
Comparing bounds on
binary error-correcting codes

S.L.F. van Alebeek

D
elf

t
Un

iv
er

sit
y

of
Te

ch
no

lo
gy

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Comparing bounds on binary error-correcting codes

(Dutch title: Vergelijken van grenzen voor binaire
foutverbeterende codes)

A thesis submitted to the
Delft Institute of Applied Mathematics

in partial fulfillment of the requirements

for the degree

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

Sanne van Alebeek

Delft, Nederland
Maart, 2017

Copyright © 2017 by Sanne van Alebeek. All rights reserved.

BSc THESIS APPLIED MATHEMATICS

“Comparing bounds on binary error-correcting codes”

(Dutch title: “Vergelijken van grenzen voor binaire foutverbeterende codes”)

Sanne van Alebeek

Delft University of Technology

Supervisor

Dr.ir. J.H. Weber

Thesis committee

Dr. D. C. Gijswijt

Drs. E.M. van Elderen

Dr. D. Kurowicka

March, 2017 Delft

PREFACE

Delft, March 2017

My first encounter with error-correcting codes was already during high school, when I was working on a
school project ("profielwerkstuk"). In particular I was intrigued by the special characteristics of a Hamming
code. During my studies I also followed the course "Toegepaste algebra, codes en cryptosystemen", where
we dove deeper into this subject. One of the lecturers, Joost de Groot, made the suggestion of bounds on
error-correcting codes as a subject for a bachelor thesis, where as a result this report now lies in front of you.

I would like to extend my gratitude to my thesis supervisor, Jos Weber, for his patience, guidance and
support, and his critical questions and remarks. Also I would like to thank my thesis committee for taking the
time to read and critically review my thesis. Next, I would like to extend my gratitude to my loving and caring
family for taking the time to read through my thesis and give their welcome suggestions. Finally, I would like
to thank Hugo for sharing his expertise with Matlab and most of all for his love and moral support.

v

SUMMARY

This report deals with binary error-correcting codes. A binary code is a collection words with the same length
n that consists only of zeroes and ones. The error-correcting quality of a code is determined by the Hamming
distance d of a code, which is the minimum distance between any two codewords in a code. The distance
d(x,y) between two codewords x and y is defined as the number of positions in which they differ. A classical
question in coding theory is: What is the maximum number of codewords in a code with length n and Ham-
ming distance d? This maximum is denoted with A(n,d). Determining A(n,d) is quite difficult and often we
have to make due with lower and upper bounds on A(n,d).

In this report we compare six different methods for finding an upper bound on A(n,d). We start by re-
freshing some basics for error-correcting binary codes, in particular we explain which approach is normally
used to find A(n,d). Next, we introduce these six different types of bounds and for each of these we give a
proof and a clarifying example. Two of the bounds, namely the linear programming bound and the linear
programming bound with extra constraints, we investigate in more detail. The idea behind these bounds is
to use the distance distribution (A0, A1, A2, . . . , An) of a code to find an upper bound, where Ai is the average
number of codewords at distance i from a codeword. The Ai comply to two sorts of linear conditions. The
first is that Ai ≥ 0, and if there are no codewords at distance i then Ai = 0. The second sort are inequalities
that originate from Krawtchouck polynomials. Together these conditions form a linear program where upper
bounds on A(n,d) can be found with. The difference between these two linear programming bounds is the
addition of extra constraints. These restrict Ai to be smaller than or equal to the number of codewords with
length n, Hamming distance d and weight i , where the weight of a binary word is the number of ones in that
word.

Furthermore, we compare the six types of bounds with each other. The main conclusion from this com-
parison is that a method provides a better upper bound when it requires more input and involves more com-
plex calculations. This input can for example consist of Krawthcouck polynomials or upper bounds on the
number of codewords with length n, Hamming distance d and weight w . The linear programming bound
with extra constraints is the best bound for n = 6,7, . . . ,28 and d = 4,6, . . . ,12, except for A(24,4) and A(12,4),
in those cases the Johnson bound gives the best results. At a first glance this does not show in the results
for the upper bound for n = 12 and d = 4, this is caused by the integer rounding of the result of the linear
programming bound with extra constraints. Due to this integer rounding the presented results of the upper
bound of these two methods is in this case the same. For the case of n = 24 and d = 4 the linear programming
bound gives an upper bound of 344.636 and the Johnson bound of 344.308. This is caused by the fact that,
compared to other n, the linear programming bound gives a relatively high value of the upper bound and the
Johnson bound gives a relatively low value, a more detailed explanation is given in Chapter 4.

vii

CONTENTS

Preface v

Summary vii

1 Introduction and Fundamentals 1
1.1 Introduction . 1
1.2 Fundamentals of error-correcting codes . 1
1.3 Bounds on the size of binary codes . 4

2 Finding upper bounds on A(n,d) 7
2.1 The Singleton bound . 7
2.2 The Plotkin Bound . 8
2.3 The Hamming bound . 9
2.4 The Johnson bound . 11

3 Linear programming bound 13
3.1 Linear Programming . 13
3.2 Delsarte’s theorem . 15
3.3 The bound . 17
3.4 Additional constraints . 19

4 Comparing bounds 21
4.1 Matlab implementation. 21
4.2 Plotkin and Singleton bound . 21
4.3 Hamming and Johnson bound . 23
4.4 Linear programming bound with and without extra constraints 24

4.4.1 Linear programming bound with d = 4. 26
4.4.2 Linear programming bound with extra constraints with d = 4 28

4.5 Johnson and linear programming bound with extra constraints. 29

5 Conclusion and Recommendations 31
5.1 Conclusion . 31
5.2 Recommendations . 32

Bibliography 33

A Matlab codes 35
A.1 Matlab codes for Plotkin, Singleton, Hamming and Johnson bounds 35
A.2 Matlab codes for the linear programming bound . 36
A.3 Matlab codes for the linear programming bound with extra constraints 37
A.4 Matlab codes for computing the results of the bounds. 38

B Results for A(n,d) 43

C Tables for A(n,d , w) 47

ix

1
INTRODUCTION AND FUNDAMENTALS

This report discusses binary error-correcting codes, and in particular compares different methods of finding
upper bounds on the number of codewords in these codes. The formal introduction to this report can be
found in Section 1.1. Subsequently, some fundamentals of error-correcting codes can be found in Section
1.2. We conclude this chapter with some fundamentals about finding bounds on binary error-correcting
codes in Section 1.3.

1.1. INTRODUCTION
A binary error-correcting code is a collection words with the same length n that consists only of zeroes and
ones. The error-correcting part means that errors induced in the codewords can be corrected by the receiver.
By adding checkbits to the end of a codeword one introduces the possibility of error-correction, the funda-
mentals hereof are explained in Section 1.2. By adding checkbits the length of a codeword increases, meaning
that the amount of data to be transmitted increases. On the other hand, by adding checkbits one creates the
possibility to increase the distance (the amount of bits two codewords differ) between two codewords in a
code. The quality of a code is determined by the Hamming distance d , which is the minimum distance be-
tween any two codewords in a code. In practice n and d are often already set, which gives rise to the question:
What is the maximum number of codewords in a code with the given n and d? This maximum is denoted
by A(n,d). Determining A(n,d) proves to be quite difficult and often we have to revert to lower and upper
bounds on A(n,d). This report focuses on comparing methods for finding upper bounds on A(n,d). In total
we compare six different methods and try to establish which method gives the lowest (best) upper bound.
Any peculiarities stemming from this comparison are explained in more detail.

In Chapter 2 we introduce the different types of methods for finding upper bounds, for each we give a
proof and a clarifying example. Next, in Chapter 3 we explain the linear programming bound with and with-
out extra constraints in more detail. Hereafter, we present the comparisons between the different methods in
Chapter 4. Finally, we give conclusions and recommendations in Chapter 5.

1.2. FUNDAMENTALS OF ERROR-CORRECTING CODES
Coding theory is studied for the purpose of designing efficient and reliable data transmission and storage
methods. Data transmission is the transfer of data over a point-to-point channel. Before we send the data
over this channel, we convert it into messages consisting only of zeroes and ones: binary words. These binary
words are from the set of the form: (F2)k = {a1a2 . . . ak |ai ∈ F2, i = 1,2, . . .k}. Where F2 is the finite field with 2
elements: "0" and "1".

Example 1 (Route system). A simple route can be indicated by a row of words from the set M ={north,
east, south, west} These are then converted to binary words from (F2)2 , for example:

north → 00

east → 01

south → 10

west → 11

1

2 1. INTRODUCTION AND FUNDAMENTALS

When sending a binary message from source to destination, there is always a chance of bits getting lost
or changed. To avoid miscommunications, the receiver of the message should (in most cases) be able to
find the original message sent from the source, which is only possible if the errors in the received message
can be found and corrected. Codes that allow for this type of corrections are called error-correcting codes.
A minimum condition for error-detection or error-correction is that the message, when sent through the
channel, does not change into a different message, as explained in Example 2. Errors in binary codewords
are always bit changing, i.e. from zero to one or vice versa. The bit error probability p is the chance of one
bit changing. In a symmetric system the chance of a bit changing from one to zero is equal to the chance of
a bit changing from zero to one. In this report only binary symmetric systems are discussed with 0 < p < 1

2 ,
meaning that the chance of a bit changing is always smaller than the chance of a bit remaining it’s original
value.

Example 2. Suppose someone is using the route system of Example 1. His system tries to send him
to the north, so the system sends the message 00.Due to bad reception, the message is transferred
incorrect and the second bit changes to 1. The person then receives 01 and travels to the east
instead of the north. With only one small error occurring, the person is sent in the wrong direction.

In 1950, Richard Hamming introduced a new coding strategy called "channel coding" and designed the
first error-correcting code, namely the "Hamming(7,4)"-code [1]. The words used in channel coding are
called codewords and the set of all the codewords is called the code. Channel coding consists of three major
phases: encoding, sending/receiving and decoding. Encoding a binary message to a codeword is done by
adding bits, so-called checkbits, to the end of the original binary message. The sending of a codeword pro-
ceeds through a channel to the receiver, who then decodes the codeword and estimates the original message.
An example of channel coding is given in Example 3. When using channel coding it is important that both
source and destination are familiar with the code and know all of the codewords.

Example 3 (Channel coding). The messages from Example 1 are encoded. The four directions
become four codewords and form code C1. Remark: the receiver also knows which direction is
encoded in which codeword but does not know which codeword was sent.

north: 00 → codeword: 00 000

east: 01 → codeword: 01 011

south: 10 → codeword: 10 101

west: 11 → codeword: 11 110

The route system (source) wants to send the receiver (destination) in the direction east, so it en-
codes the message 01 to the codeword 01011, which is then sent through the channel, see Figure
1.1. An error occurs, and the destination receives 00 011. When searching in code C1 it becomes
clear to the receiver that 00 011 is not a codeword that belongs to C1, which means that an error has
occurred. Because the probability of a bit changing is less than 50%, it is most likely that the lowest
possible number of errors has occurred. Now the receiver has to determine all possible bit changes
that could have caused a codeword to change into 00 011. To determine which of the codewords
originally was sent, one needs to find the codeword which differs from 00 011 in the least number
of places:

codeword: 00 000 → 00 011: 2 bits changed

codeword: 01 011 → 00 011: 1 bit changed

codeword: 10 101 → 00 011: 3 bits changed

codeword: 11 110 → 00 011: 4 bits changed

So in this case it is most likely that the second bit (red in Figure 1.1) in the sent codeword 01 011
has changed. The receiver "fixes" the error and estimates the codeword: 01 011. So he was able to
detect and correct the error that occurred during the transfer of the codeword.

1.2. FUNDAMENTALS OF ERROR-CORRECTING CODES 3

Figure 1.1: Example of error-correction[2]

Often all of the codewords are of the same length n, this is called a block code. In this report we focus on
a specific type of code: Binary error-correcting block codes . In this specific type of code, codewords are all of
the same length n and consist only of zeroes and ones. In mathematical terms: The codewords in a code C
are from a subset of a vector space: (F2)n = {a1a2 . . . an |ai ∈ F2, i = 1,2, . . .n}.

As seen in Example 3, decoding is actually searching for the codeword that differs from the received word
in the least amount of bits. This is also called nearest neighbor decoding. Hence the next definitions:

Definition 1. Let C1 be a binary block code. The distance d(x,y) between two codewords x,y ∈C1 is
the number of places these two words x and y differ.
In mathematical terms: d(x,y) = |{i |xi 6= yi }|. When x = y then d(x,y) = 0.

Definition 2. The Hamming distance of a code C , denoted with d, is the minimal distance between
any x and y ∈C . In mathematical terms: d = min{d(x,y)|x,y ∈C and x 6= y}.

When receiving a binary word that is indeed a codeword, it is assumed that no errors have occurred. If the
received word does not equal a codeword, then certainly something went wrong: an error is detected. A code
is called s-error detecting if it detects one up to and including s errors. Sometimes, when a retransmission
is possible, error detection is enough. However, in most cases nearest neighbor decoding is used to find the
original codeword that was sent from the source. A code is t-error correcting if it corrects one up to and
including t errors. The quality of a code is determined by the number of errors it is able to detect or correct.

Theorem 1. A code C with Hamming distance d can detect up to d −1 errors or can correct up to
d−1

2 errors.[6]

Definition 3. A code consisting of M codewords with lenght n and Hamming distance d is called a
(n, M ,d) code

Example 4. Code C1 from Example 3 has M = 4 codewords with length n = 5 and Hamming dis-
tance d = 3. C1 is a (5,4,3) code

When designing codes it is desirable to enable the code to detect and correct as many errors as possible.
The number of errors that can be detected depends on the Hamming distance d of a code, a larger d allows
for more errors to be detected or corrected, see Theorem 1. A larger Hamming distance is easily achieved by
adding more bits at the end of the binary words, this also increases the length n of the code. A larger n means
more information needs to be sent through the channel, which is less efficient. This efficiency of a binary

code is expressed with the code-rate R = 2 log M
n . The code-rate can also be calculated by dividing the length

of the message before encoding, by the length of the codeword after encoding. Therefore, the code-rate is
a measure to see the ratio between information carrying bits and safety bits in a codeword. For an efficient
code the code-rate R should be as close to 1 as possible. The challenge of designing a code lies in finding
the balance between the ability to detect and correct errors, expressed by a large hamming distance, and the
efficiency of a code, expressed by the code-rate.

Example 5. Code C1 from Example 3 has code-rate R = 2
5

4 1. INTRODUCTION AND FUNDAMENTALS

1.3. BOUNDS ON THE SIZE OF BINARY CODES
In practice n and d are often fixed, so then the question becomes what the maximum number of codewords
is in a code with the respective n and d . The maximum number of codewords in any binary code of length n
and Hamming distance d is denoted by A(n,d). In the next theorem we give a few characteristics of A(n,d).

Theorem 2 (Characteristics of A(n,d)). For any binary block code C with codewords of length n and
Hamming distance d the following (in)equalities apply:

1. If d > n then A(n,d) = 1 [3]

2. If d = 1 then A(n,d) = 2n[4]

3. A(n −1,2e −1) = A(n,2e) [5]

4. A(n,d) ≤ 2∗ A(n −1,d) [4]

Proof.

