaps. Section 2.5 concludes this chapter.

2.2. Energy system description from a planning perspective
This section describes the energy system from a planning perspective. Since it is meant to
provide a socio-technical system viewpoint, we discuss the social aspects of the energy
system in detail, particularly its institutions and actors, while an extensive technical
description is beyond the scope of the thesis.

2.2.1. Socio-technical worldview
The term socio-technical system was initially proposed by Emery and Trist (1960) [22].
It refers to a complex system that technical, human, social, and organizational factors
co-exist in various settings [23], [24].

An energy system is a typical socio-technical system. The technical subsystem in-
cludes technical assets such as generation, storage, and networks. The social subsystem
includes actors such as producers, consumers, policy-makers, market operators, and the
required institutions, rules of the game. Under this worldview, the energy system can
be regarded as a unification of a technical subsystem and a social subsystem, where the
interplay is pivotal. Combining the two subsystems leads to the increased complexity
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of the energy system, meaning that its performance depends on both subsystems and
the degree to which they effectively interact. For the successful functioning of the energy
system, the two subsystems cannot be analyzed separately.

2.2.2. Technical system description
Although the energy system consists of many technical components, its simplest version
conceptualized in this thesis will now be introduced.

The physical electric power system includes the flow of energy from generation to
end-users and the related infrastructure. Electricity is first generated by fossil fuels or
RES. Next, it is transmitted to other locations through electricity networks. The network
infrastructure is further divided into transmission networks and distribution networks.
Transmission networks are high-voltage overhead lines that allow efficient electricity
transmission over long distances. In large power systems such as the national power
systems, transmission networks serve as the backbone. They are designed so that any
interruptions such as a broken line would not decrease the reliability of the power system.
When the energy has been transmitted to a location near the end-user in the transmission
network, the voltage will be transformed to lower levels at substations, after which the
energy enters the distribution network. Compared to the transmission network, the
distribution network is a local network that delivers energy to the end users.

Due to the increasing share of RES, the existing, conventional way of operating the
power system has changed. From the generation perspective, more variability and un-
certainty are introduced with RES. RES generation fluctuates with variable weather con-
ditions both temporally and spatially. In addition, inaccurate weather forecasts bring
unpredictability to the power outputs. These features make the load-generation balance
more complicated to maintain than the power systems with a lower share of RES. From the
network perspective, the growing share of RES calls for re-design and reinforcement of the
networks. Traditional generation is done in centrally-operated fossil-fueled power plants,
whereas nowadays, energy generation has become more decentralized and distributed.
The conventional unidirectional delivery of energy from generation sources to end-users
has changed as bi-directional energy flows emerge and will gradually become the norm.
Because in modern power systems, the end-users consume energy and generate energy
through RES. When there is surplus energy beyond the need for demand and storage
capacity, it has to be fed back to the grid. This would result in energy flows from end-users
to the distribution and transmission networks. Since the networks were built many years
ago and were not designed to cope with such flows, issues such as congestion may occur.

These technical issues related to the integration of RES into modern power systems
highlight the need for a system-level re-design. In addition, social aspects need to be
examined as well in this process.

2.2.3. Social system description: institutions and actors
Embedded institutions using institutional analysis framework Institutions are defined
as "systems of established and prevalent social rules that structure social interaction"[25].
Despite the definition, under the context of energy system planning, the scope of relevant
institutions is always not clear.

In this thesis, we adopt a framework called the institutional analysis framework. It was



2

10 2. Theoretical background and literature review

proposed by Williamson (2005) [26] and is widely used in energy-related research. The
advantage of utilizing a framework is that it can provide the basic vocabulary of concepts
and terms in an institutional design [27] so that the institutions can be studied in a
comprehensive and structured manner based on this common ground. The framework
contains four levels (see Figure 2.1).

Social embeddedness

Formal insitutional 
environment

Play of the games

Resource allocation 

Norm, custom, tradition, 
value, and religion

Politics, judiciary, 
bureaucracy,  ownership, 
property right, and policy 

Governance, coordination, 
contract, and market 

Resource allocation 

Level 1 

Level 2 

Level 3 

Level 4 

General description 
of  the institutions 

Representation of the institutions 
in this work

Figure 2.1: Schematic of Williamson’s four-level institutional analysis framework and its representation in this
work (adapted from [26]).

The top level is the social embeddedness level. It represents the informal institutions
that are embedded in society. Examples are norms, customs, traditions, values, and
religions. These institutions are rooted deeply in people’s minds and would only change
in hundreds to thousands of years. In the context of energy system planning, since
the lifetime of energy infrastructure is at the magnitudes of decades, those informal
institutions would remain unchanged.

The second level is the formal institutional environment. The institutions at this
level are a product of the political environment, e.g., politics, judiciary, and bureaucracy.
The laws featured at this level are predominantly regarding property rights. Moreover,
policies are also situated here. The carbon policy and RES support schemes are the most
commonly studied institutions in energy system models.

The third level depicts the play of the games. While the second level mainly contains
the formal rules of the games, this level deals with the relationships between the actors,
i.e., the governance structures. The governance structures address the forms of decision-
making like centralized, collective, or market-based. They are closely tied to the allocation
of ownership and property rights. Topics such as market design, self-governance, and
contracts belong to this level.

The last level describes the process of resource allocation. In energy system planning,
it represents the instantaneous flow of energy associated with quantity and prices between
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economic actors.

Actors Although actors are not characterized by any of the institutions, they play a
central role in studying them because the institutions are set to regulate the actors both
formally and informally. In this section, we continue to deepen the understanding of the
institutions by introducing the most important actors in energy system planning.

Firstly, there are governments at different levels. There are mainly three energy goals
for the power system from a governmental viewpoint: reliability, affordability, and sus-
tainability. In addition, the national government recognizes the spatial challenges and
aims to solve them with lower-tier governments in the Netherlands [7]. In practice, the
provincial government allocates land and permits to RES projects. From the property
rights perspective, the governments used to play a central role instead of a supporting
role before the unbundling of the power system in the 1990s, when the power system
was vertically-integrated. This indicates that the infrastructure, namely the generation
and network assets, was built and operated by a centralized entity, such as a state-owned
utility company.

Secondly, there are generation companies, consumers, and network companies, who
are connected through the electricity markets. Producers such as large generation com-
panies invest in generation capacities and sell electricity on the electricity market to
maximize their profits, while the transmission system operators and the distribution
system operators make transmission and distribution network investments, respectively.
Besides capacity expansion, the responsibility of the network operators is also to transmit
energy and ensure the reliability of the networks.

The rest of the representative actors are residents, energy communities, and landown-
ers. Public acceptance for residents is a critical issue when it comes to wind turbines
[28], [29]. Some non-profit organizations also have similar interests. Energy communities
are playing an increasingly prominent role in RES investments [30]. They would like to
invest in RES but also maximize the profits [31], which aligns with the goal of generation
companies. The construction of RES requires land. The interest of landowners is also
financial. According to [32], landowners are positive towards wind energy if they are
involved and receive financial compensation.

2.3. Model fundamentals
2.3.1. Single-objective optimization
In energy system planning, energy system optimization models (ESOM) are the most
widely used single-objective optimization models. ESOM refer to optimization models
that aim to find the optimal capacity expansion of generation and networks [33]. The
objective is to minimize the total system cost while satisfying several constraints such as
energy balance, generation limits, and network limits. The resulting system optimal is
equivalent to the outcome of a perfect market. Policy-makers often use such models as a
benchmark to help them make decisions on potential policy changes.

A generic mathematical formulation of an energy system optimization model is pre-
sented now, where its simplest form is:
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min
xn,yn,z,u

∑
n∈N

c I (xn,yn)+ c I I (z,u) (2.1a)

s.t. hI (yn,u) = 0, ∀n ∈ N (2.1b)

gI(xn,yn) ≤ 0, ∀n ∈ N (2.1c)

hI I (u) = 0, (2.1d)

gII(u,z) ≤ 0 (2.1e)

In principle, there are location and time dependencies for the vectorial decision
variables. However, the generic formulations presented in this chapter only differentiate
the location dependency.

This optimization problem aims to find the best location, sizing, and utilization of
generation and network assets. Let n ∈ N denote the location of the generation assets.
xn represents the sizing of generation assets at location n, i.e., the investment variables.
yn is the utilization of generation assets at location n, i.e., the operational variables. z
represents the sizing of the networks, and u represents the flow variables.

The objective function to be minimized is the system cost that consists of two compo-
nents: generation-related costs

∑
n∈N c I (xn,yn) and network-related costs c I I (z,u). The

model is subject to a number of constraints. Constraints hI (yn,u) = 0 indicate that sup-
ply matches demand at location n, i.e., Kirchhoff’s current law is satisfied. Constraints
g 1

n(xn,yn) ≤ 0 are used to ensure that the energy production respects the capacity limits
that are to be optimized. Constraints hI I (u) = 0 specify that the flows must obey Kirch-
hoff’s voltage law or an approximation thereof. Inequality constraints gII(u,z) ≤ 0 limit
the flow variables u within the bounds of the network capacities z.

2.3.2. Multi-objective optimization

When multiple objectives are considered, two approaches can be used. On the one hand,
the objectives can be modeled as constraints or with weights in the objective function
of a single-objective optimization problem. On the other hand, the objectives can be
optimized simultaneously. A set of mathematically equivalent solutions, the so-called
Pareto-optimal solutions, is derived. Compared to a single optimal solution derived from
single-objective optimization models, the solution set, which consists of alternatives,
provides room for discussions among the actors, making it ideal for collective decision-
making.

The mathematical formulation for the latter approach of multi-objective optimization
(MOO) in its simplest form is written as follows.

Assuming f1(xn,yn,z,u) is the 1st goal and fk (xn,yn,z,u) is the kth goal. When cost is
the objective, e.g., as the kth goal, then fk (xn,yn,z,u) =∑

n∈N c I (xn,yn)+ c I I (z,u).
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min
xn,yn,z,u

( f1(xn,yn,z,u), ..., fk (xn,yn,z,u)) (2.2a)

s.t. hI (yn,u) = 0, ∀n ∈ N (2.2b)

gI(xn,yn) ≤ 0, ∀n ∈ N (2.2c)

hI I (u) = 0, (2.2d)

gII(u,z) ≤ 0 (2.2e)

The objective is to minimize the considered objectives f1(xn,yn,z,u) to fk (xn,yn,z,u)
simultaneously. Accordingly, the optimization problem concerns a multi-dimensional
space corresponding to the objective function’s vector. The constraints stay the same as
those in ESOM.

Although this generic formulation merely adds more objectives to ESOM, the im-
plementation needs further deliberation. In ESOM, once the optimization problem is
formulated, it is ready to be solved by an optimization algorithm. However, solving a MOO
problem in a multi-dimensional space requires an evolutionary method and becomes
a simulation problem. For energy system planning, the evolutionary method usually
starts with a random set of values for the investment capacities xn. Then, the values
of the operational variables yn need to be fixed, and afterward, the constraints will be
checked, and only the ones that satisfy the constraints will be left. Depending on the
dispatch sequence, yn may be different following the same values of xn. When there are
flexibility options such as network, storage, controllable generation, and demand-side
management, the sequence on which one to utilize first usually depends on the modeler’s
way of implementation. This feature indicates a strong assumption and judgment from
the modelers, making the solution to MOO problems a blend of art and science.

2.3.3. Equilibrium formulation

From the decision-making perspective, the aforementioned two problems take the form
of centralized decision-making, i.e., there is one problem and thus one problem owner.
Decentralized decision-making indicates that different actors make investment decisions
according to their own wishes, resulting in a number of optimization problems. In reality,
it is often coordinated through an electricity market. In the simplest form of a market,
three types of actors, i.e., a producer, a network operator, and a market operator, are
involved. We provide the simplest form of the three types of optimization problems under
a perfect market below.

A producer’s problem takes the investment variables xn and the operational variables
yn as decision variables. The objective is to maximize the profit or minimize the related
costs as cast in this problem. The income of the producer is a function of the energy price
in the pool λn . Note that here, a perfectly competitive market is assumed, and thus λn is
exogenous to this problem. However, λn is not always exogenous. More explanations are
given after the formulation.
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min
xn,yn

∑
n∈N

c I (xn,yn,λn) (2.3a)

s.t. gI(xn,yn) ≤ 0, ∀n ∈ N (2.3b)

The network operator’s problem aims to minimize network-related costs. The energy
price λn also plays a role here since the network operator harvests congestion rent.

min
z,u

c I I (z,u,yn,λn) (2.4a)

s.t. h I I (u) = 0, (2.4b)

gII(u,z) ≤ 0 (2.4c)

The pool-based market operator gathers the market information and makes sure that
supply matches demand and generates the energy price at equilibrium.

hI (yn,u) = 0 :λn , ∀n ∈ N (2.5a)

We would like to make two remarks regarding this formulation and its implementa-
tion. First, the different optimization problems are interconnected by the price λn . This
means that the problems can not be solved separately and have to be solved together.
This price is an equilibrium price, and therefore, this formulation is referred to as equi-
librium models (EM) in this thesis. Second, this generic formulation is only readily used
under certain assumptions. We assume a perfect market here, and therefore, EM are
equivalent to ESOM. In addition, this formulation indicates concurrent decision-making
for generation and network planning because the generation and network investment
variables are independent of each other. However, when studying strategic behaviors in
the market, it is common to assume that λn is a decision variable for the producer and/or
the network operator and that the decision-making for two actors is sequential, making
the implementation a multi-level optimization problem instead of single-level one.

2.4. Literature review
A literature review has been performed to assess the state-of-the-art on how institutions
are included in optimization models for energy system planning. The reviewed papers
are summarized in Table 2.1, Table 2.2, and Table 2.3. Following this literature review,
research trends and gaps are captured and summarized. Based on those, sub-questions 2
- 4 are motivated.

2.4.1. Decision-support for policy-making
Policies are the most commonly modeled institutions in the existing literature. In this
subsection, we examine the relevant papers (shown in Table 2.1) from the following three
perspectives: Which modeling typologies are used? What are the policies? How are they
modeled?
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From the typology perspective, most of the policies are modeled using ESOM. Nev-
ertheless, MOO is sometimes used as well. Oliveira and Antunes (2011) presented a
multi-objective linear programming model to evaluate distinct and non-commensurate
policies for energy, environmental, economic, and social issues [34].

The modeled policies include general energy management policies, renewable energy
targets, carbon taxes, RES subsidies, and market instruments. Furthermore, certain types
of policies are often modeled in a specific way, i.e., as parameters, constraints, or objective
functions.

When a policy is modeled as a parameter, it means that the model’s input data is
a result of a policy instrument. An illustrative example would be a national policy on
building energy efficiency that declines future energy demands, which are parameters of
the model. Such general energy management policies are found in [35]–[37], which are
related to demand growth, population growth, efficiency, electrification, promotion of
RES technologies, etc. In addition, the effects of carbon taxes or RES subsidies are often
evaluated as parameters of the optimization as well, see [36], [38]–[42]. In [43]–[45], topics
such as emission trading, and renewable or green certificate market have been studied.
Moreover, policies can also be modeled as constraints. On the one hand, the majority of
the papers use an exogenous parameter in the constraints, e.g., a RES target or a carbon
cap as in [17], [46]–[49]. On the other hand, an explicit constraint is sometimes used.
This means that the constraint represents a particular policy instead of a parameter in
the constraint. Musselman et al. (2021) analyzed the impacts of various electrification
policies on the power system expansion in Sub-Saharan Africa by explicitly modeling
the policies as constraints [37]. The above approaches of modeling policies as either
constraints or parameters often require a combination of scenario analysis and sensitivity
studies. Another way to consider policies is to model them in the objective function, see
[40], [42], [45], [50]. Quiroga, Sauma, and Pozo (2019) analyzed carbon and pollutant
taxes under five policy-relevant scenarios where global and local pollutant emissions
were considered. The objective functions and the taxes were modified in each scenario to
reflect different policies [40]. Ju et al. (2016) proposed a planning model for the Chinese
power system taking into account two policy instruments, carbon emissions trading, and
the renewable energy quota mechanism. Different objective functions were constructed
to include these policies whose effects were evaluated in the case studies [45].

In summary, to align with the three perspectives posed at the beginning, we found
research potential in the following aspects. First, other modeling typologies than ESOM
should be further investigated, e.g., using MOO models. Second, although parameters and
constraints are commonly used to evaluate policies, it is not common to model them in
objective functions and even as decision variables, and thus, doing so might open up new
research possibilities. Meanwhile, research efforts are needed from the policy side, which
is practically relevant. In particular, spatial issues are high on the public agenda since
wind turbines take up land, which causes both land-use conflicts and social acceptance
issues [50], leading to delays in the energy transition. The study of Schlachtberger et al.
(2017) gives a good starting point to delve into this issue, where they studied the pan-
European power system investment and modeled public acceptance for onshore wind by
its energy potentials [47]. Nevertheless, the spatial issues are still largely underexposed
in existing studies, especially in the way that renewable energy potentials are related to
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spatial policies. In Chapter 3, we will deal with the spatial issue with sub-question 2: “How
can renewable energy potentials that consider physical constraints and spatial policies be
included in energy system optimization models?”.

2.4.2. Towards multi-actor multi-objective decision-making: combination
of methods

All models are ultimately used by people, in our case, to support investment decision-
making. While cost is often considered the only objective to simplify the model, there are
other objectives for various actors that are modeled by the following approaches.

The first and the most straightforward approach is to include more objectives (also
referred to as preferences, interests, or indicators in the literature) in optimization models.
For this purpose, MOO is often used as in [51]–[53]. In addition, ESOM can also be utilized
by constructing and evaluating different single-objective functions. Rodgers et al. (2018)
used a simulation-based optimization approach for optimal energy system planning.
Health damages were quantified by using a surrogate cost function in the objective as well
as the minimization of social damages of emissions was considered [54]. Tash, Ahanchian,
and Fahl (2019) addressed the heterogeneity in the investment decisions of actors using
an energy system optimization model [55]. The actors were represented by their main
economic features regarding wind and solar PV.

In addition to optimizing for different objectives, these objectives need to be associ-
ated with stakeholders’ perceptions. Due to different weighing of the objectives in people’s
minds, the optimal energy system planning may vary for different actors given the same
outcome objectives. Multi-criteria decision-making (MCDM) is a decision-making tech-
nique that is commonly combined with optimization models. The principle is that after
optimal results have been generated, MCDM is used to evaluate the results based on the
stakeholders’ interests. Both ESOM [56]–[58] and MOO models [59] can be used as long
as alternative solutions are generated so that afterward, MCDM can be used to rank the
alternatives.

Another line of research to generate alternatives is the modeling to generate alter-
natives (MGA) approach. Sometimes the optimal solutions are not desired, whereas a
sub-optimal solution may be preferred due to e.g., social acceptance or reliability con-
siderations. MGA is a powerful tool for producing near-optimal solutions in the decision
space. Nacken et al. (2019) highlighted the need for the near-optimal decision space
generated by an ESOM. They illustrated and explained the transmission expansions to
carry out the generation and the visualization of such a space to support the decision-
making for stakeholders [60]. Jing et al. (2019) combined two optimization methods for
energy system design. One is a portfolio constraint-based approach which is inspired
by MGA. The other is an eps-constraint method for MOO. This holistic approach was
able to provide alternatives in the decision space for decision-makers [61]. Furthermore,
game theory can also be combined with ESOM to derive near-optimal solutions. Huang
et al. (2018) tackled the stakeholders’ decision-making problem by presenting a game
analysis combined with an energy system optimization model. The study featured a Nash
equilibrium of the stakeholders and simulated their negotiation process [62].

Finally, we recognized another way of modeling in which a participatory approach is
used to complement the MCDM technique. An MCDM technique is a mathematical tool
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to formalize the decision-making, which, eventually, needs to be verified and conducted
by humans. A participatory approach focuses on human involvement in the planning
process with the support of mathematical tools. Workshops, surveys, and interviews
are usually used to ensure that the results generated from the mathematical tools are
understandable and acceptable to the stakeholders. McKenna et al. (2018) presented
an integrated participatory approach for local energy planning. One of the novelties of
this study lies in the combination of methods to highlight different values in the energy
system, including economic sustainability, environmental sustainability, and local energy
autonomy. An energy system model with MCDM was used in stakeholder workshops to
provide alternatives for energy system planning [63]. Simoes et al. (2019) presented an
approach for holistic decision-support of energy system modeling. An energy system
model was combined with stakeholder input using MCDM to critically select scenarios
and review results [64]. Hori et al. (2020) presented a co-creative design method to support
energy systems planning. This method includes a participatory development of the local
energy vision, a MOO, and an optimization process to account for the preferences of
residents [65].

Based on the above-reviewed papers, we found that for the decision-support in real life,
studies with different levels of complexity were conducted, which were often supported by
combining optimization models with different methods. In terms of the used optimization
models, both ESOM and MOO have accounted for stakeholders’ preferences, while MOO
is the mainstream in the reviewed literature. Apart from the alternatives generated
directly from these two models, MGA is also used to provide near-optimal solutions.
Afterward, MCDM is the dominant decision-making approach supported by a qualitative
participatory approach for citizen engagements.

Besides these general trends, different application areas need different approaches.
The existing studies shed light on the importance and usefulness of combining these
methods, and therefore, future studies can merge from new user cases following these
directions. For example, when a near-optimal solution is desired for different stakeholders,
MOO could complement MGA to explore the near-optimal space. Another promising
direction is the combination of MOO with MCDM. Various MCDM techniques are suitable
for different applications, e.g., fuzzy techniques when the decision-makers are unsure
about the weights of the preferences or other techniques for collective decision-making.
In Chapter 4, we present an approach for collective decision-making in energy system
planning which motivates sub-question 3: “How can collective energy system planning be
modeled using multi-objective optimization?”.

2.4.3. The need for reflections and innovations beyond market equilibrium
Table 2.3 summarizes the papers that focus on modeling the electricity markets. This
subsection and the next one will discuss these papers.

The methods adopted by the reviewed literature heavily rely on the assumptions
regarding the sequence of generation and network investments. The planning of trans-
mission networks has traditionally followed the logic of “generation first” as in [67]–[69].
However, other sequences of decision-making might prevail in some cases, e.g., see [70],
[71]. Especially because of the rapid development of RES, the transmission network needs
to be planned more proactively compared to the past taking into account the possible
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increases in capacity and locations. As an example, the Netherlands plans to invest heavily
in RES, and the transmission system operator is actively involved. A co-planning process
would ensure the least-cost outcome to the largest extent. Future studies on different
sequences of investment decision-making, i.e., concurrent, generation first, or network
first, will undoubtedly contribute to the optimal co-investments for the future energy
system.

In addition to the sequence of decision-making, modeling electricity markets also
concern a variety of optimization-based methods and solution techniques. The reviewed
papers feature multi-agent systems, multi-level optimization, MOO, simulation-based
optimization, decomposition techniques, and co-evolutionary algorithms, as briefly
discussed below.

