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Introduction

1.1 Background

Cancer consist of cells of the body which proliferate in an uncontrolled fashion. Cancer
cells may develop the ability to leave their tissue of origin and survive in other tissue
types, causing metastases [Albe 02]. The diagnosis and classification of cancer is a neces-
sary step towards the treatment of the disease. Conventional methods used in the clinics
are based on clinical, pathological and molecular parameters [Thie 06, Char 05]. The
clinical parameters include the age of the patient, and the stage of the tumor, which
describes the extension of the tumor locally or at a distance from the primary site (e.g.
in case of metastases). Pathological parameters include the size of the tumor, the lymph
node status and the grading, which reports the morphology and proliferative capacity of
the primary tumor. Molecular markers are determined mostly by immunohistochemistry
methods, examples for breast cancer are the presence of estrogen and progesterone recep-
tors. Unfortunately, the conventional methods are not fully capable of precisely defining
prognosis and predicting response to therapy [Thie 06,Char 05]. Moreover, human exper-
tise is required, in the person of well-trained and experienced clinicians and pathologists.
This is not a simple demand, also considering the increasing number of tests that doctors
are requested to perform. An automated system could support the clinics with e.g. a
second opinion, or tools for training pathologists.

The advent of high throughput biomolecular measurements, such as gene expression
arrays, allows a close look at the molecular mechanisms of diseases. A gene expres-
sion array measures the expression of thousands of genes simultaneously (Appendix A).
It provides detailed genomic information that may help to detect the heterogeneity in
an otherwise homogeneous patient group. That is, often patients share similar clinical
parameters, but still exhibit diverse survival or treatment responses. Gene expression
datasets have raised a new range of possibilities and questions such as: Can array tech-
nology assist pathologists in tumor stratification, i.e. detecting homogeneous subtypes
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Figure 1.1: Schema of major objectives, data types and people involved in cancer research
and practice.

within the same disease? Can tumors that metastasize be distinguished from the ones
that do not? Can the prediction of prognosis and response to therapy be improved?

Figure 1.1 depicts the data, people, and goals engaged in cancer research and prac-
tice nowadays. Generally speaking there are two main goals. First, the construction of
methodologies that can predict outcome and response to therapy. This can be supported
by reaching a stratification of the cancer types in seemingly homogeneous groups that
are caused by the same mechanism and share the same clinical behavior. This is not
only a research topic in itself but also a clinically relevant demand. A second major goal
of cancer research is to improve our understanding on how cancer evolves. This would
advance the development of better drugs, targeting the discovered biological mechanism,
and improving patient health care. The new high-throughput datasets have opened new
possibilities for addressing both of these goals. A new professional figure, the bioinfor-
matician, is needed to develop complex data analysis techniques. The bioinformatician
assists both the biologist in studying cancer mechanisms, and the clinician and pathol-
ogist in predicting outcome and response to therapy. Note that the two goals are not
disconnected, as the progress towards one would help the other. For example, a better
understanding of cancer mechanisms may lead to a refined stratification of samples that
share the same clinical outcome. In the same way, the people involved form a multidis-
ciplinary team that shares a wide range of expertise.

In the past years, lots of research has been performed concerning data analysis tools.
First studies with gene expression data have used clustering algorithms to group patients
into categories that shared common biological features [Pero 99, Ben 99]. This is an
unsupervised way of analyzing the data, since no prior knowledge about the patients
is used. No class labels assigning the patients to homogeneous group are exploited,
but the classes are deduced from the results of the clustering algorithm [Spee 03, Jian].
Another way of approaching the problem of outcome or response to therapy prediction is
to employ a supervised classification procedure. This implies to learn from examples (the
given array data and the class labels) the patterns of the classes of interest defined by the
labels assigned to the patients. A statistical model, called a classifier, is built (trained)
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to discriminate the classes of interest. This model should be able to generalize to data
unseen during the training process, i.e. to new patients. In this way a new patient will
be classified into one of the categories of interest, e.g. aggressive/non-aggressive cancer,
or a tumor that will/will not respond to a treatment X.

Learning the classification model implies estimating its parameters from the data.
A major difficulty encountered in the data analysis of expression arrays is the so called
small sample size problem [Duin 95,Jain 97, Raud 91, Brag 07]. This arises from the heavy
imbalance between the number of patients and the vast number of genes. Consequently,
the estimated model may over-fit the data resulting in loss of generalization power.

To cope with the small sample size problem a reduction in the number of genes
(dimensionality) is beneficial. This can be achieved in two main ways. One solution
is based on feature extraction, which identifies a smaller number of dimensions (meta-
genes) than the original number of genes on the array, by combining information from all
genes. Examples of such methods are: Principal Component Analysis [Bicc 03, Yeun 01],
that projects the genes in the directions of maximal variance; or Independent Compo-
nent Analysis [Lieb 02, Lee 03, Capo 06], which extends PCA to non-Gaussian data.
Still all genes are required to classify a new samples. Another procedure to reduce the
number of genes involves the selection of a small, yet informative subset. The gene
subset is optimized according to a criterion, e.g. searching criteria such as the t-test,
or the performance of the classifier itself [Tsam 03, Koha 97]. Due to the large num-
ber of genes, an exhaustive search strategy is not feasible. Several suboptimal searches
have been proposed. Backward selection starts from a complete set of genes removing
redundant or uninformative features according to a selection criterion, e.g. the classi-
fication performance of a Support Vector Machine (SVM) [Fure 00, West 00, Rako 03].
The forward feature selection starts with one gene and iteratively searches the informa-
tive genes amongst all available ones. A widely used search approach proposes individ-
ual gene selection based on univariate ranking according to a criterion [Golu 99, Ben
00, Veer 02, Vijv 02, Khan 01], or based on Markov blanket filtering [Xing 01]. Other
search strategies use genetic algorithms [Li 01, Kiku 03], random search [Xion 01b], or
pair-wise comparisons [Bo 02, Gema 04, Xu 05].

The goal of a feature selection method is to find an informative representation, which
would increase the classification performance. Several studies have proposed signatures,
i.e. small gene lists, for different purposes: to predict prognosis [Veer 02, Vijv 02,
Chan 05a, Rama 03, Wang 05b, Mill 05, Cart 06], to improve cancer stratification in
classes which share the same phenotype, i.e. the observable characteristic of the can-
cer [Pero 00, Sorl 01, Sorl 03], and, more recently, pilot studies on response to ther-
apy [Ayer 04,Chan 05b,Hann 05,Ma 04]. However, a validation on larger patient cohorts
is still needed to test the generalization power of these signatures, in such a way that
they can be trustfully adopted in the clinics.

Understanding the mechanism of cancer would allow to learn the molecular causes of
the disease. Existing subtypes may be refined, or new ones may be determined in order to
group the patients in homogeneous categories that share the same mechanisms of cancer
development. Unfortunately, the gene signatures defined with the statistical analysis of
microarrays cannot always be directly related to the underlying biology of the cancer. In
order to achieve more insight into the cancer biology, expression arrays are complemented
with other types of information. For example, we can measure nowadays DNA copy num-
ber variations [Pink 05], single nucleotide polymorphisms (SNPs) [Shas 03], transcription
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factors binding sites [Jeff 07], and protein levels [Buck 04]. Other knowledge about the
genes can be included as well, e.g. in the form of accurate annotations of genes’ char-
acteristics and functions [Stek 03]. A recent drive towards integration of these different
sources of information can be observed [Edgr 06, Alli 06, Buss 07]. The aim is a better
understanding of the mechanisms behind cancer development, by combining the different
aspects of the same process. This would allow a better diagnosis and patient health care,
and will stimulate the creation of more effective and patient tailored therapies.

1.2 Scope

Part I: dependencies in gene expression datasets

The first part of the thesis focuses on Goal A in Figure 1.1, especially with classifier
building for outcome prediction. In order to reduce the dimensionality of the original
datasets, we have concentrated on gene selection procedures. Identifying a limited num-
ber of genes compared with the number of genes on the array has an additional benefit:
it provides the biologists with a tractable number of variables to be evaluated in order
to gain understanding of the cancer mechanisms. Moreover, a small number of genes,
e.g. in the order of few tens, would allow cheaper tests to be used routinely in the clinic.
Many studies have proposed gene signatures to obtain more accurate classification. How-
ever, the overlap between these signatures is very limited. For example, to predict the
ability of a primary breast tumor to metastasize two signatures were proposed: a 70 gene
signature from the Netherlands Cancer Institute [Veer 02], and a 76 gene signature from
the Rotterdam Medical Center [Wang 05b]. Although the goal is the same, i.e. outcome
prediction, the overlap between the two gene lists is only three genes. This motivated us
to investigate several ways to increase the robustness of a signature, not only in terms of
classification performances, but especially concerning the stability of the genes selected
independent of the sample cohort.

The relevance of a gene can be evaluated either individually (univariate approaches),
or in a multivariate manner. Univariate approaches are simple and fast, therefore ap-
pealing and popular [Golu 99, Ben 00, Tibs 02, Veer 02, Khan 01, Xing 01]. However,
they assume that the genes are independent. Multivariate approaches, on the contrary,
evaluate the relevance of the genes considering how they function as a group, taking into
account their dependencies [Xion 01b, Bo 02, Guyo 02, Bhat 03]. Genes are known to
interact with each other, e.g. Gene a produces a transcription factor that binds to Gene
b, activating its transcription. Therefore, a model that allows for dependencies, may cap-
ture more complex interactions between genes. Several limitations, however, restrict the
use of multivariate approaches. Firstly, due to the higher complexity, they are more prone
to over-training, especially in small sample size problems. Secondly, they may be com-
putationally expensive, which prevents them from being applied to large feature spaces.
In this thesis, we have investigated new ways to perform outcome prediction and have
compared state of the art gene selection and classification procedures in a rigorous frame-
work. The need for this stems from the fact that the first wave of research concerning the
classification of gene expression datasets inappropriately adopted machine learning pro-
cedures, resulting in suboptimal classifiers [Cho 03, Chow 01, Khan 01, Xing 01, Jaeg 03,
Ding 03, Bhat 03, Guyo 02, Silv 05, Bo 02,Ben 00]. Later research pointed out serious
shortcomings in both the design and the evaluation of gene expression classifiers due to
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procedural errors and inadequate data validation [Ambr 02, Wess 05]. Our major con-
tribution is the first consistent evaluation study on univariate and multivariate selection
techniques, in order to identify the strong and weak characteristics of both approaches.

Part II: dependencies between DN A copy number and expression
data

The second part of the thesis concerns Goal B in Figure 1.1, i.e. the use of high-
throughput data to learn about cancer biology. Supervised classification based on gene
expression data provides the possibility to construct generalizing classifiers using gene
subsets. However, in order to gain biological insight into the mechanisms of cancer,
the statistical analysis of expression arrays alone is not sufficient. This motivated us
to integrate different sources of information, in particular copy number alteration data,
expression data, and the genomic location of these measurements.

We have focused on DNA copy number since the genomic alterations are important
events in cancer development [Leng 98]. A tumor suppressor gene can be disabled by its
physical loss, or similarly an oncogene may be over-expressed via the amplification of the
region where it is located. The identification of chromosomal aberrations is, therefore,
a powerful instrument to study cancer [Bert 03,Pink 05]. Especially when coupled with
the gene expression data, it may guide the identification of key genes, since, for example,
the likelihood of a gene being involved in cancer is larger if it is both amplified and
over-expressed. Our driving questions has been whether there are genomic aberrations
that define the classes of interest, and what the influence of these aberrations is on gene
expression.

The current approaches combining copy number and gene expression data can be
organized in two main groups. The first group of methods employs copy number data to
detect chromosomal aberrations, and then uses expression measurements to identify the
genes that are correlated with the corresponding aberrated DN A-probes [Adle 06,Chin 06,
Hyma 02, Frid 06,Poll 02]. The second group utilizes the expression data to evaluate the
genetic and epigenetic effects (expression alterations due to DNA modification or other
effects such as DNA methylation). These findings are then validated with copy number
information [Reya 05, Stra 06, Furg 05].

Our work can be placed in the first group of approaches, since we start from the copy
number data, and investigate the spatial local dependency between DNA-probes. We
have built a systematic search across the complete genome to identify the copy number
aberrations specific to the problem under study, i.e. cancer stratification and clinical
outcome. More precisely, we exploited the class labels in the first step to identify spatial
regions of DNA copy number alteration that are correlated with the class outcome. Then,
we determined which genes were present in these areas.

So far, only the spatial local dependencies between the DNA-probes and the expres-
sion of genes have been investigated. The final contribution of our research is the study
of both the local and the genome-wide spatial relationships between DNA alteration and
changes in gene activities. We have aimed at pinpointing genome-wide dependencies via
the identification of the correlation between a chromosomal aberration in a region and
the expression on other locations on the genome.
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Figure 1.2: Schema of copy number and expression measurements for genes from A to F
in two samples of different classes.

General theme

The underlying theme throughout this thesis, is the investigation of dependencies in gene
expression and/or copy number measurements. Cancer is a complex disease. Therefore,
one expects that multiple genes are affected simultaneously when a cell becomes tumor-
ous. This in turn implies that the expression or the copy number of these genes will
change in concordance with each other, or, in other words, that they are dependent on
each other. Figure 1.2 schematizes the expression and the copy number of two samples
from different classes, namely, Class a and b depicted in black and gray respectively.
The hypothetical state of six genes, from A to F, is illustrated. In the upper part of
Figure 1.2 the copy number for the 6 genes are depicted as filled rectangles along a line
representing the genome location.. For example, Gene A shows a three copies in Class
b, while there is only a single copy in Class a. The expression of the genes, in the form
of mRNA transcripts, is depicted with curly segments in the lower part of Figure 1.2.

In Part I of this thesis, we focus on gene expression measurements only. The lower
part of Figure 1.2 shows for example that only Gene F is non informative, since the
same amount of mRNA transcript is produced in the samples of both classes. On the
contrary, in Class b Genes A, B and C are over-expressed (i.e. there is three times more
mRNA in Class b than in Class a), and Genes D and E are down-regulated (no mRNA
is produced). One may hypothesize that the genes A,B,C or D,E are dependent. We
introduce several ways to capture these possible dependencies. More specifically, since a
multivariate gene selection strategy takes into account the dependencies between genes,
we strive to apply multivariate techniques to analyze expression data. We investigate the
role of univariate and multivariate gene selection algorithms, and extensively compared
the two approaches.

Part II of this thesis studies the dependency between copy number alterations, ex-
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emplified e.g. by Genes A and B in the upper part of Figure 1.2, and the dependencies
with their respective expression levels. Examples of dependency between the two data
types are the amplification in Genes A and B, which produces their over-expression, or
the deletion of Gene D, that determines the loss of the corresponding mRNA transcript.
Note that other mechanisms (epigenetic effects) may produce cases such as Genes C and
E, where the expression is not dependent on the copy number of the corresponding gene.
We proposed a new statistical method to identify local spatial dependencies between
copy number and gene expression measurements, and further searched for genome-wide
dependencies.

1.3 Thesis outline

The thesis is divided into two parts. Part I deals with gene (or feature) selection tech-
niques, and classification mainly applied to expression datasets. Part II of the thesis
focuses on the integration of copy number and expression data, with the aim of studying
correlations between copy number aberration and gene expression changes.

Part I: Chapter 2 addresses the problem of obtaining a robust gene signature. We have
considered an existing method, the univariate gene selection, and have explored ways to
improve it. In univariate gene selection, first, the genes are ranked individually according
to a criterion that should asses their relevance in discriminating between the two classes
of interest. Then the top k genes are selected to train the low complex Nearest Mean
Classifier (NMC). The parameter k plays an important role and needs to be optimized.
We have studied several ways to perform this optimization aiming both at an improved
classification performance and at a small, yet robust, number of selected genes.

Chapter 3 presents the Random Subspace Method (RSM) that we have developed to
perform feature selection in a multivariate manner. While univariate selection assesses
the relevance of a feature on an individual basis, multivariate feature selection aims
at identifying a number of features that, taken together, capture relevant information.
The benefits of the RSM algorithm are illustrated on an artificial dataset, which provides
ground truth information, and on a real dataset, that consists of autofluorescence spectra
measured in the oral cavity of healthy and diseased patients. This work was published
in Pattern Recognition Letters [Lai 06b].

In Chapter 4, we have performed an extensive comparison of several gene selection
techniques, both univariate and multivariate. While many studies claimed good perfor-
mance, the procedural errors made their results inconclusive. This motivated us to study
in an unbiased protocol several state of the art techniques in order to understand the
benefits and limitations of those techniques. This work was published in BMC' Bioinfor-
matics [Lai 06a].

Part II: Chapter 5, concentrates on the copy number data. We have developed an
algorithm (SIRAC) that exploits spatial dependencies in order to identify regions of
chromosomal aberrations, which are correlated with the classes of interest. In particular,
the focus has been on the characterization of copy number aberrations in the cancer
subtypes identified by Sorlie and Perou [Pero 00,Sorl 01,Sorl 03]. This work was published
in BMC Bioinformatics [Lai 07].

Chapter 6 extensively describes the implications of the genome copy number alter-
ations in breast cancer. Special attention is devoted to 68 samples selected from the NKI
cohort [Vijv 02], for which both copy number and expression data were available. The
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regions of aberrations identified with STRAC have been further investigated by analyzing
the expression of the genes on the same genomic location. The objective has been to
identify the genes that were affected by the copy number alterations and have major
functional involvement in breast cancer development. This work will be submitted to
Cancer Research [Horl ed].

In Chapter 7 our interest has been on the detection of causal spatial dependencies and
interactions between copy number and expression alterations across the whole genome.
An unsupervised extension of the SIRAC algorithm has been developed to highlight
the patterns of correlation between the two data types. The new algorithm (IGDam,
Identification of Genome-wide Dependencies between aCGH and mRNA data) extends
the search for spatial dependencies from the one dimensional space of the copy number
data to the two dimensions of the combined copy number and expression data.

A final discussion of the research is summarized in Chapter 8.
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A study on univariate gene selection for
classification of gene expression datasets:
possible improvements on a state of the art
method

This chapter addresses the problem of obtaining a robust gene signature. We have consid-
ered an existing method, the univariate gene selection, and have explored ways to improve
it. In univariate gene selection, first, the genes are ranked individually according to a
criterion that should asses their relevance in discriminating between the two classes of
interest. Then the top k genes are selected to train the low complex Nearest Mean Clas-
sifier (NMC). The parameter k plays an important role and needs to be optimized. We
have studied several ways to perform this optimization aiming both at an improved clas-
sification performance and at a small, yet robust, number of selected genes.
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2.1 Introduction

Gene expression arrays enable the measurement of the activity levels of thousands of
genes on a single microscope slide. An important application of this technology is the
prediction of disease state of a patient based on a signature of the gene activities. Such a
diagnostic signature is typically derived from a dataset consisting of the gene expression
measurements of a series of patients. Since typically hundreds of patients and thousands
of gene activities are measured, analysis of these data sets is a challenging manifestation
of the small sample size problem in pattern recognition. The primary objective is to build
a classifier which assigns a new sample as accurately as possible into one of the diagnostic
categories, for example tumor /normal tissue, or benign/malignant tumor. A secondary
objective is to find a small number of genes, i.e. a signature, which the diagnostic
classifier employs as input, and which consequently carries the information relevant for
the diagnostic task. This process of identifying the genes relevant to the classification
task is known as feature selection.

Due to the high dimensionality of the feature space suboptimal strategies are needed
to search for the most informative genes to add to an informative list. A widely used
approach carries out informative gene selection by 1) performing a univariate ranking
according to a single gene-based criterion [Golu 99, Ben 00, Veer 02, Vijv 02, Khan 01]
and then adding the genes in the order of informativeness, or 2) ranking the genes based
on Markov blanket filtering [Xing 01], and then adding the pairs in the ranked order.
Xiong et al. [Xion 01b] and Bo et al. [Bo 02] suggested a pair-based method that evaluates
the relevance of pairs of genes, and sequentially add pairs in the order of informativeness.
Other approaches that aim at identifying informative genes are based on random searches
of the gene population, also referred to as the Monte Carlo method [Xion 01b], and genetic
algorithms [Li 01, Kiku 03].

We decided to focus on a univariate gene selection procedure, due to its popularity (
[Golu 99,Ben 00, Veer 02, Vijv 02, Khan 01, Xing 01]) and efficiency. We refer to this
method as average individual ranking, and describe our implementation in Section 2.2.1.
We propose different possible extensions of the average individual ranking, such as gene
or classifier combining (also in Section 2.2.1). In order to understand the behavior of the
methods, we have designed an artificial dataset which provides ground truth information.
The artificial dataset is described in detail in Section 2.2.2. Our experiments suggest that
combining genes or classifiers strategies that we investigated do not yield an improvement
over the simple average individual ranking method (Section 2.3.3). We hypothesize that
the weak element is the individual gene selection procedure and focus on this question
(Section 2.3.4). The further experiments reveal the inherent weakness of this selection
strategy.

2.2 Methods

2.2.1 Gene selection and classification schemes

When designing a classification system, two steps need to be taken. The first one is
a classifier training, and the second one is the estimation of a classifier performance.
Due to the small number of samples, the cross-validation procedure is the preferred
approach to estimate the classification error [Ambr 02, Koha 95]. In order to have an
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Figure 2.1: The inner loop of a double loop cross validation strategy in case of gene
ranking according to a criterion.

unbiased error estimate the two steps should be performed independently. Therefore, we
employ a double loop of the cross-validation procedure [Wess 05]. In the inner loop the
gene selection is performed, and the classifier is trained, while in the external loop the
performance of the classifier is estimated.

Let us focus on the inner cross-validation loop, which is used to perform the gene
selection. Figure 2.1 describes one fold of a two-fold cross-validation strategy. The data
D¢ is split into two parts D{ and Dg, used respectively for training and testing purposes.
Based on a criterion, the informativeness of each gene in the training set D{ is evaluated
individually. The genes are ranked accordingly, from the most to the least informative,
we refer to the ordered list as R. A classifier is then trained, starting with the best gene,
and is tested on the same genes in the independent test set D§. The procedure repeatedly
expands this set, with five genes at a time in the order established by the ranking R, until
kmae genes are selected. The step of five genes at a time is choose only for computational
reasons, instead of a smaller one gene step. Each time the features are added, the error
is computed on the test set. As a result, we can plot the error of the classifier as a
function of the number of genes used for classification purposes (error curve). The curve
in the right part of Figure 2.1 illustrates the expected result. Typically this curve will
show that a small number of genes gives large error rates, due to insufficient information.
The (initial) addition of relevant genes lowers the error, reaching a minimum. Further
addition of genes, however, degrades the classifier performance. Minimizing the error
provides a selection of relevant genes (k°P'(f) in Figure 2.1), i.e. a signature. In the
second fold, the same procedure will be repeated using D$ as the training set and D{ as
the test set.

The outcome of the inner loop is F' sets of genes G¢’s, where F' is the number of the
folds in the inner cross validation procedure, and Gy denotes a set of genes selected in
the ft" fold (Gy = {g:|i € R(f),1 < i < k°P'(f)}). Note that the gene sets can have
different sizes and may be composed of different genes. The average individual ranking
procedure estimates the size of the optimum signature by evaluating the average of the
error curves of all folds. The gene size k* that minimizes the average error, is considered
to define the optimum size. Therefore, the first k* genes of the ranked list computed
based on the complete dataset D* will be considered as the final signature.
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(2) Combining gene sets.The F genesets outcome of the inner CV loop
are combined into the set G, which is used to train the classifier.
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(b) Combining classifiers.A classifier is trained for each fold of the inner
CV loop and the results are combined according to majority vote.

Figure 2.2: Double loop cross validation schema. The two proposed combining strategies
are illustrate in a 2 fold cross validation case.

The average individual ranking procedure is a frequently used approach to combine
the results obtained during the inner cross-validation loop. This approach uses cross-
validation only to estimate the optimum size of the gene set. Since it is desirable to
extract as much information as possible from the data, one could exploit the results of
each fold, by combining either the information of each gene set (combining gene sets), or
the classifiers trained in each fold (combining classifiers). The aim is to obtain in this
way a more reliable, robust, and stable gene set and, consequently, a better classification
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result. Figure 2.2 presents a schema of the two implemented combining strategies.

Figure 2.2 (a) shows our proposal to combine gene sets. The inner loop provides
F' gene sets Gy of variable sizes and genes, with F' = 2. Our hypothesis is that the
informative genes will be often present in the different folds, while the uninformative
ones have low probability of being selected multiple times. In order to count the number
of times that a gene g is selected, we introduce the following function c:

F

c(g) =Y I(g € Gy) (2.1)

f=1

where 7 is an indicator function with value 1 if the argument is true and 0 otherwise.
Three alternative signatures G* can be built with:

G, ={gilc(gi) = n}iz1.n (2.2)
where :

n =1, i.e. a gene is present in at least 1 fold,
n= %F , i.e. a gene must be present in at least half of the F' cross-validation folds,

n = F, ie. a gene must be selected in all F' folds.

The set G7 contains the genes that are selected at least once, i.e. all the genes present
in the F sets. The sets G ;, and G contain the genes that were selected at least in half

or in all the F' gene sets, 2respectively. It is to be expected that the set G} will contain
the smallest number of genes of all three gene sets. Our hypothesis is that these genes
are also the more relevant ones. Therefore, by combining genes, the inner loop of the
cross-validation could provide valuable information. The gene set G'1 . will increase with

respect to G, and the relevance of genes decreases. The set G} will have the largest
size. A classifier, C%(G}) in Figure 2.2 (a), will be re-trained on D* and the classifier
will be validated on the independent set D°. The procedure will be repeated using D?
as training set and D® as validation one. By averaging the classification errors of the
different folds, we obtain an estimate of the classifier performance in the three cases, and
therefore, we can evaluate the gene selection approach. Ultimately, the best selection
procedure will be run on all available set D and the trained classifier will be the classifier
proposed to be used in the clinics for the classification of new patients.

A second approach is to combine classifiers, instead of gene sets. Due to sampling
effects, the performance of a single classifier can be very poor. Our aim is to compensate
for this effect by combining all the F' classifiers Cpa (k°Pt(f)). Figure 2.2 (b) illustrates
this strategy, again in the two fold cross-validation case. For each fold of the inner
cross-validation procedure, a classifier is trained using the best selected gene set of that
fold, i.e. G¢. The F' trained classifiers are applied on the independent test set Db. The
classification is based on majority vote, and the classification error is computed. Also
in this case, the procedure will be repeated using D® as the training set and D® as the
test one. By averaging the two errors, we obtain the classification error estimate of the
combining classifier approach.
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2.2.2 Artificial dataset

In order to investigate the challenges posed by typical gene expression data, we generate
a comparable artificial problem. Our goal is not to simulate the real data set, as proposed
by [Hube 03, Chil 02, Newt 01], but to have a controlled environment with roughly the
same complexity, without having to deal with other sources of variation. Simple models
proposed in the literature [Pudi 94, Jain 97, Trun 79] are based on normally distributed
classes, but don’t have comparable complexity with the gene expression datasets, since
the feature size considered is not higher than 20. Therefore, a model with a larger
complexity is needed. To study the effect of the small number of training samples on the
univariate feature filtering procedure, we generate a dataset for which feature filtering
(e.g. ranking) would be able to retrieve the correct feature sets, giving enough data.
The artificial dataset can be summarized with a matrix M x N with M samples and
N features. Each feature vector is sampled from the following two-class conditional
densities:

p(X|w1) ~ N(u(i), 1) p(Xwz) «~ N(=p(i), 1) (2.3)

where p(7), is a function of the feature indicator 7 according to the following:

(2.4)

The most informative features are the ones with the smallest index value i. The dis-
tance between the means of both normal distributions, i.e. the class separation, linearly
decreases from 2u( for the first feature towards zero at the I-th feature. Therefore, the
informativeness of a feature is defined by its index value ¢. All features with an index ¢
larger than I are not informative, since the two normal distributions overlap completely.
Note that each feature vector is generated independently, therefore the univariate ranking
is a proper evaluation criterion (provided that there are enough training samples).

