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Through boundary integral simulations, we investigate, in the creeping flow limit and in
the absence of Brownian noise, the effects of Navier slip on the orientational dynamics
and effective shear viscosity of a semidilute suspension of two-dimensional particles
with either circular or elongated (platelike) shape, interacting only via hydrodynamic
and contact forces. We have recently shown that it is theoretically possible for a dilute
system of slip platelike particles to display an effective shear viscosity smaller than the
viscosity of the suspending fluid. This large viscosity reduction is primarily due to the
suppression of the tumbling motion predicted for a no-slip particle and the attainment of a
stable orientation. In this paper, we show that the effect of particle-particle interaction at
semidilute concentrations is to cause the particles to fluctuate about the stable orientation
and, above a threshold solid fraction ccrt, to tumble. As a consequence, a sharp increase in
the effective shear viscosity with solid fraction c occurs for c > ccrt. Our results suggest
that, for a given particle aspect ratio, there is a value of c that maximizes the reduction in
the effective shear viscosity of the suspension.

DOI: 10.1103/PhysRevFluids.9.074102

I. INTRODUCTION

Recent experiments on semidilute suspensions of graphene oxide nanoparticles show a non-
monotonic dependence of the effective shear viscosity on solid fraction in a range of high shear
rates [1,2]. This result is not expected from classical suspension theory, which predicts a monotonic
increase with particle solid fraction [3]. A nonmonotonic change of viscosity on solid fraction was
also reported for platelike particles in Refs. [4,5]. Two-dimensional nanomaterials, such as graphene
oxide, are platelike particles of atomic thickness. Therefore, accounting for the anisotropic particle
shape could be essential for explaining the observed dependence.

We have recently shown, through both continuum and molecular dynamics simulations of single
platelike particles in shear flow, that in the dilute limit, a possible explanation for a decreasing shear
viscosity for increasing solid fraction is a violation of the no-slip boundary condition [6–9]. Nano-
materials, such are graphene, are plate-like nanoparticles that can present significant hydrodynamic
slip at their surface when in contact with water and other solvents [10–12], with slip lengths often
larger than the nanoparticle thickness. For this range of slip lengths, the hydrodynamic slip changes
the stress distribution on the planar surface of the particles, leading to a suppression of the classical
tumbling motion predicted by Jeffery’s theory for no-slip particles [13]. Specifically, based on theory
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and simulations, we predicted that at high rotational Péclet numbers (Pe), a single particle featuring
a slip length larger than the particle thickness aligns indefinitely at a relatively small, constant angle
with respect to the flow direction [6–9,14]. This change in orientational microstructure can directly
impact the effective shear viscosity of the suspension [15].

The current paper analyzes numerically, in the infinite Péclet number regime, the effect of
hydrodynamic interactions on the orientational microstructure and effective shear viscosity of a
suspension of particles with Navier slip surfaces. The particles are assumed to be two-dimensional
and to move in the flow-gradient plane. The basic question we would like to address is how the
effect of hydrodynamic interactions at finite volume fractions changes the dilute-limit prediction
of a stable orientation and how this in turn affects the effective viscosity. Because the code can
recover the case of cylinders for an aspect ratio equal to one, we also analyzed the shear viscosity
of a suspension of two-dimensional cylinders with slip, a problem which both furnishes a validation
case for the numerical code and offers interesting fluid dynamic insights. We address the numerical
challenge of simulating suspensions of large aspect ratio particles by using a two-dimensional
boundary integral method for incompressible Stokes flow [16]. The high accuracy of the boundary
integral method in resolving the stress over the particle surface [16,17] allows us to consider
suspensions with particles of relatively small thickness and resolve near contact interactions.

At dilute concentration, hydrodynamic slip has been found to reduce the effective viscosity ηeff

compared to an identical suspension of no-slip particles. The magnitude of this reduction depends
on Pe, the particle aspect ratio, and the ratio of slip length λ to the particle thickness [7,15,18–20].
Allision [18] computed ηeff for noninteracting ellipsoidal particles using the continuum boundary
integral formulation [16] and found that, for small Pe, ηeff is significantly smaller for perfect-
slip ellipsoids (λ → ∞) than for no-slip ellipsoids (λ = 0). For noninteracting spheres, Luo and
Pozrikidis [20] showed analytically that increasing λ reduces ηeff for all values of Pe; for a fluid
of viscosity η and particle solid fraction c � 1, ηeff decreases from ηeff/η = 1 + (2/5)c in the
no-slip case to ηeff/η = 1 + c in the perfect-slip case [20]. Using a continuum boundary integral
formulation for incompressible Stokes flow, we have recently shown for a dilute suspension of
slender noninteracting two-dimensional particles that hydrodynamic slip could cause ηeff to be
smaller than η [15]. This regime occurs provided that λ is larger than the half-thickness of the
particle and Pe is sufficiently large. A physical explanation for this unusual viscosity reduction is
the stable alignment: for a particle oriented almost in the flow direction and not rotating, the Navier
slip velocity reduces the viscous friction between parallel fluid layers provided that the particle is
sufficiently thin so as not to significantly disturb the flow streamlines. The suppression of rotation
is key. If each particle in the suspension was continuously rotating, such a large viscosity reduction
would not be observed despite the slip-induced reduction in frictional viscous forces on the particle
surface.

At semidilute concentrations, particle-particle interactions become important (a discussion of
the semidilute regime for anisotropic particles is given in Refs. [21,22]). Numerical simulations of
no-slip platelike particles [23–27] and experiments with no-slip oblate ellipsoids [28] demonstrate
an increase in particle alignment with the flow direction as the solid fraction increases, and the
concurrent formation of particle clusters. Because of the added hydrodynamic stress induced by
particle-particle interaction, the effective shear viscosity for no-slip particles increases with the solid
fraction more than linearly.