In a multi-agent system, various stakeholders are described as agents and exchange
information. Lei et al. (2021) considered different stakeholders, including distributed gen-
eration investment operators, power grid investment operators, and power users, in their
work and analyzed their game behaviors in a planning model [72]. Multi-level optimiza-
tion highlights the order of decision-making when the timing matters. Mishra et al. (2019)
[73] proposed a generation and transmission co-planning approach for coordinated in-
vestment decision-making using a multi-agent system. A multi-level optimization method
was used, where the Nash equilibrium was modeled for the market-clearing on the opera-
tional level. MOO models often capture the interests of actors. Javadi and Saniei (2012)
[74] used a game theory-based model to determine the generation and transmission
expansion planning. A mixed-integer non-linear programming optimization determined
the Nash equilibrium. Moreover, the independent system operator considered multiple
objectives, including cost, social welfare, and reliability. Simulation-based optimization is
used when the investment timing is to be considered or when there is a stopping criterion
for simulation. Decomposition and co-evolutionary algorithms are both solution tech-
niques for large-scale optimization problems when the problems are computationally
hard to solve or even non-tractable. Roh, Shahidehpour, and Wu (2009) presented a coor-
dinated expansion planning model for generation and transmission under a competitive
market environment. The decision-making behavior of individual market participants
and the ISO was simulated. The equilibrium state was determined when the ISO termi-
nated the iterative simulation process. Decomposition techniques were deployed to solve
the problem [75]. Wang et al. (2009) proposed a co-evolutionary algorithm for the Nash
equilibrium among individual generating companies by an incomplete information game
model. The equilibrium was obtained based on the market-clearing conditions of the ISO
[76]. Co-evolutionary algorithms can ensure fast solutions. However, the global optimum
cannot be guaranteed.

2.4.4. Lack of studies on operational details
Traditional optimization-based investment modeling has a long time horizon from years
to decades, and therefore, large amounts of operational details are ignored. These opera-
tional details cover the real-time allocation of resources that happens within seconds and
include the market-clearing process, which often has a time interval of one hour.

Nevertheless, some papers studied the details of the markets, from technical details
to economic considerations. Lyzwa, Wierzbowski, and Olek (2015) derived an optimal



2

22 2. Theoretical background and literature review

energy mix that is based on three formulations of binary variables using mixed-integer
linear programming [77]. This paper presented detailed mathematical formulations to
account for sophisticated energy system features such as estimation of the rated power of
a particular power generating unit, grid constraints, detailed economic analyses, and con-
sideration of electricity market rules and power system operation. López-Ramos, Nasini,
and Sayed (2020) proposed a planning model for power pricing and grid investment [78].
This model went beyond the literature on power flow optimization by investigating the
substitutability pattern between pricing and expansion. An extended power flow model
was linearized, and the bounds to the optimal operator profit were developed and used in
a mixed-integer linear programming model. Hagspiel et al. (2014) presented a method
for the joint optimization of generation and transmission investment [79]. Flow-based
market coupling was considered by an algorithm based on the linear representation of
the physical flow laws. Power transfer distribution factors were iteratively updated to
ensure the correctness of the physics regarding grids.

Despite some papers like those reviewed, the operational details, including power flow
calculation, power pricing, and inclusion of different markets, are often not modeled in
planning models. The reason might be two-fold. On the one hand, studying these details
is often out of the scope of investment models since investment models feature long-term
horizons. On the other hand, on a practical note, including these would make the model
size even larger and thus harder to solve. Consequently, there is a lack of references on
how to integrate those aspects in investment models and their effects. However, studies
in this direction are relevant both from a modeling perspective and a policy-making
perspective.

It is important to find a balance between computational tractability and the level of
detail. Different market options, as well as efficiency and sustainability policies, were
investigated using an ESOM in [80]. However, there is no existing work focusing on
integrating multiple markets into investment models. In particular, the role of bilateral
trading is often overlooked. To deal with this problem, we model bilateral trading in
Chapter 5 with sub-question 4: “How can decentralized planning processes considering
bilateral trading be modeled?”.

2.5. Conclusions
The energy system is a socio-technical system that consists of several intertwined sub-
systems. The realization of techno-economic optimal energy system design is inevitably
hindered by the social aspects that co-exist. While optimization models are widely used
for energy system planning from the technical subsystem viewpoint, their interlink with
the institutional subsystem is largely underexposed in the existing literature. Improved
optimization models incorporating institutions would be more relevant than techno-
economic optimization models alone.

In this chapter, we started with a socio-technical system description of the energy
system. Williamson’s four-level institutional analysis framework has been used to assess
the relevant institutions systematically. We also presented three optimization models in
their basic forms. These optimization models will be enriched with institutions in the
following chapters.

By performing a literature review and scrutinizing the existing literature, we high-
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lighted the following research gaps which motivate our sub-questions:

• The spatial issues of renewables received insufficient research interest in existing
studies. Sub-question 2 “How can renewable energy potentials that consider physical
constraints and spatial policies be included in energy system optimization models”
deals with this issue and is answered in Chapter 3.

• MOO can help with actors’ decision-making for energy system planning. However,
there is not yet a method for collective decision-making. Sub-question 3 “How can
collective energy system planning be modeled using multi-objective optimization?”
addresses this research gap which is then answered in Chapter 4.

• The integration of different market designs in investment models, especially when
considering bilateral trading, is necessary. Sub-question 4 “How can decentral-
ized planning processes considering bilateral trading be modeled?” discusses this
problem, and Chapter 5 provides an answer.





3
Spatially explicit model

3.1. Introduction
3.1.1. Background
The utilization of variable renewable energy sources (VRES) is growing rapidly. Compared
to traditional sources of electricity generation, several factors make them difficult to inte-
grate into the power system. First of all, the production of wind energy and solar energy
is variable and location-specific because it is driven by weather conditions. Secondly,
wind turbines and solar panels are characterized by more intensive land-use compared
to conventional power plants. As the share of renewable energy sources is expected to
grow significantly in the coming decades, it becomes more important to consider spatial-
temporal details of VRES, such as land-use and location-specific production profiles, as
emphasized by Pfenninger, Hawkes, and Keirstead (2014) [18] and DeCarolis et al. (2017)
[81]. This holds especially for densely populated areas like the Netherlands or areas with
abundant nature reserves.

Although wind turbine monopiles do not occupy much land themselves, the areas
between the turbines are also affected. Such indirect land-use, i.e., the land-use that does
not compete with the primary use of land, causes problems for people. In particular, due
to aesthetic reasons or noise pollution, social resistance is a problem for the development
of VRES all across the world and indeed, the scientific community has paid attention to
it. For example, the public resistance against new energy developments in Canada was
investigated by Shaw et al. (2015) [82]. Enevoldsen and Sovacool (2016) [83] studied the
methods to increase the social acceptance of wind energy in France. Similarly, utility-scale
solar parks cause problems in direct land-use, i.e., the land-use that competes with other
usages of land. These barriers hinder the development of VRES, and thus the importance
of land-use is emphasized in the following literature. For example, Van Haaren and

This chapter was published as N. Wang, R. A. Verzijlbergh, P. W. Heijnen, and P. M. Herder, “A spatially explicit
planning approach for power systems with a high share of renewable energy sources”, Applied Energy, vol.260,
2020. The first author of the paper, also the author of this thesis, conceptualized and conducted the research.
The other authors performed an advisory role.
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Fthenakis (2011) [84] performed a study on the locations of wind farms based on land
examination. Shmelev and Van Den Bergh (2016) [85] conducted a literature review on
the optimal diversity of renewable energy alternatives, where land-use is argued as a
key dimension. Rauner, Eichhorn, and Thrän (2016) [86] did a land-use analysis for the
German power system. Furthermore, a multi-criteria analysis with a focus on land-use to
identify the high-priority locations for VRES was given for the case of Bangladesh [87].

In recent years, a large body of scientific literature on the modeling of power systems
with high shares of renewable energy sources (RES) has emerged, see e.g., the review
of [88]. Optimization models with a focus on investment form a significant part of the
available tools. In such models, it is usually the objective to find a minimum-cost power
system, given time-series of wind and solar production. These optimization models often
use location-specific VRES profiles, but most of them implicitly assume unlimited land
availability. As discussed, the land-use of VRES is crucial. However, this unlimited land
assumption neglects it and would lead to more optimistic results than what is feasible
in reality. Nevertheless, there exists literature that discusses the land-use of VRES and
the location-specific VRES production profiles as limiting factors in the optimization
problem.

An optimization model for a regional energy system was proposed by Arnette and
Zobel (2012) [89]. As data inputs for their model, they pre-selected suitable site locations
for wind and solar energy using an existing geographic information system model that
examines land cover characteristics. Hong, Bradshaw, and Brook (2015) [90] considered
land-use as a surrogate for environmental impacts and minimized global land-use for
future energy scenarios. Pfenninger and Keirstead (2015) [91] used an optimization model
to study the power system scenarios of Great Britain. In this model, they provided a
spatially explicit way to deal with the location-specific VRES data. Similarly, an Australian
case study used location-specific VRES data and location-specific maximum VRES capac-
ities as data inputs [92]. In addition, the maximum RES capacities for European countries
based on land cover characteristics were used in the European power system optimization
model PyPSA-Eur [93].

In the studies mentioned above, the land-use and the production profiles of VRES
were considered either location-specifically or in an aggregated way. The location-specific
data was either obtained from existing studies or was made for the specific case study,
which makes it irrelevant for new cases. These are understandable choices since these
studies focused on optimization modeling and therefore left the detailed assessments
of the land-use of VRES and the necessary steps to obtain location-specific data out of
scope.

Based on our literature review, we conclude that the land-use aspects of VRES in
optimization models are still not fully appreciated. The comprehensive approach that
considers land-use of VRES by assessing land cover data to obtain location-specific VRES
potentials is often seen in other fields of research than optimization studies and is usually
country-specific. For example, some studies use geographic information systems to
assess the land-use of VRES to estimate the VRES potentials, see the case of Spain [94],
Turkey [95], Germany [96], Switzerland [97], Finland [98] and India [99]. These studies
focus on the detailed assessment of land-use of VRES. Similarly, another line of research
concentrates on various metrics of VRES potentials such as capacity factor, maximum
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possible capacity, annual potential generated energy, and spatial-temporal correlation.
Case studies are seen for China [100], and for the globe [101].

This literature review shows that although spatial aspects of VRES are drawing at-
tention in scientific communities, very few studies performed detailed assessments of
land-use to obtain the VRES potential in optimization models for power systems with a
high share of RES. Since this type of work often belongs to different fields (land cover as-
sessment, VRES potential estimation, and high-RES power system planning models), the
workflow that links those fields is desired but is rarely seen [102]. In other words, we find
that an integrated and spatially explicit approach is needed on how the location-specific
land-use of VRES should be assessed, how that is matched to the location-specific VRES
data, and how those are related to the optimization model.

3.1.2. Contribution and audience of the chapter
This chapter proposes a spatially explicit planning approach in optimization models for
power systems with a high share of RES. Its objective is to incorporate the location-specific
land-use of VRES and the location-specific VRES production profiles in high-RES power
system planning models in a systematic way. The contributions of this chapter and the
possible use of the approach are as follows:

1. The chapter links three different scientific bodies of knowledge: data-driven land
cover assessment, VRES potential estimation, and power system planning models.
This approach allows to improve the traditional way of energy system planning
modeling by considering actual location-specific VRES potential as a constraint.
With our integrated and generally applicable method, energy system planning
researchers can exploit the strength of the other two fields instead of resorting to
simplistic constraints or neglecting land-use altogether.

2. The approach entails all the necessary steps to systematically consider the location-
specific land-use and the location-specific production profiles of VRES in the opti-
mization model. The approach starts from the raw data, including geographical
boundary data, land cover data, and VRES data, to the transformation of these data
to the inputs of the optimization model, and then to the formulation and the results
of the model.

The approach would be valuable for optimization studies where the published
location-specific data on the land-use and the production profile of VRES is not
available and where case-specific data has to be compiled.

3. This data-driven approach keeps the spatial explicitness that is in line with the
used database. It means that the approach gives full exposure of the land cover
characteristics and control of the corresponding area to the user, i.e., the user can
identify the land cover in the resolution of the database explicitly, and thus is able
to include/exclude the area in various ways. Consequently, the location-specific
VRES potential constraints can be changed depending on the desired level of spatial
details.

4. Our approach helps to reveal the role of the land-use of VRES on the results of the
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power system planning optimization models. This provides a novel way to inspect
the sensitivity of the optimization results to location-specific land-use constraints.

This way of sensitivity analysis would give insights to power system modelers and
policy-makers. For modelers, the impact of land-use could be quantified by the
change in results such as generation mix, the spatial distribution of generation
technologies, and the total cost of the system. For example, what is the spatial
distribution of the optimized wind turbine locations if a certain type of land cannot
be used to build the turbines? For policy-makers, in addition to those results, this
method quantifies the geographical distribution of the land-use of VRES, which
helps to evaluate the effect of possible spatial policies ex-ante. For instance, where
will wind turbines be located, and how much land will they occupy given the policy
that they have to be placed at least 2 km from the residents in order to mitigate social
resistance? And what are the extra system costs associated with those constraints?
These kinds of analyses would not be possible without the spatially explicit planning
approach, even for studies where the data has been published.

5. The case study presents the future high-RES energy system scenario for the Nether-
lands, which gives practical insights to policy-makers and adds to the literature in
energy system planning.

3.1.3. Background of the case of the Netherlands
In the Netherlands, policy-makers put the climate agreement into practice by formulating
a target amount of RES capacity that needs to be integrated into the current power system.
This is done by implementing a country-wide program (Regional Energy Strategies) [103],
which divides the country into 30 regions (Figure 3.1) that need to coordinate where
to locate the required RES capacity. However, the Netherlands is a densely populated
country which makes the placement of wind turbines and solar plants difficult. Therefore,
the Netherlands will be used as a case study to show the feasibility and usefulness of our
integrated, tripartite approach.

3.1.4. Structure of the chapter
The chapter is organized in the following way. Firstly, Section 3.2 describes the proposed
approach which includes the modeling of spatially explicit data and the formulation of the
optimization model. Next, Section 4.5 presents the scope and the input data of the case
study. In Section 3.4, the land cover assessment is elaborated and the VRES potentials are
calculated. Then, Section 3.5 presents and discusses the optimization results. In Section
5.6, conclusions are drawn.

3.2. Proposed approach
Figure 3.2 shows a schematic depiction of our approach. In the following sections, we
describe the details of the spatially explicit data modeling and how this is used in the
optimization model.
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Figure 3.1: 30 regions in the Netherlands.
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3.2.1. Spatially explicit data modeling
The spatially explicit data includes geographical boundary data, land cover data, and
VRES data.

Polygons and location of nodes The starting point is a data set of coordinates that
represents the geographical boundaries of the interested nodes to be modeled. The data
set forms polygons that define the spatial granularity of the model, which can be, for
example, an entire country or group of countries in a European power system model, or
a municipality or a neighborhood in a local power system model. The centroids of the
polygons are the locations of the nodes n in the optimization model.

Starting from polygons is usually applicable to optimization studies where the results
(e.g., the optimized generation capacities) at the nodes n are the focus of the chapter. The
OpenStreetMap project [104] is a commonly-used source to find the polygons, when, for
example, only the names of the municipalities are available.

Land cover assessment and VRES potential estimation After obtaining the polygons,
the land inside the polygon needs to be assessed in order to check how much land is
available and suitable for VRES development. This is done by performing a land cover
assessment.

The land cover assessment is an indispensable step in this approach since doing
the assessment essentially implies that each area with a certain land cover (see the
definition of land cover and the database introduced in the following paragraph) is
explicitly identified. Hence, any means of inclusion/exclusion of the identified areas is
possible, e.g., full exclusion, partial exclusion, exclusion in radius, etc. Several exemplary
exclusions are explained below and will be illustrated in Section 3.4.1.

The land cover represents the physical material on the surface of the land, which is
classified into five major categories in Corine Land Cover (CLC) database [105]. These are
artificial surfaces, agricultural areas, forest and semi-natural areas, wetlands, and water
bodies. Those categories are further divided into a total of 44 classes. The CLC database
has a grid size of 100 m by 100 m. Not all the land cover is suitable for VRES development,
so two steps will be taken in order to find suitable land.

The first step is to exclude the land that is not available for VRES development physi-
cally, which is an example of fully excluding. For instance, for onshore wind turbines, the
CLC classes that are considered unavailable are urban fabrics, airports, rice fields, water
bodies, etc. On the other hand, national parks also need to be excluded. However, nature
reserves are not a class in CLC, but they can sometimes be found in the form of polygons.
These polygons, together with the area in unavailable land cover classes, are excluded.
This exclusion process can be done using e.g., Python NumPy masked arrays.

Next, the remaining land is considered suitable to some degree and will thus be
partially excluded based on its land cover classes. Since the resolution of the land cover
data is not fine enough to assess the land cover on the scale of individual wind turbines
and solar panels, it is common in the literature to assign suitability factors αi ,c to each
land cover class [96]. The value of the suitability factor depends on technology i and
Corine Land Cover class c. After the assignment of suitability factors, the suitable areas
for technology i at location n for CLC class c are obtained (see (3.1)).



3.2. Proposed approach

3

31

Si ,n,c = SunitBn,cαi ,c ,∀i ∈ VRES,∀n ∈ N ,∀c ∈ CLC (3.1)

where i is either wind or solar energy, Bn,c is the number of grid cells (100 m*100 m) at
node n for CLC class c, Sunit is the area of a grid cell, Sunit = 0.01km2.

Since some of the unavailable lands are selected based on the CLC classes, in principle,
in the first step, a suitability factor of zero could be assigned. However, the separation
of the two selection steps will explicitly give two different ways to adapt the approach
to specific cases. In the first step, the exclusion of unavailable land can be based on
any land cover, e.g., residential areas with social resistance to VRES technologies can be
excluded, or even a settlement area in the radius of certain CLC classes can be excluded
as well (see an example in Section 3.4.1). In the second step, suitability factors can be
changed depending on the local surface conditions, e.g., if the trees in the forest area
are high, or the slope of the ground is large, these conditions would make the suitability
factors even lower. In this way, by changing the exclusion criteria and the suitability
factors, the approach provides a flexible way to use VRES potential constraints based
on location-specific conditions, such as local surface conditions, social acceptance, and
local spatial policies.

To quantify the land requirement of VRES technologies, capacity density, defined as
the maximum potential installed capacity per unit area, needs to be incorporated into
the calculation. The maximum VRES capacity is calculated according to Equation (3.2):

K max
i ,n = ∑

c∈CLC
Si ,n,cβi ,∀i ∈ VRES,∀n ∈ N (3.2)

where βi is capacity density, which is 5 MW/km2 for wind [106], and 30 MW/km2 for
solar [107] in this chapter.

Location-specific VRES data After specifying the location of nodes (polygons), the VRES
data that determines wind and solar energy production at the same spatial resolution
needs to be obtained. This location-specific VRES data is defined as the normalized VRES
energy output for VRES technology i at node n at time step t , which lies in the range of 0
to 1, and will be referred to as capacity factors ηi ,n,t in Equation (3.5) of the optimization
model.

The available VRES data is usually wind speed at hub height and solar irradiation
data from meteorological measurements or reanalysis data sets, then the data will be
transformed into VRES capacity factors ηi ,n,t [108].

The location of the VRES data either corresponds to the location of the meteorological
stations or at the grid points of the reanalysis data that is being used. In the next steps
of the proposed approach, we resolve the geographical inconsistency between the VRES
data and the polygons n.

The first step is to find all the VRES data points inside the polygon. If there is at least
one data point inside the polygon, we then take the mean of the data at those points to be
the VRES data for the node n. However, if there are no data points inside the polygon, the
VRES data at node n will be the linear interpolation of the data at the surrounding points.

In theory, it is possible to obtain the VRES data sets at each node n, e.g., in the work of
[108]. However, it is important to understand that the VRES generation can be anywhere
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in the polygon other than at node n. For wind and solar energy, the data at node n is most
of the time different from the averaged data in the polygon. Therefore, we estimate the
VRES data in the whole polygon instead of only at the centroid.

3.2.2. Optimization modeling
In the next section, we present our optimization model, which we labeled the Greenfield
Renewables Investment Model (GRIM). This model is a linear programming model that
minimizes the total annualized cost of investment and operation. This optimization
model has a set of hypotheses, and hence it is important to clarify the scope and the usage
of this model before presenting the detailed formulations.

Scope and usage of the model The main contribution of the approach is to systemati-
cally find the location-specific maximum potential VRES capacities and then consider
them in the power system planning optimization model. In this way, the effects of the
location-specific land-use limit of VRES on power system planning can be revealed. In
order to focus the reader on this main contribution, the formulation of the maximum
VRES potential constraints will be discussed in detail. Instrumentally, the rest of the power
system planning model will be simplified.

The presented model aims to include only the essential components of the state-
of-the-art power system investment optimization models (e.g., spatial-temporal RES
production profiles, energy storage, and network flows), and it is meant to showcase how
the maximum VRES potential constraints can be linked to this family of optimization
models.

For instance, GRIM assumes there is no existing power generation, no storage, and no
networks. This assumption is referred to in the word greenfield in the acronym. In addi-
tion, real network topology, alternative current network flow formulation, comprehensive
inclusion of different generation and storage technologies, ancillary services, power sys-
tem stabilities, etc. are not taken into account. These aspects have been extensively
discussed in power system models and are thus not the focus of this work. Nevertheless,
it is straightforward to apply the proposed method and fine-tune the optimization model
to other detailed models of readers’ interest. Furthermore, the model disregards carbon
pricing and does not take into account opportunity cost or loss of revenues when certain
land areas are re-purposed, e.g., when agricultural land is changed into solar parks or
wind farms.

Objective function The objective function is to minimize total annualized cost con-
sisting of capital expenditure (CapEx) cost of generation and storage technologies Ci ,
CapEx cost of networks Cn,m , fixed operation & maintenance (FOM) costs ai and variable
operation & maintenance (VOM) costs bi . All costs are annualized by an annuity factor
Ai (for generation and storage technologies) or An,m (for networks). The network cost
depends on the length δn,m , the capacity Kn,m of the line, and the factor f which will be
explained in Section 3.2.2.
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Min.
∑

i∈(G+SC+S)

∑
n∈N

Ci Ki ,n

Ai
+ ∑

(n,m)∈E

f δn,mCn,mKn,m

An,m
+ ∑

i∈(G+SC )

∑
n∈N

ai Ki ,n

+ ∑
t∈T

∑
i∈G

∑
n∈N

bi Pi ,n,t

(3.3)

The decision variables are the capacity of generation and storage units Ki ,n of tech-
nology i at node n, the network capacity Kn,m of line (n,m), the energy production Pi ,n,t

of generation technology i at node n at time t , the energy charging of storage C Pi ,n,t and
the energy discharging of storage DPi ,n,t of storage technology i at node n at time t , the

energy export P export
n,m and the energy import P import

n,m from node n to node m at time t .
The optimization model has a set of constraints, as described below.

Energy balance constraints The energy supply has to match the demand at every time
step. This means the energy that comes into the node, is equal to the energy that flows
out of the node at all time steps. Therefore, at every time step, the sum of the demand,
the energy export, and the energy charging of storage are equal to the sum of the energy
production, the energy import, and the energy discharging of storage. τn,m is used to
account for the power loss in the lines. More discussions of network modeling are given
in Section 3.2.2.

Dn,t +
∑

(n,m)∈E
P export

n,m,t + ∑
i∈SC

C Pi ,n,t

= ∑
i∈G

Pi ,n,t +
∑

(n,m)∈E
(1−τn,m)P import

n,m,t + ∑
i∈SC

DPi ,n,t ,∀n ∈ N ,∀t ∈ T
(3.4)

Energy production constraints For conventional generation and biomass plants, the
energy production per time step cannot exceed the installed capacity, thus ηi ,n,t = 1. For
wind and solar energy, the energy output per time step depends on the installed capacity
and the capacity factor ηi ,n,t that reflects the meteorological conditions (see Section 3.2.1
for modeling of the capacity factor).

