
Kafkalytics: Anti-pattern detection in

a Kafka message bus

Master’s Thesis

Rogier Slag

Kafkalytics: Anti-pattern detection in

a Kafka message bus

THESIS

submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Rogier Slag

born in Eindhoven, the Netherlands

Software Engineering Research Group

Department of Software Technology

Faculty EEMCS, Delft University of Technology

Delft, the Netherlands

www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2016 Rogier Slag.

Kafkalytics: Anti-pattern detection in

a Kafka message bus

Author: Rogier Slag

Student id: 1507761

Email: R.G.J.Slag@student.tudelft.nl

Abstract

Recently microservices have emerged as a new architectural pattern which

promises many advantages. Services are modeled along business entities, which

should result in a flexible system. Apart from that the pattern promises better

fault resilience against outages and better performance regarding scalability.

In this paper we explore the differences between several architectural styles

where we focus on microservices. Additionally we discuss the actual usage of the

architures in practice, based on interviews with industry experts. Talks with these

experts indicated several problems regarding communication between services.

We conclude by identifying several antipatterns when using a Kafka message

bus and present a tool Kafkalytics which can detect these patterns. Subsequently

Kafkalytics has been implemented in a live production environment where it was

evaluated as a tool with low overhead which is able to detect various antipatterns

in a live production environment. It allows to be gradually implemented in a

complete system and leverages existing infrastructure systems.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft

University supervisor: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft

Committee Member: Dr. P. Pawelczak, Faculty EEMCS, TU Delft

R.G.J.Slag@student.tudelft.nl

Contents

Contents iii

1 Introduction 1

1.1 Context . 1

1.2 Problem statement . 1

1.3 Approach . 2

1.4 Thesis overview . 3

2 Background 5

2.1 Principles of microservices . 5

2.2 Microservice architectures . 8

2.3 Organizational implications . 12

3 Interview participants 15

4 Monolithic and Service Oriented Architectures 17

4.1 Monolithic architectures . 18

4.2 Service Oriented Architectures . 21

4.3 Retrospective on Service Oriented Architectures 24

5 Microservices in practice 27

5.1 Decision process . 27

5.2 Resulting architecture . 28

5.3 Experiences . 29

5.4 Influence of the architecture on development 31

6 Kafkalytics 35

6.1 Kafka . 35

6.2 Kafka antipatterns . 37

6.3 Kafka message monitoring using Kafkalytics 39

6.4 Antipattern detection . 42

7 Evaluation 45

7.1 Research questions . 45

7.2 RQ1: Antipattern recognition by experts 45

iii

CONTENTS

7.3 RQ2: Detection by Kafkalytics . 48

7.4 RQ3: Implementation overhead of Kafkalytics 50

7.5 RQ4: Performance penalty of Kafkalytics 53

7.6 Threats to validity . 53

8 Related Work 57

8.1 Code smell detection . 57

8.2 Service Monitoring . 57

9 Conclusions 59

9.1 Contributions . 59

9.2 Implications . 61

9.3 Limitations and future work . 61

9.4 Interview phase . 61

9.5 Kafkalytics . 62

Bibliography 65

A E-commerce using microservices 71

A.1 Entities . 71

A.2 Systems . 71

A.3 Design . 73

A.4 Walk though of a successful order 76

iv

Chapter 1

Introduction

1.1 Context

A few years ago James Lewis and Martin Fowler popularized the term microservices

[James Lewis, 2014]. They described an architecture which aims at decoupling of

software components by creating separate small services around business capabilities.

Although already in place at some organizations (sometimes as Service Oriented Ar-

chitectures), the concept was not widely known yet. Over time microservices have

become increasingly popular as a way of structuring applications.

When I worked at a startup, we also decided to adopt this pattern. In order to pre-

vent coupling between several services, we placed a lot of emphasis on the decoupling

of services. The resulting architecture therefore governed that services should work

together, without being coupled to each other.

As a part of the solution we determined that a message bus would be central to

the system (in our case Apache Kafka, a distributed message bus system which can

be found at https://kafka.apache.org/). On this bus each service could publish actions

which it deemed of importance. Other services where then able to listen for these mes-

sages, and determine how to respond to each message (either by handling or discarding

the message). Using this approach the team was able to create a strongly decoupled

architecture of independent services. Together this set of services fulfilled the business

requirements of the system as a whole. An example system is shown in Appendix A,

which is based on this production system.

The resulting system was deemed a success, and is still running in production at

the time of writing. However we also discovered along the way a number of best and

worst practices was sometimes missing. In order to speed up the adoption rate of the

microservice architectural patterns, this needed to be addressed.

1.2 Problem statement

Despite the current popularity of microservices, there is little known to date on the

pros and cons of these systems in the long run. This popularity may turn out to be

similar to the situation in the 2000s, when Service Oriented Architectures were a hot

topic. As we will describe in Chapter 4 this style also turned out to have its problems.

Whereas microservices seem to quickly deliver some of their promises, currently less

is known on the long term maintenance of such system. How these systems tend to

1

1. INTRODUCTION

evolve over time is therefore still an open research question. Problems may arise in

communication between services, the detection of unused code, or other areas.

When dealing with microservices, several communication methods can be em-

ployed (which will be described in Section 2.2.2). One of those is a message bus

system, where services pass information by publishing messages to a central bus and

subscribe to certain types of messages. In an organization where every service is free

to access this bus, define new messages, and read any message, without central gover-

nance this may seem like a disaster waiting to happen. Currently there seems to be a

lack of knowledge in this regard.

The goals of this thesis are therefore

• To obtain a deep understanding on how microservices are used in practice,

• To gain knowledge on the different types of communication in these systems,

• To identify possible antipatterns when using a non-governed bus system,

• To provide a working solution which detects antipatterns when using such a bus

in a microservice architecture in the production environment of an organization.

1.3 Approach

To archive the goals stated above, we decided to conduct interviews with industry ex-

perts. These experts all come from the IT industry itself (no academia), and were

therefore able to give a first hand account on how software is used within their orga-

nizations. Each of these organizations develops software, either for customers or for

internal use. The setup for the interviews will be described in Chapter 3.

The first set of interviews revolved around the use of monolithic and service ori-

ented architectures in these organizations. The advantages and disadvantages as expe-

rienced by these organizations were discussed along with any problems the organiza-

tions faced when using these approaches. With the organizations which also employed

a microservice architecture, an additional discussion took place. This discussion also

focussed on reasons why the architecture was chosen and how this style influenced the

development practice.

These interviews confirmed the initial conjecture that a number of antipatterns may

occur when creating the communication between the services. Moreover the partici-

pants expressed they did not have a clear understanding of how technical debt may

arise in their setups, or how to avoid this process. They indicated that would wel-

come a tool which was able to inspect their environments automatically with just little

overhead. This tool should be able to pinpoint possible problems or antipatterns.

Therefore we identified a number of antipatters regarding communication between

services. We focus on the message bus system Kafka, however these antipattern may

also be valid for other message bus systems. These antipatterns were discussed with

the earlier experts to determine to which extent these patterns were present in their

designs. When confronted with the list of antipatterns and their descriptions these

experts also indicated to which extent each antipattern could lead to problems in their

systems.

2

1.4. Thesis overview

Finally we provide a concrete tool (dubbed Kafkalytics) which is able to detect

these antipatterns in live production environments. This tool focuses on easy access

to data, and tries to minimize operational overhead and implementation effort. The

tool was subsequently implemented by one of the companies, where it analyzed the

message bus data for 2 months. After these two months antipatterns were successfully

highlighted by Kafkalytics, after which the organization was able to repair these issues.

We evaluate Kafkalytics by

• Its capability to adequately detect antipatterns,

• The implementation overhead introduced by the system when the system is

added to existing services,

• The operational overhead of adding Kafkalytics to a production environment.

1.4 Thesis overview

A background on microservices is given in Chapter 2. This background is intended

to familiarize readers not entirely familiar with the concept in order to give them an

adequate insight in the architecture. In Chapter 3 we discuss the interview phase, its

setup and the selection of the participating organizations.

Chapter 4 takes the participants from Chapter 3 and reflects with them on two

other dominant development styles: monolithic and Service Oriented Architectures.

The participants also reflect on how these styles are used in their organizations, and

discuss any experienced advantages and disadvantages. Chapter 5 reflects on how

microservices are used in practice by the organizations introduced in Chapter 3. It also

highlights differences between this style, and the styles of Chapter 4.

Kafka and Kafkalytics are introduced in Chapter 6. Specifically Section 6.1 will

familiarize the reader with the core concepts of Kafka itself. The design paradigms

of Kafka are also compared to that of the ESB (Enterprise Service Bus) which was

popular in SOA setups. Section 6.2 highlights some antipatterns which may be present

when using a message bus system like Kafka. Finally Section 6.3 explains the goals

of Kafkalytics and list the requirements for evaluation. Section 6.4 indicates how

Kafkalytics is be able to detect these antipatterns.

In Chapter 7 the evaluation will take place. First we list the research questions,

after which we will zoom into each research question in a separate section. Related

work is described in Chapter 8. Finally we conclude this thesis in Chapter 9. Here

we list the contributions done and the implications of our work. We also list any

limitations in our research and highlight suggestions for future work.

Additionally Appendix A highlights the flow of an e-commerce organization em-

plying a microservice architecture. Apart from functioning as an example for the

reader, this example is also used in the evaluation.

3

Chapter 2

Background

In order to understand the possible problems an organization might face when imple-

menting microservices, it is necessary to have a general understanding on the back-

ground of microservices. This chapter aims to give the reader an understanding of this

type of architecture.

First we give an overview on the design principles of microservices itself. Sec-

ondly we discuss how this architectural style influences the architecture of a system.

Finally we conclude the chapter by describing how organizations themselves might

need to change in order to maximize the effectiveness of the design principles and

architecture.

2.1 Principles of microservices

By the lack of a current uniform definition of microservices in the academic litera-

ture, an overview will be given on the principles which underly the concept. These

principles are taken from companies and software architects which have worked on

microservice architectures. Since there is still a lack of established best-practices im-

plementation details among the different architectures might vary. Further research is

needed to evaluate the long term effectiveness of each part of the architecture in order

to provide a solid set of best-practices.

The principles to describe microservices have been based on [James Lewis, 2014]

and [Newman, 2015b]. These principles have been discussed with interviewed indus-

try experts (as described in Chapter 3) which indicated these two concepts (modular-

ization and resilience) were deemed most important in practice.

2.1.1 Modularization of microservices vs traditional approaches

In order to effectively understand why modularization is considered an important topic

when dealing with microservices, we will first explain how modularization has been

achieved over time. This historic context will show how microservices can be consid-

ered the next step in modularizing code.

Over time developers have learned how to build maintainable systems. Systems

which have this quality often share some general design patterns:

• Loose coupling

5

2. BACKGROUND

• High cohesion

• Separation of data, logic, and interface

The maxim loose coupling, high cohesion [Hitz and Montazeri, 1995] is a good

indicator of the modularization of code. When code is properly modularized, it offers

useful interfaces to other components of the application, while the code within the

module is logically strongly related. Over time there have been several ways to deal

with this modularization:

• Creating a module,

• Creating a common library,

• Creating a service

No modularization At first if no modularization is present each part of the code is

allowed to call each other part. Although this might allow for quick development ini-

tially there seems to be the tendency for all code to become interwoven. This practice

is therefore not sustainable as this code gets exponentially harder to debug, refactor,

and maintain [Abbes et al., 2011]. Every change in the code can have an unintended

side effect in another part. This style is therefore not advised.

Creating a module When starting out with a piece of monolithic software, one gen-

erally encapsulates the module. This can be done using functionality of either a frame-

work or the language itself (e.g. in Java the package feature). Using this approach

components of the monolith can only access the external interface of the module. By

reducing access to parts of the inner logic which are most likely subject to change,

while exposing a stable interface, one can properly encapsulate the logic of the mod-

ule [Booch, 2006]. By using modules the inner logic is still part of the program itself.

Calls to the modularized code are done within the same process. Its code will also still

be part of the build artifact. In case of a code change the entire application needs to be

rebuild and deployed.

Creating a library In order to allow for easier reuse between different applications

a module can be transformed into a separate library. Other code can depend on the

external interface the library offers, while it remains agnostic about the inner logic.

Libraries offer the possibility for sharing between projects and even organizations.

Examples of libraries are client side api interfaces (to interact with a certain API ser-

vice). Libraries are strictly outside of the applications code base, but are still part of the

eventual artifact. Any calls done from the application to the program does not cross a

process boundary. In case the library is updated the application needs to be rebuild and

deployed. The library approach is very popular both by architects and developers, and

entire ecosystems are in place to support this (e.g. Maven for Java, NPM for NodeJS,

RubyGems for Ruby).

6

2.1. Principles of microservices

Creating a service The final step in decoupling an application from a component is

by creating the component as a completely separate service. In this design style the

code of the component is neither in code base of the application. Instead the service

has its own build and deploy pipeline. Once the application requires a feature the

service expose, it will communicate with this service (e.g. using a Remote Procedure

Call (RPC)). The service processes the request, and optionally formulates a response

for the caller. The inner logic of the component is now in a completely different

process, and therefore inaccessible for the other application. If the interface of the

service remains the same, the inner workings (including the platform, language, and

framework) can be completely different from the original application.

2.1.2 Resilience

By splitting an application into several services, each of which runs in separate

process, the likelihood of failure of one of these services increases. As noted in

[Rotem-Gal-Oz, 2006] the network cannot be considered to be reliable. Even if the

assumption is made that all the services itself are reliable, this means that services will

sometimes be unavailable for other services.

There are three major reasons for services to fail:

• Programming error resulting in erroneous data (e.g. unparsable responses)

• The supplying service is offline

• The supplying service cannot be reached

The failure of a single service should however not impact the overall availability

of the application. When each service with its network connections has an uptime of

99.5%, an architecture with 20 of such services will have an availability percentage of

just 99.5%20
= 90.4%. Services should therefore be able to cope with outages of other

services by degrading gracefully whenever possible. Under some circumstances this

is not possible and a service is required to deny the request (e.g. if a mobile broker

cannot forward a request successfully to an API).

Teams building a service should therefore be aware how a failure of their service

affects the end-user experience. Some services may fail and come back online without

impacting the end-user experience at all. Other services may interact directly with

end-users; failure of such a service may render part of the system unavailable. Apart

from the above, a team also needs to aware of which other services their service will

be dependent: which prerequisites need to be fulfilled in order to function at all? There

are several ways for a service to handle failures:

• Declare itself either OK or failed

• Reduce functionality if upstream services are unavailable

The first option is often the easiest to implement and understand: a service can ex-

pose a custom healthcheck endpoint which can be used by other services to determine

whether the service is indeed OK to respond to requests. Once this endpoint is called

the service itself will ensure that its dependencies are available either by checking their

7

2. BACKGROUND

health (e.g. for services), or by checking the connection (e.g. for databases). In case

a dependent service is unavailable, the service declares itself unavailable as well. This

approach leads to the same problem as sketched above, since it effectively multiplies

uptime percentages of all services. However it can be useful to remove unhealthy in-

stances of a service from an instance pool (e.g. if the service has ran out of storage

space).

The alternative is for a service to degrade functionality if an supplier service fails

to respond, or does not respond in time. Degrading functionality can be done in various

ways: one can fall back to cached data or one can omit data. The variant to use depends

on the end user experience of the data. For example: if a warehouse service for an e-

commerce system does not respond (timely), the website can handle this failure by

either showing a cached stock count, or omit the stock indication altogether. In this

case the availability of the system as a whole is not impacted when a user simply views

the website, but he/she might be unable to actually order. An order microservice could

deny the request for the specific item, since its availability is unknown. In this case the

failure is contained to a specific part of the entire system (e.g. order fulfillment can

continue to function).

Apart from preparing for failing services, some organizations actually force fail-

ures in their infrastructure to test whether their systems are capable of dealing with

this. An example of this is Chaos Monkey by Netflix [Hoff, 2010]. A key component

for managing failures is by monitoring services heavily. This point is further discussed

in Section 5.4.4.

Additionally services should also prevent cascading failures: a slow downstream

service should not cause another service layer to completely lock since all calls are

waiting for responses. One can prevent this by using technologies such as circuit

breaking and bulkheads within each service [Ranchal et al., 2015].

2.2 Microservice architectures

When hearing about microservices, many people see some similarities with the pattern

which was popular in the 2000’s: Service Oriented Architecture. The differences and

similarities will therefore be described in this section. As a running example the archi-

tecture for an e-commerce site will be used which illustrates the architectural issues

which may rise when using microservices.

2.2.1 Service boundaries

A key component for microservices is deciding which parts should be in separate ser-

vices. A naive approach could be to promote each class to a separate service. This

is effectively equal to taking the single responsible principle to the highest level: the

application.

This level of splitting a problem domain does create some problems. Many ser-

vices will depend on each other, creating a highly connected dependency graph. There-

fore this solution is likely to require high maintenance. Another downside is perfor-

mance related: calls between services (which do not run within the same process) are

expensive compared to intraprocess calls. When a service needs to call multiple ser-

8

2.2. Microservice architectures

vices to perform its task, the response cannot be generated promptly and the network

can become a bottleneck.

Instead a better practice seems to be to split the problem domain into capabili-

ties. Capabilities revolve around sets of related functionality. This functionality is not

confined to the technological structure, but to the actual corresponding entity in the

business domain. An example can be a warehouse service: this service can be made

responsible for managing inventory. It keeps track of all the products using a Uni-

versal Product Code [Savir and Laurer, 1975] and accompanying stocks levels (e.g.

available and reserved). An e-commerce site can request the availability of a product

to the service, and place a reservation once the customer completes the checkout. This

reservation code can then be sent to the Fullfilment service in order to perform the

actual shipment.

