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Abstract. Successful integer carrier-phase ambiguity resolution is crucial for high 
precision GNSS applications. It includes both integer estimation and evaluation. 
For integer estimation, the LAMBDA method has been applied in a wide variety 
of GNSS applications. The method’s popularity stems from its numerical efficien-
cy and statistical optimality. However, before conducting ambiguity resolution, 
one needs to infer how reliable the fixed solution can expected to be, as incorrect 
fixed ambiguity solutions often lead to unacceptable positioning errors. In this pa-
per, two Matlab software tools are introduced for the evaluation and integer esti-
mation: Ps-LAMBDA and an updated version of LAMBDA. Evaluation of the in-
teger solution is based on the ambiguity success rate. Since this probability of 
correct integer estimation is generally difficult to compute, easy-to-use approxi-
mations and bounds of the ambiguity success rate are provided by the Ps-
LAMBDA software. This success rate tool is valuable not only for inferring 
whether to fix the ambiguities but also for design and research purposes. For the 
actual integer estimation, the updated version of the LAMBDA software, provides 
now more options of integer estimation and integer search, including the search-
and-shrink strategy. In addition, the Fixed Failure-rate Ratio Test (FF-RT) and the 
Fixed Critical-value Ratio Test (FC-RT) are incorporated for users to validate the 
significance of the fixed solution. Using these two software tools together allows 
for the combined execution of integer estimation and evaluation, thus benefiting 
multi-frequency, multi-GNSS applications. 
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1. Introduction 

All high-precision GNSS (Global Navigation Satellite Systems) applications 
commonly rely on the very precise GNSS carrier-phase observations with success-
fully fixed ambiguities [1-5]. Hence ambiguity resolution is the key for precision 
GNSS applications. It comprises integer ambiguity estimation and evaluation. 

A variety of ambiguity resolution methods have been developed since the late 
1980s [1-6], of which the LAMBDA (Least squares AMBiguity Decorrelation Ad-
justment) method has become one of the more popular methods. The method in-
cludes a numerically efficient implementation of the Integer Least-Squares (ILS) 
principle and as such maximizes the probability of successful integer estimation 
[7]. The key of the LAMBDA method is to find the integer solution based on a 
decorrelated float ambiguity solution instead of the original one. By means of the 
decorrelating ambiguity transformation the efficiency of the integer search is sig-
nificantly improved. For more details on the LAMBDA method, one can refer to 
[6, 8, 9]. 

High precision GNSS positioning is only possible if the integer ambiguities are 
correctly fixed. If the fixed solution is unreliable, it too often leads to unacceptable 
errors in the positioning result. Therefore, in practice, one should first evaluate 
(predict) how reliable the fixed solution will be. If the reliability of the integer so-
lution is predicted to be lower than a required threshold, one should not proceed 
with the ambiguity resolution. To predict the reliability of the integer solution, the 
success rate is employed, i.e. the probability of correct integer estimation [7, 10, 
11]. Unfortunately, exact evaluation of the success rate is generally not feasible. It 
is therefore necessary to find some good approximations of the success rate. So 
far, a variety of success rate approximations and bounds have been developed for 
ILS, integer bootstrapping (IB) and integer rounding (IR) [10-13]. However, up to 
now, no standard software has been available for conducting such evaluations. 

In this contribution, we will introduce two Matlab software tools, Ps-LAMBDA 
and version 3.0 of LAMBDA. In the Ps-LAMBDA software, lower and upper 
bounds, as well as Monte-Carlo based approximations, of the ILS, IB and IR am-
biguity success rates are provided. This success rate tool is valuable in applica-
tions not only for deciding on whether or not to fix the ambiguities but also for de-
sign and research purposes. In version 3.0 of LAMBDA, the following new 
features are incorporated: (i) more ILS search options, including a search-and-
shrink; (ii) extension of integer estimation methods, namely IB, IR and partial am-
biguity resolution (PAR); and (iii) the Fixed Failure-rate Ratio Test (FF-RT) and 
Fixed Critical-value Ratio Test (FC-RT) for validating the significance of the in-
teger solution. 