Pi ,n,t ≤ ηi ,n,t Ki ,n ,∀i ∈G ,∀n ∈ N ,∀t ∈ T (3.5)

VRES potential constraints The upper bound of the installed capacities K max
i ,n for wind

turbines and solar panels are given.

Ki ,n ≤ K max
i ,n ,∀n ∈ N ,∀i ∈ VRES (3.6)

K max
i ,n is derived using Equation (3.2) and the process of obtaining K max

i ,n is described
in Section 3.2.1.

For conventional generation technologies and biomass, the maximum potential in-
stalled capacity is not considered as they are not as land-intensive as wind and solar
energy.
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Network constraints The network is modeled as a fully-controllable direct current
network [47], and thus only active power is modeled. The energy import and export
cannot exceed the thermal limits of the line.

0 ≤ P import
n,m,t ,P export

n,m,t ≤ Kn,m ,∀(n,m) ∈ E ,∀t ∈ T (3.7)

In this way, energy conservation is preserved, however, interested modelers could add
other constraints by ensuring e.g., voltage conservation.

This chapter follows the modeling approach of [47] by firstly increasing the line
capacity to 1.5 times to fulfill the n − 1 security requirements. This increase in line
capacity will influence the network cost in the objective function and the optimized
network capacity. Secondly, in reality, the network length δn,m may not be the shortest
length between nodes, due to physical barriers such as buildings, protected areas. The
land cover assessment does not take into account the possible detour of the network,
hence a factor of 25% is added to the line length between two nodes. These effects are
modeled by adding a factor f ( f = 1.5∗1.25) to the objective function.

Storage constraints The stored energy at time t is equal to the sum of the stored energy
at time t −1 and the net charging energy. While charging/discharging, losses are included
by incorporating the efficiency coefficients.

SPi ,n,t = SPi ,n,t−1 +ηi n
i C Pi ,n,t − 1

ηout
i

DPi ,n,t ,∀i ∈ S,∀n ∈ N ,∀t ∈ T (3.8)

The energy charging/discharging per time step cannot exceed the capacity of the
storage conversion, and the stored energy per time step cannot exceed the energy content
of the storage unit.

SPi ,n,t ≤ Ki ,n ,∀i ∈ S,∀n ∈ N ,∀t ∈ T (3.9)

DPi ,n,t ,C Pi ,n,t ≤ Ki ,n ,∀i ∈ SC ,∀n ∈ N ,∀t ∈ T (3.10)

Besides, since only one year is modeled, the storage is considered to be cyclic. This
means, that when t is the first step of the year, t −1 becomes the last time step of the year,
i.e., Equation (3.8) becomes

SPi ,n,0 = SPi ,n,tend +ηin
i C Pi ,n,0 − 1

ηout
i

DPi ,n,0,∀i ∈ S,∀n ∈ N (3.11)

RES target constraint A RES target constraint is added to indicate the minimum per-
centage of RES in total energy production. This RES target is specified by ω, ranging
between 0 and 1.

ω
∑
i∈G

∑
n∈N

∑
t∈T

Pi ,n,t ≤
∑

i∈RES

∑
n∈N

∑
t∈T

Pi ,n,t (3.12)
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Non-negativity constraints At last, all the decision variables must be equal to or larger
than zero.

0 ≤ Ki ,n ,Kn,m ,∀i ∈ (G +SC ),∀n ∈ N ,∀(n,m) ∈ E (3.13)

0 ≤ Ki ,n ,SPi ,n,t ,C Pi ,n,t ,DPi ,n,t , ,∀i ∈ S,∀n ∈ N ,∀t ∈ T (3.14)

0 ≤ Pi ,n,t ,∀i ∈G ,∀n ∈ N ,∀t ∈ T (3.15)

3.3. Scope and data inputs of the case study
The background of the case study was explained in Section 3.1. This section presents the
scope of the case study, the corresponding input data, and how they were modeled as
inputs to the optimization model.

3.3.1. Scope of the case study
As explained in Section 3.2.2, the presented model intends to only include the essential
components that are typically considered in this family of optimization models. Therefore,
the results of this example are meant to illustrate the usage of the approach and to reveal
the role of land-use constraints in the power system planning models, given the context
of the Netherlands.

3.3.2. Data inputs
The data modeling and the optimization modeling were done using Python. The most
used packages in this chapter are NumPy, Pandas, netCDF4, shapely, NetworkX, and
Pyomo.

Polygon data The geographical granularity is the 30 regions in the Netherlands. In this
case, the regions are not administrative units (e.g., provinces), hence their polygons are
not directly available in databases. Therefore, all the municipality polygons were first
downloaded from the OpenStreetMap project and were then merged into the desired
regions. The result is a Python dictionary with region names as the keys and polygons as
the values including longitude and latitude coordinates.

Land cover data The land cover data was obtained from the Corine Land Cover database
[105] which has coverage for all the European countries. The suitable areas and the max-
imum potential installed capacities in each polygon were obtained. This land cover
assessment and the calculation of maximum potential installed capacity will be elabo-
rated in Section 3.4.

VRES data The hourly wind speed was taken from the data set downloaded from Royal
Netherlands Meteorological Institute [109]. The wind data of CLC classes belonging to
water bodies are excluded, as only onshore wind turbines are considered in this chapter
(see Section 3.3.2). The wind speed data set contains data for different heights covering
the whole of the Netherlands with 2.5 km horizontal resolution. The power curve of Vestas
V90 3MW wind turbine was used to convert the wind speed to hourly wind capacity factor,
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and the wind speed at 80 m was used to match the hub height. Ideally, wind and solar
data from the same data source are used. Unfortunately, this data set only has wind speed,
so solar data was taken from another data set [108]. The solar data was extracted for each
node n (i.e., the centroid of the polygon). The weather data in 2015 was used. In Figure
3.3, the time-series for the region Rotterdam-Den Haag are illustrated.

Figure 3.3: Time-series of wind capacity factor, solar capacity factor, and power demand for the region Rotterdam-
Den Haag.

Network topology As mentioned in Section 3.2.1, the detailed modeling of the power
network is out of the scope of this work. For the purpose of the case study, we assume a
meshed network where adjacent polygons are connected.

Demand data The data of hourly power demand for the Netherlands in 2015 (113 TWh)
was derived from the European Network of Transmission System Operators for Electricity
(ENTSO-E) [110]. The hourly power demands for the 30 regions were scaled according to
the population in each region (see Figure 3.6) obtained from the OpenStreetMap project
that includes population information. The time-series of power demand in the region
Rotterdam-Den Haag is illustrated in Figure 3.3.

Cost parameters The chosen generation technologies are onshore wind turbines, solar
PV, biomass plants, coal plants, and CCGT plants. The land and feedstock requirements
for biomass are not included. Offshore wind is not included (see discussions in Section
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3.5.5). The storage technologies are hydrogen storage and flow battery storage. Pumped
hydro storage is not considered due to non-availability in the Netherlands. The discount
rate is 5%. The cost parameters are summarized in Table 4.2.

Technology CapEx (e/kW) FOM (e/kW/yr) VOM (e/kWh) Lifetime(yr)

Onshore wind 1205 45 0.002 25

Solar PV 925 21 0.001 25

Biomass 2640 90 0.0845 33

Coal 1600 28 0.03 42.5

CCGT 800 20 0.046 30

Hydrogen conver-
sion

2400 0,04

Hydrogen storage 0,06e/kWh 62% (in/out effi-
ciency)

Flow battery conver-
sion

650 0.9

Flow battery storage 450e/kWh 90% (in/out effi-
ciency)

Network 10000e/MW/km 5% 100km (power
loss factor)

Table 3.1: 2050 estimation of cost parameters (based on [111], [112], [113], [114], [47], except for the network
cost and power loss factor).

Wind and solar curtailment costs are essentially taken into account because by cur-
tailing, the same investment cost would lead to lower production and hence a higher cost
of electricity.

The network cost in our study is relatively high compared to other studies (see e.g.,
[47], [111], [113], and [114]) due to two reasons. Firstly, according to the 2019 data [115]
from network operators in the Netherlands, the network cable cost is 3000e/MW/km -
50000e/MW/km. Secondly, the costs related to substations and the distribution network
cost are often not included in existing studies. Therefore, the chosen network cost is
considered reasonable and even conservative for the Netherlands.

According to [116], for the Netherlands, the transmission and distribution loss factor
is 4.77% in 2014. In addition, considering the fact that the lengths of all the network
connections in this chapter are less than 100 km, 5%/100 km is used as a typical number
representative of the Dutch power networks.

3.4. Modeling of VRES potentials
In this section, the land cover characteristics in the Netherlands will be assessed and the
maximum potential installed capacities and the annual capacity factors of wind and solar
energy will be calculated.

3.4.1. Land cover assessment
Table 3.2 gives the detailed land cover assessment for the Netherlands: CLC classes
available for VRES development, available areas for each available CLC class, percentages
of them in terms of the total area of the country, suitability factor for each available CLC
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class, suitable areas and percentages of them in terms of the total area of the country.
Each column is further elaborated on below.

First of all, unavailable land cover and nature reserves are excluded from the total
area. In the Netherlands, existing wind turbines are to a large extent built along roads
or highways and at the construction sites such as the Rotterdam Port area. Therefore,
the transport area is not excluded. Some of the urban areas are considered available as
well (see Table 3.2 for the CLC classes that are considered available). Next, since most of
the nature reserves in the Netherlands are small monuments, we excluded only the two
largest reservations, Veluwe and Waddenzee. After those exclusions, the rest is considered
available for VRES development. These criteria are based on physical conditions and this
is considered a moderate exclusion.

In addition, a stricter exclusion on land-use for wind energy is given. The rationale
behind this is that if social resistance against wind energy is taken into account, the land
will be even more limited. In this case, the land is constrained in addition to the moderate
exclusion. This stricter exclusion assumes that all the land in the built environment, i.e.,
all the CLC classes of Artificial Surface, is excluded. Furthermore, the area in their 2 km
radius is excluded as well. In this way, the social resistance and spatial policies of wind
energy are operationalized and thus the feasible wind energy potential is quantified.

Figure 3.4 shows all the land, the available land after moderate exclusion, and after
strict exclusion in the Netherlands.

Figure 3.4: Land in the Netherlands (the colored area represents different CLC classes, the white area is either
not in the Netherlands or is excluded). Left to right: all the land, the available land after moderate exclusion,
and the available land after strict exclusion.

The moderate exclusion will be the baseline case to be elaborated on in this section,
but the optimization results of both cases will be discussed in Section 3.5.

The land that is available for VRES development in the Netherlands is 77.35% of the
total land. This means that, in the baseline case, around 80% of the land can be used for
the installation of wind turbines and solar panels. However, different local conditions
such as spatial policies could be implemented, which will change the exclusion criteria
and the suitability factors. This would reduce the amount of suitable land in the end.

Then, the suitability factors are applied on the available area resulting in the suitable
areas. The suitability factors for wind turbines and for solar panels are similar for most
of the land use classes. The only difference is that solar panels are allowed to be put on
building rooftops, hence, a suitability factor of 0.3 is given to discontinuous urban fabric
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CLC class Available
area (km2)

Percentage Suitability
factor

Suitable
area(km2)

Percentage

2 Discontinuous urban fabric 3288.10 7.91% 0.3 986.43 2.37%

3 Industrial or commercial units 807.18 1.94% 0.8 645.74 1.55%

7 Mineral extraction sites 46.25 0.11% 0.5 23.13 0.06%

8 Dump sites 21.49 0.05% 0.5 10.75 0.03%

9 Construction sites 153.67 0.37% 0.3 46.10 0.11%

12 Non-irrigated arable land 7366.88 17.72% 0.4 2946.75 7.09%

15 Vineyards 0 0 0.1 0 0

16 Fruit trees and berry plantations 71.63 0.17% 0.1 7.16 0.02%

18 Pastures 10089.93 24.28% 0.6 6053.96 14.57%

20 Complex cultivation patterns 5304.71 12.76% 0.1 530.47 1.28%

21 Land principally occupied by agri-
culture, with significant areas of natural
vegetation

1136.94 2.74% 0.1 113.69 0.27%

23 Broad-leaved forest 568.16 1.37% 0.3 170.45 0.41%

24 Coniferous forest 1146.76 2,76% 0.3 344.03 0.83%

25 Mixed forest 725.17 1.74% 0.3 217.55 0.52%

26 Natural grasslands 475.29 1.14% 0.6 285.17 0.69%

27 Moors and heathland 246.85 0.59% 0.6 148.11 0.36%

29 Transitional woodland-shrub 13.62 0.03% 0.5 6.81 0.02%

30 Beaches, dunes, sands 143.04 0.34% 0.3 42.91 0.10%

32 Sparsely vegetated areas 0 0 0.8 0 0

35 Inland marshes 364.74 0.88% 0.1 36.47 0.08%

36 Peat bogs 80.21 0.19% 0.1 8.02 0.02%

37 Salt marshes 96.69 0.23% 0.1 9.67 0.02%

Sum 32147.31 77.35% n.a. 12633.38 30.40%

Table 3.2: The land cover characteristics of the available and suitable land for VRES development in the
Netherlands. Suitability factors are based on own compilation and the work of [96].
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for solar panels. This land cover assessment aims to give a general understanding of the
available land and suitable land for VRES development in the Netherlands.

The total suitable area is 12633.38 km2, which is 30.40% of the land in the Netherlands.
The regional distribution of the suitable areas of the available CLC classes was calculated
as well. The four CLC classes with the largest areas in Table 3.2 are illustrated in Figure
3.5.

Figure 3.5: Selected land cover characteristics for the 30 regions in the Netherlands

In summary, the CLC class of pastures is the most suitable land cover class for VRES
development in the Netherlands, occupying 14.57% of the total area. Non-irrigated arable
land also plays an important role with a percentage of 7.09%. Other CLC classes are not
prominent, but among all, discontinuous urban fabric and industrial or commercial units
are the most significant for solar panels and for wind turbines, respectively.

3.4.2. Maximum VRES capacities and annual capacity factors
Maximum VRES capacities at all regions are calculated based on Equation (3.2). The
suitable areas for wind and solar energy in the Netherlands are 11646 km2 and 12633 km2,
respectively, occupying 28.02% and 30.40% of the total land of the Netherlands. This leads
to 58.23 GW of potential wind capacity and 379 GW of potential solar capacity. Figure 3.6
illustrates the geographical distribution of the maximum potential capacities.

Furthermore, the annual capacity factors are shown in this figure as well. For wind
energy, the western and northern coastal regions have more favorable wind conditions
than those of other regions. The annual capacity factors range between 0.20 and 0.36.
With regard to solar energy, this range is smaller, which is 0.11 to 0.14. Moreover, unlike
wind, solar annual capacity factors do not show a strong geographical pattern and are
distributed rather evenly across the country.

3.5. Optimization results and discussions
This section presents the results from the optimization model in terms of the generation
mix, the spatial distribution of the generation capacity, and the total cost of the system.
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Figure 3.6: The geographical distribution of five figures in the Netherlands. Left to right: the maximum potential
installed capacity (MW) and the annual capacity factor for onshore wind turbines, the maximum potential
installed capacity (MW) and the annual capacity factor for solar PV, and the annual power demand (TWh).

It starts with the scenario with the baseline VRES potential constraints obtained from
Section 3.4.2. Afterward, the scenario concerning strict VRES constraints based on the
strict exclusion criteria on land-use (described in Section 3.4.1) will be used to check
the sensitivity of the model outcomes to this constraint. Lastly, the scenario without
the constraints on the land-use of VRES is briefly presented, which imitates the existing
studies.

3.5.1. Baseline scenario with moderate VRES potential constraints
Generation mix Figure 3.7 shows the generation mix for five RES targets for different
scenarios.

At the 0% RES target, coal plants comprise most of the capacity to supply base demand,
whereas the capacity of CCGT is 25% of that of coal and it supplies the peak demand. At
the 20% RES target, wind comes into the generation mix by bringing in an extra capacity
compared to the first target. Then, starting from the 50% target, solar PV appears. Re-
garding fossil fuels, the capacity of CCGT is equal to coal at this target and it surpasses
coal when RES share is above 50%. In other words, when the RES share is below 50%,
coal represents the majority of the fossil fuel capacity. Moreover, going from 20% to 50%
RES, the total capacity doubles, which is mainly due to the investment in solar and wind
energy. At the 80% RES target, biomass for the first time appears in the generation mix to
replace some of the coal capacity. However, coal and CCGT are still in the generation mix
to provide controllable power production.

The fossil fuels are gone at the 100% RES target, in which they are replaced by more
biomass. Hydrogen storage is being deployed to cover periods of little VRES production.
Storage only appears at the 100% RES target, while for other targets, fossil fuel plants can
cover those periods. In addition, out of the two storage options in the model, hydrogen
storage seems to be more cost-effective than flow battery storage under the existing cost
parameters of both technologies.

With respect to the RES capacities for all the targets, wind capacity stays almost
the same at the 50%, 80%, and 100% RES targets, solar capacity has reached its peak
deployment at the 80% target. Nevertheless, the total wind capacity is higher than the total
solar capacity for all the targets. Apparently, wind is more cost-effective than solar power.
Hence, wind energy plays a dominant role with solar energy and biomass complementing
its variable production.
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Figure 3.7: Total installed capacity (MW) for different RES targets for the three scenarios. At each RES target, left
to right: baseline scenario, new policy scenario and unlimited land scenario.

Spatial distribution of the generation capacities Figure 3.8 shows the generation ca-
pacities in the 30 regions in the Netherlands and the land-use for onshore wind and solar
PV represented by the fraction between the used land and the suitable land.

At the 0% RES target, coal and CCGT plants are located mainly in Noord-Holland Zuid
and in Rotterdam-Den Haag regions (these are the regions in the densely populated west
of the country). This result is plausible since these regions are also demand centers in the
Netherlands (see Figure 3.6). Besides, there is 22 MW of onshore wind, which is negligible
compared to the capacities of coal and CCGT.

At the 20% RES target, wind energy is installed mainly in these two demand centers.
However, due to their limited size, wind energy also has to be installed in the neighboring
regions to supply the two demand centers. Results show that the Rotterdam-Den Haag
region is fully occupied by wind turbines, and two of its neighboring regions Goeree-
Overflakkee and Holland-Rijnland provide additional wind energy capacity. The other
demand center, Noord-Holland Zuid, nevertheless, still has land for wind turbines.

From the 50% to the 100% RES target, wind capacities continue to expand from the two
demand centers to their neighboring regions as well as to the northern regions where the
wind conditions are good, e.g., Noord-Holland Noord and Friesland. However, due to their
large maximum potential capacity and relatively long distance to the demand centers,
they are not heavily occupied by wind turbines. By contrast, most of the neighboring
regions of the demand centers are fully occupied. At the 100% RES target, 7 out of the
30 regions are fully used for wind turbines which correspond to 38% of the total suitable
land and 11% of the total land of the Netherlands.

Total cost The total cost of the system is divided by the total power demand (113)
to represent the cost of electricity (Figure 3.9). Most of the cost is proportional to the
installed capacity in Figure 3.7 except for the operation cost. This operation cost, however,
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Figure 3.8: Generation distribution for the 30 regions for different RES targets. Left to right: onshore wind (MW),
onshore wind fraction, solar PV (MW), solar PV fraction, biomass (MW), coal (MW), CCGT (MW).

Figure 3.9: Cost of electricity (e/MWh) for different RES targets for the three scenarios. At each RES target, left
to right: baseline scenario, new policy scenario, and unlimited land scenario.
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accounts for a significant part of the total cost. It includes the FOM cost and the VOM cost.
Here the VOM cost, i.e., the fuel cost is the main differentiator of the total costs for the
different RES targets. From the 0% to the 50% RES target, although the cost of electricity
increases, the operation cost actually decreases because of the lower capacity for coal
and CCGT. However, instead of decreasing, the operation cost increases for the 80% RES
target, which is due to the introduction of biomass in the generation mix. The incremental
increases in cost for the five RES targets are 4 e/MWh, 12 e/kWh, 24 e/MWh and 23
e/MWh. Another important finding is that the cost of the network is at a maximum of
1.5% of the cost of electricity which is at the 100% RES target. This small contribution
implies that the assumptions we made for the cost and topology of the network do not
have a significant influence on the key performance indicators of the overall system, i.e.,
the generation mix and the system’s total cost.

3.5.2. New policy scenario with strict constraints on the land-use of VRES
The merit of our approach is that it assesses the land cover in a spatially explicit way
such that the VRES potential constraint can be adapted based on any selection of the
allowed land cover as described in Section 3.2.1. To give an example of the usage and the
relevance, apart from the baseline scenario, a 2 km exclusion scenario that reflects social
resistance and spatial policy was proposed in Section 3.4.1. The results of this scenario
are discussed in this section.

Spatial distribution of wind capacity In Figure 3.10, the geographical distribution of
the land-use of wind turbines represented by the fraction between the used land and the
suitable land is shown.

Figure 3.10: The fraction of the used land over the suitable land of wind turbines under the two scenarios:
baseline scenario and new policy scenario.

Under the 2 km policy, only 7% of the total area in the Netherlands is suitable for wind
turbines, instead of the 30% in the baseline case. Compared to the baseline case, this
strict VRES constraint on land-use has a larger impact on the occupied land. At the 20%
RES target, 70% of the regions are fully occupied by wind turbines, whereas only one
region is entirely used in the baseline case. At the 100% RES target, 93% of the regions are
wholly possessed, which corresponds to 92% of the total suitable land and 6% of the total
land of the Netherlands.
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Generation mix Figure 3.7 shows the total installed capacity for the new policy scenario.
First of all, due to the strict wind energy constraints on land-use, there is a decrease
in wind capacity for all the RES targets and the wind capacity is almost reaching its
maximum potential. Secondly, there is a capacity increase in solar energy and in biomass.
Moreover, compared to the baseline case, these two technologies both come earlier into
the generation mix as the RES share increases. Solar energy first appears at the 20% RES
target, and biomass appears at the 50% RES target at the earliest. This indicates that
solar energy and biomass compensate for the decrease in wind capacity compared to the
baseline scenario. Thirdly, there is an indispensable rise in the network capacity at the
20%, 50%, and 80% RES target, because wind power is now produced in larger quantities
at larger distances from the demand centers. Storage, again, is only present at the 100%
RES target.

Total cost Next, the costs of electricity are compared as well. There is not a significant
cost rise for all the RES targets, which varies between 2e/MWh to 5e/MWh. This implies
that the extra cost of extra solar and biomass energy is almost equal to the cost reduction
in wind energy.

3.5.3. Unlimited land scenario with no constraints on the land-use of VRES
As mentioned in Section 3.1, most of the existing optimization studies do not include
the constraints on the land-use of VRES. Therefore, the effects of this simplification on
the optimization results are unknown. In this scenario, we assess the model results
without the VRES potential constraints (Equation (3.6)). In this way, the drawbacks of the
existing models will be unveiled, and hence the advantage of our approach will be further
elaborated.

Spatial distribution of wind capacity In Figure 3.11, the geographical distribution of
the wind capacity and the fraction between the used land and the suitable land are shown.
The left two columns present results from the baseline scenario, the right two columns
show results from this scenario.

