<]
TUDelft

Delft University of Technology

An improved coherent point drift method for tls point cloud registration of complex scenes

Zang, Y.; Lindenbergh, R. C.

DOI
10.5194/isprs-archives-XLII-2-W13-1169-2019

Publication date
2019

Document Version
Final published version

Published in
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS
Archives

Citation (APA)

Zang, Y., & Lindenbergh, R. C. (2019). An improved coherent point drift method for tls point cloud
registration of complex scenes. International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences - ISPRS Archives, XLII(2/W13), 1169-1175. https://doi.org/10.5194/isprs-archives-
XLII-2-W13-1169-2019

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.5194/isprs-archives-XLII-2-W13-1169-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1169-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1169-2019

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10—-14 June 2019, Enschede, The Netherlands

AN IMPROVED COHERENT POINT DRIFT METHOD FOR TLS POINT CLOUD
REGISTRATION OF COMPLEX SCENES

Yufu Zang > *, Roderik Lindenbergh®

2 School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, 219
Ningliu Road, Nanjing 210044
b Department of Geoscience and Remote Sensing, Delft University of Technology, Stevinweg 1, 2628 CN, Delft

KEY WORDS: unorganized points, complex scene, CPD algorithm, covariance descriptor, objective function, registration

ABSTRACT:

Processing unorganized 3D point clouds is highly desirable, especially for the applications in complex scenes (such as: mountainous
or vegetation areas). Registration is the precondition to obtain complete surface information of complex scenes. However, for
complex environment, the automatic registration of TLS point clouds is still a challenging problem. In this research, we propose an
automatic registration for TLS point clouds of complex scenes based on coherent point drift (CPD) algorithm combined with a
robust covariance descriptor. Out method consists of three steps: the construction of the covariance descriptor, uniform sampling of
point clouds, and CPD optimization procedures based on Expectation-Maximization (EM algorithm). In the first step, we calculate a
feature vector to construct a covariance matrix for each point based on the estimated normal vectors. In the subsequent step, to
ensure efficiency, we use uniform sampling to obtain a small point set from the original TLS data. Finally, we form an objective
function combining the geometric information described by the proposed descriptor, and optimize the transformation iteratively by
maximizing the likelihood function. The experimental results on the TLS datasets of various scenes demonstrate the reliability and
efficiency of the proposed method. Especially for complex environments with disordered vegetation or point density variations, this
method can be much more efficient than original CPD algorithm.

1. INTRODUCTION

During the last decades, advances in laser scanning technology
have led to significant development of research and activities
related to computer vision, topographic mapping, and terrain
analysis [Xu et al., 2017]. Among them, terrestrial laser
scanning (TLS) is frequently used for various applications (such
as: object extraction, tracking, deformation detection, building
reconstruction) since it can collect dense point clouds quickly
and accurately. In such applications, processing unorganized 3D
point clouds are inevitable and highly desirable [Li et al., 2016],
especially for tasks in complex areas (for example: mountainous
or vegetation scenes). However, to obtain complete information
of an area or scene, multiple TLS stations are required, leading
to the registration problem of transforming the point clouds
from different stations into a same coordinate system.

Various 3D registration methods have been proposed,
demonstrating superior performance, but they usually need to be
carefully designed to work well in specific environments. In
general, an efficient registration of TLS point clouds should
solve two major problems: extracting the registration primitives
(geometric features) and determining the corresponding
primitives [Habib et al., 2010]. However, in a complex
environment, outliers caused by disordered vegetation, and
occlusions caused by complex objects pose challenges for
automatic registration. Specifically, various outliers or noise
affect the extraction accuracy of registration primitives. For
TLS datasets, point densities also vary considerable depending
on the scanning distance and incidence angle. This varying
point density decrease the reliability of extraction. On the other
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hand, complex as similar structures increase the number of
mismatched correspondences since various similar local surface
of one predefined level appear in complex environment.