1. Two codewords can never differ in more bits than the number of bits they consist of. [3]

2. We count all the vectors in (F2)n , this is 2n [4].

3. We start with a code with Hamming distance 2e −1 and length n −1 with M codewords. We
build a new code C1 by adding a bit to the end of every codeword from C . If the codeword has
an even number of ones, we add a zero. If the codeword has an odd number of ones, we add
a one. By doing this we create a code with M codewords with length n and an even number
of ones. Because the codewords all have an even number of ones the distance between the
codewords also has to be even. This then gives us d = 2e. We created a (n, M ,2e) code. So
A(n − 1,2e − 1) ≤ A(n,2e). Conversely, given a (n, M ,2e) code, deleting one bit gives a (n −
1, M ,2e −1) code. So A(n −1,2e −1) ≥ A(n,2e).[5]

4. Let C be a A(n,d) code. Divide the code into two sets, codewords beginning with a "1" and
codewords beginning with a "0". One set must contain at least half or more of the codewords,
we call this set C1. Now deleting the first bit of every codeword in C1 leaves a code C2 with
minimum distance d2 and length n −1, containing at least A(n,d)

2 codewords. If d2 = d then
this gives us the inequality A(n,d) ≤ 2∗ A(n−1,d). However if d2 ≥ d we are not finished yet.
Search in C2 for the two closest codewords x and y. Now find a bit in which x and y differ
and replace this bit in every codeword in C2 with zero. By doing this we make d2 one smaller.
Repeat this technique untill d2 = d , then the first case applies.[4, 6]

A(n,d) is found by finding a lower bound and upper bound for A(n,d). When the lower and upper bound
are equal to each other, A(n,d) is found. In mathematical terms, set L ≤ A(n,d) ≤ U , when L = U , then
A(n,d) = L = U . However, in most cases only a lower and upper bound that are not equal to each other
are known, so we only know L ≤ A(n,d) ≤ U . In Table 1.1 the best known bounds for n = 6,7, . . .28 and
d = 4,6, . . .12 are shown. All cases with a known A(n,d) are shown in blue in Table 1.1. When only a lower and
upper bound are known, two values are shown, the first value is the lower bound and the second the upper
bound. Table 1.1 is restricted to even d because of part 3 of Theorem 2.

A lower bound is usually found by designing or finding a code that corresponds with a certain d and n.
An example of finding a lower bound for A(6,4) is given below. Remark: by part 3 of Theorem 2 it holds that
A(6,4) = A(5,3). So in this example a lower bound for A(n,d) is found for the same Hamming distance and
length as Example 3.

Example 6. We design a code C2 to obtain a lower bound for A(6,4) We know: n = 6 and d = 4.
This means that all the codewords of C2 must have length 6 and d(x,y) ≥ 4,∀x,y ∈C2. We start by
choosing the first codeword x1 = 000 000. Then we find a codeword x2 that has 4 ones to make sure
it’s distance from x1 is at least 4. We choose: 001 111. Now we want to find x3 that has minimum
distance 4 from x1 and x2. We choose: 110 011. And for x4 we choose 111 100. Notice that the
minimum distance between all xi is 4. So we found a code C2 that consist of 4 codewords of length
6 and with a minimum distance of 4. This then gives the lower bound for A(6,4) ≥ 4.

1.3. BOUNDS ON THE SIZE OF BINARY CODES 5

n d=4 d=6 d=8 d=10 d=12
6 4a1 2a1 1a1 1a1 1a1

7 8a1 2a1 1a1 1a1 1a1

8 16a1 2a1 2a1 1a1 1a1

9 20b1 4a1 2a1 1a1 1a1

10 40a1 6a1 2a1 2a1 1a1

11 72d 12a1 2a1 2a1 1a1

12 144d 24a1 4a1 2a1 2a1

13 256a3 32b2 4a1 2a1 2a1

14 512a3 64a3 8a1 2a1 2a1

15 1024a2 128a3 16a1 4a1 2a1

16 2048a2 256a2 32a1 4a1 2a1

17 2816−3276a3 256−340b3 36O 6a1 2a1

18 5632−6552a1 512−673G 64−71H 10a1 4a1

19 10496−13104a1 1024−1237G 128−131H 20a1 4a1

20 20480−26168a1 2048−2279G 256G 40a1 6a1

21 40960−43688M 2560−4096b3 512b3 42−47G 8a1

22 81920−87333M 4096−6941b1 1024a3 64−84G 12a1

23 163840−172361M 8192−13674G 2048a3 80−150b1 24a1

24 327680−344308a2 16384−24106b1 4096a2 136−268G 48a1

25 219 −599184M 17920−47538S 4096−5421G 192−466G 52−55G

26 220 −1198368M 32768−84260M 4104−9275G 384−836G 64−96G

27 221 −2396736M 65536−157285M 8192−17099G 512−1585G 128−169b1

28 222 −4792950M 131072−291269b1 16384−32151S 1024−2817G 178−288a3

Table 1.1: Table with the best known bounds for n = 6,7, . . .28 and d = 4,6, . . .12 [3, 7]. Legend of superscripts:

• a1: Found with Thm 1 due to M. Plotkin in [8]

• a2: Found with Thm 2 due to S. M. Johnson in [8]

• a3: Found with Thm 3 due to P. Delsarte in [8]

• b1: Found with Thm 5 and Thm 8 in [9]

• b2: Found in Thm 4 in [9]

• b3: Found with linear programming in [9]

• d: Found in [10]

• M: Found in [11]

• S: Found in [12]

• O: Found in [13]

• G: Found in [14]

• H: Found in [15]

A linear code is a code for which any two codewords added together also form a codeword. Linear error-
correcting codes allow for more efficient encoding and decoding algorithms than non-linear codes. A binary
linear code of length n and rank k, the length of the original messages before encoding, is a linear subspace C
wtih dimension k of the vector space (F2)n . For a binary linear code it follows that the number of codewords
equals 2k [6]. The code from Example 3 is a linear code with n = 5 and k = 2. Building a linear code with a
certain n and d is still very difficult but can be done with more structure than a non-linear code. For this rea-
son a lower bound on A(n,d) is often found by designing a linear code with 2k codewords. Therefore, many
of the lower bounds in Table 1.1 are a power of 2.

This report mainly focuses on the upper bounds on A(n,d) and how they can be found. In the next chapter
a few of the most used methods to find an upper bound are explained. For one of these methods another type
of maximum is needed: A(n,d , w). A(n,d , w) denotes the maximum number of codewords in any binary
code of length n, Hamming distance d and weight w .

Definition 4. The weight w(x) of a vector x ∈ (F2)n is the number of bits unequal to zero. In mathe-
matical terms: w(x) = |{i |xi 6= 0}|
Theorem 3. For two vectors x,y ∈ (F2)n it holds that d(x,y) = w(x+y)[6]

A(n,d , w) is found in the same way as A(n,d), by finding a lower- and upper bound. The tables for A(n,d , w)
for n = 6,7, . . .28, d = 4,6, . . .12 and w = 2. . .12 used in this report are in Appendix C.

2
FINDING UPPER BOUNDS ON A(N,D)

When finding an upper bound U for A(n,d), it follows that the maximum number of codewords in a binary
code of length n and Hamming distance d can never be more than this upper bound. So it is desirable to find
an upper bound on A(n,d) that is as small as possible, because then the upperbound on A(n,d) is as close
to A(n,d) as possible. When trying to find an upper bound on A(n,d), there are several methods that can be
used. These methods that give an upper bound for A(n,d) are called bounds. In this chapter the following
bounds are discussed:

1. Singleton bound

2. Plotkin bound

3. Hamming bound

4. Johnson bound

For every bound we give a detailed description, a proof and a clarifying example. The linear programming
bound is treated seperately in Chapter 3.

2.1. THE SINGLETON BOUND
The Singleton bound is a crude upper bound on A(n,d) which in most cases does not give the best upper
bound. However, it is very easy to calculate.

Theorem 4 (Singleton bound [5, 16]). Let C be a binary error-correcting code of length n and Ham-
ming distance d, then the maximum number of codewords in C is limited by: A(n,d) ≤ 2n−d+1.

Proof. [5, 16, 17] First observe that the total number of binary words of length n is 2n , since each
bit in a codeword may be a one or a zero independently of the remaining bits. Now let C be an
arbitrary binary code with Hamming distance d . If we shorten the code by deleting the first d −1
bits of each codeword, then all resulting codewords must still be pairwise different. Thus the size
of the new shortened code is the same as the original code C . The new codewords have length
n − (d −1) = n −d +1, thus there can be at most 2n−d+1 new codewords. Since C was arbitrary and
the same size as the new code, this bound must hold for the largest possible code with this length
and Hamming distance.

Example 7. We calculate the Singleton bound for A(6,4), so n = 6 and d = 4:

A(6,4) ≤ 2n−d+1 = 26−4+1 = 23 = 8

Hence with Example 6 we find 4 ≤ A(6,4) ≤ 8.

7

8 2. FINDING UPPER BOUNDS ON A(N,D)

2.2. THE PLOTKIN BOUND
The Plotkin bound only applies to (n, M ,d) codes with n < 2d . Just as the Singleton bound the Plotkin bound
is easy to calculate, the proof however is a bit more difficult. For the special cases n = 2d another Plotkin
bound applies. We discuss this "second part" of the Plotkin bound later in this paragraph.

Theorem 5 (Plotkin bound [4, 5]). Let C be a binary error-correcting code of length n and Hamming
distance d. If n < 2d , then the maximum number of codewords in C is limited by:

A(n,d) ≤ 2

⌊
d

2d −n

⌋
(2.1)

Proof. [5]Let M = A(n,d) and let C be a (n, M ,d) code. Define

S = ∑
x∈C

∑
y∈C

d(x,y) (2.2)

Equation (2.1) is found by finding a lower and upper bound for S. We start by finding a lower bound
for S, note:

d(x,y)

{
= 0, if x = y

≥ d , otherwise

So for S (2.2) it follows that:
S ≥ M(M −1)d (2.3)

Now we find an upper bound for S. Let A be an M ×n matrix whose rows are the cowords that
belong to C . Suppose the i th colomn of A containsαi zeroes and M −αi ones. Then the i th colomn
of A contributes 2αi (M −αi) to the sum S. So now S becomes:

S =
n∑

i=1
2αi (M −αi) (2.4)

We now distinguish two cases: M is even and M is odd. For the case that M is even, Equation (2.4)
is maximized if for all i , αi = 1

2 M . So now we find:

S =
n∑

i=1
2αi (M −αi) ≤

n∑
i=1

2∗ 1

2
M(M − 1

2
M) = 1

2
nM 2 (2.5)

Combining (2.3) and (2.5) gives:

M(M −1)d ≤ S ≤ 1

2
nM 2 ⇒

M ≤ 2d

2d −n
(2.6)

Because M is even equation (2.6) becomes:

M ≤ 2

⌊
d

2d −n

⌋
(2.7)

For the case that M is odd, Equation (2.4) is maximized if for all i , αi = M−1
2 . So now we find:

S =
n∑

i=1
2αi (M −αi) ≤ n

M 2 −1

2
(2.8)

Combining (2.3) and (2.8) and using that b2xc ≤ 2bxc+1, gives:

M(M −1)d ≤ S ≤ n
M 2 −1

2
⇒

M ≤ n

2d −n
= 2d

2d −n
−1 ≤ 2

⌊
d

2d −n

⌋
(2.9)

Equations (2.7) and (2.9) result in the Plotkin bound.

2.3. THE HAMMING BOUND 9

Example 8. We calculate the Plotkin bound for A(6,4). First we have to check whether 2d ≥ n,
filling in n = 6 and d = 4 gives us: 2∗4 ≥ 6. So the Plotkin bound applies to A(6,4). Now we find:

A(6,4) ≤ 2

(
d

2d −n

)
= 2

(
4

2∗4−6

)
= 4

Hence with Example 6 we find 4 ≤ A(6,4) ≤ 4. This implies: A(6,4) = 4.

Now we discuss the special cases n = 2d .

Theorem 6 (Plotkin bound "second part" [5]). Let C be a binary error-correcting code of length n
and Hamming distance d. If n = 2d then,

A(n,d) ≤ 2n

Proof. From part 4 in Theorem 2 we know A(n,d) ≤ 2∗A(n−1,d). Now set n = 2d , with the Plotkin
bound from 2.1 we find A(n,d) = A(2d ,d) ≤ 2∗ A(2d −1,d) ≤ 2∗2∗d = 4d = 2n

2.3. THE HAMMING BOUND
The Hamming bound is somewhat different from the Singleton and Plotkin bound. The Hamming bound
does not just count the number of possible codewords in a code C , it originates from a different perspective.
The bound starts with all possible vectors with length n, this is 2n , and then divides this by the volume of a
"Hamming sphere". This is where the name sphere-packing bound comes from. The definition of a Hamming
sphere and how these spheres are used to find an upper bound on A(n,d) is given in the proof of Theorem 7.

Theorem 7 (Hamming bound [5]). Let C be a binary error-correcting code of length n and Hamming
distance d. If d is odd and d = 2t +1 then A(n,d) is bound by:

A(n,d) ≤ 2n∑t
k=0

(n
k

)
If d = even we use part 3 of Theorem 2 to calculate the Hamming bound as shown in Example 9.

Proof. [5] Note that through the definition of d , at most t = d−1
2 errors can be corrected by nearest

neighbor decoding. For a given codeword xi (i = 1, . . . , M) in a code C , consider the sphere with
radius t and center xi , see Figure 2.1. Every pair of spheres with a codeword xi (i = 1, . . . , M) in
the center and radius t contains w words. Any two different spheres with centers xi and x j with
i , j = 1, . . . , M and i 6= j are non-intersecting. These spheres are called "Hamming spheres". The
sum w = (n

0

)+ (n
1

)+ (n
2

)+·· ·+ (n
t

)
describes the volume of such a sphere. The first term in the sum

is the number of words that differ from x in zero positions, that is the number of words equal to
x. Therefore the first term is equal to 1. The second term in the sum is the number of words that
differ from x in one position. There are

(n
1

)= n positions in which a word might differ from x. The
other terms are similar, but for each consecutive term there is one more bit that differs from x.
The last term ads the number of words that differ from x in t positions. Note that the volume of
the Hamming sphere is the number of words that decode to x. When we multiply the number of
spheres (this is equal to the number of codewords) with the volume of such a sphere, we get the
total number of vectors in all of the spheres. This number has to be smaller or equal to the number
of all possible vectors with length n, this is 2n . In mathematical terms:

M ∗w = M ∗
t∑

k=0

(
n

k

)
≤ 2n ⇒ M ≤ 2n∑t

k=0

(n
k

)
Concluding, the maximum number of possible words in a binary alphabet of length n (= 2n), di-
vided by the sum of the volumes of the Hamming spheres, gives an upper bound on the maximum
number of spheres and therefore on the maximum number of codewords.

10 2. FINDING UPPER BOUNDS ON A(N,D)

Figure 2.1: Illustration of the Hamming bound.