We are interested in a reliable gene selection procedure to reach a good classification
performance. In order to evaluate the proposed methodologies, we would like to estimate
the relevance of a selected gene set. Since we know that the lower the feature index i,
the more informative gene it represents, we assign a score to each gene accordingly. The
score function s4, of the generic gene g;, is defined as follows:

1-14), if1<i<I;
Sq _ {50( ])7 1 ? - (25)

0, if I <i<N.

The value sy denotes the highest score which can be assigned. Each gene receives
a score proportional to its informativeness, given by the position ¢ in the original gene
set. The higher the score, the more relevant the gene. A gene set G* selected by one

of the described methodologies will have a score S = Ef,jii&g Note that, even if the
uninformative genes have score 0, their presence in the gene set will be penalized by the
division for the total length k* of the gene set. A comparison of the gene set score S of
different methods will allow an evaluation of the gene retrieval power of the approaches.
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2.3 Experimental results

Section 2.3.1 describes the experimental set-up, and Section 2.3.2 presents the real
datasets and the parameter settings of the artificial dataset. In Section 2.3.3, the ex-
perimental results for both combining strategies are presented. Finally, further work on
individual gene ranking is discussed in Section 2.3.4.

2.3.1 Experimental set up

As described in Figure 2.1, the first step in the training procedure is to estimate the
informativeness of the genes individually. Several criteria may serve this purpose, such
as Pearson correlation, Fisher criterion, or signal-to-noise ratio (SNR). Since for each
feature both classes are normally distributed, we chose the SNR, because it captures the
difference between two normal distributions. Besides, the SNR is simple to compute and
popular [Golu 99, Veer 02, Khan 01]. The SNR is defined as follows:

[m1 — my|
Vs s3]
where m; and mq are the estimated means of the two classes and s; and sy are the
estimates of the respective standard deviations. The higher the SNR the more informative
the corresponding gene.

In the literature several signatures had appeared, proposing a limited number of genes
to predict prognosis, e.g. the 70 and 76 gene signatures [Veer 02, Wang 05b]. The common
opinion was that a small number of genes was not only sufficient to discriminate the
classes of interest, but also beneficial to obtain an interpretable set of gene, and desirable
to overcome the limitations of the small sample size. In line with this perspective, we
fixed the maximum gene set size k,q,t0 100 in the inner loop of the cross validation.

The same classifier is used in each step of the methodologies described in Section 2.2.1.
however, several types of classifiers are tested such as the nearest mean classifier (NMC),
the Fisher Linear Discriminant (FLD), and the 5 Nearest Neighbour classifier (5-NN). For
our artificial dataset, the nearest mean classifier is an optimal Bayes classifier, since the
dataset is generated from independent features which have normal-based class conditional
densities with equal variance (i.e. cov(D%/w1) = cov(D}/w2) = I ). Thus we may expect
that the low level of complexity of the classifier will not hamper the evaluation procedure.
Additionally, the nearest mean classifier is a stable classifier that behaves favorably in a
small sample size problems. The Fisher classifier is a more complex classifier than the
NMC. It projects the data on a low dimensional space chosen by maximizing the ratio of
the between-class and within-class scatter matrices of the dataset, and then classifies the
samples in this space. The within-class scatter matrix is proportional to the pooled sam-
ple covariance matrix (covpoorea = 3 (cov( $/w1) + cov(D$/w2))), which is not singular
if the number of samples is smaller than the number of features (dimensions) [Duda 01].
To avoid the inverse of an ill-conditioned covariance matrix a regularization parameter
is needed [Skur 01]. Since in our experiments the size of the gene set may be larger than
the number of samples, we use a regularized version in addition to a standard version
of the Fisher classifier, i.e. cov = cov + AI. Our preliminary work with the regularized
FLD has shown little sensitivity over the regularization parameter A, therefore we have
here fixed the regularization parameter to 10. We use the 5-NN classifier as an example

SNR = (2.6)
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for a non parametric classifier. Since it is sensitive to local variation of the feature space,
which is very noisy in our datasets, we do not expect improvements compared to the
other classifiers. In addition to the Euclidean distance, the cosine distance is also used
by the NMC and 5-NN classifiers.

As discussed in Section 2.2.1, cross-validation is a suitable procedure to estimate the
classification error. For the sake of classification it is important to have a training set
which is as large as possible. The number of cross-validation folds determines the sizes
of the training and test set. However, we would like to have a test set large enough to be
representative of the data. As a compromise we choose to use 10 fold cross-validation.
This choice is also suggested by Ambroise et al. [Ambr 02] and Kohavi et al. [Koha 95].

As described in Figure 2.2, we propose to combine both gene sets and classifiers. In
the combining gene sets strategy, applying 10-fold cross-validation, means that F' = 10.
The genes selected as relevant are the ones present in at least 1, 5, and 8 folds respectively,
i.e G1, G}, or G§. Selecting G, appeared to be too restrictive, i.e. the gene set was often
composed of only a few genes, if not totally empty. Concerning the combining classifier
method, the majority vote in the 10 fold setting may lead to ties if the sample to be
labeled receives an equal number of vote for each class. To resolve this uncertainty, first
the classifier with the higher error in the inner cross-validation loop is removed, and then
the label is assigned according to the remaining nine classifiers.

In order to avoid the possible biases caused by a single realization of the artificial
dataset, we repeat the experiment 10 times, using as datasets 10 different realizations
from the same model.

2.3.2 Datasets used

Concerning the real datasets, the Breast cancer, and Colon datasets are used. The Breast
cancer dataset consists of 145 lymph node negative breast carcinomas, 99 from patients
that didn’t had a metastasis within five years and 46 from patients that had developed
metastasis within five years. The size of the feature (gene) space is 4919 [Veer 02]. Since
it is public and widely used in the literature, the Colon dataset [Alon 99] is used for
purpose of comparison. This dataset is composed of 40 normal healthy samples and 22
tumor samples in a 1908 dimensional feature space.

Concerning the artificial dataset, the first choice that has to be made concerns the
dimensionality. We want to simulate real conditions, where the number of samples is
much smaller than the number of features. Therefore, the number of the samples M
is set to 100 which is comparable to the real datasets. The number of features is set
to 1000 (N) mainly for computational reasons. The gene expression datasets are often
unbalanced, due to the different availability of the samples within each of the classes. In
the above mentioned real datasets, one class is roughly 30% of the number of samples (the
other 70%). Therefore, we choose to preserve this imbalance also in the artificial dataset.
The starting value ug, i.e. the class separability of the best features, is set to 0.25. For
the index I, that limits the number of the informative features in the data, several values
are tested, i.e. 100, 250, 500, and 1000. Additional experiments which motivate these
settings are provided in Lai et al. [Lai 04]. Additionally large datasets, with the same
values of I, are generated. They will be used to estimate the true error of the built
classifiers. The dimensions of the test dataset are set to 1000 samples x1000 features.
To compare the retrieval power of the different approaches we assign the score s, (see
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Equation (2.5)), to each gene of all best sets. The value sg for the most informative gene
is set to 10.

2.3.3 Results on real and artificial datasets

Table 2.1 summarizes the average score and the standard deviation of the score value S
for the gene sets of the different methods: combining gene sets, i.e. using Gg, G%, and
G7 as gene sets, combining classifiers, and the average individual ranking. The columns
presents the score, and its standard deviation, obtained with datasets containing different
number of informative genes I. Results are normalized by dividing the mean and the
standard deviation for the corresponding number of informative genes I present in the
dataset. The gene sets were selected using the NMC classifier with Euclidean distance.
Concerning the combining gene sets strategy, the highest score is reached while using
the gene set G§, since only few and informative genes are selected. The score decreases
while using the gene set G, since the larger set increases the probability of having
uninformative genes. The worst score is obtained when collecting the genes present in all
folds, i.e. G7, since even more irrelevant genes are selected. The score in the combining
classifier approach is computed by averaging the score of the gene sets used by all trained
classifiers. Therefore, it is expected to be similar to the average individual ranking score.
By looking at the score values, we would conclude that combining gene sets leads to a
small and relevant gene set. The analysis of the classification errors, however, points out
that this gene set doesn’t lead to better results.

Table 2.1: Average and standard deviation of the score value S for the gene sets of
the different combining strategies. The artificial datasets with different number of un-
informative features are the input data, and the NMC is used as classifier. The results
are normalized according to the number of informative genes I present in the artificial
datasets.

Method | IT=100 [ TI=250 [ T1=500 |
Mean | Std | Mean | Std | Mean | Std
combining gene sets: G} 0.15 | 0.09 | 0.384 | 0.156 | 1.508 | 0.770
combining gene sets: G 0.09 | 0.02 | 0.136 | 0.044 | 1.056 | 0.178
combining gene sets: G7 0.04 | 0.06 | 0.036 | 0.004 | 0.070 | 0.014
Combining classifiers 0.06 | 0.01 | 0.072 | 0.012 | 0.166 | 0.044
Average univariate ranking | 0.06 | 0.02 | 0.064 | 0.012 | 0.092 | 0.032

Figure 2.3 (a) shows the average classification performance and the standard devia-
tion of the combining strategies applied to different artificial datasets. The NMC with
Euclidean distance is used as a classifier. The numerical value on the x-axis refers to the
value of I used to generate the artificial dataset type, namely 100, 250, 500, and 1000. As
discussed in Section 2.3.2, the classification performance is evaluated both in the external
loop of the cross-validation and on the large dataset. The T on the x-axis refers to the
error computed on the large validation set generated with the corresponding numerical
value of the parameter I. Note that the standard deviation is much smaller than in the
cross validation case. As expected, the more information in the dataset, i.e. the higher
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the I, the higher the classification performances. Our main interest is in the combining
strategies G§ and G%. Both of them reach, generally, a poor performance compared with
the average individual ranking. The difference increases with the informativeness of the
datasets. Surprisingly, the best results are obtained while using the larger gene set G7.
Figure 2.3 (b) illustrate the average number of genes selected with the different strategies.
The largest set is obtained with the G} set. Interestingly, the higher the number of genes
the higher the performance of the classifier.

The same experiments were carried out using the standard Fisher classifier and the
5-NN with cosine distance. For brevity the results are not shown, but the same behavior
reached using the NMC, is observed. However, the classification performances are lower.
This was expected, since the NMC is the classifier that better fits the artificial data. The
same experiments were carried out with other values of the class separability pg, i.e. 0.15
and 0.35. The behavior of the score and of the classification performances are consistent
with the findings presented here.

The same combining strategies were also applied to the Breast cancer dataset. To
reach a more accurate estimate of the classification performances, we repeat the 10-fold
cross-validation 10 times using different resamplings of the dataset. Figure 2.4 shows the
average classification performances and the standard deviation. The results are grouped
according to the classifier used to estimate the performances. As shown in the x-axis
these classifiers are: Fisher classifier without and with regularization, NMC and 5-NN
both with Euclidean and cosine distance measures. With the only exception of the Fisher
with no regularization, the behavior follows the same pattern observed in the artificial
dataset. The combining strategies do not improve on the performance reached using
the average individual ranking. Also in this case, the best performance among the three
set {G§, G%, G7} is often reached while using the larger gene set G7. However, a high
standard deviation is observed, and no single method is significantly better then the
others. Only, the performances reached with the G§ set are generally significantly worse
than the ones obtained with the other approaches.

2.3.4 Discussion on individual ranking

The poor results of the combining strategy of either gene sets or classifiers, lead us to
further investigation of the initial step, i.e. the feature ranking according to a criterion.
If this step was unreliable, it would lead to a large number of uninformative genes in the
selected set. This could explain the poor classification performances.

In order to investigate the feature ranking step we focus on the inner loop in Figure 2.1,
which we consider now as the only loop of the cross-validation. We discuss the effects of
the estimate of individual gene relevance on the gene selection procedure. More details
can be found in [Lai 04].

The results are summarized in Figure 2.5. The classification error is now calculated
in two ways. On the one hand the classification error, averaged across the 10 folds and
the 10 artificially generated datasets, is plotted as a function of the number of features
used to train the classifier. On the other hand, the classification error is calculated by
testing the classifier on the large independent test set of 1000 samples. Due to the larger
sample size, this test set allows the estimation of the true error of the classifier.

A first goal of this experiment is the evaluation of the methodology. In the artificial
dataset the original index of the features corresponds to their amount of informativeness.
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Figure 2.3: Artificial dataset: results of 10 iterations of 10 fold cross-validation for several
classifiers. The NMC with Euclidean distance is used as classifier. The numerical value
on the x-axis refers to the value of I used to generate the artificial dataset type, namely
100, 250, 500, and 1000. The T in the x-axis refers to the error computed on the large
test set generated with the corresponding numerical value of the parameter I.
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Figure 2.4: Breast cancer dataset: average classification performance and standard de-
viation of 10 iterations of 10 fold cross-validation for several classifiers. The different
symbols represent the methodologies studied.

We can test the efficiency of the proposed methodology, directly using the original feature
order, thus excluding the ranking step in Figure 2.1. The results while testing on the
cross-validation test set and on the large test set, are plotted with the lines with x and
O respectively. Since the cross-validation error estimate of the method is closed to the
true error, we can conclude that the cross-validation methodology is a good evaluation
tool. The 10 fold cross-validation, however, has a larger variation on the error, as can be
observed by the presence of local minima.

The necessity of a correct test procedure is emphasized. As pointed out by Ambroise
et al. [Ambr 02], a bias is introduced if the estimation of feature relevance is made using
all the data, since the test set in not independent anymore. The line called rank bias (see
line with triangles in Figure 2.5) shows the cross-validation error while the features of
the complete dataset were first ordered according to SNR and then the cross-validation
procedure was run. This error is apparently very low, while the true error computed on
the larger dataset (line with plus) is much higher. From this we conclude that all the
steps taken to derive a classifier, i.e. gene ranking, selection and classifier training, must
be performed only on the training set, keeping an independent test set aside. Otherwise
we would have an error estimate that is positively biased and we would make wrong
choices. In this example we would choose 200 as the optimal number of informative
features, while the true error shows that better results are achieved with larger number
of features.

The main goal of the experiments presented in Figure 2.5 is to evaluate the rank-
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Figure 2.5: Average classification error as a function of the number of features (genes)
used to train the classifier.

ing approach, i.e. first the features are ranked according to a criterion, and then the
performance of a classifier, trained on an increasing number of features, is evaluated on
an independent test set. The line with circles in Figure 2.5, which we call the rank er-
ror, represents the cross-validation error while applying this method. When comparing
this error curve with the true error (i.e. features in original order, line with x in Fig-
ure 2.5) one can conclude that the ranking according to SNR is not able to identify the
relevant features. Due to the small sample size, uninformative features have high SNR
and consequently a high rank. The size of the feature set should increase to include the
necessary informative features, but including more features also degrades the classifier.
As a results no minimum is detected anymore. Clearly this does not fulfill the original
target of deriving a small good signature. We can conclude that the estimate of the gene
informativeness (the SNR) is very poor. This is due to the small sample effect since if
we apply the same methodology to the large dataset of 10000 samples (experiment not
shown), the rank and true errors overlap.

2.4 Conclusions

We have investigated the univariate gene selection procedure, which is a popular ap-
proach for the selection of genes for classification purposes in expression data. We have
studied possible improvements to the average individual ranking method with the aim
of obtaining a more informative gene set. Several observations can be made. First, the
combining rules proposed do not improve the classification results obtained with the base
method (average individual ranking). The hypothesis of the existence of a small informa-
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tive gene set does not seem to hold, as also suggested by the work of Ein-Dor et al. [Ein
05]. Using the Breast cancer dataset, they pointed out that the same classification per-
formance can be achieved with many consecutive sets of 70 genes, not just with the top
ranked 70 genes. This suggests that there is redundancy in the information carried by
the gene expression, and, therefore, the larger the set the better. This is supported by
our results, since G} performs better than G, which in turn outperforms Gj%.

In order to apply the combining strategies, it would probably be better to allow sets
with larger sizes then the one used by us, i.e. setting k;,q; > 100. The fact that in our
experimental results the gene sets were generally smaller that 100 can be explained by
the presence of local minima. Combining larger sets would lead to larger best sets G*,
and possibly to an increase in the classification performance.

A second observation concerns the ranking according to SNR. The experiments on the
artificial dataset suggest that the small sample size hampers the ability of the univariate
selection to precisely identify the informative features. In the real datasets the number
of samples is limited, therefore any conclusion about the biological informativeness of a
selected gene set should be taken with caution. Additional experiments are necessary
to assess the biological relevancy of a gene set. An increase in the number of samples
will also improve the identification of informative genes. In the future it is expected that
larger cohorts will be available, thus allowing a re-evaluation of the selection procedures.



Random Subspace Method for multivariate
feature selection

This chapter presents the Random Subspace Method (RSM) that we developed to perform
feature selection in a multivariate manner. While univariate selection assesses the rele-
vance of a feature on an individual basis, multivariate feature selection aims at identifying
a number of features that, taken together, capture relevant information. The benefits of
the RSM algorithm are illustrated on an artificial dataset, which provides ground truth
information, and on a real dataset, that consists of autofluorescence spectra measured in
the oral cavity of healthy and diseased patients. !

IThis chapter was published in Pattern Recognition Letters [Lai 06b].
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3.1 Introduction

In order to solve a classification task, the more features the better, since more informa-
tion is present. However, addition of features beyond a certain point leads to a higher
probability of error, as indicated in [Duda 01]. This behavior is known in pattern recog-
nition as the curse of dimensionality [Duda 01,Jain 97, Trun 79,Raud 91}, and it is caused
by the finite number of samples.

Nowadays there are a growing number of domains that produce data with a large
number of features, while the number of samples is limited. For example, the acquisition
of spectral data, which give for a single sample the information across a large range of
wavelengths. Other examples are the microarray datasets, that measure the gene activity
of thousands of genes while the number of samples is limited to several hundreds, due
to the high cost associated with the procedure and the sample availability. Assumptions
often made in the literature are that many features are uninformative or noisy [Bo 02,
Ambr 02,Xion 01b] and that features are likely to be correlated [Bo 02,Chow 01,Dudo 02].

Therefore, a feature selection strategy is needed to reduce the dimensionality of the
feature space and to identify the relevant features to be used for a successful classifi-
cation task. Feature selection algorithms can be divided in two categories: filters and
wrappers [Koha 97]. Filter approaches evaluate the relevance of features based on a
criterion indicative of the capacity of a feature to separate the classes, while wrapper ap-
proaches employ the classification algorithm that will be used to build the final classifier to
judge feature quality. Both approaches involve combinatorial searches through the space
of possible feature subsets. Several greedy procedures can be applied, such as forward
or backward elimination, or less greedy approaches such as the more computationally
demanding floating searches and genetic algorithms [Duda 01, Koha 97, Pudi 94, Li 01].

The relevance of a feature can be evaluated either individually (univariate approaches),
or in a multivariate manner. Univariate approaches are simple and fast, therefore ap-
pealing and popular [Golu 99,Ben 00, Tibs 02, Veer 02,Khan 01,Xing 01]. However, they
assume that the features are independent. Multivariate approaches, on the contrary,
evaluate the relevance of the features considering how they function as a group, taking
into account their dependencies [Xion 01b, Bo 02, Guyo 02, Bhat 03]. Several limitations
however restrict the use of multivariate approaches. Firstly, they are prone to overtrain-
ing, especially in p > n (many features and few samples) settings. Secondly, they may
be computationally expensive, which prevents them from being applied to a large feature
space.

The large number of features compared to the number of samples causes over-training
when proper measures are not taken. In order to overcome this problem, we introduce a
new multivariate approach for feature selection based on the Random Subspace Method
(RSM) proposed by Ho [Ho 95,Ho 98] and studied further by Skurichina et al. [Skur 02].
Ho introduced the RSM to avoid overfitting on the training set while preserving the
maximum accuracy when training decision tree classifiers. Skurichina et al.used the RSM
in order to obtain weak classifiers to be combined in a second step of the classification
process. We propose to use the RSM in order to better evaluate the informativeness of
the features and, therefore, select a relevant feature subset on which to train a single
classifier.

In this study, we apply a multivariate search technique on a subspace randomly se-
lected from the original feature space. In this reduced feature space the multivariate
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feature selection may better handle the noise in the data and will consequently be able
to retrieve the informative features. In order to take into account all the measured fea-
tures of the dataset, the procedure is repeated many times. As a result several feature
subsets are selected. These are combined into a final list of selected features, by ordering
the features based on their relevance derived from their accuracy in the individuals runs.
The final classifier can then be trained by using the final list of features. Our method
can be applied in combination with existing classifiers and feature selection approaches,
and is computationally feasible.

We compare our algorithm with other multivariate approaches, such as forward selec-
tion [Duda 01] and base-pair selection [Bo 02], as well as univariate techniques [Golu 99,
Ben 00,Xing 01]. The comparison is performed on both a real dataset and on an
artificial dataset which provides a controlled environment, and models the mentioned
assumptions of correlation between features and the presence of a large number of un-
informative features. The results show the importance of multivariate search techniques
and the robustness and reliability of our new method.

The paper is organized as follows. Section 7.2 describes the feature selection algo-
rithms and gives a detailed description of our Random Subspace Method for multivariate
feature selection. The datasets used are presented in Section 4.2.3. Section 7.3 illus-
trates the experimental results of several multivariate and univariate feature selection
techniques. Finally, the conclusions follow in Section 7.4.

3.2 Feature selection techniques

First, in Section 3.2.1, we briefly describe the univariate and multivariate techniques em-
ployed in comparison experiments. Then, in Section 3.2.2, the Random Subspace Method
is introduced. Although the techniques are applied to a two class problem, they can be
extended to a multi-class problem. A solution for multiclass problems could be to apply
the complete technique as described here for all pairs of classes, or for one class against
the others, and then use multiclass combiner strategies to create the final classifier. Ex-
amples can be found e.g. in [Allw 00, Diet 95, Tax 02]. Similarly the evaluation of a
feature on the basis of the SNR for multiclass problem can be approached by computing
the SNR criterion for all pairs of classes, and assign the minimum /maximum value to the
features. Another alternative could be the comparison of the distribution of one class
against the overall distribution (as been adopted by Tibshirani et al. [Tibs 02]), and again
assign to the feature the minimum/maximum value.

3.2.1 Existing feature selection techniques
Univariate search technique

In the univariate approach the informativeness of each feature is evaluated individually,
according to a criterion, such as the signal-to-noise ratio (SNR) [Golu 99, Chow 01] for a
two class problem. The signal to noise ratio is defined as follows:

[m1 — ma|

\/s% —|—s§ ’

SNR = (3.1)
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where m; and mg are the estimated means of the two classes and s; and sy are the
estimates of the respective standard deviations. The higher the SNR the more informative
the corresponding features, which are ranked accordingly, i.e. from the most to the least
informative. This provides an ordered feature list L, and a cross-validation procedure is
employed to judge the number of features from the top of this list to use.

Base-pair selection

The base-pair selection algorithm was proposed for microarray datasets by Bo et al. [Bo 02].
The relevance of features is judged by evaluating pairs of features. For each pair the data
is first projected by the diagonal linear discriminant (DLD) onto a one-dimensional space.
The score can then be computed by the t-statistic in this space. In our implementation
we have used the Fisher discriminant and the SNR instead of the DLD and the t-statistic,
respectively. This enables a better comparison with the other studied techniques. Both
a full search and a less computationally demanding greedy search are investigated. The
complete search evaluates all pairs and rank them in a list without repetition accord-
ing to the scores. The computational complexity is a serious limitation of the method,
therefore a faster greedy search is also employed. The features are first ranked accord-
ing to the individual SNR. The best one is taken and then the method searches for a
feature among all the remaining features, which together with the individual best one,
obtains the highest score. This provides the first two features of the ordered list. From
the remaining 2 — p features the best individual one is again taken and matched with
the feature with which it achieves the highest score. This provides the second pair of
features. By iterating the process the features are added, two at a time, until all of them
are ordered.

Forward selection

Forward feature selection starts with the single most informative feature and iteratively
adds the next most informative feature in a greedy fashion. Here, we select the features
based on the criterion proposed by Bo et al. [Bo 02]. The first two features are obtained
as the best pair described in the base-pair approach. For each of the p — 2 features, a
third one is added to the best two features. The obtained three-dimensional feature space
is projected onto the one dimensional space using again the Fisher discriminant, and the
SNR criterion is computed. The best feature triplet will be the one that achieves the
highest value of the SNR. By iterating the procedure, the features are added one by one,
providing an ordered list of features of length L. Now the length of the list is limited
to n. This upper limit stems from the fact that the Fisher classifier cannot be solved
(without taking additional measures) if L > n.

Recursive Feature Elimination (RFE)

RFE is an iterative backward selection proposed by Guyon et al. [Guyo 02]. Initially a
Support Vector Machine (SVM) classifier is trained with the full feature set. The quality
of a feature is characterized by the weight that the SVM optimization assigns to that
feature. A portion of the features with the smallest weights is removed at each iteration
of the selection process. In order to build the ordered list of features length (L), the
features that are removed are added at the bottom of the list. By iterating the procedure
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this list grows from the least to the most relevant feature. Note that the features are
not considered individually, since their assigned weights are dependent on all the features
considered during a given iteration.

Liknon

Recently Bhattacharyya et al. [Bhat 03, Grat 02] proposed a classifier called Liknon
that simultaneously performs classification and relevant feature identification. Liknon is
trained by optimizing a linear discriminant function with a penalty constraint via linear
programming. This yields a sparse hyper-plane that is parameterized by a limited set of
features (that are assigned non-zero weights by Liknon). By varying the influence of the
penalty term the size of the selected features set can be varied.

3.2.2 Random Subspace Method

In case of a high dimensional feature space, it may be difficult for a multivariate search
technique to identify the relevant features. In order to lower this risk we propose a
new multivariate approach for feature selection based on the Random Subspace Method
(RSM) introduced by Ho [Ho 95,Ho 98]. A multivariate search technique is applied on
a subspace randomly selected from the original feature space. In this reduced space,
the search technique can better handle the problem of dimensionality, and thus retrieve
the informative features, since the number of samples per feature increases. In order to
cover a large portion of the features in the dataset, we repeat the selection ¢ times. As a
result, ¢t feature subsets are evaluated resulting in a weight associated with each feature
for each of the selections. The weight is proportional to the relevance of the feature.
We combine the results of all iterations in a final list of L features, ordered according
to their relevance. Since this list is built upon the results of the more reliable feature
evaluations that were performed in subspaces, the combined list is of better quality than
a list constructed in the original complete feature space.