2. The four steps of integer ambiguity resolution 

Consider the GNSS mixed integer linear model 
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where a∈ n
  and b∈ p

  are the integer and real parameter vectors, respectively; 
Their design matrices are A∈ m n×



 and B∈ m p×
  with [A B] full column rank. 

y∈ m
  is the observation vector contaminated by the normally distributed random 

noise e with zero means and variance matrix Qyy. This mixed integer model is 
usually solved in four steps. 
1. Float solution: In the first step, the integer nature of the ambiguities is dis-

carded and a standard least-squares (LS) parameter estimation is performed. 
As a result, one obtains the so-called float solution, together with its variance-
covariance matrix 
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Other forms than batch least-squares such as recursive LS or Kalman filtering 
may also be used to come up with a float solution. Such choices will depend 
on the application and on the structure of the GNSS model. 

2. Integer Solution: The purpose of this second step is to take the integer con-
straints n∈a   into account. Hence, a mapping : n nI     is introduced that 
maps the float ambiguities to corresponding integer values 

 ˆ( )I=a a  (3) 

Many such integer mappings I exist. Popular choices are integer rounding (IR), 
integer bootstrapping (IB) and integer least squares (ILS). ILS is optimal, as it 
can be shown to have the largest probability of correct integer estimators, i.e. 
the largest success rate of all integer estimators. IR and IB, however, can also 
perform quite well, in particular after the LAMBDA decorrelation has been 
applied. Their advantage over ILS is that no integer search is required. 
The expected quality of ˆ( )I=a a , as described by the ambiguity success-rate, 
can be evaluated with the Ps-LAMBDA tool (see next section). 

3. Accept/reject: Once integer estimates of the ambiguities have been computed, 
the third step consists of deciding whether or not to accept the integer solution. 
Several such tests have been proposed and are currently in use in practice. 
They are all of the form 

 Accept     if   ( )T c<a a   (4) 

with testing function : nT    . The positive scalar c<1 is a tolerance value 
that needs to be selected by the user. Thus the integer solution a  is accepted 
when ( )T a  is sufficiently small; otherwise, it is rejected in favour of the float 
solution â . Different choices for T can be made. Examples include the ratio-
test, the difference-test and the projection-test [14-18]. All these tests can be 
cast in the framework of Integer Aperture Estimation (IAE) [19-21].The ratio-
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test is probably one of the most popular. Both the Fixed Critical-value Ratio 
Test (FC-RT) and the Fixed Failure-rate Ratio Test (FF-RT) are part of the 
new version of LAMBDA. 

4. Fixed Solution: In the final step, once a  is accepted, the float estimator b̂  is 
re-adjusted to obtain the so-called fixed estimator 

 ( )1
ˆ ˆ ˆˆ

ˆ ˆaaba
−= − −b b Q Q a a



  (5) 

This solution has a quality that is commensurate with the high precision of the 
phase data, provided that the uncertainty in the random integer vector a  can 
be neglected.  
To decide whether or not the uncertainty in a  can be neglected, an evaluation 
of its probabilistic properties is essential. 

3 Ps-LAMBDA software for ambiguity success rate evaluation 

3.1 The ambiguity success rate  

With the Ps-LAMBDA tool one can evaluate the expected quality of ˆ( )I=a a , as 
described by its success-rate. The success rate of a  is defined as the integral of 
the probability density function (PDF) of the float solution over the pull-in region 
Sa, where a is the correct integer vector: 

 ( ) ( ) ˆs ˆ ( | ) d
a

a
S

P P P S f= = = ∈ = ∫ aa a a x a x  (6) 

The PDF of the float solution is 
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As the pull-in regions of the integer estimators are integer translation invariant, the 
success rate can be evaluated, without knowledge of the unknown ambiguity vec-
tor, as: 

 
0

ˆs ( | ) 
S

P f d= 0∫ a x x  (8) 