Example 9. We calculate the Hamming bound for A(6,4). Note: A(6,4) = A(5,3) by part 3 of Theo-
rem 2, so we calculate A(5,3) with odd d and t = d−1

2 = 1.

A(5,3) ≤ 25∑1
k=0

(5
k

) = 32(5
0

)+ (5
1

) = 32

1+5
= 5

1

3

There is no such thing as 1
3 codeword, so we round down to the next lower integer. Hence with

Example 6 we find 4 ≤ A(6,4) = A(5,3) ≤ 5.

2.4. THE JOHNSON BOUND 11

2.4. THE JOHNSON BOUND
The Johnson bound is an improvement on the Hamming bound. The Johnson bound also divides the total
number of possible binary words of length n , 2n , by the Hamming spheres from the previous proof. In
addition it adds the number of vectors that differ t +1 from the center codeword x, making sure they are not
counted twice, to the denominator. In turn, this gives a larger denominator and a better upper bound for
A(n,d).

Theorem 8 (Johnson bound [5]). Let C be a binary error-correcting code of length n and Hamming
distance d. If d is odd and d = 2t +1 then A(n,d) is bound by:

A(n,d) ≤ 2n∑t
k=0

(n
k

)+ (n
t+1

)−(d
t

)
A(n,d ,d)

A(n,d ,t+1)

Proof. [5] For a given codeword x in a code C , consider the sphere with radius t and center x.
See Figure 2.2. Every pair of spheres with a different codeword in the center and radius t is non-
intersecting and contains w words. The sum w =∑t

k=0

(n
k

)
gives the volume of such a sphere (just as

in the proof of Theorem 7). The idea behind the Johnson bound is dividing the maximum number
of possible words in a binary alphabet of length n, (= 2n), by the volume of the spheres with center
xi (i = 1, . . . , M) and radius t+1. However, this procedure no longer guarantees that any two spheres
with a different codeword in the center and radius t +1 are non-intersecting, causing some of the
vectors to be counted more than once. Note that the number of vectors that differ from x in t +1
places is

(n
t+1

)
.

The next part focuses on counting how many vectors there are that differ from x in t + 1 places
without counting them more than once. Assume (without loss of generality) that x is the zero
vector (vector consisting of only zeroes) and f is a vector with d(x, f) = t + 1. Notice that w(f) =
t + 1.The number of spheres f could be contained in, is the number of codewords h at distance
d from x, times the number of vectors with weight t + 1 and distance t from h. The number of
codewords h at distance d from x is at most A(n,d ,d) and the number of vectors with weight t +1
and distance t from h is

(d
t+1

)= (d
t

)
. So the number of vectors at distance t +1 from x without also

being contained in the sphere with radius t of another codeword h is at most
(n

t+1

)− (d
t

)
A(n,d ,d).

Take one of these vectors and call it k. Assume (without loss of generality) that k is the zero vector.
k could still be contained in another sphere with center u, radius t + 1 and d(k,u) = t + 1. The
number of these spheres is at most A(n,d , t + 1), so dividing

(n
t+1

)− (d
t

)
A(n,d ,d) by A(n,d , t + 1)

gives the maximum number of vectors that differ from x in t + 1 places without being counted
more than once. Now the Johnson bound is given by dividing the maximum number of possible
words in a binary alphabet of length n, 2n , by the volume of a Hamming sphere and the number of
codewords that differ from x in t +1 places (counted once).

Figure 2.2: Illustration of the Johnson bound.

12 2. FINDING UPPER BOUNDS ON A(N,D)

Example 10. We calculate the Johnson bound for A(6,4).
Note: A(6,4) = A(5,3) by part 3 of Theorem 2, so we calculate A(5,3) with odd d and t = d−1

2 = 1.

A(5,3) ≤ 2n∑t
k=0

(n
k

)+ (n
t+1

)−(d
t

)
A(n,d ,d)

A(n,d ,t+1)

= 25(5
0

)+ (5
1

)+ (5
2

)−(3
2

)∗2
2

= 4

The values for A(n,d , w) can be found in the tables for A(n,d , w) for n = 6. . .28, d = 4. . .12 and w = 2. . .12 in
Appendix C.

3
LINEAR PROGRAMMING BOUND

A widely used method for finding A(n,d) is the linear programming bound, which optimizes a single objective
function subject to some linear constraints. This chapter starts with an explanation of the canonical form of
a linear programming problem. Hereafter we present the theorem on which the linear programming bound
is based and how linear programming is used to find an upper bound on A(n,d).

3.1. LINEAR PROGRAMMING
In linear programming a single objective function is optimized while subject to constraints. The problem is
usually expressed in canonical form as:

maximize cT x
such that Hx ≤ b,

x ≥ 0

Here cT is a transposed n-dimensional vector, b is a m-dimensional vector, x is a n-dimensional vector
and H is a m ×n-matrix. The vector x consists of variables that have to be determined. Although it is still not
known if it is polynomial in the worst case scenario, the simplex and dual simplex methods are often used
for solving linear programming problems because they are efficient in practice. The dual simplex method is
the same as first writing the linear program in the dual form and then using the simplex method to find the
optimal solution. The dual form of a linear programming problem is formulated by in Table 3.1.

LP formulation Dual formulation

Max cT x Min bT y
x ≥ 0 HT y ≥ b
Hx ≤ b y ≥ 0

Table 3.1: Primal to Dual transformation of a linear program [18]

Theorem 9 (Duality [18]). Let x and y be feasible solutions to the LP formulation and dual formu-
lation respectively. Then x and y are both optimal if and only if cT x = bT y

Example 11. f Suppose we want to find the optimal solution for the following linear program.

maximize x1 +x2

such that x1 +2x2 ≤ 10,
−x1 +x2 ≤ 3,
3x1 +x2 ≤ 10
x1 ≥ 0
x2 ≥ 0

13

14 3. LINEAR PROGRAMMING BOUND

In Figure 3.1 a graphical representation is given. The dashed line indicates the objective function
and the set of feasible solutions is depicted in the grey shaded area. In general, if there exists an
optimal solution to the problem, the objective function takes it’s maximum (or minimum) in one
of the corners. In Figure 3.1 we can see that a solution is found for x = (2,4), this solution gives the
maximum value for the objective function, x1 +x2 = 2+4 = 6.

Figure 3.1: Graphical representation of the linear program from Example11

Another possibility to find the optimal solution is to use the dual representation of this linear pro-
gram. We find the dual linear program by using Table 3.1.

minimize 10y1 +3y2 +10y3

such that y1 − y2 +3y3 ≥ 1,
2y1 + y2 + y3 ≥ 1,
y1 ≥ 0
y2 ≥ 0
y2 ≥ 0

Now by using the simplex method we find a solution for y1 = 0.4 , y2 = 0 and y3 = 0.2, which gives
10y1+3y2+10y3 = 6 as the minimum value of the objective function. With Theorem 9 we now find
that x and y are optimal.

3.2. DELSARTE’S THEOREM 15

3.2. DELSARTE’S THEOREM
This section explains Delsarte’s theorem, where the linear programming bound is based upon. For this theo-
rem two new definitions are needed and these are provided next.

Definition 5. Let C be an (n, M ,d) code. The weight distribution of C with respect to a vector u is
the (n +1)-tuple of integers (Ai (u), i = 0, · · · ,n), where Ai (u) is the number of codewords v ∈ C such
that d(u,v) = i .

Definition 6. Let C be an (n, M ,d) code. The distance distribution of C is the (n+1)-tuple of rational
numbers (A0, A1, . . . , An), defined by Ai = 1

M

∑
u∈C Ai (u)

Note that for every (n, M ,d) code C A0 = 1, Ai ≥ 0 and
∑

i Ai = M ≤ A(n,d). In Example 12 we give the weight
and distance distributions of a code C2.

Example 12. We build a (5,4,2) code C2 and give the weight and distance distributions:

codeword A0(u) A1(u) A2(u) A3(u) A4(u) A5(u)
u1 = 00 101 1 0 0 2 0 1
u2 = 11 010 1 0 2 0 0 1
u3 = 10 011 1 0 1 1 1 0
u4 = 01 110 1 0 1 1 1 0

A0 = 1 A1 = 0 A2 = 1 A3 = 1 A4 = 1
2 A5 = 1

2

In Example 13 the weight and distance distributions of linear code C1 from Example 3 are given.

Example 13. Recall the linear code C1 from Example 3, we give the weight and distance distribu-
tions:

codeword A0(u) A1(u) A2(u) A3(u) A4(u) A5(u)
u1 = 00 000 1 0 0 2 1 0
u2 = 01 011 1 0 0 2 1 0
u3 = 10 101 1 0 0 2 1 0
u4 = 11 110 1 0 0 2 1 0

A0 = 1 A1 = 0 A2 = 0 A3 = 2 A4 = 1 A5 = 0

In general it holds for a linear code that Ai (u) = Ai (v) for u,v ∈C . So it also holds that Ai = Ai (u) for any u ∈C
[9]. Before we can discuss the Linear programming bound we need a new theorem, Delsarte’s theorem:

Theorem 10 (Delsarte [9]). Let C be an (n, M ,d) code with distance distribution (A0, A1, · · · , An)
Then the quantities B0,B1, · · · ,Bn are nonnegative, where

Bk = M−1
n∑

i=0
Ai Kk (i), k = 0,1, · · · ,n (3.1)

with Kk a Kwawtchouk polynomial, defined by

Kk (t) =
k∑

j=0
(−1) j

(
n − t

k − j

)(
t

j

)
, k = 0,1, · · · ,n (3.2)

Proof. [9] First consider the dotproduct: 〈w,x〉 =∑n
i=0 wi xi with w(w) = i and w(x) = k as in Figure

3.2.

Figure 3.2: composition of w and x

16 3. LINEAR PROGRAMMING BOUND

Then the number of different x with fixed w and j is:(
i

j

)(
n − i

k − j

)
(3.3)

Note that

〈w,x〉 =
{

0, if j is even

1, if j is odd
(3.4)

so combining (3.2), (3.3) and (3.4) we find:

∑
x∈{0,1}n

w t (x)=k

(−1)〈w,x〉 =
k∑

j=0
(−1) j

(
n − i

k − j

)(
i

j

)
= Kk (i) (3.5)

Now we use this to rewrite Bk and find that they are all nonnegative.

Bk = M−1
n∑

i=0
Ai Kk (i)

Now we fill in the definition for Ai = 1
M

∑
u∈C Ai (u) and we get:

= M−1
n∑

i=0
M−1

∑
u∈C

Ai (u)Kk (i)

With the definition of Ai (u) we find:

= M−2
n∑

i=0

∑
u∈C

∑
v∈C

w t (u−v)=i

Kk (i)

With equation 3.5 we find:

= M−2
n∑

i=0

∑
u∈C

∑
v∈C

w t (u−v)=i

∑
x∈{0,1}n

w t (x)=k

(−1)〈u−v,x〉

By switching the sums and rewriting the inproduct we find:

= M−2
∑

x∈{0,1}n

w t (x)=k

∑
u∈C

n∑
i=0

∑
v∈C

w t (u−v)=i

(−1)〈u,x〉(−1)〈v,x〉

By combining the two last sum signs we find:

= M−2
∑

x∈{0,1}n

w t (x)=k

∑
u∈C

(−1)〈u,x〉 ∑
v∈C

(−1)〈v,x〉

= M−2
∑

x∈{0,1}n

w t (x)=k

(bx)2 ,with bx =
∑

u∈C
(−1)〈u,x〉

Because the square is always nonnegative it follows that Bk ≥ 0.

3.3. THE BOUND 17

3.3. THE BOUND
Let C be a code with the maximum number of codewords for a given length n and Hamming distance d , then

M = A(n,d) = 1+ Ad + Ad+1 +·· ·+ An

Theorem 11 (Linear programming bound [9]). Suppose L(n,d) is the optimal solution to the fol-
lowing linear programming problem:

maximize Ad + Ad+1 +·· ·+ An

such that Ai ≥ 0, i = d , · · · ,n,
Bk ≥ 0, k = 0, · · · ,n

(3.6)

Where Bk = M−1 ∑n
i=0 Ai Kk (i). Then A(n,d) ≤ 1+L(n,d). This is the simplest form of the linear

programming bound for binary codes.

To apply this linear programming bound we need a few new observations:

Observation 1 (Puncturing [19]). Suppose C1 is a (n, M ,d) code with even d . Choose two code-
words x and y with d(x,y) = d . Search for a bit in which x and y differ, say the i th bit. Now remove
the i th bit from every codeword. The distance between x and y now becomes d −1 and we obtain
a (n −1, M ,d −1) code. This is called puncturing a code.

Theorem 12 (Extending [19]). Suppose C1 is a (n, M ,d) code with odd d. We build a new code C2 by
adding a "0" at the end of every codeword with even weight and a "1" at the end of every codeword
with odd weight. Then we obtain a (n +1, M ,d +1) code C2. All the codewords in C2 now have even
weight. This is called extending a code.

Proof. [19] Take x,y ∈ C with d(x,y) = d . We first proof the following equation: d(x,y) = w(x)+
w(y)− 2w(x∩ y), where w(x∩ y) denotes the number of positions both x and y have a "1". For
d(x,y) we only want to count the ones where x and y differ. When adding w(x) and w(y), the total
number of ones in x and y is counted. This means that the ones that x and y have in common are
counted twice, namely once in x and once in y. Thus we need to deduct 2w(x∩y) from w(x)+w(y).
Now we proceed with the proof of Theorem 12. Because d(x,y) is odd, w(x)+w(y)−2w(x∩y) has to
be odd as well. Notice that 2w(x∩y) is always even. Hence we find that w(x) or w(y) has to be odd
and the other even. This means that we add a "1" to either x or y and a "0" to the other. Therefore
the minimum distance becomes d +1.

Theorem 13. [9] Suppose C1 is a (n, M ,d) code with d even. By first puncturing and then extending
this code we find an (n, M ,d) code C2 in which all distances are even.

Proof. We use the following equation: d(x,y) = w(x)+w(y)−2w(x∩y) (the proof can be found in
the proof of Theorem 12), where w(x∩y) denotes the number of positions both x and y have a "1".
We know w(x), w(y) and 2w(x∩y) are even, hence d(x,y) is even.

In the following example an upper bound for A(6,4) is found by using the Linear programming bound.