At the 20% RES target, due to the land-use constraints, the baseline scenario results in
capacities mostly in the two demand centers and their surroundings. In the unlimited
land scenario, the results are similar but the capacities are more concentrated. This trend
becomes clearer at the 50%, 80%, and 100% RES targets. At the 50% and 80% target, in
the baseline scenario, the coastal regions around the demand centers are fully occupied
by wind turbines. However, in this scenario, only three regions are wholly packed with
wind turbines. These three regions have the best wind conditions in the neighborhood,
and thus wind turbines are preferred to be placed there. This tendency to place the
wind turbines in the model without land-use limits of VRES results in unrealistic land
occupation. Goeree-Overflakkee region has to install 4.64 - 4.91 times its maximum
allowable capacity, and Rotterdam-Den Haag region has to install 1.31 - 1.35 times its
maximum allowable capacity. At the 100% RES target, the numbers are even higher. In the
baseline scenario, the coastal regions are already fully occupied and the capacities have to
be built in the north or in the south. And the maximum installed capacity is 2908 MW in
Noord-Holland Noord region. In the current scenario, this pattern of capacity expanding
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Figure 3.11: Wind capacity and the fraction between the used land and the suitable land. Left two columns:
baseline scenario. Right two column: unlimited land scenario.
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to the neighboring regions does not appear. Instead, the model prefers to install capacities
in the three regions with favorable wind conditions, of which the maximum capacity is
6032 MW. Consequently, the capacities in these three regions are beyond the physical
limits of the land. Compared to their maximum allowed capacities, Goeree-Overflakkee
region has to install 7.63 times, Noord-Holland Noord region has to install 2.07 times and
Rotterdam-Den Haag region has to install 1.42 times.

Generation mix Compared to the results in the baseline scenario, in this scenario, there
are two main differences. Firstly, the total capacity is higher at 50%, 80%, and 100% RES
target. This is due to the increase in network capacity in all three targets. And there is a
major difference in solar capacity at 50% RES target. Secondly, storage comes into the
generation mix much earlier in this scenario, although its capacity is not high.

Total cost Due to the difference in the generation mix, the cost breakdown is also
different which corresponds to the generation mix. However, the difference in total cost is
not significant. Because in this scenario, the total wind capacity does not change much,
whereas the spatial distribution shows a different pattern.

3.5.4. Discussions of the results
In this case study, three scenarios are analyzed to show how the proposed approach can
be used. It must be emphasized that the role of the land-use constraints deduced from the
results (e.g., in cost, and capacity) are case-specific, given the situation in the Netherlands.
For other cases with either unique land suitability (e.g., prohibited zones), or different
distribution of demand or meteorological profiles, the results might not be comparable to
the Dutch case. Nevertheless, the obtained results from the three scenarios will be further
compared. This is in order to give an example of what key results can be analyzed and
what conclusions can be drawn.

In Section 3.5.1, the baseline scenario is based on the realistic assessment of the
land cover, and thus this scenario takes the actual location-specific land-use limit of
placing VRES technologies into account. Next, in Section 3.5.2, a stricter constraint on
the land-use of VRES is applied. If a spatial policy to mitigate the social resistance of
VRES is designed (e.g., the 2 km policy in this case), this scenario shows the effects on
the optimization results and the land-use coverage of such a policy. At 100% RES target,
92% of the suitable land in the Netherlands will be fully occupied. At 50%, 80%, and 100%
RES target, the wind capacity is reduced by 9182 MW or 43% on average, compared to the
baseline scenario.

Then, Section 3.5.3 shows the optimization results without any constraints on the
land-use of VRES. The total capacity and the cost of the system are similar to those of
the baseline scenario. This is because for this specific Dutch case, on the one hand, the
favorable VRES locations are not excluded much (by e.g., nature reserves). This means
that the VRES capacity constraints play a less significant role compared to the case where
the favorable VRES locations are excluded more. On the other hand, the VRES land-use
constraints will essentially change the optimal spatial distribution of the VRES capacity,
and thus more network is needed. However, in this model, since the cost of the network is
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not a significant component of the total cost of the system, the total cost is similar to that
of the baseline scenario.

Nevertheless, Section 3.5.3 indicates that without the constraints on land-use, the
optimal capacities in some regions would be infeasible in reality. Our approach gives a
unique kind of realistic result that would be needed for planning purposes, and that would
not be obtained using existing approaches. In addition, for other cases, other insights,
such as the changes in total capacity and total cost between the baseline scenario and the
unlimited land scenario, might be seen.

To give an indication of how the results could be used directly for real-life purposes,
they are first validated by comparing the cost of electricity to the Dutch electricity price,
and then the generation mix is compared to the literature. In 2015, the electricity con-
sumption from RES in the Netherlands is 2%. According to TenneT [117], the 2015 average
Dutch wholesale price is 40 e/MWh. In Figure 3.9, for 2% RES, the cost of electricity
is between 47e/MWh and 52e/MWh. However, the wholesale price does not include
capital costs. The operational part of the cost of electricity is between 32e/MWh and 35
e/MWh. This cost is comparable but lower than the real-world electricity price, which is
reasonable since other costs such as taxes are not calculated. Although different produc-
tion profiles of VRES were used, the generation mix of 100% RES scenario for other case
studies, such as Australia [118], Portugal [119], islands across the globe [120], Europe [47],
shows that wind dominates in the generation mix of RES. This trend is consistent with
our results.

Because the 100% RES scenarios have not materialized in the real world yet, it is
impossible to validate those results using real-world data. Furthermore, uncertainties
in the input data are also unavoidable. In such cases, a sensitivity study adds additional
insights into the robustness of the results. We, therefore, performed sensitivity experi-
ments by varying the CapEx of the technologies and the capacity densities to + 30% and -
30% compared to their original values and evaluate the effects on total installed capacity
(Figure 3.12) and the cost of electricity (Figure 3.13) at 100% RES target of the baseline
scenario. The results show that the CapEx has a stronger influence on the installed capac-
ities than the capacity densities. A change in solar PV CapEx has the highest effect on the
installed capacities. Overall effects on the costs are more limited, ranging from roughly
105e/MWh to 115e/MWh. In summary, the trend still holds that wind plays the most
important role, biomass serves as a controllable generation, and hydrogen is the main
storage source, given our assumptions.

3.5.5. Discussions of the approach and future work
Our approach shows useful and promising results, but every work, ours also, has some
possible extensions that warrant further research. Firstly, we provided detailed VRES
potential constraints based on the land-use of VRES, but the planning of networks will
also be influenced by land cover characteristics (e.g., no-go zones), which were ignored
in our approach. The next step is to investigate the sensitivity of the outcomes when
there are constraints on land-use for networks. Secondly, different technologies (e.g.,
offshore wind) will be considered in the future. These two possibilities are not included in
the current approach, as they feature different methodologies. For instance, in order to
apply this approach to offshore wind, data sets other than the CLC database that show
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Figure 3.12: Sensitivity study for the total installed capacity at 100% RES target of the baseline scenario.

Figure 3.13: Sensitivity study for the cost of electricity at 100% RES target of the baseline scenario.
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the suitability of installing offshore wind turbines would be required.

3.6. Conclusions
We provided a spatially explicit planning approach for power systems that integrates the
location-specific land-use of VRES into the optimization model. Instead of relying on
land-use data from other studies, this data-driven approach is a first-of-a-kind study
in the literature on power system optimization modeling that bridges three fields of
study: land cover assessment, VRES potential estimation, and energy system planning
models. It considers location-specific VRES potential constraints which can be adapted to
local conditions (e.g., social resistance, spatial policy, and physical conditions) regarding
land-use and reveals the role of the land-use of VRES on the results of such planning
models.

A case study for a densely populated area, in our case the Netherlands, has been done
to show the strength of the approach and to give policy-relevant results. We found that
under moderate VRES potential constraints (the baseline scenario), wind energy will
be the primary energy source in the generation mix for scenarios for high-RES targets.
Storage only plays a role at the 100% RES target. At this target, wind turbines would cover
38% of the suitable land in the Netherlands.

In addition, we applied a stricter spatial policy (the 2 km policy as described in Section
3.4.1) on wind energy. The results showed that 92% of the suitable land in the country
then has to be used for wind turbine installations to achieve the 100% RES target with
minimum cost. However, the total cost of the system under this policy has not increased
much compared to the baseline scenario, since solar energy and biomass can compensate
for wind energy at just a slightly higher system cost. Besides, due to the reduction in wind
capacity, solar energy and biomass both come into the generation mix earlier compared
to the baseline scenario, whereas storage still only appears at the 100% RES target.

At last, the results of the scenario with no land-use constraints on VRES were analyzed.
The optimal capacities are infeasible considering the land limits, making the results not
instructive for planning purposes in reality.

We conclude that, for new spatial policies that address the social resistance of VRES,
the VRES potential constraints considering land-use have a significant influence on
the optimization results and would thus require drastically different policy measures.
Therefore, our integrated approach is a necessary next step in creating more policy-
relevant models for large-scale deployment of RES in densely populated areas or areas
with abundant nature reserves. The proposed approach elaborates the essential steps to
operationalize land-use in the constraints after which its impacts on the optimization
results will be revealed.
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Multi-objective multi-actor model

4.1. Introduction
4.1.1. Background and motivation
Renewable energy sources (RES) can help reduce carbon emissions and have been the
pillar in the energy transition. Although facing uncertainties in the future, RES investment
is arguably a robust energy planning approach under the concern of energy indepen-
dence [121]. However, the projection from McKinsey & Company (2019) [122] states that
currently, in 2020, only 27% of the global power generation comes from RES. This fact
indicates that, despite the effort made for a carbon-free future energy system, there is
still a long way to go to construct a system with a high-RES penetration. Many people are
taking part in this transition. Amongst others, researchers in the field of future energy
system design aim to identify what the best RES investment plans would be.

Different categorizations of energy system planning models exist that focus on RES
integration ([123] and [124], such as optimization models and simulation models (see the
recent reviews of [125], and [126], respectively). Optimization models, being the most
common approach in generation investment problems [124], are especially suitable for
studies on long-term RES investment [127], as they are able to find the theoretical optimal
solution that maximizes or minimizes the objective function (such as cost or emissions).
On the other hand, simulation models, such as agent-based models and system dynamics
models, are powerful in solving other problems since they rather look for system patterns
taking into account the interactions between agents or other system components. This
chapter focuses on the optimal future energy system designs and will therefore focus on
optimization models instead of simulation models.

In most optimization models, the objective is usually to minimize total cost [123] to
find the optimal RES generation mix. The cost-optimal models have been extensively

This chapter was published as N. Wang, P. W. Heijnen, and P. J. Imhof, “A multi-actor perspective on multi-
objective regional energy system planning”, Energy Policy, vol.143, 2020. The first author of the paper, also the
author of this thesis, conceptualized and conducted the research together with the last author. The other author
performed an advisory role.
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discussed in the literature, e.g., see the recent review of [88]. However, according to [128],
RES are already cost-competitive with their fossil-fuels counterparts. Especially, onshore
wind turbines are (one of) the cheapest generation sources among all sources, including
conventional generation. Despite the low cost, the global installed capacity of onshore
wind turbines is only 309 GW, which is less than half of the installed capacity of solar
PV [129]. This implies that, for the RES investment in practice, the cost is not the only
criterion. In fact, the energy system is strongly interconnected with society. In addition
to economic factors (such as cost), the decision-making in energy system planning also
depends on environmental, technical, and social aspects and is usually complex [130].
These factors need to be emphasized in research in order to help the stakeholders 1

understand the barriers that hinder the progress in RES implementation, to contribute
to the discussion with all the actors and thus further assist their decision-making [131].
Optimization models that can handle all these factors (provided they can be quantified)
are multi-objective optimization (MOO) models.

4.1.2. Literature review
Multi-objective optimization in energy system planning MOO models generate so-
lutions to achieve predefined objectives such as cost and emissions, where the decision
variables are subject to a set of constraints. According to [132], and [133], there are two
types of MOO models. In the first type, the different objectives are merged into a single-
objective function - the so-called scalarization. Weights have to be allocated to each
objective. In this way, one optimal solution will be found, just as for single-objective opti-
mization. In the second type, no weights are given, but a set of Pareto-optimal solutions
for all objectives will be found. These solutions are non-dominated, i.e., solutions for
which other solutions that are better regarding each objective do not exist. It is important
to know that these solutions are mathematically equally good [134], and thus the ranking
of the solutions totally depends on the decision-maker. Compared to the scalarization
method, the Pareto-optimal solutions present a better picture of the trade-offs between
the objectives, and more insights would be obtained when the preferences of the actors
are taken into account afterward (a posteriori). Using Pareto-optimal solutions is more
methodical and less subjective [135] and allows to analyze the correlation between the
objectives [132]. In fact, the comprehensive review of [132] concludes that most MOO
studies in energy system planning generate a set of Pareto-optimal solutions instead of
using scalarization.

The reviews of [132], [133] and [136] give good overviews of earlier studies on MOO
literature that provides Pareto-optimal solutions. To avoid repetition, the relevant litera-
ture in the recent ten years is briefly reviewed here. Tekiner, Coit, and Felder (2010) [137]
proposed a multi-period multi-objective generation expansion approach to minimize
total cost and emissions simultaneously. A model to design a RES-based energy system
was presented by Zou et al. (2010) [138], where it accounts for total cost and system
reliability. Perera et al. (2013) [139] and Clarke, Al-Abdeli, and Kothapalli (2015) [140]
designed standalone hybrid energy systems to minimize cost and emissions. The model
of [141] minimized total cost and emissions as well and is applied to a town in Germany.
A long-term energy system planning of the Croatian energy system was done by Prebeg

1Note that in this chapter, the terms stakeholders, actors, and decision-makers are used interchangeably.
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et al. (2016) [142], where the objectives are minimizing cost and maximizing the RES
contribution. Mahbub et al. (2017) [143] investigated the future energy scenarios in an
Italian region to minimize cost and emissions. A MOO model for expansion with high-RES
shares was developed by Luz, Moura, and de Almeida (2018) [144], which was applied to a
Brazilian case to give advice on the RES targets posed by the government. Furthermore,
minimizing cost and emissions were also found in the studies of [89], [145]–[147] for
energy system planning with various focuses such as stochastic planning or seasonal
storage. In addition, in studies focusing on system integration options [148] such as com-
munity microgrids, virtual power plants, energy hubs, and Integrated Community Energy
Systems [149], Pareto-optimal solutions were also searched for. For example, Gui et al.
(2014) [150] selected the type and capacity of distributed generation units as the decision
variables. A case study for a microgrid system is carried out. In [151], the solutions were
generated randomly for Integrated Community Energy Systems to minimize cost and
emissions.

In summary, various MOO studies generate Pareto-optimal solutions where minimiz-
ing cost and emissions are considered the most commonly used objectives. Although
the Pareto-optimal solutions are useful in revealing the bounds of the solution space,
they need to be further analyzed to help the final decision-making by stakeholders with
different preferences. The post-processing of the results requires other techniques than
only MOO. Actually, the decision-aiding for multiple actors is often discussed in another
field of study, multi-criteria decision-making (MCDM) [132]. Therefore, multi-actor
decision-making in energy system planning will be introduced in the next section.

Multi-actor decision-making in energy system planning Given the complex nature of
the energy system planning problem, decision-making is not possible without considering
the various interests and preferences of multiple actors [152]. The multi-actor perspective
can be considered using various methods, such as the value case method [153] which
identifies and aligns the values of multiple stakeholders by means of workshops and
interviews for large innovation projects. According to [130], the most frequently used
decision-making models in RES investment are life cycle assessment, cost-benefit analysis,
and MCDM. While life cycle assessment mainly focuses on the environmental impacts
of RES and cost-benefit analysis is used to account for the monetary aspects, MCDM
inherently considers the conflicting objectives of the stakeholders and is able to include
aspects with different units [125].

MCDM is an evaluation method that considers criteria from different aspects simulta-
neously, such as technical, economic, and environmental aspects [152]. In this method, a
set of alternatives are evaluated against those criteria, and the output is usually a rank-
ing of the alternatives. MCDM methods in energy system planning have been reviewed
comprehensively by [136], [154]–[156]. Besides, the studies of [157], [158] also provide
reviews on MCDM with various focuses. Generally, three types of methods are discussed
in the literature, which are value measurement methods, goal programming, and out-
ranking methods [155]. This paragraph will now briefly introduce these methods and
outline some studies from the recent ten years. The value measurement methods give
a numerical score to the criteria based on the relative importance and rank the alterna-
tives. These methods usually include an analytical hierarchy process ([158]–[168]). Goal
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programming uses mathematical equations to select the alternatives that are closest to
the ideal points that have been defined beforehand with regard to the objectives. The
most popular method belonging to this category is the Technique of Order Preference
by Similarity to Ideal Solution (TOPSIS) ([162], [166], [169]–[174]). Outranking methods
apply a different methodology compared to the previous two. Instead of obtaining a merit
order of the alternatives like the previous methods do, the alternatives are compared
pair-wise. Examples of these methods are preference ranking organization method for
enrichment of evaluations ([171]) and elimination et choix traduisant la realité ([175] and
[176]).

Among those MCDM methods, TOPSIS offers a simple way of combining the prefer-
ences of multiple actors to allow for group decision-making [177], which is most relevant
to this research. It has been used in other fields such as IT personnel selection [178],
smart medical device selection [179], and stock exchange [180]. The applications of TOP-
SIS in energy system planning are now reviewed, by elaborating on the aforementioned
studies in the previous paragraph. Kaya and Kahraman (2011) [169] proposed a modified
fuzzy TOPSIS methodology and applied it to an energy decision-making problem. Wind
energy was found to be the best RES alternative. Similarly, Streimikiene et al. (2012) [170]
developed a framework to prioritize energy generation technologies. Alsayed et al. (2013)
[171] found the optimal size of a wind turbine-PV energy system by comparing scenarios
of different installed capacities. A Turkish case study was done by Brand and Missaoui
(2014) [172]. They use inputs from stakeholders and evaluate five power mix scenarios.
Also, for Turkey, Şengül et al. (2015) [173] developed a framework to support the ranking
of RES, and they find that hydropower is the best option. However, the study of [166]
showed that wind energy is the best alternative for Turkey by using a combination of fuzzy
analytical hierarchy process and TOPSIS. Another modified fuzzy TOPSIS framework
is proposed by Afsordegan et al. (2016) [162] to rank seven energy alternatives under
nine criteria. European Union energy development scenarios are evaluated by Baležentis
and Streimikiene (2017) [174]. The evaluations are based on the policy priorities such as
energy efficiency measures and the increasing use of RES.

These studies focus on either the ranking of the RES alternatives or evaluating the
scenarios consisting of energy mix options. The former, although being able to give advice
on the best RES, lacks detailed and quantitative insights on the investment capacity taking
into account realistic data such as demand profiles and the generation profiles of wind
and solar energy. The evaluations of future energy scenarios overcome part of the problem
as they are able to choose a specific energy mix. However, the scenarios are often given
and may be far from optimal. Furthermore, the decision-making for a group of actors has
not yet been studied using TOPSIS in the field of energy system planning.

Combination of MOO and MCDM Regardless of the sector, decision-making is always a
complex task. Depending on the goal of the study, it usually involves the combination
of methodologies, where the merits of both would be utilized conjointly. For instance,
in supply chain management, it is essential to optimize the purchase process, while
considering multiple criteria to evaluate different suppliers. Kannan et al. (2013) [181]
used MOO and MCDM to rate and select the best green suppliers. The performance of
the energy supply chain was assessed thoroughly with the help of combining various
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methods in [182].
Model combinations are also studied in the field of energy system planning. For

example, when criteria such as benefit and opportunity are crucial, strategic planning
and MCDM can be jointly used to provide decision-support in prioritizing RES for policy-
makers [157]. The need for using MOO and MCDM was recognized by Antunes and
Henriques (2016) [136]. MOO is able to provide a large set of optimal solutions show-
ing trade-offs between different objectives. Starting from the Pareto-optimal solutions,
MCDM further enables a richer critical evaluation and analysis of the solutions. Hajiban-
deh et al. (2018) [183] combined MOO and MCDM to identify efficient strategies for
system operators with a focus on demand response programs.

Our literature review shows that although the RES investment problem has been stud-
ied extensively, the combination of MOO and MCDM to find the optimal generation mix
has not often been addressed. The holistic approach that combines both methodologies
will be able to give a comprehensive understanding of the optimal future energy system
designs to various stakeholders, including but not limited to policy-makers. Before fur-
ther stating the research gap and our contributions, two studies that combine MOO and
MCDM in energy system planning will first be discussed.

For the design of a standalone energy system, Perera et al. (2013) [59] used fuzzy
TOPSIS, which is capable of handling the ambiguity associated with the relative weights
of the objectives to analyze the Pareto-optimal solutions. Their approach would be useful
for the decision-aiding of a particular decision-maker who has ambiguity on the relative
importance of the objectives. Jing et al. (2018) [184] use MOO and MCDM to design a
combined cooling, heat, and power energy system with a focus on solid oxide fuel cells.
The purpose of their study is to select the best location and building type for such a system
with different input data.

These two papers indicate the strength of combining MOO with MCDM, in particular
TOPSIS. However, they are not able to cope with multiple actors with different preferences.
Perera et al. (2013) [59] focused on dealing with the ambiguity of opinions of a particular
decision-maker, while various actors who are simultaneously involved in an energy system
planning problem are not addressed, and hence, the optimal decisions for those actors
cannot be derived. In the work [184], TOPSIS is used to evaluate two objectives (cost and
emissions), but actors are not included at all.

4.1.3. Research gap and contributions of the chapter
We conclude that in the literature on energy system planning, the combination of MOO
and MCDM has not drawn enough attention. Two studies that have done so either focus
on dealing with the ambiguity of a hypothetical decision-maker or pay attention to the
optimal selection of the location of the energy system with different input data. However,
the inclusion of multiple stakeholders with diverse preferences and, accordingly, the
comparisons and trade-offs of the optimal solutions from the actors’ perspectives have
not been studied. In other words, no researchers have yet performed energy system
planning through the lens of the multi-actor perspective. This perspective is needed in
the complex energy system where multiple stakeholders need to reach agreements on
RES investment capacity. Therefore, it is crucial to inform the stakeholders about the
optimal generation mixes from their perspectives and other stakeholders’ perspectives in
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RES investment negotiations. This understanding will assist their decision-making and
thus accelerate the RES implementation process.

In addition, based on the literature review on MOO, the visual impact of wind turbines
[185], and the land-use of RES has not previously been included in MOO studies as
separate objectives. The visual impact of wind turbines can be considered as a proxy for
acceptance of wind energy, and the land-use of RES is a significant issue [186] regarding
spatial policies.

Therefore, we propose a two-stage multi-actor multi-objective regional energy system
planning model that is able to consider multiple actors and their preferences. It combines
a MOO model with TOPSIS. Figure 4.1 pinpoints the positioning of our study with regard
to the existing studies in the field of energy system planning.

Figure 4.1: Positioning of the chapter in the literature on energy system planning.

The major contributions of the chapter are the following:

• The proposed method simultaneously considers several actors that are often in-
volved in the RES investment process, which addresses the multi-actor environ-
ment in the real world. It will be particularly useful for energy system designers,
policy-makers, investors, and residents that participate in energy system planning.
Furthermore, the approach is generic, indicating that other than the exemplary ac-
tors and the objectives which are considered in this chapter, the integrated method
is able to include other actors and their preferences with minor adjustments on a
case-by-case basis.