This shows that the success rate depends on the PDF and on the pull-in region. 
The PDF is captured by variance matrix ˆ ˆaaQ , while the pull-in region is specified 
by the chosen integer estimation method. For more detail on the pull-in regions of 
ILS, IB and IR methods, one can refer to [7]. For the success rate evaluation, only 
the variance matrix ˆ ˆaaQ  is needed and not the float ambiguity solution â  itself. 
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3.2 Success rate approximation and bounds 

First of all, one can evaluate the success rate (8) by making use of Monte Carlo 
simulations. The procedure is as follows. One generates a random sample â  from 
the distribution ˆ ˆN(0,  )aaQ  and uses it as input for integer estimation. If the output 
of this estimator equals the null vector, then it is correct, otherwise it is incorrect. 
This process can be repeated an N number of times, and one can count how many 
times the null vector is obtained as a solution, say Ns times. The approximation of 
the success rate follows then as: 

 s sP N N=  (9) 

In order to get good approximations, the number of samples N must be sufficiently 
large. The disadvantage is that it may be very time-consuming, especially in case 
of ILS, since for each sample an integer search is required. Therefore the Ps-
LAMBDA tool also provides easy-to-compute lower and upper bounds of the am-
biguity success rate 

So far there are a variety of lower and upper bounds in literatures. Some of them 
are based on simplifying the complete variance matrix of ambiguities and some of 
them based on simplifying the complicated pull-in region [22]. Besides, the rela-
tion of success rate between ILS, IB and IR methods can be used [7]: 

 ( ) ( ) ( )IR IB ILSP P P= ≤ = ≤ =a a a a a a    (10) 

Since this ordering is the same as the ordering in terms of complexity, one may 
use IB success rate as lower bound of ILS and upper bound of IR or use IR as 
lower bound of IB. The extensive experience studies indicated that the IR and IB 
bounds work well based on the decorrelated ambiguities, especially, the IB suc-
cess rate is a sharp lower bound of ILS. An evaluation for some of the bounds was 
made in [13, 23]. 

3.3 Ps-LAMBDA software and its demonstration 

The Monte Carlo based simulations, as well as all lower and upper bounds of the 
success rate are now implemented in the Ps-LAMBDA software for ILS, IB and 
IR methods. Fig. 1 gives an overview of the software’s structure. The main routine 
is SuccessRate which needs the inputs: 

Qa  The variance matrix of the float solution ˆ ˆaaQ  

method 1=ILS [DEFAULT], 2=IB, 3=IR 
option  The approximation / bound to compute (see Fig. 1) 
decor  1=decorrelation [DEFAULT], 0=no decorrelation 
nsamp Number of samples used for simulation-based approximation 
The choice for decor is only relevant to IR and IB, since these estimators are not 

Z-invariant. Decorrelation is always applied for ILS to ensure computational effi-
ciency. 



Fig. 1 Ps-LAMBDA: 
overview of available 
methods and options in 
routine SuccessRate. De-
fault option is indicated 
with (*). Names of un-
derlying routines are 
shown as well. AP = ap-
proximation, LB = lower 
bound, UB = upper 
bound 

 
 

 

 

Fig. 2 ILS success rates: upper bound 
based on region (blue) and lower bound 
based on IB (red) versus the actual ILS 
success rate 

 
Fig. 2 shows the performance of the Monte-Carlo simulation based success rate, 
the IB based lower bound and the region based upper bound. They are correspond-
ing to options 1, 3 and 7 in Fig. 1. This result is for a CORS baseline ambiguity 
resolution with ionosphere-weighted model. The standard deviation (STD) of sin-
gle-differenced ionosphere constraint is 7cm. The 24 hour dual-frequency GPS 
observations are used with STDs of phase and code 20 cm and 2mm, respectively. 
The number of epochs varies from 1 to 5 with 5s sampling interval to obtain the 
success rate results from 0.65 to 1. The number of samples used for the simulation 
based success rate is 106. With this number, the approximation will be very close 
to the true value [25]. The result shows that both lower and upper bounds perform 
very well, particularly when the success rate is larger than 0.95. Considering that 
in the real applications, one usually accepts the fixed solution only when its suc-
cess rate is close to 1 (say, >99%), one can use these two bounds to easily evaluate 
the success rate. For more information about the performance of the other approx-
imations and bounds, one can refer to [13, 23, 24]. 
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4. LAMBDA (version 3) for ambiguity estimation and validation 