To tackle the aforementioned problems, we propose an effective
TLS registration method for complex scenes by improving the
CPD method. The CPD algorithm determines the optimal
transformation between stations by maximizing a Gaussian
Mixture Model (GMM) likelihood function. It takes the whole
point cloud into consideration without extracting geometric
features, and matches iteratively to maximize the values of an
objective function. The method has a strong robustness to
outliers or noise [Lu et al., 2018]. Besides, we designed a robust
3D descriptor of a suitable covariance matrix to describe the
geometric information of each point, ensuring that a global
optimum is achieved. Considering all these factors, the core
concept of our proposal is to combine the advantages of the
covariance descriptor and CPD algorithm. Compared with
original method, this method exhibits excellent performance
and good applicability for complex scenes.

1.1 Related Work

Some existing methods use artificial markers to perform
alignment between different stations [Kim et al., 2016].
However, the deployment and precise positioning of the
artificial targets are generally labor-intensive and time-
consuming, especially for mountainous or riverbank scenes.

To date, a variety of automatic registration methods were
provided. Many classification methods have been proposed to
classify them [Salvi et al., 2007]. According to the registration
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errors, these methods are generally categorized into coarse and
fine methods. The former provide initial transformation
parameters for the latter. Without rough registration, fine
methods are easy to fall into local minima.

Most coarse methods are based on geometric primitives
(including feature points, straight lines, spatial curves, regular
planes etc.). Primitives (geometric elements wused for
registration) contain discriminative geometric information that
facilitate the matching of correspondences. Specifically, feature
points are usually extracted from point clouds to increase
matching efficiency, [Ge, 2017]. Various feature point
extraction methods are available, including SIFT [Pang et al.,
2012], SURF [Aoki et al., 2017], and DoG [Theiler et al., 2014].
However, feature point based methods are sensitive to outliers
or point density variations. Apart from these, straight lines
[Date et al., 2018] and regular planes [Forstner et al., 2017] are
also popular primitives, but limited to artificial environments
where regular features can be easily extracted. Besides, spatial
curves [Yang et al., 2014] and curved planes [Raposo et al.,
2018] are frequently used as registration primitives as well,
exhibiting good performance for free-form objects. However,
for TLS point clouds of complex scenes, few effective spatial
curves or curved planes can be found. These registration
primitives based methods mainly apply matching strategies (e.g.,
index, conditional constraint or RANSAC searching) to search
potential primitives, and use feature descriptors to measure and
determine correspondences.

Fine methods aim at refining the initial transformation. Typical
fine methods are the Iterative Closest Point (ICP) algorithm
[Besl et al., 1992] and its variations [Dong et al., 2016; Li et al.,
2015]. ICP minimizes the objective function formed by the
squared distances between the closest points iteratively to get
the accurate transformation. Traditional ICP is limited by its
narrow region of convergence. Good initial values are needed to
avoid falling into a local minimum. Other registration methods
are common used, such as: 4-points Congruent Sets [Mellado et
al., 2014], Simultaneous Localization and Mapping method
[Saeedi et al., 2014].

Recently, probability methods such as Coherent Point Drift
show competitive performance in different scenarios. CPD was
firstly introduced in [Myronenko et al., 2010]. It treats the
registration of two point clouds as a probability estimation
problem. Based on motion coherence theory, Gaussian Mixture
Model (GMM) centroids are fit to the point clouds using the
Expectation-Maximization (EM) algorithm. The CPD algorithm
does not need initial values, or a series of strategies to ensure
enough correspondences. CPD offers superior accuracy and
stability in presence of outliers. However, CPD only uses the
constraint of distance between two point clouds to measure
similarity, performing poorly on data with varying point density.

1.2 Our Contributions

In this research, we extend the CPD algorithm with a novel
descriptor for robust registration of complex scene TLS point
clouds. The main contributions and innovations are as follows:
(1) A robust descriptor is proposed, using three feature values
between the current point and its neighbour to construct a
covariance matrix. Next, the generalized eigenvalues are
calculated to measure the difference between any two points,
making it robust to outliers and varying point density.

(2) Based on the descriptor, we extend the CPD algorithm by
improving its objective function and the posterior probability

function, to make use of distance information as well as robust
geometric information provided by the descriptor.