Our method can be applied together with different existing feature selection tech-
niques. In the following, two algorithms are proposed using respectively Liknon and
RFE as basal feature selection methods. Algorithm 1 applies in each of the ¢ selections
the Liknon classifier to a random feature set of size s. Only some of the s features will
have a non-zero weight, that is proportional to the relevance of the feature in the sub-
space considered. The average of the weights across the number of times the feature was
selected in the ¢ subspaces is computed for each feature. Finally the features are sorted
according to their computed average weights, then the top L features are selected, where
L is optimized according to a cross-validation procedure. Again Liknon is employed as
classifier in the greedily selected set of features.

Algorithm 2 applies RFE instead of Liknon on each of the ¢ randomly selected sub-
spaces. Also here all features of this subspace will be assigned a weight. In contrast to
RSM-Liknon, the weights, however, are not comparable, since each weight is computed
in a different feature space. Remember, RFE subsequently eliminates features on the
basis of their weights. To establish the relevance of a feature we, therefore, have used
the order in which the features are removed, i.e. the features that survive the RFE
pruning the longest are the best. Instead of using the rank position itself as relevance
indicator, we choose to quantize this. Only when the feature j is eliminated during the
last [ iterations of the RFE scheme it is indeed relevant and its score is incremented by
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Algorithm 1 Random Subspace Method with Liknon (RSM-Liknon)

1: Input: training set X, label set y, number of selections ¢, size of the subspace s,
matrix of zeros with ¢ rows and p columns Z = 0,4, to store the feature scores,
vector ¢ = 01, to count the number of times each feature is selected across the ¢
selections.
Repeat fori =1:t

- Generate the random permutation index vector p* = perm({1,...,p}).

- Generate the index vector v* = {p%, pb,...,p'}.

. Extract the features indicated by vi: X¥' C X.

- Train the Liknon classifier on the labeled dataset to obtain the weights:

w' =C (X V' y), with C the Liknon classification rule applied on the subspace v*

of the training set X.
7. - Save the weights in the score matrix Z: Z; i) = wh Vi=1,...,s.

8: - Update the counter c: ¢; =c¢; +1 Vj € 0"
9: Compute the score vector z:

i Zij .
Zj = C; f e #0
0, otherwise.

10: Sort the list of features according to the score vector z.
11: Output: Ordered list of top L features.

1. Finally, after the ¢ selections, the score of each feature is determined, and the features
are ordered accordingly. The top L features are selected, where L is optimized according
to a cross-validation procedure using the Fisher classifier.

Algorithm 2 Random Subspace Method with RFE (RSM-RFE)
1: Input: training set X, label set y, number of selections ¢, size of the subspace s,
threshold [ (if a feature is eliminated during the last [ iterations of RFE it is judged
relevant)7 vector z = 014, to store the feature scores.

Repeat fori =1:t
- Generate the random permutation index vector p* = perm({1,...,p}).
- Generate the index vector v* = {p,ph,...,ps}

- Extract the features indicated by v*: XV cX.
- By applying the RFE procedure we obtain the order in which the
features are removed: L = (X', y). Here L. is the k*" to last feature and &
is the RFE procedure applied to the subspace v’ of the training set X.
to be removed.
- Update the score vector z : z; = z; +1 Vj € {L%, ... Li}.
8: Sort the list of features according to the score vector z.
9: Output: Ordered list of top L features.

Two parameters need to be set in both RSM-RFE and RSM-Liknon: the subspace
size s and the number of selections t. The smaller the subspace size s the faster the
algorithm, but at the same time, the larger the chance of missing informative features
or missing dependences between many features. Similarly the smaller the number of
selections, t, the faster the algorithm, but the smaller the amount of data available for
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the evaluation of the feature occurrences when building the final feature set. In the case of
RSM-RFE an extra choice regards the number [ of features judged relevant. The smaller
[ the smaller the number of features judged relevant, but if the subset is too small good
features may be missed. Large [ may include irrelevant features, adding noisy dimensions
to the subspace. The parameters are optimized empirically. For each parameter a set of
possible values is chosen. Any available knowledge of the specific dataset adopted can
guide the choice, e.g. if the number of informative features is expected to be low, a small
value of the threshold [ should be considered. The final choice of the best parameter
combination is based on the cross-validation error on the training set, as described in the
Section 3.4.1.

3.3 Datasets

3.3.1 The artificial dataset

In order to investigate the multivariate selection algorithms we generated an artificial
dataset in which there is correlation between pairs of features. In this way, a pair of
features is informative if considered together, and a multivariate selection strategy is
necessary to find the truly informative features.

The informative features are generated in pairs: for each pair the samples are sampled
from a Gaussian distribution with mean u; = [ 0 0 ]T for the first class and @, =
% [ d 0 ]T for the second class. The covariance matrix, equal for both classes, is
v+1 v-1
v—1 v+1
features are generated. The remaining p—q features are uninformative, i.e. the two classes
are drawn from a spherical Gaussian distribution N (0, il ), where I is the identity
matrix.

Y1 =39 = % [ ] . Pairs of correlated features are added until ¢ informative

The artificial dataset allows us to investigate the behavior of the methods in a con-
trolled environment. The ground truth knowledge of the information present makes it
possible to investigate the retrieval ability of the different techniques. In the following
experiments we have set the number of the samples n = 100 and the number of features
p = 300 to simulate a small sample size problem. In order to have a class overlap we set
d =3 and v = V40. Furthermore, we investigated the role of the informativeness in the
dataset by varying ¢ as follows: ¢ = [20, 50, 100, 150].

3.3.2 The spectra dataset

The algorithms are also compared on a small sample size version of the spectra dataset.
The original dataset consists of autofluorescence spectra measured in multiple locations
of the oral cavity [Veld 04]. There are two classes: 96 healthy volunteers and 155 patients
with lesions in the oral cavity. After preprocessing, each spectrum consist of 199 bins
(wavelengths). Although for the same person multiple spectra were acquired, we adopted
one location only, in order to reduce the redundancy in the data. Therefore, the number
of features is 199. We study the role of the sample size by using a dataset with 50,100
and 200 patients, balanced per class.
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3.4 Experimental results

First the set up of the experiments are described. Then the experimental results are pre-
sented, followed by a discussion on the effect of a change in informativeness and number
of samples in the datasets. The experiments are implemented in a Matlab environment
using the PRTools [Duin 04] and PRExp [Pacl 05] toolboxes.

3.4.1 Experimental set up

As a criterion to judge the feature relevance in the one-dimensional space the SNR is
adopted, due to its simplicity and popularity [Golu 99, Veer 02, Khan 01]. We use the
Fisher criterion to project the data from multiple dimensions to a single dimension, as
is required in both the forward and base-pair selection methods. We have used the
Fisher classifier since it can exploit feature correlation. Also the Nearest Mean Classifier
(NMC) with the cosine correlation as distance measure is employed in order to compare
the results with other published approaches [Ein 05, Veer 02].

The Liknon classifier requires the optimization of the strength of the penalty term.
The optimization of the strength of the penalty term is done beforehand in a 10 fold
cross-validation procedure for a range of values [107%,...,103]. Since the average error
was constant across this range, we chose 0.1 as a value for the strength of the penalty
term because it selects a small feature subset.

The RSM-RFE approach was applied in combination with the Fisher classifier to
allow for a better comparison with the other studied approaches which also employ
the Fisher classifier. We chose to remove one feature per iteration. Concerning the
optimization of the parameters, we varied the subspace size across s = [40, 70, 100] and
s = [40, 70, 100, 130] for the artificial and real datasets, respectively. We selected as
the best subset size on both datasets the value s* = 70 that reached the lowest cross-
validation error on the training set. The number of selections is set to t* = 130. Smaller
values, i.e. t = 100 and t = 50, were also tested. Although the performances are
not always sensitive to this parameter, the larger ¢ the more data is available for the
evaluation of the feature relevance. For the RSM-RFE, several settings of the threshold
[ where experimentally investigated: | = [3, 5, 8, 10, 15, 20] for the artificial dataset and
1 =3, 5, 10, 15] for the real dataset. The settings I = 3 and | = 5 respectively reached
the lowest cross-validation error on the training set and are further presented in the
experimental results.

When designing a classification system, two steps need to be taken. The first is the
classifier training, and the second is the estimation of the classifier performance. Due
to the small number of samples, a cross-validation procedure is a preferable approach
to estimate the classification error. In order to have an unbiased error estimate the two
steps should be performed independently [Ambr 02]. Therefore, we employ a double
loop cross-validation procedure [Wess 05]. In the inner loop for each fold the feature
selection is performed, giving the feature list L. The classifier is trained starting with
the first 2 features of L till all features are used. The subset of L that shows the smallest
classification error is selected. The selected feature sets from each fold are merged in a
final subset L*, i.e. a list without duplication of all features present. In the external loop
the performance of the classifier is estimated. This procedure ensures that the training
and evaluation of the classifier are completely decoupled, as to prevent any bias in the
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Figure 3.1: Artificial dataset with n = 100,p = 300 and informative features ¢ = 20.
Average classification error of the 10 fold cross-validation procedure for the different
approaches.

performance evaluation. We chose to use 10 fold cross-validation for both the inner and
external loop. All errors depicted in the figures are errors computed on the independent
test set in the outer loop. This choice is also suggested by Kohavi [Koha 95].

3.4.2 Results

Figure 3.1 shows the behavior of the different methodologies on the artificial dataset
with n = 100, p = 300, ¢ = 20. The average classification error (computed in the outer
loop), and its standard deviation are given. It is visible that the univariate approaches
(univariate NMC, univariate FLD) perform the worst, while the base-pair approaches
(both full and greedy search) reach the best performance. This is expected due to the
fact that pairs of features are strongly correlated. Classical Liknon doesn’t perform well.
In Section 7.3.3 we will further explore this topic. The use of RSM with both Liknon
and RFE improves the results dramatically, such that the results are comparable with
the base-pair approaches. The same classification methodologies were also applied to
different settings of the artificial dataset, i.e. a smaller number of informative features
(¢ = 10) and sample sizes n = [250, 50] (data not shown). The larger the number
of informative features and/or samples the higher the performances of all classifiers.
However, the different methodologies show the same behavior: univariate selection and
classical Liknon perform poorly, while base-pair selection and RSM approaches give good
results.

The knowledge of which features are informative in the artificial dataset allows us to
study the retrieval capability of the different feature selection strategies. Figure 3.2 shows
the number of informative features retrieved by the different methodologies as a function
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Figure 3.2: Relevant features of the artificial dataset retrieved by the different selection
techniques.

of the subset size. The results are the average of the 100 folds of the inner 10 fold cross-
validation loop. Surprisingly, both forward search and RFE retrieve more uninformative
features than the univariate approach, since these selection methods should be capable
of detecting the multivariate informative features. Apparently the small sample size
hampers these methods severely. This will be tested in Section 7.3.3. The full search
base-pair approach recovers all 20 informative features perfectly. RSM improves the
number of informative features retrieved for both RFE and Liknon.

Figure 3.3 shows the average classification error on the spectra dataset with 100
samples and 199 features. The best performing approach is the RSM-liknon, which is
statistically significantly better than all other methods but Liknon. RSM-RFE does not
perform as well as expected, and others methods, such as the base-pair approach give
surprisingly high error rate. To further investigate these aspects we looked at the error
obtained in the inner cross-validation step for the RSM-Liknon, RSM-RFE and base-pair
approaches.

Figure 3.4 displays the average error for both the artificial and the spectra datasets
as a function of the first 150 features. In the techniques that employ the Fisher classifier,
namely RSM-RFE and the base-pair approach, the 'peaking behavior’ is visible, which
occurs when the number of samples is comparable to the number of features. This
phenomenon has been studied in [Skur 01, Frie 89, Dai 03]. The peaking behavior is
not affecting the artificial dataset. This is because the Fisher classifier is applied to the
selected subset of L* genes. In all mentioned methods the size of L* is not in the range
of the peaking behavior, e.g. for the base-pair approach, the median value of L* in the
10 folds is 10 features. Therefore, no further actions need to be taken. However, in the
case of the spectra dataset the peaking effect is not negligible, since now the median
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Figure 3.3: Spectra dataset with n = 199 and p = 100. Average classification error of
the 10 fold cross-validation procedure for the different approaches.
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Figure 3.4: Average error of the inner cross-validation procedure as a function of the num-
ber of features for the artificial and the spectra datasets and three different approaches:
RSM-Liknon, RSM-RFE and base-pair.
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Figure 3.5: Classification error of three methodologies, namely univariate selection with
NMC, RSM-Liknon, classical Liknon for different artificial datasets of the same size (n =
100, p = 300) but a varying number of informative features, i.e. ¢ = [20, 50, 100, 150].

value of L* is in the peaking region, e.g. in the base-pair case the median L* value in
the 10 folds is 96 features. This explains the poor performances of the methods that
use the Fisher classifier. Possible solutions to this problem are extensively described
by Skurichina [Skur 01] and involve regularization by noise injection or by addition of
redundant features. Unfortunately, these solutions are beyond the scope of this paper.

3.4.3 Discussion on the effect of informative features and samples

The Liknon classifier does not perform well on the artificial set, as shown in Figure 3.1.
Our hypothesis is that this is due to the presence of too few informative features (20)
relative to the total number of features. Therefore, we investigated how the number of
informative features influences the classification performance of the three approaches,
namely univariate with NMC, RSM-Liknon and classical Liknon.

Figure 3.5 shows the classification error of the mentioned methodologies when applied
to four artificial datasets with n = 100, p = 300, and ¢ = [20, 50, 100, 150]. The uni-
variate approach with the NMC classifier benefits only when the number of informative
features increased from 20 to 50. Thereafter it is hampered by the fact that it does not
exploit the correlation between the features. RSM-Liknon is a stable methodology that
proves to perform well also under difficult conditions, i.e. even when little information is
present. Classical Liknon clearly decreases the error with an increase in the number of
features, even up to the point where it outperforms RSM-Liknon significantly (¢ = 150).
This behavior supports our hypothesis and exemplifies the need for the RSM technique.

The good performance achieved by Liknon on the spectra dataset would suggests
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Figure 3.6: Classification error of three methodologies, namely univariate selection with
NMC, RSM-Liknon, classical Liknon for the spectra dataset with different number of
samples (n = [50, 100, 200]).

that this dataset contains many informative features. In order to evaluate the role of
the sample size on the RSM approach, we consider the spectra dataset with different
number of samples, i.e. n =[50, 100, 200]. Figure 3.6 shows the classification error of the
following approaches: univariate with NMC, RSM-Liknon and classical Liknon. When
the sample size is too small the multivariate search techniques are not able to retrieve any
additional information, and the performance is comparable with the univariate approach.
For an increased sample size the multivariate approaches are beneficial, and the RSM
approach obtains the best performances. A further increase in the number of samples
lower the need for the resampling in a subspace. In this case the classical method is not
improved by the RSM.

3.5 Conclusions

In small sample size problems an important step is feature selection. This should lead to
an informative feature space in which the classification task can be successfully performed.

In order to perform the selection, the informativeness of the features must be eval-
uated. We studied several approaches both univariate, where each feature is considered
individually, and multivariate, where the criterion is dependent on multiple dimensions.
A limitation of the multivariate approaches is the sensitivity to the dimensionality of
the feature space, which often causes over-training. In order to overcome this difficulty
we proposed a new method based on random subspace selection (RSM). A multivariate
search technique is applied on a subspace randomly selected from the original feature
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space. In this reduced space the technique may better handle the noise in the data and
retrieve the informative features.

We introduced an artificial dataset in order to have ground truth information. The
artificial dataset models a small sample size dataset with both large number of uninfor-
mative features and a correlation between the informative ones, since both conditions
are assumed to be present in real datasets. We tested our algorithm on a spectra dataset
and illustrated the sensitivity to the sample size of the different studied approaches.

The results point out the importance of multivariate search techniques and the ro-
bustness and reliability of our new method. The univariate approach is outperformed
by the multivariate methodologies. The RSM-RFE and the other methods that use the
Fisher classifier are hampered by the sensitivity of the Fisher linear discriminant to the
dimensionality of the feature space. Future study will be done on better overcoming
these limitations. The RSM is a robust and a powerful approach for feature selection
and classification especially in the small sample size conditions.



A comparison of univariate and multivariate
gene selection techniques for classification of
cancer datasets

In this chapter we have performed an extensive comparison of several gene selection tech-
niques, both univariate and multivariate. While many studies claimed good performance,
the procedural errors made their results inconclusive. This motivated us to study in an
unbiased protocol several state of the art techniques in order to understand the benefits
and limitations of those techniques. '

IThis chapter was published in BMC Bioinformatics [Lai 06a].
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4.1 Background

Gene expression microarrays enable the measurement of the activity levels of thousands
of genes on a single glass slide. The number of genes (features) is in the order of thou-
sands while the number of arrays is usually limited to several hundreds, due to the high
cost associated with the procedure and the sample availability. In classification tasks a
reduction of the feature space is usually performed [Koha 97, Tsam 03]. On the one hand
it decreases the complexity of the classification task and thus improves the classification
performance [Ein 05,Ben 00,Blan 04, Chow 01, Stat 05a]. This is especially true when
the classifiers employed are sensitive to noise. On the other hand it identifies relevant
genes that can be potential biomarkers for the problem under study, and can be used in
the clinic or for further studies, e.g. as targets for new types of therapies.

A widely used search strategy employs a criterion to evaluate the informativeness of
each gene individually. We refer to this approach as univariate gene selection. Several
criteria have been proposed in the literature, e.g. Golub et al. [Golu 99] introduced the
signal-to-noise-ratio (SNR), also employed in [Jaeg 03, Bhat 03]. Bendor et al. [Ben 00]
proposed the threshold number of misclassification (TNoM) score. Cho et al. [Cho 03]
compared several criteria: Pearson and Spearman correlation, Euclidean and cosine dis-
tances, SNR, mutual information and information gain. The latter was also employed
by [Xing 01]. Chow et al. [Chow 01] employed the median vote relevance (MVR), Naive
Bayes global relevance (NBGR), and the SNR, which they referred to as mean aggregate
relevance (MAR). Dudoit et al. [Dudo 03] employed the t-statistic and the Wilcoxon
statistic. In all cases, the genes are ranked individually according to the chosen criterion,
from the most to the least informative. The ranking of the genes defines the collection
of gene subsets that will be evaluated to find the most informative subset. More specif-
ically, the first set to be evaluated consists of the most informative gene, the second set
to be evaluated consists of the two most informative genes and the last set consists of
the complete set of genes. The set with the highest score (classification performance or
multivariate criterion) is then judged to be the most informative. For a set of p genes,
this univariate search requires the evaluation of at most p gene sets.

Several multivariate search strategies have been proposed in the literature, all in-
volving combinatorial searches through the space of possible feature subsets [Duda 01,
Koha 97]. In contrast to the univariate approaches, which define the search path through
the space of gene sets based on the univariate evaluation of genes, multivariate ap-
proaches define the search path based on the informativeness of a group of genes. Due to
computational limitations, relatively simple approaches, such as greedy forward search
strategies are often employed [Xion 01b,Blan 04]. More complex procedures such as float-
ing searches [Pudi 94] and genetic algorithms have also been applied [Blan 04, Silv 05,
Xion 0la,Li 01]. Guyon et al. [Guyo 02] employed an iterative, multivariate backward
search called Recursive Feature Elimination (RFE). RFE employs a classifier (typically
the Support Vector Machine (SVM)) to attach a weight to every gene in the starting set.
Based on the assumption that the genes with the smallest weights are the least informa-
tive in the set, a predefined number of these genes are removed during each iteration,
until no genes are left. The performance of the SVM determines the informativeness of
the evaluated geneset. Bo et al. [Bo 02] introduced a multivariate search approach that
performs a forward (greedy) search by adding genes judged to be informative when eval-
uated as a pair. Recently, Geman et al. [Gema 04,Xu 05] introduced the top-scoring pair,
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TSP method, which identifies a single pair of predictive genes. Liknon [Bhat 03,Grat 02]
was proposed as an algorithm that simultaneously performs relevant gene identification
and classification in a multivariate fashion.

The above mentioned univariate and multivariate search techniques have been pre-
sented as successfully performing the gene selection and classification tasks. The goal of
this study is to validate this claim because a fair comparison of the published results is
problematic due to several limitations. The most important limitation stems from the fact
that the training and validation phases are not strictly separated, causing an 'information
leak’ from the training phase to the validation phase resulting in optimistically biased
performances. This bias manifests itself in two forms. First, there is the most severe form
identified by Ambroise et al. [Ambr 02]. (See also the erratum by Guyon [Guyo 03]). This
bias results from determining the search path through gene subset space on the complete
dataset (i.e. also on the validation set) and then performing a cross validation at each
point on the search path to select the best subset. Although this bias is a well known phe-
nomenon at this stage, a fairly large number of publications still carry this bias in their
results [Cho 03,Chow 01,Khan 01,Xing 01,Jaeg 03,Ding 03,Bhat 03,Guyo 02,Silv 05]. The
second form of bias is less severe, and was elaborately described in Wessels et al. [Wess 05].
See [Bo 02,Dudo 03,Ben 00] for instances of results where this form of bias is present.
Typically, the training set is employed to generate a search path consisting of candidate
gene sets, while the classification performance of a classifier trained on the training set
and tested on the validation set is employed to evaluate the informativeness of each gene
set. The results are presented as a set of (cross)validation performances - one for every
geneset. The bias stems from the fact that the validation set is employed to pick the best
performing gene subset from the series of evaluated sets. Since optimization of the gene
subset is part of the training process, selection of the best gene subset should also be
performed on the training set only. An unbiased protocol has been recently proposed by
Statnikov et al. [Stat 05a] to perform model selection. Here, a nested cross-validation has
been used to achieve both the optimization of the diagnostic model, such as the choice
of the kernel type and the optimization parameter ¢ of the SVM for example, and the
performance estimate of the model. The protocol has been implemented in a system
called GEMS [Stat 05b].

In addition to the raised concerns, the comparison between the results in avail-
able studies is difficult since the conclusions are frequently based on a small number
of datasets, often the Colon [Alon 99] and Leukemia [Golu 99] datasets. See, for exam-
ple [Blan 04,Bo 02,Ding 03, Guan 05, Guyo 02, Xing 01]. Sometimes even the datasets
employed are judged by the authors themselves to be simple and linearly separable
[Abul 05, Bhat 03, Silv 05, Xion 0la]. Therefore, no generally applicable conclusions
can be drawn.

We perform a fair comparison of several frequently used search techniques, both multi-
variate and univariate, using an unbiased protocol described in [Wess 05]. Our conclusions
are based on seven datasets, across different cancer types, platforms and diagnostic tasks.
Surprisingly, the results show that the univariate selection of genes performs very well.
It appears that the multivariate effects, which also influence classification performance,
can not be easily detected given the limited sizes of the datasets.
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4.2 Methods

4.2.1 Gene selection techniques

In this section we elaborate on the different univariate and multivariate selection strate-
gies employed in this study. The approaches are cast in a general framework which
highlights the choices made by the user, and facilitates direct qualitative comparison of
these approaches.

Gene selection approaches are, in fact, optimization strategies, which input

1. D, a dataset consisting of n object-label pairs,

2. g, a set of user-defined parameters which specify which type of classifier to use,
and possible algorithm dependent choices such as the ranking criterion and

3. 0, another user-defined parameter defining the evaluation procedure (if cross-
validation is employed, would specify the number of folds)

and which return the optimal value of a tunable parameter, ¢, such that the gene set
associated with ¢* (the optimal value of the tunable parameter) corresponds to the most
informative gene set. During this optimization process, each gene selection approach is
characterized by its own unique way to traverse and evaluate various gene sets. If we
denote the mapping associated with selection approach A by ®4, this can be formally
expressed in the following way:

¢4 =2a(D,bq,0s). (4.1)

For all the gene selection techniques described in this paper, the gene selection technique
employs a classifier to evaluate the informativeness of the gene set associated with a
given setting of ¢. Given a dataset, D, and a setting of ¢, the process which results in
this classifier involves both a gene selection and classifier training step which could be
separate or integrated. (This will be elaborated upon in the detailed descriptions of each
technique). Formally, this process can be described as follows:

waA = QA(Da 997 ¢A)? (42)

where w4 is the classifier trained on the geneset resulting from ¢ 4, 0 represents the pre-
viously define parameters, and 2 4(-) is a mapping representing the training and selection
process. During the optimization process, ® 4(-) repeatedly calls Q4(-) with different set-
tings for ¢ and employs the performance of w4 as quality measure to guide the process.
Upon completion of the optimization, the optimal classifier associated with the optimal
gene set is given by:

Wi = Qa(D, 00, 6%). (4.3)

Univariate gene selection

In the univariate approach (U) the informativeness of each gene is evaluated individually,
according to a criterion, such as the Pearson correlation, t-statistic or signal-to-noise ratio
(SNR) [Cho 03,Dudo 03,Chow 01,Ben 00]. The genes are ranked accordingly, i.e. from
the most to the least informative. This ranking defines a series of gene sets as well as the
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order in which they are subsequently evaluated. The first gene set is the best ranked gene,
the second gene set the best two ranked genes, etc. The informativeness of each gene set is
evaluated by estimating its cross-validation performance in combination with a particular
classifier. As ranking criterion we adopt the SNR and the t-statistic. The former, due to
its simplicity and popularity [Golu 99,Chow 01, Veer 02, Khan 01,Guyo 02], and the latter
in order to enable a better comparison with [Bo 02]. For the evaluation of every gene
set, we employ the Nearest Mean Classifier (NMC) with cosine correlation as distance
measure and the Fisher classifier (FLD). The Fisher classifier [Fish 36,Duda 01] is a linear
discriminant, it projects the data in a low dimensional space chosen by maximizing the
ratio of the between-class and within-class scatter matrices of the dataset, and in this
space classifies the samples. The within-class matrix is proportional to the pooled sample
covariance matrix. In case of singularity of the matrix, which arises if the number of
samples is smaller than the number of dimensions, the pseudo-inverse is used. In terms
of the formal framework, fq represents the choice of univariate criterion (SNR or t-
statistic) and classifier, while ¢ represents the desired number of genes selected. For
¢ = k, this would correspond to the top k ranked genes. 0¢ represents the type of cross
validation to employ during the training process.