Studies on slip particles in the semidilute limit are more rare. The effect of hydrodynamic slip
at semidilute concentration has been studied in Ref. [7] through molecular dynamics simulations
of disklike aromatic molecules (hexabenzocoronene) of length-to-thickness aspect ratio a/b = 3,
slip length larger than b, and for an extensive range of Pe. The particles are suspended in water.
The simulations showed that hydrodynamic slip dramatically reduced ηeff for an extensive range of
Pe. At large Pe, the rate of change of ηeff with the solid fraction was smaller for a slip molecule
than that for a no-slip molecule having the same geometry, an effect which could be probed by
changing the solid-liquid molecular interaction potential in the molecular dynamic simulation. By
investigating the pairwise interaction of two spherical particles, Luo and Pozrikidis [19] showed by
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2(a
− b)

FIG. 1. Sketch of a two-dimensional slender Navier slip particle suspended in an external shear flow field.

continuum simulations that at semidilute concentrations the presence of a finite Navier slip velocity
leads to a significant reduction in the rate of increase of ηeff with solid fraction c. The increase in
ηeff with c was an order of magnitude smaller for the slip spheres than for no-slip spheres. For these
two cases, hydrodynamic slip thus reduces the effect of particle-particle interaction on ηeff at higher
solid fractions. Whether this trend applies to platelike particles remains an open question that this
paper aims to address.

The outline of this paper is as follows. In Sec. II we present the mathematical model for com-
puting the particle dynamics and suspension rheology by solving dynamically the boundary integral
equation of Stokes flow. The numerical implementation of this model is then given in Sec. III. In
Sec. IV an analytical solution for ηeff for particles with a/b = 1 is developed and compared with our
numerical model (analytical solutions for the effective viscosity of no-slip cylinders at dilute and
semidilute concentration are available in the literature [29,30]). This section contains new results for
cylinders and is used for validation before tackling the more complex shape of a slender platelike
particle. Finally, in Sec. V we use our numerical model to study the dynamics and rheological
behavior of slender particles with nonzero Navier slip lengths at semidilute concentrations.

II. THEORETICAL PRELIMINARIES ON THE DYNAMICS AND EFFECTIVE SHEAR
VISCOSITY OF TWO-DIMENSIONAL PARTICLES

We consider a sheared suspension of N identical rigid particles. The particles are suspended in
an external shear flow field, given in a Cartesian coordinate system as u∞ = γ̇ yêx, where êx is the
unit vector in the flow direction, y points in the direction of the unit vector êy perpendicular to the
flow, and γ̇ is the shear rate. The velocity field u, the pressure field p, and the corresponding stress
tensor field σb are assumed to satisfy the incompressible Stokes equations:

∇ · σb = 0, σ b
i j = −δi j p + η

(
∂ui

∂x j
+ ∂u j

∂xi

)
, ∇ · u = 0, (1)

where η is the viscosity of the fluid.
Each particle is modeled as a two-dimensional object (in the êx, êy plane) consisting of a rectangle

of half-length a − b and half-thickness b, with semicircular ends of radius b, as illustrated in
Fig. 1. This shape is motivated by the analysis of the surface that best approximates a graphene
nanoparticle’s cross-sectional surface from a hydrodynamic viewpoint, as suggested by molecular
dynamics simulations of single-layer graphene in water [6,8]. This parametrization also enables one
to simulate particles with a circular cross section simply by setting a = b. The length-to-thickness
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aspect ratio of the particle is a/b. In the laboratory frame (fixed with respect to êx and êy), the
configuration of the kth particle is given by the position of the particle’s central point xc[k] and the
particle’s orientation angle φ[k]. Here, φ[k] is defined as the anticlockwise angle from êx to the long
axis of the particle.

On the surface L[k] of the kth particle, the Navier slip boundary condition

usl[k] = λ

η
n[k] × f [k] × n[k] (2)

is prescribed, where λ is the Navier slip length, n[k] is the unit normal vector pointing outwards
from the surface of the particle, usl[k] is the Navier slip velocity, and f [k] = σb · n[k] is the surface
traction. The particles are considered to be torque-and-force free, so each particle moves according
to a rigid body motion U [k] + 	[k]êz × (x − xc[k]). Here, U [k] is the particle’s translational
velocity and 	[k] is the particle’s angular velocity.

Our primary interest is to compute the instantaneous effective viscosity of the suspension and its
time average value 〈ηeff〉, where 〈·〉 indicates time averaging. The instantaneous effective viscosity
can be calculated from [16,25,26,31]

ηeff/η = 1 + σxy, σxy = c

γ̇ ηApN

N∑
k=1

Sxy[k]. (3)

Here, Ap is the cross-sectional area of each particle, c is the solid fraction (defined in Sec. III), and
Sxy is the off-diagonal component of the stresslet tensor, defined as

Sxy[k] = 1

2

∫
L[k]

[
fxy + fyx − 2η

(
usl

x ny + usl
y nx

)]
dL, (4)

where dL is an infinitesimal line element. The stresslet tensor is time dependent, since f [k] and
usl[k] depend on the instantaneous configuration of the particles. For conciseness, from here on we
have dropped the particle index notation k in all integral expressions.

An isolated particle with b � λ aligns with the flow at a small constant orientation angle φc [6,8].
For λ approximately smaller than b, the particle spends most of its rotation time aligned with the
direction of flow before tumbling, creating a periodic orbit [13]. One way to distinguish a stable
orientation from a rotational behavior is to measure the time-average mean and standard deviation
of φ = ∑N

k=1 φ[k]/N . These are defined as

φ̄ = 〈φ〉, SD(φ) = 〈(φ − φ̄)2〉, (5)

respectively. A particle instantaneously aligned at φ = φc is characterized by φ̄ = φc and SD(φ) =
0, whereas a rotating particle has φ̄ = 0 and a finite value of SD(φ) [7,8]. The longer the rotational
time period of the particle, the smaller SD(φ).

Another quantity of interest is the mean tangential force 〈Fs〉 acting on the top-half surface L+[k]
of each particle. This quantity is useful to predict the minimum shear rate for layered particles to
break up under a hydrodynamic shear [32,33], as required in many 2D nanomaterial production
methods such as microfluidization [34,35] and high shear mixing [36,37]. The calculation of 〈Fs〉
requires calculating the instantaneous shear (in the direction ês) force acting on the top-half surface
L+ of the kth particle:

Fs[k] =
∫

L+[k]
f · êsdL. (6)

The top-half of the particle corresponds to the surface of the particle above the dashed line in
Fig. 1. To define L+[k] explicitly, we first parametrize the surface L[k] of each particle in its
body-fixed frame of reference (ês, ên) as L[k] = (s[k],±h(s[k])), where −a � s[k] � a. Here s[k]
is the distance running along the long particle axis and passing through the center of the particle
(the dashed line in Fig. 1), h(s[k]) is the thickness of the particle, and ês, ên are orthogonal unit

074102-4



FLOW AND RHEOLOGY OF SUSPENSIONS OF …

vectors, with ês oriented in the direction of the particle’s long axis. The top-half of the surface
is thus L+[k] = (s[k], h(s[k])). The mean tangential force 〈Fs〉 corresponds to the time average of
Fs = ∑N

k=1 Fs[k]/N .