Example 14. Finding an upper bound for A(6,4) with the linear programming bound. Let C be a
(6,M,4) code, first observe that by Theorem 13 we can puncture and then extend this code to obtain
a (6,M,4) code in which all distances are even. If (A0, A1, . . . , An) is the distance distribution of C ,
then A0 = 1 and the remaining Ai ’s are zero except (possibly) for A4 and A6. The inequalities Bk ≥ 0
from 3.6 become:

B0 = M−1(A0K0(0)+ A4K0(4)+ A6K0(6)) = M−1(1+ A4 + A6) ≥ 0
B1 = M−1(A0K1(0)+ A4K1(4)+ A6K1(6)) = M−1(6−2A4 −6A6) ≥ 0
B2 = M−1(A0K2(0)+ A4K2(4)+ A6K2(6)) = M−1(15−1A4 +15A6) ≥ 0
B3 = M−1(A0K3(0)+ A4K3(4)+ A6K3(6)) = M−1(20+4A4 −20A6) ≥ 0

(3.7)

18 3. LINEAR PROGRAMMING BOUND

There is a certain symmetry in the Krawtchouck polynomials that cause: B0 = B6, B1 = B5 and
B2 = B4. Because M ≥ 0, the inequalities from 3.7 now become:

1+ A4 + A6 ≥ 0
6−2A4 −6A6 ≥ 0
15−1A4 +15A6 ≥ 0
20+4A4 −20A6 ≥ 0

(3.8)

When we add the objective function "maximize A4 + A6" and write the inequalities in the form of
a linear program from Section 3.1 with

H =


−1 −1
2 6
1 −15
−4 20

 , x =
(

A4

A6

)
and b =


1
6

15
20


we find:

maximize A4 + A6
such that −A4 − A6 ≤ 1,

2A4 +6A6 ≤ 6
A4 −15A6 ≤ 15
−4A4 +20A6 ≤ 20
A4 ≥ 0
A6 ≥ 0

Now applying the dual simplex method we find that A4 = 3 and A6 = 0 and the optimal solution
A4 + A6 = 3. Consequently, this gives A(6,4) ≤ 1+ A4 + A6 = 4.

3.4. ADDITIONAL CONSTRAINTS 19

3.4. ADDITIONAL CONSTRAINTS
In the linear programming problem of (3.6) it is possible to add extra constraints. Often these constraints
lead to a lower optimal solution for the linear programming problem. This lower L(n,d) leads to a lower
upper bound for A(n,d) ≤ 1+L(n,d). So adding extra constraints can result in a better upper bound. For
these extra constraints the known bounds on A(n,d , w) are used (see Appendix C).

Theorem 14. [9] Let C be a (n, M ,d) code. The number of codewords v ∈ C such that d(u,v) = i
(i = d , . . . ,n) is less or equal to the number of codewords v ∈C such that w(v) = i ,

Ai (u) ≤ A(n,d , i) (3.9)

Because Ai (u) ≤ A(n,d , i) for all u ∈C it follows that Ai ≤ A(n,d , i)

Proof. Let u be a codeword in a (n, M ,d) code C . Note that

Ai (u) = |{v ∈C such that d(u,v) = i }| (3.10)

Now examine the v from 3.10: Those v have distance i from u. Then, if u is transferred to the
codeword containing only zeroes (without loss of generality), the v all have weight i . The number
of codewords v that have weight i is A(n,d , i). So now we find Ai (u) ≤ A(n,d , i).

In Example 15 Theorem 14 is used to find an upper bound for A(6,4) from Example 14.

Example 15. We add the extra constraints Ai (u) ≤ A(n,d , i) to the linear program from Example
14.

A4(u) ≤ A(6,4,4) = 3,
A6(u) ≤ A(6,4,6) = 1

Now the linear program from Example 14 becomes:

maximize A4 + A6

such that −A4 − A6 ≤ 1,
2A4 +6A6 ≤ 6
A4 −15A6 ≤ 15
−4A4 +20A6 ≤ 20
A4 ≤ 3,
A6 ≤ 1
A4 ≥ 0
A6 ≥ 0

with

H =



−1 −1
2 6
1 −15
−4 20
1 0
0 1

 , x =
(

A4

A6

)
and and b =



1
6

15
20
3
1


By applying the dual simplex method we find that A4 = 3 and A6 = 0 and the maximum value for
the objective function, A4 + A6 = 3. In turn, this gives A(6,4) ≤ 1+ A4 + A6 = 4. In this case we don’t
find a better upper bound for A(6,4). From Example 6 we already know that A(6,4) ≥ 4, therefore
finding a better upper bound is impossible.

4
COMPARING BOUNDS

In this chapter we compare the six bounds introduced in Chapter 2 and 3. For this purpose we introduce a
new notation: U (n,d), this denotes the result for n and d given by the bound corresponding to U . We then
have: Plot (n,d), Si ng (n,d), H am(n,d), John(n,d), Li n(n,d) and Li nE xtr a(n,d). We also use A∗(n,d) to
denote the best known upper bound from Figure 1.1. In Section 4.1 we explain how we calculated all of the
results for the bounds using Matlab. Next, in Section 4.2 we compare the Plotkin and Singleton bound, in
Section 4.3 we compare the Hamming and Johnson bound and in Section 4.4 we compare the linear pro-
gramming bound to the linear programming bound with extra constraints. Also, in Section 4.4 we zoom in
on the linear programming bound without and with extra constraints for d = 4. To conclude this chapter, we
compare the linear programming bound with extra constraints to the Johnson bound and discuss a special
case for n = 24 and d = 4 in Section 4.5.

4.1. MATLAB IMPLEMENTATION
To obtain all the results for the six different bounds for n = 6,7, . . . ,28 and d = 4,6, . . . ,12, we implemented
these in Matlab. The Matlab codes can be found in Appendix A. To scale and compare the results we use a
variable similar to the code rate, introduced in Chapter 1. This variable is defined as the logarithm of the
results for U (n,d) devided by n, the use hereof also allows for a better graphical representation.

For the linear programming bound with and without extra constraints we used the Matlab function
"linprog(f,A,b,Aeq,beq,lb,ub,options)". This function finds the optimal solution by means of iteration and
has an "Function Tolerance" of 1 · 10−8. This is a stopping criterium for the function "linprog", and means
that the iterations end when the step size in the objective function is less then 1 ·10−8. Due to this tolerance
the results found for Li n(n,d) and Li nE xtr a(n,d) have an uncertainty of up to a 1 ·10−8, therefore we round
the results to six decimals.

4.2. PLOTKIN AND SINGLETON BOUND
First we compare two bounds that are straightforward to calculate, the Plotkin bound and Singleton bound.
For all n = 6,7, . . . ,28 and d = 4,6, . . . ,12, we compute Plot (n,d) and Si ng (n,d) using Matlab as discussed in
Section 4.1. For n = 2d we use the "second" part of the Plotkin bound. The results for all d = 4,6, . . . ,12 can
be found in Appendix B and in Figure 4.1 a graphical representation is given. The bounds on A(n,d) for d = 8
can also be found in Table 4.1. When a result is equal to A∗(n,d) it is denoted in blue.

The Plotkin bound is unmistakably better than the Singleton bound for every n = 6,7, . . . ,2d and d =
4,6, . . . ,12. The only downside of the Plotkin bound is that it gives no results for n > 2d . This is why there
are no values in Table 4.1 for n > 16. However, when the Plotkin bound does apply, Plot (n,d) is always (for
n = 6,7, . . . ,2d and d = 4,6, . . . ,12) equal to A∗(n,d).

Upon examination of the Singleton bound we find that, by augmenting n with 1 for n ≥ d , Si ng (n +1,d)
becomes two times larger then Si ng (n,d). This explains the rapid increase of the results for Si ng (n,d). Over-
all the Singleton bound is not useless, but when comparing A∗(n,d) (shown in Appendix B) with Si ng (n,d),
it is safe to say that it is of no use when searching for A(n,d). In the cases that Si ng (n,d) = A∗(n,d), then the
Plotkin bound gives the same result.

21

22 4. COMPARING BOUNDS

5 7 9 11 13 15 17 19 21 23 25 27 29

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Plot(n,d) and Sing(n,d)

Plotkin d=4

Plotkin d=6

Plotkin d=8

Plotkin d=10

Plotkin d=12

Singleton d=4

Singleton d=6

Singleton d=8

Singleton d=10

Singleton d=12

Figure 4.1: Upper bounds on A(n,d) found with the Plotkin and Singleton bound.

n A∗(n,8) Plot (n,8) Si ng (n,8)
6 1 1 1
7 1 1 1
8 2 2 2
9 2 2 4
10 2 2 8
11 2 2 16
12 4 4 32
13 4 4 64
14 8 8 128
15 16 16 256
16 32 32 512
17 36 1.024
18 71 2.048
19 131 4.096
20 256 8.192
21 512 16.384
22 1024 32.768
23 2048 65.536
24 4096 131.072
25 5421 262.144
26 9275 524.288
27 17099 1.048.576
28 32151 2.097.152

Table 4.1: Upper bounds on A(n,8) found with the Plotkin and Singleton bound

4.3. HAMMING AND JOHNSON BOUND 23

4.3. HAMMING AND JOHNSON BOUND
In this paragraph we compare the Hamming bound to the Johnson bound. The Hamming bound is fairly
straightforward to calculate and it already has much better results than the Singleton bound, see Appendix
B. For all n = 6,7, . . . ,28 and d = 4,6, . . . ,12, we calculate H am(n,d) and John(n,d) using Matlab as discussed
in Section 4.1. The results for all d = 4,6, . . . ,12 are calculated using A(n −1,2e −1) = A(n,2e) from part 3 of
Theorem 2 and can be found in Appendix B, in Figure 4.2 a graphical representation is given. The bounds on
A(n,d) for d = 6 can also be found in Table 4.2, when a result is equal to A∗(n,d) it is denoted in blue.

When closely observing the results in Figure 4.2 and in Appendix B, it is clear that the Johnson bound gives
a better upper bound for A(n,d) than the Hamming bound (for d = 4,6, . . . ,12 and n = 6,7, . . . ,28). The John-
son bound improves the Hamming bound (when H am(n,d) > A∗(n,d) and for d = 4,6, . . . ,12, n = 6,7, . . . ,28)
in %91,3 of the cases. Jon(n,d) is equal to A∗(n,d) in %28,7 of the cases (for d = 4,6, . . . ,12, n = 6,7, . . . ,28).

From the definitions of H am(n,d) and John(n,d) it is clear that John(n,d) ≤ H am(n,d). A non-negative
value is added to the denominator of the Hamming bound to obtain the denominator of the Johnson bound.
Therefore, the denominator in John(n,d) is equal to or larger than the denominator in H am(n,d). Because
the numerators of the Hamming and Johnson bound are equal, it is now clear that John(n,d) ≤ H am(n,d).
A downside of the Johnson bound is the dependence on the tables for A(n,d , w), this is quite a challenge to
implement in Matlab. However, it often provides good values for the upper bound and the values are often
close to A∗(n,d).

6 8 10 12 14 16 18 20 22 24 26 28

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ham(n,d) and John(n,d)Hamming d=4

Hamming d=6
Hamming d=8
Hamming d=10
Hamming d=12
Johnson d=4
Johnson d=6
Johnson d=8
Johnson d=10
Johnson d=12

Figure 4.2: Upper bounds on A(n,d) found with the Hamming and Johnson bound.

24 4. COMPARING BOUNDS

n A∗(n,6) H am(n,6) John(n,6)
6 2 2 2
7 2 2 2
8 2 4 3
9 4 6 4
10 6 11 8
11 12 18 13
12 24 30 24
13 32 51 39
14 64 89 69
15 128 154 129
16 256 270 256
17 340 478 428
18 673 851 851
19 1.237 1.524 1.394
20 2.279 2.744 2.448
21 4.096 4.969 4.474
22 6.941 9.039 8.665
23 13.674 16.513 14.994
24 24.106 30.283 29.214
25 47.538 55.738 53.430
26 84.260 102.927 95.596
27 157.285 190.650 190.650
28 291.269 354.136 341.617

Table 4.2: Upper bounds on A(n,6) found with the Hamming and Johnson bound

4.4. LINEAR PROGRAMMING BOUND WITH AND WITHOUT EXTRA CONSTRAINTS
In this paragraph we compare the linear programming bound to the linear programming bound with extra
constraints. For all n = 6,7, . . . ,28 and d = 4,6, . . . ,12, we calculate Li n(n,d) and Li nE xtr a(n,d) using Matlab
as discussed in Section 4.1. The results for all d = 4, . . . ,12 can be found in Appendix B and in Figure 4.3 a
graphical representation is given. The bounds on A(n,d) for d = 4 can also be found in Table 4.3. When a
result is equal to A∗(n,d) it is denoted in blue.

When closely observing the results in Figure 4.3 and in Appendix B, it is clear that the linear programming
bound with extra constraints gives an equal or better upper bound for A(n,d) than the linear programming
bound (for d = 4,6, . . . ,12 and n = 6,7, . . . ,28). The linear programming bound with extra constraints improves
the linear programming bound (when Li n(n,d) > A∗(n,d) and for d = 4,6, . . . ,12, n = 6,7, . . . ,28) in %63,2 of
the cases. Li nE xtr a(n,d) is equal to A∗(n,d) in %58,3 of the cases (for d = 4,6, . . . ,12, n = 6,7, . . . ,28).

The linear programming bound is more complex to calculate than the previously mentioned bounds and
gives a reasonably good upper bound on A(n,d). In Appendix B it is easy to see that the linear program-
ming bound already has better results than the Hamming bound. From the definitions of Li n(n,d) and
Li nE xtr a(n,d) it is clear that Li nE xtr a(n,d) ≤ Li n(n,d). In Li n(n,d) extra constraints are added to ob-
tain Li nE xtr a(n,d). These extra constraints are of the form: Ai ≤ A(n,d , i) (i = d , . . . ,n). A lower Ai results in
a lower objective function: maximize Ad + Ad+1 +·· ·+ An . Consequently the extra constraints can only result
in a lower upper bound on A(n,d). A downside of the linear programming bound with extra constraints is
the dependence on the tables for A(n,d , w), this is quite a challenge to implement in Matlab. However, it
provides good values for the upper bound, which are close to and often equal to A∗(n,d).

4.4. LINEAR PROGRAMMING BOUND WITH AND WITHOUT EXTRA CONSTRAINTS 25

6 8 10 12 14 16 18 20 22 24 26 28

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Lin(n,d) and LinExtra(n,d)

Lin Prog d=4
Lin Prog d=6
Lin Prog d=8
Lin Prog d=10
Lin Prog d=12
Lin Prog extra d=4
Lin Prog extra d=6
Lin Prog extra d=8
Lin Prog extra d=10
Lin Prog extra d=12

Figure 4.3: Upper bounds on A(n,d) found with the linear programming bound and the linear
programming bound with extra constraints.

n A∗(n,4) Li n(n,4) Li nE xtr a A(n,4)
6 4 4 4
7 8 8 8
8 16 16 16
9 20 25 21
10 40 42 42
11 72 85 81
12 144 170 160
13 256 292 256
14 512 512 512
15 1.024 1.024 1.024
16 2.048 2.048 2.048
17 3.276 3.640 3.276
18 6.552 6.553 6.553
19 13.104 13.107 13.107
20 26.168 26.214 26.214
21 43.688 47.662 43.690
22 87.333 87.381 87.381
23 172.361 174.762 173.491
24 344.308 349.525 344.636
25 599.184 645.277 599.186
26 1.198.368 1.198.372 1.198.372
27 2.396.736 2.396.745 2.396.745
28 4.792.950 4.793.490 4.793.490

Table 4.3: Upper bounds on A(n,4) found with the linear programming bound and the linear
programming bound with extra constraints.