2. METHODOLOGY

Our proposed registration method consists of three steps: the
construction of the covariance descriptor, uniform sampling of
TLS points, and CPD registration procedures. In the first step,
the normal vectors of each point are estimated. Then, we
calculate feature values to form a covariance matrix for each
point. In the subsequent step, to ensure efficiency, we sample
the TLS point clouds uniformly. Finally, we construct an
objective function considering the geometric information
described by the descriptor, and optimize the transformation
iteratively by maximizing the likelihood function.

The workflow is shown in Figure 1. The details will be
introduced in the following sections.
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Figure 1. Workflow of the proposed method

2.1 Construction of covariance-based descriptor

Covariance is a method of decreasing the dimension, by
quantifying the change of many variables together. Inspired by
[Cirujeda et al., 2015], we constructed a covariance-based
descriptor gathering shape information of a local surface. It
offers many intrinsic advantages: invariant to spatial
transformation, and robust to outliers and point density
variation.

For one point and its neighbours, the first step is to calculate the
feature vector for each neighbour based on normal vectors. The

feature vector of one neighbour Pj is formed as:
Fi=(aph) ®
Where, a; is the angle between the normal vector of current
point P, and neighbour PJ. ; ﬁj is the angle between the normal
vector of neighbour Pj and the vector from neighbour Pj to
current point P, ; a; and ,BJ. together reflect the shape of the
local surface (as shown in Figure 2(a)); h; is the distance from
neighbour P, to the tangent plane L formed by normal vector of

current point P, and a radius r (as shown in Figure 2(b)). This
local distance describes the geometric scale of the local surface.
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Figure 2. lllustration of three local feature variables. (a)
Deviation angle between normal. (b) Local distance.

Based on the feature vectors of neighbours, we construct a
covariance matrix for current point P, , written as:

CR=ZXE-DF -0 @

where n is the number of neighbours within a specified

radius; ; indicates the average feature vector of neighbours.

The covariance matrix contains the feature information of the
local surface. We form a covariance matrix for each point to
describe its local characteristics.

Notably, the covariance formed by the feature vectors has
different dimensional variables. To measure the dissimilarity
between any two points reasonably, we use the generalized
eigenvalues of two covariance matrixes, as:

D(C},C?) =In?4 +In%4, + In*A, @3)
where 4, 4,, A, are the generalized eigenvalues of covariance

matrixes C! and C? [Tuzel et al., 2006]. The dissimilarity
describes the geometric differences of the local surface well.

The dissimilarity is normalized between (0, 1), written as:
f (R, P,) =exp[ -w, - D(C},C?) |, (w, =0.1in default)
Q)
where W, is a weight to increase the descriptiveness. Smaller

dissimilarity value represents that the geometric difference
between two points is small.

2.2 Improved CPD algorithm

The CPD algorithm considers the registration problem between
two point clouds: Xpg = (X, %) and

Yy1s = (Yys-s Yp )" @S an optimization problem of probability.
It uses Gaussian Mixed Model (GMM) centroids to represent

the points of source stationY,, , . The points in the target

station X, are regarded as the points generated by the GMM

centroids. When two point clouds X, ; andY,, ,align well, the

weighted sum (or objective function) of probability between
two point clouds reaches the maximum. During the optimization,
the degree of movement of each point from Y,, ,is regarded the

same (only one variance o used for all points), this is why the
algorithm is called “coherent point drift”. The GMM probability
density function of CPD is written as:

p() =S P(m)p(x/m)
®)

1
p(x/m) = eXp(—g"X_ym”Z)

Lt
(2”02 )1,5

where P(m) represents the probability of m-th GMM

component occurs; P(x/m) represents the probability of one
point of X, , occurs given that m-th GMM component has

occurred, indicating that the probability of one point in X, is
generated by m-th GMM component centroid.
with