• Optimal energy mix for each actor can be derived using our quantitative method.
The preferred technologies and the optimal investment capacity for each actor can
now be compared, which was previously largely discussed qualitatively.

• Due to the two-stage approach, a set of Pareto-optimal solutions will be obtained us-
ing MOO at first. Then, the degrees of optimality of all the obtained Pareto-optimal
solutions can be derived for each actor. Therefore, in addition to the optimal solu-
tion for each actor, our approach enables the possibility to find solutions that are
sub-optimal for each actor yet e.g., most satisfying for all the actors.

• Researchers can now use our approach directly or with minor adjustments, to ex-
plore and reveal the impacts of various policy options (e.g., RES subsidies, emission



4.1. Introduction

4

57

targets, and spatial policies) on the optimal investment decisions from the multi-
actor perspective, which was in the past mostly evaluated without the attention on
the various actors.

• The land-use of RES and the visual impact of wind turbines which is considered as
a proxy for acceptance will be modeled separately as two objectives.

4.1.4. Overview of the proposed approach
In order to guide the readers, the scope of the models in this chapter and a brief introduc-
tion to our approach are given.

Scope of the models in this chapter The main contribution of the chapter is to present
a two-stage multi-actor multi-objective regional energy system planning approach that is
able to give investment decisions with various degrees of optimality from a multi-actor
perspective. This will be done by generating a set of Pareto-optimal solutions using
a MOO model, which is then evaluated using TOPSIS to consider the actors and their
preferences.

Considering the goal of the study, therefore, in this chapter, the scope of the MOO
model, the considered actors, and their preferences are limited and simplified. They
are mainly used to perform an illustrative case study that will later be conducted to
demonstrate the usage and strength of the approach. However, as stated in the first major
contribution of the work, they can be adapted for any specific case where the approach is
still applicable and useful.

Introduction of the approach The model focuses on a standalone regional energy
system that requires investment in RES, including wind energy, solar energy, and biomass,
as well as storage. The investments are further divided into six technologies, which
are Vestas V66 wind turbines, Vestas V110 wind turbines, residential PV, utility-scale PV,
biomass, and hydrogen storage. Vestas V66 and Vestas V110 are turbines of different sizes,
resulting in different land-use and visually impacted area (VIA). A simulation model is
constructed to model the energy flow based on the six technologies.

To find the optimal investment decisions on the number of wind turbines and the
capacities of the other technologies, a MOO algorithm, the genetic algorithm (see Section
4.3.4 for details), will be used. In this chapter, the involved actors in energy system
planning are simplified into three main actor groups (see Section 4.4.1 for details), who
are governments, funders, and local residents. They have four common interests, which
will be the objectives to be minimized. These objectives are total capital expenditure
(CapEx), total operation & maintenance (O & M) costs, land-use, and VIA. Using a genetic
algorithm, the Pareto-optimal solutions will be obtained regarding the four objectives.
Within the common interests, they also have their major preferences (see Table 4.1).
Subsequently, based on the major preferences of the actors, TOPSIS is used to find the
optimal solution for each actor.

An overview of the approach is shown in Figure 4.2.
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Figure 4.2: Overview of the approach.

4.1.5. Structure of the chapter
The chapter is organized as follows. Firstly, Section 4.2 describes the simulation model
that simulates the energy flow. Then, the optimization model and the algorithm are
discussed in Section 4.3. Next, the actors and their preferences are described, and TOPSIS
is formulated in Section 4.4. Section 4.5 introduces the case study and summarizes the
input data. Later, results and discussions are presented and elaborated in Section 5.5. At
last, conclusions are drawn, and policy implications are given.

4.2. Simulation model
The simulation model for energy system planning consists of a number of individual
models to simulate energy generation and storage.

4.2.1. Considered technologies
As mentioned in Section 4.1.4, in this chapter, the modeling of the energy flow starts with
the six considered technologies. They are Vestas V66 wind turbines, Vestas V110 wind
turbines, residential PV, utility-scale PV, biomass, and hydrogen storage technology. More-
over, hydrogen storage technology consists of storage conversion and storage. Accordingly,
the decision variables are the numbers of the wind turbines (WTi ,∀i ∈ {V66,V110}) and
the installed capacities of the other technologies (Ki ,∀i ∈ {PV-residential,PV-utility,biomass,
storage,storage-conversion}).

The proposed simulation model includes state-of-the-art components in regional
energy planning models, such as RES generation profiles and storage technology. A
general model of storage is used. Although hydrogen storage is specified, other forms of
storage, such as flow battery storage, can also be used subject to the choice of the chapter.
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In addition, biomass is included to provide controllable generation. It is noted that this
model is used to illustrate the usage of the proposed method. Therefore, an exhaustive
inclusion of generation technologies and the detailed modeling of hydrogen storage are
considered out of scope.

4.2.2. Energy production from intermittent sources
Energy generated from variable renewable energy sources (VRES), i.e., solar and wind, is
affected by meteorological conditions, which are included in the model using capacity
factors. Therefore, their generated energy (Pi ,t ) at all time steps depends on the installed
capacity of each technology (Ki ) and the capacity factor (ηi ,t ) of each technology (i ,∀i ∈
VRES). The installed capacity of the wind turbines (Ki ) is calculated as the sum of the
rated power (P rated

i ) and the number of the turbines (WTi ).

Ki = P rated
i WTi ∀i ∈ {V66, V110} (4.1)

Pi ,t = ηi ,t Ki ∀i ∈ VRES,∀t ∈ {1,2, ...,T } (4.2)

where VRES = {V66, V110, PV-utility, PV-residential}.
However, the generated energy (Pi ,t ) may not be enough to fulfill the energy demand

(D t ) at all time steps. In other words, there may be a deficit in the required energy supply,
which is calculated by:

P deficit
t = D t −

∑
i∈VRES

Pi ,t ∀t ∈ {1,2, ...,T } (4.3)

4.2.3. Energy storage
If there is a shortage in energy supply (i.e., P deficit

t ≥ 0), the storage can be used to supply
stored energy to the demand (storage discharging) if there is enough stored energy. If the
solar PV and the wind turbines produce more energy than is required (i.e., P deficit

t < 0),
the excess energy can be stored (storage charging) in the storage technology if the storage
is not full. The efficiency of charging and discharging is denoted by η. The energy that is
stored (Pstorage,t ) at all time steps is calculated by:

Pstorage,t =



Pstorage,t−1 − 1
ηP deficit

t ∀t ∈ {1,2, ...,T } if P deficit
t ≥ 0 and

Pstorage,t−1 ≥ 1
ηP deficit

t

0 if P deficit
t ≥ 0 and

Pstorage,t−1 < 1
ηP deficit

t

Pstorage,t−1 −ηP deficit
t ∀t ∈ {1,2, ...,T } if P deficit

t < 0

(4.4)

We define two extra variables for discharging (P discharging
t ) and charging (P charging

t ),
respectively. They are defined in the following way as non-negative variables:

P discharging
t =

{
η(Pstorage,t−1 −Pstorage,t ) ∀t ∈ {1,2, ...,T } if P deficit

t ≥ 0

0 if P deficit
t < 0

(4.5)
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P charging
t =

{
0 if P deficit

t ≥ 0
1
η (Pstorage,t −Pstorage,t−1) ∀t ∈ {1,2, ...,T } if P deficit

t < 0
(4.6)

The model is initialized with the energy storage empty:

Pstorage,0 = 0 (4.7)

The charging and discharging happen in the storage conversion, whose capacity
(Kstorage-conversion) is proportional to the storage capacity (Kstorage), i.e.,

Kstorage-conversion = γKstorage (4.8)

where γ is taken as 0.167 [47] in this chapter.
The constraints regarding the bounds of the storage will be given in Section 4.3.3.

4.2.4. Energy from biomass
The energy generated by biomass (Pbiomass,t ) at all time steps is used to fulfill the remain-
ing deficits in supply. It is only deployed when energy from VRES is not enough, and the
storage has been emptied after discharging. The amount of energy generated by biomass
is calculated as follows.

Pbiomass,t =


P deficit

t −ηPstorage,t−1 ∀t ∈ {1,2, ...,T } if P deficit
t ≥ 0

and Pstorage,t = 0

0 otherwise

(4.9)

The constraints regarding the bounds of the energy generated by biomass will be
given in Section 4.3.3.

4.3. Multi-objective optimization Model
In order to find the Pareto-optimal solutions for the generation mixes, in this chapter, a
MOO problem is formulated, and a genetic algorithm is used to solve the model. This
section introduces the objectives and constraints of the optimization problem as well as
the optimization technique that is used.

4.3.1. Choice of objectives
The four objectives that will be minimized are total CapEx, total O & M costs, land-use,
and VIA. CO2 emissions are often used as an objective in MOO studies, however, in this
chapter, they are treated as an implicit constraint that CO2 emissions are considered to
be reduced by 100% since only RES are used.

As stated in Section 4.1.4, in order to convey the main message which is an improved
energy planning method by adding the multi-actor perspective to MOO, some modeling
choices are made. Without increasing the computational burden, the four most important
objectives that are related to the preferences of the actors are chosen, where land-use is
crucial for a region with limited land. The model is considered to be used directly for the
design of a carbon-free future energy system. However, if a new study is to be conducted
that focuses on the different emission targets, our model can always be fine-tuned on a
case-by-case basis.
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4.3.2. Objectives
Total CapEx The total CapEx of the six technologies is the first objective to be mini-
mized. Ci represents the CapEx for every unit capacity of each technology (i ). The total
annualized CapEx is calculated as:

C CapEx = ∑
i∈G

rCi Ki

1− 1
(1+r )Li

(4.10)

where G = {V66, V110, PV-utility, PV-residential, biomass, storage, storage conversion},
r is the discount rate, which is taken as 5% in this chapter [10], Li is the lifetime of the
technology (i ).

Total O & M costs The total O & M costs are the second objective to be minimized. For
each technology (i ), the operation and maintenance costs consist of the fixed operation
& maintenance (FOM) costs per unit capacity per year (ai ) and the variable operation &
maintenance (VOM) costs per unit energy generated (bi ). The total annualized operation
and maintenance costs are calculated as:

C O&M = ∑
i∈G

(ai Ki +bi
∑

t∈{1,2,...,T }
Pi ,t ) (4.11)

Land-use The total land-use of RES indicates the used land by RES technologies. It
is quantified using the land-use factor (φi ) of each technology (i ), which is defined as
the area of used land per unit capacity. The assumption in this research is that wind
turbines and utility-scale PV take up land since they are land-intensive compared to other
technologies. Residential PV is placed on rooftops and does not occupy any land, but it
will be constrained by the available rooftop surfaces (see Section 4.3.3).

LU = ∑
i∈{V66,V110,PV-utility}

φi Ki (4.12)

VIA The VIA caused by the energy system is calculated in a similar way. An assump-
tion is made that only wind turbines have a specific visual impact (υi ,∀i ∈ {V66,V110}),
measured in the area of impacted land per wind turbine. Solar PV and biomass are not
assumed to have any effects on visual impact.

VIA = ∑
i∈{V66, V110}

υi WTi (4.13)

4.3.3. Constraints
The optimization model has to satisfy a set of constraints. They are now discussed.

Energy balance constraint The first constraint concerns the energy balance. The
energy demand has to be met all the time.∑

i∈VRES∪{Biomass}
Pi ,t +P discharging

t ≥ D t +P charging
t ∀t ∈ {1,2, ...,T } (4.14)

Energy storage constraints The energy stored (P stored
t ) needs to be between zero and

the installed storage capacity (Kstorage). The amount of charging and discharging (P deficit
t )

is limited by the storage conversion capacity. The relevant constraints are:
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0 ≤ Pstorage,t ≤ Kstorage ∀t ∈ {1,2, ...,T } (4.15)

0 ≤ P deficit
t ≤ Kstorage-conversion ∀t ∈ {1,2, ...,T } (4.16)

Energy from biomass constraint The energy generated from biomass Pbiomass,t cannot
be negative or exceed its capacity (Kbiomass). Therefore, the energy generation from
biomass adheres to the following constraint:

0 ≤ Pbiomass,t ≤ Kbiomass ∀t ∈ {1,2, ...,T } (4.17)

Land-use constraint The next constraint is a constraint on land-use. The energy
system cannot use more land than is available and suitable for RES development in the
system. The suitable land (LUmax) for wind turbines and utility-scale PV energy can be
calculated following the approach in [10].

∑
i∈{V66,V110,PV-utility}

φi Ki ≤ LUmax (4.18)

Residential PV constraint The last constraint is about the available rooftop surface.
Residential PV are solar panels that are placed on rooftops. The total area occupied by the
residential PV has to be less than the total roof surface, represented by the parameter TRS.
Same as suitable land for wind turbines and utility-scale PV, this total roof surface can
also be estimated following the approach in [10].

φPV-residentialKPV-residential ≤ TRS (4.19)

4.3.4. Optimization algorithm
In this research, the Non-dominated Sorting Genetic Algorithm II (NSGA-II), which is one
of the most widely used genetic algorithms [187], is used to find the set of Pareto-optimal
solutions.

A genetic algorithm is an artificial intelligence technique that is widely used to solve
MOO problems. It offers a high degree of flexibility and can handle non-linear functions.
A genetic algorithm is specifically efficient for finding the Pareto-optimal solutions in a
MOO problem because it evaluates multiple solutions in a single iteration.

The NSGA-II algorithm works based on an evolutionary process. A simplified flowchart
of the NSGA-II algorithm used in this research is presented in Figure 4.3. It starts with
an initial population that is made up of a random set of individuals, i.e., the installed
capacities of the six technologies. Then, the defined objectives and constraints are evalu-
ated. The population is selected if the values of the objectives are low and the constraints
are met. Next, subsequent generations are generated by combining different individuals
and by random changes to a single individual, i.e., crossover and mutation process. The
algorithm keeps creating new generations until a certain number of generations have
been reached. The final generation of the population is the output of the algorithm. In
this research, the population size is 200, and the generation is 500. These values are set
based on the work [53] and are made larger to ensure convergence.
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Begin: 
Initialize the decision variables 

with random values

1. Calculate the objectives
2. Check the constraints

Crossover, 
mutation

Selection

Selection

Final generation 
reached?

Pareto-optimal 
solutions

No Yes

1. Calculate the objectives
2. Check the constraints

Figure 4.3: Flowchart of the NSGA-II algorithm.

4.4. Multi-actor perspective
After obtaining the Pareto-optimal solutions, the trade-offs between the different objec-
tives can be obtained. However, it remains unclear what the optimal solutions will be for
the actors with unique (combination of) preferences. To be able to take these preferences
into account, the results will be evaluated using TOPSIS from a multi-actor perspective.
First, the involved actors and their preferences will be discussed. Then, the process of
TOPSIS will be elaborated.

4.4.1. Involved actors and their preferences
The involved actors and their preferences are inputs for the model. Since the focus and
the contribution of this chapter are to provide an integrated energy planning approach to
take the actors’ preferences into account, simplified choices are made for the chosen actor
groups and their preferences. For detailed discussions in those aspects, interested readers
could refer to [136], [148] and [188]. If different groups of actors and their preferences are
to be used, the formulations of the objectives will need to be changed accordingly, but our
proposed method will still be valid. In this work, the involved actors are simplified to three
actor groups: governments, funders, and local residents. We consider that the overarching
preference of all these actors is to plan a regional energy system consisting solely of RES.
Therefore, 100% carbon emission reduction or solely using RES is considered to be their
joint objective which will be treated as a given and is not included in their preference list.
The rest of their preferences are shown in Table 4.1.

It has to be noted that, as mentioned in Section 4.1.4, total CapEx, total O & M costs,
land-use, and VIA will be the objectives in the optimization model. These objectives are
all considered preferences for all the actors. In Table 4.1, only the major preferences of the
actors are marked. The other preferences are included in the optimization as objectives
but play a less important role compared to the major preferences. Therefore, in TOPSIS,
the solutions will be evaluated based on their major preferences. The three actor groups
and their major preferences are now discussed further.

All levels of government are aligned in their preferences to minimize total CapEx,
total O & M costs, land-use, and VIA. Governments make up the first composite actor.
The landowners have identical preferences to the governments. Therefore, they are also
represented by this actor group.
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RES projects need to be funded. Examples of funders are energy cooperatives, pro-
ducers, or investors. They are primarily concerned with minimizing total CapEx and total
O & M costs. This actor group is referred to as the funders.

The local residents that want to prevent visual impact from wind turbines are unique
in their major preferences: they mainly care about minimizing VIA. Therefore, local
residents acting against wind turbines are categorized as another actor group.

Table 4.1: The major preferences of the three actor groups.

Total O & M costs Total CapEx Land-use VIA

Actors groups

Objectives
min min min min

Governments ✓ ✓ ✓ ✓

Funders ✓ ✓

Local residents ✓

4.4.2. Multi-Criteria Decision-Making model (TOPSIS)
After obtaining the Pareto-optimal solutions from MOO, the solutions will be evaluated
based on their desirability to different actors, and then the final optimal solution for
each actor will be obtained, which results from a ranking of the outcomes using TOPSIS
method. [177] presents an extension of TOPSIS that is able to combine the preferences of
multiple actors to allow for group decision-making, which will be used in this research.
The process for TOPSIS will be described as follows, where steps 1 - 5 are illustrated in
Figure 4.4.

Step 1: 

Pareto-optimal 
solutions

Step 2 & 3: 

weighted normalized 
solutions for each 

actor

Step 4 & 5: 

positive/negative 
distance for each 

actor

worst point

best point

Figure 4.4: Illustration of steps 1 - 5 of the TOPSIS method, where only three objectives are visualized.

Step 1 is to construct the decision matrix consisting of the values (Qnm) for each of
the four preferences m,∀m ∈ M for each solution n,∀n ∈ N, where M = {total CapEx, total
O & M costs, land-use, VIA}, and N is the set of Pareto-optimal solutions.
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Step 2 is to create a normalized decision matrix with the normalized values (Rnm).
A simple linear normalization is applied. In the equation below, Qmax,m represents the
maximum value for preference m out of the complete set of solutions. Qmin,m represents
the minimum value for preference m:

Rnm = Qnm −Qmin,m

Qmax,m −Qmin,m
∀n ∈ N,∀m ∈ M (4.20)

Step 3 is to define the weighted normalized decision matrix (V a
nm) for each actor

a,∀a ∈ A, where A = {governments, funders, local residents}. Major preferences for one
actor group are awarded a weight of 1. If a preference is not the major preference for a
specific actor group, the weight is 0.

V a
nm = w a

mRnm ∀n ∈ N,∀m ∈ M,∀a ∈ A (4.21)

Step 4 is to find the best point (I a+
m ) regarding each preference m for each actor a and

the worst point (I a−
m ) regarding each preference m for each actor a. In this research, all

preferences are minimized.

I a+
m = min

∀n∈N
V a

nm ∀m ∈ M,∀a ∈ A (4.22)

I a−
m = max

∀n∈N
V a

nm ∀m ∈ M,∀a ∈ A (4.23)

Step 5 is to derive the positive distance (Sa+
n ) and the negative distance (Sa−

n ) for each
solution n for each actor a. These are calculated using the Euclidean distance between
each solution and the best/worst points. If the positive distance (Sa+

n ) is large, it means
that this solution is far from the best point, i.e., it is not a good solution. Similarly, a good
solution will entail a large negative distance and a small positive distance.

Sa+
n = (

∑
m∈M

(I a+
m −V a

nm)2)
1
2 ∀n ∈ N,∀a ∈ A (4.24)

Sa−
n = (

∑
m∈M

(I a−
m −V a

nm)2)
1
2 ∀n ∈ N,∀a ∈ A (4.25)

Step 6 is to determine the so-called normalized coefficient of closeness (CC) (CCa
n)

for each solution n for each actor a. To do this, first, the absolute CC (CoCla
n) for each

solution n for each actor a is calculated.

CoCla
n = Sa−

n

Sa+
n +Sa−

n
∀n ∈ N,∀a ∈ A (4.26)

Then, CoCla
n are normalized to CCa

n . CCa
n represents the degree of optimality of

solution n for actor a, which will be referred to as CC score in the rest of the chapter. A CC
score of 1 means that the solution is the closest to the best solution and the furthest to the
worst solution for the specified actor.

CCa
n = CoCla

n −CoCla
min

CoCla
max −CoCla

min

∀n ∈ N,∀a ∈ A (4.27)
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Step 7 is the final step. Each solution now has a CC score for each actor. To combine
the preferences of the actors, the method proposed by [177] is used. The geometric mean
of the CC scores for all actors is calculated to define an average CC score (CCaverage

n ). In
the equations below, |A| represents the size of the set of actors A.

CCaverage
n = (

∏
a∈A

CCn,a)
1
|A| ∀n ∈ N (4.28)

Two more values are defined: maximin and minimax. For each solution, the minimum
CC score of all the actors is taken, and then the solution that has the highest minimum
CC score is defined as the maximin. It indicates the solution that achieves the highest
least satisfaction for all the actors. Similarly, for each solution, the maximum CC score
of all the actors is used, and subsequently, the solution with the lowest maximum CC
score is defined as the minimax. It usually represents the decision of a risk-neutral
decision-maker.

maximin = max
∀n∈N

(min
∀a∈A

CCa
n) (4.29)

minimax = min
∀n∈N

(max
∀a∈A

CCa
n) (4.30)

4.5. Case study set-up
To illustrate the usage of the approach, a case study will be done. This section introduces
the background of the case study and the data inputs.

4.5.1. Background
To combat climate change, in 2019, the Dutch government concluded the National Cli-
mate Agreement to reduce the Netherlands’ emissions by 49% by 2030, compared to 1990
levels, and by 95% by 2050 [7]. One of the measures is to promote RES investment on
the regional level. For that purpose, the country has been divided into 30 energy regions
[189], where each region is asked to come up with its plan for the RES investment capacity.
Amsterdam is located in the region Noord-Holland Zuid (see Figure 4.5). The region is
currently working closely with the local and regional stakeholders, and the governments
[190] to propose their RES investment plan. The multi-actor nature of the complex re-
gional energy planning process fits perfectly the scope of our chapter. Therefore, this
region is chosen as the case to show the usage and strength of our method and to give
policy-relevant results.

Following the approach in [10], in this region, the total suitable land for RES develop-
ment (LUmax) is 409 km2 and total roof surface is 86 km2.

4.5.2. Hourly energy demand
The hourly Dutch national electricity demand is used to scale the demand for this region
based on population. The national energy demand has been retrieved from the Euro-
pean Network of Transmission System Operators for Electricity (ENTSO-E) Transparency
Platform [191]. In this research, the ENTSO-E data from 2015 is used.
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Figure 4.5: The region Noord-Holland Zuid in the Netherlands [190].

4.5.3. Hourly wind and solar PV power output
The outputs of solar PV and wind turbines depend on their specific capacity factor (see
Equation (4.2)). In this research, the data is derived following the approach in [10]. The
data from 2015 is used.

Two wind turbines are considered: the Vestas V66 turbine with a rated power of
1750 kW and a rotor diameter of 66 meters (which is sometimes referred to as small wind
turbines in this research), and the Vestas V110 turbine with a rated power of 2000 kW and
a rotor diameter of 110 meters (which is sometimes referred to as big wind turbines in
this research). These turbines have separate input data for capacity factors.