III. NUMERICAL IMPLEMENTATION

We perform dynamic simulations of suspensions of N identical two-dimensional particles in a
doubly periodic square computational domain of area A. The solid fraction of the suspension is
defined as c = NAp/A, where Ap is the area of each particle. The double periodicity of the domain
is implemented using the Lees-Edwards periodic boundary condition [38]. This boundary condition
is used to limit boundary effects on the microstructure that would be incurred with the use of solid
external walls [39].

Calculating ηeff, φ̄, and Fs requires f [k], U [k], and 	[k], for k = 1 : N , as a function of time.
We compute these quantities at a given time t by solving the boundary integral equations of
incompressible Stokes flow supplemented with the Navier slip boundary condition, Eq. (2), applied
on each particle’s surface L[k] [6,8]. For each point x1 ∈ L[k], the boundary integral representation
gives

N∑
k=1

[
1

4π

∫
L[k]

n(x) · K(x − x1) · usl(x)dL(x) − 1

4πη

∫
L[k]

G(x − x1) · f (x)dL(x)

]

= U [k] + 	[k] × (x1 − xc[k]) + usl(x1)

2
− u∞(x1), (7)

where n(x) is the unit surface normal at position x pointing into the fluid. The second-order tensor G
and the third-order tensor K correspond to the two-dimensional, double-periodic Green’s functions
of incompressible Stokes flow [16,40]. Equation (7) represents a linear system of equations for the
variables { f [k],U [k],	[k]}. To close this system, further conditions of zero force and torque acting
on each particle are required:

F[k] =
∫

L[k]
f dL = 0, T [k] = êz ·

∫
L[k]

(x1 − xc) × f dL = 0. (8)

To solve the coupled Eqs. (7) and (8), we follow the procedure outlined in Refs. [6,8]. In summary,
the surface of each kth particle is divided into Np subintervals. The functions f [k] and usl[k]
are then discretized as piecewise constant functions with each variable centered at the midpoint
of each subinterval. The discretization of Eqs. (7) and (8) results in a set of N (2Np + 3) linear
equations for the variables X = { f [k]1, . . . , f [k]Np,U [k],	[k]} with k = 1 : N ; here, f [k]l is the
discrete value of f on subinterval l of particle k. The set of linear equations is then solved by using
Gaussian elimination. The numerical solution for f [k] is defined up to a normal force contribution
p0n[k]. Here, p0 is an arbitrary pressure. To find a unique solution, we set p0 = 0 by using the
preconditioning method described by Pozrikidis [40].

For a large number of particles, the size of the system quickly becomes very large. In this case,
the linear matrix (A · X = b) can be solved by an iterative method. For the mth iteration, we use the
scheme described by Pozrikidis [40]:

D · Xm+1 − (D − A) · Xm = b.

Here, D represents diagonal blocks containing particle clusters. A “cluster” is a set of particles
separated by a minimum separation distance of at most 2εd , where εd is a separation factor.

Following Pozrikidis [25], we use εd = a/10 (for a fixed a); for smaller values of εd the time-
marching algorithm becomes very stiff, requiring very small time steps. Also, we use N = 16 unless
otherwise stated. We use a nonuniform surface grid with more points on the curved edge regions
than on the slender surface of each particle, as described in Ref. [8]. The number of grid points
per element ranges from Np = 24 for a/b = 1 to Np = 72 for a/b = 50. These values of Np were
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chosen to ensure grid convergence, as measured by the calculation of ηeff, for a fixed array of the
particles at c = 0.3 for a/b = 1, c = 0.1 for a/b = 10, and ĉ = Nπa2/A = 0.1 (The meaning of ĉ
will be explained in Sec. V B 3) for a/b = 20 and a/b = 10. Validation of our model for a/b = 1 is
presented in Sec. IV, and convergence and validation studies for a/b = 10, 20, and 50 are presented
in Sec. V.

The initial configuration of all the particles is produced by perturbing, according to computer-
generated random numbers, the orientation and center location of a regular array of particles
separated by an assigned distance d. The distance d is selected so that the centers of the particles
form a regular periodic array. The random number for the particle orientation angle ranges between
0 and π , and for the two coordinates of the particle center between ±d/2.

The configuration of the N particles is advanced in time by an explicit second-order scheme
(the Richardson time step; cf. [41]). To prevent overlap of the particles at any time step, a geometric
exclusion method is implemented, as described by Pozrikidis [25]. In summary, this method involves
first expanding the surface of each particle by an amount 1 + εd , and then testing for overlaps. The
maximum time step is chosen to ensure that the overlap between the region bounded by the extended
surfaces of the particles never exceeds εd . If an overlap is found between the expanded surfaces of
the particles, including the periodic images, then the centers of each pair of overlapping particles are
displaced by an amount εd along the vector of minimum separation. Such displacement is equivalent
to imposing a repulsive force that keeps the particles separated by a surface-to-surface distance εd .
If the overlap occurs in a cluster of two particles, the particles’ centers are displaced symmetrically.
Otherwise, the particles’ centers are displaced antisymmetrically by fixing the first particle in the
cluster and displacing the neighboring particles. This procedure is adopted to prevent an infinite
loop of particles “bouncing” off each other [25].

To ensure that the time averages do not depend on the initial condition, statistical averages are
calculated after a long time T . We set T equal to the time required for an isolated no-slip particle of
the given aspect ratio to complete one entire tumbling cycle. This time is chosen based on a previous
study by Pozrikidis on the time taken for an aligned state to become fully randomized [26].

IV. EFFECTIVE SHEAR VISCOSITY FOR TWO-DIMENSIONAL CYLINDERS WITH SLIP

For the case a/b = 1, which corresponds to cylinders of infinite extent in the vorticity direction,
numerical values of 〈ηeff〉 in the semidilute limit can be compared directly to analytical estimates.
A Taylor expansion of the effective viscosity for c � 1 gives

〈ηeff〉/η = 1 + αc + βc2 + O(c3). (9)

The coefficient α, commonly referred to as the intrinsic viscosity, corresponds to the stress
generated by an isolated, freely suspended particle. Its value has been calculated analytically for
no-slip [29,42] and slip cylinders [15]. For a Navier slip boundary condition with slip length λ, α

decreases with λ according to

α = 2
1 + 2λ/b

1 + 4λ/b
, (10)

approaching α = 1 for λ/b → ∞ [15]. For cylinders, α decreases due to the effect of the hydro-
dynamic slip reducing the tangential component of the hydrodynamic traction on the surface of the
cylinder [15].