In practice, it is impossible to match each point in X ,

each point in Y, , since outliers exist or two point clouds do

not have 100% overlap. To account for this, the following
formula is formed:

p(x)=w%+(1—w)ip<m)p(x/m) ©

where 0 < w <1, representing the amount of outliers. Then the
EM algorithm is used to estimate the optimum transformation
iteratively. During the E-step, the matching probability between
any two points from X, ., and Y, , as well as the
transformation are “guessed” first. Then Bayes’ theorem is used
to compute the posterior possibility to construct a likelihood
function. In the M-step, these parameters are updated iteratively
by minimizing the upper bound of the objective function.
However, only distance information is considered in the
objective function, easily leading to incorrect positions (as
Figure 3(b) shows). Considering this, we construct the objective
function as:

Q6.0%) =

207
3N

2
where & represents the transformation parameters (R, T);

T(y,,,6) refers to the transformed point of y_ ; o’ refers to the

N M
SR M%) % =T (Y ) +
n=1 m=1 (7)

P logo®

variance of all GMM components’ changing. N, is the sum of

P (m/x.,). P (m/x,) is the posterior probability of any

two points that considers additional geometric information,
written as:

Pé)ld (m/Xn) — - Var(xn'ym)

> var(x,,y,)+C

k=1

X=T (Y. O

var(X,, Yn) = 9(X,, Yo ) (X, ym)eXP(—%)
C = (202 )* w M

1-w N

(8)

Where g(x,,Y,,) and f(X,,Y,) represent normal constraint,

and the weight formed by covariance descriptor, respectively.
They are written as follows:
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S0y.) = {zxp[wn @-n, T(n, .00 ]if n_-T(n, .0)>0

,otherwise
(©)]
f(P_,P, )if yp —0p, <D(C*,C™) <yt + 0,
f(X Yn) = no .
0 ,otherwise
(10)
where T(nym,H) represent the normal vector transformed by
current transformation, W, is the weight of normal constraint;

Hp and o, are the mean and variance of the dissimilarity
between two covariance matrixes.

Then the algorithm iterates the E-step and M-step until
transformation becomes stable. Finally, the transformed points

of Y, are determined as T(Y,0) =R, Y, +T5, (as
Figure 3(c) shows), and the probability of correspondence can
be reflected by P. .

4

0.0,1)  (0,1,0) (1.0,0)

(b) (©
Figure 3. Registration results by original model and the
proposed model: (a) Rendering results by normal vectors of two
stations. (b) Registration result by the original model. (c)
Registration result by the proposed model.

3. EXPERIMENTS AND RESULTS
3.1 Experimental datasets

TLS point clouds of complex scenes are used to demonstrate the
performance of the proposed method. Specifically, mountainous
and river bank areas are selected (see Figure 4). The first dataset
is about a mountainous area located on an Island in China. The
second dataset is sampling a riverbank area, located in the
Luogang district of Guangdong province China. Both datasets
have lots of occlusions and noise. To test the method, we select
four stations from them separately, and use Geomagic Studio
2012 to simplify the original point clouds first. Detailed
information on datasets used is listed in Table 1.

(@) (h)
Figure 4. Two TLS datasets of complex scenes: (a)-(d) T1 to T4
stations of mountainous area, (e)-(h) T1 to T4 stations of
riverbank area.

Table 1. Detailed information of datasets

Size Area TLS Collection  Average point
Description
(million) (sq.km.) model date span (m)
Tl 0.39 0.029
Mountain T2 0.28 0.021 Leica
2013.3 0.18
dataset T3 0.37 0.032 Cl10
T4 0.35 0.021
Tl 0.39 0.15
Riverbank T2 0.37 0.10
RIEGL 2014.7 0.38
dataset T3 0.32 0.11 V2400
T4 0.34 0.094

3.2 Registration results

Figure 5 (a)-(c) show the registration results of mountainous
point clouds, and Figure 5 (d)-(f) demonstrate the registration
results of the riverbank area. Table 2 lists the registration
accuracy and precision. The mean error is calculated by the
distance between two nearest points of the overlapping area.
MSE refers to the mean square error. To ensure the efficiency of
registration, TLS point clouds are uniformly resampled to about
6000 points. The geometric information (e.g. normal vector,
generalized eigenvalues) are computed based on the original
point clouds.
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Figure 5. Registration results of two datasets: (a)-(c)
registration of adjacent mountainous stations, (d)-(f) registration
of adjacent riverbank stations.