26 4. COMPARING BOUNDS

4.4.1. LINEAR PROGRAMMING BOUND WITH d = 4
We now take a closer look at the linear programming bound for d = 4. In Figure 4.3 we see that Li n(n,d)
is relatively (compared to the other n) good for n = 10,14,18,22,26 and bad for n = 12,16,20,24,28. In this
section we explain these remarkable traits.

If we denote the linear programming bound in the form of Example 14 and 3.1, we are actually rewriting
the inequalities Bk ≥ 0 into Hx ≤ b:

maximize Ad + Ad+2 +·· ·+ An (An−1 for odd n)
such that Hx ≤ b,

Ai ≥ 0

The elements of H are shown below, with

K r aw(k, t ,n) =−Kk (t) =−
k∑

j=0
(−1) j

(
n − t

k − j

)(
t

j

)
, k = 0,1, . . . ,n/2 t = d , . . . ,n

For n is even

H =


K r aw(0,d ,n) K r aw(0,d +2,n) · · · K r aw(0,n,n)
K r aw(1,d ,n) K r aw(1,d +2,n) · · · K r aw(1,n,n)

...
...

. . .
...

K r aw(n/2,d ,n) K r aw(n/2,d +2,n) · · · K r aw(n/2,n,n)


For n is odd

H =


K r aw(0,d ,n) K r aw(0,d +2,n) · · · K r aw(0,n −1,n)
K r aw(1,d ,n) K r aw(1,d +2,n) · · · K r aw(1,n −1,n)

...
...

. . .
...

K r aw(n−1
2 ,d ,n) K r aw(n−1

2 ,d +2,n) · · · K r aw(n−1
2 ,n −1,n)


From Example 14 we know that these elements are calculated with krawtchouck polynomials. Because

krawtchouck polynomials have a certain symmetry for even n, the matrix H also contains a certain symmetry
for even n. With this symmetry we can explain why Li n(n,d) is relatively low for n = 10,14,18,22,26 and
relatively high for n = 12,16,20,24,28 (compared to the other n). In Observation 2 we give some properties of
kr aw(k, t ,n) for d = 4.

Observation 2. If n is even and K r aw(k, t ,n) =−Kk (t) =−∑k
j=0(−1) j

(n−t
k− j

)(t
j

)
, with k = 0,1, . . . ,n/2

and t = d , . . . ,n, then:

1. If n = 12,16,20,24,28 and k is odd and t = n/2, then K r aw(k, t ,n) = 0 and
K r aw(k, t −2,n) =−K r aw(k, t +2,n)

2. If n = 12,16,20,24,28 and k > 2 is even and t = n/2, then if

• K r aw(k, t ,n) > 0 then K r aw(k, t +2,n) = K r aw(k, t −2,n) < 0

• K r aw(k, t ,n) < 0 then K r aw(k, t +2,n) = K r aw(k, t −2,n) > 0

3. If n = 10,14,18,22,26 and k is odd and t = n/2, then K r aw(k, t − c,n) =−K r aw(k, t + c,n)
for c = 1, . . . ,n/2

4. If n = 10,14,18,22,26 and k is even and t = n/2, then K r aw(k, t − c,n) = K r aw(k, t + c,n)
for c = 1, . . . ,n/2 and if

• K r aw(k, t −1,n) = K r aw(k, t +1,n) > 0 then K r aw(k, t +3,n) = K r aw(k, t −3,n) < 0

• K r aw(k, t −1,n) = K r aw(k, t +1,n) < 0 then K r aw(k, t +3,n) = K r aw(k, t −3,n) > 0

4.4. LINEAR PROGRAMMING BOUND WITH AND WITHOUT EXTRA CONSTRAINTS 27

In general the absolute values of the Krawtchouck polynomials are the smallest (compared to other t)
for t = n/2 and become larger when |t − n

2 | gets larger. In fact, this increment (of |K r aw(k, t ,n)|) increases
when |t − n

2 | gets larger. We call the column (which corresponds to At) from the matrix H, with the values
kr aw(k, t ,n) as coordinates, Ct . With Observation 2 it follows that the matrix H is symmetric (up to a minus
sign) around Cn/2. In Example 16 we give the matrix H for n = 20. Notice that the symmetry axis is located at
C10.

Example 16.

(
C4 C6 C8 C10 C12 C14 C16 C18 C20

)=

−1 −1 −1 −1 −1 −1 −1 −1 −1
−12 −8 −4 0 4 8 12 16 20
−62 −22 2 10 2 −22 −62 −118 −190
−172 −8 28 0 −28 8 172 528 1140
−237 83 19 −45 19 83 −237 −1581 −4845

16 160 −80 0 80 −160 −16 3264 15504
664 −8 −104 120 −104 −8 664 −4488 −38760

1104 −352 112 0 −112 352 −1104 3264 77520
494 −338 238 −210 238 −338 494 1326 −125970
−936 208 −56 0 56 −208 936 −7072 167960
−1716 572 −308 252 −308 572 −1716 9724 −184756


For n = 12,16,20,24,28, n

2 is even and Cn/2 is a part of the matrix H. In this case, the Krawtchouck poly-
nomials in C n

2 −2, C n
2

and C n
2 +2 are (in general) relatively small compared to the other Ct . Because we are

maximizing the At , while Hx ≤ b, the A n
2 −2, A n

2
and A n

2 +2 corresponding to the C n
2 −2, C n

2
and C n

2 +2 can get
relatively large compared to the other t . We conclude that three of all the At can get relatively large.

However, for n = 10,14,18,22,26, n
2 is odd and Cn/2 is not a part of the matrix H. In this case, the

Krawtchouck polynomials in C n
2 −1 and C n

2 +1 are (in general) relatively small compared to the other Ct . Be-
cause we are maximizing the At , while Hx ≤ b, the A n

2 −1 and A n
2 +1 corresponding to the C n

2 −1 and C n
2 +1 can

get relatively large compared to the other t . We conclude that only two of all the At can get relatively large.
Combining these two observations gives us a reason why Li n(n,d) is relatively good for n = 10,14,18,22,26

and bad for n = 12,16,20,24,28, compared to the other n. We illustrate the preceding observations in Example
17.

Example 17. We give the matrix H and the solution x for n = 20. Notice that A8, A10 and A12 are
the three high At

H =



−1 −1 −1 −1 −1 −1 −1 −1 −1
−12 −8 −4 0 4 8 12 16 20
−62 −22 2 10 2 −22 −62 −118 −190
−172 −8 28 0 −28 8 172 528 1140
−237 83 19 −45 19 83 −237 −1581 −4845

16 160 −80 0 80 −160 −16 3264 15504
664 −8 −104 120 −104 −8 664 −4488 −38760

1104 −352 112 0 −112 352 −1104 3264 77520
494 −338 238 −210 238 −338 494 1326 −125970
−936 208 −56 0 56 −208 936 −7072 167960
−1716 572 −308 252 −308 572 −1716 9724 −184756



x =



285
1824
6498
8998
6498
1824
285

0
1


=



A4

A6

A8

A10

A12

A14

A16

A18

A20



We give the matrix H and the solution x for n = 18. Notice that A8 and A10 are the two high At .

H =



−1 −1 −1 −1 −1 −1 −1 −1
−10 −6 −2 2 6 10 14 18
−41 −9 7 7 −9 −41 −89 −153
−80 16 16 −16 −16 80 336 816
−36 60 −20 −20 60 −36 −820 −3060
168 24 −56 56 −24 −168 1288 8568
364 −116 28 28 −116 364 −1092 −18564
208 −144 112 −112 144 −208 −208 31824
−286 66 −14 −14 66 −286 2002 −43758
−572 220 −140 140 −220 572 −2860 48620


x =



180
874

2257
2131
958
144

9
0





A4

A6

A8

A10

A12

A14

A16

A18



28 4. COMPARING BOUNDS

4.4.2. LINEAR PROGRAMMING BOUND WITH EXTRA CONSTRAINTS WITH d = 4
For the linear programming bound with extra constraints it is remarkable that it is relatively low for n =
9,13,17,21,25 compared to the other n. Before we can explain where this property comes from, we need
some characteristics for the equations in the linear programming bound. If we denote the linear program-
ming bound in the form of Example 14 and Section 3.1, we are actually rewriting the inequalities Bk ≥ 0 into
Hx ≤ b, b = (b0,b1,b2, . . . ,b n−1

2
).

maximize Ad + Ad+2 +·· ·+ An−1

such that Hx ≤ b,
Ai ≥ 0

When we fill in the optimal solution x = (Ad , Ad+2, . . . , An−1) in the Bk , we find that Bk = 0 for all k = 1, . . . ,bn/2−
2c. This is the same as multiplying H with the optimal solution x, we denote this as Hx = s = (s0, s1, s2, . . . , s n−1

2
),

then we again find that sk = bk for all k = 1, . . . ,bn/2−2c. We illustrate this in Example 18.

Example 18. For n = 13 (and d = 4) the matrix H and vector b become:

H =



−1 −1 −1 −1 −1
−5 −1 3 7 11
−6 6 2 −18 −54
10 6 −14 14 154
29 −15 5 25 −275
9 −15 25 −63 297

−36 20 −20 36 −132


b =



1
13
78

286
715

1287
1716



The optimal solution x now becomes:


65,00

104,00
105,86
14,86
1,86

 When we multiply H with x we find:

Hx =



−1 −1 −1 −1 −1
−5 −1 3 7 11
−6 6 2 −18 −54
10 6 −14 14 154
29 −15 5 25 −275
9 −15 25 −63 297

−36 20 −20 36 −132




65,00

104,00
105,86
14,86
1,86

=



−255
13
78

286
715
519

−1356


= s and b =



1
13
78

286
715

1287
1716


Now we see that sk = bk for all k = 1, . . . ,4

When we add the extra constraints to the linear programming bound, the original Ai , found without the
extra constraints, don’t necessarily comply to the new constraints. For n = 9,13,17,21,25 it is noticeable that
with the linear programming bound we find An−1 > 1. However the extra constraints restrict
An−1 ≤ A(n,4,n−1) = 1. Since we know that sk = bk for all k = 1, . . . ,bn/2−2c(see Example 18), adjusting An−1

to the new constraint and setting An−1 ≤ 1, will have influence on the other Ai . Because the K r aw(k, t ,n)
(k = 0, . . . , n−1

2 and t = d , . . . ,n −1) are the largest for t = n −1, changing An−1 has big influence on the other
Ai . When K r aw(k,n −1,n) is negative, setting An−1 ≤ 1 means other Ai ∗K r aw(k, i ,n) have to lower as well
to comply to the Hx ≤ b inequalities. This then leads to a lower bound for n = 9,13,17,21,25. In Example 19
we illustrate this for n = 13.

Example 19. For n = 13 the matrix H and the solution to the linear program without extra con-
straints is:

Hx =



−1 −1 −1 −1 −1
−5 −1 3 7 11
−6 6 2 −18 −54
10 6 −14 14 154
29 −15 5 25 −275
9 −15 25 −63 297

−36 20 −20 36 −132




65,00

104,00
105,86
14,86
1,86

=



−255
13
78

286
715
519

−1356


= s and b =



1
13
78

286
715

1287
1716



4.5. JOHNSON AND LINEAR PROGRAMMING BOUND WITH EXTRA CONSTRAINTS 29

And the matrix H and b for the linear program with extra constraints are:

Hx =



−1 −1 −1 −1 −1
−5 −1 3 7 11
−6 6 2 −18 −54
10 6 −14 14 154
29 −15 5 25 −275
9 −15 25 −63 297

−36 20 −20 36 −132
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




A4

A6

A8

A10

A12

 and b =



1
13
78

286
715

1287
1716

65
182
132
26
1


This gives us that 1∗ A12 ≤ 1. However, with the linear programming bound without extra con-
straint we found that A12 = 1,86. By adjusting A12 ≤ 1 and complying to the other original and

extra constraints of the linear programming bound we find the optimal solution: x =


55
96
87
16
1


For other n it is noticeable that the An−1 (or An for even n) already comply to the extra constraint of

An−1 ≤ A(n,4,n − 1) = 1 (or for even n: An ≤ A(n,4,n) = 1). Some of the other Ai might not comply to the
other extra constraints, because the corresponding K r aw(k, t ,n) are significantly smaller for these Ai , the
adjusting of these Ai has significantly less influence on lowering the bound.

From this section we conclude that compared to the linear programming bound without extra constraints,
the linear programming bound with extra constraints improves noticeably for n = 9,13,17,21,25, and only
improves slightly for all other n.

4.5. JOHNSON AND LINEAR PROGRAMMING BOUND WITH EXTRA CONSTRAINTS
In the above sections the Linear programming bound with extra constraints and the Johnson bound have
proven to give the lowest upper bounds on A(n,d). Therefore we compare these two bounds to each other
(see Figure 4.4). The linear programming bound with extra constraints presents the lowest upper boud for
every n = 6,7, . . . ,28 and d = 4,6, . . . ,12, except for n = 24 and d = 4, for these n and d the Jonhson bound gives
a lower upper bound (see Table 4.4). When a result is denoted in blue it is the lowest upper bound closest to
A∗(n,4).

For the specific case n = 24 and d = 4 In Section 4.4.1 we found that the linear programming bound is
relatively high for n = 8,12,16,20,24,28. In Section 4.4.2 we found that the linear programming bound with
extra constraints improves the linear programming upper bound by a lot for n = 9,13,17,21,25. But it only
improves slightly for all the other n. Combining these two properties leads to a relatively high upper bound
for n = 8,12,16,20,24,28. Remarkably the Johnson bound is always at least as good as the linear programming
bound with extra constraints for n = 8,12,16,20,24,28. To explain this we take a closer look at the Jonhson
bound for d = 4. We illustrate the increase of the Johnson bound in Table 4.5 by deviding John(n,d) by
John(n −1,d). For odd n the increase in John(n,4) is relatively low, which tells us that the johnson bound is
relatively low for odd n. For even n John(n,4)

John(n−1,4) = 2 except for n = 12,18,24. For these n the Johnson bound in-
creases less than we would expect it to do. So for n = 12,18,24 the Johnson bound is relatively better than for
other even n. Combining the relatively higher Li nE xtr a(n,4) for n = 8,12,16,20,24,28 and the relatively low
John(n,4) for n = 12,18,24, gives us an explenation why Jon(24,4) ≤ Li nE xtr a(24,4). However by this rea-
soning Jon(12,4) should also be lower than Li nE xtr a(12,4). When we take a closer look at Li nE xtr a(12,4)
and Jon(12,4), we find that the exact values are : Li nE xtr a(12,4) = 160,91 and Jon(12,4) = 160. However,
160,91 is rounded down to 160, which leads to the equal results.