A. Analytical evaluation of β

The coefficient β in Eq. (9) represents the contribution to the macroscopic suspension stress
from pairwise interactions. For λ = 0, Doyeux et al. [30] have evaluated β analytically, obtating
β = 3.60. Here, we extend their method to find β as a function of λ/b.

074102-6



FLOW AND RHEOLOGY OF SUSPENSIONS OF …

Calculating β requires finding the short-range hydrodynamic interaction between two freely
suspended cylinders centered at positions x0 and −x0, and then averaging over all possible values
of x0. To find the flow disturbance due to two freely suspended cylinders, it is convenient to work in
complex variables with z = x + iy and ζ (z) = ux + iuy. Here, x and y correspond to the Cartesian
coordinates in a fixed frame of reference, and u = ux êx + uyêy. The flow disturbance generated by
a single force-free cylinder position at z0 can be expressed in a multipole expansion (cf. [43]) as

ζ1(z′) =
∞∑

q=1

Aq

z′q + qĀqz′

z̄′q+1 + B

z̄′q , z′ = z + z0. (11)

This expansion converges for all |z| > b. By symmetry, the flow field produced by the second
cylinder is ζ2(x) = −ζ1(−z). In complex variables, the external shear field is ζ∞ = iγ̇ (z̄ − z)/2.
The total flow field is thus

ζ (z) = ζ1(z′) − ζ1(−z′) + ζ∞. (12)

We approximate the hydrodynamic effect of the cylinder located at z0 on the other cylinder by
assuming that the boundary conditions only have to be satisfied for the cylinder located at z0 [30].
For the particles to be torque-free we must have Im(B1) = 0 [30]. At the boundary of each particle,
we assume the Navier slip boundary condition, Eq. (2). This condition translates to

ζ (z0 + beiσ ) = ζ0 + i	beiσ + ζ sl,

where σ ∈ [0, 2π ] is a parametrization of the boundary of the cylinder, ζ0 is the translational
velocity of the cylinder located at z0, 	 is the angular velocity of the cylinder, and ζ sl = usl

x + iusl
y

is the representation in complex variables of the slip velocity usl = usl
x êx + usl

y êy.
We calculate the flow field ζ using the mathematics software MAPLESOFT as follows. First,

Eq. (12) is evaluated at z0 = r0eiθ . This leads to a set of algebraic equations for the unknown
coefficients Aq and Bq. Next, the real and imaginary parts of Aq and Bq and the angular ve-
locity 	 are found by assuming that each of these coefficients has an analytical expansion in
powers of 2b/r0. Truncating this expansion to qmax terms, allows us to estimate the coefficients
{A1, . . . , Aqmax , B1, . . . , Bqmax ,	} to the desired accuracy. The coefficients are decomposed into a
set of 4qmax linear equations by setting each real and imaginary part of the coefficient of spectral
order ei±qσ to zero for q = 1, . . . , qmax. An additional linear equation for 	 comes from the extra
condition Im(B1) = 0. The linear system of equations is solved by Gaussian elimination.

The coefficient ImA1 is particularly important in determining the effective viscosity (cf.
[30,31,44]). To find β, we use the expression developed by Doyeux et al. [30], which predicts

β = α −
∫ ∞

b

∫ 2π

0
ImA′

1dθ dr0. (13)

Here Im(A′
1) is the series expansion of Im(A1), excluding all terms up to O[(b/r)2]. The derivation of

Eq. (13) is based on a mean-field approximation [3] assuming an isotropic pair-particle distribution
function. The only (but important) difference with respect to the formulation given in Doyeux et al.
is that Im(A′

1) in the current work depends on λ.
Figure 2 shows the analytical value of β as a function of λ. The convergence of β with qmax

(given in the inset) is slow due to the nonanalytical behavior of A1 when the two cylinders touch
each other (r0 = 2b). As λ/b increases, the convergence gets even slower since the expansion in r/b
becomes stiff as λ/b → ∞. For our analytical predictions, we use qmax = 32, the highest computed
value of qmax. For the selected values of λ given in the inset, we find that the difference in β between
qmax = 32 and 32 > qmax � 18 is smaller than 1%.

Numerical simulations of pairwise interaction of spheres [19] suggest that β decreases mono-
tonically by about an order of magnitude for increasing λ. For the two-dimensional cylinders, our
analytical calculations of β show that while there is a decrease in β for finite λ/b, the decrease in
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FIG. 2. Analytical prediction for β versus λ for a/b = 1. The prediction is based on a truncated expansion
of Im(A) in powers of b/r up to order kmax = 32. Inset: β versus qmax for λ/b = 0, 1, and 10.

β with λ is not monotonic. Instead β(λ/b) has a minimum value β = 1.69 for λ/b = 1.91, which
corresponds to roughly a 50% reduction compared to the no-slip value of β. For larger slip lengths,
the general increase in β is much slower than for slip lengths smaller than the one corresponding to
the minimum, so the value of β for comparatively large slip lengths (e.g., λ/b = 10) is smaller than
for λ = 0.

B. Comparison between numerical and analytical estimates of 〈ηeff〉 for cylinders

Figure 3 compares the analytical prediction for 〈ηeff〉, obtained assuming an isotropic pair-
particle distribution (for qmax = 32) and retaining only the α and β terms in Eq. (9), to results
computed for λ/b = 0, 1, and λ/b = 10 via the numerical procedure outlined in Sec. III. In the

FIG. 3. Effective viscosity versus solid fraction for a/b = 1. Symbols represent numerical simulations;
dashed lines are the analytical solution given in Eq. (9) for λ/b = 0 (black) (〈ηeff〉/η = 1 + 2c + 3.6c2),
λ/b = 1 (green) (〈ηeff〉/η = 1 + 1.2c + 1.8c2), and λ/b = 10 (red) (〈ηeff〉/η = 1 + 1.0c + 2.3c2). Insets: (left)
reduced viscosity versus solid fraction; (right) standard deviation (SD) of ηeff/η versus solid fraction.
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limit c � 1 we find good agreement between the analytical and the numerical values. The numerical
values confirm that the second-order coefficient β [quantified by the slope of the reduced viscosity
〈ηeff − η〉/(cη) in the left-hand side inset of Fig. 3] is smaller for λ/b = 1 than for λ/b = 10, as
predicted by the analytical solution shown in Fig. 2.