In the previous educational version of the LAMBDA software, only the ILS meth-
od was implemented and the search was executed by enumerating all integer can-
didates inside the search ellipsoid with a small, but fixed ellipsoid size. This 
search strategy can become time-consuming in the high-dimensional case with 
multi-frequency, multi-GNSS applications. Moreover, one may alternatively pre-
fer simpler estimation method, like for instance IB or IR, in case their success rate 
is high enough. The main features of the new LAMBDA version 3 software are as 
follows: 
 Additional to the enumeration with fixed ellipsoid size, another search strate-

gy was embedded based on searching in an alternating way around the condi-
tional estimates and shrinking the search ellipsoid. This concept was already 
presented in [6], see also [8], but not implemented in the previous educational 
versions of LAMBDA. 

 As alternative to ILS, one may now also choose the IB or IR estimators. 
 It is possible to output the IB success rate. This success rate is known to be a 

tight lower bound of the ILS success rate [7]. 
 Partial Ambiguity Resolution (PAR) can be applied, based on fixing a subset 

of the decorrelated ambiguities such that the success rate will be larger or 
equal to a minimum required success rate [25]. 

 The Ratio Test can be applied to validate the significance of the fixed solu-
tion. The model-driven Fixed Failure-rate Ratio Test (FF-RT) or the classical 
Ratio Test with a fixed (user-defined) threshold can be applied. 

 A modular approach with a limited set of subroutines, enabling one to perform 
for example only the decorrelation-step, only the search-step, or both steps. 

We now describe and geometrically illustrate the concept of the search-and-shrink 
approach. For the other features, one may refer to the listed references and the 
software manual. 

4.1 ILS Search space 

Using the full information of ˆ ˆaaQ , the ILS ambiguity resolution is defined as 

 1
ˆ ˆˆ ˆarg min  ( ) ( ),   T m
aa
−= − − ∀ ∈a z a Q z a z

  (11) 

The integer minimizer (11) is obtained through a search over the integer grid 
points of an n-dimensional hyper-ellipsoid defined by 

 1 2
ˆ ˆˆ ˆ( ) ( ) ( )z z a Q z a χ−= − − ≤T
aaF  (12) 

The integer grid point z inside the hyper-ellipsoid which gives the minimum value 
of function F(z) is the optimal ILS solution a . The search efficiency is governed 
by the size χ2

 and the shape of ellipsoid. The constant χ2
 can be predetermined us-



8  B. Li et al. 

ing different strategies and can also be shrunken during the search [8, 26]. The 
shape and orientation of the ellipsoid are defined by the variance matrix ˆ ˆaaQ . The 
high correlated variance matrix will often lead to search halting. To improve the 
search efficiency, the decorrelated variables, ˆˆ T=z Z a  and ˆˆ ˆ ˆ

T
zz aa=Q Z Q Z  are used 

in (12) instead of â  and ˆ ˆaaQ , respectively. 