As one can note this warehouse service adheres to the practice sketched above:

• It keeps its own data (e.g. the stock levels) in its own database.

• An API with only the required functionality is exposed.

• An external service does not need to know anything about internal representa-

tions or logic.

• It is easy for other systems (e.g. Business Intelligence systems) to query the API

without requiring major changes to other systems.

2.2.2 Communication

Communication between services can be done using several different methods. There

is a distinction between synchronous and asynchronous communication. Synchronous

communication is well known and understood by developers; a service sends a request

to another service and receives a direct reply of this service (while the connection

remains open). Asynchronous communication can also be used, during which the

requester may receive a response at a later time once the callee has finished processing

the request. Additionally there is a difference between request-response and publish-

subscribe.

Synchronous communication is often used in conjunction with the request-response

principle. A well known example of this is the current state of the web (HTTP). Asyn-

chronous communication is also used a lot on the web using AJAX technologies (e.g.

XMLHttpRequest). Asynchronous communication between services generally uses

the publish-subscribe pattern. Services then raise events and publish these events to a

central bus. Other services can listen to these events and react to it. Optionally these

services can publish events on which the originating service can listen and continue

processing [Etzion and Niblett, 2010].

Picking the right communication method is tricky and is likely to influence an ar-

chitecture significantly. For some cases synchronous communication can have advan-

tages, whereas other benefit mostly from asynchronous operations. For other scenarios

a mix might be valid.

Synchronous communication (e.g. using REST) has a major benefit that it is well

supported by tools and frameworks [Rodríguez-Domínguez et al., 2012]. Apart from

9

2. BACKGROUND

that developers are most likely to understand the paradigm, especially with traditional

request-response schemes. Synchronous communication using publish-subscribe is

possible, but does not provide additional benefits so it is almost never used. Asyn-

chronous communication using request-response is also relatively well understood

(e.g. communication with servers in Javascript is asynchronous) and support for it is

on-par. Publish-subscribe can often be used in order to facilitate one-to-many messag-

ing and to decouple systems. This pattern also suffers from less general understanding

and it requires a central bus where messages can be published to (and be subscribed

onto). The latter therefore requires more overhead in terms of additional services in

the infrastructure. Examples of the latter are message buses such a Kafka or the more

traditional ESB which was popular in the SOA era (ESBs will be discussed in Section

4.2).

Within microservices decoupling of services is an essential point. Apart from that

many instances of one service can be running to enable load-balancing and facilitate

fault-resilience. From the standpoint of decouplement, request-response does not seem

ideal: services need to know explicitly which services to call. One change in a service

can require an update of many other services. For requesting of information this is no

problem since there should only be one authoritative service for each entity represen-

tation. However when dealing with status updates the service performing the update

would have to call all services which might be interested in that action. The latter

introduces a far larger amount of coupling compared to the first.

It can therefore be wise, depending on the number of services and the speed at

which services can be added/modified, to make a distinction between two different

types of communication. Therefore a distinction is made between two types of com-

munication, each of which can be handled using another pattern.

The first type is a command: a service wishes to retrieve the representation of

an entity, or needs to change some parameter about the entity. In this case there is

only one service communicating with another. Apart from that the sending service is

inherently interested in the response (e.g. the representation or whether the update was

performed). For this use case request-response therefore is applicable.

The second case is an event of certain importance. When a change of a certain

importance is made, other services can be interested in this event. The service which

is authoritative for that event can therefore publish it to the central bus where other

services can read and react upon it. The service raising the message does not need to

know which services are interested in the message, nor how they deal with it.

An example of the combination of both for an e-commerce site is given for clarity.

In this system there are four microservices:

• An order service

• A payment service

• A fulfillment service

• An email service

Once the payment service decides a payment was successful, it can communi-

cate this with the order service using request-response. The order service updates its

10

2.2. Microservice architectures

representation and in turn sends a message to the bus indicating an OrderCompleted

event. The email service can subscribe to this kind of messages and send an order

confirmation to the user (after having retrieved the order using request-reponse). The

fulfillment service finally also listens to the message, fetches the order data (using

request-reponse) and prints a packaging slip. Note that the first request (between the

payment service and the order service) could also have been performed by sending an

PaymentCompleted event to which the order service reacts by checking whether that

payment ensured the entire order was paid for. Depending on the exact architecture

and requirements, both of these implementations are possible.

Also note that the order service does not even know about the existence of either

the email service nor the fulfillment service. These systems are almost completely de-

coupled (except for the retrieval of information). An additional Business Intelligence

system could also start measuring the timing of orders without any modification to the

existing system (it can just subscribe to the bus). Due to the subscription pattern, the

fulfillment service could also be taken offline for a day (e.g. warehouse maintenance)

without impacting the remainder of the system. Once it comes back online it can start

consuming the messages on the bus and catch up. This approach facilities a very fault

resilient architecture with loose coupling between services.

2.2.3 Handling state

A core concept of microservices is the ability to easily deploy new versions of a ser-

vice. Additionally one generally wants to be able to run multiple instances simulta-

neously (e.g. for load balancing or fault resilience). This requires that these instances

share some part of their state or save it to another service.

The preference for many developers seem to consider stateful services (such as

a database or queue) as Backing services [Marsden, 2015]. These are then managed

outside the general application lifecycle. As the source suggests there seem to be some

benefits to this approach:

• New instances can connect easily without having to synchronize a state first

• Existing instances do not need any reconfiguration for the new instances

• No longer required instances can be removed once no new requests are being

processed

Keeping state out of the microservice can be imagined by the pets vs cattle concept

[Tilkov, 2015b]. If an instance of application has no state within it and it goes down,

one can bring it up again easily without any loss. This application can then be regarded

as cattle since an operator does not care about the specific instance. However if an

application with state goes down, data might have been lost or recovery of the specific

instance has to be performed. This is considered to be a pet application since that

instance had significant value for the operator. Managing cattle is therefore considered

easier than managing pets [McKendrick, 2015].

The same goes with reasoning about services. When each request can be thought of

independently it becomes easier for developers to trace the exact state the application

is in at any given point in time. This can aid in debugging or reduce the time required

to build the application.

11

2. BACKGROUND

2.3 Organizational implications

What does an organization have to change in order to fully profit of a microservice

centric approach on IT? Microservices require a different approach compared to mono-

lithic software. In order to take full advantage of a flexible architecture, teams should

also be organized to seize this flexibility. Microservices are therefore often cited

together with other developments such as cloud based hosting and a devops culture

[Balalaie et al., 2015]. CI and CD are deemed indispensable [Newman, 2015b]. This

section lists some key points which organizations need to be aware of before commit-

ting to the architecture. Failing to do so may result in a less effective architecture and

development process compared to other methods.

2.3.1 Decentralization

As we will discuss in Section 4.3 about the use of a Service Oriented Architecture in

practice, there seems to be anecdotal evidence that architects and developers should be

given a larger degree of freedom when commissioning and decommissioning systems.

The traditional view where an architecture is dictated and changes follow an internal

change request has led to a situation where people have started to work around these

procedures. According to Conway’s Lay [Conway, 1968] a change has to take place

from within the organization to effectively embrace microservices: decentralization.

When one opts for a three layer team (following the MVC pattern) where different

teams handle the user interaction, the business logic, and the data persistence services

will follow this model as well As explained in the previous section this is not a valid

and scalable approach: services should resolve around business capabilities, not tech-

nical ones. A team should therefore be cross functional. The team should therefore

actually own the service they wrote.

An additional point in decentralization is autonomy: teams should be allowed to

create and deploy new services without long or complicated procedures. This prevents

services getting bulky which was often done when using a Service Oriented Architec-

ture which will be described in Section 4.3.

2.3.2 Capability vs helper

Some tasks are so common they can be extracted to separate services, such as email,

scheduling, or generation of prints based on templates. These tasks can either be em-

bedded in each service using a library or be separated to specialized services. Com-

pared to regular capability services such services are called helper services: they exe-

cute specific tasks, which are shared across the entire organization.

By separating these concerns to specialized services the logic is kept in one place.

For the caller the implementation details (such as extra dependencies or a specific

programming language) are abstracted away. This makes the caller more flexible in its

architecture.

The helper service can also handle more advanced tasks, such as email throttling

or handling email bounces. This prevent the capability service to keep track of such

state.

12

2.3. Organizational implications

2.3.3 Automation

In order to take full advantage of an architecture where rapid deployment is possible, an

organization should also facilitate behavior. Over the recent years there have been mul-

tiple developments which can facilitate this: a devops culture [Httermann, 2012], con-

tinuous integration [Duvall et al., 2007], containerization [Turnbull, 2014], and cloud

computing [Katzan Jr, 2009] are examples of this.

A devops culture embraces the concept of ownership of a specific piece of soft-

ware. This approach advocates that a team develops a service, maintains it, ensures it

works in production (and handles service failures). An opposite customary is a situa-

tion where a certain team builds a service, which is then transferred to a maintenance

team while an operations team is responsible for running and scaling the application.

The first situation allows for a culture where the development, test process, and releas-

ing of new versions can happen in a more frequent and reliable matter.

The devops culture embraces the automation of software delivery and deployment.

Additionally it focuses on a culture where most things should be programmed (includ-

ing IT operations). Tooling such as Docker (for containerization), Jenkins (for contin-

uous integration), Vagrant (for development environments), and Puppet (for scripted

server provisioning) help with this.

Finally by embracing virtual servers over physical ones one can simplify IT op-

erations in production significantly. When a new version of software is deployed (or

a configuration change to a server has to be done), this change is applied over each

server one-by-one. This leads to a phase where not all servers are consistent with each

other, and bugs may occur. By using virtual servers (which can, but not have to, be

rented from cloud companies) one can embrace the concept of an immutable server.

This is a server which is never modified, nor for new software versions, nor for con-

figuration changes. In case of such a change, a new server is brought online and the

old one is stopped. For a brief period there may be two clusters running but these

cluster are completely homogenous in software and configuration. This may reduce

the change of failures due to these changes. Additionally the practice can be made

completely automated. With purely physical machines such an architecture would be

much more difficult and costs would grow quickly (due to the excessive number of

servers standing by).

13

Chapter 3

Interview participants

As an important part of this thesis a number of interviews was conducted with key

technological persons of different companies. This was done in order to obtain first

hand knowledge on the use of software architecture within the industry itself. These

interviews form a common thread during this thesis.

Motivation In theory the downsides of bad maintainability, technical debt, and an-

tipatterns are well understood. However from industry experience, it may seem like

there is a discrepancy between these described downsides and the actual experienced

downsides.

In order to get a clear and first-hand indication on how architectural design, ar-

chitectural defects, and antipatterns influence organizations and their business, these

organizations had to be asked about their experiences in this regard. The main point of

interest was how the chosen architectural design influenced the way the organization

as a whole worked.

Interview setup As shown in Table 3.1 a total of 15 companies were selected which

came from the following industries: finance, retail, energy, staffing, IT, logistics, trad-

ing, and telecom. Each of these companies explained their use of software architecture

in their organization.

Based on earlier research [DiCicco-Bloom and Crabtree, 2006] we decided to con-

duct the interviews in an non-formal style: interviewees would be regarded as partic-

ipants to the conversation instead of just being asked questions. In order to let the in-

terviewees be honest and open about the IT challenges of their employers, the choice

was made to conduct these interviews anonymously. This was also done to ensure par-

ticipants were able to talk openly about competition sensitive information. Therefore

the names of the participants nor the organization names will be published. With each

of the participants a talk was held ranging from 30 minutes to 2 hours.

The results of these interviews will also be used in Chapter 4 and Chapter 5, de-

pending on the organizations dominant style as shown in Table 3.1. With a number of

relevant companies, a design evaluation of anti-pattern regarding message buses and

system design was held at a later stage. The results of this will be used in Chapter 7.

It should be noted the author of the thesis has strong relations with organization

C3. Interviews and implementations of systems with this organization have not been

performed by the author himself.

15

3. INTERVIEW PARTICIPANTS

Table 3.1: Participating organizations

Company Sector Dominant architectural style

C1 Finance 3 systems, file based communication, relatively monolithic

(Section 4.1)

C2 Finance 40 SOA [Perrey and Lycett, 2003] services (Section 4.2),

event bus communication (Section 2.2.2), single code base

C3 Finance 15 services, 1 monolith, Kafka/REST (Section 6.1

and [Fielding, 2000]) communication

C4 Staffing 10 services, 1 monolith, Kafka/REST communication

C5 Finance Monolithic applications with ESB (Section 4.2), outsourced IT

C6 Energy Mostly monolithic, moving towards microservices (Section 2).

REST based communication

C7 Retail Microservice based architecture, restful communication

C8 Retail Monolithic software, supported by small services

C9 Telecom Core systems are monolithic, remainder is created by separate

business units. Communication is done using file based

batch exports

C10 Trading Specialized monolithic systems

C11 Logistics Lots of small systems, with a core IT team maintaining them.

Communication over ESB systems

C12 Retail IT based on AWS [Varia, 2010] with immutable services and

containers, except the monolithic main site itself. REST based

communication

C13 Retail Multiple monoliths which works quite independently

C14 IT Makes multiple systems for customers, nowadays mainly focused

on microservices and event bus communication

C15 Finance Several old monoliths, but with more recent smaller

microservices on top

16

Chapter 4

Monolithic and Service Oriented
Architectures

In Chapter 2 an explanation was given on microservices themselves. From the inter-

views, conducted as described in Chapter 3, it turned out that organizations employed

two other architectural styles: monolithic and Service Oriented Architecture. These

strongly differ on several viewpoint, e.g. their development, concurrency, operational,

and deployment viewpoint [Rozanski and Woods, 2011].

The goal of this chapter is to compare the architectural style of monolithic software

with a Service oriented architecture. In order to understand how microservices are

used in practice, we also need to understand how the most dominant alternatives are

used within the industry. For both monolithic software as well as service oriented

architecture a section will explain the key focus points, industry usage, the advantages,

and the disadvantages.

For this comparison the talks with the organization experts of Chapter 3 served as

a basis. During each of these interviews the present member(s) of the organization

was/were asked a fixed number of questions. Based on the answers on these questions

we asked more in-depth follow-up questions. After these were done the architecture

was discussed in more detail. The interview concluded with a discussion about issues

or problems that were faced with the architecture, and a reflection on earlier design

choices.

In order to structure some of the interview questions, each of the participants were

asked the same set of questions (listed below). Additionally we asked follow-up ques-

tions based on the previous responses. The starting questions for the interview were:

• Can you describe the architectural style used?

• Why was this architectural style chosen over other styles?

• How does the chosen style impact the product development?

• Is IT considered a crucial or supporting part of your organization?

• What are the development plans for the foreseeable future?

17

4. MONOLITHIC AND SERVICE ORIENTED ARCHITECTURES

4.1 Monolithic architectures

The term monolithic architectures was often used by the industry experts to describe

their software architecture. A more in-depth analysis of this architecture is therefore

just.

Monolithic software is software where a single program performs all the tasks as

set by its requirements [Stephens, 2015] . It therefore does not have dependencies on

other applications to fulfill its tasks. Examples of these tasks can be showing a user

interface, or persisting data to a storage device. Monolithic applications are therefore

regarded to be self contained applications.

While the application does not depend on other external applications, it may still

use other modules. These modules however are internal to the monolith itself. An

example is a library for persisting data to a database; this library is internal to the

application, but not part of the application code base.

The term monolith is becoming more difficult to use consistently, since it is also

used for different kinds of software which do not fit the exact definition. One of the

reason for this is the three-tier model [Smith et al., 1998]. This model has become

more dominant with the rise of Web Services. In this case there can be an application

which handles the business rules (e.g. an API), a client which handles the user inter-

face, and a storage service which persists the data (e.g. a DBMS). This architecture

does not conform to the classic definition of a monolith. Instead one often refers to the

API as a monolith if it consists of a single application which handles all the business

logic.

In the remainder of this thesis the term monolith will be defined as a self con-

tained application which meets the complete set of design requirements by itself. A

service oriented architecture employs applications which work heavily together to ful-

fill their set of requirements. This definition includes three-tiered software. Note

there is no restriction on the code organization, which allows concepts as a monorepo

[Durham Goode, 2014], where all applications share a single code base, but different

artifacts can be created from this code base.

Examples of monolithic software are early versions of Microsoft Word and Mozilla

Firefox. However more recent version of Word share some functionalities with other

Microsoft Office products.

4.1.1 Industry usage

During the interview phase as described in Chapter 3, each of the 15 companies in-

dicated that they had at least one monolithic system supporting some needs of the

business. This is a clear indication that monolithic software is not uncommon within

the aforementioned industries. Of all the monoliths which still were in place, several

were originally developed in the 1980s, whereas the development of the most recent

monolith commenced around 2013. The largest number of still active monoliths has

been developed between 1995 and 2008. The average monoliths lifetime is between 6

and 8 years (however the standard deviation of 5 years is quite high). This number is

shifted slightly due to a number of systems originating from the finance industry which

have lived considerably longer than the average. The average lifetime is likely to be

strongly dependent on the exact industry. The main reason for the decommissioning

18

4.1. Monolithic architectures

Table 4.1: Age of monolithic software

Company # monoliths Average age Active development?

C1 3 5 years Yes

C2 1 9 years Yes

C3 1 2 years Yes

C4 2 3 years Yes

C5 11 13 years Yes

C6 4 11 years No

C7 2 4 years Yes

C8 4 5 years Yes

C9 - - Yes

C10 3 2 years Yes

C11 14 7 years Yes

C12 1 2 years No

C13 3 9 years Yes

C14 - - n/a

C15 28 18 years No

of these systems is either the ever increasing maintenance costs, or the fact that the

system is getting too far behind on the technology curve. Examples can be support-

ing responsive web layouts or mobile apps in addition to a web page. For companies

which consider IT of major importance in their services, software tends to live shorter

before being replaced.