30 4. COMPARING BOUNDS

6 8 10 12 14 16 18 20 22 24 26 28

0.3

0.4

0.5

0.6

0.7

0.8
John(n,4) and LinExtra(n,4)

Lin Prog extra
Johnson

Figure 4.4: Upper bounds on A(n,4) found with the Johnson bound and the linear programming
bound with extra constraints.

n A∗(n,4) Li nE xtr a(n,4) John(n,4)
6 4 4 4
7 8 8 8
8 16 16 16
9 20 21 25

10 40 42 51
11 72 81 83
12 144 160 160
13 256 256 292
14 512 512 585
15 1.024 1.024 1.024
16 2.048 2.048 2.048
17 3.276 3.277 3.615
18 6.552 6.553 7.084
19 13.104 13.107 13.107
20 26.168 26.214 26.214
21 43.688 43.690 47.662
22 87.333 87.381 95.325
23 172.361 173.491 174.103
24 344.308 344.636 344.308
25 599.184 599.186 645.277
26 1.198.368 1.198.372 1.290.555
27 2.396.736 2.396.745 2.396.745
28 4.792.950 4.793.490 4.793.490

Table 4.4: Upper bounds on A(n,4) found
with the Johnson bound and the linear

programming bound with extra constraints.

n John(n,4)
John(n−1,4)

6 -
7 2
8 2
9 1,6

10 2
11 1,64
12 1,91
13 1,83
14 2
15 1,75
16 2
17 1,77
18 1,96
19 1,85
20 2
21 1,82
22 2
23 1,83
24 1,98
25 1,87
26 2
27 1,86
28 2

Table 4.5: Increase of the Johnson bound
denoted by John(n,4)

John(n−1,4) .

5
CONCLUSION AND RECOMMENDATIONS

5.1. CONCLUSION
First of all, the conclusions presented here are only valid for the n (= 6,7, . . . ,28) and d (= 4,6, . . . ,12) used in
this report. Overall, the Plotkin bound proves to give better results than the Singleton bound, however it only
gives results for certain combinations of n and d . When the Plotkin bound gives results it is always equal to
A∗(n,d), the best known value for the upper bound. The Singleton bound only gives a crude upper bound on
A(n,d), nevertheless it is straightforward to calculate.

The Johnson bound gives a better or equal upper bound compared to the Hamming bound, because
it is an improvement of the latter. The Hamming bound is straightforward to calculate and already gives
significantly improved results compared to the Singleton bound. The Johnson bound depends on the values
for A(n,d , w), the implementation of these values in Matlab is time consuming. The results of the Johnson
bound are reasonably close to the best known upper bound.

The linear programming bound with extra constraints always gives a better or equal upper bound com-
pared to the linear programming bound without extra constraints, simply because one adds more linear con-
straints to a possible solution. The linear programming bounds involve complex calculations and in addition
the implementation in Matlab of the extra constraints is time consuming, because it again requires the values
of A(n,d , w).

The linear programming bound with extra constraints is the best bound for n = 6,7, . . . ,28 and d = 4,6, . . . ,12,
except for A(24,4) and A(12,4), in those cases the Johnson bound gives the best results. At a first glance, this
does not show in the results for the upper bound for n = 12 and d = 4, which is caused by the integer round-
ing of the result of the linear programming bound with extra constraints. Due to this integer rounding the
presented results of the upper bound of these two methods is in this case the same. For the case of n = 24 and
d = 4 the linear programming bound gives an upper bound of 344.636 and the Johnson bound of 344.308. To
explain why the Johnson bound is better for n = 12,24 and d = 4 we have to look at both the Johnson and
linear programming bound with extra constraints. For n = 8,12,16,20,24,28 the linear programming bound
gives a relatively high value for the upper bound and the extra constraints do not improve the results by much.
Specifically for n = 12 and n = 24, the results of the Johnson bound are relatively better than for other even n.
The combination of the relative high value of the linear programming bound, for n = 8,12,16,20,24,28, and
the relative lower value of the Johnson bound, for n = 12 and n = 24, causes the Johson bound to give a better
upper bound than the linear programming bound for n = 12 and n = 24.

The main conclusion from these comparisons is that in general a method provides a better upper bound
when it requires more input and involves more complex calculations. This input can for example consist of
Krawthcouck polynomials or upper bounds on the number of codewords with length n, Hamming distance
d and weight w .

31

32 5. CONCLUSION AND RECOMMENDATIONS

5.2. RECOMMENDATIONS
In this report we have two recommendations. First, one could add additional constraints to the linear pro-
gramming bound with extra constraints in order to improve the upper bound for some A(n,d). The combin-
ing of Ai (u) ≤ A(n,d , i) could lead to a new linear constraint that is more stringent on the Ai . For example,
for A(13,6) we know that: A10(u) ≤ A(13,6,10) = 4 and A12(u) ≤ A(13,6,12) = 1. If A12(u) = 1 then A10(u) = 0,
averaging over u gives us: A10 +4A12 ≤ 4. In this case the upper bound is improved from 40 (for the linear
programming bound with extra constraints) to 32, as can be seen in the article by Best et al. [9]. We expect
this could improve the upper bound in more cases and therefore recommend investigating it. Second, there
are more methods to calculate upper bounds than those six compared in this report. An example of such a
method is semidefinite programming, see [14]. One could perform a similar comparison for other methods
of calculating upper bounds on A(n,d).

BIBLIOGRAPHY

[1] R. W. Hamming, Error detecting and error correcting codes, The Bell System Technical Journal, Vol 29,
Page 147, 1950.

[2] J. H. Weber, Error-correcting codes, TU Delft lecture notes, course: et4-030, 2013.

[3] A. E. Brouwer, Table of general binary codes, 2016,
https://www.win.tue.nl/~aeb/codes/binary-1.html

[4] M. Plotkin, Binary codes with specified minimum distance, IEEE Transactions on Information Theory,
Vol 6, Page 445, 1960.

[5] F. J. Macwilliams and N. J. A Sloane, The theory of error-correcting codes, North-Holland, 2000.

[6] D. R. Hankerson, D. G Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps, C. A Rodger and J. R. Wall,
Coding theory and cryptography, the essentials, Marcel Dekker, 2000.

[7] E. Agrell, Erik Agrell’s tables of binary block codes, 2015, http://codes.se/bounds/

[8] E. Agrell, A. Vardy and K. Zeger, A table of upper bounds for binary codes, IEEE Transactions on
Information Theory, Vol 47, Page 3004, 2001.

[9] M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko and N. J. A. Sloane, Bounds for binary codes of
length less than 25 IEEE Transactions on Information Theory, Vol 24, Page 81, 1978.

[10] P. R. Östergard, T. Baicheva and E. Kolev, Optimal binary one-error-correcting codes of length 10 have 72
codewords IEEE Transactions on Information Theory, Vol 45, Page 1229, 1999.

[11] B. Mounits, T. Etzion and S. Litsyn, Improved upper bounds on sizes of codes, IEEE Transactions on
Information Theory, Vol 48, Page 880, 2002.

[12] A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE
Transactions on Information Theory, Vol 51, Page 2859, 2005.

[13] P. R. J. Östergard, On the size of optimal three-error-correcting binary codes of length 16, IEEE
Transactions on Information Theory, Vol 57, Page 6824, 2011.

[14] D. C. Gijswijt, H. D. Mittelmann and A. Schrijver, Semidefinite Code Bounds Based on Quadruple
Distances, IEEE Transactions on Information Theory, Vol 58, Page 2697, 2012.

[15] Hyun Kwang Kim and Phan Thanh Toan, Improved Semidefinite Programming Bound on Sizes of Codes,
IEEE Transactions on Information Theory, Vol 59, Page 7337, 2013.

[16] R. Singleton, Maximum distance q-ary codes, IEEE Transactions on Information Theory, Vol 10, Page
116, 1964.

[17] V. Guruswami, Introduction to coding theory: Elementary bounds on codes, 2010,
https://errorcorrectingcodes.wordpress.com/2010/01/30/
notes-4-elementary-bounds-on-codes/

[18] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: Algorithms and complexity, Dover
publications, 1998.

[19] J. A. M. de Groot, TU Delft lectue notes, course: " Toegepaste algebra: Codes en Cryptosystemen, 2017.

33

https://www.win.tue.nl/~aeb/codes/binary-1.html
http://codes.se/bounds/
https://errorcorrectingcodes.wordpress.com/2010/01/30/notes-4-elementary-bounds-on-codes/
https://errorcorrectingcodes.wordpress.com/2010/01/30/notes-4-elementary-bounds-on-codes/

A
MATLAB CODES

A.1. MATLAB CODES FOR PLOTKIN, SINGLETON, HAMMING AND JOHNSON

BOUNDS

The Plotkin bound:

1 function [s]= plo (n , d)
2 b=mod(d , 2) ;
3 i f 2*d>n
4 s =2* f l o o r ((d/(2*d−n))) ;
5 e l s e i f 2*d==n
6 s =4*d ;
7 else
8 s= i n f ;
9 end

10 s ;
11 end

The Singleton bound:

1 function [s]= sing (n , d)
2 s =2^(n−d+1) ;
3 end

The Hamming bound:

1 function [s]=Ham(n , d , j)
2 b=mod(d , 2) ;
3 i f (b==0)
4 s=Ham(n−1,d−1, j) ;
5 else
6 t =(d−1) / 2 ;
7 s =(2^n) /symsum((nchoosek (n , j)) , j , 0 , t) ;
8 s=double (s) ;
9 end

10 s ;

The Johnson bound:

1 function [s]= jon2 (n , d , j)
2 b=mod(d , 2) ;
3

4 i f (b==0)

35

36 A. MATLAB CODES

5 s=jon2 (n−1,d−1, j) ;
6 else
7 t =(d−1) / 2 ;
8 k=d+1;
9 r =(k−2) / 2 ;

10 g=nchoosek (n , j) ;
11 %Z i s the matrix containing A(n , d ,w)
12 s =(2^n) / ((symsum(g , j , 0 , t) + ((nchoosek (n , t +1)−(nchoosek (d , t) *Z(n−3,d+1 , r))) /Z(n−3,

t +2 , r)))) ;
13 end
14 s=double (s) ;
15 end

A.2. MATLAB CODES FOR THE LINEAR PROGRAMMING BOUND
Adding 1 (the zero vector) to the linear program bound.

1 function [s]=MaxA(n , d , j)
2 s=lp (n , d , j) +1;
3 end

Calling all the needed functions for linprog and calculating the optimal solution with linprog.

1 function [s]= lp (n , d , j)
2 f =ones (1 , aantal f (n , d)) *−1;
3 A=mat(n , d , j) ;
4 b=vec (n , d) ;
5 Aeq = [] ;
6 beq = [] ;
7 lb=zeros (aantal f (n , d) , 1) ;
8 ub=ones (aantal f (n , d) , 1) * i n f ;
9 options = optimoptions (’ l inprog ’ , ’ Display ’ , ’ o f f ’ , ’ Algorithm ’ , ’ dual−simplex ’) ;

10 [x , f v a l]= linprog (f , A , b , Aeq , beq , lb , ub , options) ;
11 s=abs (f v a l) ;
12 end

The number of Ai in the objective function.

1 function [s]= aantal f (n , d)
2 b=mod(n , 2) ;
3 c=mod(d , 2) ;
4 i f (b==0)
5 i f (c==0)
6 aantal =(n−d) /2+1;
7 else
8 aantal =(n+1−d) / 2 ;
9 end

10 else
11 i f (c==0)
12 aantal =(n+1−d) / 2 ;
13 else
14 aantal =(n−d) / 2 ;
15 end
16 end
17 s=aantal ;
18 end

Calculating b for the linear program Ax ≤ b.

1 function [b]= vec (n , d)

A.3. MATLAB CODES FOR THE LINEAR PROGRAMMING BOUND WITH EXTRA CONSTRAINTS 37

2 b=mod(n , 2) ;
3 i f b==0
4 m=n/ 2 ;
5 else
6 m=(n+1) /2−1;
7 end
8 for i =0:m
9 b(i +1 ,1)=nchoosek (n , i) ;

10 end
11 b=double (b) ;
12 end

Calculating A for the linear program Ax ≤ b.

1 function [X]=mat(n , d , j)
2 b=mod(n , 2) ;
3 i f b==0
4 m=n/ 2 ;
5 else
6 m=(n+1) /2−1;
7 end
8

9 for q=0:m
10 for i = 0 : + 2 : (aantal f (n , d) *2−1)
11 B(q+1 , i /2+1)=kraw (q , i +d , n , j) ;
12 end
13 end
14 B=double (B) ;
15 A=−1.*B ;
16 X=A ;
17 end

Calculating the Krawtchouck polynomials for A

1 function [s]=kraw (k , t , n , j)
2 s=symsum(((−1)^ j) *nchoosek (n−t , k−j) *nchoosek (t , j) , j , 0 , k) ;
3 end

A.3. MATLAB CODES FOR THE LINEAR PROGRAMMING BOUND WITH EXTRA

CONSTRAINTS
Adding 1 to the linear program solution for the zero vector

1 function [s]=MaxA2(n , d , j)
2 s=lp2 (n , d , j) +1;
3 end

Calling all the needed functions for linprog and calculating the optimal solution with linprog.

1 function [s]= lp2 (n , d , j)
2 f =ones (1 , aantal f (n , d)) *−1;
3 A=mat2(n , d , j) ;
4 b=vec2 (n , d) ;
5 Aeq = [] ;
6 beq = [] ;
7 lb=zeros (aantal f (n , d) , 1) ;
8 ub=ones (aantal f (n , d) , 1) * i n f ;
9 options = optimoptions (’ l inprog ’ , ’ Display ’ , ’ o f f ’ , ’ Algorithm ’ , ’ dual−simplex ’) ;

10 [x , f v a l]= linprog (f , A , b , Aeq , beq , lb , ub , options) ;

38 A. MATLAB CODES

11 s=abs (f v a l) ;
12 end

Calculating b from the linear program Ax ≤ b with extra constraints

1 function [F]= vec2 (n , d)
2 b=mod(d , 2) ;
3 i f (b==0)
4 k=d ;
5 else
6 k=d+1;
7 end
8 r =(k−2) / 2 ;
9

10 for v=k : 2 : n
11 i f v<=14
12 x ((v−k) /2+1 ,1)=Z(n−3,v+1 , r) ;
13 else
14 x ((v−k) /2+1 ,1)=Z(n−3,n−v+1 , r) ;
15 end
16 end
17 x ;
18 F=cat (1 , vec (n , d) , x) ;
19 end

Calculating A from the linear program Ax ≤ b with extra constraints

1 function [E]=mat2(n , d , j)
2 [m, k]= s i z e (mat(n , d , j)) ;
3 for i =1: k
4 v (i) =1;
5 end
6 v ;
7 D=diag (v) ;
8 E=cat (1 ,mat(n , d , j) ,D) ;
9 end

A.4. MATLAB CODES FOR COMPUTING THE RESULTS OF THE BOUNDS.
The values used for A(n,d , w) are given in matrix Z . After this we calculate the values used for the graphical
representations of the results.