4.2 Search-and-shrink in two dimensions 

In order to explain the concept of the search-and-shrink procedure, we describe it 
with a two-dimensional (2D) example. Figures 3 and 4 show how the search pro-
cedures work with enumeration and shrinking for a 2D example. The float solu-
tion is depicted with a blue asterisk. The grey line shows the line defined as 

 ( )
1 2 2 2

2
ˆ ˆ ˆ ˆ1|2 1 2 2ˆ ˆ ˆz z z zz z z zσ σ −= − −  (13) 

It shows that if 2ẑ  is rounded to its nearest integer 0, the conditional estimate 1|2ẑ  
will be the intersection of the grey line with the grid line at z2=0. With bootstrap-
ping, this conditional estimate is then rounded to its nearest integer 1. If only 2 in-
teger vectors are requested, both enumeration and shrinking search strategies will 
give the same initial search ellipse, see left panel of Fig. 3. If 6 candidate integer 
vectors are requested, the difference between the two search strategies becomes 
clear. Figure 3 shows on the right the search ellipse for the enumerating search 
strategy. All 16 grid points inside ellipse are examined to choose 6 candidates 
(black dots) with the smallest F(z(i)). 
 

  
Fig. 3 Search ellipse for 2D example for enumerating search strategy. The requested number of 
integer vectors is 2 (left) or 6 (right). 
 

With the search-and-shrink strategy, the 6-step procedure is described and each 
step is shown as a separate panel in Fig. 4. For each step the new candidate is 
shown in blue in the corresponding panel. Candidates from previous steps are 
shown in black. If at a certain stage a candidate is removed, as it is outside the 
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shrunken ellipse, it is shown in red. For every step the old search ellipse (red) and 
the new shrunken ellipse (blue) are shown if shrinking is possible. 
 

   

   
Fig. 4 Search-and-shrink procedure for 2D example (The x and y axes denote the ambiguity z1 
and z2, respectively). The requested number of integer vectors is 6. 
 
1. With the bootstrapped solution [1 0]T as the first candidate, we find the next 5 

candidates by rounding the conditional ambiguity 1|2ẑ  to its 2nd, 3rd, 4th and 5th 
nearest integer. We now have 6 candidates z(i) (blue points), and the size of 
the search ellipse is set to the maximum F(z(i)), see the blue ellipse. 

2. Round 2ẑ  to its second nearest integer (z2=1), and round the corresponding 
new conditional estimate of the first ambiguity to the nearest integer. This will 
give you a new candidate (blue point in panel 2). It resides in the search el-
lipse. Therefore, the integer candidate with the largest F(z(i)) is removed (see 
red point), and the ellipse size is now set to the largest value of the remaining 
candidates. 

3. Next, round the conditional estimate of the first ambiguity from Step 2 to the 
second nearest integer. Again it resides in the shrunken search ellipsoid. There-
fore, the integer candidate with the largest F(z(i)) is removed, and the ellipse 
size is now set to the largest value of the remaining candidates. 

4. Round the conditional estimate of the first ambiguity from Step 2 to the third 
nearest integer. Again it resides in the shrunken search ellipsoid. Therefore, the 
integer candidate with the largest F(z(i)) is removed, and the ellipse size is 
now set to the largest value of the remaining candidates. 
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5. Round the conditional estimate of the first ambiguity from Step 2 to the fourth 
nearest integer. This candidate is outside the search ellipsoid and is disregard-
ed. No shrinking in this step. 

6. A new candidate for the second ambiguity is obtained by rounding 2ẑ  to the 
third nearest integer (z2=-1). Rounding the corresponding new conditional es-
timate of the first ambiguity to the nearest integer results in a new candidate, 
which resides in the search ellipse. Therefore, the integer candidate with the 
largest F(z(i)) is removed, and the ellipse size is now set to the largest value of 
the remaining candidates. 

For the n-dimensional case the search-and-shrink strategy goes along similar lines. 

5 Summary 

In this paper we introduced two Matlab software tools, Ps-LAMBDA and 
LAMBDA (version 3). They are developed for integer ambiguity evaluation and 
estimation, respectively. With Ps-LAMBDA the ambiguity success rates, and their 
bounds, of ILS, IB and IR can be computed, while the new version of LAMBDA 
provides more options for integer estimation, including the fixed failure-rate ratio 
test. The new LAMBDA (version 3) software tool can be downloaded 
from http://saegnss2.curtin.edu.au/~gnssweb/index.php?request=getlambda 
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