Multivariate gene selection

Base-pair selection (BP). The base-pair selection algorithm was proposed for mi-
croarray datasets by Bo et al. [Bo 02]. The informativeness of genes is judged by eval-
uating pairs of genes. For each pair the data is first projected by the diagonal linear
discriminant (DLD) onto a one-dimensional space. The t-statistic is then employed to
score the informativeness of the gene pair in this space. A complete search evaluates all
pairs of genes and ranks them in a list — without repetition — according to the scores.
The computational complexity of this method is a serious limitation, therefore, a faster
greedy search is also proposed. The genes are first ranked according to the individual
t-statistic - as in univariate selection. The best gene is selected and the method searches
for a gene amongst the remaining genes which, together with the individual best gene,
maximizes the t-statistic in the projected space. This provides the first two genes of
the ordered list. From the remaining p — 2 genes the best individual gene is selected
and matched with a gene from the remaining p — 3 genes which maximizes the score in
the projected space. This provides the second pair of genes. By iterating the process,
pairs of genes are added, until all the genes have been selected. Similar to the univariate
selection approach, we have now established a series of gene sets as well as the order in
which they are subsequently evaluated, once again by starting with the first pair in the
ranking, and then creating new sets by expanding the previous set with the next pair of
genes in the ranking. Following [Bo 02], the Fisher classifier is employed to evaluate each
gene set. Formally, 0 represents the choice of DLD as mapping function, the t-statistic
as univariate criterion in the mapped space and the choice of the Fisher classifier to eval-
uate the extracted gene sets. ¢ represents the desired number of genes to be extracted
and A¢ represents the type of cross validation to employ during gene set evaluation.

Forward selection (FS). Forward gene selection starts with the single most infor-
mative gene and iteratively adds the next most informative genes in a greedy fashion.
Here, we adopt the forward search proposed by Bo et al. [Bo 02]. The best individual
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gene is found according to the t-statistic. The second gene to be added is the one that,
together with the first gene, has the highest t-statistic computed in the one-dimensional
DLD projected space. This set is expanded with the gene which, in combination with
the first two genes, maximizes the score in the projected space — now a three-dimensional
space projected to a single dimension. By iterating this process an ordered list of genes
is generated, once again defining a collection of gene sets, as well as the order in which
these are evaluated. Now the length of the list is limited to n genes. In [Bo 02] this upper
limit stems from the fact that the Fisher classifier cannot be solved (without taking addi-
tional measures) when the number of genes exceed n. Although elsewhere we employ the
pseudo-inverse to overcome this problem associated with the Fisher classifier, we chose to
maintain this upper limit in order to remain compatible with the set-up of [Bo 02]. More-
over, it keeps the selection technique computationally feasible. The formal definition of
parameters corresponds exactly to the base-pair approach, except that a greedy search
strategy (instead of the approach proposed by [Bo 02]) is employed in the optimization
phase.

Recursive Feature Elimination (RFE). RFE is an iterative backward selection
technique proposed by Guyon et al. [Guyo 02]. Initially a Support Vector Machine
(SVM) classifier is trained with the full gene set. The quality of a gene is characterized
by the weight that the SVM optimization assigns to that gene. A portion (a parameter
determined by the user) of the genes with the smallest weights is removed at each iteration
of the selection process. In order to construct a ranking of all the genes, the genes that are
removed, are added at the bottom of the list, such that the gene with the smallest weight
is at the bottom. By iterating the procedure this list grows from the least informative
gene at the bottom, to the most informative gene at the top. Note that the genes are
not evaluated individually, since their assigned weights are dependent on all the genes
involved in the SVM optimization during a given iteration. As was the case in all previous
approaches, a ranked gene list is produced, which defines a series of gene sets, as well
as the order in which these sets should be evaluated when searching for the optimal
set. In our implementation we adopt both the Fisher classifier and the SVM, with the
optimization parameter set to ¢ = 100 and a linear kernel. Both setups where proposed
by [Guyo 02]. While the Fisher classifier suffers from the dimensionality problem when
p ~ n (for p > n regularization occurs due to the pseudo-inverse [Skur 01]), it has
the advantage over the SVM that no parameters need to be optimized. Moreover, it
allows for a comparison with the other studied approaches which also employ the Fisher
classifier. We chose to remove one gene per iteration. Formally, 6 represents the choice
of SVM (or Fisher) as classifier to generate the evaluation weights for the genes, the
regularization parameter of the SVM, as well as the number of genes to be removed
during every iteration. ¢ represents the number of genes selected, while f¢ represents
the type of cross validation to employ during gene set evaluation.

Liknon. Bhattacharyya et al. [Bhat 03, Grat 02] proposed a classifier called Liknon
that simultaneously performs classification and relevant gene identification. Liknon is
trained by optimizing a linear discriminant function with a penalty constraint via linear
programming. This yields a hyper-plane that is parameterized by a limited set of genes:
the genes assigned non-zero weights by Liknon. By varying the influence of the penalty
one can put more emphasis on either reducing the prediction error and allowing more
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non-zero weights or increasing the sparsity of the hyperplane parameterization while
decreasing the apparent accuracy of the classifier. The penalty term therefore directly
influences the size of the selected gene set. Although [Bhat 03] fixed the penalty term
(C = 1), we chose its value in a more systematic way, via cross-validation. The penalty
term was allowed to vary in the range C € [0.1,...,100]. Formally, fq is obsolete, ¢
represents the penalty parameter and 6 the choice of cross validation type.

Top-scoring pair. A recent classifier called Top-scoring pair (TSP) has been proposed
by [Gema 04, Xu 05]. The TSP classifier performs a full pairwise search. Let X =
{X1,X2,...X,} be the gene expression profile of a patient, with X; the gene expression
of gene i. The top-scoring pair (7, 7) is the one for which there is the highest difference
in the probability of X; < X; from Class A to Class B. A new patient X% is classified
as Class A if X < X J'?l and as Class B otherwise. Advantages of the TSP classifier are
the fact that no parameters need to be estimated (no inner cross-validation is needed),
and that the classifier does not suffer from monotonic transformation of the datasets, e.g.
data normalization techniques. Formally, 6 and f¢ are obsolete, ¢ represents the best
pair of genes.

4.2.2 Training and evaluation framework

In order to avoid any bias, the selection of the genes and training of the final classifier
on the one hand and the evaluation of the classification performance on the other, must
be carried out on two independent datasets. To this end, the framework formalized in
[Wess 05], is adopted here. The framework is graphically depicted in Figure 4.1. The
whole procedure is wrapped in an outer cross-validation loop. (The inner loop will be
defined shortly). For N,-fold outer cross validation, the dataset, D, is split in N, equally
sized and stratified parts. During each of the outer cross validation folds, indexed by
J, the training set, D_;) consists of all but the jtP part, while the j** part constitutes
the validation set, denoted by D(;). During the training phase, two steps are performed.
First, gene selection is performed by optimizing the associated parameter (Equation 4.1).
This process also employs an N;-fold cross-validation loop (the inner loop) to generate and
evaluate gene sets. Each inner fold provides the error curve of the classifier as a function
of the number of genes. We compute the average of the curves across the folds. The
number of genes that minimizes the average error is considered to define the optimal gene
size. Subsequently the classifier is trained on the training set with the optimal parameter
setting as input (Equation 4.3), e.g. the optimal gene size for the given classifier. The
performance of this classifier is only then evaluated on the validation set:

pjl,j = \IIA(D(j)aw:})v (44)

where p} ; represents the performance of the optimal classifier on the outer loop val-
idation set of fold j, and W4 (-) the function mapping the dataset and classifier to a
performance. Averaging the validation performance across the N, folds yields the N,-
fold outer cross validation performance of the gene selection technique with the specific
user-defined choices. We adopted 10-fold cross-validation for both the inner and outer
loops. This choice is suggested by Kohavi [Koha 95], and was also applied to gene expres-
sion data by Statnikov et al. [Stat 05a]. The latter obtained similar results using a 10-fold



46 Chapter 4. A comparison of univariate and multivariate gene selection techniques...

Fold j of N,-Fold CV to validate predictor
Validate
o Validate final predictor N,-Fold
Va/lg:;/on r Validation Co‘ross
p P * P Performance Validation
Dy Pa; = WA(D(]‘)7WA) v p’i‘j _'Performance
A, Py
pata| | SPlit
Set in N, ]
equal Train
D parts |
Training Optimize gene selection Train final classifier
> Set ‘|> parameter
Dy || |¢4 = Pa(D(_jy:00:00)  |wi = Qa(D(_j) 0. d}4)
[ A

Figure 4.1: The training-validation protocol employed to evaluate various gene selection
and classification approaches in simplified schematic format. The input is a labeled
dataset, D, and the output is an estimate of the validation performance of algorithm A,
denoted by P4. The most important steps in the protocol are the training step (Block
labeled *Train’) and the validation step (Block labeled "Validate’). The training step, in
turn, consists of two steps, namely 1) the optimization of the gene selection parameter,
¢, employing a N; — fold cross validation loop and 2) training the final classifier given the
optimal setting of the selection parameter. The validation step estimates the performance
of the optimal trained classifier (w%) on the completely independent validation set.

or leave-one-out cross-validation. The former is preferable due to lower computational
requirements and lower variance.

To estimate the performance of a classification system we use the balanced average
classification error which applies a correction for the class prior probabilities, if these are
unbalanced. In this way the results are not dependent on unbalanced classes, and the
results on different classifiers can be better compared.

The algorithms were implemented in Matlab employing the PRTools [Duin 04] and
PRExp [Pacl 05] toolboxes.

4.2.3 Datasets

In total we employed seven microarray gene expression datasets. Four datasets, Central
Nervous System (CNS) [Pome 02], Colon [Alon 99], Leukemia [Golu 99] and Prostate [Sing 02],
were measured on high-density oligonucleotide Affymetrix arrays. Three datasets, Breast
Cancer [Veer 02, Vijv 02], Diffuse Large B-cell Lymphoma (DLBCL) [Aliz 00] and Head
and Neck Squamous Cell Carcinomas (HNSCC) [Roep 05] were hybridized on two-color
cDNA platforms. The datasets represent a wide range of cancer types. The tasks are
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(sub)type prediction (Colon, Leukemia, DLBCL and Prostate) while for the remaining
problems the goal is to predict the future development of the disease: patient survival
(CNS), probability of future metastasis (Breast Cancer) and lymph node metastasis (HN-
SCC).

The Breast Cancer dataset consists of 145 lymph node negative breast carcinomas,
99 from patients that did not have a metastasis within five years and 46 from patients
that had metastasis within five years. The number of genes is 4919. The CNS; dataset is
a subset of a larger study. It considers the outcome (survival) after embryonic treatment
of the central nervous system. The number of genes is 4458, while the number of samples
is 60, divided into 21 patients that survived and 39 that died. The Colon dataset is com-
posed of 40 normal healthy samples and 22 tumor samples in a 1908 dimensional feature
space. The DLBCL dataset is a subset of a larger study which contains measurements of
two distinct types of diffuse large B-cell lymphoma. The number of genes is 4026. The
total number of samples is 47, 24 belong to the ’germinal center B-like’ group while 23 are
labeled as ’activated B-like’ group. The Leukemia dataset contains 72 samples from two
types of leukemia where 3571 genes are measured for each sample. The dataset contains
25 samples labeled as acute myeloid (AML) and 47 samples labeled as acute lymphoblas-
tic leukemia (ALL). The Prostate cancer dataset is composed of 52 samples from patients
with prostate cancer and samples from 50 normal tissue. The number of genes is 5962.
For the HNSCC dataset, the goal is to predict, based on the gene expression in a primary
HNSCC tumor, whether a lymph node metastasis will occur. This dataset consists of 66
samples (39 which did metastasize, and 27 that remained disease-free) and the expression
of 2340 genes.

The datasets present a variety of the tissue types, technologies and diagnostic tasks.
In addition, the panel of sets contains relatively simple, clinically less relevant tasks, such
as distinguishing between normal and tumor tissue, as well as more difficult tasks, such
as predicting future events based on current samples. We therefore consider the datasets
suitable to perform a comparative investigation between univariate and multivariate gene
selection techniques.

4.3 Results

The focus of our work is on gene selection techniques. We adopted several univariate and
multivariate selection approaches. For each dataset, the average classification error across
the folds of the 10-fold outer cross-validation and its standard deviation are reported in
Tables 4.1 and 4.2. The best result for each dataset is emphasized in bold characters. For
comparison the performance of three classifiers, namely Nearest Mean Classifier (NMC),
Fisher (FLD) and the Support Vector Machine (SVM), is evaluated without any gene
selection being performed, i.e. when the classifiers are trained with all the genes. We
judge that method A with mean and standard deviation of the error rate ps and o4 is
significantly better than method B with mean and standard deviation of the error rate
up and op when pup > ua + oa. The stars in Tables 4.1 and 4.2 indicate results that
are similar when employing this rule-of-thumb.

As can be observed from Tables 4.1 and 4.2, the univariate approaches are signifi-
cantly better than both the multivariate approaches and cases where no gene selection
was performed in two cases: DLBCL and HNSCC. In addition, univariate approaches
are the best but not significantly better for the Breast Cancer and CNS datasets, and
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comparable to the best approach in the remaining two cases (Leukemia and Prostate).
Only for the Colon dataset, the univariate approaches perform significantly worse than
the multivariate TSP.

’ Method \ CNS \ Colon \ Leukemia \ Prostate ‘
gene selection mean + std | mean + std | mean £ std | mean =+ std
U, SNR, NMC | 30.4 £6.5* | 129+42 | 4.8+27* 9.7 £ 4.2
U, SNR, FLD 425 £ 7.3 19.2 £ 5.9 8.0 + 3.2 10.0 £+ 3.0
U, t-test, NMC 325 +49~ 125 £42 | 48+ 277 10.8 + 3.4
U, t-test, FLD 35.8 £ 6.5~ 11.7 £ 3.5 120+ 42 | 80+ 25~

BP greedy, FLD 43.8 + 6.2 129 £ 3.8 11.6 £ 3.6 9.8 £ 3.3
FS, FLD 479 £ 5.1 154 £ 4.1 10.2 £ 4.2 14.0 &+ 3.4
RFE, FLD 342+ 50"~ 229+44 |35 +26* | 10.0+26
RFE, SVM 354+ 5.0~ 221 +35 | 45£26* | 80£29*
Liknon 329 £6.1* 13.3 £ 4.2 11.8 £ 4.0 10.8 £ 3.7
TSP 47.0 £5.6 5.4 +2.9 106 £3.8 | 7.0 £2.6 *
no gene selection | mean + std | mean + std | mean £ std | mean + std
NMC 42.1 £ 5.5 179+33 | 3.5 £2.6* | 33.7+39

FLD 329 +6.3* 21.7+37 | 45+£26* | 80£25*

SVM 354707 221+35 |3.5+£26*| 80£29*

Table 4.1: The mean and the standard deviation of the 10-fold cross-validation error (in
percentage) for the different approaches and the Affymetrix platform datasets employed
in the study.

Employing the t-test or SNR in the univariate approaches has no effect on the error
rate when employed in combination with the NMC. However, it has a significant effect in
combination with the Fisher classifier. This is mainly due to the sensitivity of the Fisher
classifier when the number of training objects approaches the number of selected genes
during training [Skur 01]. This stems from the fact that the size of the selected gene-sets
changes considerably across the folds of the gene optimization procedure, and may lead
to sub-optimal gene set optimization.

Concerning the studied multivariate techniques, the base pair (BP) and forward search
(FS) approaches of Bo et al. [Bo 02] are significantly worse in the majority of the datasets,
with the exception of the base pair approach in the case of the Colon dataset. The
Liknon classifier reaches error rates comparable to univariate results on the CNS and
Colon datasets. The Recursive Feature Elimination [Guyo 02] performs slightly better
than the other multivariate approaches achieving performances that are not significantly
worse than the best approach on four datasets. However, in three of these cases, the
performance is similar to the results achieved without any gene selection. As was observed
by [Guyo 02], our results also indicate that there is no significant difference between
RFE employing the Fisher or SVM classifiers. Although the TSP method is the best
performing approach for the Colon and Prostate datasets, its performance is not stable
across the remaining datasets, in fact, it is worse than the best performing method in all
the remaining datasets.

Summarizing, in six of the seven adopted datasets there is no detectable improvement
when employing multivariate approaches, since better or comparable performances are
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] Method \ DLBCL \ HNSCC \ Breast ‘

gene selection mean + std | mean + std mean + std
U, SNR, NMC |25 +25* | 21.24+7.1*| 33.0£34*
U, SNR, FLD 15.8 + 6.4 33.3 £ 6.6 29.9 + 3.6 *
U, t-test, NMC | 2.5 £+ 2.5* | 21.2 £ 7.3* | 335 +38"*
U, t-test, FLD 158 £ 6.4 36.2 + 6.2 32.6 +3.0*

BP greedy, FLD 10.0 £ 4.3 36.2 £ 7.0 35.8 £23

FS, FLD 10.8 £+ 3.7 45.4 £ 8.5 35.4 £ 4.2
RFE, FLD 16.7 £ 5.3 35.0 £ 6.3 33.8 £3.5
RFE, SVM 15.8 £ 5.2 354 £ 7.2 32.6 £32*

Liknon 13.3 £ 5.3 375+ 74 34.5 £ 5.2
TSP 27.5 £2.8 37.6 £ 6.0 49.9 £ 4.6

no gene selection | mean + std | mean =+ std mean =+ std
NMC 6.7 £ 3.5 29.2 £ 7.2 36.7 £ 3.2

FLD 14.2 + 54 325+ 6.6 35.8 +4.1

SVM 9.2 £ 3.8 29.6 = 5.7 34.3 £ 4.2

Table 4.2: The mean and the standard deviation of the 10-fold cross-validation error (in
percentage) for the different approaches and the cDNA platform datasets employed in
the study.

obtained with univariate methods or without any gene selection. The classification per-
formance alone cannot be regarded as an indication of biological relevance, since a good
classification could be reached with different gene sets, and gene-set sizes, depending on
the methodology employed. This is in agreement with the studies of Ein-Dor at al. [Ein
05] and Michiels et al. [Mich 05]. These studies pointed out that the selected gene sets
are highly variable depending on the sampling of the dataset employed during training.
However, different gene-sets perform equally well [Ein 05,Bhat 03, Chow 01,Golu 99], in-
dicating that there is, in fact, a large collection of genes that report the same underlying
biological processes, and that the unique gene set does not exist. The lack of performance
improvement when applying multivariate gene selection techniques could also be caused
by the small sample size problem. This implies that there are too few samples to detect
the complex, multivariate gene correlations, if these were actually present. Only one
multivariate approach, namely the TSP method, was able to extract a pair of genes that
significantly improved the classification performance.

4.4 Conclusions

In gene expression analysis gene selection is undertaken in order to achieve a good classi-
fication performance and to identify a relevant group of genes that can be further studied
in the quest for biological understanding of the cancer mechanisms. In the literature it is
claimed that both multivariate and univariate approaches successfully achieve both pur-
poses. However, these results are often biased since the training and validation phases
of the classifiers are not strictly separated. Moreover, the results are often based on few
and relatively simple datasets. Therefore no clear conclusions can be drawn.
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Therefore, we have performed a comparison of frequently used multivariate and uni-
variate gene selection algorithms across a wide range of cancer gene expression datasets
within a framework which minimizes the performance biases mentioned above.

We have found that univariate gene selection leads to good and stable performances
across many cancer types. Most multivariate selection approaches do not result in a per-
formance improvement over univariate gene selection techniques. The only exception was
a significant performance improvement on the Colon dataset employing the TSP classi-
fier, the simplest of the investigated algorithms employing multivariate gene selection.
However, the performances of the TSP method are not stable across different datasets.
Therefore, we conclude that correlation structures, if present in the data, cannot be de-
tected reliably due to sample size limitations. Further research and larger datasets are
necessary in order to validate informative gene interactions.

Epilogue on Chapter 4

In Chapter 4 we have investigated several univariate and multivariate approaches for the
selection of an informative representation (gene-set) for classification purposes. The con-
clusion of the study is that the univariate gene selection leads to better and more stable
performances across many cancer types then the investigated multivariate approaches.
The multivariate gene selection was not able to point out gene-sets which would improve
the classification performance, proving to select less informative gene-sets than the uni-
variate ones. Can we conclude that the univariate approaches are the best choice? And
are they good enough?

We want to emphasize that the limited sample size is currently the major constraint
limiting the complexity of the gene selection and classification algorithms. Multivariate
aspects of the genes may not be detected simply due to the limited number of samples.
Another aspect concerns the use of the univariate selection methods. Are the classifi-
cation performances satisfactory for promoting the adoption of these procedures in the
clinic? This depends on many aspects. First of all on the problem definition. We have
observed that the classification performance is below 5% in some datasets (i.e. Colon,
Leukemia and DLBCL) while is about 30% in others (e.g. the NKI dataset). This sug-
gests that is easier to address questions such as discrimination of tumor/normal tissue
(Colon dataset) or a well defined subtypes of cancer (Leukemia, DLBCL datasets), then
questions such as the ability of a tumor to metastasize (NKI dataset). Whether these per-
formances are satisfactory depends on a comparison with the classification performances
of already available classical approaches. A second important aspect is the definition
of the requirements. In the comparative analysis we have performed, the average error
with equal class prior was used as a criterion to judge the methodologies. This may be
not a valid criterion e.g. in a screening situation, where the number of healthy persons
is expected to be much larger than the number of unhealthy ones. In this case a more
specific analysis is required (e.g. the Receiving Operating Curve analysis). Therefore, the
conclusions of this study cannot be extended without further investigation to different
scenarios.



51

Part 11






SIRAC: Supervised Identification of Regions
of Aberration in aCGH datasets

Chapter 5, concentrates on copy number data. We have developed an algorithm (SIRAC)
that exploits spatial dependencies in order to identify regions of chromosomal aberrations,
which are correlated with the classes of interest. In particular, the focus has been on the
characterization of copy number aberrations in the cancer subtypes identified by Sorlie
and Perou [Pero 00, Sorl 01, Sorl 03]. *

IThis chapter was published in BMC Bioinformatics [Lai 07].
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5.1 Background

Genomic alterations in DNA copy number are important events in cancer develop-
ment [Leng 98]. A tumor suppressor gene can be disabled by the physical loss of the
gene, or similarly an oncogene may be over-expressed via the amplification of the region
where it is located. The identification of chromosomal aberrations is, therefore, a power-
ful instrument in studies of cancer. It may suggest target genes for new drugs or shed light
on the mechanisms which regulate the response to therapies [Soti 07, Pink 05,Bert 03].

The first approach to search for copy number alterations in CGH has been made
by Kallioniemi et al. [Kall 92] using metaphase chromosomes. The extensions of this
technique employ array technology to perform a high resolution scan of the genome. As
reviewed by Pinkel et al. [Pink 05], several array CGH (aCGH) techniques have been
developed. The spotting technology makes use of BAC clones (100 — 200 kb), cDNA
clones (~ 100 — 1000 bp) and lately oligonucleotides (30 — 100 bp). More recently, in-situ
technologies synthesize small oligonucleotides directly onto the array. Since the oligos
can be a few tens bp long, higher resolution are reached, if a good coverage of the genome
is adopted.

An important challenge to analyze aCGH data is to find the aberrated chromosomal
regions specific to the problem under study, e.g. to distinguish between subtypes of
cancer. In order to reach this goal, three groups of approaches can be found in the
literature. The first group of approaches uses only the aCGH data. First they identify
the amplifications/deletions in each sample individually, and then search for the common
aberrations between the samples. The identification per sample of chromosomal regions
of aberration is a task in itself that has been approached in several ways. The simplest
solution is the application of a threshold. The DNA-probes (BAC clones, cDNA clones or
oligonucleotides) which exceed the threshold are considered amplified/deleted [Velt 03,
Call 05, Nayl 05, Schw 04]. The choice of the threshold is a very critical parameter.
Moreover, the threshold methods have the limitation that they do not take into account
the spatial location of the DNA-probes. Since amplicons (i.e. regions that are amplified
in a sample) are commonly assumed to involve more than a single DNA-probe, the spatial
position is an important factor. Several more complex algorithms have been developed
to identify, per sample, the aberrated regions in more robust ways. Lai et al. [Lai 05]
reviewed eleven different methods available in the literature. Numerous segmentation
methods have been proposed to divide the aCGH profile in piece-wise constant segments,
and a likelihood function is used to estimate the model parameters from the data. For
example, Picard et al. [Pica 05] modeled the aCGH profile with a random Gaussian
process and introduced an adaptive penalized likelihood to estimate the segments and
their locations. Jong et al. [Jong 03, Jong 04] proposed a genetic algorithm to maximize
the likelihood function. A different approach was introduced by Wang et al. [Wang 05a].
They identified the regions of amplification/deletion via a hierarchical clustering along
the chromosome.

The biologically relevant aberrations are not the ones that characterize a single sam-
ple, since these can be the consequence of the genomic instability of the particular tu-
mor. The more interesting aberrations are the ones shared by many samples, ideally
by all the samples in the same class. Previous studies combined the information of the
per sample aberration by looking at the frequency of patients that carry the aberra-
tion [Frid 06, Wang 05a, Velt 03, Nayl 05, Hyma 02, Guo 02]. Again a threshold on the
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minimal frequency is chosen. For example, Fridlyand et al. [Frid 06] require the aberra-
tions to be present in more than 50% of one class and less than 30% of the second class,
whereas Hyman et al. [Hyma 02] demands that the aberration be present in at least two
specimens.

These approaches have in common that the class information is taken into account
only in the second stage of the analysis, i.e. when computing the aberration frequency
across the samples. In the first phase also the aberrations common to more classes
are considered, even if they are not of interest for the study. This introduces an extra
parameter when evaluating the significance of the aberrations to distinguish the classes of
interest. Recently, Diskin et al. [Disk 06] proposed a more complex and systematic way to
evaluate the significance of aberrations across samples. However, they require the input
data to be discretized per sample into amplifications and deletions. This step can be
performed using one of the mentioned above methods, but makes the results dependent
on the particular approach chosen for discretization.

A second group of approaches to detect aberrations across samples uses only the gene
expression data together with the chromosomal location of the genes. The assumption
is that an amplification directly affects the expression of the genes. Therefore, the genes
in that region should have a detectable common over-expression. Similarly, the genes
located in a deletion would have a detectable under-expression. Furge et al. [Furg 05]
applied the binomial test per sample on the genes within a given window size. In order
to cover the whole genome, the window is slid across the genome, performing a test at
fixed intervals. The z-scores of the test for a particular location are averaged across
several window sizes and a threshold is chosen. The locations above/below the thresh-
old are identified as regions of chromosomal aberration. Levin et al. [Levi 05] applied
a Poisson model to the expression data and incorporated the genomic location in their
model-based scan statistic. These results are compared per sample with the aCGH data.
Yi et al. [Yi 05] used a sliding window size of 5 genes to test the significance of the
region according to two scores, which account for the homogeneity of behavior in the
window and the power of the genes in discriminating the classes of interest. Dressman
et al. [Dres 03] observed that the genes over-expressed shared the same location, hy-
pothesized an amplification and validated their findings with PCR. These studies show
interesting examples of aberrations identified using the transcriptome data only. How-
ever, the assumed strong correlation of aCGH and expression could not be detected by
other studies [Mele 05, Guo 02, Mart 03, Sanc 03]. Since the alteration in expression
may be due to diverse mechanisms, the potentially underlying chromosomal aberrations
would need to be verified either by PCR or FISH, if the number of loci to be tested is
tractable, otherwise by aCGH data. The advantage of the aCGH technology arises in
the genome-wide coverage of the analysis.