1 syms j ;
2 A=[1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 ; 1 1 2 2 1 1 0 0 0 0 0 0 0 0 0 ; 1 1 3 4 3 1 1 0 0

0 0 0 0 0 0 ; 1 1 3 7 7 3 1 1 0 0 0 0 0 0 0 ; 1 1 4 8 14 8 4 1 1 0 0 0 0 0 0 ; 1
1 4 12 18 18 12 4 1 1 0 0 0 0 0 ; 1 1 5 13 30 36 30 13 5 1 1 0 0 0 0 ; 1 1 5 17
35 66 66 35 17 5 1 1 0 0 0 ; 1 1 6 20 51 84 132 84 51 20 6 1 1 0 0 ; 1 1 6 26 65

132 182 182 132 65 26 6 1 1 0 ; 1 1 7 28 91 182 308 364 308 182 91 28 7 1 1 ; 1 1
7 35 105 271 455 660 660 455 271 105 35 7 1 ; 1 1 8 37 140 336 722 1040 1320 1040

722 336 140 37 8 ; 1 1 8 44 157 476 952 1753 2210 2210 1753 952 476 157 44 ; 1 1
9 48 198 565 1428 2448 3944 4420 3944 2448 1428 565 198 ; 1 1 9 57 228 752 1789

3876 5814 8326 8326 5814 3876 1789 752 ; 1 1 10 60 285 912 2506 5111 9690 12920
16652 12920 9690 5111 2506 ; 1 1 10 70 315 1197 3192 7518 13416 22610 27132 27132

22610 13416 7518; 1 1 11 73 385 1386 4389 10032 20674 32794 49742 54264 49742
32794 20674 ; 1 1 11 83 419 1771 5313 14421 28842 52833 75426 104006 103539 75426

52833; 1 1 12 88 498 2011 7084 18216 43263 76912 126799 164565 208012 164565
126799 ; 1 1 12 100 550 2490 8379 25300 56925 120175 192280 288197 342843 342843
288197 ; 1 1 13 104 650 2860 10790 31122 82225 164450 312455 454480 624387 685686

624387 ; 1 1 13 117 702 3510 12870 41618 105036 246675 444015 766935 1022580

A.4. MATLAB CODES FOR COMPUTING THE RESULTS OF THE BOUNDS. 39

1296803 1296803 ; 1 1 14 121 819 3931 16380 51480 145663 326778 690690 1130220
1789515 2202480 2593606] ;

3 B=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 ; 1 1 1 2 1 1 1 0 0
0 0 0 0 0 0 ; 1 1 1 2 2 1 1 1 0 0 0 0 0 0 0 ; 1 1 1 2 2 2 1 1 1 0 0 0 0 0 0 ; 1

1 1 3 3 3 3 1 1 1 1 0 0 0 0 ; 1 1 1 3 5 6 5 3 1 1 1 0 0 0 0 ; 1 1 1 3 6 11 11 6 3
1 1 1 0 0 0 ; 1 1 1 4 9 12 22 12 9 4 1 1 1 0 0 ; 1 1 1 4 13 18 26 26 18 13 4 1 1
1 0 ; 1 1 1 4 14 28 42 42 42 28 14 4 1 1 1 ; 1 1 1 5 15 42 70 78 78 70 42 15 5 1
1 ; 1 1 1 5 20 48 112 138 150 138 112 48 20 5 1 ; 1 1 1 5 20 68 136 228 280 280

228 136 68 20 5 ; 1 1 1 6 22 72 199 349 428 425 428 349 199 72 22 ; 1 1 1 6 25 83
228 520 718 789 789 718 520 228 83 ; 1 1 1 6 30 100 276 651 1107 1363 1403 1363

1107 651 276 ; 1 1 1 7 31 126 350 828 1695 2359 2685 2685 2359 1695 828 ; 1 1 1 7
37 136 462 1100 2277 3766 4415 5064 4415 3766 2277 ; 1 1 1 7 40 170 521 1518

3162 5819 7521 7953 7953 7521 5819 ; 1 1 1 8 42 192 680 1786 4554 8432 12186
14682 15906 14682 12186 ; 1 1 1 8 50 210 800 2428 5581 12620 19037 24630 30587
30587 24630 ; 1 1 1 8 52 260 910 2971 7891 16122 28893 42080 50169 61174 50169 ;
1 1 1 9 54 280 1170 3510 10027 23673 43529 66079 84574 91080 91080 ; 1 1 1 9 63
302 1306 4680 12285 31195 63756 104231 142117 164220 169740];

4 C=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 ; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 ; 1 1 1 1 2 1 1 1 1 0 0 0 0 0 0 ; 1

1 1 1 2 2 1 1 1 1 0 0 0 0 0 ; 1 1 1 1 2 2 2 1 1 1 1 0 0 0 0 ; 1 1 1 1 2 2 2 2 1 1
1 1 0 0 0 ; 1 1 1 1 3 3 4 3 3 1 1 1 1 0 0 ; 1 1 1 1 3 3 4 4 3 3 1 1 1 1 0 ; 1 1

1 1 3 4 7 8 7 4 3 1 1 1 1 ; 1 1 1 1 3 6 10 15 15 10 6 3 1 1 1 ; 1 1 1 1 4 6 16 16
30 16 16 6 4 1 1 ; 1 1 1 1 4 7 17 24 34 34 2417 7 4 1 1 ; 1 1 1 1 4 9 21 33 49

58 49 33 21 9 4 ; 1 1 1 1 4 12 28 52 78 103 103 78 52 28 12 ; 1 1 1 1 5 16 40 80
130 173 206 173 130 80 40 ; 1 1 1 1 5 21 56 120 210 302 363 363 302 210 120 ; 1 1

1 1 5 21 77 176 330 473 634 680 634 473 330 ; 1 1 1 1 5 23 80 253 506 707 1025
1288 1288 1025 707 ; 1 1 1 1 6 24 92 274 759 1041 1551 2142 2576 2142 1551 ; 1 1
1 1 6 30 100 328 856 1486 2333 3422 4087 4087 3422 ; 1 1 1 1 6 30 130 371 1066
2108 3496 5225 6741 7080 6741 ; 1 1 1 1 6 32 135 500 1252 2914 4986 7833 10547
11981 11981 ; 1 1 1 1 7 33 149 540 1750 3895 7016 11939 17011 21152 22710];

5 D=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 ; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 ; 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 ; 1

1 1 1 1 1 1 1 1 1 0 0 0 0 0 ; 1 1 1 1 1 2 1 1 1 1 1 0 0 0 0 ; 1 1 1 1 1 2 2 1 1 1
1 1 0 0 0 ; 1 1 1 1 1 2 2 2 1 1 1 1 1 0 0 ; 1 1 1 1 1 2 2 2 2 1 1 1 1 1 0 ; 1 1

1 1 1 2 2 2 2 2 1 1 1 1 1 ; 1 1 1 1 1 3 3 3 3 3 3 1 1 1 1 ; 1 1 1 1 1 3 3 4 4 4 3
3 1 1 1 ; 1 1 1 1 1 3 3 5 6 6 5 3 3 1 1 ; 1 1 1 1 1 3 4 6 9 10 9 6 4 3 1 ; 1 1 1
1 1 3 4 8 12 19 19 12 8 4 3 ; 1 1 1 1 1 4 5 10 17 20 38 20 17 10 5 ; 1 1 1 1 1 4
7 13 21 35 42 42 35 21 13 ; 1 1 1 1 1 4 7 16 33 51 72 80 72 51 33 ; 1 1 1 1 1 4

8 20 46 81 117 135 135 117 81 ; 1 1 1 1 1 4 9 24 60 118 171 223 247 223 171 ; 1 1
1 1 1 5 10 32 75 158 262 380 434 434 380 ; 1 1 1 1 1 5 13 36 104 214 406 566 702
754 702 ; 1 1 1 1 1 5 14 48 121 299 571 882 1201 1419 1419 ; 1 1 1 1 1 5 16 56

168 376 821 1356 1977 2438 2629];
6 E=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 ; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 ; 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 ; 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 ; 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 ; 1 1 1 1 1 1 1 1 1 1

1 1 0 0 0 ; 1 1 1 1 1 1 2 1 1 1 1 1 1 0 0 ; 1 1 1 1 1 1 2 2 1 1 1 1 1 1 0 ; 1 1
1 1 1 1 2 2 2 1 1 1 1 1 1 ; 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 ; 1 1 1 1 1 1 2 2 2 2 2

1 1 1 1 ; 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 ; 1 1 1 1 1 1 3 3 3 4 3 3 3 1 1 ; 1 1 1
1 1 1 3 3 3 4 4 3 3 3 1 ; 1 1 1 1 1 1 3 3 5 5 6 5 5 3 3 ; 1 1 1 1 1 1 3 3 5 7 7 7

7 5 3 ; 1 1 1 1 1 1 3 4 6 8 11 12 11 8 6 ; 1 1 1 1 1 1 3 4 6 10 16 23 23 16 10 ;
1 1 1 1 1 1 4 4 9 16 24 24 46 24 24 ; 1 1 1 1 1 1 4 5 10 25 37 42 50 50 42 ; 1 1
1 1 1 1 4 5 13 26 48 66 83 91 83 ; 1 1 1 1 1 1 4 6 15 39 64 100 140 156 156 ; 1

1 1 1 1 1 4 8 19 45 87 149 199 245 2 6 5] ;
7 Z=cat (3 ,A , B, C,D, E) ;
8

9 x =[6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 8] ;

40 A. MATLAB CODES

10 echte4 =[4 8 16 20 40 72 144 256 512 1024 2048 3276 6552 13104 26168 43688 87333
172361 344308 599184 1198368 2396736 4792950];

11 echte6 =[2 2 2 4 6 12 24 32 64 128 256 340 673 1237 2279 4096 6941 13674 24106 47538
84260 157285 291269];

12 echte8 =[1 1 2 2 2 2 4 4 8 16 32 36 71 131 256 512 1024 2048 4096 5421 9275 17099
32151];

13 echte10 =[1 1 1 1 2 2 2 2 2 4 4 6 10 20 40 47 84 150 268 466 836 1585 2817];
14 echte12 =[1 1 1 1 1 1 2 2 2 2 2 2 4 4 6 8 12 24 48 55 96 169 2 8 8] ;
15

16 for i =1:23
17 echt4 (i) =(log2 (echte4 (i))) / (i +5) ;
18 k1 (i) =log2 (maxA(i +5 ,4 , j)) / (i +5) ;
19 k2 (i) =log2 (MaxA2(i +5 ,4 , j)) / (i +5) ;
20 k3 (i) =log2 (plo (5+ i , 4)) /(i +5) ;
21 k4 (i) =log2 (sing (5+ i , 4)) /(i +5) ;
22 k5 (i) =log2 (double ((Ham(i +5 ,4 , j)))) /(i +5) ;
23 k6 (i) =log2 (double ((jon2 (i +5 ,4 , j)))) /(i +5) ;
24 end
25

26 for i =1:23
27 echt6 (i) =(log2 (echte6 (i))) / (i +5) ;
28 m1(i) =log2 (maxA(i +5 ,6 , j)) /(i +5) ;
29 m2(i) =log2 (MaxA2(i +5 ,6 , j)) / (i +5) ;
30 m3(i) =log2 (plo (5+ i , 6)) /(i +5) ;
31 m4(i) =log2 (sing (5+ i , 6)) /(i +5) ;
32 m5(i) =log2 (double ((Ham(i +5 ,6 , j)))) /(i +5) ;
33 m6(i) =log2 (double ((jon2 (i +5 ,6 , j)))) /(i +5) ;
34 end
35

36 for i =3:23
37 echt8 (i) =(log2 (echte8 (i))) / (i +5) ;
38 p1 (i) =log2 (maxA(i +5 ,8 , j)) / (i +5) ;
39 p2 (i) =log2 (MaxA2(i +5 ,8 , j)) / (i +5) ;
40 p3 (i) =log2 (plo (5+ i , 8)) /(i +5) ;
41 p4 (i) =log2 (sing (5+ i , 8)) /(i +5) ;
42 p5 (i) =log2 (double ((Ham(i +5 ,8 , j)))) /(i +5) ;
43 p6 (i) =log2 (double ((jon2 (i +5 ,8 , j)))) /(i +5) ;
44 end
45 echt8 (1 : 2) = i n f ;
46 p1 (1 : 2) = i n f ;
47 p2 (1 : 2) = i n f ;
48 p3 (1 : 2) = i n f ;
49 p4 (1 : 2) = i n f ;
50 p5 (1 : 2) = i n f ;
51 p6 (1 : 2) = i n f ;
52

53 for i =5:23
54 echt10 (i) =(log2 (echte10 (i))) / (i +5) ;
55 r1 (i) =log2 (maxA(i +5 ,10 , j)) /(i +5) ;
56 r2 (i) =log2 (MaxA2(i +5 ,10 , j)) / (i +5) ;
57 r3 (i) =log2 (plo (5+ i , 1 0)) /(i +5) ;
58 r4 (i) =log2 (sing (5+ i , 1 0)) /(i +5) ;
59 r5 (i) =log2 (double ((Ham(i +5 ,10 , j)))) /(i +5) ;
60 r6 (i) =log2 (double ((jon2 (i +5 ,10 , j)))) /(i +5) ;
61 end
62 echt10 (1 : 4) = i n f ;

A.4. MATLAB CODES FOR COMPUTING THE RESULTS OF THE BOUNDS. 41

63 r1 (1 : 4) = i n f ;
64 r2 (1 : 4) = i n f ;
65 r3 (1 : 4) = i n f ;
66 r4 (1 : 4) = i n f ;
67 r5 (1 : 4) = i n f ;
68 r6 (1 : 4) = i n f ;
69

70 for i =7:23
71 echt12 (i) =(log2 (echte12 (i))) /(i +5) ;
72 s1 (i) =log2 (maxA(i +5 ,12 , j)) /(i +5) ;
73 s2 (i) =log2 (MaxA2(i +5 ,12 , j)) /(i +5) ;
74 s3 (i) =log2 (plo (5+ i , 1 2)) / (i +5) ;
75 s4 (i) =log2 (sing (5+ i , 1 2)) / (i +5) ;
76 s5 (i) =log2 (double ((Ham(i +5 ,12 , j)))) / (i +5) ;
77 s6 (i) =log2 (double ((jon2 (i +5 ,12 , j)))) / (i +5) ;
78

79 end
80 echt12 (1 : 6) = i n f ;
81 s1 (1 : 6) = i n f ;
82 s2 (1 : 6) = i n f ;
83 s3 (1 : 6) = i n f ;
84 s4 (1 : 6) = i n f ;
85 s5 (1 : 6) = i n f ;
86 s6 (1 : 6) = i n f ;

B
RESULTS FOR A(n,d)

Table B.1: Upper bounds on A(n,4)

n A∗(n,4) Li n(n,4) Li nE xtr a(n,4) Plot (n,4) Si ng (n,4) H am(n,4) John(n,4)
6 4 4 4 4 8 5 4
7 8 8 8 8 16 9 8
8 16 16 16 16 32 16 16
9 20 25 21 64 28 25

10 40 42 42 128 51 51
11 72 85 81 256 93 83
12 144 170 160 512 170 160
13 256 292 256 1.024 315 292
14 512 512 512 2.048 585 585
15 1.024 1.024 1.024 4.096 1.092 1.024
16 2.048 2.048 2.048 8.192 2.048 2.048
17 3.276 3.640 3.276 16.384 3.855 3.615
18 6.552 6.553 6.553 32.768 7.281 7.084
19 13.104 13.107 13.107 65.536 13.797 13.107
20 26.168 26.214 26.214 131.072 26.214 26.214
21 43.688 47.662 43.690 262.144 49.932 47.662
22 87.333 87.381 87.381 524.288 95.325 95.325
23 172.361 174.762 173.491 1.048.576 182.361 174.103
24 344.308 349.525 344.636 2.097.152 349.525 344.308
25 599.184 645.277 599.186 4.194.304 671.088 645.277
26 1.198.368 1.198.372 1.198.372 8.388.608 1.290.555 1.290.555
27 2.396.736 2.396.745 2.396.745 16.777.216 2.485.513 2.396.745
28 4.792.950 4.793.490 4.793.490 33.554.432 4.793.490 4.793.490