For larger values of c, our simulation results for λ = 0 compare well with the predictions of the
numerical model of Ref. [26]. For larger values of c, the particle interaction is no longer pairwise,
resulting in a significant deviation of 〈ηeff〉 from the analytical prediction.

In our simulations, we have also evaluated the standard deviation of ηeff (shown in the right-
hand side inset in Fig. 3). In general, the standard deviation of ηeff increases as c increases due
to stronger particle-particle interaction. As λ/b increases, the range of c for which the numerical
value of 〈ηeff〉 is well approximated by Eq. (9) increases (as seen in the left-hand side inset) and
the dependence of the standard deviation of ηeff with c decreases. This effect is due to slip reducing
particle-particle interaction, as seen by the reduction of β with λ. As c → 0, the reduced visocity
〈ηeff − η)〉(cη) → α.

Overall, these findings suggest that hydrodynamic slip reduces the effect of cylinder-cylinder
interactions at higher solid fractions. In terms of the trend with respect to variations in λ, this
behavior agrees qualitatively with our recent molecular dynamics simulations of suspensions of
disklike molecules [7] and with the analytical theory for the effect of Navier slip on two settling
spheres [45]. Also, in these studies, it was found that hydrodynamic slip reduces the effect of
particle-particle interactions.

Physically, the effect of hydrodynamic slip is to reduce the tangential traction distribution over
the surface of the cylinders [15]. Our analytical and computational results suggest that effect reduces
both α and β in Eq. (9). Our results show that the effect of particle-particle interaction is also
reduced, so that, in general, ηeff is significantly smaller for slip cylinders compared to no-slip
cylinders and can be well approximated by Eq. (9) for a larger range of c for slip cylinders than
for no-slip cylinders.

V. SIMULATIONS OF SLENDER PARTICLES AT SEMIDILUTE CONCENTRATIONS

A. Statistical convergence and validation against the dilute limit

Slender particles with a/b 	= 1 will reach in time a preferred orientation. Therefore, it is impor-
tant to investigate how the first- and second-order orientational statistics of the particles depend
on time. We show convergence of simulations with a/b = 10 by comparing (i) different initial
conditions and (ii) different numbers of particles in the periodic domain. The time series of the
instantaneous reduced viscosity and instantaneous particle orientation angle (averaged over all the
particles instantaneously present in the computational domain) for three simulations at c = 0.05
are shown in Fig. 4. The simulations are carried out with different initial particle configurations of
Np = 16 particles. After a time t γ̇ ≈ 30, the time-dependent reduced viscosity and orientation angle
attain comparable mean and variance, independent of the initial condition. For c = 0.05 the time
average values φ̄ (Fig. 5) and 〈ηeff − η〉/cη (Fig. 6), and their corresponding standard deviations
(SDs), do not change significantly if we change the initial condition (gray squares), or the particle
number from Np = 16 to Np = 36 (brown diamond). This suggests that our simulations are run for
a sufficient time to lose memory of the initial condition and with a sufficiently high number of
particles. In Figs. 5 and 6, we also compare our simulations at finite solid fractions to dilute-limit
simulations obtained by simulating a single particle [15]. A good agreement of the simulation data
with the dilute-limit prediction is observed for small c.

B. Effect of slip

1. Comparing slip and no-slip particles

We begin by comparing simulations for λ = 0 and λ/b = 10, for fixed a/b = 10 and c = 0.05. A
snapshot of the two cases is given in Fig. 7, and corresponding movies are given in the Supplemental
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FIG. 4. Time evolution of the instantaneous reduced viscosity (left) and instantaneous particle orientation
angle (right) for three different initial conditions (I.C. 1, I.C. 2, I.C. 3), and fixed a/b = 10, c = 0.05, and
Np = 16. The top panels are for no-slip particles, and the bottom panels are for slip particles.

Material [46]. In the slip case, the particles remain almost aligned in the flow direction. Unlike in
the dilute case, however, the orientation angle is not constant: particle-particle interactions make
each particle fluctuate about its average orientation. If such fluctuations were large enough, a full
rotational orbit (tumbling) of the particles could occur. Instead, we found that even when the slip
particles come in close contact with one another, the particle-particle interaction is not large enough
to “break” the average alignment of the particles (as can be seen from the movie in Supplemental
Material 2). Slip particles in close contact instead slide past each other and eventually separate, as

FIG. 5. Dependence of the average particle orientation on solid fraction for a/b = 10 and Np = 16,
comparing (a) no slip and (b) slip. Insets: standard deviation (SD) versus solid fraction. For c = 0.05, the
(gray) squares correspond to data for different initial conditions and the (brown) diamonds for a suspension of
36 particles rather than 16. Dashed lines correspond to the values for an isolated particle in free space, i.e., the
dilute-limit prediction [15].

074102-10



FLOW AND RHEOLOGY OF SUSPENSIONS OF …

FIG. 6. Dependence of the reduced viscosity on solid fraction for a/b = 10, corresponding to Fig. 5,
comparing (a) no slip and (b) slip. Insets: standard deviation (SD) versus solid fraction. The meaning of the
symbols is as in Fig. 5.

demonstrated in Fig. 8. In the case of no-slip particles (i.e., Supplemental Material 1), full tumbling
cycles occur (the particles align in the flow direction only in a time-average sense but do rotate
instantaneously). An example of two particles undergoing full tumbling is given in Fig. 9.

Figure 5 shows φ̄ versus c for λ = 0 and λ/b = 10 (for fixed a/b = 10). For the no-slip case, the
standard deviation of φ decreases slowly with c (left insert), suggesting that more particles become
aligned with the flow direction as c increases due to neighboring particles limiting the rotation
of each particle. This result is in agreement with simulations of no-slip two-dimensional particles
with elliptical cross section [25,26] and disks [24] at semidilute concentrations. For λ/b = 10, φ̄

decreases with c, while the standard deviation of φ increases with c. As the solid fraction changes
from c = 0.001 to c = 0.01, the average φ̄ decreases by almost a factor of 2, and the corresponding
standard deviation increases by over a factor of 3. Thus, in the slip case, neighboring particles
disturb the stable alignment found for c = 0. This result is also demonstrated in the snapshot of

FIG. 7. Instantaneous snapshot of particle distribution for γ̇ t = 110 and c = 0.05, comparing slip and no
slip. The aspect ratio and slip length are the same as in Fig. 4. Dashed lines correspond to the values for an
isolated particle in free space [15].
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FIG. 8. Snapshot of two slip particles sliding past each other for c = 0.05. The particles of interest are
filled (red). The particle aspect ratio and slip length are the same as in Fig. 4.