The third group of approaches combines aCGH and expression data to detect regions
of chromosomal aberration. The SLAM algorithm (Adler et al. [Adle 06]) is a prime
example of this group. First the SAM analysis [Tush 01] is applied to the aCGH data in
order to identify the DNA-probes which distinguish the two classes. Then the focus is on
the DNA-probes that are correlated with the expression data. Based on the observation
that many of them were on the same chromosome arm, the hyper-geometric distribution
was used to test the significance of that arm.

Inspired by the work of Adler et al. [Adle 06], we propose a supervised procedure to
identify chromosomal regions of aberration using solely aCGH data. We use the SAM
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analysis to determine the “relevant” DNA-probes, i.e. the DNA-probes that distinguish
the classes of interest. While Adler et al. [Adle 06] evaluated only a single location chosen
in an ad hoc fashion, we build a systematic search to test the whole genome. We adopt
a sliding window approach similar to the one proposed by Furge et al. [Furg 05]. More
specifically, we apply a hyper-geometric test to window sizes of different length, and test
the significance of the number of relevant DNA-probes in those windows. Our algorithm
belongs to the first group of approaches, since it uses only aCGH data. However, it
differs from the typical approaches in this group in the following ways. First of all it
focuses only on the aberrations specific to the problem of interest, by exploiting the class
labels in the first step (recognizing relevant DNA-probes). Importantly, no discretization,
smoothing or segmentation algorithms are applied to the aCGH data. This leads to the
advantage that the data is not altered based on the preconceived models that these
algorithms presume. Moreover, we also avoid the optimization of the parameters that
these models usually require (avoiding results sensitive to these choices). The use of the
hyper-geometric test corrects for the non-uniform background distribution of the DNA-
probes. This is particularly important since the DNA-probes are not equally spaced
along the genome. In this way we build a robust algorithm to identify areas of interest
specific to the problem under study. We illustrate the benefit of our procedure on an
artificial dataset, and show the results on two breast cancer datasets.

5.2 Algorithm description

Figure 5.1 illustrates our algorithm STRAC (Supervised Identification of Regions of Aber-
ration in aCGH data). A detailed description is given in Algorithm 4. An aCGH dataset
D and its label set y provide the starting point. The procedure consists of three steps.

STEP 1. We identify with the SAM analysis [Tush 01] the DNA-probes which discrim-
inate between the classes of interest. We call these DNA-probes the “relevant” probes.
In Figure 5.1 (Step 1) the relevant DNA-probes are depicted on the genomic location.
Each probe is plotted with two circles of different color representing the median value of
the samples in the two classes.

STEP 2. We test, in a systematic way, whether the number of relevant DNA-probes in
a region is higher than expected by chance. For this purpose we use the hyper-geometric
test for a genomic position, and test whether the fraction of relevant DNA-probes in
the window of length 2w represents a significant enrichment. By sliding the window
of observation along the genome, shifting it a single DNA-probe position at a time, we
obtain the test results for all positions. This procedure can be done effectively since
the genomic locations where the test presents uncertainty, and therefore, needs to be
computed, are only a subset of all genome positions. The locations are dependent on
the positions where the relevant DNA-probes are situated. More precisely, for a given
window w, the test needs only to be performed for three positions: a window centered
on the location [ of the DNA-probe itself, and two windows centered at | — w and [ + w,
i.e. centered at the end points of the first window. Consequently, tests are done for the
three windows [l — 2w, I], [l — w, I + w] and [l, [ 4+ 2w] around the relevant DNA-probe.
In total 3k tests are performed, where k is the number of relevant probes. This solution
is computationally fast and allows a feasible multiple testing correction while providing
the coverage of all genome positions relevant to the test. A Bonferroni correction for
multiple testing is applied by multiplying the p-value of each test by the number of tests
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Figure 5.1: Tllustration of the algorithmic steps of SIRAC with the corresponding results
for the label Luminal A subtype versus all others subtypes. In Step 1 the relevant DNA-
probes are selected. Each DNA-probe is plotted on the genomic location with two circles
of different color representing the median value of the samples in the two classes. In
Step 2, the vertical axis represents the different window sizes, the lines along the genome
(the horizontal axis) show the regions judged significant by the algorithm. In the final
step, Step 3, the number of window sizes for which the location is judged significant by
the hyper-geometric test are shown along the vertical axis. The relevant region selected
when s = 9 is highlight by the lower curve.

performed (3k). Note that the Bonferroni correction is a rather conservative correction,
since the windows of observation of different DNA-probe may not be independent.

In order to identify the regions of aberration, we interpolate the corrected p-values
of the hypergeometric test using the maximum value; i.e. given two successive locations
with corrected p-value a and b, the base-pairs positioned between those locations are
assigned the maximum of a and b. The base-pairs of the genome where the corrected
p-value is smaller than 0.05 are considered significantly enriched for genomic aberrations.
This step is repeated for different window sizes in order to detect both small and large
aberrations. An illustrative result is shown in Figure 5.1(Step 2). On the vertical axis
are the different window sizes, the lines along the genome (the horizontal axis) show the
regions judged significant by the algorithm.

STEP 3. The regions of aberration are identified based on a consensus between the
results of the different window sizes. As illustrated in Figure 5.1 (Step 3), the number of
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window sizes for which a location is judged significant by the hyper-geometric tests are
shown on the vertical axis. The “relevant” regions are the locations judged significant by
at least s window sizes (the result for s = 9 is depicted by the lower curve in Figure 5.1
(Step 3). The researcher can decide to accept relevant regions as those in which any of the
window sizes showed a significance, or may be more strict and demand the significance
across several scales. The regions of chromosomal aberration are provided as output.

Algorithm 3 SIRAC: Supervised Identification of Relevant Aberration in aCGH datasets
1: Input: dataset D, label set y, SAM parameters: § for the desired false discovery
rate and number of iterations I; vector W with half the sizes of observation windows;
threshold ¢ for the hyper-geometric distribution; minimum number of windows sizes
s for which the location is judged significant.
2: Apply the SAM analysis with the given parameters ¢ and I to the labeled dataset
D,y. A vector J stores the indexes of the relevant DNA-probes obtained.
3: Initialize variables: P = ones(|W]|,3|J]|), stores the p-value of the test; POS =
zeros(|W/, 3|J]) stores the location where the test is applied.
4: Yw € W (for all window sizes)
5. - Initialize: bon=0; (count the number of tests performed)
6: - Vj € J (for all relevant DNA-probes)
_ Determine position of the window centers C = [l — w,l7,19 + w] around the
DNA-probe, with I/ the position of the jth DNA-probe.
If Ch(l? —w) = Ch(l7) = Ch(lV + w), with Ch a function that assigns
thl(le chromosome number of the corresponding base pair location
9: - Then

7

10: - Initialize: H = ones(1, 3), (stores the test value for the triplet position in C)
11: - Ve € C (for all window positions)

12: ~h =" H(i|M,k,N), with:

13: 2 = number of relevant DNA-probes in the window [¢ — w, ¢ + w],
14: M = number of DNA-probes in the dataset D,

15: k = number of relevant DNA-probes in the dataset D,

16: N = number of DNA-probes in the window [¢c — w, ¢ + w].

17: -H¢=1-h;

18: - bon=bon+1; (update the counter)

19: - End

20: - P¥ = H; (P“ is the p-value on row w and probe triplet 5);

21: - POS™I = C; (POS™ stores the triplet window location);

22: - PY = P" x bon; (Bonferroni correction)

23: V1 € G (all positions in the genome):

24: - Fy =3, N/, (F; = number of window sized where the test is above the threshold
t), with:

1, if3j, |l <1< VPerr&maz (P, PWYat1) < t),

0, otherwise.

26: Output: all locations with F; < s.

25: NP =
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Complexity and scalability issues

Our real datasets are BAC aCGH, with ~ 3000 DNA-probes. The complexity of the
SIRAC algorithm is 1) O(Nlog(N)), where N is the total number of elements (DNA-
probes) in the array (since the SAM analysis has to be performed for each single probe),
and 2) O(k), where k is the number of relevant elements selected by SAM (since the
hypergeometric test is applied three times per relevant probe). Therefore, SIRAC can
be used also with higher resolution aCGH, such as the cDNA or the oligo arrays. To
give an indication of the time demands we have evaluated the run time of SIRAC on
our computer server (an Intel Xeon 2.33 GHz with 8 G of memory). The run time for
the NKI dataset with 2952 DNA-probes, and 692 relevant DNA-probes was 50 seconds;
while STRAC took 401 seconds to run on a cDNA array dataset with 30601 DNA-probes,
2532 of which were judged relevant by the SAM analysis.

5.3 Experimental results

5.3.1 Set-up

We illustrate our algorithm on an artificial dataset, described in the following Section and
apply our method to two breast cancer datasets. The first dataset (NKI) is composed
by 67 patients and 3219 BAC clones (DNA-probes). The samples are a selected series of
the 295 breast cancer samples described in [Vijv 02], and the BAC platform is discussed
in [Beer 05]. The second dataset (Fridlyand) contains 67 samples and 2464 BAC clones,
as described in [Frid 06].

In our proposed algorithm there are a few choices that the researcher has to make.
A first important decision concerns the number of relevant DNA-probes. We choose to
be conservative and require that the selected DNA-probes have a false discovery rate
smaller than 0.005. This ensures that we include a very small fraction of false positive
DNA-probes in further steps. Another parameter is the range of window sizes that are
used to probe the genome. Since the average space between the clones is 1 Megabase
(Mb), the minimum window of observation is set to 1 Mb. The maximum window size
is fixed to 24 Mb because this is roughly half the length of the shortest chromosome. In
this way, we enforce that the largest window does not always cover both the p and q arm
of the chromosome.

5.3.2 Results
Artificial dataset

The artificial dataset is created using the clone distribution of the 207 clones of Chro-
mosome 1 on the NKI array. The amplitude of the DNA-probes is drawn from a normal
distribution with zero mean and unit variance A/(0,1). We chose to have two classes
with 35 samples each. In Class 1 we simulate an amplification of amplitude m spanning
u DNA-probes situated between positions [; and l.. The remaining DNA-probes have an
average amplitude of zero. For Class 2 all samples have an average amplitude of zero for
all DNA-probes. Zero mean, unit variance Gaussian noise is added to all samples across
all DNA-probes. More formally, for a DNA-probe p at position [ in a sample of class 1
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Figure 5.2: Sensitivity and specificity of the different window sizes for 10 instantiations
of the artificial dataset with amplification amplitude m = 0.8. For each plot, on the hor-
izontal axis are the distinct window sizes used to detect the amplification. The different
color bars show the results for the individual amplification lengths u adopted.

the following holds:

() = {fv“m’ Dl etel 6.1)
(0,1), otherwise.
The samples in the other class are all drawn from the normal distribution A/(0,1). The
artificial dataset provides us with a ground truth which allows us to investigate the sensi-
tivity and specificity of the algorithm and the effects of different window sizes. We applied
our algorithm to amplifications with a range of amplitudes (m € {0.2,0.4,0.6,0.8,1}) and
widths (u € {2,4,8,12,16, 20, 24, 28,32} megabases (Mb)).

Given the region of amplification found by the algorithm, the DNA-probes located
in this region that also belong to the interval between positions [; and [, are defined
as true positive, while the DNA-probes outside the interval are denoted false positives.
Similarly, for the DNA-probes outside the region of amplification found by the algorithm,
true negatives are the DNA-probes outside the interval between positions [, and [, while
false negative are the DNA-probes included in this interval. In general, the same trend
for specificity and sensitivity as a function of m is observed. Figure 5.2 shows the average
sensitivity and specificity for 10 different instantiations of the artificial dataset with the
amplitude of the amplification m = 0.8. On the horizontal axis are the different window
sizes used to detect the amplification. The different color bars show the results for the
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different amplification lengths, u, adopted. In the upper plot the sensitivity is shown.
Let us focus on the amplification of length 2 Mb (dark blue bar). It can be seen that the
maximum sensitivity is reached for window sizes of length 2 and 4 while the sensitivity
decreases for larger window sizes. Similarly the amplification of length 16 Mb (green bar)
is detected with the maximum sensitivity of 1 by a window size 18 Mb. Consequently,
smaller window sizes detect small amplifications better, while larger window sizes more
accurately reveal the larger amplifications. This behavior highlights the benefits of using
window sizes of different lengths, to detect both large and small chromosomal aberrations.
As expected, the specificity is maximal for small window sizes and decreases when larger
window sizes are used. This behavior is due to the fact that wider window sizes include
a larger number of false positives DNA-probes than the smaller windows sizes.

In our algorithm, we combine the different window sizes in order to obtain a unique
region of amplification, by setting the parameter s. A location is amplified if it is judged
amplified in s window sizes. We also investigated the effect of the parameter s. The
top four plots of Figure 5.3 illustrates the sensitivity and specificity for two values of the
parameter s, i.e. s € {2,9}. We choose s = 2 as a loose constraint, while the more strict
value of s = 9 requires the consensus of two-thirds of the window sizes. For each plot,
the horizontal axis depicts the different amplification lengths, v used, and the vertical
axis the amplitudes of the amplification, m. The colors code the value of the sensitivity
and specificity from 0 to 1. The small amplification of m = 0.2 is very difficult to detect,
therefore the sensitivity is very low regardless of the length of the amplification (bottom
row of black squares in Figure 5.3 (a)). When the amplification amplitude increases,
the sensitivity rises as well. If s = 9 fewer extremely large and small aberrations are not
detected compared to s = 2, in other words, the sensitivity is lower when s = 9 compared
to s = 2. However, at the same time, the specificity increases (Figure 5.3 (d)).

In order to evaluate the control of the error rate, we computed the False Positive Rate
(FPR), which is defined as %, with FP representing the number of False Positives
and TP the number of True Positives. Figure 5.3 (e) and (f) shows the FPR for s = 2 and
s = 9 discretized into 10 equal sized intervals of size 0.1. We can observe that when s = 9
the FPR is mostly below 0.1, while the control of the FPR is not so strict when s = 2.
However, the improved control of the FPR is achieved at the cost of the sensitivity. In
the following experiments with real data, we choose to use the less stringent constrain
of s = 2 to maximize the sensitivity. A further prioritization of the DNA-probes in a
region can take into account the “strength” of the amplification. For example, the list of
DNA-probes may be prioritized according to the number of window sizes in which each
DNA-probe is judged aberrated. In this way, the strong aberrations can be differentiated
from the weak ones.

The NKI dataset

Sorlie and Perou [Pero 00, Sorl 01, Sorl 03] introduced the distinction of breast cancer
into five different subtypes (Basal, ERBB2, Luminal A, Luminal B, Normal-like) based
on the gene expression of the so called intrinsic genes. These genes were selected as the
genes that had significantly greater variation in expression between different tumors than
between paired samples of the same tumor. Using these genes, the profile of a centroid
was obtained for each subtype. These centroids, in combination with the gene expression
of 295 breast tumors [Vijv 02] were employed to assign each sample in the NKT set to
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Figure 5.3: Sensitivity, specificity and False Positive Rate (FPR) for two values of the
parameter s, i.e. s € {2,9}. For each plot, on the horizontal axis are the different
amplification lengths u used, and on the vertical axis are the different amplitudes of the
amplification m. The colors code the value of the sensitivity, specificity and FPR from 0
to 1.

one of the subtypes based on its correlation with the centroid profiles across the intrinsic
genes. In the NKT data, 21 out of 67 samples were labeled as Basal, 10 as ERBB2, 21 as
Luminal A, 12 as Luminal B and 3 as Normal-like.

Recently, Bergamaschi et al. [Berg 06] studied the genomic aberrations of the different
subtypes on a aCGH dataset. We applied our method to the NKI dataset and compare
our findings to the results of Bergamaschi et al. [Berg 06]. More specifically, we applied
the SIRAC algorithm four times, each time analyzing one subtype against the rest. The
Normal-like subtype was not considered in this analysis due to the small number of
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Figure 5.4: Results of Step 1 and 2 of the SIRAC algorithm for the four different subtypes
in the NKI dataset. In the top panel of each figure the relevant DNA-probes detected
by the SAM analysis are displayed on their genomic location (horizontal axis). For each
relevant DNA-probe a circle and an x mark are plotted at its location, representing the
median of the class of interest (Basal, ERBB2, Luminal A or Luminal B) and the median
of the remaining samples. In the bottom plot, the regions identified by the algorithm as
significantly aberrated are shown for all genomic locations (horizontal axis) with a line
for each window width used (vertical axis). The length of the line indicates the region
on the genome that is significantly enriched with relevant DNA-probes.

samples.

Figure 5.4 shows the results of Step 1 and 2 of the STRAC algorithm for the four
different subtypes in the NKI breast cancer dataset. In the top plot of each figure
the relevant DN A-probes detected by the SAM analysis are displayed. For each relevant
DNA-probe a circle and an x mark are plotted at its location on the genome, representing
the median of the class of interest (Basal, ERBB2, Luminal A or Luminal B) and the
median of the remaining samples. From these plots it is visible how some locations are
significantly more densely populated by relevant DNA-probes than others. The lower
plot of each subtype highlights the regions of aberration detected by SIRAC.

Figure 5.5 (a) summarizes the aberrations found on the p or q chromosomal arms
of the different subtypes when s = 2. a box with inclined lines specifies a deletion,
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Figure 5.5: Summary of the aberrations per chromosome arm for the four different sub-
types (Basal, ERBB2, Luminal A or Luminal B). The numbers in the top of the tables
denotes the chromosomes. A arm is indicated with a inclined lines when a significant
region is found on that arm that shows a deletion of the clones of interest. Similarly, a
box filled with circles indicates amplification. The uniform gray boxes indicate that the
aberration was not present in the class of interest but in the rest of the samples. The
top and the bottom tables show the aberrations found with the SIRAC algorithm on
the NKI dataset for two different values of the FDR, i.e. FDR < 0.005 and fdr < 0.05
respectively. The middle table presents the results of Bergamaschi et al. [Berg 06] on
their breast cancer dataset.

a box filled with circles an amplification, and a uniform gray box indicates that the
aberration was not in the class of interest. Note that the resolution of SIRAC is neither
restricted to chromosome arms nor to cytobands. The representation per chromosomal
arm given in Figure 5.5 is adopted only for the sake of conciseness. The Basal subtype
is associated with the largest number of aberrations, with deletions on Chromosomes
4,5,14 and 15, and amplifications on Chromosomes 6,10 and 12. The ERBB2 subtype
has only an amplification on the q arm of Chromosome 17, covering the genomic position
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where the ERBB2 gene is located. This is a known aberration, and the results suggest
that this is the only aberration that differentiates this subtype from the other samples.
The fact that this known aberration is found, also serves as a positive control for the
SIRAC algorithm. The Luminal A subtype is characterized by a strong amplification on
Chromosome 1 and a deletion on Chromosome 16. The Luminal B has less pronounce
aberrations on Chromosomes 1,8,12 and 20.

We compared our findings with the conclusions of Bergamaschi et al. [Berg 06] that
also searched for aberrations associated with subtypes on a different aCGH dataset. They
first used the CLAC algorithm [Wang 05a] to determine per sample the chromosomal
gains and losses, then discretized the information per cytoband. Finally they use the
SAM analysis to identify the aberrations correlated with the class labels. The aberrations
found by them are summarized in Figure 5.5(b). In the Basal subtype, 6 of the 7
aberrations found by applying SIRAC to the NKI dataset are also in their list. The
ERBB2 subtype only has the amplification on Chromosome 17, as in our findings. In
the Luminal A subtype the strong amplification on Chromosome 1 is present while the
one on the p arm of Chromosome 16 only reaches significance for an FDR = 0.05. In
fact, as it is visible from Figure 5.4 (¢), on the q arm of this chromosome many relevant
DNA-probes show a deletion, while fewer DNA-probes on the p arm, although present,
are not significant. In the Luminal B subtype, one of the three regions found by us is
also present in Bergamaschi et al. [Berg 06] results.

Some of the differences between our results obtained on the NKT dataset and Bergam-
aschi results can be explained by the fact that our algorithm targets only the aberrations
specific for a given class when compared to the rest of the samples. Therefore, we don’t
have the same aberrations for two subtypes. This is, for example, the case for the am-
plification on Chromosome 17 that is present both in the Basal and ERBB2 subtype
for Bergamaschi et al. [Berg 06] while it is only a feature of the ERBB2 subtype in our
results. Similarly, the amplification on the q arm of Chromosome 1 is a strong aberration
only in the Luminal A subtype in the NKT dataset, while Bergamaschi et al. [Berg 06]
reported it for both the Luminal A and the Basal subtypes. Another aspect to take into
account is that we choose an FDR < 0.005 for the identification of the relevant DNA-
probes by the SAM analysis. This rather strict value limits the number of false positives,
and enables us to highlight the stronger aberrations. We repeated the experiments with
a less strict constraint, i.e. using a FDR smaller than 0.05 or 0.1. The results for the
FDR < 0.05 are shown in Figure 5.5 (c). Four more aberrations were detected in the
Basal, two of which are present in Bergamaschi et al. [Berg 06] (the amplification on
Chromosome 7, and the deletion on the q arm of Chromosome 12). The ERBB2 still
shows only the amplification on Chromosome 17. In the Luminal A subtype we detected
one more amplification on the p arm of Chromosome 16, in agreement with the results of
Bergamaschi et al. [Berg 06]. On the other hand, we find a few more aberrations for the
Luminal B subtype, but these did not match the findings of Bergamaschi et al. [Berg 06].

Overall, given the differences in the datasets and in the methodology used, we can see
striking similarities in the subtype characterization of the cancer. Especially the Basal,
the ERBB2 and the Luminal A subtypes seem better defined, while the Luminal B type,
seems rather weak, and we advocate that a better definition of this subtype needs to be
established.

As stated earlier, we simply chose to represent the detected aberrations in terms of
chromosome arms in order to ease the comparison with Bergamaschi et al. [Berg 06].
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However, such a representation does not highlight a very useful feature of the SIRAC
algorithm: the scale space. The scale space allows evaluation of aberrations at different
genomic resolutions, and the number of scales across which an aberration remains signif-
icant can also be employed to judge the importance of a region, for a fixed SAM-FDR.
By employing this feature, one can zoom in on potentially interesting regions, where the
aberration has a larger average amplitude, and is of medium length (see Figure 5.1 (Step
3)). When increasing the number of scales (s) across which an aberration should be sig-
nificant, the number of DNA-probes in significant regions across the genome is typically
reduced strongly. More specifically if, for the NKI dataset, s is changed from s=2 to
s=9, the number of DNA-probes in significant regions decrease from 174 to 56 for the
Basal subtype (68% reduction), 76 to 31 for ERBB2 (59% reduction), 135 to 86 (36%
reduction) for Luminal A and 33 to 7 (79% reduction) for Luminal B. Therefore, if only
copy number is employed to identify putative regions (genes), the scale space analysis
provides a powerful tool to reduce the list of genes putatively involved in the studied
process.

The Fridlyand dataset

Recently, Fridlyand et al. [Frid 06] analyzed the aberrations of 67 breast cancer samples.
First they smoothed each sample using Circular binary segmentation [Olsh 04], and
defined chromosomal aberrations per sample. Based on the clustering of the smoothed
data they identified three subtypes, i.e. the 1q16q, the Complex and the Mized amplifier
subtypes. The 1q16q subtype is named after the only copy number aberrations detected,
i.e. a gain on 1q and a loss on 16q. The Complex subtype is characterized by many low
level copy number alterations, mainly ER negative tumors, and worse outcome than the
others subtypes. The Mized amplifier subtype tumors were both ER positive and ER
negative and did show several aberrations. They analyzed the aberration frequency in
each subtype in order to find patterns of chromosomal changes across samples.

We applied our algorithm to their data, analyzing each subtype against the remain-
ing samples. Figure 5.6 summarizes our findings. We identified a loss on the q arms
of Chromosomes 16 and 4 for the 1q16q and the Complex subtypes respectively, and
the amplifications on Chromosomes 8,16 and 20 for the Mized amplifier subtype. The
comparison with the conclusions of Fridlyand et al. [Frid 06] is not straightforward, since
their goal was not to identify aberrations specific for one class. Their results consist in a
frequency plot for each subtype of the copy number changes more frequently associated
with it. More specifically, they show the frequency of the clone aberrations present in
more than 50% of the samples of one subtype and in less than 30% of the samples in the
other subtypes. This illustration is not clearly pointing out the differences between sub-
types, since often a percentage of the same aberration is present in two or more subtypes.
However, our findings show correspondences with the results of Fridlyand et al. [Frid 06].
They define the class 1q16q as exhibiting an amplification on Chromosome 1 and a dele-
tion on Chromosome 16. We only detect the deletion on Chromosome 16. We think that
the aberration on Chromosome 1, which is not detected by our algorithm, may be not
specific for this class. From the data it is apparent that this amplification is present in
all samples, i.e. not specific for the 1¢16q subtype. Other aberrations detected by our
algorithm reflect a pattern in the frequency plot of Fridlyand et al. [Frid 06], such as for
the deletion in 4q of the Complex subtype and the amplification in 8¢ of the Mized am-
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Figure 5.6: Summary of the aberrations per chromosome arms for the Fridlyand dataset.
The deletions are depicted with inclined lines, and the amplification with circles, the
uniform gray boxes indicates that the aberration was significant not in the class of interest
but in the rest of the samples.

Amplifier Complex 1q16q
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plifier subtype. In other cases, such as the amplifications on Chromosomes 16 and 20 in
the Mized amplifier class, our findings are not reflected in the frequency plot of Fridlyand
et al. [Frid 06]. In conclusion, the results of SIRAC and Fridlyand et al. [Frid 06] exhibit
partial overlap. The advantage of our algorithm is that it better highlights the differences
between subtypes and clearly points out the specific chromosomal aberrations.

5.4 Discussion and conclusions

We have presented a method to identify aberrant chromosomal regions that are specific
for the problem under study. Our emphasis is not on the identification per sample of a
chromosomal gain or loss, but we strive to evaluate what makes two classes different from
each other, and what are the aberrations that distinguish them. We also want to limit
the number of preprocessing steps, in order to reduce the set of inevitable parameters
to be tuned. This motivated us to avoid the characterization per sample of the DNA-
probes being amplified or deleted, which is instead the necessary input data for the STAC
algorithm [Disk 06] and the approach followed by Fridlyand et al. [Frid 06]. We chose
to use the raw data as input and assumed that a DNA-probe amplified/deleted in one
class and not in the other is selected as significant by the SAM analysis. Of course the
researcher has to choose the appropriate false discovery rate. This decision influences
the number of DNA-probes preselected as relevant. This is an important starting point
of our algorithm. We opted for a low false discovery rate for all the problems analyzed.
The different number of relevant DNA-probes selected in the distinct cases already gave
us an indication of the number and the strength of the chromosomal aberrations. For
example in the NKI dataset the largest number of relevant DNA-probes was present in
the Basal subtype, while the ERBB2 class was associated with only a few DNA-probes
mainly on Chromosome 17.