In total, three time-series are used in this chapter as the inputs for wind and solar
energy.

4.5.4. Techno-economic parameters
Table 4.2 shows the techno-economic parameters that are used in this research. For each
technology, the parameters regarding cost, lifetime, land-use factors, and VIA are given.

4.6. Results and discussions
The MOO model generates a set of Pareto-optimal solutions, they have then been pro-
cessed with the MCDM technique (TOPSIS) from a multi-actor perspective. In this section,
the results will be presented.

4.6.1. Aggregation and interpretation of the results
After applying the TOPSIS method to the Pareto-optimal solutions, for each solution, a
unique CC score will be obtained for each actor based on their preferences. In principle,
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the solution with the highest CC score should be the optimal solution for the particular
actor. However, in this chapter, for each actor, the solutions that have the top 2% CC
scores are taken first, and then the mean of these solutions is regarded as the final optimal
solution for each actor. The same process is applied for all the results that will be presented
later, except for the cost-optimal result, which is not an averaged result.

The reasons are two-fold. Firstly, as mentioned in Section 4.1.2, TOPSIS, as one of
the goal programming methods, evaluates the solutions based on their distances to the
ideal points. This indicates that, among the Pareto-optimal solutions, there might be
several solutions that have similar CC scores but feature different generation mixes. Only
taking the solution with the highest CC score will completely ignore the near-optimal
solutions. By averaging, the near-optimal solutions are taken into account, and thus
the robustness of the optimal solutions is enhanced. Secondly, the nature of MOO and
genetic algorithms indicates that only a finite number of Pareto-optimal solutions can
be generated. For this reason, the results only represent a part of the Pareto-optimal
solutions. This understanding helps to interpret the results in Section 4.6.2 concerning
the optimal solution for the local residents.

Before discussing the results, it is crucial to emphasize that the case study results have
to be used carefully since they are subject to the assumptions and the model set-up used
in this research. The main aim of the case study is to showcase the kind of problem the
proposed method is able to solve as well as its applicability, highlighting its added value
and uniqueness compared to existing methods such as those of [59], [184]. Nevertheless,
the general trend in the optimal solutions is captured.

4.6.2. Optimal solutions for the actors
Figure 4.6 shows the optimal solutions for the governments, the funders, and the local
residents, and they will now be discussed. The cost-optimal solution, the average-optimal
solution, the maximin solution, and the minimax solution will be discussed in Section
4.6.3.

For the governments-optimal solution, the generation mix mainly consists of biomass
and residential PV. Each of them contributes around half of the total capacity. The
levelized cost of electricity (LCOE) is 129e/MWh, which is the highest among those of
the three actors and is the same as the LCOE of the local residents-optimal solution.
Since there are hardly any wind turbines in the generation mix, the land-use and VIA are
negligible. Moreover, biomass is the largest component in the total CapEx and the total O
& M costs. In general, since all four objectives are considered the major preferences of
the governments, none of the objectives is the highest or the lowest among the optimal
solutions of the three actors.

For the funders, their major preferences are the total CapEx and the total O & M costs.
Compared to the governments, the optimal solution for the funders features more wind
turbine installations. Biomass is still an important generation source, but now the small
wind turbines replace residential PV, becoming the second-largest generation source in
capacity. Furthermore, thanks to the wind turbines, which produce cheap energy, the
LCOE drops to 115e/MWh. The penalty for more wind turbines is increased land-use
and VIA. The land-use is now 88% of the total suitable area, which is also around a quarter
of the total area in the region. The VIA is even more astonishing, which is 12 times the
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Figure 4.6: The governments-optimal solution, the funders-optimal solution, the local residents-optimal
solution, the average-optimal solution, the maximin solution, the minimax solution, and the cost-optimal
solution.
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total regional area. However, it has to be noted that, the exact number of VIA is not
instructive since a detailed study regarding the VIA has to be conducted depending on
the layout of the wind farm in reality. Hence, the values of VIA should be interpreted
relatively. As for the funders’ major preferences, the total CapEx is comparable to that of
the governments-optimal solution, but the total O & M costs are much lower and are the
lowest among the three optimal solutions.

The only major preference of the local residents is VIA. Unlike the major preferences
of the governments and the funders, which are related to all the considered technologies,
the major preference of local residents is only affected by wind turbines. Therefore, in the
evaluation stage, they are indifferent to other technologies. This observation indicates
that for the local residents-optimal solution, solar PV and biomass may both appear with
certain capacities. However, as mentioned in Section 4.6.1, only a part of the Pareto-
optimal solutions will be generated from the MOO model in each model run. In this case,
only biomass is present in the generation mix, leading to low total CapEx and high total O
& M costs. Its LCOE is the same as the governments-optimal solution - 129e/MWh.

In summary, for such a standalone energy system with only RES, different actors all
favor biomass in the generation mix. Wind turbines sometimes play a role, but only
for actors who consider cost more crucial than other criteria. In addition to biomass,
residential PV serves as the other main generation source if more criteria are taken into
account.

4.6.3. Comparison to the cost-optimal solution
The MOO model provides solutions that optimize four objectives. A cost-optimal solution,
which is a single-objective solution, does not belong to the Pareto-optimal solutions. In
this chapter, nevertheless, it is of utmost interest, since it is often the proposed solution
from existing literature. Therefore, it will be discussed and compared with other solutions
to highlight the added value of our multi-actor approach.

In order to minimize cost, wind turbines contribute to 43% of the generation mix in
the cost-optimal solution. The LCOE is 111e/MWh, which is comparable to the funders-
optimal solution. It is noticeable that the land-use has already reached its upper bound
according to Equation (4.18). Because of this constraint, wind turbines cannot be installed
more, and thus the LCOE cannot be lower. With regard to VIA, the effect of big turbines
has increased compared to the funders-optimal solution.

In practice, only one solution is required. Therefore, besides the optimal solutions
for all the actors and the cost-optimal solution, it is important to come to a solution
that considers all the actors. In this chapter, this single solution is quantified using the
average-optimal solution, the maximin solution, and the minimax solution.

The average-optimal solution is calculated based on Equation (4.28), which shows the
solution combining all the major preferences of the actors. The solution with the highest
average CC score is discussed. This solution is comparable with the governments-optimal
solution, but with more capacities in utility-scale PV.

The maximin solution is a solution that may not be optimal but is acceptable or
satisfying for everyone. It is calculated based on Equation (4.29). An acceptable solution
is here interpreted as the solution that has the highest least satisfaction for the actors.
Compared with the average-optimal solution, an extra capacity of small wind turbines
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comes into the generation mix. The land-use is 38% of the total suitable area, and the VIA
is four times the area in the region.

The minimax solution, also known as the least regret solution, is the solution that
all the actors will have the least regret after making the decision. It features risk-neutral
decision-makers and is calculated based on Equation (4.30). This solution has the highest
total capacity, which includes all the considered technologies. Storage is present for the
first time. Biomass, residential PV, utility-scale PV, and small wind turbines have similar
installed capacities. The LCOE and the total CapEx are the highest among all the solutions.
However, despite the large capacity of wind energy, the land-use, and the VIA are not as
high as those in the funders-optimal solutions, since the contribution of big wind turbines
is small.

4.6.4. Alignment of the optimal solutions for the actors

Figure 4.7: The alignment of the solutions in terms of CC scores for the actors.

In the previous sections, the optimal results in terms of installed capacity, LCOE, land-
use, VIA, total CapEx, and total O & M costs are discussed. In this section, the solutions
are further analyzed by looking at the alignment of these solutions, or in other words, how
well each solution performs for other actors. For the optimal solution for each actor, the
CC scores of other actors are obtained. Figure 4.7 shows such an alignment matrix. The
cells show the CC scores for each actor for the six solutions. It is noted that the CC scores
for a particular actor (i.e., row-wise) are the normalized values using the best and the
worst values of their own (see Equation (4.27)). In other words, a score of zero does not
indicate that all the major preferences are the lowest for this actor. It is only undesirable
based on the overall evaluation of these major preferences among all its Pareto-optimal
solutions.
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Several observations are gained from this table. The main observation is that the gov-
ernments and the local residents are well aligned, while the funders often have diverging
views with them. In addition, the funders-optimal solution is considered a bad solution
for the government (with a CC score of 0.18) and also for the local residents (with a CC
score of 0.14). This is because, with wind energy being the cheapest energy, funders are
prone to more capacity in wind energy which, in turn, increases the land-use and the VIA.
Furthermore, the maximin solution seems to be the most acceptable solution for all the
actors, since the least satisfied actor still has a score of 0.7.

4.6.5. Discussion of the results
The presented results are based on certain data assumptions. Therefore, sensitivity studies
add more insights into the understanding of the results. This section will first present the
sensitivity studies on the input parameters, and then the influence of the weights of the
actors will be elaborated. Next, the impacts of the changes in demand data are discussed.
At last, the results are compared with other studies.

Sensitivity experiments are performed, where the CapEx of all the technologies, the
VOM of biomass, and the land-use factors of the wind turbines and solar PV are changed
to the + 30% and - 30% of the corresponding values. Out of all the optimal solutions,
the results of the average-optimal solutions are given in Figure 4.8. It can be seen that
all the input parameters have a significant but reasonable influence on the results. For
example, the drop in the CapEx of utility-scale PV will cause an increase in its capacity and
a decrease in the capacity of residential PV. Furthermore, if the VOM of biomass becomes
lower by 30%, the capacity of biomass will have a considerable rise. Nevertheless, for the
average-optimal solution that considers the major preferences of all the actors, the overall
trend still holds. Biomass is the backbone of the generation mix, solar PV is the second
largest contributor, and wind turbines play a less important role, which is mainly due to
the major preferences in land-use and VIA from the governments and the local residents.

To calculate the average results, in this chapter, it is assumed that the weights of all
the actors are equal (see Step 7 in Section 4.4.2). This assumption is made because the
focus of this work is only to showcase the usage of the proposed approach. However, the
changes in the weights of the actors may have effects on the results and therefore, their
influences are investigated.

Table 4.3: Scenarios with different weights allocated to the actors.

Scenario

Actor group
Governments Funders Local residents Mean method

Reference 1 1 1 Geometric

Mean 1 1 1 Arithmetic

Mean-govt2x 2 1 1 Arithmetic

Mean-funders2x 1 2 1 Arithmetic

Mean-residents2x 1 1 2 Arithmetic

Four scenarios with different weights of the actor groups are introduced in Table 4.3.
To be able to allocate different weights to the actors, the geometric mean cannot be used,
because it multiplies all elements together (see Equation (4.28)). Therefore, the arithmetic
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Figure 4.8: Sensitivity studies for CapEx, VOM of biomass and land-use factors.

mean or simple mean is used for these scenarios. The average-optimal solutions are
shown in Figure 4.9. The use of arithmetic mean already changes the results, more
residential PV is preferred, and utility-scale PV becomes less favorable. If governments are
given more weight, the percentage of residential PV even increases. However, when the
funders are provided with more decision rights, wind turbines will play a more important
role. Similarly, given the major preference for VIA, local residents will try to minimize the
use of wind turbines.

Figure 4.9: Sensitivity studies for different weights allocated to the actors.
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In this chapter, the demand data of 2015 is used, and the scaling of national demand
to regional demand is based on population. The change in demand data in the future,
especially in view of the scenarios such as high electrification, and other scaling methods,
might have an impact on the results. The data from [191] shows that between 2010 and
2018, the national demand varies between - 2% and + 5% compared to the 2015 data. To
explore the influences of other scaling methods, we scaled the 2015 demand based on the
annual regional demand data from [194], which shows that our scaling method based on
population only underestimates the demand by 8%. Nevertheless, [195] indicates that
in the Netherlands, the demand will increase by 50% in a high electrification scenario in
2050. We, therefore, conducted a sensitivity study for demand data. The results show that
the average-optimal generation capacities are changed proportionally to the demand
change. For example, for the high electrification scenario where the demand is expected
to grow by 50%, biomass capacity also increases by 50%. The capacity of solar PV grows
more than 50% since capacity factors have to be taken into account.

Since the multi-actor perspective for energy system planning is new and has not
been studied before in literature, the cost-optimal results presented in Figure 4.6 are
now compared to existing studies. The LCOE from our study is 111e/MWh, which is
comparable to the optimization study for the Netherlands [10]. In terms of the generation
mix, [10] shows wind energy has the largest contribution. Our model results indicate
that the optimal share of wind energy is 46%. This is because, in [10], the total land-use
constraints are not met. In our case, the total land-use constraint is met so that the wind
capacity cannot increase anymore.

4.7. Conclusions and Policy Implications
In the field of energy system planning, MOO is used to take various design criteria (such
as cost and emissions) into account. Existing studies focus on the trade-offs between
those criteria that are often visualized by a set of Pareto-optimal solutions. However,
the energy system is a complex system where different actors need to reach agreements
on the final investment, and the actors have their own, sometimes conflicting, interests.
Their conflicts of interest are one of the major reasons that hinder the energy transition.
Therefore, adding actors’ perspectives to the MOO studies is of utmost importance to
the successful design and implementation of a future energy system, which is not yet
done in the literature. This chapter proposes the first-of-a-kind multi-actor perspective
in multi-objective regional energy system planning studies. It is based on a combination
of models: MOO and MCDM. The key advantages of our approach are: firstly, it is able to
consider various actors in an energy system planning problem simultaneously; secondly,
it assigns a degree of optimality to every obtained Pareto-optimal generation mix, i.e., the
generation mix that is optimal for each actor and the sub-optimal generation mix for all
the actors can now be quantified. Besides, the land-use of RES and the visual impact of
wind turbines are now modeled separately as two objectives.

A simplified case study for the greater Amsterdam region in the Netherlands has been
done to illustrate the usage of the approach and to show promising policy-relevant results.
The optimal generation mixes of different actor groups for a standalone RES-based energy
system are obtained. Given our model and data assumptions, governments would prefer
a generation mix consisting of mainly solar PV and biomass with similar capacities. Local
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residents are only concerned about minimizing the use of wind turbines, and thus solar
PV and biomass are both favored by them. By conducting an alignment check for all the
actors with respect to the optimal solution of each actor, we find that the governments
and the local residents are well-aligned in the generation mix. On the other hand, the
investors (or the so-called funders in this chapter) prefer a generation mix with more
wind turbines, since that leads to the lowest LCOE. In addition, a least-cost optimization,
which is the most common method in energy system planning, is carried out. It is found
that the cost-optimal solution entails biomass and wind turbines in the generation mix,
which is only similar to the funders-optimal solution in our study.

Our results reveal, in a measurable way, a core fact in energy system planning that
delays the energy transition process that different stakeholders would shape the future
energy system in the way they opt for. The market, at the hands of investors, will likely
converge to large shares of low-cost energy, such as wind energy in our model. However,
this scenario will deploy all the land in a highly-populated region (as in our case) to place
wind turbines and will also cause high public resistance. It will be vastly undesirable for
other actors, such as the governments and the local residents. Therefore, policy-makers
should, on the one hand, incentivize other technologies (such as residential PV) than
the cheapest energy (such as wind energy). On the other hand, they should ensure the
inclusion of all stakeholders and look for a plan that all actors find most satisfying in
the decision-making process of RES investment. This can be done by proposing an
acceptable solution for all actors. Our study suggests that, given our model assumptions,
an adequately diversified generation portfolio featuring similar capacities in utility-scale
PV and residential PV with sufficient biomass, would increase the satisfaction of all the
actors. Using this generation mix, investors are the least satisfied but the degree of
optimality is still high. This compromise of optimality can serve as a common ground for
negotiations in regional energy system planning.

Another key contribution of our proposed approach is that, for the first time in the
literature, it opens up the possibility of investigating the impacts of various policies on
quantitative and optimal investment decisions from the stakeholders’ perspectives. For
example, the impact of spatial policy on the land-use of RES and the impact of RES subsi-
dies could be investigated, and the effects of different emission targets could be explored.
Using our approach, the impacts of these policy options on actors’ optimal investment
decisions can now be revealed, which will generate valuable policy implications for the
energy system planning process.

Our study proposes a novel and promising approach and shows useful results. How-
ever, the same as every work, it has some possible extensions that are recommended for
future research. Firstly, our model considers the explicit preferences of the actors in TOP-
SIS, but in reality, their preferences might be ambiguous. Future research could deploy
e.g., fuzzy TOPSIS to account for this ambiguity. Secondly, although our approach is still
valid when the objectives are changed, it is computationally non-trivial to include more
objectives in the MOO model. In fact, adding every extra objective in any MOO model will
largely increase the computational effort, or a good representation of the Pareto-optimal
solutions is not obtained. Therefore, we recommend a future research direction that
investigates the trade-offs between the number of objectives and the completeness of the
Pareto-optimal solutions under various model set-ups.
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models with bilateral trading

5.1. Introduction
To mitigate climate change and reduce carbon emissions, renewable energy sources (RES)
play a vital role in modern power systems. Countries around the world set ambitious
RES targets for the next decades, and the planning of RES generation and transmission is
prominent on the agenda.

Energy system optimization models (ESOM) refer to optimization models that aim
to find the optimal capacity expansion of generation technologies, and transmission
networks [33]. The objective is usually to minimize the total system cost while satisfying a
number of constraints such as energy balance, generation limits, and network limits. The
results of the models are possible scenarios to achieve certain carbon/RES targets that
the energy system might evolve into [18]. Such models are often used by policymakers
because they serve as a benchmark to help them make decisions on potential policy
changes in view of the modeling outcomes, i.e., optimal capacity expansion and the
associated costs. For high-RES energy systems, numerous models are built in recent years,
see e.g., reviews of [88], [196] on various tools, and [197] for different countries.

Despite their wide use and policy relevance, existing ESOM have a few characteristics
that shift them away from reality. First, uncertainty is often not inherently modeled.
Second, the models do not have a comprehensive representation of different electricity
markets. ESOM are known to represent the investment equilibrium under a perfectly
competitive pool market [198], while other markets are not yet included. Third, externali-
ties beyond the marginal cost of electricity in the market are not commonly addressed.
Existing literature has considered emission-based externality, i.e., carbon tax. However,

This chapter is based on the paper N. Wang, R. A. Verzijlbergh, P. W. Heijnen, and P. M. Herder, “An energy system
optimization model with bilateral trading and externalities: Application to the Dutch national program Regional
Energy Strategies”. Submitted, 2022. The first author of the paper, also the author of this thesis, conceptualized
and conducted the research. The other authors performed an advisory role.
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externalities in planning models are more than that. In this study, we present several
externality terms in ESOM and focus on the externalities associated with bilateral trading.

Bilateral trading is generally known as a bilateral market. Since the liberalization of
the electricity sector, various bilateral market models were proposed to calculate the
market equilibrium under different assumptions. These studies focus on producers and
their behaviors in the wholesale market. One of the pioneering works in this field is [199],
where Cournot models of the imperfect competition were used to simulate the bilateral
market. This model was later modified to study generation investment while different
carbon policies were evaluated in [200]. Apart from the equilibrium analysis, research
efforts have also been made on individual generators’ perspectives to model bilateral
contracts. In [201], an optimization model was proposed for the optimal planning for
distributed generations under competitive market auctions and fixed bilateral contract
scenarios. Other market players than generators such as retailers, prosumers, and energy
communities have also been studied. For example, [202] presented a methodology to
evaluate bilateral contracts of retailers from a risk perspective. [203] proposed a game-
theoretical model to describe the competition for bilateral contracts among generation
companies and large consumers. [204] modeled the trilateral interactions among an
integrated community energy system, prosumers, and the wholesale electricity market.
Bilateral contracts were also modeled in combination with demand response to find the
optimal energy storage sizing in [205]. In terms of modeling methods, agent-based mod-
eling is sometimes used to model bilateral contracts. In the review of [206] on electricity
systems models, two agent-based modeling platforms that incorporate bilateral contracts,
EMCAS and GTMax, are discussed. In addition, [207] evaluated the effects of bilateral
markets in England and Wales using an agent-based simulation. [208] addressed the
challenge of using software agents for the negotiation of bilateral contracts by presenting
a multi-agent energy market. [209] developed utility-based and adaptive agent-tracking
strategies for bilateral negotiations. Furthermore, [210] proposed a complex network
approach for assessing bilateral trading patterns under physical network constraints.
Lastly, in recent years, with the increasing penetration of distributed energy sources, peer-
to-peer (P2P) markets have emerged as next-generation market designs. In these markets,
bilateral trading is considered one of the most promising P2P market mechanisms [211]
and is thus commonly modeled. Particularly, bilateral trades can be associated with the
preferences of the trading parties. To represent this feature, terms such as heterogeneous
preferences ([212], [213]), product differentiation [214] and energy classes [215] have been
used. Among those, product differentiation is a generic mathematical formulation [216]
that can be used for various purposes, e.g., [217] used it to account for exogenous network
tariffs in P2P markets.

Based on the background information, we found that there remains a research gap
in modeling externalities in the bilateral market. The inclusion of externalities would
broaden the area of applications for ESOM. In this thesis, we propose an improved
energy system model that considers externalities associated with bilateral trading. The
contributions of this chapter are summarized as follows:

• This chapter contributes to the state-of-the-art of ESOM and P2P markets. On
the one hand, ESOM now include bilateral markets, which were previously only
a representation of the long-term equilibrium of the pool market. On the other
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hand, because this work lies in the intersection of ESOM and market models, it also
contributes to the literature on P2P markets by proposing an investment model to
reveal the long-term effects of P2P markets.

• Modeling the externalities associated with bilateral trading in ESOM opens up re-
search possibilities beyond a purely economic cost perspective, such as technology
preferences, aversions due to social resistance, or trade barriers. These practical
implications will be shown in the case study.

• We conduct a case study for the Dutch energy system to reach its RES target in 2030.

The chapter is structured as follows. Firstly, Section 5.2 provides the preliminaries to
understand the model by conceptualizing the mixed bilateral and pool markets in this
study. Next, the models are presented in Section 5.3. In Section 5.4, a case study of the
Netherlands to illustrate the model is introduced. Then, the results are discussed in the
next section. At last, Section 5.6 concludes.

5.2. Conceptualizing bilateral trading in the markets
In order to model bilateral trading with external costs, this section introduces the con-
ceptualization of the mixed bilateral and pool markets (see Figure 5.1). This figure is
largely built on existing knowledge of electricity markets and used to give background
information for the model formulation in Section 5.3.

ESOM are characterized by rich spatio-temporal details of the energy system, and
accordingly, some simplifications are made to make the model tractable. One of the com-
mon simplifications is to not explicitly model individual generators and/or consumers.
Instead, supply and demand that are in proximity are aggregated into geographical nodes.
The nodes could be regions in national planning models or countries in continental
planning models such as the European planning model. Hence in this study, the nodes
are considered as a generic type of actor with an aggregated supply and/or demand,
which participates in the market on behalf of the proximity. This way of conceptualizing
the problem will be further explained in Section 5.3.1. In addition, the same with the
existing ESOM and/or market equilibrium researches such as [218], in this study, the
considered actors are limited to a minimal extent while still enough for the functioning of
the markets to demonstrate the model. In that regard, some other actors, such as retailers
or prosumers, are left out of scope.

The lowest layer in Figure 5.1 is the physical layer, referring to the generation technolo-
gies and the transmission networks with their associated actors. The capacity expansions
of generation and transmission are done by the nodes and the transmission system op-
erator (TSO), respectively. Regarding energy flows, there are energy exchanges among
the nodes, but not between the nodes and the TSO, as the TSO neither produces nor
consumes energy.