Fig. 8: the orientation angle of the particles increases as the particles slide past each other. When
several particles slide past each other at the same time, sudden peaks in the time evolution of φ can
occur, as seen for I.C. 1 and I.C. 3 in the right-hand panel of Fig. 4(b).

The reduced viscosity 〈ηeff − η〉/(cη) (Fig. 6) is much larger for λ = 0 than for λ/b = 10
for all the values of c considered. What is most striking is that 〈ηeff − η〉/(cη) is positive for
λ = 0 and negative for λ/b = 10. In other words, for λ/b = 10, the effective shear viscosity of
the suspension is smaller than the viscosity of the suspending fluid for all our computed values
of c. As c increases, 〈ηeff − η〉/(cη) increases for both λ = 0 and λ/b = 10, suggesting that
particle-particle interactions increase 〈ηeff − η〉/(cη) for both the slip and no-slip cases. For the slip
case 〈ηeff − η〉/(cη) increases from −1.26 to −1.12 as the concentration increases from c = 0.001
to 0.1. For the no-slip case 〈ηeff − η〉/(cη) increases from 2.35 to 2.67 in the same range of solid
concentrations. In the slip case, the reduced viscosity is negative and does not seem to reach a
plateau as c increases. Therefore, there might exist a threshold value of c for which the particle
effect on the effective suspension viscosity is neutral (i.e., 〈ηeff〉 = η).

Examining the tangential force (Fig. 10), one observes that 〈Fs〉 increases slightly with c for
λ = 0 and decreases slightly with c for λ/b = 10, with no significant changes to SD. For all the
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FIG. 9. Snapshot of two no-slip particles undergoing full tumbling for c = 0.05. The particles of interest
are filled (red). The aspect ratio and slip length are the same as in Fig. 4.

solid fractions considered, 〈Fs〉 is considerably larger for λ = 0 than for λ/b = 10. This information,
together with the mild dependence on c, suggests that 〈Fs〉 depends mostly on λ rather than on c in
the range of solid fractions we considered.
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FIG. 10. Dependence of the average tangential force on solid fraction for a/b = 10, comparing (a) no slip
and (b) slip. Insets: standard deviation (SD) versus solid fraction. Dashed lines correspond to the values for an
isolated particle in free space [15].

2. Effect of solid fraction on slip particles as a function of slip length

Figure 11 shows 〈ηeff − η〉/(cη), φ̄, and 〈Fs〉 as a function of λ/b for a single particle in free space
and for 0.05. Despite the difference in solid fraction between the two cases, there is not a significant
difference in 〈ηeff − η〉/(cη) and φ̄. Similarly, in simulations of no-slip disklike particles with aspect
ratios in the range for a/b = 0.14−0.33, Meng and Higdon [24] observed a significant difference
in 〈ηeff〉 comparing results for finite solid fractions to the dilute limit only for solid fractions greater
than c ≈ 0.25. On the whole, 〈ηeff − η〉/(cη), φ̄, and 〈Fs〉 Depend primarily on λ/a in the range
c > 0 and c = 0.05. The smallest difference in all our measured mean quantities and their corre-
sponding standard deviations occurs for λ ≈ λc. Here, λc � b corresponds to the minimum value of
λ for which an isolated particle aligns indefinitely in the flow.

Our simulations indicate that different dependencies of 〈ηeff − η〉/(cη), φ̄, and 〈Fs〉 on c hold
depending on whether λ is larger or smaller than λc. If λ < λc, the particles become more aligned
with the flow (in a time-average sense) as c increases; else, if λ > λc, the particles become less
aligned (middle panel), due to particle-particle interactions. For large λ, 〈ηeff − η〉/(cη) (left panel)

FIG. 11. Dependence of reduced viscosity (left panel), average particle orientation (middle panel), and
average tangential force (right panel) on slip length for c = 0.05 (symbols) and for an isolated particle in free
space (line). The aspect ratio is a/b = 10. Insets: standard deviation (SD) versus solid fraction.
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FIG. 12. Dependence of average particle orientation on ĉ = Nπa2/A for selected aspect ratios and λ/b =
10. Black symbols: no full tumbling observed; red symbols: full tumbling of one or more particles observed.
Insets: standard deviation (SD) versus solid fraction. Dashed lines correspond to the values for an isolated
particle in free space [15].

tends to a constant whose value depends on c. When λ < λc, 〈ηeff − η〉/(cη) is larger for c = 0.05
than for the isolated particle. Increasing λ for λ < λc and fixed c instead decreases 〈ηeff − η〉/(cη).
As in the case of no-slip particles, slip particles become more aligned with the flow in a time-average
sense as the concentration increases due to neighboring particles limiting the rotation of each
particle, Fig. 11(b). Regarding 〈Fs〉 (right panel), the dependence of this quantity on λ is qualitatively
similar to that of 〈ηeff − η〉/(cη), except that when λ < λc the change between c = 0.05 and an
isolated particle is larger when considering the tangential force as opposed to the reduced viscosity.

3. Effect of aspect ratio on slip particles

Figure 12 shows φ̄ as a function of ĉ = Nπa2/A for a/b = 10, 20, and 50 and fixed λ/b = 10.
The parameter ĉ = Nπa2/A is chosen as a measure of crowdedness, as this quantity represents the
solid concentration corresponding to a cylinder of radius equal to the long semiaxis of the particle.
We expect strong interactions for ĉ sufficiently close to one, independently of the thickness.

Figure 12 shows that as ĉ → 0, the simulated value of the orientation angle φ̄ converges to
the dilute-limit predictions [15]. In this limit, slip particles with λ > λc attain a fixed orientation
angle φc that decreases as a/b increases [6,8]. Figure 12 shows that as ĉ increases, φ̄ decreases and
the standard deviation of φ increases. Eventually, above a threshold solid fraction, the fluctuations
induced by particle-particle interaction cause some of the particles to undergo full tumbling cycles.