Our algorithm is designed to identify the copy number alterations in the aCGH data.
The core of the algorithm resides in the identification of the regions of chromosomal
aberration. We assumed that an aberration involves more than a single DNA-probe.
Therefore, we tested in a systematic manner the candidate regions, i.e. the locations
in the vicinity of the DNA-probes identified by the SAM analysis. The use of different
window sizes allows us to detect different lengths of copy number changes and not to
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miss aberrations in regions sparsely covered by the aCGH probes. Since for the samples
in the NKI data also the expression is available, we tested if similar results could be
obtained by applying our algorithm to the expression directly, as Furge et al. [Furg 05]
did. However, the assumption that an over/under expression should involve more than a
single gene here does not hold anymore. Even if a region is amplified, not all genes may
be active and, therefore, differentially expressed with respect to the reference. Moreover,
while in the aCGH data the only cause of aberration resides in the copy number variation,
the variance in the expression is due to multiple factors. In general, we observed in our
expression dataset that the relevant genes selected by the SAM analysis were scattered
across the genome and, therefore, no clear regions of significance were identified. This
result further indicates that the detection of genomic aberration using gene expression
datasets should be performed with caution, and results should always be validated with
other tests, such as FISH or PCR, if not with genomic copy number data itself.

Instead, the expression data can be used to perform a post-processing step on the
algorithm applied to the aCGH data. Once the aberrated regions have been identified,
the expression data allows for a further analysis of the genes present in these regions. For
example, the genes can be prioritized according to the correlation between the expression
and the aCGH data, or according to the ability of each gene to distinguish between the
classes of interest. This is especially relevant since we expect that, for instance, not all
genes in a region of aberration will be active, some may be silent and not contributing to
the mechanism of cancer. A selection can be done based on this additional information
source, resulting in a smaller list of potentially interesting genes to be further analyzed.
The benefits of the use of the expression data are exemplified by the ERBB2 subtype
in the NKI dataset. The genes present in the amplified region of Chromosome 17 were
ranked according to the product of the p-value of the t-test (computed on the gene
expression and class labels) and the p-value of the correlation between the expression of
each gene and its closest DNA-probe. The top two genes are the ERBB2 gene itself and
the GRB7, i.e. the growth factor receptor-bound protein 7. This is expected since the
ERBB2 subtype is characterized by the amplification of the ERBB2 gene, and the GRB7
is found to be over-expressed and co-amplified with the ERBB2 gene [Kaur 01, Dres 03,
Reya 05]. Therefore, a combined approach of SIRAC and the use of gene expression is a
powerful additional tool in the search for marker genes.

In the SIRAC algorithm we first detect associations of single probes with the class
label, and then search for regions that are enriched for class label associated probes.
This is advantageous especially when working with tumor samples. The heterogeneity of
the tumors may lead to signals for the aberrations smaller than the ones expected if the
sample cells were homogeneous. Therefore, amplifications/deletions with small absolute
values may be of interest as well, especially when they discriminate the classes of interest.
Several authors (e.g. Saramaki et al. [Sara 06], Fridlyand and Chin et al. [Frid 06,Chin 06],
and Nymark et al. [Nyma 06]) have recently pointed out that even low-level copy number
aberrations may have significant effects on the gene-expression and, therefore, on the cell
functioning and tumor development.

The error rate control of SIRAC is performed in two different steps. First the null-
hypothesis being constructed during the permutation steps of the SAM procedure, sec-
ond, the Bonferroni correction for multiple testing applied to the p-values of the hyper-
geometric test. The artificial experiment illustrates how the dependencies between these
two steps may lead to an anti-conservative control of the error rate. The choice of the
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parameter s, which combines the outcomes of different window sizes, plays an important
role. The artificial experiments suggests that the stricter the value, e.g. s = 9, the better
the control of the error rate. However, this is achieved at the expenses of the sensitivity.
Therefore, less conservative choices, e.g. s = 2, may be used. In this case, the p-values
of the hypergeometric test need to be interpreted with caution. The SIRAC algorithm,
however, provides useful details, such as the number of window sizes in which each DNA-
probe was judge significant, that can be used to further prioritize the regions. Moreover,
if the expression data is available, further validation of the aberrations may be performed
by investigating the correlation with the expression of the genes in the identified region.

In conclusion, we focused on the identification of the chromosomal aberrations that
discriminate between the classes of interest and proposed a robust algorithm for the
evaluation of their significance. Our algorithm does not require preprocessing of the
data such as discretization or smoothing, and uses a limited number of parameters. Our
findings on the two breast cancer datasets are in agreement with previous studies, and
better highlight the dissimilarities between the classes of interest.






Integration of DNA copy number alterations
and prognostic gene signatures to predict
prognosis of patients with breast cancer

This chapter extensively describes the implications of genome copy number alterations
in breast cancer. Special attention is devoted to 68 samples selected from the NKI co-
hort [Vigu 02], for which both copy number and exrpression data were available. The
regions of aberrations identified with SIRAC, have been further investigated by analyz-
ing the expression of the genes on the same genomic location. The objective has been
to identify the genes that were affected by the copy number alterations and have major
functional involvement in breast cancer development. !

IThis chapter will be submitted to Cancer Research [Horl ed]
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6.1 Introduction

Invasive breast cancers are a diverse group of tumors whose clinical behavior is com-
plicated to predict. Currently, clinical and pathological prognostic factors such as, age,
lymph node status, tumor diameter, histological grade, HER2 gene amplification or pro-
tein over-expression and estrogen receptor status, are employed to identify patients at
relatively high risk of developing metastases. It is of utmost importance to identify those
patients because they benefit most from adjuvant systemic treatment. For this reason,
several decision making tools have been developed [Blam 07, Gold 07,Ravd 01]. However
they do not perfectly predict the exact clinical behavior of breast tumors and as a con-
sequence patients may be over-treated or under-treated. Additional factors are therefore
needed to guide decisions on adjuvant systemic treatment.

In recent years high-throughput technologies such as gene expression micro-arrays
have offered new opportunities to improve the ability to determine individual prog-
nosis in breast cancer. Studies of gene expression have identified expression profiles
and gene sets that are prognostic for patients with breast cancer (e.g. 70-gene prog-
nosis signature [Veer 02], molecular subtype signature [Hu 06, Pero 00, Sorl 03], wound
signature [Chan 05a], chromosomal instability signature [Cart 06], genomic grade in-
dex [Soti 03]). These signatures are strong indipendent prognostic factors and may show
agreement in the outcome predictions for individual patients [Fan 06]. Large-scale ge-
nomic analyses of breast tumors also suggest the relevance of molecular subtypes of
breast cancer, (e.g. Basal-like, Luminal A, Luminal B, HER2+ and normal-like, may
exist [Hu 06, Pero 00, Sorl 03]), although the underlying mechanisms that drive these
expression patterns remain unknown.

Differences in gene expression between breast tumor samples indicate genetic [Poll 02,
Jone 02] and epigenetic [Jone 02, Wids 02, Nova 06] changes, or reaction to changed ac-
tivities of transcriptional regulators in cancer [Visv 03]. Genetic alterations (i.e. DNA
copy number alterations) are key mechanisms in human breast cancer development. Ar-
ray Comparative Genomic Hybridization (aCGH) has identified a number of recurrent
regions of DNA copy number alterations in human breast tumors and cell lines. Some of
the recurrent regions in breast tumors contain known or candidate oncogenes (FGFRI;
8pll), (MYC; 8q24), (CCNDI; 11q13), (HER2; 17q12) and tumor suppressor genes
(RB1; 13q14 and TP53; 17pl3) and have been shown to be useful for risk stratifica-
tion [Dell 02, Al K 04, Han 06, Hick 06, Lete 06]. Association between gene dosage and
gene expression levels has been demonstrated, and a significant proportion of gene ex-
pression variation can be explained by DNA copy number [Poll 02]. Several studies have
correlated DNA copy number changes with mRNA expression variation of individual
genes [Hyma 02, Monn 01, Orse 04, Orse 05] and more recently with gene expression sig-
natures [Berg 06,Chin 06,Chin 07b,Chin 07a,Frid 06]. For example, Adler et al. [Adle 06]
showed that the wound response signature is induced by coordinated amplifications of the
transcription factor MYC (8q24) and CSN5 (8ql3) in breast cancer. Other prognostic
signatures, including the Basal-like [Pero 00] and the 70-gene [Veer 02] signatures, were
not activated by MYC and CSN5 [Adle 06]. In two other studies is shown that Basal-like
tumors were associated with an amplification of 6p21-25 [Berg 06] and 10p14 [Adel 07].

Integration of DNA copy number alterations and their co-expression genes may pro-
vide even more opportunities to improve the ability to determine individual prognosis in
breast cancer. We, therefore, performed integrative analysis of DNA copy number and
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gene expression (mRNA) within 68 primary breast carcinomas sub-classified based on well
known clinicopathological features, the 70-gene prognosis signature and the breast can-
cer molecular subtypes [Hu 06, Pero 00, Sorl 03]. The genomic regions we have identified
together with their co-expressing genes are putative drug targets, and could potentially
include genes with major functional involvement in breast cancer development, or may
act as prognostic markers in breast cancer patients.

6.2 Material and Methods

Patient selection

Breast tumor specimens were collected from a series of 295 consecutive women with breast
cancer from the fresh-frozen tissue bank of the Netherlands Cancer Institute/Antoni van
Leeuwenhoek Hospital (NKI/AVL), for which gene expression and clinical data were
previously published [Vijv 02]. We selected 68 samples according to the following criteria.
Previously, Hu et al. [Hu 06] created the Single Sample Predictor (SSP) to classify tumors
according to molecular subtypes [Pero 00,Sorl 03]. For the SSP, a mean expression profile
was created for each subtype (Luminal A, Luminal B, Basal-like, HER2+, Normal-like).
All 295 samples were compared to each centroid and assigned by the SSP to the nearest
centroid/subtype as determined by Spearman correlation. Next we ranked all 295 samples
by correlation score for each of the 5 subtypes. 68 samples, all with a high correlation
score with one of the subtypes, were selected. The samples consisted of 21 Basal-like,
10 HER2+, 21 Luminal A, 12 Luminal B and 4 Normal-like tumors. Of these, 44 were
identified as having the 70-gene poor prognosis signature and 24 with the good prognosis
signature. This study was approved by the Institutional Review Board of the Netherlands
Cancer Institute.

Clinicopathological characteristics

All tumors were primary invasive breast carcinoma less than 5 cm in diameter at patho-
logical examination (pT1 or pT2). The age at diagnosis was 52 years or younger. All
patients had been treated by modified radical mastectomy or breast-conserving surgery,
including dissection of the axillary lymph nodes, followed by radiotherapy if indicated.

All 68 patients had no prior malignancies, except adequately treated in situ carcinoma
of the cervix (CIN) or non-melanoma skin cancer and did not receive any systemic therapy
before surgery (33 had lymph-node negative disease and 35 had lymph-node positive
disease, 1 patient with lymph-node negative disease received adjuvant systemic therapy
consisting of chemotherapy, and 31 lymph-node positive patients received chemotherapy
(22), hormonal therapy (5), or both (4). The median duration of follow-up was 10.5
years (range, 1.78 to 21.23) for the 47 patients without metastasis as the first event and
5.4 years (range, 0.71 to 14.37) for the 21 patients with metastasis as the first event.
Follow-up information was done by individual chart review until January 1 2005. The
median follow-up among all 68 patients was 8.9 years (range, 0.71 to 8.9).
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Immunohistochemistry

All 68 breast carcinomas were included in tissue microarrays. We used a manual tissue
arrayer (Beecher Instruments, Silver Spring, MD, USA) following previously described
techniques. Eight Core tissue biopsies of 600-um cores were taken from each individ-
ual paraffin-embedded tumor and arrayed in triplicate in a new paraffin block. Serial
sections of 3 um were cut from the tissue microarray blocks, deparaffinized in xylene,
and hydrated in a graded series of alcohol. Staining was performed using the Lab Vi-
sion Immunohistochemical Autostainer (Lab Vision Corporation, Fremont, CA, USA)
with primary antibodies towards estrogens receptor-a (ER; 1D5+6F11, dilution 1:50,
Neomarkers, Lab Vision Corporation, Fremont, CA, USA), progesterone receptor (PgR;
R-1, dilution 1:500, Klinipath, Duiven, Netherlands), HER2 (3B5, dilution 1:3000) (van
de Vijver et al., 1988) and Keratine 5/6 (D5/16 B4; dilution 1:100; Dako). Detection
was performed using the antigen retrieval method (citrate pH 6.0).

PCR, Sequencing, and Mutational Analysis

TP53 mutations were identified by temporal temperature gradient gel electrophoresis
(TTGE) followed by DNA sequencing as described [Geis 01]. PIK3CA mutations were
identified on 10-100 ng of genomic DNA using a standard protocol. PCR, products were
purified over a QIAquick spin column (QIAGEN) and were sequenced using the BigDye
Terminator Cycle Sequencing Kit (Applied Biosystems) and an ABI 3730 automated
capillary sequencer. For all PCR products with sequence variants, both forward and
reverse sequence reactions were repeated for confirmation.

Scoring of Immunohistochemistry

Staining for ER and PgR was interpreted as negative when no tumor cells were stained
and positive when more than 10 % of tumor cells showed staining. A sample was con-
sidered to be HER2 positive when either a strong membrane staining (3+) could be
observed by THC or CISH revealed amplification of HER2 in samples with weak (1+ or
2+) membrane staining at THC, and tumors were considered positive for Keratin 5/6 if
at least 1% of tumor cells showed staining. For two patients ER expression level was es-
timated on the basis of the hybridization results from the microarray experiments, which
is a reliable assay for ER status [Gong 07].

Genomic DNA isolation and labeling

Twenty-five sections each 30-pm thick were used for DNA isolation. Before and after
cutting one slide was stained with hematoxylin and eosin to select samples with 50% or
more tumor cells. Frozen tissue sections were digested in 15 ml TNE (100 mM sodium
chloride, 10 mM Tris-HC] (pH = 8.0), 25 mM EDTA (pH = 8.0) and 1% sodium dodecyl
sulphate (SDS)) and proteinase K (50 ug/ml) was added and incubated at 55°C for
minimum of 24 hours. Subsequently phenol-chloroform extraction was performed followed
by ethanol precipitation. DNA was diluted in 10 mM Tris-HCl (pH = 7.6)/ 0.1 mM
EDTA. For all cases, aCGH was performed using 2 pug of genomic DNA. All labeling
reactions were performed with the Cy3 and Cyb conjugates from the Universal Linkage
System (ULS, Kreatech Biotechnology, Amsterdam the Netherlands) [Raap 04]. Labeling
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efficiency for ULS-Cy3 and ULS-Cy5 were calculated from A260 (DNA), A280 (protein),
A550 (Cy3) and A649 (Cy5) after removal of unbound ULS, on a NanoDropsND-1000
spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

Microarray hybridization and data preprocessing

As described previously [Joos 07], hybridizations were done on microarrays containing
3.5k BAC/PAC derived DNA segments covering the whole genome with an average spac-
ing of 1Mb. The whole library was spotted in triplicate on every slide (Code Link Ac-
tivated Slides, Amersham Biosciences, Piscataway, NJ, USA, Prod. No0.30001100) Data
processing of the scanned microarray slide included signal intensity measurement using
ImaGene Software (BioDiscovery, Inc., El Segundo, CA, USA) followed by median print
tip normalization. Intensity ratios (Cy5/Cy3) were log2-transformed and triplicate spot
measurements were averaged. This resulted in a 3277 x 68 data matrix used for further
analysis.

Data analysis

Frequency of gains and losses Based on the copy number levels, the frequency for
gain and loss for all BAC clones was calculated using fixed log2-ratio thresholds of 0.2
and -0.2 respectively. All data will be made publicly available at http://research.nki.
nl/vandevijverlab.

Unsupervised analysis BRB Array Tools, (http://linus.nci.nih.gov/BRB-ArrayTools-
.html), was employed to perform hierarchical clustering. Unsupervised analysis was car-
ried out using the complete linkage-clustering algorithm based on a centered Pearson
correlation similarity matrix of the raw DNA copy number levels of 68 primary tu-
mors and 3277 BAC Clones. Chi-square tests were employed to study the relationship
between gene-expression profiles, DNA copy number and clinicopathological character-
istics, performed using SPSS, version 15.0 (SPSS Inc. Chicago, Illinois, USA). Results
were considered statistically significant when the p-value was smaller than 0.01.

Supervised analysis We used SIRAC (Supervised Identification of Regions of Aber-
ration in aCGH datasets) [Lai 07] to identify chromosomal regions which are associated
with the classes defined by prognostic gene expression signatures or clinicopathological
characteristics of the tumor. The SIRAC algorithm focuses on the aberrations specifi-
cally associated with the sample labeling being studied by incorporating the labels (e.g.
70 gene poor prognosis versus 70 gene good prognosis signature) in the analysis. More
specifically, as a first step, a SAM analysis [Tush 01] is employed to select DNA-probes
that discriminate between the classes of interest at a chosen false discovery rate (FDR).
We required that the selected DNA-probes have an FDR smaller than 0.05. We call
these significant DNA-probes the “relevant” probes. An illustrative result is shown in
Figure 5.1, Step 1. Next we tested whether the number of relevant DNA-probes in a
given genomic region is higher than expected by chance. For this we used the hyper-
geometric test applied at each given genomic region, and tested whether the fraction
of relevant DNA-probes represents a significant enrichment. A Bonferroni correction for
multiple testing was applied by multiplying the p-value of each test by the number of tests
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performed. Regions of aberration with a corrected p-value smaller than 0.05 were consid-
ered significantly enriched for genomic aberrations. This step was repeated for different
window sizes in order to detect both small and large aberrations (Figure 5.1, Step 2).
Finally, regions of aberrations were identified based on a consensus between the results of
the different window sizes (Figure 5.1, Step 3). Importantly, no discretization, smoothing
or segmentation algorithms are applied to the aCGH data prior to the SIRAC analysis.
This avoids the parameter optimization step these models usually require, rendering the
results independent of these choices.

Integration of aCGH and gene expression data We used the expression data to
perform a post-processing step on the output of SIRAC. For all 68 breast tumors, gene
expression profiling was previously published [Vijv 02]. Both expression probes (oligonu-
cleotides) and DNA copy number probes (BAC clones) were ordered by position as as-
signed by NCBI-Build32 http://genome.ucsc.edu/cgi-bin/hgGateway) on the genome.
Only probes for which a genome location was found were used, resulting in an aCGH
dataset of 2952 BAC clones and a gene expression dataset with 10986 genes. Association
between DNA copy number and mRNA gene expression levels was calculated using the
Pearson correlation between genes and the relevant probes in the DNA copy number data,
revealing DNA dosage sensitive genes. The correlation p-value is the p-value associated
with the correlation between the DNA copy number and gene expression data (mRNA).
The t-test p-value is the p-value of the t-test for each gene, which quantifies the ability
of that gene to distinguish between the classes of interest (for example good versus poor
outcome classes). We prioritized relevant genomic regions that (1) were found in at least
10% or more of the class of interest; (2) had a correlation p-value smaller than 0.01 with
the corresponding genes; and (3) had a t-test p-value for each gene smaller than 0.01.
Finally, we evaluated if the DNA dosage sensitive genes were: (A) putative drug tar-
gets; (B) potential biomarkers; (C) transcription factors as defined in the TRANSFAC
database [Maty 03]; (D) belong to the 70-gene prognosis signature [Veer 02]; (E) belong
to intrinsic gene list of the molecular subtypes [Hu 06]. We compared and validated our
results on aCGH and mRNA expression data from independent breast cancer samples
published in earlier reports [Berg 06, Chin 06, Chin 07a, Adel 07].

6.3 Results

Here we report the detected chromosomal aberrations, their locations and their relation-
ship with clinicopathological characteristics, prognostic gene expression profiles, potential
candidates of drug targets and prognostic markers in 68 primary breast cancers.

Frequent aberrations in breast carcinomas

Figure 6.1 represents a frequency plot summarizing the distribution of aberrations in all
68 tumors. A fixed threshold of 1g, < 0.2 for gain (circles) and lg, < —0.2 (xs) for loss
was used. Based on these thresholds, we observed frequent DNA copy number alterations
gains at 1q (34% of tumors), 8q (24%), 17q (10%) and 16p (7%), and losses at 13q (13%),
16q (13%), 23p (11%) Four regional (> 10 MB) gains (1q41, 1931-32, 8q21-8q24, 8q12,
17q24) and five regional losses (13q21, 13q13-14, 1621, and 16q12) were observed in
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Figure 6.1: Frequency plot summarizing the distribution of aberrations in all 68 tumors.
A fixed threshold of 1g, > 0.2 for gain (circles) and lg, < —0.2 (x mark) was used.

> 15% (10 out of 68) tumors. These observations are consistent with earlier reported
aCGH based breast cancer studies [Berg 06, Chin 06, Chin 07b, Chin 07a, Frid 06].

Unsupervised hierarchical clustering of aCGH data

Figure 6.2 represents an unsupervised hierarchical clustering of the 68 breast tumors ac-
cording to their DNA copy number profile. Columns represent individual tumor samples
while the assignment to the different prognostic gene signatures and clinicopathological
characteristics are shown in the rows. Hierarchical clustering of the samples revealed
a subdivision into four clusters, as indicated in Figure 6.2. We found a strong associ-
ation between the samples in clusters 1, 2 and 4 and characteristics of poor prognosis
(chi-square test, p-value <0.01). Interestingly, patients in cluster 4 have frequently more
genomic losses (chi-square test p-value 0.014) compared to patients in the other clus-
ters. Patients with good prognosis characteristics were found in cluster 3 (chi-square test
p-value <0.01) Figure 6.2.

Supervised analysis of aCGH data

As we observed distinct DNA copy number profiles for tumors with good and poor
prognosis, we wanted to discover the exact associations between DNA copy number
alterations and clinicopathological characteristics and prognostic gene expression profiles.
To this end we employed the SIRAC algorithm to perform a supervised analysis for each
of the clinicopathological characteristics and prognostic gene signatures. The results
identified with STRAC for the 70 gene prognosis signature and molecular subtypes are
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Figure 6.2: Hierarchical clustering of aCGH data measured in 68 breast tumors. The
columns contain the samples and the rows the various clinicopathological parameters and
the gene expression signature assignments. Fore clusters were identified, and each cluster
can be subdivided in 2 sub-clusters, indicated as A and B.

given in Figure 6.3. A graphical overview of the aberrations per chromosomal arm per
prognostic gene signature or clinicopathological characteristic is given in Figures 6.5 and
6.4 the representation per chromosomal arm was adopted only for the sake of conciseness.

DNA copy numbers alterations and clinicopathological characteristics We
identified several gains and losses associated with clinicopathological characteristics, as
illustrated in Figure 6.4. ER negative and high grade tumors showed a higher frequency
of gains and losses than ER positive and low grade tumors. ER negative and grade
three tumors showed both gains at 6p12 and 6p21, and losses at 4p15, 10q23 and 14q12.
Additionally gains at 10p14-15 and losses at 4q23-24, 5q21-22, 10q22-24 and 12q13 were
identified in ER negative tumors, while high grade tumors showed additional gains at
8q22-24, 12p13 and 17q24-25 and losses at 8p21-22 and 15q14-21. Low grade tumors
(histological grade 1 and 2) and ER positive tumors showed only losses including 16q11-
13, 16g21-24 and 13q31-34. We identified a loss at 4p15-16, in TP53 mutant tumors and
losses at 16q11-13 and 16q22-24 in tumors with a PIK3CA mutation, but no specific
additional alterations Losses at 16q11-13 and 16q22-24 without additional aberrations
were found in tumors with favorable prognosis of breast cancer, including the following
characteristics: ER positive, histological grade 1, PIK3CA mutated.

DNA copy numbers alterations and prognostic gene signatures We found that
the tumors with a 70-gene poor prognosis gene signature were associated with gains at
3q26-27, 8q22-24 and 17q24-25 and losses at 14q31. Tumors with a 70-gene good prog-
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Figure 6.3: The results of the SIRAC algorithm on the 68 breast tumors for each of
the gene expression signatures. We show the aberrations per chromosome with respect
to the class of interest versus the other classes. The class of interest are: (a) the poor
prognosis group derived from the 70 gene signature, (b) the HER2 positive cases (n=10),
(c) the Basal-like cases (n=21), (d) the Luminal A (n=21) and (e) the Luminal B (n=12).
In the top plot of each panel, the relevant DNA-probes detected by the SAM analysis
are displayed. For each relevant DNA probe a circle and an x mark are plotted at its
location on the genome, representing the median of the class of interest and the median
of the remaining samples, respectively. The lower plot depicts the regions of aberration
detected across different window sizes, with the window size on the vertical axis.
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Figure 6.4: A summary of the results of the SIRAC algorithm on the 68 breast tumors
for the clinicolpathological labels. We show the aberrations per chromosomal arm with
respect to the class of interest. The regions of aberration detected by SIRAC have been
coded based on the direction of the aberration. Circles was used for gain, inclined lines
for losses. The representation per chromosomal arm was adopted only for the sake of
conciseness. For example, for TP53 mutated, the samples with a P53 mutation represent
the class of interest and these tumors are characterized by a loss on 4p, hence the block
filled with inclined lines in cell 4p. For Er negative, the ER negative samples are the
class of interest and these tumors are characterized by a gain on 6p and 10p, hence the
block filled with circles in the corresponding cells.

nosis gene signature were associated with losses at 16q11-13 and 16¢q22-24 (Figures 6.3
and 6.5). The Basal-like tumors were associated with the largest number of aberrations.
Copy number gains were found in chromosomal regions 6pl12, 6p21-24, 8q24, 10p12-14,
12p13 and losses including 4p15, 5ql1-14, 5q21-34, 10q23-24, 12q13-15, 14q12-23 and
15q14-21. For the Luminal A subtype we identified gains at 1q21-41, 16p11-13, and
losses at 16q11-13 and 16q22-24. The Luminal B had less pronounced aberrations with
gains at 12q23-24 and 17q23 and losses at 1p31, 8p21-23, 13¢22 and 13q31. The HER2+
subtype showed only gain on the q arm of Chromosome 17 (17q12 and 17q21-23), cover-
ing the genomic position where the HER2 gene is located. This is a known aberration,
and the results suggest that this is the only aberration that differentiates this subtype
from the other samples.

Finding DN A dosage sensitive genes in prognostic gene expression
signatures

We used gene expression data to perform a post-processing step on the output of SIRAC.
The power of this combined approach (SIRAC followed by an expression analysis) is
illustrated by the HER2+ subtype. A total of 80 genes showed gain correlated with up-
regulated mRNA expression Using our filtering criteria to search for potential drug targets
or prognostic biomarkers we found 20 potential candidates in two cytogenetic regions,
17q11.1-17q12 and 17q21.32-23.2, which were associated with HER2+4 breast tumors.
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Figure 6.5: A summary of the results of the SIRAC algorithm on the 68 breast tumors
for the prognostic gene signatures. Again, we show the aberrations per chromosomal
arm coded based on the direction of the aberation: inclined lines is used for deletion, and
circles filling is used for the amplifications.