The retail industry (most interviewed companies from this industry fall into the

e-commerce group) considers software development crucial to their business. Within

the finance industry the software development strategy strongly depends on the age of

the organization.

4.1.2 Advantages

Each of the companies has also responded on what they consider to be advantages of

monolithic systems. For some of them, these advantages are applicable, whereas for

others some advantages are less applicable.

During the initial design of a system many module boundaries are not entirely

clear within the problem domain. Using a monolithic approach allows for relatively

easy changes; moving or changing boundaries can be done without revising the in-

ternal communication within the application. As noted by C1, C3, C8, and C14 this

advantage can significantly reduce the initial design phase by up to 30%. These par-

ticipants also pointed out that in a fast moving industry, being faster to create systems

than a competitor can be very important to remain competitive. Some organizations

therefore (sometimes) opt for monolithic systems just to allow very fast design phases.

Another mentioned key advantage is the experienced ease of development of such

a system (by C1, C3, C4, C8, and C14). Many frameworks, libraries, and tools work

best when working with the full systems code, and are therefore well suited for a

monolith. Many frameworks come with support for a variety of tasks out of the box,

such as database access, ensuring locks between several instances, and have an entire

Hierarchical Model-View-Controller [Cai et al., 2000] embedded. This allows devel-

19

4. MONOLITHIC AND SERVICE ORIENTED ARCHITECTURES

opers to quickly start developing the software, without losing any time building the

building blocks of the application. The same arguments applies to tooling; many IDEs

have support for maintaining code quality within a single code base, and allow easy

refactoring within that same code base. The discovery of unused endpoints and un-

used methods can therefore become a task of the IDE instead of the developer. Using

automatic refactoring tools within an IDE such as IntelliJ therefore allows for quicker

iterations once code needs to be added, split, or removed. Another result of this ad-

vantage is the availability of developers for a system: many developers are used to

the practice and can therefore start to contribute quickly to the product after the hire.

For fast moving startups, this can be an advantage since new developers have a gentle

learning curve. The same goes for other industries for which the larger number of

possible developers is an advantage.

The third main argument in favor of monolithic software is the reduction of com-

munication with external systems which was mentioned by C3, C4, and C8. Most

communication is maintained within the program, and therefore regular method calls

can be used (external communication can be calls to partner software). Many steps

such as data serialization between components are not required, making it easier to

reason about the state a program is in. For some industries, such as trading, an addi-

tional benefit is that internal communication is much faster when compared to network

based communication (for high frequency trading, milliseconds really matter). One

also does not need think about the resilience of the network for the application itself

(the usage of the application might require this to some extent though).

The final argument is the ease of setting up such an application in production,

including any deployments after the initial version. For C13, this was a concern, since

it cuts down on operating costs. One can simply stop the applications, fetch the latest

version, and start it again. This form of deployment is straightforward and therefore

easy to implement and less error-prone.

4.1.3 Disadvantages

However the interviewees indicated there are also some sections where monoliths do

not perform as well. Depending on the industry these can be negligible or very impor-

tant.

The first disadvantage according to the interviewees of C2, C3, C4 and C7 is that

components in monolithic software have the tendency to become increasingly coupled

other components of the same monolith. At some point in time, this might hinder the

further development of the application. If this technical debt [Buschmann, 2011] is not

paid in a timely matter, the maintenance costs of the application are likely to keep on

rising. Apart from the costs for maintenance, the implementation of new features can

also become increasingly difficult over time. This seems in contrast with the earlier

stated advantage of cutting the design time: however the implementation is regarded

as development time, not design time. A win in one of these phases may therefore

eventually lead to a loss in a later phase.

Participants C2, C3, C4, C7 and C12 also mentioned the practices of scaling and

fault-resilience. These can both negatively impacted by a monolithic application. Due

to the setup of the system, it is hard to scale independent features of the applica-

tion without also scaling other parts. Since scaling the non-useful parts as well will

20

4.2. Service Oriented Architectures

consume more resources, this yields higher costs for the infrastructure on which the

application depends. Since the application is big as well (compared to feature which

needs scaling) the scaling process can take significantly longer, making it difficult to

scale the application elastically with the demand. Scaling of a single machine has its

limits (the computing power and memory in a machine is still limited), and proves to

be a single point of failure. The same goes for fault-resilience; once a common com-

ponent fails the entire application is brought to a halt (or may even crash), instead of

degrading functionality.

The final disadvantage (as stated by C3 and C4) is the deployment of a monolithic

application (although it was also mentioned as an advantage). At some point in time

(as the application grows) the deployments take increasingly longer. Similarly deploy-

ments have to be done for each change, no matter how small the change set actually

is (for example in Java adding a log statement changes the resulting JAR file). Due

to possible downtime while deploying, some organizations tend to deploy on a fixed-

time basis (e.g. once a month). This brings another downside: in case of a failure in

the newly deployed artifact one cannot pinpoint an exact change set. In such case a

rollback may have to be performed, which will delay new features and fixes.

4.2 Service Oriented Architectures

In a Service Oriented Architecture (SOA) smaller applications are employed where

each handles a subset of the set of requirements. Instead of applications the term

services is most often employed, since individual services are not capable of working

stand alone. These applications communicate with each other to perform a common

task. This can be done using direct service communication (e.g. using REST or SOAP),

or over a central bus system (e.g. an Enterprise Service Bus or Kafka).

The service oriented architecture is based on a number of key principles

[Krafzig et al., 2005]:

• Loose coupling: Services should minimize the number of dependencies between

each other,

• Abstraction: Services may only use each others public interfaces but should not

be aware of any internal logic,

• Reusability: In case of common components a separate service should handle

the common logic in order to advocate reusability.

• Statelessness: Services should not maintain more internal state than strictly nec-

essary (state should be written to a database or messages should be sent to other

services).

SOA was promoted strongly in the 2000’s by companies as IBM and Gartner,

which offered many services and products to facilitate working with this architecture

(such as consultancy or Enterprise Service Bus products). Over time, SOA became

synonymous with protocols such as the set of Web Services and Extendible Markup

Language (XML). The Web Services pattern offered protocols for each of the concepts

21

4. MONOLITHIC AND SERVICE ORIENTED ARCHITECTURES

of SOA; examples are service discovery, message passing, authentication, authoriza-

tion, and encryption (among others) [Alonso et al., 2004].

Any data should be localized to one service, which is responsible for managing

that data (this pattern is known as Information hiding [Parnas et al., 1983]). Any other

service wishing to access the data, should call the service which holds the data to

obtain a representation of that data.

In short SOA takes the five SOLID principles [Martin, 2003]. These are then ap-

plied to the architecture itself:

• Single responsibility principle: each service should have a single responsibility

and call others to obtain information,

• Open/closed principle: a proxy service can be placed in front of the actual ser-

vice to enrich the data of the service itself without modifying existing clients,

• Liskov substitution principle: a proxy service can be placed in front of another

service to handle more specific calls to that service,

• Interface segregation principle: each of the services has a specific client interface

instead of a larger common one,

• Dependency inversion principle: services should only depend on each other in-

terfaces, and not on the internal logic of other services.

4.2.1 Industry usage

A smaller set of the interviewed organizations (9) has indicated that in addition to

several monolithic systems they also employ a service oriented architecture. This ar-

chitectural pattern is therefore less likely to be used when compared to monolithic

software, although this may depend on the industry the organization is in. There is a

bias here since a large percentage (8) of the interviewed organizations considers IT as

crucial. The likeliness of the usage of SOA is therefore probably lower when the entire

software engineering industry is considered.

Services in a SOA-based architecture have very different lifetimes. Some simple

services have a lifetime of over ten years, whereas others are replaced within months

after their entry into service. The explanation for this is that services at some point can

be considered to be done (so no more changes are made and the service keeps running),

or expired (after which the service is most often replaced) which was indicated by C2.

The lifetime metric therefore does not convey any useful information.

There seem to be two predominant ways for services to communicate in a Ser-

vice Oriented Architecture: synchronous communication and asynchronous commu-

nication. These communication styles can be further divided into request-reply and

publish-subscribe [Eugster et al., 2003] patterns. Request-reply is most often associ-

ated with synchronous communication. A well known example of this is browsing the

web (a web browser sends a request and receives a web page as a result). Publish-

subscribe is often used in an asynchronous fashion. In this scenario a service places

a message on a bus, which is sent to any service which has subscribed to this type of

message. A service may respond by sending a message back over the bus system to

the caller.

22

4.2. Service Oriented Architectures

From the point of loose coupling a bus is considered favorable by C2 since it pre-

vents services to depend explicitly on each other. This also allows a service to go of-

fline for a while, and to do a catch-up of messages once it comes back online (or allow

load balancing features between different instances of the same service). Although this

pattern does decouple the services from each other, it couples each system to the bus

itself. Within the set of interviewed organizations, bus based systems are predominant

(hence using asynchronous communication following the publish-subscribe model).

4.2.2 Advantages

There are several reasons to pick a service oriented architecture. The extent to which

these advantages apply to each organization or industry can differ significantly.

Thanks to the application of the single responsibility principle, a service is easy to

understand for a developer. Each service handles a set of strongly related tasks, and de-

fers tasks outside its scope to other services. The inner logic of the service is therefore

limited. Especially if services are well designed and conform to the the dependency

inversion principle as well, services can also be swapped with other implementations

of the service as long as these conform to the same external contract. This advantage

is considered important by C11 and C14.

A second advantage is that due to the decoupling of services, it is easier to prevent

a lock-in to a certain technology stack (e.g. a certain DBMS or a programming lan-

guage). Depending on the exact needs of a service, one can easily pick the right tool

for the job. This allows for better performance for individual services as stated by C11.

Although this advantage is often quoted, all applicable companies have indicated that

they limit the technology stacks to some extent. This is done to prevent the occurrence

of stacks for which the number of developers is severely limited.

Thirdly certain parts of the application (e.g. specific services) can be scaled in-

dividually depending on the demand for the specific service. These scaling purposes

have been important in the past for C2 and C11. By only scaling certain parts one can

be specific which services should have a higher instance count. This can be done based

on the load on such a service or for reasons as fault-tolerance.

Another mentioned advantage is that deployment of the individual services is eas-

ier to realize, since one does not need a so called big bang deployment but instead can

deploy the specific service containing a change. At C2 this reduces the time required

to bring a service from development to production. In case of problems with a new or

changed service the service can be rolled back to an earlier version faster compared to

a monolithic application.

Finally due to the nature of the small services, with highly specific interfaces,

testing is easier to perform (which was of concern to C11). All services are tied to

specific interface for their calls. These interfaces can be independently tested to check

whether they conform to the specifications. Assuming other services work as expected,

any failures to comply are easier to pinpoint due to the smaller amount of inner logic.

4.2.3 Disadvantages

Although the advantages all seem legitimate, there are some issues with a purely ser-

vice oriented architecture.

23

4. MONOLITHIC AND SERVICE ORIENTED ARCHITECTURES

First of all it is increasingly expensive to get the service boundaries right. In case

one later decides to split or merge services, this can have significant impact. In case

service boundaries are off, this can result either in bad containment of functionality

or overly chatty communication between several services [Erl, 2008]. This has been

experienced by C11 and C14 when performing initial designs.

Secondly developers at C2 still feel there is a significant lack of proper tooling

In case of a problem or bug within a monolith, a developer can start a simple debug

session in the IDE and step through the code. For services one might need multiple

debuggers to step through the set of services which are used. Especially timing related

issues or race conditions are harder to debug. Some interviewed companies such as

C10 have therefore kept certain time critical systems monolithic, simply to prevent

variable timings of communication.

A major disadvantage which was experienced by C3 and C4 is SOA is that com-

munication is now a key component. Due to the decoupling of services, the commu-

nication is no longer contained within the process. This means there is an additional

time and performance penalty for communication. As mentioned before, if the service

boundary is not well defined, this can result in overly chatty communications. Since

each of these communication calls is more expensive than the equivalent intraprocess

communication, this can result in performance problems. Another possible problem

with this form of communication that a service can no longer guarantee another ser-

vice is running. Therefore each service needs to be able to detect unhealthy states of

the services it depends on, and act accordingly to its caller. The communication can

also be more difficult to reason about (e.g. determining a global state of a distributed

network [Chandy and Lamport, 1985]).

Testing individual services has become easier, but testing the system is increas-

ingly harder as stated by C2 and C7. One can imagine a situation where a test of

system A is done with respect to system Bv1. However once this test succeeds, this

is no confirmation that system A will work well with the just released system Bv2.

For organizations which tend to deploy new versions of their services often, this might

mean that a CI tool is always be behind the versions running in production. Another

downside can be that for a complete test of service A, all downstream services of A

should either be running or be mocked. Running all these services would mean that a

lot more infrastructure is required for testing, while still not deviating the problem of

newer versions of the service running in production. Mocking has an additional prob-

lem: apart from not being necessarily up to date with the actual system, the mocked

code is part of system A itself. In case of an update of service B on which A depends,

the mock code for B needs to be updated in all sources of dependees of B!

4.3 Retrospective on Service Oriented Architectures

Many organizations have opted for the event bus (usually an Enterprise Service Bus

[Chappell, 2004]) combined with publish-subscribe patterns. This Enterprise Service

Bus has several features, such as mediation, routing, transformation, and security. At

first many organizations such as C5, C6 and C11 considered this as an advantage for

the ESB since it allowed them to keep this logic in a central place. The definition of

SOA suggests that for each set of coherent features or tasks a separate service should be

24

4.3. Retrospective on Service Oriented Architectures

developed. According to Conway’s Law [Conway, 1968] organizations that are asked

to design systems will eventually design systems which are effectively copies of the

structure in the organization itself. In order to apply a Service Oriented Architecture,

this means that for developers it should have been easy to add or modify parameters of

the central bus. However in most organizations this system would be placed under the

responsibility of the central IT division, which did not develop the remainder of the

software. Due to the lockin with a centrally managed ESB, it became difficult to easily

add new services to the system. Therefore developers and architects alike started to

opt to extend existing services to handle the new logic. In the end for many organi-

zations ended with several large monolithic applications which communicated over a

central bus system (for example at C5). This meant many of the advantages of Service

Oriented Architecture were lost, and replaced by the disadvantages of monolithic soft-

ware. Eventually this resulted in large and inflexible software, of which maintenance

costs started to rise rapidly after a certain amount of time.

Looking back to the paradigms of SOA, many still consider the architectural pat-

terns valid. However due to all the constraints in SOA (e.g. ESBs and the complex Web

Services standards) these principles could not be applied effectively in organizations.

It therefore seems the initial start of SOA did not deliver its promises.

25

Chapter 5

Microservices in practice

As a part of the conducted interviews as described in Chapter 4, relevant organizations

have also been asked about their experiences with microservices. These organizations

have indicated how they use microservice based technology and how it influenced their

general development process. This chapter therefore gives a deeper understanding of

the advantages and disadvantages of the architecture. It also gives a first answer how

organizations employ the communication between services in their systems.

Obtaining knowledge first-hand of experienced organization which use microser-

vices gives clear insight in the decision processes, experienced advantages, and disad-

vantages. Since this topic does not (yet) have a fair amount of published literature, this

chapter will therefore give insight in this, untill now, relatively unknown topic.

6 of the 15 interviewed organizations adopt some form of a microservice architec-

ture within their application infrastructure. It should be noted that this does not require

that the entire technology stack is developed around microservicing. Some pieces of

monolithic software may still be around, although most have adapted these systems to

work within the new landscape. Only organization C7 has completely switched to a

microservice architecture.

When discussing the different implications of picking this architecture, the follow-

ing points will be touched:

• The reasons to pick the pattern,

• What the architecture looks like now,

• The resulting influence on development,

• The advantages which have been experienced,

• The disadvantages which have been experienced.

5.1 Decision process

In order to understand the following sections one first should understand why these

organizations have opted for a microservice approach for their software architecture.

As explained in Chapter 2 and Chapter 4 there can be multiple reasons to pick a certain

architecture. The relative importance of these reasons also depends on the organization

and the industry the organization is in.

27

5. MICROSERVICES IN PRACTICE

None of the organizations which are using microservices started out using this

approach. The primary reason for this was that the organizations already existed before

the paradigm had started to become popular. Due to issues with the Service Oriented

Architecture (which had been in place for one of these companies), these organizations

started out using monolithic software development approaches.

One of the key components of microservices is that it strongly separates responsi-

bilities. The resulting code should therefore be easier to maintain, potentially leading

to a faster delivery process for new services and features for existing services. For

organizations C3, C4, C7, and C12 this was the fundamental reason to adopt a mi-

croservice architecture. The development speed of their monolithic architecture was

decreasing due to the increasingly more difficult process of overseeing the effects of

a change set. This can either cause bugs to manifest themselves in a production en-

vironment, or lead to a slower delivery cycle. For these organizations the ability to

quickly iterate was defined to be key, therefore the architecture should allow for short

development cycles with frequent and automated releases.

An additional component for a few of these organizations (C3, C7, and C12) was to

allow flexible scaling of services. Each of these organizations fall either into Finance

or Retail industries. The online activities of these companies have a highly flexible

demand; the ability to scale a service within minutes is therefore deemed crucial in

order to balance availability, performance, and cost. A company as C12 can see a

sudden surge in traffic of over a factor 50 within several hours, whereas C3 indicated

to sometimes see a (planned) demand change of over a factor 100. In order to prevent

lots of idling servers, these organizations use server instances which can be started

quickly and scale flexible with the demand for the service.