43

44 B. RESULTS FOR A(n,d)

Table B.2: Upper bounds on A(n,6)

n A∗(n,6) Li n(n,6) Li nE xtr a(n,6) Plot (n,6) Si ng (n,6) H am(n,6) John(n,6)
6 2 2 2 2 2 2 2
7 2 2 2 2 4 2 2
8 2 3 2 2 8 4 3
9 4 4 4 4 16 6 4

10 6 6 6 6 32 11 8
11 12 12 12 12 64 18 13
12 24 24 24 24 128 30 24
13 32 40 34 256 51 39
14 64 64 64 512 89 69
15 128 128 128 1.024 154 129
16 256 256 256 2.048 270 256
17 340 425 412 4.096 478 428
18 673 682 682 8.192 851 851
19 1.237 1.289 1.289 16.384 1.524 1.394
20 2.279 2.373 2.373 32.768 2.744 2.448
21 4.096 4.443 4.339 65.536 4.969 4.474
22 6.941 7.723 6.943 131.072 9.039 8.665
23 13.674 13.775 13.775 262.144 16.513 14.994
24 24.106 24.107 24.107 524.288 30.283 29.214
25 47.538 48.148 48.148 1.048.576 55.738 53.430
26 84..260 93.622 86.133 2.097.152 102.927 95.596
27 157.285 163.840 162.401 4.194.304 190.650 190.650
28 291.269 291.271 291.271 8.388.608 354.136 341.617

Table B.3: Upper bounds on A(n,8)

n A∗(n,8) Li n(n,8) Li nE xtr a(n,8) Plot (n,8) Si ng (n,8) H am(n,8) John(n,8)
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 2 2 2 2 2 2 2
9 2 2 2 2 4 2 2

10 2 2 2 2 8 3 2
11 2 3 2 2 16 5 3
12 4 4 4 4 32 8 5
13 4 5 4 4 64 13 9
14 8 8 8 8 128 21 14
15 16 16 16 16 256 34 23
16 32 32 32 32 512 56 38
17 36 50 44 1.024 94 64
18 71 81 72 2.048 157 107
19 131 145 131 4.096 265 179
20 256 290 262 8.192 451 313
21 512 571 522 16.384 776 595
22 1.024 1.024 1.024 32.768 1.342 1.092
23 2.048 2.048 2.048 65.536 2.337 2.071
24 4.096 4.096 4.096 131.072 4.096 4.096
25 5.421 6.474 6.427 262.144 7.216 6.717
26 9.275 10.435 10.337 524.288 12.777 11.894
27 17.099 18.189 17.804 1.048.576 22.733 20.463
28 32.151 32.206 32.206 2.097.152 40.622 40.520

45

Table B.4: Upper bounds on A(n,10)

n A∗(n,10) Li n(n,10) Li nE xtr a(n,10) Plot (n,10) Si ng (n,10) H am(n,10) John(n,10)
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1

10 2 2 2 2 2 2 2
11 2 2 2 2 4 2 2
12 2 2 2 2 8 3 2
13 2 2 2 2 16 5 3
14 2 3 2 2 32 7 4
15 4 4 4 4 64 11 6
16 4 5 4 4 128 16 11
17 6 6 6 6 256 26 17
18 10 10 10 10 512 40 26
19 20 20 20 20 1.024 64 40
20 40 40 40 40 2.048 104 64
21 47 64 53 4.096 169 111
22 84 95 94 8.192 277 181
23 150 151 151 16.384 460 297
24 268 280 280 32.768 769 500
25 466 551 551 65.536 1.295 844
26 836 1.040 1.030 131.072 2.196 1.530
27 1.585 1.765 1.764 262.144 3.748 2.614
28 2.817 3.200 3.200 524.288 6.436 4.555

Table B.5: Upper bounds on A(n,12)

n A∗(n,12) Li n(n,12) Li nE xtr a(n,12) Plot (n,12) Si ng (n,12) H am(n,12) John(n,12)
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1
12 2 2 2 2 2 2 2
13 2 2 2 2 4 2 2
14 2 2 2 2 8 3 2
15 2 2 2 2 16 4 3
16 2 3 2 2 32 6 4
17 2 3 2 2 64 9 6
18 4 4 4 4 128 13 8
19 4 4 4 4 256 20 14
20 6 6 6 6 512 31 20
21 8 8 8 8 1.024 48 30
22 12 12 12 12 2.048 75 46
23 24 24 24 24 4.096 118 71
24 48 48 48 48 8.192 188 112
25 55 75 63 16.384 302 194
26 96 113 108 32.768 490 311
27 169 170 170 65.536 801 502
28 288 288 288 131.072 1.321 818

C
TABLES FOR A(n,d , w)

Table C.1: Upper bounds on A(n,4, w) [7, 9].

H
HHHn

w
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0
5 1 1 2 2 1 1 0 0 0 0 0 0 0 0 0
6 1 1 3 4 3 1 1 0 0 0 0 0 0 0 0
7 1 1 3 7 7 3 1 1 0 0 0 0 0 0 0
8 1 1 4 8 14 8 4 1 1 0 0 0 0 0 0
9 1 1 4 12 18 18 12 4 1 1 0 0 0 0 0

10 1 1 5 13 30 36 30 13 5 1 1 0 0 0 0
11 1 1 5 17 35 66 66 35 17 5 1 1 0 0 0
12 1 1 6 20 51 84 132 84 51 20 6 1 1 0 0
13 1 1 6 26 65 132 182 182 132 65 26 6 1 1 0
14 1 1 7 28 91 182 308 364 308 182 91 28 7 1 1
15 1 1 7 35 105 271 455 660 660 455 271 105 35 7 1
16 1 1 8 37 140 336 722 1040 1320 1040 722 336 140 37 8
17 1 1 8 44 157 476 952 1753 2210 2210 1753 952 476 157 44
18 1 1 9 48 198 565 1428 2448 3944 4420 3944 2448 1428 565 198
19 1 1 9 57 228 752 1789 3876 5814 8326 8326 5814 3876 1789 752
20 1 1 10 60 285 912 2506 5111 9690 12920 16652 12920 9690 5111 2506
21 1 1 10 70 315 1197 3192 7518 13416 22610 27132 27132 22610 13416 7518
22 1 1 11 73 385 1386 4389 10032 20674 32794 49742 54264 49742 32794 20674
23 1 1 11 83 419 1771 5313 14421 28842 52833 75426 104006 103539 75426 52833
24 1 1 12 88 498 2011 7084 18216 43263 76912 126799 164565 208012 164565 126799
25 1 1 12 100 550 2490 8379 25300 56925 120175 192280 288197 342843 342843 288197
26 1 1 13 104 650 2860 10790 31122 82225 164450 312455 454480 624387 685686 624387
27 1 1 13 117 702 3510 12870 41618 105036 246675 444015 766935 1022580 1296803 1296803
28 1 1 14 121 819 3931 16380 51480 145663 326778 690690 1130220 1789515 2202480 2593606

47

48 C. TABLES FOR A(n,d , w)

Table C.2: Upper bounds on A(n,6, w) [7, 9].

HH
HHn

w
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
6 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0
7 1 1 1 2 2 1 1 1 0 0 0 0 0 0 0
8 1 1 1 2 2 2 1 1 1 0 0 0 0 0 0
9 1 1 1 3 3 3 3 1 1 1 1 0 0 0 0

10 1 1 1 3 5 6 5 3 1 1 1 0 0 0 0
11 1 1 1 3 6 11 11 6 3 1 1 1 0 0 0
12 1 1 1 4 9 12 22 12 9 4 1 1 1 0 0
13 1 1 1 4 13 18 26 26 18 13 4 1 1 1 0
14 1 1 1 4 14 28 42 42 42 28 14 4 1 1 1
15 1 1 1 5 15 42 70 78 78 70 42 15 5 1 1
16 1 1 1 5 20 48 112 138 150 138 112 48 20 5 1
17 1 1 1 5 20 68 136 228 280 280 228 136 68 20 5
18 1 1 1 6 22 72 199 349 428 425 428 349 199 72 22
19 1 1 1 6 25 83 228 520 718 789 789 718 520 228 83
20 1 1 1 6 30 100 276 651 1107 1363 1403 1363 1107 651 276
21 1 1 1 7 31 126 350 828 1695 2359 2685 2685 2359 1695 828
22 1 1 1 7 37 136 462 1100 2277 3766 4415 5064 4415 3766 2277
23 1 1 1 7 40 170 521 1518 3162 5819 7521 7953 7953 7521 5819
24 1 1 1 8 42 192 680 1786 4554 8432 12186 14682 15906 14682 12186
25 1 1 1 8 50 210 800 2428 5581 12620 19037 24630 30587 30587 24630
26 1 1 1 8 52 260 910 2971 7891 16122 28893 42080 50169 61174 50169
27 1 1 1 9 54 280 1170 3510 10027 23673 43529 66079 84574 91080 91080
28 1 1 1 9 63 302 1306 4680 12285 31195 63756 104231 142117 164220 169740

Table C.3: Upper bounds on A(n,8, w) [7, 9].

HHH
HHn
w

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
8 1 1 1 1 2 1 1 1 1 0 0 0 0 0 0
9 1 1 1 1 2 2 1 1 1 1 0 0 0 0 0

10 1 1 1 1 2 2 2 1 1 1 1 0 0 0 0
11 1 1 1 1 2 2 2 2 1 1 1 1 0 0 0
12 1 1 1 1 3 3 4 3 3 1 1 1 1 0 0
13 1 1 1 1 3 3 4 4 3 3 1 1 1 1 0
14 1 1 1 1 3 4 7 8 7 4 3 1 1 1 1
15 1 1 1 1 3 6 10 15 15 10 6 3 1 1 1
16 1 1 1 1 4 6 16 16 30 16 16 6 4 1 1
17 1 1 1 1 4 7 17 24 34 34 2417 7 4 1 1
18 1 1 1 1 4 9 21 33 49 58 49 33 21 9 4
19 1 1 1 1 4 12 28 52 78 103 103 78 52 28 12
20 1 1 1 1 5 16 40 80 130 173 206 173 130 80 40
21 1 1 1 1 5 21 56 120 210 302 363 363 302 210 120
22 1 1 1 1 5 21 77 176 330 473 634 680 634 473 330
23 1 1 1 1 5 23 80 253 506 707 1025 1288 1288 1025 707
24 1 1 1 1 6 24 92 274 759 1041 1551 2142 2576 2142 1551
25 1 1 1 1 6 30 100 328 856 1486 2333 3422 4087 4087 3422
26 1 1 1 1 6 30 130 371 1066 2108 3496 5225 6741 7080 6741
27 1 1 1 1 6 32 135 500 1252 2914 4986 7833 10547 11981 11981
28 1 1 1 1 7 33 149 540 1750 3895 7016 11939 17011 21152 22710

49

Table C.4: Upper bounds on A(n,10, w) [7, 9].

HH
HHHn

w
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
9 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

10 1 1 1 1 1 2 1 1 1 1 1 0 0 0 0
11 1 1 1 1 1 2 2 1 1 1 1 1 0 0 0
12 1 1 1 1 1 2 2 2 1 1 1 1 1 0 0
13 1 1 1 1 1 2 2 2 2 1 1 1 1 1 0
14 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1
15 1 1 1 1 1 3 3 3 3 3 3 1 1 1 1
16 1 1 1 1 1 3 3 4 4 4 3 3 1 1 1
17 1 1 1 1 1 3 3 5 6 6 5 3 3 1 1
18 1 1 1 1 1 3 4 6 9 10 9 6 4 3 1
19 1 1 1 1 1 3 4 8 12 19 19 12 8 4 3
20 1 1 1 1 1 4 5 10 17 20 38 20 17 10 5
21 1 1 1 1 1 4 7 13 21 35 42 42 35 21 13
22 1 1 1 1 1 4 7 16 33 51 72 80 72 51 33
23 1 1 1 1 1 4 8 20 46 81 117 135 135 117 81
24 1 1 1 1 1 4 9 24 60 118 171 223 247 223 171
25 1 1 1 1 1 5 10 32 75 158 262 380 434 434 380
26 1 1 1 1 1 5 13 36 104 214 406 566 702 754 702
27 1 1 1 1 1 5 14 48 121 299 571 882 1201 1419 1419
28 1 1 1 1 1 5 16 56 168 376 821 1356 1977 2438 2629

Table C.5: Upper bounds on A(n,12, w) [7, 9].

HH
HHHn

w
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
9 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

10 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
11 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
12 1 1 1 1 1 1 2 1 1 1 1 1 1 0 0
13 1 1 1 1 1 1 2 2 1 1 1 1 1 1 0
14 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1
15 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1
16 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1
17 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1
18 1 1 1 1 1 1 3 3 3 4 3 3 3 1 1
19 1 1 1 1 1 1 3 3 3 4 4 3 3 3 1
20 1 1 1 1 1 1 3 3 5 5 6 5 5 3 3
21 1 1 1 1 1 1 3 3 5 7 7 7 7 5 3
22 1 1 1 1 1 1 3 4 6 8 11 12 11 8 6
23 1 1 1 1 1 1 3 4 6 10 16 23 23 16 10
24 1 1 1 1 1 1 4 4 9 16 24 24 46 24 24
25 1 1 1 1 1 1 4 5 10 25 37 42 50 50 42
26 1 1 1 1 1 1 4 5 13 26 48 66 83 91 83
27 1 1 1 1 1 1 4 6 15 39 64 100 140 156 156
28 1 1 1 1 1 1 4 8 19 45 87 149 199 245 265

	Preface
	Summary
	Introduction and Fundamentals
	Introduction
	Fundamentals of error-correcting codes
	Bounds on the size of binary codes

	Finding upper bounds on A(n,d)
	The Singleton bound
	 The Plotkin Bound
	The Hamming bound
	The Johnson bound

	Linear programming bound
	Linear Programming
	Delsarte's theorem
	The bound
	Additional constraints

	Comparing bounds
	Matlab implementation
	Plotkin and Singleton bound
	Hamming and Johnson bound
	Linear programming bound with and without extra constraints
	Linear programming bound with d=4
	Linear programming bound with extra constraints with d=4

	Johnson and linear programming bound with extra constraints

	Conclusion and Recommendations
	Conclusion
	Recommendations

	Bibliography
	Matlab codes
	Matlab codes for Plotkin, Singleton, Hamming and Johnson bounds
	Matlab codes for the linear programming bound
	Matlab codes for the linear programming bound with extra constraints
	Matlab codes for computing the results of the bounds.

	Results for A(n,d)
	Tables for A(n,d,w)