Only 17q12 showed high level amplification with a median copy number of lg, = 0.82.
The other regions showed copy number gain. The top two ranked genes were the HER2
gene itself and GRB7, i.e. growth factor receptor-bound protein 7. This was expected
since the HER2+ subtype is characterized by the amplification of the HER2 gene, and
GRBT7 is found to be over-expressed and co-amplified with HER2. Both genes were found
in 80% of the samples that were classified as HER2+. Therefore, a combined approach
involving SIRAC followed by a gene expression-based post-processing is a potentially
powerful tool to search for putative drug targets, candidate regulators, or biomarkers
for a specific molecular breast cancer subtype or prognostic gene signature. In addition,
DNA copy number gain of 84 genes showed correlation with down regulated mRNA
expression. This result suggests that other mechanisms, such as epigenetics, may play a
role regulating mRNA expression levels in HER2+ breast tumors.

In the case of Basal-like tumors, significant correlation between copy number gain and
upregulated gene expression was found for 199 genes at 6p21.1-21.33, 6p22.1-22.2, 6p23,
8(24.21-24.33 and 10p12.33-10.14. The top 10 ranked genes were KCNK5, KIFC1, PIM1,
BYSL, (6p21), C100rf38/L0C221061, C100rf7/CDC123, SEPHS1, MCM10 (10p13) and
NDRG1 (8q24). A total of 43 genes showed losses correlated with downregulated mRNA
expression, including: CPEB3 (10¢g23.33), MYG1, SMUG1 (12q13.13) HER3, PYM,
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RNF41, MBC2, KIAA1002, (12q13.3), ZFYVE19 (15q15.1), EID-1, MYEF2, SORD1
(15921.1), SLIT2 (4p15.31) KIAA0303 (5q12.3), MRPS27 (5q13.2), RBM22, DCTN4
(5933.1) Seven genes including C10orf38, C10orf7/CDC123, SUV39H2, KIN, HSPA14,
C6orf108 and CPEB3 belonged to the original 1300-gene signature of Hu et al. [Hu 06].
Recently, many studies have illustrated that Basal-like tumors are associated with worse
prognosis. As we showed, the region of 6p21 is commonly amplified in Basal-like tumors
and harbors several candidate oncogenes, including DEK, E2F3, NOTCH4, PIM1, and
CCND3. A gene identified as DNA dosage sensitive gene in Basal-like breast cancer was
VIM (vimentin) at 10p13, which is expressed in the myoepithelial layer of the glandular
breast cells, and moreover can be used to distinguish Basal-like from Luminal breast
tumor cancers. In the study of Korsching et al. [Kors 05] vimentin-expressing carcinomas
revealed a significantly higher average absolute number of cytogenetic alterations per
case, but a significantly lower frequency of chromosome 16q losses compared to vimentin-
negative cases. This is consistent with our findings that Basal-like breast carcinomas
exhibit more gains and losses and a lower frequency of loss at Chromosome 16q.

Among 277 genes associated with the Luminal A type subtype, 40 genes (1q21.3-1qter,
16p13.12-13) showed gain correlated with upregulated gene expression. Thirty-eight of
which were located at 1q21-44. The top ranked gene (KCTD3) and three others (RAB13,
MUCI, PPP2R5A) belonged to the original signature of the molecular subtypes [Hu 06,
Pero 00, Sorl 03]. Losses correlated with downregulated mRNA expression were found
in 127 genes of which 28 potential candidates. All 28 genes were located at 16q11.2-
24.1 including NOC4, DC13, BM039, CKLF which belonged to the original molecular
subtype signature [Hu 06, Pero 00, Sorl 03]. Moreover it was suggested by Naderi et
al. [Nade 07] that BM039 (CENPN) is part of a ’core’ prognostic signature, because it
was also identified as one of the 231 genes that correlated with prognostic categories in
the original van 't Veer paper [Veer 02]. Luminal A defined tumors showed frequent
high amplification at 1q and loss at 16p12-13. Two interesting genes in these regions
are MUC1 and DICER1. MUCI1 showed gain and overexpression in Luminal A tumors
and belonged to the original signature of Hu et al. [Hu 06]. MUCI is expressed at the
Luminal surface of the mammary gland and was associated with many indicators (i.e. low
tumor grade, ER+, PgR+ and absence of distant metastasis) of good prognosis. DICER
1, located at 1q41, was recently discovered to be involved in human breast cancer; as
an RNase III endonuclease, it is an essential component of the microRNA machinery.
We found significant changes in the expression of DICER1 (t-test p-value= 5.04E-04)
between Luminal A and other molecular subtypes. This result is consistent with earlier
findings of Blenkiron et al. [Blen 07] which showed that DICER1 and AGO2 were higher
expressed in the less aggressive Luminal A type tumors than in the more aggressive Basal-
like, HER2+ and Luminal B subtypes. In line with our findings, Zhang et al. [Zhan 06a)]
recently discovered high frequency copy number abnormalities of Dicerl, AGO2, and
other miRNA associated genes in breast cancer. Interestingly, a recent study showed that
conditional deletion of Dicerl enhanced tumor development in a K-Ras induced mouse
model of lung cancer [Kuma 07]. Together these data suggest that DICER1 deregulation
might be involved in the etiology of human breast cancer.

In case of gain correlated with up-regulated mRNA expression associated with Lumi-
nal B type tumors only 4 out of 41 genes were potential candidates. Strikingly, they are
all located at 17q23.2, including TLK2, PSMC5, CCDC44 and SMARCD2. In case of
loss and down-regulated Luminal B tumors showed a distinct loss at 8p21.3-8p23.1, 12
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out of 13 filtered genes where located on this region, including; MGC29816, DPYSL2,
FLJ10569, XPO7, SH2D4A, LZTS1, PDLIM2, PDGFRL, TUSC3, C8orfl6, LONRF1,
PRAGMIN, of which only PRAGMIN belonged to the original 1300-gene signature of
Hu et al. [Hu 06].

Twenty-four genes that were associated with 70-gene poor prognosis signature showed
DNA copy number gain correlated with upregulated mRNA expression. Three out of
the 24 genes (CCNE2, LYRIC both at 8q22.1, EXT1 at 8q24.11 appeared in the orig-
inal 70-gene prognostic signature and 11 (BIRC5, TK1, EVER1 (17¢25.1), EIF4G1,
POLR2H (3¢27.1), LAPTM4B (8q22.1), ZNF706, WDSOF1 (both 8q22.3), CMLG66
(8g23.1), SQLE, ATAD2 (8q24.13)) belonged to the original 1300-gene signature of Hu
et al. [Hu 06] indicating their importance in breast cancer. Loss correlated with down-
regulation mRNA expression in association with a 70-gene poor prognosis signature was
found in three genes; nevertheless none of them passed our filtering criteria of being
potential candidate of prognostic marker or putative drug target.

On the other hand loss correlated with down-regulation was found in 123 genes as-
sociated with a 70-gene good prognosis signature, of which 14 could act as possible
candidates. All 14 genes were located at 16q and were included in the 28 genes that were
associated with the Luminal A subtype. The presence of common candidate genes in
different prognostic gene signatures suggest the existence of common candidate genes of
breast tumorigenesis.

Data comparison with DNA copy number studies of breast cancer

First we compared the molecular subtypes specific regions in the aCGH data with two
recent DNA copy number studies of molecular subtypes of breast cancer [Berg 06,Adel 07].
Worth noticing is that we have found striking similarities of aberrated regions in the
Basal-like, HER24 and the Luminal A subtype. They seem better defined than the
Luminal B subtype. The association between loss of 4p15, 5q11-35, 14q23 and gain at
6pl2, 6p21, 10p12-13, 12p13 with the previous identified Basal-like molecular subtype
by gene expression profiling, is now found in three independent breast cancer aCGH
datasets. However, there are numerous discordant regions, which may be due to different
selection criteria to include patients in the studies or differences in methodology employed
to measure DNA copy number levels. We could only compare the Luminal A and B
subtype with the data of Bergamaschi et al. [Berg 06], as Adelaide et al. [Adel 07] did
not subdivide the Luminal type tumors into A and B. Interestingly, the Luminal A
specific gain on Chromosome 1q12-41 and 16p12-13 was also presented by Bergamaschi
et al./,and Adelaide also found strong association between these regions and Luminal
type tumors. In the Luminal B subtype, only the region of 8p12-13 was also found by
Bergamaschi et al. [Berg 06].

Next we compared altered regions that were associated with clinicopathological char-
acteristics with 6 previous published aCGH datasets [Berg 06,Chin 07b,Frid 06, Adel 07,
Loo 04, Ness 05]. Most commonly estrogene-negative breast tumors showed loss of 5q21-
35 and gain of 6p21-22. The HER2+ subtype with a know amplification at 17q12-21 was
found in all independent datasets. Association between loss of 5q21-25 and TP3 mutated
tumors was not supported in our dataset, as we found only loss at 4p15-16.
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Figure 6.6: Results of the Sirac algorithm applied to the Chin dataset. Summary of
the aberrations per chromosome arm for the four different subtypes (Basal-like, HER2+,
Luminal A and Luminal B) and the 70-gene prognosis. The numbers in the top of the
tables denotes the chromosomes. Again, an arm is indicated with an inclined lines when
a significant region is found on that arm that shows a deletion of the clones of interest.
Similarly, a circles filled block indicates amplification.

Validation of DN A dosage sensitive genes with integrated genomic
studies

aCGH data were used as acquired from the Supplementary Data of Chin K. et al. [Chin 06].
Preprocessing and normalization was performed and described by the authors. Because
no exact mapping information was available for all clones in the Chin dataset, we gave the
clones a 3-bp length centered on the mapping position as supplied by Chin et al. [Chin 06].
We removed all clones with more than 50% missing values. We imputated the remain-
ing missing values using the averaged values of their two positional neighbors. Probes
mapped to the same area were averaged and represented as a single clone. This resulted
in 2149 unique clones. Gene expression data were also acquired from Chin et al. [Chin 06]
(Arrayexpress accession number: E-TABM-158). Probes not mapping to a single EN-
SEMBL ID were removed; probes mapping to Y chromosome genes were also removed.
This resulted in 21339 unique Affymetrix probe measurements. First, we applied our
SIRAC algorithm to this data, analyzing 70 gene good prognosis versus poor prognosis
and each of the molecular subtype against the remaining samples. A summary of the
results are given in Figure 6.6. Second, we computed the common regions between the
two datasets, and then select only the genes in those regions on the two datasets. To-
gether with matched array expression data we identified common genomic regions in both
datasets showing strong coordinate expression changes and associated with: Basal-like
tumors with losses on 5q12.3-5q33.3, 12q13.11-12q15, and 14q13.12-14g23.1; Luminal A
with loss on 16q21-16g24.1; HER2+ with gain on 17q11.2 and 17q22; and a 70 gene poor
prognosis with gain on 8q22-24.23.

Recently, Chin S.F. et al. [Chin 07a] profiled DNA copy number alterations in 171
breast tumors using high-resolution genome-wide profiling. Together with matched ar-
ray expression data they identified genomic regions showing strong coordinate expres-
sion changes ("hotspots”) and frequently amplified hotspots on 8q22-8q24,3, on 8q22.3
(EDD1, WDSOF1) and on 8q24.11-13 (THRAP6, DCC1, SQLE, SPG8). The regions
8q22.3 and 8q24.13 were also identified in our data and previously identified in prognostic
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gene signatures (70-gene signature [Veer 02], wound signature [Chan 05a], and molecular
subtypes [Hu 06]). Also interesting, CCNE2 (cycline E2) at 8q22.1 was one of three over-
lapping genes between the 76-gene prediction signature from Wang et al. [Wang 05b] and
the 70-gene signature from van’t Veer et al. [Veer 02], both signatures being predictive of
distant metastasis-free survival (DMFS) in lymph node negative patients. These candi-
date genes were also previously identified in wound signature [Chan 05a] and molecular
subtypes [Hu 06]. These results suggest that DNA copy number information at 8q22-
24.23 could act as potential candidates of prognostic markers in breast cancer.

6.4 Conclusions

In this report we established a link between genetic changes and prognostic gene expres-
sion profiles and clinicopathological parameters that determine tumor cell behavior in
breast cancer. Our goal was to identify DNA copy number alterations that may harbor
putative drug targets or target genes with major functional involvement in breast cancer
development by comparing genome wide DNA copy number with gene expression data.
Using SIRAC, we identified associations between DNA copy number alterations, clinico-
pathological parameters and prognostic gene signatures. We found that gains and losses
varied between prognostic gene signatures and clinicopathological features. As expected,
gains and losses were more frequently found in tumors with unfavorable prognostic fea-
tures (i.e. histological grade 3, ER negative, HER2 positive, 70-gene poor prognosis,
Basal molecular subtype). In particular, gains at 3q22-27, 6p12-22, 8q21-24, 17q12-25
and losses at 4p15-16 and 14q21-31 have been associated with an unfavorable prognosis of
breast cancer. Loss at 16q11-13 and 16¢q22-24, without additional aberrations, was found
in tumors with the following characteristics: ER positive, histological grade 1, PIK3CA
mutated, and are associated with a favorable prognosis. We compared the identified
associations between DNA copy number alterations and clinicopathological parameters
and prognostic gene expression signatures in independent aCGH datasets where gene
expression data was also available for the same tumors [Berg 06, Chin 07b]. These re-
sults suggested that DNA copy number information of 8q22-24.23 could act as potential
candidates of prognostic markers in breast cancer.

Since gene expression profiling is based on mRNA, an instable molecule, and because
of the stability of DNA, DNA copy number alterations can be more useful as prognostic
and/or predictive markers in breast cancer patients. Integration of DNA copy number
information and gene expression signature help in establishing a link between genetic
changes and gene expression signatures that determine tumor behavior in breast cancer.






A genome-wide search for spatial organization
of copy-number and expression dependencies

In this chapter our interest has been on the detection of causal spatial dependencies and
interactions between copy number and expression alterations across the whole genome.
An unsupervised extension of the SIRAC algorithm has been developed to highlight the
patterns of correlation between the two data types. The new algorithm (IGDam) extends
the search for spatial dependencies from the one dimensional space of the copy number
data to the two dimensions of the combined copy number and expression data.
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Figure 7.1: A graph diagram of the hypothesized interactions between copy numbers (d)
and expression measurements (e) in two generic genomic locations 7 and j. The cis-effects
occur within probes in the same region ¢, while the trans-effects involve the probes on
different regions (i and j).

7.1 Introduction

In cancer, gene expression arrays have been widely used for prognosis prediction [Veer 02,
Vijv 02, Chan 05a, Rama 03, Wang 05b, Mill 05, Cart 06], better cancer stratification in
classes which share the same phenotype [Pero 00,Sorl 01,Sorl 03], and response to ther-
apy prediction [Ayer 04, Chan 05b, Hann 05, Ma 04]. In addition, array comparative
genome hybridization (aCGH) allows the analysis of copy number alteration of thou-
sands genomic regions, represented by copy number measurements, on a single slide
simultaneously. Since genomic alterations in DNA copy number are important events in
cancer development [Leng 98], the identification of chromosomal aberrations is a powerful
instrument in studies of cancer [Bert 03, Pink 05].

Expression and aCGH data are known to be dependent [Hyma 02, Furg 05, Levi 05,
Yi05]. The spatial organization of the probes provides essential information to investigate
the dependencies between different parts of the genome and the different data types.
Two main types of spatial interactions can be hypothesized in aCGH and expression
data. A dependency between probes that are closely located (so called cis-effect), and
an interrelation between probes that are located in different genomic regions, e.g. on
different chromosomes, i.e. trans-effects. A schematic diagram of correlations is given in
Figure 7.1. The nodes of the graph represent the copy number data d and the expression
data e in the regions around the genomic locations ¢ and j. The arrows represent the
dependencies (cis and trans effects).

Various aspects of cis-effect have been previously investigated in the literature. The
relationship between copy number measurements within the same region (cis-effects on
d’s in Figure 7.1) is used to identify regions of copy number aberration within a sam-
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ple [Lai 05]. The copy number measurements closely located that exceed a certain thresh-
old are judged to be aberrated [Poll 02, Velt 03, Call 05,Nayl 05, Schw 04]. Alternatively,
segmentation and clustering approaches are proposed to divide the aCGH profile in piece-
wise constant segments [Pica 05, Jong 03, Jong 04, Wang 05a].

Examples of cis-effects on the expression measurements (cis-effects on e’s in Fig-
ure 7.1) use the genomic location of the genes to estimate regions of chromosomal insta-
bility [Call 06,Levi 05,Dres 03,Yi 05], or epigenetic effects [Reya 05,Stra 06, Furg 05]. For
example, Reyal et al. [Reya 05,Stra 06] have developed the TCM method to determine a
region containing neighboring genes, which showed correlated expression profiles. They
have pointed out that these regions of correlation are not only due to genomic aberrations,
but also to epigenetic mechanisms, such as chromatin regulation, and co-regulation by
the same transcription factor. They have focused on the epigenetic effects and identified
a region where the loss of expression was due to histone methylation of the genes in the
region.

Several studies investigate the dependencies between DNA and expression probes
(cis-effect between d; and e; in Figure 7.1) [Adle 06, Chin 06, Hyma 02, Frid 06, Poll 02].
Adler et al. [Adle 06] have applied a SAM analysis [Tush 01] to the aCGH data in order
to identify the copy number measurements which distinguish the two classes of interest.
Then, they have focused on the copy number measurements that are correlated with the
expression data. Hyman et al. [Hyma 02] have determined the copy number alteration
of each copy number measurement based on a threshold, and then have quantified the
Signal to Noise Ratio (SNR) of the expression of the corresponding gene and the copy
number measurement. Fridlyand et al. [Frid 06] have identified aberrations in the aCGH
data, and have investigated the correlation with the expression of a different dataset.
Pollack et al. [Poll 02] have compared the expression measurements with the aCGH data
discretized into five levels (deletion, normal, low,medium and high amplification).

To the best of our knowledge, only cis-effects between aCGH and expression data
have been investigated so far. Here, we explore both cis and trans-effect dependencies
between DNA copy number and expression datasets in a systematic way. We aim at
identifying the effect that the copy number alterations have on the genome activity.
Figure 7.2 illustrates our view. The big square represents a matrix storing a measure of
dependencies, such as Spearman Correlation, between each copy number and expression
measurement. In the rows of the matrix are the copy number measurements along the
genome, while the column shows the genes sorted on their location. If there is a one-to-
one correspondence between DNA and expression probes, then the matrix is a square,
as in Figure 7.2. The diagonal represents the dependencies between copy number and
expression measurements of the same genes. The cis-effects happen between neighboring
probes. Box 1 along the diagonal illustrates the positional enrichment between the DNA
and expression probes around location i. In contrast, the trans-effects involve probes that
are not within each other neighborhood. In Figure 7.2, Box 2 represents the position of
such an effect between the copy number measurements located around position 7 and the
expression of the genes at location j.

In this work we chose the correlation across samples as a measure of dependency
between aCGH and expression data, and propose a method to detect the regions on
the genome where the positional concentration of high correlation between DNA and
expression probes is larger than expected by change. We apply our IGDam algorithm
(Identification of Genome-wide Dependencies between aCGH and mRNA datasets) to a
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mRNA

aCGH

I J

Figure 7.2: Tllustration of the cis and trans effects between copy numbers and expres-
sion measurements. The cis-effects occur between probes in the same region i (Box 1),
while the trans-effects involve the copy number measurements around position i and the
expression of genes in location j (Box 2).

selection of 68 patients from the Netherlands Cancer Institute (NKI) cohort [Vijv 02],
and discuss the results and possible interpretations.

7.2 Method description

Our approach investigates the correlation between aCGH and expression data. Therefore,
these two data types measured on the same samples are required as input. Figure 7.3
illustrates our IGDam method, while a more detailed description is given in Algorithm 4.
For the same n samples both an aCGH dataset with p copy number measurements and
an expression dataset with g expression measurements are given. We refer to the g
measurements of the expression dataset as genes.

STEP 1. The correlation is computed between the profile of each copy number mea-
surement and gene over the samples. The value of the correlation test and its p-value are
stored in matrices of size p x g. The higher the correlation the smaller the corresponding
p-value. We select for further analysis the pairs with a p-value smaller than threshold ¢.
These pairs are called relevant. An illustration of the thresholded matrix of p-values M
is given in Figure 7.3 (Step 1). On the vertical axis is the genomic location of the p copy
number measurements, while on the horizontal axis the g genes are ordered according to
the genomic position of the accompanying probes. The p-value of each pair copy number
measurement/gene is represented with a square or a circle in the grid. The filled back
circles represent all the pairs, while the relevant ones are depicted with a white square.

STEP 2. In order to investigate the spatial dependencies, we test in a systematic way
whether the density of relevant neighboring pairs is higher than expected by chance. We
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Input: aCGH dataset with n samples
and p DNA-probe, mRNA dataset with
n samples and g genes.

Step 1 The correlation is computed
between each DNA-probe and each
gene in the two datasets. The pairs of
DNA-probe/gene that have a p-value of
the correlation smaller then a threshold
t_s are considered “relevant” (white

squares). D mRNA

g

Step 2. A window is centered on each
relevant pair. The enrichment of

relevant pairs within each window is o o
determined using a hypergeometric a
test. The pairs contained in the [T

enriched windows constitute a region
of  significant correlation between
aCGH and mRNA (all pairs in the
window centered around a).

g

Step 3. Several scales (window sizes)
are investigated and the results are
integrated. Significant windows at
different scales are emphasized.

a8

aCGH

mRNA

aCGH

Output: list of DNA-probes and
corresponding genes significantly
correlated, per genomic location.

hd hd hd

mRNA

Figure 7.3: Illustration of the IGDam algorithm.

center to each relevant pair a window of length w. The window length is in the kilobase
range and, therefore, has a much higher resolution than the copy number/gene grid
depicted in Figure 7.3. Figure 7.3 (Step 2) illustrates two windows centered in the pairs
a and b respectively. We evaluate with the hypergeometric test the enrichment of relevant
pairs, i.e. we test if the number of relevant pairs in the window is higher than expected
by chance. In order to correct for multiple testing, the Bonferroni correction is applied by
multiplying the p-value of the hypergeometric test for the number of tests performed. All
pairs in the windows with corrected p-value smaller than the threshold ¢; are considered
enriched (e.g the pairs contained in the grey filled square in Figure 7.3 (Step 2), while the
test applied to the square centered in the pair b does not reach significance.). Note that,
although the window of observation is a square in the kilobase pair grid, the numbers of
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copy number and genes measurements captured, may be different. This is dependent on
the resolution of the aCGH and expression arrays. In Figure 7.3 the same resolution is
considered, with a one to one correspondence of copy number measurements and genes.

STEP 3. The genomic regions where there is a correlation between copy number
and expression measurements may have different lengths. The use of different lengths
of the window w increases the ability of detecting different sizes of local dependencies.
In our previous work [Lai 07], we have employed a similar scale search. There, we
have illustrated with an artificial dataset the benefits of the scale search in detecting
chromosomal aberrations of different lengths. Since similar concerns apply here, i.e. the
dependencies may have different local characteristics, we also adopt the scale search in
this work. Therefore, the procedure described in Step 2 is repeated for a set of scales W.
We combine the different scales by counting, for each probe, the number of significantly
enriched window scales in which that pair was contained. An illustration is provided in
Figure 7.3 (Step 3). The color codes for the number of scales in which the windows W
are enriched, from 0 (white), i.e. the locations were not enriched in any scale, to all scales
(dark grey), i.e. there was a significant enrichment in all window scales.

The results of the test indicates the genomic locations where the aCGH and the
expression data are correlated. This helps us to highlight genomic regions of dependencies
between aCGH and mRNA data. Those regions can be studied further in order to improve
our understanding of cancer development. The output of the IGDam algorithm is the
enriched locations, represented by the correlated copy number and genes measurements.

7.3 Results and Discussion

First the datasets used and the set up of the experiments are described, then the results
of the IGDam algorithm are presented. A discussion further investigates several open
questions.

7.3.1 Experimental setup

We use a cohort composed by 68 patients selected from the 295 breast cancer samples
described in van de Vijver et al. [Vijv 02]. The aCGH data is obtained from a BAC
array platform [Beer 05], and it consist of 3219 copy number measurements with a value
for each of the 68 patients. The expression dataset for the same samples is comprised of
10986 genes, obtained with an oligo array platform [Vijv 02].

As described in Section 7.2, the IGDam algorithm requires a few parameters, i.e. a
measure of the correlation, the thresholds ¢, and t;, and the window scales W. As a
measure of the correlation we have adopted the Spearman correlation because it is not
as sensitive to outliers as the Pearson correlation. We chose a strict threshold t, = 10~%.
Therefore, the relevant pairs are the ones that have a p-value of the Spearman correlation
smaller than 10~%. The window search approach applies to several window scales the
search for significant enrichment of the correlation between aCGH and expression data.
These scales should be selected in relation to the resolution of the arrays, because the
windows of observation should include more than a single probe. In our data the limiting
factor is given by the BAC array, which has a resolution of ~ 1 megabase (Mb). Therefore,
the minimum window of observation is set to 1 Mb. The maximum window scale is
fixed to 24 Mb because this is roughly half the length of the shortest chromosome. In
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Algorithm 4 Description of the IGDam algorithm.

1: Input: aCGH and mRNA datasets Dpxy, and Ggxn; vector W with the sizes of
the observation windows; thresholds ts and t; for the p-values of the Spearman
correlation and the hyper-geometric distribution respectively; minimum number of
windows scales s for which the pair copy number/genes is judged significant.

2: Compute the Spearman correlation between each pair copy number/gene in the
datasets D and G. The p-values are stored in a matrix Mpy,.

3: Evaluate which pairs are relevant, i.e. have p-value <= t;. The index are stored in
the vectors X and Y for the aCGH and mRNA respectively.

4: Initialize: C' = {¢;; = 0Vi,j} with ¢ = 1...p, j = 1...g, stores the number of scales in
which the test is judged significant;

5: Yw € W (for all window scales)

- center a square window w at each relevant pair. Remove the windows that
exceed the boundary of the chromosomes where the probes of the included pairs are
located: X', Y" € X, Y |Vi Ch(I® £ %) = Ch(I*) & Ch(I¥i £ %) = Ch(I¥?), with Ch
a function that return the chromosome of the location [X of the X** probe.

7. - Initialize: P = {p; = 0Vi} with i = 1...|X|, stores the p-value of the test,

8 -V pairs 4 in X', Y’

9: -h=3>"_yH(c|m,k, o), where H is the hypergeometric test with:

10: 2 = number of relevant pairs in the windows [IXi — 7 X' +%51, [1Y'i - Z, Yig
%] on aCGH and mRNA respectively,

11: m = number of pairs in the matrix M,

12: k = number of relevantpairs in the matrix M,

13: 0 = number of pairs in the windows [IX'i — g, X' 4 2], [1Y' — Z, Y4 ] on
aCGH and mRNA respectively.

14: P =1—h;

15: - apply the Bonferroni correction: P* = P¥ x |X/|,

16: - Vi

17: Sif PP <ty

18: Va,b|ly € 1K =L X 1 L&, € 1Y - 2LIYi + Y]

Ca,b = Ca,b + 1.