Finally a reason for adopting microservices is the ability to quickly test a smaller

service compared to a larger one as stated by C7. This reason strongly related to a

faster delivery process, since the feedback loop between a CI system and developer is

greatly reduced [Duvall et al., 2007]. As described by some organizations, a quick test

feedback loop can also result in a higher effectiveness of less-qualified programmers:

one does not need to oversee each change, but can rely on testing for this.

The majority of participants did not use code quality metrics (e.g. low coupling or

test coverage) as a goal on itself. These metrics correlate to the state of the software and

function as indicators of shipping speed and errorless software, but are not conceived

as business goals. Other metrics, such as reliability, uptime, or time-to-market were

mostly used to get insight in the state of the software.

5.2 Resulting architecture

Since each of the aforementioned companies already had working software in place,

the architects and their teams were already familiar with the specific domain. As de-

scribed in [Tilkov, 2015a] it can be very hard to create these boundaries right (and the

cost of changing the boundaries is high when using microservices, see Section 2.2.1).

The best situation is therefore described as the ideal scenario is one where you’re

building a second version of an existing system. These organizations did just that: take

a look at the problem domain from existing software and model the boundaries be-

tween the different subsystems. After the modeling of the business processes, one can

28

5.3. Experiences

start with development of the separate services.

Interestingly enough each of the different companies has opted for a similar ap-

proach. These approaches share the following principles:

• All data is JSON encoded,

• APIs are setup using representational state transfer (REST) [Fielding, 2000],

• Services are split across business processes, not technical entities,

• Services emit events based on certain actions,

• Services share an authentication and authorization layer,

• Services are automatically built and deployed,

• Services are small (a service is defined as small if it can be rebuilt by the team

owning it within a period of 3 weeks).

However there are also a number of differences. Within C15 all end-user services

communicate with the different services directly. These services may then continue

to communicate with the respective backends. This process is known as Backends for

Frontends [Newman, 2015a]. Other organizations let all requests go through a general

API which directs the requests to the individual services. In the latter case only a single

API is exposed, compared to multiple different APIs.

Another different is how handling state is done. Some organizations eliminate ev-

ery internal queue, by deferring tasks using a message bus (and consuming them in the

same service). This allows for flexibility within the service, since a task can be handled

by another instance than the original one. It therefore functions as an internal load bal-

ancing system. It is also more fault resilient since an error in a service does not cause

any loss of state. Other organizations tend to keep some state internally within queues

to handle those at different threads. When decommissioning an instance this instance

needs to either finish its work, or push the queues back to a shared medium (e.g. a

database). The latter system is easier to implement and is closer to the development

style used in monoliths, whereas the other is more fault resilient and scalable.

In conclusion the resulting architectures for microservice approaches vary between

the different organizations. What can be right for one organization can be overly costly

or complex for another one. In its essence this is a similar situation to monolithic

software approaches.

5.3 Experiences

This section will explore the actual experiences of the organization when using mi-

croservices. It will take a look at how well the practice aligned with the reasons to

pick the pattern. Additionally it will look into other experiences advantages which

were not expected. Finally it will take a look at the (non-expected) disadvantages

when used in production.

29

5. MICROSERVICES IN PRACTICE

5.3.1 Advantages

As stated before, for organizations C3, C4, C7, and C12 the primary reason to adopt

this approach was the expected decrease in the time required to go from development

to production. Each of the interviewed organizations has experienced this benefit (it

should be noted that all of these organizations deliver services through the browser).

Due to an improved delivery pipeline, it also became possible to automatically launch

a deploy process for very minor impact issues (e.g. a spelling error in a localization

file). In previous processes this was not possible, and many of the smaller defects or

features had to be released as a part of a release train [Leffingwell, 2007].

Although not a prime reason to switch architectures, the number of defects or faults

in the software also decreased for C2, C3, and C4. This was partly attributed to more

rigorous monitoring (as will be explained in Section 5.4.4) but also due to the adoption

of a devops culture as well. Such a culture make developers and operators work as part

of a single team, so errors in production are fixed faster (and the actual fix is released

faster). Developers are also more aware how the applications should scale.

The increased simplicity of the each of the applications also has measurable impact

on the effectiveness of (new) developers which was recognized by C7. They are able to

quickly start working on parts of the application set, without having to know anything

about the inner workings of the software they interact with. This allows employees

to roam more freely over the different projects within an organization while they can

maintain their productivity. The organization itself is therefore able to react quicker to

changes in the business.

Another key advantage is of a non-technical nature: developers feel much more

involved in the organization as a whole which was mentioned by each of the organi-

zations employing microservices. Their team is empowered to make decisions on its

own without a need for Change Reviews by upper management. Instead an idea can be

built, tested, and evaluated within days instead of months. The lack of a formal Change

Review process also means an organization is able to cut down on bureaucratic costs.

5.3.2 Disadvantages

Unfortunately there are also some disadvantages for this architectural pattern. Some

of these were already clear before organizations embarked on the road, some emerged

later on.

Whereas the complexity of microservices themselves have diminished, there is an

additional penalty involved: the operations overhead. This turned out to be significant

for C2 and C4. When dealing with a single artifact one can relatively easily deploy and

run the application. Once dealing with microservices, one also might need additional

scaffolding for message passing, load balancing, and orchestration. Compared to a

monolith which handles the same business logic, this is a significant up-front invest-

ment. However this investment is mostly considered unavoidable as deploying new

versions of dozens of services manually each day is also deemed ineffective. C2, C3,

and C4 did indicate this up front investment does pay off over time, but the initial time

and cost required for the pattern is something that should not be taken lightly.

The previous points also reflects on the teams themselves: developers need a bet-

ter understanding of how operations works (C4). This reduces the pool size when

30

5.4. Influence of the architecture on development

hiring new developers, or requires more training for these developers. Each of the in-

terviewed companies has indicated that finding the right developers is hard. Adding

more requirements for job positions therefore makes it even more difficult to fulfill

vacancies.

One of the main advantages of microservices is how easily they can be refactored

internally, without touching services that depend on it. However as explained in Chap-

ter 2 and stated by C7 this is not the case when changing service boundaries or con-

tracts. In both cases one needs to verify multiple services and adjust these to the new

boundaries or changed contracts. These changes across services are highly coupled, so

a big release of multiple services within a small timeframe is required for this. Alter-

natively one can support multiple versions of services and migrate dependent services

more slowly. The first is difficult from an operations point of view, whereas the latter

is technically harder.

Another downside is the so-called communication penalty. This is also present in

other forms of distributed software development and covers a wide variety of possible

problems for such architectures:

• There is no transaction safety present,

• Latencies between components can vary more compared to interprocess com-

munication,

• Additional complexity is involved in message passing or serialization of data,

• Asynchronicity is difficult to reason about,

• Debugging a distributed application is hard [Manabe and Imase, 1992]

Developers need to be aware of the pitfalls of a distributed architecture, and need

to deal with these adequately to ensure the system is up, performant, and available.

However most developers (C7 and C14) are not familiar which such architectures, and

therefore need to gain some training or experience with this first.

5.4 Influence of the architecture on development

A software architecture has a certain impact on the development process used within an

organization. As described in Section 5.1 the acceleration of the development process

was a key reason to move to a microservice architecture. This section will explore what

the actual impact of the the architecture has been on several parts of the development

process.

5.4.1 Development speed

The term development speed refers from the time required from building a system of

feature, to testing it, and bringing it live in production. As stated in Section 5.1 this

was a major concerns for organization to switch to microservices.

There are several ways in which development speed can be affected:

• Bugs can be fixed faster,

31

5. MICROSERVICES IN PRACTICE

• Features can be tested with a subset of customers,

• New services can be deployed to production faster.

As noted by interviewees of C2, C3, and C15 the time required from building

to shipping has effectively reduced this time. Where some organizations used to be

able to ship code at most a few times a month, these are now able to ship several

times a day. This allows for faster iteration of features, and more effective A/B testing

[Siroker and Koomen, 2013] of applications. The possibility of increasing clicks or

revenue provides direct quantifiable results for the business. As a result of this faster

development speed also strongly relates to the business goals.

5.4.2 Technology stacks

Although microservices technically allow to use any technology stack possible (pick

the right tool for the right job), each interviewed organization limits the number of

different technologies. Instead of this polyglotism, most organizations seem to focus

on consolidation (such as C2, C3, and C4).

Consolidation offers a number of advantages for both organizations as well as

developers:

• Since the cost of learning new technology is high, staying with known technol-

ogy avoids this cost,

• A team can know enough about a few technologies to write and operate their

software effectively, but cannot do this for a large number of technologies,

• Developers within an organization are more flexible if their knowledge is trans-

ferable,

• Operations can be done cheaper on a smaller number of well known technolo-

gies.

However the actual technologies can still vary between the different companies.

Some strongly rely on Java, whereas others run anything as long as it is based on

the Java Virtual Machine. The same goes for database technology: some organizations

run on Oracle, PostgreSQL, or MySQL for relational data. For document storage other

technologies such as MongoDb or Elasticsearch can be used. However an organization

generally picks one single database technology within a specific domain.

Hence one can conclude that the languages, frameworks, and data services are

often constrained. This does not go for all internal facets of a service. With most

companies developers are free to pick any dependency (and version of a dependency)

as they prefer. Since the amount of code is relatively limited within a microservice

(especially when compared to a monolith) the likelihood of dependency conflicts is

also lower.

In conclusion one can say that the advantage of freedom is often constrained by

organizations. There is a strong consolidation to a set of technologies whereas within

a service developers are free to use other parts.

32

5.4. Influence of the architecture on development

5.4.3 Automation

In order to achieve the goal of faster development speed (as described in Section 5.4.1)

a certain amount of automation is required. Most organizations (C2, C3, and C4)

indicate they already had some internal automation in place, but each organization with

microservices has indicated this automation was extended to use them effectively.

The following processes have been the key candidates for automation:

• Unit testing,

• Continuous integration,

• Artifact building,

• Deploying.

The first two of these activities are usually already automated using available tool-

ing such as Jenkins and JUnit. Due to the slower release cycle, the latter two activi-

ties were usually not a prime candidate for automation. Often the build process had

changed slightly between big releases, making the reuse of existing scripts difficult.

In order to take advantage of the faster development speed, these processes now also

need to run automated (since otherwise there is little gain).

Depending on the language, platform, and framework the building of artifacts may

be easy or complicated. Some applications can be distributed as a single Java ARchive

(JAR) file, whereas other applications might need to be packages as a Virtual Machine

or as a Docker image. Software architects need to keep this in mind while develop-

ing the application (e.g. with regard to packaging dependencies or external services).

While writing a service it becomes a key concern for a developer how the service itself

will be built and deployed. The build steps are therefore mostly written as part of the

application itself.

Handling the automated deployment of a service is also deemed useful by all inter-

viewees. This allows for new stable builds to automatically go into production without

developer or operator interaction. For the deployment one needs to consider several

different steps: how to handle database changes, how to perform rollbacks, or how to

perform a smoke test [McConnell, 1996] before live traffic hits the new version. For

each of these there are different possibilities (e.g. [De Jong, 2015]) depending on the

exact needs of the application. The behavior of the service during such steps needs to

be defined so other services know what to expect. Automated deploys can therefore

vary from a git checkout or by bringing new virtual machines online (e.g. following

the concept of immutable servers).

Writing a deployment script therefore requires extensive knowledge of the plat-

forms the application will be run on, the configuration of the servers, and the distri-

bution of traffic. In order to minimize the effort required for creating such scripts,

all companies standardize on a common deployment method. Within the interviewed

group Docker [Merkel, 2014] is emerging as a defacto standard for application deploy-

ment.

33

5. MICROSERVICES IN PRACTICE

5.4.4 Monitoring

As described in [Imamagic and Dobrenic, 2007] monitoring is often done on key com-

ponents of software performance: measuring throughput, errors, or system loads.

When concerned with microservices this approach is still valid, but does not longer

convey all required information. In case a certain key system is unavailable it might

affect lots of other systems as well. These systems do not have to be completely un-

available, but may be unable to offer their complete set of features. Measuring this

using general performance characteristics does therefore not yield actionable metrics.

Therefore some interviewed organizations (C2, C3, C7) opt to measure their sys-

tems performance by adding key business metrics. This can be the global number of

likes in a set time interval or the number of completed orders per hour. In case these

metrics do not align with expected values, one can look into technological reasons for

this (e.g. subsystem failure). As indicated by organizations which employ this metric,

there are several additional benefits:

• The IT department is a lot closer to the business department in terms of shared

goals,

• The metrics are better relatable to user goals,

• The metrics can also indicate the effect of qualitative changes (e.g. a user inter-

face change).

A final key component is the monitoring of shared subsystems. As described ear-

lier, many organizations opt for a central message bus. Since each service is free to

publish messages to this bus, without any fine-grained control, such a system can eas-

ily become overloaded or ineffective. However in order to minimize cost and delays,

such a key component of the organization should function without problems. Chapter

6 will expand on the monitoring of such message buses.

34

Chapter 6

Kafkalytics

With the understanding of microservices of Chapter 2 and 5, we can now focus com-

pletely on the communication between microservices. In this chapter the main focus

will be on Kafka, a distributed message bus.

As described in Section 5.4.4 effective monitoring of shared systems is crucial in a

microservice based architecture. Most of the interviewed companies employ a shared

message bus, over which events are emitted if a certain action takes place. Since central

governance for such is bus is not required, it is possibly an easy target for pollution.

This could lead to reduced bus performance, or increased operating costs.

In order to solve this the authors developed Kafkalytics. One part of this system

hooks into the production bus (in this case Kafka). The other part is embedded within

the services which consume from the bus.

6.1 Kafka

Kafka [Kreps et al., 2011] is a message broker system, originally developed by LinkedIn

and developed in the programming language Scala [Odersky et al., 2004]. LinkedIn

decided to open source the project in 2011. The project was subsequently adopted by

the Apache Software Foundation [Foundation, 2015]. In 2014 some engineers from

LinkedIn founded a company (Confluent) which was dedicated to support the Kafka

system.

The design of Kafka was strongly influenced by the way LinkedIn worked at that

time. It was designed to be able to act as a unified platform for handling all the real-

time data feeds a large company might have. The developers of Kafka state in the

official Kafka design documentation the following:

• It would have to have high-throughput to support high volume event streams

such as real-time log aggregation.

• It would need to deal gracefully with large data backlogs to be able to support

periodic data loads from offline systems.

• It also meant the system would have to handle low-latency delivery to handle

more traditional messaging use-cases.

35

6. KAFKALYTICS

• We wanted to support partitioned, distributed, real-time processing of these

feeds to create new, derived feeds. This motivated our partitioning and con-

sumer model.

• Finally in cases where the stream is fed into other data systems for serving,

we knew the system would have to be able to guarantee fault-tolerance in the

presence of machine failures.

The system is setup as the traditional Pub-Sub pattern (described in Section 2.2.2),

although it abstract over queueing paradigm [Eugster et al., 2003] as well. The system

has a Producer API, and a Consumer API. The producers connect directly to the bro-

kers (the instances of a Kafka bus), whereas the consumers connect using a Zookeeper

(a distrubuted coordination system) instance.

The bus itself is divided into one or more topics (configurable). A message can be

sent to one or multiple topics at once. Each topic is further divided into partitions. The

partitions allow the message logs to scale and allow for parallelism within the system.

The consumers effectively consume entire topics from a number of partitions. The

consumer decides client side which messages are of interest to it. The implicit contract

of a Kafka consumer can therefore be defined as consumption implies handling or

ignoring. Consumers can consume messages from the start of a topic or from any

offset of the start.

Kafka is considered as a high performance, distributed, and scalable message bus.

It has various use cases e.g. service communication and log data collection. It has a

widespread use in the industry and is used by e.g, LinkedIn, Netflix, Spotify, Goldman

Sachs, and others [Rao, 2016].

Kafka vs Enterprise Service Bus It may seem that Kafka is similar to the earlier

concept of an ESB (as described in Section 4.3). However there are several key differ-

ences.

Kafka is in essence a so-called dumb pipe: it does nothing intelligent with the

events it processes, except for handling parallelism and fault-tolerance. It does not do

any message transformation nor routing. While an ESB can behave similarly to Kafka

(featurewise), in practice it often behaved as an intelligent pipe. These paradigms are

quite different: Kafka assumes all intelligence with regard to the messaging is part

of the software systems (smart endpoints), while the ESB (often) encapsulates the

intelligence in the bus itself.

As a result there are some features of an ESB not offered by Kafka. Examples are:

• Security,

• Encryption,

• Auditing,

• Routing,

• Message transformation.

36

6.2. Kafka antipatterns

For some organizations the lack of security, auditing, and encryption can be a set-

back. For example opening up Kafka for partners of an organization would mean

complete access to all topics and messages in the bus. Following the paradigm de-

scribed in the design docs, one should create an endpoint for these partners. These

specific endpoints can push messages to the bus or forward messages to the partner.

A similar scenario holds for the latter two features. Routing should be handled by

each application to determine whether it is interested in a certain message of a cer-

tain topic. Transformations of data should be done in the consumers itself (optionally

before handing the message to the processing logic).

6.2 Kafka antipatterns

One of the key concepts of effective use of microservices is how developers can be in

control (Section 2.3). Although this applies in many different parts of the ecosystem,

it also means developers should be free to:

• Publish new types of messages to the bus system,

• Switch messages between topics,

• Consume any message from any topic from the bus.