In Fig. 12, simulations where at least one particle tumbled during the simulation are colored in
red. When tumbling occurs, φ̄ is comparatively small and the standard deviation of φ is relatively
large, confirming the predictions of Ref. [8]. For an isolated particle, φ̄ decreases for increasing
aspect ratios [8] and the range of values of φ for which the particle remains in a stable “hydrody-
namic well” decreases [8]. The particle orientation is, therefore, more sensitive to disturbances as
the aspect ratio is increased. Consequently, tumbling is expected to occur at a smaller value of ĉ the
higher the aspect ratio of the particles. This behavior is confirmed by our simulations: for a/b = 50,
the particles tumble at a lower value of ĉ than for a/b = 20 or a/b = 10.

In our simulations, we find that 〈ηeff − η〉/(cη) always increases with ĉ (Fig. 13). The rate of
increase in 〈ηeff − η〉/(cη) with ĉ is larger if tumbling occurs. This can be seen in the simulations
with a/b = 50, where the largest increase in 〈ηeff − η〉/(cη) is observed for values of ĉ above ap-
proximately 0.4. If no tumbling occurs, the rate of increase in 〈ηeff − η〉/(cη) with ĉ is comparatively
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FIG. 13. Dependence of reduced viscosity on ĉ = Nπa2/A for selected aspect ratios and λ/b = 10. Black
symbols: no full tumbling observed; red symbols: full tumbling of one or more particles observed. Insets:
standard deviation (SD) versus solid fraction.

small. In this case, ηeff is well approximated by the linear dependence ηeff/η ≈ 1 + αc expected
in the dilute limit, as confirmed in Fig. 14. In a recent molecular dynamics simulation study of
suspensions of disklike molecules, it was observed that the dilute approximation for 〈ηeff〉 held
for a larger value of ĉ when the intermolecular solid-liquid interaction potential was such that the
molecules presented slip rather than no slip [7]. Our results suggest that this phenomenon is due to
the suppression of the tumbling of the particles produced by the hydrodynamic slip.

Examining 〈Fs〉, we observe a small decrease in 〈Fs〉 with ĉ, Fig. 15. When tumbling occurs,
the change of 〈Fs〉 and its corresponding SD with ĉ, is not as significant as the change in 〈ηeff −
η〉/(cη) with ĉ. This result suggests that, in the range of concentrations we considered, the particles
experience a similar average tangential force regardless of concentration.

C. Maximum viscosity reduction

Figure 14 shows 〈ηeff/η〉 versus c for λ = 0 and λ/b = 10, and for a/b = 1, 10, 20, and 50. As
predicted by the theory for a dilute suspension of slip particles [15], the simulations show that
〈ηeff/η〉 < 1 for a/b � 10 and λ/b = 10 for all computed values of c. According to the dilute
limit, indicated by the dashed lines in the plot, the larger the value of a/b, the greater the decrease
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FIG. 14. Effective viscosity versus solid fraction for selected aspect ratios, comparing slip (λ/b = 10)
and no-slip particles. Dashed lines correspond to (i) Eq. (9) for a/b = 1 and (ii) the dilute approximation
(〈ηeff/η〉 = 1 + αc) for all other aspect ratios. Simulations with one or more particles completing full tumbling
are indicated by symbols filled in red.

in 〈ηeff/η〉 for a fixed c. The simulations, however, show that this trend no longer holds in the
semidilute regime. For slip particles, the larger a/b, the smaller the value of c for which the particles
tumble. As seen for a/b = 50 and a/b = 20, 〈ηeff/η〉 decreases less rapidly with c when tumbling
occurs, causing 〈ηeff/η〉 to level off at larger solid fractions. Therefore, our simulations suggest that
for particles of a fixed λ/b, the greatest reduction in 〈ηeff/η〉 is achieved for finite values of a/b and
c. For example, in our simulations, the largest reduction is achieved for a/b = 10 and c = 0.15.

D. Regular arrays

Our simulations show a strong correlation between the orientation of the particles and 〈ηeff〉.
In a recent publication [15], we have shown theoretically and numerically that, in the dilute

FIG. 15. Dependence of average tangential force on ĉ = Nπa2/A for selected aspect ratios and λ/b = 10.
Black symbols: no full tumbling observed; red symbols: full tumbling of one or more particles observed. Insets:
standard deviation (SD) versus solid fraction.
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(a)

(b)

(c)

(d)

FIG. 16. Effective viscosity for regular periodic arrays of aligned slip particles for (a) φ = 0, rectangular
array; (b) φ = 0, staggered array; (c) φ = π/4, rectangular array; and (d) φ = π/4, staggered array. The solid
fraction is c = 0.1. The particle aspect ratio and slip length are the same as in Fig. 4.

concentration limit, 〈ηeff〉 depends strongly on orientation. Specifically, the smallest 〈ηeff〉 occurs
when the particle’s major axis is oriented along the flow (φ = 0). The largest value of 〈ηeff〉 occurs
when the particle’s major axis is oriented in the extensional axis of the shear flow field (φ = π/4),
independently of λ. These results, along with the simulation results of the current paper, demonstrate
that the orientation and position of the suspended particles strongly affect 〈ηeff〉 for any value of c
and that the dilute theory gives a good indication of the orientations for which 〈ηeff〉 is minimal.
To illustrate this point, in Fig. 16, we compute ηeff for regular arrays in which (i) the particles are
oriented at φ = 0 in a rectangular (a) and staggered (b) array and (ii) the particles are oriented at
φ = π/4 in a rectangular (c) and staggered (d) array. These simulations give ηeff/η < 1 for φ = 0
and ηeff/η > 1 for φ = π/4, as in the dilute case. The rectangular array gives a smaller ηeff than
a staggered array. Therefore, both the positional and the orientational order of the suspension will
affect the value of ηeff.

VI. DISCUSSION AND CONCLUSION

Through boundary integral simulations and, where possible, mathematical analysis, we have
investigated the effect of Navier slip on the flow and rheology of an infinite Péclet number,
semidilute suspension of two-dimensional particles for aspect ratios a/b = 1, 10, 20, and 50. In
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particular, we have analyzed as a function of the solid fraction c the effect of the Navier slip length
λ on the suspensions’ effective viscosity 〈ηeff〉, average particle orientation angle φ̄, and average
tangential force 〈Fs〉 acting on each particle.