Table 2. Registration accuracy

Mean Number of
TLS Stations Tterations MSE(m)
error(m) overlap points
M . TI&T2 71 0.11 0.041 332697
ountain
T2&T3 54 0.094 0.038 221076
Arca T3&T4 39 0.084 0.047 112851
Riverbank ~ T1&T2 64 0.144 0.039 242434
T2&T3 53 0.148 0.037 170313
Arca T3&T4 67 0227 0.088 118011

From Figure 5, we can see that different degrees of overlap,
point density variation, and even missing of points exist in the
datasets. However, Figure 5 shows that adjacent TLS point
clouds were aligned well by the proposed method. It shows the
robustness and reliability of the method, demonstrating that the
proposed method is suitable for TLS data of complex scenes.
Table 2 shows that the registration errors are small (about
0.10m for mountain data, and about 0.15m for riverbank data).
The RMSE shows the good global alignment statistically.
Notably, these registration results can be improved further by
fine registration method.

@ (b)
Figure 6. Registration details of Figure 5(f): (a) Building wall.
(b) Bridge.

Particularly, the last row in Table 2 shows that the registration
accuracy of T3 and T4 from riverbank area is relative large
(more than 0.20m). Some details of Figure 5 (f) are extracted
and shown in Figure 6. It shows that there is a translation
between the building walls, and the bridge floors. This is
because the majority of points concentrates on the areas (like
the road along the river) near the scanner. For the distinct areas,
the point density is relative small. Thus, dense areas are easily
matched together based on the constraints of probability.
Therefore, in our future work, we will give different weights for
the points with different point densities to compensate for that.
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To evaluate the performance further, we applied the original
CPD algorithm to register the TLS point clouds directly. The
results are shown in Table 3. Table 3 shows that it has poor
performance in complex environments. This also demonstrates
the satisfactory performance of the proposed method.

Table 3. Registration results by CPD algorithm

Datasets Stations  Registration result
Mountainous T1&T2 Low accuracy
T2&T3 Low accuracy

arca T3&T4 Incorrect position

Riverbank I1&T2 Incorrect position

T2&T3 Incorrect position

arca T3&T4 Incorrect position

To further evaluate the performance of robustness, we carried
out experiments under different situations. We select station T2
and T3 from mountainous dataset. Different amount of
Gaussian noise was added to the point cloud. Besides, we use
Geomagic Studio 2012 to sampling the point clouds with
different average point span.

Table 4 shows that noise exerts little influence on the proposed
method since the mean error stays within 0.15m. The proposed
method is also robust to varying point density. The correct
position can be reached even with sparse point density (for
example: 0.4m).

Table 4. Registration accuracy of different situations

Mean
Different situations RMSE(m)
error(m)
Noises 2% 0.13 0.062
5% 0.12 0.081
number 10% 0.15 0.086
Avers 0.2m 0.13 0.045
verage
0.3m 0.17 0.052
POmLspan g4 022 0.076

4. CONCLUSION AND FUTURE WORK

In this research, we propose an automatic registration method
for TLS point clouds by improving the CPD algorithm,
combining the geometric information described by a covariance
descriptor to robustly register point clouds of complex scenes.
The experimental results on TLS point clouds from different
scenes demonstrates the efficiency and reliability of our
proposal. Especially for complex environments with disordered
vegetation or point density variations, this method is much more
efficient than the original CPD algorithm. The proposed method
combines the advantages of novel covariance descriptor and the
CPD algorithm, which achieves a robust performance providing
a good alignment.

However, there are still some problems that need to be further
investigated, for example, the probability of two points should
consider the influence exerted by point density, which is the
common phenomenon for TLS point clouds; Variance should

be improved to improve the convergence efficiency. In the
future, we will try to apply extended coherent point drift to
consider geometric constraints more scientifically. Comparisons
to other descriptors and registration methods will be carried out
to explore the potential performance.
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