The amount of freedom a team gains can therefore be large but it may come with

a price. Once a message is within Kafka, each consumer of that topic will fetch the

message, and then decide whether to do anything with it. It is therefore not possible

to detect some problems at a bus level itself. Because any type of message can be

transported (XML, JSON, or binary) the bus cannot infer any details based on the

message content. Therefore the filtering takes place at the consumer level. Thus any

message which is later filtered by a consumer is counted as delivered by the bus itself.

Since there is lack of proper tooling in this regard (as far as the author is aware) this

may eventually lead to code with antipatterns in it.

Dead messages There may be messages published in which no consumer will ever

have any interest. Since one cannot infer this from either the IDE nor Kafka it-

self, this message will continue to be published by the producer. Effectively this

producer is therefore a variant of dead code: it does not affect the program results

[Kennedy, 1979]. Dead code in turn can lead to a variety of maintenance issues. Ad-

ditionally these messages are still pushed to the Kafka bus, consuming resources and

thereby making the bus less efficient. Finally these messages are still consumed and

immediately disregarded by any consumers of the topic the message was published to.

This leads to wasted resources on the consumers side, possibly requiring overly large

resource allocations to the consumer. The removal of such messages may therefore

lead to a lower load on the system as a whole. Since the dead code (dead messages)

did not affect the program results, there are no downsides to this approach.

Strict interest Another downside may be that certain consumers are only interested

in a strict subset of messages which are published to a topic. In order to consume this

37

6. KAFKALYTICS

set (which may have specific characteristics) every message published to that topic

needs to be consumed. Consuming messages which the consumer is not interested in

leads to wasted resources. Instead it can therefore be useful to split a certain topic

into two separate topics such that these consumers can achieve a higher percentage of

useful messages. However increased splitting of messages across topics may make it

more difficult for developers to determine which topic to publish to, and to discover

topics with useful events.

The balancing of messages over different topics therefore should be done carefully

(not too much on one topic but not too many topics either). This requires a developer

to strike a balance between decoupling of consumers and producers (not tailing data

to the consumers needs in a non-reuseable way) and reducing operations costs (or

increasing performance).

Similar topics On the other hand of strict interest we may have the opposite antipat-

tern. Some consumers might need to subscribe to multiple topics for their messages.

If multiple consumers consequently subscribe to a fixed collection of topics, it might

be beneficial to publish the messages of these topics to a centralized topic. Later on,

the other topics can be abandoned altogether. This in turn can reduce the number of

partitions required to run Kafka (which in its default implementation is limited by the

design of Zookeeper).

Write-only topics Since messages may be published to multiple topics, it can be

the case that some messages are only read over a specific topic. The same messages

published to another topic might never be read at all. However due to the design

of Kafka, these messages are still saved to disk on the Kafka brokers and therefore

consume both space and I/O. Since these topics are never read, their removal frees

up resources for actively read topics. The avoidance of this therefore ensures lower

operating costs of the bus system.

Message lag Kafka does not give any guarantees on the maximum delay which can

occur between the production step of a message and its actual consumption. From the

design documentation it follows that this delay is generally governed by the load on

the bus and the number of consumer threads available. However for some processes

it can be an indication of problems in case messages are delivered much later than

they were produced. For these purposes it can be beneficial to keep track of the time

elapsed between producing and consuming the message. If this message lag becomes

too high it can happen that users are notified by email a long time after completing an

order. This may then result in reduced customer satisfaction or more support requests.

Replayed messages The Kafka consumer contract in essence is the following: once

a message is consumed (committed offset) the consumer should either have processed

or purposely ignored the message. As a form of fault tolerance, some systems instead

opt for a different approach. In case of an error, they place the current message back

onto the topic they consumed it from in order to process it later. This approach how-

ever does have some significant downsides. First of all any other consumers of the

topic may process the message twice, leading to unexpected results. In case there is

38

6.3. Kafka message monitoring using Kafkalytics

just a single consumer active on the the topic, this does not occur, but it has created

the implicit constraint only that specific consumer can ever listen to the topic. This

highlights an assumption made of the global state of all services in the system. Since

this constraint cannot be defined in Kafka itself, it may be violated at a later stage,

leading to double message consumption. Instead in case of an error a consumer should

commit the last successful message to Kafka and stop. Upon starting again, it can

continue with the message it was unable to process the last time.

Vast messages A producer can push messages to be bus of any size (which is config-

urable but defaults to 1MB). Such a message can include all sort of data, as determined

by the producer. However large messages may take longer to parse and handle by the

consumers, apart from requiring more resources from the Kafka brokers itself. In case

a publisher creates messages which contain many unused fields, these fields may be

removed at some point. This can in turn reduce the message size which has a positive

impact on the operating costs of the bus. Depending on the exact needs (through-

put in data size or in message count), larger or smaller messages may be beneficial

[Kreps, 2014].

6.3 Kafka message monitoring using Kafkalytics

In order to function as a useful tool, Kafkalytics should be able to detect these antipat-

terns in an environment. To do so Kafkalytics will analyze the traffic over the Kafka

bus. Services will then indicate to Kafkalytics which messages have been handled or

ignored.

To evaluate Kafkalytics, we define the following goals:

• It should be able to detect all antipatterns mentioned in Section 6.2,

• It should allow for a gradual adoption within an existing infrastructure,

• It should be able to function within existing infrastructures without requiring

any scaling,

• It should be easy to implement in existing services.

Analysis methods There would be two classical ways of analyzing the data in transit

on the message bus: static and dynamic analyses. Static analysis could be provided

to help a developer directly from within the IDE or provide feedback from a CI suite.

This would yield shorter feedback loops, making it easy to integrate within the work

flow of a developer or the team. However there are some problems with static analysis

for this specific usage.

• Within a microservice centric organization many different technologies can be

used, for each of which there has to be an analyzer available. If a single service

cannot be analyzed, the analysis of the entire set of services might be off.

• Static code analyses cannot reveal how many messages are actually triggered

since this depends on end-user input.

39

6. KAFKALYTICS

• Static analysis cannot detect code which is never called (which also depends on

end-user input). This code is not dead code, but in production it might be code

which is never executed.

• Most developers work with a set of fixture data, not with a database which rep-

resents production data. This may significantly change the performance charac-

teristics of a system.

Since each of these issues would significantly reduce the effectiveness of the de-

sign, dynamic analysis was chosen. This analysis is performed in the live production

environment of the system, so the actual usage counts can be inferred. However there

are also a number of pitfalls for dynamic analysis which should not be ignored (at least

one should be aware of them).

• Services need special code to report data back to another system,

• There is some special infrastructure required for reporting,

• Additional systems might need to be connected to the central bus.

In order to minimize the impact of these downsides, the design was carefully

crafted in order to mitigate these downsides as much as possible.

Design The Kafkalytics systems consists of three main components. Firstly there

is the kafkalytics-server. The second service is the kafkalytics-api. Finally there is a

service called kafkalytics-ui.

Additionally there is a need to uniquely identify messages passing through the

Kafka bus. Each message should therefore contain a unique identifier, and a date time

when it was originally produced.

The Kafkalytics server is a service which will listen to Kafka topics (which once

is configurable) and saves the data it received to a persistence layer. It setup should

be such that it would be possible for multiple instances to run in parallel in order to

capture all the traffic going through the bus. Additionally the system should be setup

such that only one additional system needs to connect to the message bus system in

order to reduce operational overhead.

For every message which a service received and deemed of importance, the iden-

tifier of the message needs to be saved. In order to keep development and operational

effort low, this should leverage existing systems as much as possible. Moreover it

would be beneficial for developers if the amount of boiler plate code would be reduced

to the absolute mininum. This would allow them to use Kafkalytics in their services,

without the required code obstructing the main goal of their work. The Kafkalytics

API clients should not have a significant performance impact on the service itself.

Finally the Kafkalytics ui client is a web client, which allows the developer/operator

of the organization to request certain insights on the message bus. These insights are

visualized in appropriate graphs. Apart from performance characteristics, it may also

highlight potential bus problems.

40

6.3. Kafka message monitoring using Kafkalytics

Implementation requirements In order to facilitate the usage of Kafkalytics within

a system, a number of requirements are present. Based on the earlier interviews, these

requirements seems reasonable for some organizations. With future development some

of these requirements can be lifted.

• One should use Kafka,

• Ones messages should be JSON encoded,

• A message should include a message metadata object.

A message metadata object has the form of the JSON object presented in Listing 1

and should be present in the root of the message. In case a message does not conform

to this format, it will be ignored by Kafkalytics. The resulting Kafka message should

ultimately look similar to Listing 2.

1 {

2 "id": "unique message id",

3 "datetime": "iso8601 formatted date"

4 }

Listing 1: Message metadata object

1 {

2 "message": {

3 "id": "unique message id",

4 "datetime": "iso8601 formatted date"

5 },

6 "someNumber": 7,

7 "someString": "...actual message content here instead of

the someNumber and someString dummy keys..."→֒

8 }

Listing 2: Resulting Kafka message which can be processed by Kafkalytics

Implementation Kafkalytics-server runs with two different parts. One of these lis-

tens to all regular production topics on the Kafka cluster (configurable) and persists

the items in bulk. The other listens to the special Kafkalytics topic (configurable) to

which the kafkalytics api clients send their usage data. This data is also persisted us-

ing bulk inserts. This service is developed using NodeJS and for operator convenience

runs within a self-contained Docker container.

The Kafkalytics-server uses an Elasticsearch [Gormley and Tong, 2015] document

storage system with a single index and two types. A main reason for this was that this

system was already available at the interviewed companies of Chapter 4, which would

aid in the ease of adoption. This removes the need for additional special infrastructure.

41

6. KAFKALYTICS

In case a message flow is larger than a single server instance can handle, Kafkalytics

can use the default Kafka design in order to load balance the messages over multiple

instances.

The second component is an API client for this server component. This is the piece

of code which is embedded within each microservice. In order to keep infrastructure

changes to an absolut minimum, the API clients communicate with the Kafkalytics

server using Kafka over a special topic (configurable). Since Kafka is already present

for Kafkalytics-api to be useful, this prevents additional dependencies to be included

in the project (which could cause conflicts). To reduce load on the services under

measurement, the Kafkalytics will automatically cache results and flush these in bulk

to Kafkalytics.

The API client has to be constructed using the same parameters required for con-

necting to Kafka itself:

• The name of the service to use for identification purposes (required),

• The location of Zookeeper (required, known for Kafka),

• The Kafka clientId (required, known for Kafka),

• Any Zookeeper connection settings (optional, known for Kafka),

• The Kafkalytics logging topic (required, should be the same across all applica-

tions),

• The threshold for force persistence (optional, default 100)

When closing the application gracefully, Kafkalytics should be closed after the

Kafka consumers so any remaining items in the queues can be saved. On each message

which is deemed useful by the service, it should call the send method. This method

takes the message id (present in the message metadata object) and the topic used for

consumption (known in the consumer itself). The method is non-blocking and saves

the message to the queue of the API client. A final method available in the API client is

forcing a cache flush. This can be done when the instance is shutting down (this flush

is not applied automatically, since it depends on the instance shutdown sequence) The

earlier described kafkalytics-server listen to this special topic and saves the usages of

messages.

The final component is the kafkalytics-ui. This uses the data saved to visualize the

performance characteristics of the Kafka setup. Additionally it gives an overview of

possible problems, as outlined in Section 6.2. It does not depend on Kafka, and just

requires a connection to the persistence layer. The service is developed using NodeJS

and also run within a self-contained Docker container.

6.4 Antipattern detection

Apart from integrating within the infrastructure, it should also indicate all of the afore-

mentioned antipatterns. In this section a description will be given how Kafkalytics will

determine whether antipatterns are present

42

6.4. Antipattern detection

Dead messages Since Kafkalytics listen to all messages on the Kafka bus, it will

receive the original dead message. After a certain while, Kafkalytics can determine no

consumer has marked the message as handled. In this case, there is a strong suspicion

this message may be considered dead.

It can later analyze multiple dead messages to determine whether a set of these

messages have a common aspect. In this case it can mark a group of messages as dead.

Strict interest In case some services only consumes a strict subset of all messages

of a topic, it may be beneficial to extract these messages to a specialized topic. This

can improve consumer performance.

Kafkalytics is able to determine which consuming services are interested in which

messages. In case they did not consider the message contents to be relevant, the mes-

sage would not have been marked as handled by the consuming service to Kafkalytics.

Combined with clique detection it can be determined whether different services have

similar interest. This is the case when the cliques of the different services overlap.

Similar topics As discussed similar topics might be an indication that a number of

topics might be better of in a consolidated topic. In this case Kafkalytics can again

perform a clique analysis on messages which it received, similar to strict analysis. It

can combine this with the fact that other consumers are not interested in these topics.

Once it detects both conditions hold, a number of topics may be marked as similar.

These topics are then candidate for merging into a single topic.

Write-only topics Since each message carries a unique identifier Kafkalytics can

detect that some identifiers are never read over certain topics. If these messages are

read on other topics, these messages are not considered dead. The topic information

can be used, together with the message consumption, to determine that no message is

ever read over that specific topic. In this case it can detect that topic does not have any

subscribers, and mark the topic as write-only.

Message lag Due to the design of Kafkalytics each message contains the date and

time it was produced. Each Kafkalytics api client will also record the date and time of

the consumption of the message. This data can be combined into a delay between the

production and consumption of the message.

This data can be performed for all messages in a certain topic (where only con-

sumed messages are considered). This yields statistics on the average delay of mes-

sages in that topic, but also the standard deviation and several percentiles. In case this

exceeds a configurable maximum, Kafkalytic will flag the topic as delayed.

The same can be done for certain consumers. Kafkalytics saves the name of the

consuming service, and determine how long the service requires to handle the message.

Also for this case once this number exceeds a certain maximum the service will be

flagged as lagging.

Both approaches can be combined to determine whether a certain topic and sub-

scriber have lags in their message handling. This will also flag the combination of the

topic and the service as lagging.

43

6. KAFKALYTICS

Replayed messages Once Kafkalytics sees a message with a certain identifier twice

on the same topic, the invariant of unique message ids is violated. This is an indication

that a service has replayed a message to the topic.

If may also be possible that an operator has manually changed the offset of the

service so the service actually reads the same message twice, without reproducing it.

Since this has required manual intervention, this case will not be handled by Kafkalyt-

ics.

Vast messages Since each message is saved by Kafkalytics, it can compute statistics

about the sizes of the messages passing through the bus. This includes the average

message size, the maximum size, standard deviation, and several percentiles.

This data can be aggregated as a whole, or on a per topic basis. It is also possible

to determine these statistics per consuming service or as a combination of topic and

service.

44

Chapter 7

Evaluation

Now the goal and design of Kafkalytics are clear, we evaluate the system. In order to

do so, we list the research questions of this thesis.

First we focus on the antipatterns which Kafkalytics can detect. The participants of

Chapter 5 reflect on these antipatterns and indicate the seriousness of each antipattern.

Secondly we evaluate the ability of Kafkalytics to detects these antipatterns. Next

we look at the implementation overhead which is introduced by Kafkalytics. Finally

we discuss the performance overhead of adopting Kafkalytics on a live system. We

conclude the chapter by discussing any threats to the validity.

7.1 Research questions

The following research questions formed the basis for this thesis. They will be used

to evaluate the information obtained from the interviews, the selected antipatterns, and

the design and usefulness of Kafkalytics itself.

• To what extent do experts recognize the antipatterns described in Section 6.2?

• How well does Kafkalytics detect the aforementioned antipatterns in a produc-

tion environment?

• How did developers perceive the implementation overhead associated with adding

Kafkalytics to their existing system?

• What is the performance penalty of adding Kafkalytics to an existing system,

compared to regular operations?

7.2 RQ1: To what extent do experts recognize the

antipatterns described in Section 6.2?

As described in Chapter 6 several possible problems were mentioned when using a

Kafka-like message bus as a central means of communication. These problems do not

necessarily have to occur within every organization using the system.

In order to evaluate the seriousness of these antipatterns, we held talks with the

organizations from Chapter 5. These participants of the interview have studied the

45

7. EVALUATION

design and analyzed how their systems may suffer from the described problems in

Chapter 6.

Within C2 itself there is no instance of Kafka available, but the concepts underlying

Kafka are well-known to the interviewed engineers. For these engineers the concept

of dead messages is well-known and its impact to the system as a whole is understood.

Both C3, C4, and C7 have implemented actual Kafka buses within their organization.

The participants from these organizations are therefore very familiar with the systems

design. Additionally the problems can actually occur in their systems, which sparked

additional interest since knowledge about possible problems can help to effectively

mitigate these.

Dead messages As stated by participants from C2, dead messages may lead to po-

tential long term technical debt. Over time the knowledge on the refactoring which

removed the messages diminishes. If the production of such messages is not dealt

with at an early stage, the message producer is less likely to be altered. A producer

which produces dead messages is therefore more likely to keep producing these mes-

sages. Participants from C3, C4, and C7 gave similar views on this topic. According to

them, having automated tooling in place in order to detect this, can have added value.

An important side note made by C7 is that this tooling cannot be considered to hold

an absolute truth. Instead the tooling gives an indication of a possible problem. It can

for example be possible that during a certain timeframe a message may be considered

dead, while the subscribing system is undergoing maintenance. It may also be the

case a service was decommissioned before the new system was live (which is possi-

ble for non-realtime systems). A new system which started running does not handle

those messages yet, but may do so in the near future. Removal of such messages is

undesirable.

As a result of the above statements, the antipattern dead messages is considered to

be an actual antipattern in Kafka. This antipattern has the possibility of introducing

long term maintenance issues and is therefore considered serious.