The middle layer is the market layer. There are two market operators, the energy
market operator and the carbon market operator. The energy market operator operates
the bilateral market and the pool market together. In the pool market, locational elec-
tricity prices are derived by the market operator, at which the buyers and sellers trade
energy. The mechanism is different in the bilateral market. We utilize the P2P bilateral
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Figure 5.1: Conceptualization of the mixed bilateral and pool markets: layers, actors and their descriptions.
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trading mechanism as proposed by [216], where nodes negotiate bilaterally about both
the amount and the price of the bilateral energy exchange. The market operator helps to
facilitate the transactions when a consensus is reached. More information on the bilateral
markets will be given in Section 5.3.1.

Now we turn to the carbon market operator, which will be discussed together with the
government level. The role of the government is to set carbon goals for the future, which
are facilitated through policies such as a cap-and-trade system and carbon taxes/RES
subsidies [200]. The cap-and-trade system is a market-based system where the demands
(i.e., the carbon goal) are fixed by the government. In addition, the carbon goals could also
be implemented indirectly, i.e., through levying carbon taxes or providing RES subsidies.

Finally, there are information and monetary flows between different layers. To intro-
duce these flows, some mathematical symbols are used in Figure 5.1. The mathematical
symbols will only be discussed briefly now since the details will be given in the model
formulation in Section 5.3. There is a bi-directional information exchange between the
actors at the bottom layer and the market operators during the operational phase of
the markets. Γnode

n and ΓTSO
n are the sets of decision variables for node n and the TSO,

respectively. The nodes and the TSO provide the information of energy trades (which are
parts of their decision variables, denoted by market-related Γnode

n and ΓTSO
n in Figure 5.1)

to the market operators. Reversely, the market operators inform them about the prices in
the markets, denoted by the set of decision variables of the energy market operator Γenergy

and the carbon market operator ΓCO2 , respectively. After the market has been cleared,
payments are made, and the process is facilitated through the operators as well. On the
contrary, the flows between the upper two layers are unidirectional. The government sets
a target CAPCO2 and informs the carbon market operator. The carbon market operator
collects the money, which goes reversely to the government.

5.3. Models
In this section, the proposed models are presented, which are divided into an equilibrium
model that represents the long-term investment equilibrium under mixed bilateral and
pool electricity markets, and an improved energy system optimization model that is
equivalent to the equilibrium model for the mixed markets.

We start by formulating the respective optimization problems for the nodes, the TSO,
the energy market operator, and the carbon market operator. Here, the same as other
ESOM, we assume perfect competition and do not address uncertainties inherently in the
model. The problem formulations for different actors give a set of optimization problems.
Since these problems are all interconnected, i.e., the parameters in one problem may be
the decision variables in others, and vice versa, they should be solved together. Essentially,
this set of optimization problems forms an equilibrium problem. After obtaining the
necessary and sufficient conditions for the long-term market equilibrium, the equivalent
centralized optimization model will be given. This optimization model is the improved
energy system model since it endogenously models the mixed bilateral and pool mar-
kets. The modeling steps, i.e., from the equilibrium model (the collection of individual
optimization problems) to the equivalent centralized optimization model, are commonly
seen in market equilibrium studies such as [218] for the pool market and [219] for the P2P
market.
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In this study, lower case symbols are used for variables, and upper case symbols are
used for parameters and sets. Dual variables are expressed using Greek letters and are
placed after the colons in the constraints. n is the index for nodes N . i is the index for
generation technologies G , and storage technologies S. l is the index for transmission
lines in the existing line set L. t represents a time step in the set of total time steps T .

5.3.1. Long-term investment equilibrium model
Each node’s optimization problem Let us first introduce this optimization problem
conceptually and then give the mathematical formulations. For all the nodes, their
optimization problems will be the same. Hence, only one node’s problem is discussed
here.

A node, representing a market participant, wishes to minimize the net cost or in other
words, maximize the net benefit since it can also earn income from sales in the markets.
Note that for simplicity, in this study, we assume that a node is a market participant. We
are aware that in practice, a node might not always be identical to a market participant.
Nevertheless, in the same way as the existing ESOM, this model is ready to be extended in
case the generator/consumer level is of interest, where a node should be further split into
more market participants (i.e., generators/consumers). In that respect, we will explain
how the model should be modified in the formulation later. In this study, the node’s
optimization problem is cast as a cost-minimization problem. The node could take
the following actions: investing in generation and storage capacity, producing energy,
consuming energy, trading energy in both the bilateral market and the pool market, and
trading carbon permits in the carbon market. In the bilateral market, a communication
graph is pre-defined where the edges connect the pair of nodes that might trade energy
with each other. The neighboring nodes on this graph negotiate with each other about
the trading volume and the bilateral prices, which is facilitated through the energy market
operator. Note that the communication graph is most of the time not the same as the
physical graph where the nodes are connected by electricity networks since they are
different graphs for information exchange and energy exchange, respectively.

Γnode
n is the set of decision variables for node n. It includes the investment capacities

ki ,n of generation and storage conversion i , the investment capacities kstorage
i ,n of storage i ,

the energy production pi ,n,t from technology i at time step t , the bilateral trades pbilateral
n,m,t

from node n to node m at time step t , the pool trades ppool
n,t for node n at time step t ,

state-of-charge soci ,n,t of storage i for node n at time step t , storage discharging pout
i ,n,t of

storage i for node n at time step t , storage charging p in
i ,n,t of storage i for node n at time

step t and the number of carbon permits eCO2
n for node n to buy from the carbon market

in a year.
The node aims to minimize its total annualized cost related to the investment and

operation of its generation and storage technologies. The objective function of the node
n is divided into three parts, which are given in (5.1a) - (5.1c).

The first part (5.1a) includes the non-trading-related costs, which are capital expendi-
ture (CapEx) cost of generation and storage technologies, fixed operation & maintenance
(FOM) costs, variable operation & maintenance (VOM) costs. These costs are modeled in
the same way as in [10]. Here, Ai is the annuity factor for technology i , Ci and C Si are the
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CapEx for generation i and storage i , respectively, and Bi is the VOM cost for technology
i .

The second part (5.1b) consists of the trading-related costs, including energy trading
costs in the pool, energy trading costs and grid costs in the bilateral market, and carbon
trading costs. The node n can trade energy pbilateral

n,m,t at time step t bilaterally with its

neighbors m ∈ωn that are on the communication graph. Trading prices λbilateral
n,m,t and grid

prices λgrid
n,m,t are associated with the energy trades pbilateral

n,m,t in the bilateral market. In

the pool market, the node n trades energy ppool
n,t at the price λpool

n,t . In the carbon market,

the node n buys a certain amount of carbon permits eCO2
n that are equivalent to their

emissions at the carbon price λCO2 .

The third part (5.1c) is the external costs, which consist of three parts. The first two
parts refer to the external costs that are directly related to the generation capacity or the
produced energy. One example is the social costs incurred by the social resistance against

wind turbines, then E capacity-ex
i ,n refers to the unit social cost of wind turbines at node n.

E production-ex
i ,n represents either the RES subsidies (resulting in an income) or the carbon

taxes (resulting in a cost) for the unit energy produced. From the modeling perspective,
these two terms essentially change the CapEx or the VOM of certain technologies by
incorporating these externalities. The last external cost is formulated as a product differ-
entiation term for every bilateral trade referred from [214]. It is defined as a general cost
term related to bilateral trades because the meaning of the costs depends on the inter-
pretation. On the one hand, it may represent exogenous charges related to the bilateral
trades, such as transaction costs, tax payments, and network charges. On the other hand,
it could be viewed as an improved utility function, representing the willingness to pay for
bilateral trades. These two applications will be further illustrated and discussed in the
case study. Further discussions of the product differentiation term can be found in [214].

min
Γnode

n

∑
i∈(G+S)

Ci ki ,n

Ai
+∑

i∈S

C Si kstorage
i ,n

Ai
+ ∑

t∈T

∑
i∈G

Bi pi ,n,t (5.1a)

+ ∑
t∈T

∑
m∈ωn

(λbilateral
n,m,t +λgrid

n,m,t )pbilateral
n,m,t + ∑

t∈T
λ

pool
n,t ppool

n,t +λCO2 eCO2
n (5.1b)

+ ∑
i∈G

E capacity-ex
i ,n ki ,n + ∑

i∈G

∑
t∈T

E production-ex
i ,n pi ,n,t +

∑
t∈T

∑
m∈ωn

E bilateral-ex
n,m |pbilateral

n,m,t |
(5.1c)

subject to: Φn(
∑
i∈G

pi ,n,t −Dn,t +
∑
i∈S

pout
i ,n,t −

∑
i∈S

p in
i ,n,t ) = ∑

m∈ωn

pbilateral
n,m,t ,∀t ∈ T (5.1d)

(1−Φn)(
∑
i∈G

pi ,n,t −Dn,t +
∑
i∈S

pout
i ,n,t −

∑
i∈S

p in
i ,n,t ) = ppool

n,t ,∀t ∈ T (5.1e)
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0 ≤ pi ,n,t ≤ Ei ,n,t (ki ,n +Ki ,n),∀i ∈G ,∀t ∈ T (5.1f)

soci ,n,t = soci ,n,t−1 +H in
i p in

i ,n,t −
1

H out
i

pout
i ,n,t ,∀i ∈ S,∀t ∈ T (5.1g)

0 ≤ soci ,n,t ≤ kstorage
i ,n +K storage

i ,n ,∀i ∈ S,∀t ∈ T (5.1h)

0 ≤ pout
i ,n,t ≤ ki ,n +Ki ,n ,∀i ∈ S,∀t ∈ T (5.1i)

0 ≤ p in
i ,n,t ≤ ki ,n +Ki ,n ,∀i ∈ S,∀t ∈ T µ̄in

i ,n,t (5.1j)

eCO2
n =Wi

∑
t∈T

∑
i∈R

pi ,n,t :λCO2
n (5.1k)

(5.1d) and (5.1e) are both the energy balance constraints. The net power injection∑
i∈G pi ,n,t −Dn,t +∑

i∈S (pout
i ,n,t −p in

i ,n,t ) is divided into two parts: one for the trading in the
bilateral market and the other for trading in the pool. On the right-hand side of (5.1d) is
the sum of all bilateral trades for node n.

Φn is a parameter between 0 - 1 that is determined by the node n itself, indicating
the percentage of its net energy that n would like to trade bilaterally. The rest will be
traded in the pool. This way of modeling the mixed markets strongly aligns with our
conceptualization of the markets, i.e., one only has to decide ex-ante how much to trade
in total in the bilateral market and in the pool market, without determining specifically
who to trade with and how much to trade with each trading partner. Depending on the
product differentiation, the model will help the nodes to find the optimal trading partners
and the associated trading volumes. In case the trading partners and the associated
trading volume are fixed ex-ante, then there are no further decisions to be made, and
the amount could be deducted from the demands directly. Furthermore, this model is
generic in that by changing the value of this parameter, the pool market (whenΦn = 0), the
bilateral market (whenΦn = 1), or the mixed markets (when 0 <Φn < 1) can be modeled.

We would also like to continue the discussion on the assumption that the node n is
identical to a market participant in this study. As previously introduced, it is a common
simplification in ESOM in order to reduce the complexity of the model. In the same
way with those models, if desired, one node can further be split into more generators
and/or consumers. In that case, both sides of (5.1d) and (5.1e) will be changed such that
instead of the net injection and the trades for one node, the sum of the generators and/or
consumers will have to be used. Nevertheless, this assumption does not change the gist of
the formulation and has no influence on the equivalent centralized optimization model
that will be introduced in Section 5.3.2.

(5.1f) indicates that the energy production is constrained by the efficiency Ei ,n,t

(capacity factor in case of variable renewable energy) and the capacity of the generation
technologies. Here, Ki ,n is the existing capacity, and ki ,n is the capacity to be expanded,
essentially making the model a capacity expansion model. (5.1g) - (5.1j) are the storage
constraints, indicating the change in state-of-charge, and the capacity limits for state-
of-charge, charging, and discharging, which are modeled the same way as in [10]. The
last constraint (5.1k) shows that the amount of emissions equals the number of carbon
permits.
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TSO’s optimization problem The role of the TSO is two-fold. First, it ensures the feasi-
bility of the energy flows and accordingly, invests in the transmission network capacity in

a cost-optimal manner. Second, it harvests congestion rents by trading zbilateral
n,m,t and zpool

n,t
in the mixed bilateral and pool markets.

The decision variables of TSO are represented by the set ΓTSO, which includes the
investment capacity kl in line l , the bilateral trades zbilateral

n,m,t from n to m at time step t ,

the pool-based trades zpool
n,t for n at time step t and the energy flow fl ,t in line l at times

step t .
The objective function (5.2a) is to minimize the total annualized cost pertaining to

its two roles. The first term in (5.2a) is the investment cost for the transmission network,
where ∆l is the length of the line l . In addition to the investment cost, the TSO receives
the congestion rents from both electricity markets.

min
ΓTSO

∑
l∈L

∆l Cl kl

Al
− ∑

t∈T

∑
n∈N

(
∑

m∈ωn

λ
grid
n,m,t zbilateral

n,m,t +λpool
n,t zpool

n,t ) (5.2a)

subject to: fl ,t =
∑

n∈N
PT DFl ,n(

∑
m∈ωn

zbilateral
n,m,t + zpool

n,t ),∀l ∈ L,∀t ∈ T (5.2b)

− (kl +Kl ) ≤ fl ,t ≤ kl +Kl ,∀l ∈ L,∀t ∈ T (5.2c)

The energy flow is modeled using direct current power flow equations. In (5.2b), the
flow fl ,t is calculated based on the Power Transfer Distribution Factors (PT DF ) matrix
and the total net injection at every node n ∈ N . (5.2c) indicates the thermal limits of the
energy flows, where Kl is the existing transmission capacity.

Energy market operator’s optimization problem The energy market operator clears the
mixed markets at each time step t by minimizing the energy imbalances, thus determining
the corresponding prices.

The set of decision variables Γenergy includes the bilateral trading price λbilateral
n,m,t from

n to m at time step t , the grid price λgrid
n,m,t from n to m at time step t , and the pool trading

price λpool
n,t for n at time step t .

It makes sure that the bilateral trades should be equal in quantity, the trading energy
from the node pbilateral

n,m,t is equal to the bilateral arbitraging energy from the TSO zbilateral
n,m,t

at each time step t , and the pool-based energy trades equal the energy arbitraged by the

TSO zpool
n,t at each time step t .

min
Γenergy

∑
t∈T

∑
n∈N

∑
m∈ωn

λbilateral
n,m,t (pbilateral

n,m,t +pbilateral
m,n,t )+ ∑

t∈T

∑
n∈N

∑
m∈ωn

λ
grid
n,m,t (pbilateral

n,m,t − zbilateral
n,m,t )∑

t∈T

∑
n∈N

λ
pool
n,t (ppool

n,t − zpool
n,t ) (5.3)

Carbon market operator’s optimization problem The government can determine the
maximum amount of emissions that are allowed to be emitted, which will be regarded as a
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cap CAPCO2 in the carbon market. All nodes need to buy carbon permits from the carbon
market, which are equivalent to their emissions. The set of decision variables ΓCO2 , which
includes only the carbon price λCO2 , will be determined by the carbon market operator.
The optimization problem of this operator is formulated as the following.

min
ΓCO2

λCO2 (
∑

n∈N
eCO2

n −CAPCO2 ) (5.4)

5.3.2. Equivalent centralized optimization problem: improved energy sys-
tem optimization model

In the four optimization problems, the decision variables of one problem only exist in the
objective function of others and not in the constraints. This observation indicates that
only one solution will exist, which results in a Nash equilibrium. We follow the approach
in market equilibrium studies [218], [219] where equivalent optimization problems are
derived. We are then able to find the equivalent centralized optimization problem, i.e.,
the improved energy system model for the mixed bilateral and pool markets, which is
formulated as follows.

min
Γ

∑
i∈(G+S)

Ci ki ,n

Ai
+∑

i∈S

C Si kstorage
i ,n

Ai
+ ∑

t∈T

∑
i∈G

Bi pi ,n,t ++∑
l∈L

∆l Cl kl

Al
(5.5a)

+ ∑
i∈G

E capacity-ex
i ,n ki ,n + ∑

i∈G

∑
t∈T

E production-ex
i ,n pi ,n,t +

∑
t∈T

∑
m∈ωn

E bilateral-ex
n,m |pbilateral

n,m,t |
(5.5b)

subject to: (5.1d)− (5.1k),∀n ∈ N (5.5c)

(5.2b)− (5.2c) (5.5d)

pbilateral
n,m,t =−pbilateral

m,n,t ,∀n ∈ N ,∀m ∈ωn ,∀t ∈ T : λbilateral
n,m,t (5.5e)

pbilateral
n,m,t = zbilateral

n,m,t ,∀n ∈ N ,∀m ∈ωn ,∀t ∈ T : λgrid
n,m,t (5.5f)

ppool
n,t = zpool

n,t ,∀n ∈ N ,∀t ∈ T : λpool
n,t (5.5g)∑

n∈N
eCO2

n = CAPCO2 : λCO2 (5.5h)

The decision variables belong to the set Γ, which includes all the decision variables of
the nodes and the TSO. The objective function (5.5a) and (5.5b) is the summation of the
objective functions of all the actors.

The constraints are also a gathering of all the constraints of the actors’ problems. (5.5c)
includes the constraints related to nodal energy balances, generation limits, and storage.
(5.5d) refers to the power flow calculations and the thermal limits of the networks. (5.5e)
- (5.5g) are the optimality conditions of the optimization problem of the energy market
operator. (5.5e) is the reciprocity constraint, showing that the bilateral trades should be
equal in quantity, where the dual variable λbilateral

n,m,t is the bilateral trading price. (5.5f) and
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(5.5g) are the energy balance constraints between the nodes and the TSO, where the dual

variables are the grid price λgrid
n,m,t for the bilateral trade and the pool electricity price λpool

n,t
for the pool-based trade, respectively. (5.5h) gives the cap for all the carbon emissions,
with the dual variable λCO2 being the carbon price.

5.4. Case study: Regional Energy Strategies in the Netherlands
In 2019, the Dutch government announced the climate agreement to reduce the Nether-
lands’ greenhouse gas emissions by 49% by 2030 compared to 1990 levels [7]. In the
electricity sector, a major focus is to increase the share of wind and solar energy, i.e., from
14.25 TWh in 2018 to 84 TWh in 2030. Accordingly, massive investments in wind and solar
energy are needed. The investments are facilitated through a national program Regionale
Energiestrategie (Regional Energy Strategies) [189]. In this program, the country is divided
into 30 energy regions, where each region proposes its investments in onshore wind and
solar energy. Meanwhile, the TSO proposes the transmission network expansion plan.

Due to land-use and social acceptance issues of wind energy, there are tensions
between the national government and regional government, making it hard to transform
national goals into regional proposals. The interim analysis [220] shows that the proposed
production of solar energy and wind energy is comparable, despite the fact that wind
energy is cheaper. In 2021, two years after the climate agreement has been announced, 1.0
version of the investment plan [221] has been published, which finally meets the target.
The process is complex and involves considerations from different dimensions where
cost, land- use, and social acceptance are some of the main drivers.

Given this background, the proposed approach is used in two different ways: the first
part of the case study will show the optimal investment capacity to reach the RES target
in 2030. In the second part, the focus is on the investment preferences of the regions, in
particular related to the wind energy investment situation. The proposed approach is
used as a simulator to study the effects of such decisions not to invest in wind energy.

The Netherlands is divided into 30 nodes that are connected by transmission lines.
The considered time horizon is one year with hourly resolution. The input data includes,
among others, the spatio-temporal variations of wind and solar capacity factors and
their maximum potentials, which are obtained from [10]. Onshore wind turbines, solar
PV, OCGT, hydrogen storage, and flow battery storage are considered technologies. Due
to the differences in their efficiencies and cost parameters, hydrogen storage is best
suited for long-term usage, whereas battery storage provides an option for short-term
storage. Furthermore, in this national planning process, the regions are not asked to
propose capacity in offshore wind, and thus offshore wind is not considered. Since quite a
significant generation expansion is needed, the existing generation and storage capacities
are not considered for the ease of presenting results. The existing transmission network is
considered, and the capacity can be expanded. Direct current power flow calculations are
performed based on the existing capacities. 2030 estimations for the techno-economic
parameters are used and are taken from [47] except for the network cost parameter, which
is taken from [10].

Although all three external costs in (5.5b) are of significance and interest in practice, in
this case study, we will focus on the last item, which is related directly to bilateral trading,
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and show its effects on the results. This is because, from the modeling perspective, the first
two items, representing social costs and taxes/subsidies, indicate a direct change in cost
parameters. Their effects resemble a global sensitivity study which is a common approach
to analyze results in optimization-based studies and thus are not further investigated in
this work. The ratio of traded energy between the pool market and the bilateral market
Φn is important in practice. Analyzing the effects of this parameter will add further
complexity for understanding the model results. Therefore, we will show the results for a
full pool market representation (whenΦn = 0) and a full bilateral market representation
(whenΦn = 1) with various values of the bilateral trading terms.

5.5. Results and discussions
This section presents results from the analysis of the Regional Energy Strategies, followed
by discussions and reflections on the approach.

5.5.1. Optimal investment decisions for a full pool market representation
and a full bilateral market representation

This subsection presents the optimal total installed capacities for the system. We start
with the pool market. Then, the bilateral markets are analyzed where E bilateral-ex

n,m represent
increasing transaction costs (TC), starting from 10% of the average electricity price to
30%, 50%, 70%, and 90% to investigate the influences of TC on the planning decisions.
The interpretation of TC in this case study is two-fold. On the one hand, the TC could
be considered as actual costs. On the other hand, they can be deemed as a cost proxy
for willingness to pay, i.e., bilateral trading barriers due to various rationales such as
geopolitical considerations.

From left to right in Figure 5.2, the following observations are obtained. First, onshore
wind capacity declines while solar and storage capacity increases. Second, hydrogen
and battery storage play an equally important role, and both have a significant surge
in capacity. Thirdly, the expansion of transmission network capacity is marginal for all
the cases. To be more specific, onshore wind capacity needs to climb to around 35 GW.
Even though offshore wind energy is not considered in this model, this indicates how
much offshore wind capacity is needed. Given that the capacity factors for offshore
wind turbines are generally higher than those of the onshore, the obtained result is more
conservative than when the offshore wind is considered. Moreover, to reach the emission
goals, the needed capacity for solar PV ranges from 41 GW to 55 GW. Due to the increase in
solar capacity, the system levelized cost of energy (LCOE) increases for each case, which is
88e/MWh, 90e/MWh, 93e/MWh, 96e/MWh, 97e/MWh and 99e/MWh, respectively.

Figure 5.3 shows the optimal capacities over the country for the two markets, respec-
tively. We start by looking at the planning decisions under full pool market representation
(left figure). Cost-optimal results are obtained because no preferences are considered
in the pool market. Wind capacity is mostly placed in coastal regions where the wind
resources are good, i.e., northwestern borders. Compared to wind, the capacity factors of
solar PV are more evenly spread over the country. The right figure shows the planning
decisions under a full bilateral market representation with 10% TC. The results are sig-
nificantly different from those in the left figure. Compared to the cost-optimal results,
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Figure 5.2: Optimal total installed capacities for the Netherlands under a full pool market representation and a
full bilateral market representation with different transaction costs (% of the average electricity price).