For the case a/b = 1, which corresponds to a cylindrical cross section, we showed analytically
and through boundary integral computations that hydrodynamic slip reduces the O(c) intrinsic
viscosity coefficient α at dilute concentration and the O(c2) viscosity coefficient β at semidilute
concentration. This effect is due to hydrodynamic slip reducing the tangential stress over the surface
of the cylinder and the hydrodynamic stress generated from pairwise interactions.

For larger aspect ratios, the orientational microstructure of the particles becomes important.
For a/b � 1, c � 1, and λ > λc, where λc ∼ b is a critical slip length [15], hydrodynamic slip
suppresses the tumbling of the particles, causing each particle to align at a small constant angle with
respect to the flow direction (for a/b � 1 the angle can be quantified as φc ≈ |ke|, where ke is a
function of both a/b and λ/b [15]). Therefore, for c � 1 and λ > λc, the time-averaged orientation
angle φ̄ = φc with zero standard deviation. The simulations show that as c increases, the effect of
particle-particle interaction is to cause the particles to fluctuate about their average orientation. As
c increases, the standard deviation of φ increases, while the mean value of φ decreases. Above a
threshold solid fraction, particle-induced fluctuations eventually become larger than the range of
value of φ for which the orientation is stable [15] and the particles can therefore tumble. We found
that this threshold solid fraction decreases as a/b increases. This dependence on a/b is due to the
fact that the range of values of φ for which an isolated particle is “attracted” to a stable orientation φc

decreases with a/b [8]. This result contrasts with simulations of no-slip particles, where the average
orientation angle becomes smaller as c increases (due to particle-particle interaction increasing the
average time for a particle to tumble [23–27]).

The behavior of 〈ηeff〉 versus c correlates with changes in orientational microstructure. For c � 1,
〈ηeff/η〉 decreases with c for λ > λc, resulting in 〈ηeff/η〉 < 1. This behavior results from the stable
orientation of the particle almost in the flow direction and from the reduced viscous friction at this
orientation. We developed a dilute-limit theory for 〈ηeff/η〉 and λ > λc. This theory provides a good
estimate for 〈ηeff/η〉 also in the semidilute range, as long as the particles do not tumble. When the
particles begin to tumble, the reduced viscosity 〈ηeff − η〉/(cη) is larger than the value predicted by
the dilute theory.

For slip particles, the emergence of tumbling directly affects the minimum value of 〈ηeff/η〉
achievable. For a fixed λ > λc, 〈ηeff/η〉 decreases as a/b increases for c � 1. However, at suffi-
ciently high solid fractions, this relationship no longer holds: a particle of a higher aspect ratio
will begin to tumble at a smaller solid fraction than a particle of a smaller aspect ratio. Therefore,
an optimal aspect ratio and solid fraction exist for which the reduction in 〈ηeff/η〉 is greatest.
For example, in our simulations, we find the largest reduction in 〈ηeff/η〉 occurred for λ/b = 10,
a/b = 10, and c = 0.15 (cf. Fig. 14). Because particle-particle interactions depend on the minimal
separation distance, we suspect that significant reductions in viscosity could be achieved if the
particles could be kept well separated, for instance, by exploiting electrostatic repulsion or by adding
molecular dispersants that do not alter the hydrodynamics behavior discussed here.

The most significant effect on 〈ηeff〉 is apparent when comparing slip and no-slip particles.
Surface slip reduces 〈ηeff/η〉 below the value obtained for λ = 0 for any value of c and a/b we
have simulated. For particles with sufficiently large a/b and λ/λc > 1, the particles reduce the
viscosity of the two-phase mixture below the viscosity of the suspending fluid. This result can
help explain some of the differences observed between suspensions of platelike nanomaterials at
small solid fractions and classical theories on the viscosity of suspensions of no-slip particles. For
example, experimental results for ηeff for graphene-oxide nanoparticles in a steady shear flow in
the limit of small solid fractions show a nonmonotonic increase in ηeff with solid fraction at high
shear rates [2]. These experiments suggest a threshold (small) solid fraction for which ηeff is locally
minimized. Our theory suggests that this threshold solid fraction could result from the breakdown of
the stable alignment of the particles when the solid fraction increases. A similar disturbance effect of
particle-particle interaction on orientation was also recently discussed for rigid no-slip rings, which
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can display a stable alignment [47]. In contrast to slip platelets, no-slip rings do not seem to display
a negative intrinsic viscosity [48].

Finally, we explored the effect of solid fraction, aspect ratio, and hydrodynamic slip on the
average tangential force 〈Fs〉 acting on each particle. We found that the dependence of 〈Fs〉 and
the standard deviation of Fs on c was not as strong as for 〈ηeff/η〉, suggesting the dilute-limit
value of 〈Fs〉 could be used to estimate, for example, the sliding force acting on each particle in
a sheared suspension at relatively high values of c. Such force is required, for example, to predict
the conditions for multilayer nanomaterials to separate into fewer-layer sheets, as considered by
Gravelle et al. [32] for an isolated graphene multilayer.

Our results, based on two-dimensional simulations, are expected to agree qualitatively with
the rheological behavior of three-dimensional platelike particles with hydrodynamic slip. The
single-particle theory for two-dimensional platelike particles has already been shown to give good
agreement to three-dimensional simulations in predicting the particle’s orientation, dynamics, and
effective viscosity for different slip lengths, aspect ratios, and Péclet numbers [6,7,15]. We expect
good agreement in terms of trends between two dimensions and three dimensions for 〈ηeff〉 and 〈Fs〉
in suspensions as well.

One important implication of our results is the effect of particle orientation on the viscosity
reduction. Our results suggest that the effect of slip on reducing the effective viscosity is most
apparent when the particles are aligned indefinitely in the flow direction. In a recent publication, it
has been found that in a Taylor-Couette flow, elongated particles can get trapped in the Taylor vortex
cores and align strongly with the local cylinder tangent [49]. Our result suggests that the resistance
of the flow of the fluid could also be minimized in such an event due to the alignment of the
particles. Considering in the simulation elements of nonideality that are typically present in realistic
nanoparticle systems, such as the addition of dispersants or the modification of the particle surface
charge to increase the separation of the particles, could also be explored to minimize the effect of
particle-particle interaction at larger solid fractions. Minimizing the effect of particle interaction
would thus increase the critical solid fraction threshold for which the particles will tumble.
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