Strict interest, similar topics & write-only topics The problem of strict interest

of consumers was already known by engineers of C3 and C7 which had already en-

countered it. Although the parsing of JSON encoded messages can be done very fast,

the delivery of all these messages to lots of non-interested consumers does mean an

additional load. One of the raised points was that this also makes it much harder to

hook into a production bus for debugging reasons due to the vast quantity of messages

going through some topics. If certain systems are therefore only interested in a set of

all messages delivered on a topic, it may be beneficial to create a separate topic. In

order to not change existing consumers, one can publish the same message to multiple

topics. Due to the setup of the systems in use at C3 and C7, where messages already

carry a unique identifier, the double delivery is therefore not a problem. It allows a

system to start consuming two topics for its messages and gradually switch over the

newly created topic.

An important side note in this regard is that it is not considered best practice by

all interviewees to tailor the exact topics a message is published to to consumers. This

could lead to coupling from producers to consumers, or highly specific usage patterns.

46

7.2. RQ1: Antipattern recognition by experts

Additionally it ties different teams together, which according to Conways Law, may

have an impact on the systems design. Instead the topic setup should be done as generic

as possible with a clear division between the messages going over different topics.

The latter point also indicates the extent of the similar topics problem. Due to the

fact having separate topics tailored to consumers is not considered a good practice, it

rarely happens in production that therefore multiple topics process a large quantity of

similar messages. C3 does not have any messages present which are sent to multiple

topics at all, whereas for C7 this only happened on occasion. The latter does not intend

to keep such practices around for long.

Due to the nature of the absence of such topics, the theoretical problem of write-

only topics is not experienced by any of the interviewed parties. This indicates that

developers are aware of the possible problems of having too strictly defined topics

within their message bus infrastructure. However both parties embrace the notion of

elimination of such topics from the system, in case they are inadvertently created.

An important side note made by C7 is that due to the age of the system many

possible problems do not occur because the system is not old enough to have acquired

this amount of technical debt. To compare this with a regular monolithic structure

developers often also do not try to create a highly-coupled piece of software, but it

may evolve into just that over time. Since not enough time has passed since the initial

conception of these systems, the amount of technical debt in this regard is relatively

low. C12 agreed that their current experience with technical debt using microservices

and message buses is not yet enough to have a clear understanding of what may or

may not happen in the (near) future. While the above problems are currently not

present, this may change over time. As stated: In the past none of our systems ever

was designed to become more coupled over time. However when time passes this has

happened multiple times.

This evaluation suggests that these antipatterns may be considered present, but they

pose little risk to systems. In case the antipattern is present in an application, an earlier

antipattern (to tailor data to the needs of consumers) is already present. We therefore

consider these antipatterns valid, but less applicable.

Message lag Message buses such as Kafka are not suitable for communication which

is required to be real time (which is why C10 does not employ such buses). There may

be slight delays in the delivery of messages (in the order of microseconds). Under

certain circumstances, where a producer produces messages faster than a consumer

can handle them, this delay may grow significantly.

For all parties which have been interviewed and use message buses, a short delay

is not considered to be an issue. However it is deemed beneficial by C3, C4, C7, and

C12 to measure the time which elapsed between the production and consumption of

the message. Whether a delay happens due to problems on the Kafka side of the system

or the consumption of the messages is not considered an issue itself.

Within organization (C12) it was also pinpointed that many metrics were saved

for performance analysis or root cause analysis. Having accurate timings of how long

messages were in the message bus waiting for processing was not one of these metrics.

Since it was considered to be of importance to have easy and continuous insight in

these numbers, plans are being made to employ a system which is able to keep track

47

7. EVALUATION

of this.

We therefore conclude that reducing message lag can be important, but message

lag itself does not necessarily pose a problem. Instead the measurement of message

delays can prove beneficial (as C3 demonstrated).

Replayed messages Replayed messages are considered a serious problem by C3 and

C7. These organizations depend on the defined characteristics of Kafka (at-least-once

delivery) combined with an implementation which (consumer side) marks messages as

processed after their processing completed successfully. However this implementation

is consumer specific, hence in case another consumers re-produces the message, this

global invariant is violated.

We will consider the following example to highlight the issue with replayed mes-

sages. Consider a topic where changes to entities are broadcasted. At some point an

entity is changed, and this change is sent over the topic. For some reason the consumer

crashes while handling the message, and re-produces it to the same topic. However be-

fore that re-produced message is handled, an entity deletion message comes in for the

same entity. The entity is now deleted from the consumer. At some later stage, the

re-produced message arrives and does no longer have an entity to change. In this case

either the change is lost (which may be required for auditing) or the consumer might

crash again due to the absence of the entity.

Concerning C12 repeated messages is not considered a serious drawback, since

their messages only have idempotent side-effects. However this does violate the as-

sumption on the ordering of messages and therefore still considered to be risky under

certain circumstances. The organization was not able to verify whether their systems

depended explicitly on this ordering. C12 therefore indicated that replayed messages

are undesirable and this should be monitored.

Hence this antipattern is considered to be valid since all parties agreed on its va-

lidity. It can also be shown that this antipattern can directly have problematic effects,

and might even violate legal requirements.

Vast messages As indicated by all parties, vast messages do not relate to actual code

base problems. It may be required that messages have certain sizes due to the amount

of information has to be embedded. Organization C7 stated it might be useful to keep

track of the message sizes over time. C12 indicated that large messages may reveal a

problem (lack of an API to query data, or messages are too generic). However these

problems should not be addressed at a bus level. None of the organization has vast

messages in their code base.

This proposed antipattern is therefore refuted since it is not considered to be of

importance.

7.3 RQ2: How well does Kafkalytics detect the

aforementioned antipatterns in a production

environment?

To evaluate the detection of these antipatterns we asked the participation organiza-

tions whether they were willing to integrate Kafkalytics in their production environ-

48

7.3. RQ2: Detection by Kafkalytics

ment. Organization C3 agreed to this, and implemented Kafkalytics. Specifially the

kafkalytics-server was ran (using two instances) on a small separate virtual machine.

A total of 7 consuming services was equipped with the kafkalytics-clients. An Elastic-

search index was created on the primary Elasticsearch database cluster which consisted

of three nodes. We then ran the experiment to analyze the bus traffic for 2 months. In

this time period, Kafkalytics handled a total of 750 thousand messages which were

produced. Additionallly 400 thousand consumption messages were generated by the

Kafkalytics clients. Only systems which were developed inhouse by the organization

were equipped with the system.

After running for two months, Kafkalytics had detected the following within the

system:

• Some dead messages were found. One set of dead messages shared the "class":

"OrderProduct" which was not handled by the system. Other groups of dead

messages were also found.

• A problem was found regarding strict interest.

• No problems were found regarding similar topics or write-only topics.

• Some types of messages lagged significantly, and only during night time low

traffic periods the system was able to catch up with the flow.

• No vast messages were detected.

Dead messages When dealing with the dead messages, some groups of dead mes-

sages were found. These messages shared a common factor (e.g. "class": "OrderProduct").

After a investigation by the engineers of C3 it turned out this were entity changes which

were broadcasted. Since these were also broadcasted for classes which happened to be

implementation details for the producing service. As a result, the production of these

entity changes was disabled for all classes which were not public for other services.

This detection enabled the organization to better apply the concept of information hid-

ing [Petitcolas et al., 1999].

The messages which were flagged as dead were actual dead messages. Kafkalytics

did flag these messages correctly and was able to construct patterns on any similarities

between these messages.

Strict interest At some point, Kafkalytics also flagged a topic as having the strict

interest antipattern. Engineers of C3 did not expect this, as they indicated at an earlier

stage this antipattern would not be present within their organization.

Upon investigation, it turned out that multiple consumers all subscribed to the en-

tity changes topic. Here they generally listed to all types of entities, except entities

considered internal (as described in the previous paragraph). Kafkalytics therefore

flagged the set of messages the consumers did listen to as strict interest, and recom-

mended the extraction to a separate topic.

In this case Kafkalytics did not deliver. The actual problem was a number of

dead messages on the topic. This automatically led Kafkalytics to mark the non-dead

messages as a case of strict interest. Instead Kafkalytics should exclude the dead

49

7. EVALUATION

messages from its strict analysis method. This may also indicate that not all analyses

can be ran in isolation, since some analyses may be influenced by analysis of other

antipatterns.

Message lag Shortly after implementing Kafkalytics in their infrastructure, C3 re-

ceived a warning about message lag on one of their topics. In this case the rate of

message production during the day was significantly higher than the throughput pro-

vided by several consumers. During the night time, the consumers were then able to

handle the load once the rate of new messages went down. Earlier assumptions of

engineers of the company determined that some parts of the infrastructure could take

some time (due to eventual consistency [Vogels, 2009]).

Using Kafkalytics the engineers were able to pinpoint the actual issue. Whereas it

was assumed that a distributed database could take some time to become consistent, it

turned this was not the problem. Instead it took some time before a message arrived

at a consumer and was processed. Earlier optimizations to enable faster consistency in

the database layer therefore proved to be completely ineffective. Using the Kafkalytics

system, developers could hook into the event bus, and pinpoint the average delays over

time (and other statistics such as the standard deviation). In the end this gave the

insight that the number of instances of a certain service could be increased to mitigate

any delays.

For this antipattern Kafkalytics did its job well. The first warning was sent 36 hours

after the initial implementation in the subsystem service. Engineers were subsequently

able to fix the issue within a few hours.

Conclusion Although C3 considered the detectionto be effective, kafkalytics-ui was

a heavily critized component. Due to way the system was originally built, some anal-

yses take very long to complete. It can therefore not give a real time overview of the

state of the message bus, but has to be run as a background job.

We conclude that Kafkalytics detects most described antipatterns well in a produc-

tion environment. The system can be improved by ensuring kafkalytics-ui becomes

faster and by coupling the results of some analyses.

7.4 RQ3: How did developers perceive the implementation

overhead associated with adding Kafkalytics to their

existing system?

The implementation overhead of Kafkalytics consists of several parts:

• Adding the kafkalytics server container to an existing infrastructure,

• Modifying the producers to comply with the message metadata format,

• Gradually switch services to use Kafkalytics,

• Adding the api clients to consuming services.

50

7.4. RQ3: Implementation overhead of Kafkalytics

Adding the server container From experience of organization C3, this turned out to

be straightforward. It required a small change in the server operations system (Puppet

in this case). Due to the containerization of the server instance, it will run in isolation

of other services. This ensures that deployments can be done quickly.

The code snippet of Listing 3 was sufficient to add the container to the existing

infrastructure. Additionally the config.json file needs to be adapted. The complete

config.json file is shown in Listing 4 on page 55. The total required number of

lines is less than 100, of which the config.json is based on a provided example file.

The responsible engineer indicated that the addition of this system component was

straightforward and could be done within minutes.

1 class kafkalytics {

2

3 file { ’/opt/kafkalytics’:

4 ensure => directory

5 }

6 ->

7 file { ’/opt/kafkalytics/config’:

8 ensure => directory

9 }

10 ->

11 file { ’/opt/kafkalytics/config/default.json’:

12 ensure => present,

13 source => ’puppet:///modules/kafkalytics/config.json’,

14 mode => ’0600’,

15 notify => Docker::Run[’rogierslag/kafkalytics’]

16 }

17

18 docker::image { ’rogierslag/kafkalytics:latest’: }

19 ->

20 docker::run { ’rogierslag/kafkalytics’:

21 image => ’rogierslag/kafkalytics:latest’,

22 volumes =>

[’/opt/kafkalytics/config:/opt/kafkalytics/config’]→֒

23 }

24

25 }

Listing 3: The amount of Puppet code required to run kafkalytics-server

Modifying the producer code In order for Kafkalytics to function, each message

which should be monitored should have an embedded message metadata object as

shown in Listing 1 on page 41 This metadata object contains two parameters: a unique

identifier and the current date and time (formatted according to ISO8601). C3 chose

to use UUIDs as unique identifiers. Additionally the programming languages in their

software stack are able to format datetimes to ISO8601 directly. Since the message

51

7. EVALUATION

section of the message itself was not previously used, the addition of these fields to the

message considered to be easy. A code example for this (in Ruby) is shown in Listing

6.

Since the addition of these fields could not trigger any other behaviour by the

consumers, these additions could be done gradually.

Gradual adoption Although Kafkalytics will provide the best data once the entire

system is using is the system, it can also be implemented gradually. Since C3 prefers

to refrain for large deployment, portions of Kafkalytics were deployed one-by-one,

once a system needed a modification. This means that data sent to Kafkalytics may

be inaccurate and that since some data may be missing, the resulting data cannot be

used for measurements. However this adoption pattern allowed C3 to gradually adopt

the system. while the system was not completely functional, it did not interfere in any

way with regular service operations.

Addition of API clients To finalize the adoption of Kafkalytics, the API clients for it

should be added to the consuming services. For C3 this meant mostly NodeJS services.

Adding Kafkalytics-api to these systems did not require an additional dependency,

since these services already depended on the Kafka communication dependency.

Within each service Kafkalytics needs to be instantiated. This took only a few lines

of code as can be seen in Listing 7. Most of this code was also required to connect the

service itself to Kafka. Since Kafkalytics exposes a hook for when its ready, this could

be integrated in the startup sequence of the service.

Once a message is deemed of importance and handled, the system should notify

Kafkalytics. It can do so using the code of Listing 7.

Developers responsible for integration of the API clients in their services described

this to be relatively simple. Additionally the code which is part of the main application

code (e.g. the sending of messages) does not get in the way of the actual business

logic.

A note was made on the shutdown sequence: Kafkalytics does not hook into the

shutdown sequence, and developers have to add this themselves. This was initially not

done, which caused queued messages to get lost. After discovery of the problem, the

correct kafkalytics.close() call was added to the shutdown sequence.

Conclusion Apart from the shutdown sequence of the Kafkalytics API client, the

responsible engineers considered the api client to be easy to work with. It did not

get all over their code, did not interfere with business logic, did not add additional

dependencies, and was properly containerized.

We therefore conclude that Kafkalytics has a low implementation overhead for

developers and operators alike.

52

7.5. RQ4: Performance penalty of Kafkalytics

7.5 RQ4: What is the performance penalty of adding

Kafkalytics to an existing system, compared to regular

operations?

In order to evaluate the performance penalty of Kafkalytics in production, we compare

it to other system running in the production environment. In the time period Kafkalyt-

ics ran at C3 it handled a total of around 1.10 million messages which contributed to a

traffic on the bus of 1.074GB. On the backend, it stored a total of 14GB of data (due

to the duplication for searching).

We compare this with the log traffic which at C3 was also sent over the bus. On

a daily basis, this is equivalent to around 1.74 million messages, which is a total of

1.33GB on average. On the backend, this requires around 1.93GB of data.

These numbers indicate that the resource consumption of Kafkalytics on a two-

month basis is comparable to the log data per day. The increase in resource consump-

tion when adopting Kafkalytics is therefore no larger than 2%.

The persistence layer does have different storage requirements. Kafkalytics stored

in two months 14GB of data, whereas the logging system stored 115.8GB of data. The

adoption of Kafkalytics therefore increased the storage requirements with 12%.

If one considers that more systems than just logging are active, these numbers be-

come even lower. We therefore conclude that the operational overhead of Kafkalytics

can be considered to be low.

7.6 Threats to validity

There are a number of threats to the validity of the results we mentioned in this chapter.

7.6.1 Sample size

The sample size of the group of organizations of Chapter 3 (15 organizations) is rela-

tively low. Additionally these organizations share a number of common characteristics,

which means their result may not be generalizable to the entire industry:

• The organizations sizes were either small or large, no medium size organization

(eg. 50 to 250 FTE) were present,

• All organizations have at least one IT office in the Netherlands,

• The organizations were open to discussions which they did not profit from di-

rectly.

The set of organizations which employed microservices was even smaller, just 6

organizations were able to participate on this. This reduces the sample size even more.

The final evaluation of Kafkalytics was done with a single company, since other

companies were unable to integrate Kafkalytics in their production systems. This orig-

inated through either legal, business, or techincal requirements.

The small sample size can be explained due the fact that the majority approached

organizations were unwilling to participate and donate the require time whereas they

would not see any benefit of this.

53

7. EVALUATION

7.6.2 Replication

The first threat of these results is the replication of this study. Due to the required anon-

imity of the participants, it may well be that with a different group slightly different

results with emerge.

The final evaluation of Kafkalytics within a single organization are representative

for that organization. However one cannot assume that these number are generalizable

to the industry as a whole. The operational overhead of the system may vary between

different users, depending on how the system was originally build.

Finally the gathered data from the production measurements cannot be made public

to the confidential nature of this data. More statistics can be made available upon

request, but the data itself cannot.

54

7.6. Threats to validity

1 {

2 "zookeeper": {

3 "address": "CENSORED",

4 "clientOptions": {}

5 },

6 "kafka": {

7 "clientId": "kafkalytics-prod2",

8 "groupId": "kafkalytics2",

9 "topics": [

10 {

11 "topic": "cud-events"

12 },

13 {

14 "topic": "auditing"

15 },

16 {

17 "topic": "view-events"

18 },

19 {

20 "topic": "perf-metrics"

21 },

22 {

23 "topic": "monitoring"

24 }

25],

26 "loggingTopic": {

27 "topic": "kafkalytics-prod"

28 },

29 "bufferSize": 26214400

30 },

31 "elasticsearch": {

32 "host": "CENSORED",

33 "port": "9200",

34 "apiVersion": "1.7",

35 "index": "kafkalytics-prod",

36 "type": "message",

37 "logType": "usedMessage"

38 },

39 "client": {

40 "kafkaThreshold": 10,

41 "esThresHold": 10

42 }

43 }

Listing 4: The applicable config.json file

55

7. EVALUATION

1 message: {

2 id: SecureRandom.uuid,

3 datetime: Time.current.utc.iso8601(3)

4 }

Listing 5: Ruby code required for the creation of the message metadata object

1 var Kafkalytics = require(’kafkalytics-node’);

2 var kafkalytics = Kafkalytics({

3 service: ’CENSORED’,

4 zookeeper_address: config.get(’zookeeper.address’),

5 kafka_clientId: config.get(’kafka.clientId’) + ’-CENSORED’,

6 zookeeper_clientOptions:

config.get(’zookeeper.clientOptions’),→֒

7 loggingTopic: process.env.PROD ? ’kafkalytics-prod’ :

’kafkalytics’,→֒

8 threshold: 5

9 });

Listing 6: NodeJS code required for initializing Kafkalytics

1 function messageProcessor(message) {

2 var topic = message.topic;

3 message = JSON.parse(message.value);

4

5 if (ofImportance(message)) {

6 kafkalytics.send(message.message.id, topic);

7 // ..other logic

Listing 7: NodeJS code required for marking a message as useful to Kafkalytics. Only

line 6 has to be added for Kafkalytics.