Figure 5.3: Optimal installed capacities over the Netherlands. Left to right: full pool market representation, full
bilateral market representation with a 10% transaction cost.
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trading barriers are introduced by the use of TC, and thus the resulting capacities are
more local, where they are in line with the energy demands of the regions.

5.5.2. Abandoning wind energy for a region
Land-use and social acceptance issues of wind energy make it difficult for regions to
invest in wind energy in a complex energy system environment. The potential choice of
bypassing wind energy investment creates extra costs for the system and the individual
nodes. In this subsection, we first look at the benchmark situation where there are no
preferences towards certain RES, i.e., opposition to wind energy is not considered. Next,
the investment preferences against wind energy are considered. These two situations will
be referred to as benchmark and scenario 1, respectively. For illustration purposes, we
consider only one region that acts against wind energy, and the influences of this choice
will be presented.

Figure 5.4: Geographical distributions of wind energy capacity in benchmark and scenario 1, and the net
increase in total costs in %.

Figure 5.4 depicts the wind capacity distribution for the benchmark situation. It shows
a concentration in capacity in the coastal regions (later referred to as capacity centers),
i.e., the country’s northwestern border. Due to the discrepancy between demand centers
and capacity centers, most of the energy produced in capacity centers will be transmitted
to the demand centers in the west and the middle.

Among the capacity centers, we look at the Friesland region. It is a farm region and
is located in the north. There, energy demands are moderate (3% of the total energy
demand), whereas the optimal wind capacity is the largest in the country (20% of the
total wind capacity). For this reason, as a hypothetical case, we assume that this region
proposes no investments in wind energy due to high social resistance. Other regions or
other groups of regions may also be chosen, where the gist of this case study still applies.
Taking this preference into account, Figure 5.4 also displays the new capacity distribution.
Because of the decrease in wind capacity in Friesland, almost all other regions will have
to build more generation capacities. In particular, the Drenthe region has to build 4680
MW more in wind energy.

In addition to capacity changes, we look at the cost changes, which are measured in
percentages. In this case, the average costs for regions are calculated differently from the
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traditional cost of electricity. Traditionally, when calculating the cost of electricity, only
the costs as shown in the objective function of the ESOM are considered. However, here,
we also include the revenues/costs from selling and/or buying energy in the markets,
where the prices are derived from the market balances (5.5e) - (5.5h). The underlying
assumption is that a region is an aggregation of local producers and consumers where
the costs are also assumed to be local. The financing of the generation assets from
outside the region is out of the scope of the current study. While this study brings the
market perspective into the ESOM, accordingly, the total costs include the revenues/costs
in addition to the costs incurred from investing and operating the assets. Our way of
analyzing the cost indicates that the average costs for a region can be negative, provided
that lots of revenues are gained from energy trading. The interpretation should be that
the region (i.e., the producers and consumers as a whole) is benefited, but it does not
necessarily mean that the electricity prices for the consumers are low. Friesland, due to
fewer costs in wind energy investment yet more costs for importing energy, ends up with a
total cost of 16% higher. Although a few of its neighboring regions benefit by gaining more
revenues from exporting energy, most regions incur more costs due to the large increases
in investments. This demonstrates that the deliberate choice of one region influences
the planning decisions of all other regions. More specifically, most regions suffer, though
unwillingly, both in terms of increased total costs and forced wind energy investments
locally.

This cost analysis is based on the pool-based electricity market. Under such a market,
regions can bypass their wind energy investment and choose to import energy from other
regions without binding penalties. As shown by the results, when wind turbines are placed
at unfavorable locations in other regions, the cost of the system will increase, which will
be borne by regions over the country. In this sense, as the hypothetical focal region in our
case, Friesland is a free rider of the national RES investments, and other regions might do
the same. As a result, the planning process stalls where no one commits to invest.

In practice, the planning process is far more complex than cost considerations. In
this study, we approach this problem from the cost perspective and provide insights. The
following subsection will illustrate how our approach can act as a negotiation tool in such
a collaborative planning process.

5.5.3. Other regions’ negotiation strategies
Collaborative RES planning is a negotiation process between the regions. When other re-
gions are unwilling to comply with Friesland, which would be the case in our hypothetical
example, their bilateral relationships deteriorate. This, in turn, affects Friesland as well.
Here, our model is used to simulate the negotiations between the regions. This will be
done by considering the external costs associated with the energy trades, which are used
to represent the willingness to pay for the region. In this exemplary case, the willingness
to pay for other regions concerning trades with Friesland becomes low due to Friesland’s
choice. In other words, a high cost is imposed on the trades from other regions as their
negotiation strategy to Friesland’s proposal.

Figure 5.5 shows the costs of Friesland in various scenarios. We start with the bench-
mark. Due to the large investment needs in wind energy, the fixed and variable costs
(together referred to as investment costs) are high. However, since most generated energy
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Figure 5.5: Costs of Friesland in various scenarios.

will be transmitted and sold to other regions, Friesland will gain significant revenues from
selling energy. Overall, its total net cost in the benchmark case is 393 Me. The benchmark
case provides the least cost solution for this region. If preferences against wind energy are
taken into account, its cost will increase. In that case, its investment costs decline to 14%
of those in the benchmark case. Accordingly, due to the lack of local generation capacities,
it has to import energy, with the net export percentage dropping from 230% to - 50%.

Then, we look at the results of the following scenarios (2-4) when other regions start
to negotiate with Friesland, with increasing levels of preference cost (10 e/MWh, 50
e/MWh, 100 e/MWh). These indicate degrees of willingness to pay with trades that
involve Friesland. The results show that as the trading barriers between other regions and
Friesland become larger, the energy trades shrink, and thus, Friesland will be forced to
rely more on its energy production, which drives up its total costs. In the extreme case
(scenario 5), the region will be isolated by others and has no other choice but to be energy
self-sufficient. All these scenarios are not desirable for Friesland, and therefore, it has to
reconsider its decision not to invest in wind energy.

Now we turn to the cost changes for other regions. A key question to answer here is,
by imposing trade barriers with Friesland, what are the consequences for other regions?
Figure 5.6 shows the cost changes relative to the benchmark cost for five cases. There
are mainly two groups of regions to be discussed. One group is Friesland’s neighboring
regions with similar wind conditions and low energy demands. Among all, Drenthe builds
more wind capacity and incurs more costs than the benchmark. Flevoland and Groningen
have fewer costs since they benefit from more energy sales. The other group consists
of the load centers, Noord-Holland Zuid (Amsterdam region) and Rotterdam-Den Haag,
which rely heavily on imports. Due to the choice of Friesland, the energy prices go up,
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Figure 5.6: Costs of all the regions compared to the benchmark in scenario 1 to scenario 5.

leading to higher costs for the load centers as well. In particular, when Friesland does not
invest in wind, and others take no action, Rotterdam-Den Haag has a higher cost increase
than Friesland. Nevertheless, Friesland bears the most cost increase in all other cases,
especially when the counteraction is strong in negotiations.

5.5.4. Discussions
We want to emphasize that the topic of this case study is not to argue for the best values
to quantify the willingness to pay but rather to show how the product differentiation
term can help express the region’s preferences and simulate the inter-regional negotiation
process. To this end, we have focused on Friesland as an illustrative region, but we
would like to take the discussion away from Friesland into more general inter-regional
negotiations. Moreover, we assume all regions have the same willingness to pay, and they
all counter one particular region’s choices. The exact values for willingness to pay depend
on the bilateral relationships between other regions and the region under study, which
can relate to economic aspects such as how much influence they perceive for their regions
or socio-political factors such as the political tensions between them. Some regions may
even benefit, as shown already. In addition, with various values for willingness to pay
from the regions, they may again choose to change their perceptions depending on the
results. Therefore, the actual results highly depend on the case-specific situation when
the model is used in practice. Our case study highlights how this model can be used to
investigate these kinds of policy-relevant challenges.

5.6. Conclusions
ESOM are known for their policy implications based on the resulting optimal long-term
investment decisions, while they have a few key assumptions such as perfect foresight,
perfect market, and a pool electricity market environment without external costs. This
study presented an improved energy system model that considers bilateral trading with
external costs.

We introduced this model step-by-step. Although the centralized formulation was
used to solve the model, we started with an equilibrium formulation as a prerequisite.
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First, four individual optimization problems were laid out for a producer, a TSO, a market
operator, and a carbon market operator, respectively. This formulation helped to specify
each market participant’s objective function and the actions they can take. Afterward,
the equivalent centralized problem was presented, which is an improved energy system
model.

In this energy system model, we introduced three exogenous cost items that account
for the social costs of technologies, carbon taxes/RES subsidies, and bilateral trading,
respectively. The former two add costs to unit invested capacity or unit produced energy,
and the last one is associated with bilateral trades. The bilateral external costs are inter-
preted in two ways. On the one hand, they represent an improved utility function beyond
the economic cost to model willingness to pay. On the other hand, they can be used to
model real economic costs, such as transaction costs.

The model was demonstrated using a proof-of-concept case study of the highly re-
newable Dutch power system in 2030. The first part of the case study focused on using
bilateral external costs as transaction costs. It was found that incorporating bilateral
trading changed the results when compared with the conventional cost-optimal ESOM in
different ways. In terms of the generation mix of the system, the capacity of wind energy
drops while that of solar PV increases. The geographical distribution also changes. The
cost-optimal results indicate that more generation capacities are placed at locations with
favorable weather conditions. However, the resulting capacities become more local when
bilateral trading is considered. The second part studied the situation where a group of
regions has to decide on their investments to meet a joint carbon target. We considered
the technology preferences of the regions, in particular, an assumed unwillingness to
invest in wind energy. The model was used as a negotiation simulator to inform the
regions about the consequences of such a preference.

This study conceptualized bilateral trading as a peer-to-peer model. Research efforts
can be put into other ways of conceptualizing bilateral trading or modeling different
market players; hence, the resulting models and insights could be compared with ours.
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Conclusions

This chapter concludes this thesis by providing insights resulting from the previous
chapters. It starts with the answers to the main research questions and the sub-questions
and continues with reflections and recommendations. This chapter ends with some final
remarks on this research.

6.1. Conclusions and answers to research questions
The thesis has the objective to improve optimization models by including institutions in
energy system planning. In line with that, the main research question of the thesis is:

How can institutions be incorporated into optimization models for energy system
planning?

Technologies and institutions are closely related to each other in socio-technical sys-
tems. Despite the relevance, optimization-based energy system modelers and economists
currently operate worlds apart. They have diverse narratives, and thus, the interrela-
tionship between optimization models and institutions is only poorly understood. The
economic worldview of the energy system modelers generally follows neoclassical eco-
nomics. Decision-makers are assumed to have perfect rationality and act to maximize
their utility. A cost-benefit analysis with regard to economic costs is often performed. On
the contrary, institutional economists view decision-makers with bounded rationality,
meaning they seek a satisfactory rather than an optimal solution.

The key to aligning the different worldviews is to find common ground. Under the
assumption of perfect rationality and using cost-benefit analysis, optimization models
are used to derive optimal results. This thesis concludes that optimization models are best
utilized when studying non-evolving institutions, i.e., the institutions must be exogenous
to the optimization model. Such institutions have been identified. They are policies, val-
ues of people, and governance structures, including electricity markets. These institutions
are reflected in different components of the optimization problems and can be modeled
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accordingly. Governance structures embedded with an allocation of ownership and prop-
erty rights feature a special institution. They serve as a context for the energy system
planning problem, which can be centralized decision-making, collective decision-making,
or electricity markets. Different typologies of optimization models should be used to
model them, such as single-objective optimization models, multi-objective optimization
models, or equilibrium-based optimization models. The other institutions should be
modeled by the objective function, decision variables, constraints, and parameters.

Sub-question 1: What is the state-of-the-art on optimization-based institutional design
of energy systems? Institutions were not defined consistently in energy research, which
can be deducted from their general, but vague perception as rules. Therefore, it is essential
to define the scope of institutions using a common language. To this end, we referred
to Williamson’s four-level institutional analysis framework, which exhaustively lists the
institutions with different time scales.

After the scoping, we performed a literature review with two main conclusions. On the
one hand, although some institutions have been modeled, they were not recognized as
institutions, which mainly concerned governance structures. The governance structures
can be modeled by generic types of optimization models, single-objective optimization
models, multi-objective optimization models, and equilibrium-based optimization mod-
els. In the narrow sense, institutions mainly refer to policies in the context of energy
system planning. However, we have shown that governance structures are also essential
institutions. In that respect, we argue that all technical modeling represents an institu-
tional element, regardless of whether the modeler has realized it or not. On the other
hand, because there is a broad range of institutions, we conclude that research gaps
remain on what institutions to model and how to model them. Optimization models
can be further utilized to deal with these research gaps to provide energy system de-
signs beyond the techno-economic focus. The most critical gaps were identified and
answered by sub-questions 2 - 4, featuring the spatial aspects of RES integration, collective
decision-making, and bilateral trading with external costs.

Sub-question 2: How can renewable energy potentials that take into account physical
constraints and spatial policies be included in energy system optimization models?
Renewable energy integration is increasingly a spatial issue. On the one hand, wind
energy and solar energy are land-intensive. On the other hand, wind turbines raise
public acceptance concerns due to their locations. The spatial aspects of RES need to be
integrated into energy system optimization models. Otherwise, the planning results will
deviate from what is feasible in reality.

The physical potential of RES can be estimated, in its simplest form, with the available
area and the suitability factor. This can be done with either low-resolution spatial data
or high-resolution spatial data. However, since public acceptance is correlated with the
distance between the households and the RES locations, high-resolution spatial data that
specifies the locations of the households is needed. To integrate physical constraints
and the public acceptance of RES, we conclude that a spatially explicit approach is
indispensable and have developed such an approach. This approach first determines the
RES potential with high-resolution spatial data and then formulates land-use constraints
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as a part of an energy system optimization model. Besides the physical potentials, spatial
policies based on the distance from the wind turbine locations to households can also be
adjusted to determine the institutional potentials.

Sub-question 3: How can collective energy system planning be modeled using mul-
ti-objective optimization Collective energy system planning features multiple actors
with different, sometimes conflicting, interests. Multi-objective optimization models are
naturally suited to provide optimal system bounds for different criteria. However, they
do not apply to a group decision-making process where several actors make decisions
together. The answer to this sub-question is to combine multi-objective optimization
models with one of the multi-criteria decision-making techniques, Technique for Order of
Preference by Similarity to Ideal Solution. The main reason for choosing this technique or,
in general, multi-criteria decision-making techniques is that multi-objective optimization
does not specify the relationship between the interests and the actors. Therefore, when
different stakeholders are involved, as in collective decision-making, multi-objective
optimization alone can only offer limited values and needs to be complemented by other
approaches.

Sub-question 4: How can decentralized planning processes considering bilateral trad-
ing be modeled? Although the actors’ interests have been addressed in sub-question
3, the answer to that sub-question only provides a basis for discussions toward joint
decision-making. The true decentralized decision-making where the actors maximize
their interests can only be realized in competitive markets. Existing studies focus on
marginal costs-based energy trading, while the externalities associated with the trades
are rarely modeled.

This sub-question aimed to provide a generic formulation for modeling external costs
in electricity markets with a focus on bilateral trade-based externalities. To differentiate
the decentralized decision-making, we conclude that the objective problems of the market
participants must be formulated separately, resulting in a set of optimization problems,
i.e., an equilibrium problem. This equilibrium problem can be cast as an equivalent
centralized problem based on non-cooperative game theory and can thus be solved. From
the externality perspective, we conclude that externalities associated with bilateral trading
offer great value in planning models. The model is strong at representing economic
externalities, such as transaction costs, and other externalities beyond the economic
costs, such as trading barriers and willingness to pay.

6.2. Reflections
Overall It is challenging to study institutions using an optimization approach. They
seem to be mutually exclusive due to their different characteristics. Institutions are closely
tied to actors who, in real life, are characterized by bounded rationality, limited foresight,
and various interests other than cost. In contrast, most techno-economic optimization
models aim to find a cost-optimal solution, indicating full rationality, perfect foresight,
and a cost focus. However, this understanding was changed during the research. We found
that optimization models are fully capable of modeling the institutions in the energy
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system. However, they must be used carefully to answer the right research questions.

Methods The answers to the main research question and the sub-questions are mainly
methodological. Instrumentally, the proposed models are characterized by two features
we would like to reflect on.

This thesis adopts a deterministic approach, meaning that uncertainty such as uncer-
tain weather forecasts and demand profiles in the future is not considered. Nevertheless,
we acknowledge that considering uncertainty can be essential. Hence, the centralized
models (in Chapter 3 and Chapter 5) are formulated in such a way that uncertainty can be
modeled to some extent. The perfect foresight issue can be remedied by either a myopic
approach or a stochastic optimization. The former means a multi-year horizon that allows
expansions in different years, an optimization-based simulation approach. The latter
implies adding probabilities to the objective functions. The multi-objective model needs
fundamental changes to incorporate uncertainty.

The models are simplified in terms of operational details. We include only the
most crucial components of the modern energy system planning models, such as high-
resolution spatial-temporally RES production profiles, energy storage, and network flow
modeling, where ancillary services are not considered. Furthermore, we assume perfect
competition in the electricity markets, where market power is left out of the scope.

Scope We would also like to make a remark on the system and geographical scope. This
thesis focuses on generation and network expansion at the transmission level. Since the
generation and network components were all modeled in a generic and modular way,
the developed models are not limited to the transmission level and can deal with the
distribution level or household level to some extent.

6.3. Recommendations
6.3.1. Future research
In this thesis, we started with a broad main research question and narrowed the scope
down in the sub-questions, which, in turn, treated detailed knowledge gaps for specific
types of optimization models. From this perspective, future research can be done in
various ways that advance the developed models. Those potential improvements have
already been given in relevant chapters and thus, are not repeated here.

Institutions in multi-energy systems Only the electric energy system has been studied
in this thesis. Given the relevance of multi-energy systems, the institutions across energy
carriers need to be further investigated. The interaction of the different energy systems
complicates the problems due to the presence of different system operators and the rules
for different energy systems. New governance structures may emerge, and the consistency
of policies across different energy systems should be studied.

The role of information This concerns what information is available to what actors
and at what costs. A central planner can plan a socially-optimal system. However, it
may not be equipped with the correct information, such as future demand profiles and
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local spatial information, to achieve that. In this respect, more local decision-making,
such as collective decision-making, might perform better, given the local data availability.
Similarly, market imperfections would occur due to asymmetric information between the
market participants. Further research should incorporate the value of information.

The help of distributed optimization A related recommendation is to investigate the
practicality of using distributed optimization, which naturally addresses the information
exchange issue. As distributed optimization is primarily used in operational models,
using it in planning models might indicate a longer running time than in centralized mod-
els. Different decomposition techniques might be adopted, and ways to accelerate the
convergence might be studied. Recent advances in distributed computing and machine
learning may be referred to when selecting the relevant approaches.

More actors and their business models First, the energy transition is prompted bottom-
up by the increasing share of distributed generation such as solar PV on the household
level. These households participate in the wholesale market through retailers or aggre-
gators or may join the local market, which may roll out in the future. These actors, such
as households, retailers, aggregators, and local market operators, will play a role in the
energy transition, and modeling them (and their interactions) would further enhance the
understanding of the institutions.

Second, financing is a critical topic to address. In this thesis, we have sidestepped the
role of financiers who provide capital in RES projects. Notably, the ownership structure
might differ for market-based planning models, e.g., financiers own while generator
companies run the assets. Therefore, further deliberations are needed on how to separate
their optimization problems linked by contractual agreements regarding cost and benefit
allocation.

The use of cooperative game theory On another methodological note, but also a re-
thinking of the governance structures, cooperative game theory is recommended for
future works. Multi-objective optimization resulted in optimal system designs for dif-
ferent actors, and equilibrium-based optimization assumed non-cooperative games.
However, actors may cooperate with each other by forming coalitions in local energy
markets. Along this way of thinking, the potential use of cooperative game theory may
lead to a market-based planning model considering actors with various interests. This
direction would further contribute to understanding the use of optimization models for
different actor relationships.

6.3.2. Recommendations for policy-makers
We make the following recommendations for policy-makers:

Consider more governance structures in policy-making In addition to making micro
policies, we advise policy-makers to consider more macro policies, governance structures
as studied in this thesis. Micro policies, in this context, refer to the policies dedicated to
electricity markets. Instead of fine-tuning the functioning of the market, policy-makers
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could think more about how other governance structures might work. From a liberal
standpoint, a market should be the only solution. Centralized decision-making, collective
decision-making, and the combinations of different governance structures might work
efficiently in some contexts as well, e.g., for a local energy system. Furthermore, under
proper market designs, local markets can help to reach local emission goals. Policy-
makers should assess the feasibility of such new markets and work on the regulations to
facilitate their roll-outs.

Rethink the role of optimization models Currently, in policy-making, optimization
models are mainly used to generate cost-optimal future energy system scenarios. How-
ever, this thesis has shown that optimization models can be used to include institutions
beyond the economic cost perspective. Therefore, future energy system scenarios can
be generated considering different governance structures, which helps to find robust
elements and reveal more realistic bandwidths of the generation mix.

Design and consider spatial policies in planning We conclude that it is essential to
design proper spatial policies and consider them in energy system planning. When they
are not considered, the results from energy system planning models likely indicate high
capacities in some places, i.e., where the meteorological conditions favor wind energy.
Otherwise, the results may be infeasible due to public acceptance issues and physical
availability.

Incentivize technologies considering the interests of stakeholders The market, which
aims at economic efficiency, will likely converge to large shares of low-cost energy. How-
ever, other features for a future energy system can hardly be achieved by the market,
which may be undesirable for many actors. To ensure a socially-acceptable energy sys-
tem, policy-makers should engage stakeholders as much as possible and incentivize a
comprehensive range of technologies not only from a cost perspective.

Address externalities to ensure RES adequecy We also found that the electricity market
alone, which centers on marginal cost, can hardly incentivize RES investments because
RES have zero marginal costs. As an alternative to giving RES subsidies or implementing a
capacity market, we recommend the policy-makers account for the externalities of fossil-
fueled generations by levying carbon taxes or introducing a full-fledged carbon market.
More attention should be given to bilateral trades as they are crucial for investment
decision-making. Policy-makers should investigate what interventions, such as modifying
transaction costs, can be made regarding desired bilateral trades from a system level.

Facilitate a joint energy system planning Socially-optimal energy system planning can
only be achieved if the generation and network assets are planned in a joint effort because
no perfect markets exist. It is practically difficult to do this due to the lack of incentives
and information barriers between the generation companies and network operators. We
recommend that policy-makers make efforts, either market-based or non-market-based,
to facilitate joint energy system planning.
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6.4. Final remarks
Practitioners working on future energy system designs are always lagging behind. In many
cases, what prevents the realization of a carbon-neutral future is not technological devel-
opments but how technologies are integrated into society. After all, humans create the
future, not the technologies. Models are great for supporting human decision-making, but
it is challenging to use the right models for the right questions. Optimization models are
strong at sketching a normative future. Although humans cannot make perfect decisions,
proper institutional designs help us get there. This thesis has modeled future unknowns
in a simplified yet insightful way and hopefully has enriched the understanding of how
the future energy system should be shaped.
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