56

Chapter 8

Related Work

Antipattern detection in Kafka using Kafkalytics has some similarities with other re-

search areas. First of all there is the detection of smells in code. Secondly we discuss

the monitoring solutions available.

8.1 Code smell detection

Code smells are an indication something might be wrong in software code. In case a

smell is present, it is useful to dig to see whether an actual problem is found. Loca-

tions with code smells are generally candidate for refactoring. When compared with

Kafkalytics the most notable difference is the way of operating: instead of performing

analyses in a production environment it does a static analysis over the source code.

A well known system for detect code smells is the DECOR & DETEX system

[Moha et al., 2010]. This system generates its own code smell detection algorithms,

and can subsequently be run over a software project to identify possible problems.

Developers or architects can later use the results of this tool to repay the technical

debt.

Another issue regarding code smells is the nature of the code smell. Some

code smells may be the result of complex business logic and not of bad design

[Sjoberg et al., 2013]. The impact of code smells on the actual design is studied in

e.g. [Yamashita and Moonen, 2012] and [Marinescu, 2012]. These papers have devel-

oped a framework in order to evaluate the severeness of several code smells and to

which extent these influence the maintainance costs of the application at hand.

8.2 Service Monitoring

Service monitoring is essential to the successful operation of a microservice architec-

ture. There are many ways to monitor services.

A popular monitoring framework is Nagios [Barth, 2008]. It is able to handle both

passive and active checks and integrates monitoring with alerting keeping historical

overviews of data.

Recent research on the topic of service monitoring has led to new initiatives such

as ECoWare [Baresi and Guinea, 2013]. These systems are able to collect, aggregate

and analyze real time data from running services. The system provides dashboard and

alerting based on this performance data.

57

Chapter 9

Conclusions

This chapter gives an overview of the contributions of this thesis. After this overview,

we reflect on the results and draw some conclusions. Finally, some ideas for future

work will be discussed.

9.1 Contributions

The key contributions of this thesis are listed below. We will describe each contribution

in more detail.

• Interview outcomes on monolith architectures and SOA,

• Interview outcomes on microservice architectures,

• Identification of seven Kafka antipatterns,

• The Kafkalytics monitoring infrastructure.

Interview outcomes on monoliths and SOA As described in Chapter 4 it turns out

from the interviews with industry experts that the monolithic architecture is still often

used. Each of the 15 organizations has built at least one system with this architecture.

It also indicated monoliths are often fast to design, there is a lot of experience with

them, and facilitates efficient communication. However it was noted that there is a

tendency for these systems to become increasingly coupled over time. Additionally

these systems cope with rising maintenance costs and are often less effective at scaling

or fault-resilience.

The Service Oriented Architectures are used less over time. None of the organi-

zations was currently developing such a system, nor had plans to do so. Although the

principles of SOA seem to remain valid, the implementation of SOA went the other

way: favouring big systems over smaller systems. Examples of this are the often

complex standards for communication and the cumbersome ESBs. Some architec-

tures using SOA are now being refactored to a microservice architecture using small

services.

59

9. CONCLUSIONS

Interview outcomes on microservice architectures As it turns out from Chapter

5 microservices seems to be adapted quickly. Whereas the concepts seem similar to

SOA, the implementation is not. Instead of revolving around technical entities, mi-

croservice architects pick business entities to serve as a basis for their services. Since

services are easier to build, this in turn reduces the development time of individual

services, which gives organizations an competitive advantage. Apart from that opera-

tional activities such scaling and fault-resilience become easier to achieve. It turns out

organizations employing microservices consider the complete automation of building

to deployment to be of great importance. The microservice movement therefore is

strongly related to the devops movement.

Although it is technically possible to adopt many different technologies (polyglo-

tism), many organization instead limit the size of their technology stack. Developers

are free to chose from this stack, but the organization is not willing to support any type

of database or programming language in production. Major reasons for this are the lack

of experience and the lack of flexibility this polyglotism gives. Instead organizations

consolidate on a number of technologies and stick with those.

Many organizations adopt a central message bus to facilitate communication be-

tween services. Apart from that, RESTful interfaces are exposed to make data acces-

sible for other services. Services can talk freely to each other, and share a common

authentication and authorization layer.

However it has also turned out that there are some downsides present. A major

factor is a refactoring across service boundaries. This will often result in multiple

services needing to change, due to the communication penalty involved this become

more complex. Finally organizations indicated they currently still lack exprience with

technical debt in this architecture. They therefore do not (yet) know where and when

issues will manifest themselves.

Identification of seven Kafka antipatterns In order to detect any antipattern on

a Kafka bus when using microservices, we described 7 different antipatterns. These

patterns are described in Section 6.2 and evaluated in Section 7.2.

The following antipatterns were identified:

• Dead messages,

• Strict interest,

• Similar topics,

• Write-only topics,

• Message lag,

• Replayed messages,

• Vast messages.

These antipatterns can either pose problems with future maintenance or the perfor-

mance of the central bus or consumers. A combination of problems is also possible.

60

9.2. Implications

The Kafkalytics monitoring infrastructure In order to give architects and devel-

opers a tool to automatically detect these antipatterns in their production environment,

we developed the tool Kafkalytics. Kafkalytics consists of three elements: a server,

api client, and a UI component.

Kafkalytics has a low operational overhead and is considered to be easily imple-

mentable in existing systems. It can reliable, although slowly, run analyses on the

aforementioned antipatterns and flag certain sets of messages, topics, or consumers.

9.2 Implications

The results of the interviews chapters (Chapter 4 and 5) give a unique insight in the

usage of different architectural styles by the industry. These show how organizations

handle architectural challenges and can be used to highlight differences between the

industry and the academic world. Future researchers may be able to better tailor their

research to the needs of the industry. This may allow for a better and more effective

knowledge transfer between those two parties.

Secondly the analysis of different antipattern when a message bus is considered can

give architects and developers better insight in best and worst practices. Organizations

can benefit from this knowledge: if these antipatters are avoided, software may be less

likely to develop technical debt over time. A lower amount of technical debt can then

lead to shorter delivery cycles and less bugs.

Finally Kafkalytics gives architects, developers, and operators (although this can

be one person in a devops team) adequate insight in the performance of the central

component of their architecture: the message bus. They can effectively see and mea-

sure what is going over their bus, and optimize their infrastructure accordingly. An-

tipatterns are automatically flagged, after which they can decide whether this was a

valid detection. If that is considered to be the case, actions can then be taken to re-

move the antipattern.

9.3 Limitations and future work

As stated in Section 7.6 there are some threats to the validity. Most of the future

research which we suggest is aimed at eliminating these threats.

9.4 Interview phase

As discussed the group which did participate with these interviews was relatively

small. It is therefore possible the results are skewed in a certain direction. The follow-

ing suggestions are applicable to improve this phase.

Increasing the sample size The sample size for organizations mentioned in Chapter

3 was relatively limited. Especially regarding the evaluation, only 4 organizations were

able to accurately evaluate the systems design. In order to determine whether some of

the noticed trends and anecdotal evidence are common within the industry as a whole

a larger sample group is required.

Several improvements can be made here:

61

9. CONCLUSIONS

• Geographical differences between organizations,

• Cultural differences between organizations,

• A larger variety in the main industries between organizations

• A larger variety between the sizes of organizations.

Re-interview As noted in Chapter 7 some organization indicated they did not have

experience with technical debt in their microservice architectures yet. This was mainly

due to the fact these architectures have not been around for long enough to actually start

building up technical debt.

In order to evaluate how technical debt accumulates in such systems, the same type

of talks could be held with organizations a few years from now. This would allow their

architectures to evolve and build up some of this debt. At that point, the organizations

are more likely to detect the debt. Additionally they will have first hand insights in

how it may develop over time, and how it may manifest itself.

9.5 Kafkalytics

As a first prototype Kafkalytics was evaluated to do its job well. However there are

some further enhancements to make.

Antipattern identification We do not claim the listed antipatterns are the sole an-

tipatterns when using Kafka. In the future more antipatterns might be identified by

research or experience. More antipatterns might lead to a better set of best and worst

practices, which can improve the code quality. As a result of this, delivery times and

likeliness of bugs can be positively impacted.

Extending Kafkalytics The Kafkalytics concept of following and tracing messages

can be extended to other services. In this specific case, one does not necessarily have

to assume such as system is a message bus. For example: the concept can also be

generalized to email within a large multinational: which emails are of interest to who

and with which delays to people act on them?

Other message systems can also benefit from the analysis patterns Kafkalytics can

detect. Examples of such systems are RabbitMQ or ActiveMQ. Each of those systems

could benefit such analyses. However one would need to evaluate whether for these

type of messaging systems (whether email or message buses) the same antipatterns

hold.

Improving Kafkalytics performance As discussed in the evaluation of Chapter 7

the performance of the kafkalytics-server and kafkalytics api clients are more than

sufficient. Currently this is not the case for the UI components, since several analyses

take long to complete. Therefore Kafkalytics is not yet ready to function as a realtime

overview on a message bus.

In order to improve usability, parts of Kafkalytics might have to be rewritten to

use a different persistence layer. The current implementation which uses Elasticsearch

62

9.5. Kafkalytics

cannot perform well on certain query types. A dual persistence layer might be benefi-

cial where read queries can be executed to the layer which is suited best for the specific

query type.

63

Bibliography

[Abbes et al., 2011] Abbes, M., Khomh, F., Gueheneuc, Y.-G., and Antoniol, G.

(2011). An empirical study of the impact of two antipatterns, blob and spaghetti

code, on program comprehension. In Software Maintenance and Reengineering

(CSMR), 2011 15th European Conference on, pages 181–190. IEEE.

[Alonso et al., 2004] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web

services. Springer.

[Balalaie et al., 2015] Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2015). Migrat-

ing to cloud-native architectures using microservices: An experience report. arXiv

preprint arXiv:1507.08217.

[Baresi and Guinea, 2013] Baresi, L. and Guinea, S. (2013). Event-based multi-level

service monitoring. In Web Services (ICWS), 2013 IEEE 20th International Con-

ference on, pages 83–90. IEEE.

[Barth, 2008] Barth, W. (2008). Nagios: System and network monitoring. No Starch

Press.

[Booch, 2006] Booch, G. (2006). Object oriented analysis & design with application.

Pearson Education India.

[Buschmann, 2011] Buschmann, F. (2011). To pay or not to pay technical debt. Soft-

ware, IEEE, 28(6):29–31.

[Cai et al., 2000] Cai, J., Kapila, R., and Pal, G. (2000). Hmvc: The layered pattern

for developing strong client tiers. Java World, pages 07–2000.

[Chandy and Lamport, 1985] Chandy, K. M. and Lamport, L. (1985). Distributed

snapshots: determining global states of distributed systems. ACM Transactions

on Computer Systems (TOCS), 3(1):63–75.

[Chappell, 2004] Chappell, D. (2004). Enterprise service bus. " O’Reilly Media,

Inc.".

[Conway, 1968] Conway, M. E. (1968). How do committees invent. Datamation,

14(4):28–31.

65

BIBLIOGRAPHY

[De Jong, 2015] De Jong, M. (2015). Zero-Downtime SQL Database Schema Evolu-

tion for Continuous Deployment. PhD thesis, TU Delft, Delft University of Tech-

nology.

[DiCicco-Bloom and Crabtree, 2006] DiCicco-Bloom, B. and Crabtree, B. F. (2006).

The qualitative research interview. Medical education, 40(4):314–321.

[Durham Goode, 2014] Durham Goode, S. P. A. (2014). Scaling mercurial at face-

book. https://code.facebook.com/posts/218678814984400/scaling-mercurial-at-facebook/.

[Online; accessed 1-March-2016].

[Duvall et al., 2007] Duvall, P. M., Matyas, S., and Glover, A. (2007). Continuous

integration: improving software quality and reducing risk. Pearson Education.

[Erl, 2008] Erl, T. (2008). SOA design patterns. Pearson Education.

[Etzion and Niblett, 2010] Etzion, O. and Niblett, P. (2010). Event processing in ac-

tion. Manning Publications Co.

[Eugster et al., 2003] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-

M. (2003). The many faces of publish/subscribe. ACM Computing Surveys (CSUR),

35(2):114–131.

[Fielding, 2000] Fielding, R. (2000). Fielding dissertation: Chapter 5: Representa-

tional state transfer (rest).

[Foundation, 2015] Foundation, A. S. (2015). Apache software foundation.

https://www.apache.org/. [Online; accessed 30-December-2015].

[Gormley and Tong, 2015] Gormley, C. and Tong, Z. (2015). Elasticsearch: The

Definitive Guide. " O’Reilly Media, Inc.".

[Hitz and Montazeri, 1995] Hitz, M. and Montazeri, B. (1995). Measuring coupling

and cohesion in object-oriented systems. Citeseer.

[Hoff, 2010] Hoff, T. (2010). Netflix: Continually test by failing servers with chaos

monkey.

[Httermann, 2012] Httermann, M. (2012). DevOps for developers. Apress.

[Imamagic and Dobrenic, 2007] Imamagic, E. and Dobrenic, D. (2007). Grid infras-

tructure monitoring system based on nagios. In Proceedings of the 2007 workshop

on Grid monitoring, pages 23–28. ACM.

[James Lewis, 2014] James Lewis, M. F. (2014). Microservices.

http://martinfowler.com/articles/microservices.html. [Online;

accessed 8-March-2016].

[Katzan Jr, 2009] Katzan Jr, H. (2009). Cloud software service: concepts, technology,

economics. Service Science, 1(4):256–269.

[Kennedy, 1979] Kennedy, K. (1979). A survey of data flow analysis techniques. IBM

Thomas J. Watson Research Division.

66

https://code.facebook.com/posts/218678814984400/scaling-mercurial-at-facebook/
https://www.apache.org/
http://martinfowler.com/articles/microservices.html

Bibliography

[Krafzig et al., 2005] Krafzig, D., Banke, K., and Slama, D. (2005). Enterprise SOA:

service-oriented architecture best practices. Prentice Hall Professional.

[Kreps, 2014] Kreps, J. (2014). Benchmark-

ing apache kafka: 2 million writes per second.

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-secon

[Online; accessed 30-December-2015].

[Kreps et al., 2011] Kreps, J., Narkhede, N., Rao, J., et al. (2011). Kafka: A dis-

tributed messaging system for log processing. NetDB.

[Leffingwell, 2007] Leffingwell, D. (2007). Scaling software agility: best practices

for large enterprises. Pearson Education.

[Manabe and Imase, 1992] Manabe, Y. and Imase, M. (1992). Global conditions in

debugging distributed programs. Journal of Parallel and Distributed Computing,

15(1):62–69.

[Marinescu, 2012] Marinescu, R. (2012). Assessing technical debt by identifying

design flaws in software systems. IBM Journal of Research and Development,

56(5):9–1.

[Marsden, 2015] Marsden, L. (2015). The microser-

vice revolution: Containerized applications, data and all.

http://www.infoq.com/articles/microservices-revolution. [Online;

accessed 2-March-2016].

[Martin, 2003] Martin, R. C. (2003). Agile software development: principles, pat-

terns, and practices. Prentice Hall PTR.

[McConnell, 1996] McConnell, S. (1996). Daily build and smoke test. IEEE software,

13(4):144.

[McKendrick, 2015] McKendrick, R. (2015). Monitoring docker.

[Merkel, 2014] Merkel, D. (2014). Docker: lightweight linux containers for consis-

tent development and deployment. Linux Journal, 2014(239):2.

[Moha et al., 2010] Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur, A.-F.

(2010). Decor: A method for the specification and detection of code and design

smells. Software Engineering, IEEE Transactions on, 36(1):20–36.

[Newman, 2015a] Newman, S. (2015a). Backends for frontends.

http://samnewman.io/patterns/architectural/bff/. [Online; accessed

11-February-2016].

[Newman, 2015b] Newman, S. (2015b). Building Microservices. " O’Reilly Media,

Inc.".

[Odersky et al., 2004] Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S.,

Micheloud, S., Mihaylov, N., Schinz, M., Stenman, E., and Zenger, M. (2004).

An overview of the scala programming language. Technical report.

67

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://www.infoq.com/articles/microservices-revolution
http://samnewman.io/patterns/architectural/bff/

BIBLIOGRAPHY

[Parnas et al., 1983] Parnas, D. L., Clements, P. C., and Weiss, D. M. (1983). En-

hancing reusability with information hiding. Tutorial: Software Reusability, pages

83–90.

[Perrey and Lycett, 2003] Perrey, R. and Lycett, M. (2003). Service-oriented archi-

tecture. In Applications and the Internet Workshops, 2003. Proceedings. 2003 Sym-

posium on, pages 116–119. IEEE.

[Petitcolas et al., 1999] Petitcolas, F. A., Anderson, R. J., and Kuhn, M. G. (1999).

Information hiding-a survey. Proceedings of the IEEE, 87(7):1062–1078.

[Ranchal et al., 2015] Ranchal, R., Mohindra, A., Manweiler, J. G., and Bhargava,

B. (2015). Radical strategies for engineering web-scale cloud solutions. Cloud

Computing, IEEE, 2(5):20–29.

[Rao, 2016] Rao, J. (2016). Powered by. https://cwiki.apache.org/confluence/display/KAFKA/Powere

[Online; accessed 12-June-2016].

[Rodríguez-Domínguez et al., 2012] Rodríguez-Domínguez, C., Benghazi, K.,

Noguera, M., Garrido, J. L., Rodríguez, M. L., and Ruiz-López, T. (2012). A

communication model to integrate the request-response and the publish-subscribe

paradigms into ubiquitous systems. Sensors, 12(6):7648–7668.

[Rotem-Gal-Oz, 2006] Rotem-Gal-Oz, A. (2006). Fallacies of distributed computing

explained. http://www.rgoarchitects.com/Files/fallacies.pdf. [Online;

accessed 12-Januari-2016].

[Rozanski and Woods, 2011] Rozanski, N. and Woods, E. (2011). Software sys-

tems architecture: working with stakeholders using viewpoints and perspectives.

Addison-Wesley.

[Savir and Laurer, 1975] Savir, D. and Laurer, G. J. (1975). The characteristics and

decodability of the universal product code symbol. IBM Systems Journal, 14(1):16–

34.

[Siroker and Koomen, 2013] Siroker, D. and Koomen, P. (2013). A/B Testing: The

Most Powerful Way to Turn Clicks Into Customers. John Wiley & Sons.

[Sjoberg et al., 2013] Sjoberg, D. I., Yamashita, A., Anda, B. C. D., Mockus, A., and

Dyba, T. (2013). Quantifying the effect of code smells on maintenance effort. Soft-

ware Engineering, IEEE Transactions on, 39(8):1144–1156.

[Smith et al., 1998] Smith, R., Harrison, R., Wood, S., Sussman, D., Fedorov, A.,

Murphy, S., et al. (1998). Professional Active Server Pages 2.0. Wrox Press Ltd.

[Stephens, 2015] Stephens, R. (2015). Beginning software engineering.

[Tilkov, 2015a] Tilkov, S. (2015a). Don’t start with a monolith.

http://martinfowler.com/articles/dont-start-monolith.html. [Online;

accessed 11-February-2016].

68

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By
http://www.rgoarchitects.com/Files/fallacies.pdf
http://martinfowler.com/articles/dont-start-monolith.html

Bibliography

[Tilkov, 2015b] Tilkov, S. (2015b). The modern cloud-based platform. IEEE Soft-

ware, (2):116–116.

[Turnbull, 2013] Turnbull, J. (2013). The Logstash Book. James Turnbull.

[Turnbull, 2014] Turnbull, J. (2014). The Docker Book: Containerization is the new

virtualization. James Turnbull.

[Varia, 2010] Varia, J. (2010). Architecting for the cloud: Best practices. Amazon

Web Services.

[Vogels, 2009] Vogels, W. (2009). Eventually consistent. Communications of the

ACM, 52(1):40–44.

[Yamashita and Moonen, 2012] Yamashita, A. and Moonen, L. (2012). Do code

smells reflect important maintainability aspects? In Software Maintenance (ICSM),

2012 28th IEEE International Conference on, pages 306–315. IEEE.

69

Appendix A

E-commerce using microservices

In this appendix a fictional E-commerce site system will be described. This system will

adhere to some of the best-practices which arose from Chapter 4. It has been designed

in cooperation with C3 of Chapter 4 and 5. For simplicity, a number of details has

been left out.

A.1 Entities

The system consists of a number of entities. These entities revolve around business

entities, which are used to communicate between departments of the organization. The

choice to use business entities here was simple: terminology which is used between

departments is unlikely to change, hence these models provide a good basis.

The following entities have been chosen:

• User

• Order

• Shop

• Product

• Payment

• Support

• Fulfillment

• Notification

• PDF

A.2 Systems

Almost each of the entities in converted to a service. All of these services are free

to communicate with each other using RESTful communication, and each service can

put messages on a Kafka bus.

71

A. E-COMMERCE USING MICROSERVICES

Services can defer tasks to inner services, which are specific to a certain depart-

ment. These inner services cannot be accessed from other services, except through the

outer service.

In this section each of the services will be described in more detail.

User The user service is responsible for creating users and storing their personal

information. It also handles authentication of users, resets passwords, and maintains

the correct access rights. This service is therefore the only authoritative source of truth

concerning this data

Order, Shop & Product Since our system has multiple shops (and orders belong to

a shop) the system co-locates these three entities. This is an example where it can be

beneficial not to promote each entity to a new service as this would result in overly

chatty communication.

In this case an order belongs to a certain shop and a certain user. A shopping cart is

modeled as an order which has the special status open (other statuses are cancelled,

expired, refunded, completed).

A Product can be available in only certain shops, or it may have different pricing.

Therefore an abstraction is made to ShopProduct which keep this data. In turn orders

keep their contents using OrderProducts, which save the price of the product upon

selection (and refer to a ShopProduct).

Payment Dealing with financial data is considered hard, hence the payment service

is split up into several inner services. Each payment method is a separate service (due

to the different legal requirements for such services).

The inner services of the payment service are:

• IdealPayment: this service facilites the Dutch payment method iDeal.

• CreditcardPayment: for legal requirements, this service handles credit card

data, which is not allowed to leave the system after entering.

• BitcoinPayment: for technical reasons (Bitcoin speed) this system observes

and handles the blockchain data.

• PaypalPayment: this service handles all PayPal related funds, including possi-

ble refunds and automated mitigation of any Paypal complaints.

• WiretransferPayment: for technical and legal reasons this system interacts

directly with the acquirer bank of the company.

Fraud detection is part of the outer service. This section of the service checks

(among others) the previous payment statuses of the customer, checks for support mes-

sages and the country the order originates from. It returns a score ranging between 0

and 100 how likely this order is fraudulent one. Depending on the exact shop the order

is done in, the payment may be denied (or a certain PaymentMethod may be deemed

unfit).

72

A.3. Design

Support The support service receives calls from the Notification service (which

will be described later). It enters an email as a new SupportRequest or appends the

email as a SupportReply to an existing SupportRequest. It communicates heavily

with the User and Order services to fetch and show relevant information to the person-

nel. Using the Notification service it can show all earlier (manual and automatic)

communication with the customer.

Fulfillment Once an order changed its status to completed, it enters the fulfillment

status. During this stage goods might need to be shipped, or digital downloads can

be prepared. If an order moves from completed to refunded these downloads are

automatically reverted, or a return policy is started. The service informs the user about

the fulfillment process using the notification service.

Notification The notification service is responsible for communication with the end-

user. It can send text messages or emails, and keeps track of the delivery status of

these items, the click-through ratio, and some other parameters. For email, the service

is responsible for embedding the HTML content in default company styling.

PDF The PDF service handles the creation of different types of PDF’s. Examples

can be e-ticket generation, invoice generation, or watermarked ebook downloads. The

service accepts a template and a content body, which are combined using the ruleset

of the template. Finally the service returns a binary PDF document to the requesting

service.

A.3 Design

Following these services, the design compromises of several other patterns as well.

These are communication, authentication & authorization, aggregation, and state.

Communication The different services can communicate with each other over HTTP

using RESTful interfaces. Additionally each service can put messages on a shared

Kafka bus. This bus has several topics on which each service may publish informa-

tion:

• cud-events: Events when an entity in a system is created, updated, or de-

stroyed.

• view-events: Events when an entity was requested through the API.

• auditing: Any events relating to security involved practices, password changes,

impersonation, or handling financial data.

• log: All log messages are published to this topic to be picked up by log aggre-

gators and saved in a ELK stack [Turnbull, 2013].

• kafkalytics: The Kafkalytic feedback loop.

73

A. E-COMMERCE USING MICROSERVICES

Messages on the cud-events and view-events are strictly structured. Each mes-

sage contains a message metadata object, the action done, the entity involved, the ID of

the entity, the API URL for the entity, the API URL of previous version of the entity,

and the change set. An example message on the cud-events topic looks therefore

similar to the response as given in Listing 8.

1 {

2 "message": {

3 "id": "srv3__deploy_2016.01.11.06.33__ ⌋

6774c0e3-38d3-4696-80f9-8e57d360f6aa",→֒

4 "datetime": "2016-01-11T12:48:53.379Z"

5 },

6 "action": "update",

7 "class": "Order",

8 "id": 263516,

9 "url": "/orders/263516",

10 "previous_version": "/versions/1978217",

11 "object_changes": {

12 "status": [

13 "open",

14 "expired"

15],

16 "updated_at": [

17 "2016-01-11T12:43:49.840Z",

18 "2016-01-11T12:48:53.335Z"

19],

20 "lock_version": [

21 0,

22 1

23]

24 }

25 }

Listing 8: Kafka cud-event message

The embedding of the change set allows each consumer service to directly identify

whether this message is of interest. In this example the service can directly see an

Order with ID 263516 changed from status open to expired.

If required a service can request the exact previous state of the Order, which is

saved as an immutable version and available through the API. Once this endpoint is

requested with the proper credentials the API will return a response similar to Listing

9.

Here one can also see who changed the entity (whodunnit, null indicates a system

action), the exact representation of the entity at the time, the IP of the requester (if any),

the host performing the action (stripped in this example), and the sha of the git tag in

use at the time on that host (also stripped in this example). These Kafka messages are

automatically generated for each entity update (for specified entities) once the commit

74

A.3. Design

1 {

2 "id": 1978217,

3 "item_type": "Order",

4 "item_id": 263516,

5 "event": "update",

6 "whodunnit": null,

7 "object": {

8 "id": 263516,

9 "created_at": "2016-01-11T12:43:49.840Z",

10 "updated_at": "2016-01-11T12:43:49.840Z",

11 "user_id": 288958,

12 "shop_id": 123,

13 "status": 3,

14 "timeout_after": "2016-01-11T12:48:49.816Z",

15 "fee": 0,

16 "lock_version": 0

17 },

18 "created_at": "2016-01-11T12:48:53.335Z",

19 "ip": null,

20 "host": null,

21 "git_tag": null,

22 "object_changes": {

23 "status": ["open", "expired"],

24 "updated_at": ["2016-01-11T12:43:49.840Z",

"2016-01-11T12:48:53.335Z"],→֒

25 "lock_version": [0, 1]

26 }

27 }

Listing 9: Version API response

of the transaction is confirmed. This prevents race conditions where the change set

in the message is computed incorrectly, or the message is sent before the transaction

actually completed.

Authentication & Authorization Authentication between services and users (or ser-

vices and services) is performed using user or machine tokens. The User service is the

authoritative resource for all authentication related matters. All services perform au-

tomatic scoping for entities, hence some products may return a 404 Not Found since

these entities do not exist for the specified user (e.g. these products might be hidden

for that user).

Aggregation To improve search speed and certain online analytics, Elasticsearch is

used. Certain entities of certain services are automatically updated in Elasticsearch

after a change. Elasticsearch is however never the source of truth for the system,

75

A. E-COMMERCE USING MICROSERVICES

because the persistence to Elasticsearch is done in a asynchronous task and the system

can therefore be slightly outdated (also see the next paragraph on state).

Elasticsearch allows for rapid graphing of key characteristics of the platform by

performing aggregations on e.g. sales and requests. It also functions as the backend

for developers in order to spot performance issues or errors using a Kibana interface.

Finally Kafkalytics uses Elasticsearch as its persistent backend.

State All services should remain stateless themselves in order to facilitate easy load-

balancing and fault-resilience. In order to make this possible no service is allowed

to keep queues within the system. Pushing data to an external service (e.g. Kafka or

a DBMS) should therefore happen within the context of an HTTP request or a task

itself. In case a task should be performed, the service will save the task to a Redis

instance. Redis is an in-memory data store, which in this case is used as a cache and

message broker for certain actions. All instances of that service poll Redis for tasks

and execute these. Once a task is started this is marked in Redis. In case the processing

node goes down, the task is reassigned to another node. Once completed it is marked

as completed within Redis.

This setup allows for asynchronous tasks to be executed without being in a special

context. To mitigate the issue of stale results in Redis, only identifiers, classes, and

tasks names may be saved. This prevents outdated models from being processed. For

some entities (such as the one in Listing 9) a lock_version is saved as well. Once this

attribute is updated (and the task is therefore non-fresh) the task should be re-created

using a strategy saved in Redis as well. Examples of this are e.g. the timing out of

orders. Saving an entity with a lower or equal lock_version will always trigger a

StaleRecordError, which prevents concurrent overwrites of records in a DBMS.

A.4 Walk though of a successful order

In order to more effectively understand the structure of this system, we will walk

through the system while imagining that an successful order is submitted. The sys-

tem actions are described in the text itself.

Process The process starts when a user visits a web shop. Automatically a session

is created. As no login information is sent along a new anonymous user is created as

well. For every subsequent request, the session token is sent in the HTTP headers to

identify the user doing the request. Using this session a new order is created, with

status open and a timeout of 15 minutes in the future.

The user’s browsers now requests the list of shop products available. By modifying

the quantities, the browser sends updated Orders to the server. Each time the order is

updated, a Kafka event is fired (with class Order and action update).

Once the user progresses to the next screen, he/she is asked to provide his/her

personal information. After this information is filled in, this is sent to the server as

well. The User service checks the data (and verifies it confirms to the business logic).

If the update is allowed, another Kafka message is dispatched (with class User and

action update).

76

A.4. Walk though of a successful order

In the final step the user can select a payment method to complete the order. Once

the user has selected a payment method, a request is done to the Order, Shop & Product

service to make the payment. This service does a call to the Payment service which

performs a fraud analysis. If the possibility for fraud is low enough for the specific

shop, the payment is allowed. The Payment service now calls the responsible inner

service to perform the payment with the correct netto amount. This service prepares

the payment with the external party, and returns a URL to the Order, Shop & Product

service. This service then sends that URL to the user, which is redirected to that URL

to perform the payment.

After the payment has completed the user is sent back to the Payment service.

Depending on the external party, the payment status may have already been pushed

to the service. If not, the payment status is fetched first. Assuming the payment

was successful, the user is thanked and an order description is shown (which in turn

was fetched using a GET request from the Order, Shop & Product service). In the

background the Payment service has triggered a Kafka event over the cud-events topic

indicating an update of the payment (to the status successful). The Order, Shop &

Product service reacts to this by fetching the payment details and checking that the

entire order has been paid. If this is the case, the order changes state to completed and

the corresponding Kafka event is fired.

At this point the Notifications service decides it should send a confirmation email.

It first fetches the user data from the User service and the order data from the Order,

Shop & Product service. These are combined in a template and sent by email.

In the meantime the Fulfillment service has started working as well, based on the

Kafka message. It fetches the order data from the Order, Shop & Product service and

determines how the order should be fulfilled. In this case a physical product needs to

be shipped to the customer, hence a packing slip is created for the warehouse. Once the

package is completed and ready for shipment, the Fulfillment service sends a Kafka

event. The Notifications service reacts to this event, and sends the customer a text

message with a parcel tracking code.

Finally the Order, Shop & Product creates an invoice by doing a POST request to

the PDF service. It saves the resulting PDF for data compliancy in the central data

lake.

Notes This example point out some interesting advantages of decoupling and modu-

larization of services using microservices combined with Kafka.

• The Fulfillment service may temporarily be unavailable without impacting the

overall process. All packing slips and downloads will ultimately be dealt with.

• The same goes for the Notifications service. In case there are intermittent prob-

lems, an order confirmation email can be delayed, but this failure does not im-

pact the warehouse in any way.

• The PDF is much more tightly coupled. In case of downtime, a final invoice

cannot be created. The Order, Shop & Product service therefore schedules this

as a new job using Redis (such that it can be done once the service is back).

77

A. E-COMMERCE USING MICROSERVICES

• The User service is a central component, since it handles the central authentica-

tion and authorization. The availability of this service is therefore crucial. Due

to the structure many instances of this service can run at the same time, such that

host failure does not impact overall availability.

• Problems with a specific payment method do not impact any other payment

methods. The outer Payment service can simply deny all payments requesting a

problematic payment method and continue to function.

• All components can be individually scaled and depending on the exact business

needs each can have a certain level of fault tolerance. During redeploys internal

load balancers can instantly redirect traffic to new instances due to the lack of

local state.

78

	Contents
	Introduction
	Context
	Problem statement
	Approach
	Thesis overview

	Background
	Principles of microservices
	Microservice architectures
	Organizational implications

	Interview participants
	Monolithic and Service Oriented Architectures
	Monolithic architectures
	Service Oriented Architectures
	Retrospective on Service Oriented Architectures

	Microservices in practice
	Decision process
	Resulting architecture
	Experiences
	Influence of the architecture on development

	Kafkalytics
	Kafka
	Kafka antipatterns
	Kafka message monitoring using Kafkalytics
	Antipattern detection

	Evaluation
	Research questions
	RQ1: Antipattern recognition by experts
	RQ2: Detection by Kafkalytics
	RQ3: Implementation overhead of Kafkalytics
	RQ4: Performance penalty of Kafkalytics
	Threats to validity

	Related Work
	Code smell detection
	Service Monitoring

	Conclusions
	Contributions
	Implications
	Limitations and future work
	Interview phase
	Kafkalytics

	Bibliography
	E-commerce using microservices
	Entities
	Systems
	Design
	Walk though of a successful order