19: Output: all locations X,Y with C, 5 < s.

this way, we enforce that the largest window does not always cover both the p and
q arms of the chromosomes. Consequently, we adopt 13 different window scales, i.e.
W e {0.5,1,2,4,6,...,12}Mb. For each scale the hypergeometric test is computed, and
its p-value is corrected for multiple testing. The genomic regions contained in the windows
with p-value smaller the 0.005 are considered enriched, i.e. t;, = 0.005.

7.3.2 Experimental results

Figure 7.4 (a), (b) and (c) shows the results of the analysis in three different cases.
On the vertical axis of each plot is the copy number measurements located along the
chromosomes, while the location of the genes is on the horizontal axis. A generic point
in row ¢ and column j of the matrix represents the enrichment of the pair ¢, j across the
scales, i.e. the pair 7,j was contained in a significantly enriched windows of dimension
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W. The color represents the number of scales in which the pair 7, j was part of a window
judged significantly enriched. Black means that in all 13 scales there is an enriched
window that contains that pair, while white indicates that there was never an enriched
window including the pair 4, j. In Figure 7.4 (a) the relevant pairs used as input for the
scale search are the ones with p-value of the Spearman correlation smaller than 10™%. In
the plots (b) and (c) the sign of the correlation is taken into account. The input pairs
are divided into positive and negative correlation, respectively. Therefore, Figure 7.4 (b)
exhibits the enriched genomic regions where the correlation between the aCGH and the
expression data is in the same direction. Similarly, Figure 7.4 (¢) displays the enriched
regions of anti-correlation between the genes and the aCGH probes. Note that there is
a significant proportion of negative correlations. In this data the pairs with significant
negative correlation account for 37% of the total number of relevant pairs.

The first observation that can be made is the evidence of the local correlation, i.e. the
copy number and the expression of the genes are locally positively correlated (cis-effects).
This is apparent from the fact that the “diagonal” of the matrix that contains the pairs of
copy number/gene on the same genomic location, is often enriched in all scales, as can be
seen in Figure 7.4 (a) and (b). The negative correlation does not exhibit such enrichment.
The black diagonal is, in fact, not present in Figure 7.4 (c). The local correlation was
expected, since it as been observed by many authors [Adle 06, Hyma 02, Frid 06, Call 06].
It is, therefore, a positive control of our approach.

Two main types of trans-effects can be observed, a local and a genome-wide enrich-
ment. A local enrichment of the correlation is visible, for example, on the rows associated
with Chromosome 1 in Figure 7.4 (a). The copy number measurements on the p arm of
Chromosome 1 are correlated with the expression on Chromosome 9¢ (1 in Figure 7.4).
While the q arm of Chromosome 1 is correlated with Chromosome 6p (2 in Figure 7.4).
No other regions of the genome are significantly enriched along the rows related to the
copy number measurements on Chromosome 1. The Spearman correlation that associate
with these points is positive. The enrichment is strongly present, in fact, only when the
positive highly correlated pairs are considered (see Figure 7.4 (b)), but disappear in the
negative correlation plot (Figure 7.4 (c)).

The genome-wide correlation is observable as the horizontal lines of significant en-
richment. The most evident is comprised of the copy number measurements located on
the q arm of Chromosome 16 (3 in Figure 7.4). This region seems correlated with the
expression of many genes along the genome, no matter whether the sign of the Spear-
man correlation is used in the analysis or not. All three cases ((a), (b) and (c) plots in
Figure 7.4) show genome-wide effects on Chromosomes 16¢, 15p, 5¢ and 4p.

At this point, we have not considered any information regarding the copy number
aberrations that may be present in the aCGH data. Since we have used all 68 sam-
ples, a part of the DNA could be deleted in some samples and amplified in others. In
order to evaluate if there is a dependency between the amplifications or deletions and
the correlation structures we have observed, we investigate the “potential” amplifications
and deletions separately. Instead of using all samples, we selected for each copy number
measurement the samples with positive values. The correlation with the expression data
is computed using only those samples. The same procedure is done with the negative
values of the aCGH probes. The p-values of the correlation is then thresholded and the
scale search is performed. The results of the IGDam algorithm with these different rele-
vant pairs as input are presented in Figure 7.5. Note that once the Spearman correlation
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Figure 7.4: Results on the NKI dataset of the window scale search were the input is:
a) the relevant pairs (p-values of the Spearman correlation < 107%), b) the relevant
pairs with positive Spearman correlation, c¢) the relevant pairs with negative Spearman
correlation.

is computed for the chosen samples, the relevant pairs are selected based only on the
p-value of the correlation, i.e. regardless of the sign. Figure 7.5 (a) displays the enrich-
ment of the potential amplifications, while Figure 7.5 (b) views the result of the potential
deletions. Many of the correlation patterns visible in Figure 7.4, are also present here.
However, the frequency of the enrichment across the scales is less pronounced. The di-
agonal effect is modest, and the number of pairs that are included in enriched windows
across all scales is limited. This has to be expected, since now more homogeneous sample
groups are considered. The point enrichment between the copy number measurements
on Chromosome 1g and the genes on Chromosome 6p is still visible in Figure 7.5 (a)
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Figure 7.5: Results of the window scales search using as starting pairs the correlation of
the samples with a) positive and b) negative values of the copy number measurements.

(2). Here, modest genome-wide effects involve Chromosomes 1¢, 3¢ and 6p, while in Fig-
ure 7.5 (b) the genome-wide effects are visible on Chromosomes 4, 5¢, 14¢q and especially
16g.

Interestingly, we do observe a connection between the enrichment and the types of
genomic aberrations potentially present in the aCGH data. The local correlation on Chro-
mosome 1¢ is still visible in Figure 7.5 (a), while it is not present in Figure 7.5 (b). This
suggests the copy number measurements that have generated it are amplified. The op-
posite can be observed for the point enrichment between the copy number measurements
on Chromosome 1p and the gene expression on Chromosome 9¢ (1 in Figure 7.5(b)).
It is present when the correlation is computed only between the “potential” deletions.
Actually, these genomic aberration are present in the aCGH data, as reported in out
previous work [Lai 07]. In the same aCGH dataset we have identified the aberrations for
the classes of interest using our supervised algorithm SIRAC. As summarized in [Lai 07]
there is, indeed, an amplification on Chromosome 1g and a deletion on Chromosome
1p in a group of samples, which are predictive of the Luminal A and Luminal B sub-
types, respectively. The same findings hold for almost all genome-wide effects identified
in Figure 7.5. The ones related with the potential amplifications, in plot (a), involved
copy number measurements amplified in one of the subtypes. Similarly, the genome-wide
effects detected in the “potential” deletions, see Figure 7.5 (b), are indeed connected to
deleted probes.

7.3.3 Discussion
Scale search analysis in a single data type

The results of our algorithm suggest the presence of more than a local correlation between
copy number and expression data. Dense regions of significant correlation do occur
genome-wide. However, several questions are still open. Is this correlation due to only
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Figure 7.6: Results of the window scale search applied on aCGH data only (a) or on
expression data only (b). The thresholded p-value of the Spearman correlation is used
as input for the IGDam algorithm.

one type of data, either copy number or expression? Or are the observed effects artifacts?

In order to evaluate the correlation structures within a single type of data, we have
applied the scale search analysis to the aCGH and expression data separately. Figure 7.6
presents the results when the thresholded p-values of the Spearman correlation are used
as input. Note that the matrices are now symmetric. The enrichment of regions of corre-
lation for the aCGH data is illustrated in Figure 7.6 (a). The highly enriched correlation
regions are along the diagonal of the matrix, and often involve the entire chromosome
arm. The square black blocks frequently coincide with the boundaries of the chromosome
arms, see e.g. the sharp edges on the enlarged Chromosome 5. There is no evidence of
correlations as strong as the ones observed in the diagonal, which often involve all window
scales (black color). The largest off-diagonal effect is between Chromosomes 1p and 9¢ (1
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Figure 7.7: Results of the IGDam algorithm using the thresholded p-value only of the
probes that have a standard deviation larger than a threshold. The thresholds are de-
termined independently for aCGH and mRNA as the top of the smallest percent of the
data. The percentage is fixed in 20% for plot (a) and 50% for plot (b).

in Figure 7.6). The same dependency was present in Figure 7.4 (a) and (b). Note that,
however, no local correlation is now present between Chromosomes 1q and 6p. These
results suggest that the aCGH data has very strong local correlation, often involving the
entire arm of the chromosomes, but very minor effects can be observed between probes
that are not closely located.

Figure 7.6 (b) illustrates the scale search applied to the expression data, with an en-
larged plot of Chromosome 5. The spatial correlation is noticeable also in this case.
However, the local effects are here much more confined than in the aCGH case. The
black diagonal only seldom involves the entire chromosome arm. More genome-wide ef-
fects are, instead, visible in the mRNA data, the largest one being on Chromosome 6p.
Some genome-wide effects were detected also in the combined data, see the mentioned
Chromosome 6p, others, such as Chromosomes 9¢ and 10p, are not present in the results
summarized in Figure 7.4. Therefore, the expression data reveals a more complex correla-
tion patterns than the ones observed on the aCGH data, with weaker local dependencies
and genome-wide effects.

Effect of the contribution of both data type in the definition of relevant pairs

Can the spatial correlation between aCGH and expression achieve significant p-value if
either the expression or the copy number have only a small variance across the samples,
i.e. the measurements do not contain any information? In order to dispel this doubt we
have analyzed the standard deviations (STD) of the probes. First, we compute the STD
across samples for expression and aCGH data separately. Second, we set to extract the
thresholds to detect which probes/genes have a small variation. The probes/genes with
the 20% or 50% smaller STD are considered as having a small variation. Third, we assign
the p-value of the Spearman correlation for those pair of probe/genes a value of one. In
this way they are not included as relevant pairs even if their correlation would be signifi-
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Figure 7.8: Results of the IGDam algorithm using a randomized matrix of thresholded
p-values of the Spearman correlation. The p-values are shuffled independently within
each row (a) or within each column (b).

cant. More formally, given the matrix M,y 4 of the p-values of the Spearman correlation,
t, and t, the thresholds for the copy number and genes measurements respectively:

(7.1)

M — pvalue; j, if std(p;) > t, & std(g;) > t,
b 1, otherwise.

with p; and g; the vectors of the copy number and expression alterations respectively
for the pair 4, j. Fourth, the window scale search is performed with the new subset of
relevant pairs. Figure 7.7 illustrates the results for both threshold values of 20% and 50%),
i.e. the relevant pairs have STD larger than the thresholds both in the copy number and
the expression data. If we compare these results with the corresponding one illustrated in
Figure 7.4 (a), we can see that both local and genome-wide regions previously highlighted
can still be identified here. When the 20% is used as value to determine ¢, and t4, the
percentage of relevant pairs is 87% of the total number of pairs selected without any
restriction on the STD. When the stringent value of 50% is adopted, 58% of the relevant
pairs are still selected. This indicates that the pairs selected as input for the scale search
have indeed large variation between the samples in both copy number and expression
data. Therefore, the high correlation is not only due to a single type of data, but is the
result of a variation of both data sources.

Effects of data randomization in the scale search results

In order to investigate whether the patterns of enrichment could be an artifact, we
evaluated the scale search applied to randomized pairs of p-values. The randomization
is performed on the matrix of the Spearman correlation p-values in two ways, within
the rows, by shuffling the gene position of the pairs in each row, or within the columns,
by randomizing the copy number measurements within each column independently. The
results of the scale search are presented in Figure 7.8. In the left plot the genome location
of the copy number measurements is not altered. We do observe genome-wide effects on
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Figure 7.9: Results of the scale search applied to more homogeneous patient group, i.e.
the patients belonging to the same subtype.

Chromosomes 4p, 5g, 15p and most strongly 16q. Those locations have been observed
already in Figure 7.4 (a) as expressing an enrichment along many chromosomes in the
genome. Although changing the locations of the genes, the randomization does not alter
the fact that the relevant pairs are scattered along the whole genome. Therefore, the rows
involving those copy number measurements are still significantly enriched, as expected.
When we randomize the structure of the location of the copy number measurements,
instead, nothing is enriched anymore. The maximum number of scales reached is 9, and
it is obtained in just a few pairs. These results suggest that the correlation patterns
observed are not an artifact of the method, but are, indeed, present in the data.

Application of the IGDam algorithm to a homogeneous patients group

In our analysis we have used all samples available, in an unsupervised manner. We
hypothesize that the correlation patterns observed are due to the heterogeneity of the
patients. Those patterns would disappear if a more homogeneous patient group would be
used. In order to verify this hypothesis we apply our algorithm to the patients belonging
to the subtypes first proposed by Sorlie et al. [Sorl 01, Pero 00, Sorl 03]. We have exten-
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Figure 7.10: Results of the TFs enrichment analysis for the case summarized in Fig-
ure 7.4 (a). The right plot (a) indicate the number of target genes according to their
chromosomal location (horizontal axis). The target genes are the genes present in the
selected pairs whose aCGH probes are located on the same chromosome. The color codes
for the number of genes, ranging from 0 (white) to 483 (black), which is the number of
genes on Chromosome 1 present in the relevant pairs whose aCGH is located on Chro-
mosome 1. The left plot (b) is comprised by two panels. In the upper panel are indicated
the TFs enriched in the target gene-lists, e.g. the genes present in each row of the matrix
in part (a). The lower panel select which TFs of t he upper panel is also located in the
same chromosome as the aCGH probes of the relevant pairs originating the list. The
color here codes the index that identify each individual TF.

sively analyzed the stratification of the 68 NKI patients according to the subtype labels
in [Lai 07]. There, we have identified the genomic aberration specific for each class. Now
we consider the patients belonging to a single class. First we compute the correlation
between copy number and expression, and second we apply the scale search. The results
for the Basal, ERBB2, Luminal A and B subtypes are presented in Figure 7.9. No strong
correlation patterns can be detected across all window scales. The ERBB2 patients do
no have a single pair contained in an enriched window in 12 different scales. The other
classes have few scattered pairs, the larger contribution is found in the Luminal A, on
Chromosome 1¢g. Overall, we can confirm that no patterns of correlation can be observed
when the sample groups are rather homogeneous, as in case of the four subtypes analyzed.

Transcription factor analysis

We have observed several spatial correlation structures in the combined aCGH and
mRNA datasets, which we have referred to as local and genome-wide effects. In order
to investigate the possible causes for these dependencies we analyzed whether the genes
involved in the mentioned effects are co-regulated by the same transcription factors. We
used the TRANSFAC database [Data] to obtain a list of transcription factors (TFs) with
their binding sites. The TFs with known genomic location are selected from the database,
resulting in a total of 332 TFs. For each gene in the NKI dataset, we determined which
TFs can putatively bind their upstream region, allowing us to establish a link between
a transcription factor and his putative targets. Let’s consider the rows in the matrix
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depicted in Figure 7.4 (a), and select the genes associated with the (aCGH-mRNA) pairs
that were significantly enriched in e.g. 12 window scales. Instead of considering the
genes associated with a single DNA-probe, we chose to do the analysis per chromosome,
looking at the genes significantly correlated with the entire chromosome. This is because
often the correlation effects involve an entire part of a chromosome in a similar manner.
Therefore, treating the copy number measurements individually would be redundant,
besides being more difficult to interpret. First, the pairs whose aCGH probes are located
on the same chromosome and that are significantly enriched in at least 12 window scales
are selected. Second, the genes in those pairs are considered. Figure 7.10 (a) depicts
the number of those target genes. For example, the first row of the matrix indicates the
target genes located in the pairs correlated with Chromosome 1, which are situated on
Chromosome 1 itself, and on Chromosomes 6 and 9. As expected, the largest number of
genes is found in the row associated with Chromosome 16, which contains genes located
on almost all chromosomes. Only Chromosomes 18, 19, 21 and 23 did not have any region
with significantly enriched pairs. While some chromosomes shown only pairs with the
aCGH and mRNA located in the same chromosome (CIS effect), e.g. see Chromosome
17. The color codes for the number of pairs found per chromosome, depicted according
to the location of the mRNA component of the pairs. One could hypothesize that the
DNA probes are correlated with the expression since a TF is located in the region where
the copy number is altered and that this TF has a set of targets located in the region
where the expression is correlated with the DNA copy number. To test this hypothesis
we employed the hypergeometric distribution to determine if a particular TF is enriched
in the given list of target genes, i.e. whether a TF preferentially binds to these genes.
Figure 7.10 (b) (upper panel), depicts the TFs of whom the binding sites are significantly
enriched (p-value smaller than 0.005) amongst the target genes associated with the copy
number measurements in each chromosome. The color is not important here, since it
codes for the index of the TF. Figure 7.10 (b) (lower panel) depicts the TFs that are
located on the same chromosome as the copy number measurements of the pairs com-
prising the target genes. One TF is on the same chromosome as the DNA probes used
to generate the target gene-list, i.e. on Chromosome 3. The target gene-list for the pairs
whose aCGH is located on Chromosome 3 comprises genes on Chromosomes 1, 2,3 and
16, as illustrated by the 3rd row of the matrix in Figure 7.10 (a). Several target gene-lists
present an enrichment in some TFs, although the results are depending on the specific
genesets. We have repeated the analysis using a less stringent criterion for the selection
of the correlated pairs: the required number of scales where pairs should be enriched
equaling to only 10,8 and 6. The gene-lists become larger, and some TFs are identified
as enriched in the target set. However none are located on the same chromosome as the
DNA probe correlated with the mRNA expression of the target list. The TFs present
change as well, i.e. for a given chromosome, the gene lists obtained with the different
values for the scale search enrichment do not always identify the same TFs. Therefore,
this analysis does not help us in finding causal relationships which could explain the
observed correlation. We do not find evidence that the genome-wide effects are due to
the presence of a TF, which, altered by a chromosomal aberration, causes a genome-wide
change in expression.
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7.4 Conclusions

We have investigated the genome-wide correlation dependencies between copy number
and expression datasets. Our goal has been the identification of regions of interdepen-
dencies between these two data type. The results have reconfirmed the cis-effect, i.e. the
high correlation between the copy number changes and the expression of the genes in the
same region. Furthermore, concerning the data type independently, we have highlighted
that in the aCGH data only the cis-effects are very strong, involving often the whole
chromosome arm, but are less pronounced in the expression data.

Two types of dependencies between copy number and expression datasets have been
identified: a local and a genome-wide dependency. We have verified that these findings
are not artifacts, since they do disappear when randomized data is used instead. Nor they
are caused by one dataset only, since the number of relevant pairs does not drop when
only the pairs with high STD in both datasets are allowed to be selected, as illustrated
in Figure 7.7. These patterns of correlation are influenced by the sample heterogeneity.
As shown in Figure 7.9, they are not strongly present when homogeneous sample groups
are analyzed.

It should be noted that correlation does not imply causality, which is the ultimate goal
of our search. In order to better understand the mechanism of cancer, our final aim is,
in fact, the identification of the causal relationship between copy number and expression
data. In order to further investigate this aspect, we have analyzed whether the correlation
patterns are caused by the presence of a transcription factor in the altered copy number
measurements, which is significantly enriched in the genes showing correlation with those
copy number measurements. We can pinpoint at transcription factors enriched in the
gene list generated by the IGDam algorithm. Unfortunately, we cannot propose any TF
as a cause for the local or genome-wide effects that we have found, since no TF was
both produced by a gene located in the genomic region identified by the copy number
measurements, and significantly enriched in the genes correlated with those copy number
measurements.

In conclusion, our method makes possible for the fist time to explore genome-wide
dependencies between copy number and expression dataset. Several mechanism of inter-
est have been hypothesized. Further work is needed for a validation of the findings and
a determination of the causality direction of the identified trans-effect dependencies.






Conclusions

8.1 Concluding remarks

Part I: dependencies in gene expression datasets.

The first part of the thesis focused on dependencies within the expression datasets, and
addressed the issues of gene selection and predictor building. By the time gene expression
data became available a vast body of knowledge on classification methods had already
been developed in the fields of machine learning and pattern recognition. The methods
developed in those fields were immediately applied, often without the necessary precau-
tion, to this new data type. Therefore, many errors appeared even in studies published in
high impact factors journals [Dupu 07,Brag 07]. We have identified these problems at the
early stage of our research, and dedicated considerable effort towards performing exten-
sive and systematic comparisons, as presented in Chapter 4. Our major conclusions are
outlined in the following paragraphs. Recently several reviews have aimed at summariz-
ing the major limitations and highlight the reached consensus [Alli 06, Dupu 07,Brag 07].
Dupuy and Simon [Dupu 07] provide a useful checklist of “Do’s and Don’ts” concerning
the statistical analysis of gene expression data. Allison et al. [Alli 06] present a construc-
tive view of the consensus reached in what they define as the five components of gene
expression analysis (design, preprocessing, inference, classification and validation). They
point out that in some areas the need for evaluating existing techniques is more important
than the development of new ones. Our findings are in line with this statement.

Simple methods work best.

Our aim has been to compare and clarify the benefits of the different gene selection
and classification techniques. Our results suggest that simple methods, e.g. univariate
gene selection coupled with the Nearest Mean Classifier, when not outperforming, are as
good as more complex ones. In particular, the multivariate selection techniques, which
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were expected to detect high level dependencies between the genes, did not improve the
classification of the samples. Therefore, these procedures did not succeed in detecting
higher order dependencies. We want to emphasize that the limited sample size is cur-
rently the major constraint for the complexity of the gene selection and classification
algorithms. The comparison between multivariate and univariate selection techniques
should be performed on larger cohorts that are now starting to be available.

The genes carry redundant information.

We have attempted to identify informative gene sets. Our initial hypothesis has been
that only a small number of genes would carry the information of interest, e.g. be pre-
dictive of cancer aggressiveness. This was a shared assumption, encouraged also by the
small size of the different signatures proposed by many studies, which were often smaller
than a hundred genes [Veer 02, Wang 05b, Ma 04, Gema 04]. This hypothesis has been an
initial motivation for the development of the Random Subspace Method (RSM) described
in Chapter 3. However, the RSM failed to improve the classification performance when
applied to gene expression datasets. Since the strength of the algorithm is in the identi-
fication of multivariate information present in data with large number of uninformative
features, our results suggest that this assumption does not hold for expression datasets.
The number of informative genes is not restricted to tens of genes, but it may extend to
thousands of genes. This conclusion is also supported by the experiments in Chapter 2.
Our results show that the larger the signatures the higher the classification performance,
suggesting that increasing information was, indeed, available in the genesets.

The fact that signatures describing the same processes are not overlapping and are
sometimes not validated in independent cohorts has casted doubt on their reliability and
robustness [Ein 06, Reid 05]. For example, Ein-Dor et al. [Ein 05] have shown that mul-
tiple signatures achieve the same classification performances. However, the comparison
of related signature by Fan et al. [Fan 06] have suggested that the different signatures
track a common set of biologic characteristics, and therefore, they all have validity.

Part I1: dependencies between copy number and expression datasets

In the second part of this thesis we investigated the spatial dependencies within copy num-
ber datasets, and between these and the corresponding expression datasets. While there
were many available strategies for the construction of classifiers (Part I), the method-
ologies and tools for the data integration of copy number and expression data had to be
developed from scratch.

Copy number data shows spatial local dependencies

Several algorithms specifically developed for copy number data, reveal that genomic aber-
rations involve regions of the genome that are spatially related [Lai 05, Pica 05, Jong 03,
Jong 04, Wang 05a]. Our emphasis has not been on the identification of chromosomal
gain or loss on a per sample basis, but we have strived to evaluate what makes two
classes different from each other, and what are the aberrations that distinguish them.
This is advantageous especially when working with human tumor samples, whose het-
erogeneity is much larger then the one observed e.g. in mouse datasets. We assumed
that the heterogeneity of tumors may lead to signals for the aberrations smaller than the



8.1. Concluding remarks 107

ones expected if the tumors were homogeneous. Therefore, amplifications/deletions with
small absolute values may be of interest as well, especially when they discriminate the
classes of interest. Several authors (e.g. Saramaki et al. [Sara 06], Fridlyand and Chin
et al. [Frid 06, Chin 06], and Nymark et al. [Nyma 06]) have recently pointed out that
even low-level copy number aberrations may have significant effects on gene expression
and, therefore, on cellular functions and tumor development. These findings support the
assumption made in the SIRAC algorithm.

Combining copy number and expression data allows a feasible search of
marker cancer genes

The expression data was integrated with the results from the copy number data in a
post-processing step. Prioritizing the gene expression according to the correlation with
the corresponding copy number data is especially relevant since we expected that, for
instance, not all genes in a region of aberration would be active. Some may be silent and
not contributing to the mechanism of cancer. In Chapter 6, a selection based on these
additional information sources, resulted in smaller lists of potentially interesting genes
that were analyzed further.

For classification purposes the expression is to be preferred to the copy num-
ber data

The copy number data provides a powerful tool to investigate genomic aberrations. How-
ever, expression data turns out to bear much larger variability, since not only genetic but
also epigenetic events are responsible for the changes in the expression of the genes. In
a preliminary, unpublished study, we have used both copy number and expression of
68 samples for classification purposes. We have observed that prediction based upon
expression data provides a lower classification error than prediction based upon copy
number data. Although these results are based on a limited sample set, they are an
indication that gene expression should be preferred to copy number data for the sake of
classification.

Trans-effect dependencies have been observed between expression and copy
number data

The study of the dependencies via the combination of copy number and expression data
is a challenging task. Distinguishing the epigenetic and genetic dependencies would bring
more understanding about the cancer development. In Chapter 7 we have made a first
attempt to evaluate, in a statistical way, the genome-wide dependencies between copy
number and expression data. The results have confirmed the high correlation between
copy number changes and expression of the genes located in the same genomic region.
We have highlighted that only the local spatial dependencies are very strong in the
copy number data, involving often the whole chromosome arm, but are less pronounced
in the expression data. Furthermore, two types of trans-effect dependencies between
copy number and expression datasets have been identified: a local and a genome-wide
dependency. A local dependency involves two different chromosomal regions in copy
number and expression data. A genome-wide effects occurs when a region on the copy
number data shows genome-wide correlation with the expression data. However, further



108 Chapter 8. Conclusions

validation is needed in order to confirm and understand the causality of the observed
effects.

8.2 Open issues

Cancer research using high throughput data is a fast changing and developing field. The
advances of the technologies are opening new possibilities and providing new information.
Therefore, there are many open issues.

Validation

A convincing validation is a must [Thie 06, Dupu 07, Alli 06], but has been limited by
several restraints. A major one is the absence of a ground truth. How can one determine,
for example, if the genes identified in a given analysis are related to cancer if their
function is still unknown? Another major issue is the heterogeneity in the data collection
and processing. The samples may come from a non homogeneous clinical group. Many
different platforms and array types are available on the market, and even within the same
platform, every lab has its own protocol to perform the analysis. Even when adopting the
class labels, it is important to keep in mind that errors can occur in the label process due
to several reasons. Errors can occur first, due to inaccuracy in the manual annotation,
second, due to the subjectivity of the human evaluation, third, due to inconsistency of
the label when two sources are available. This situation happens, e.g. when the label
based on immunoistochemisty staining does not concord with the one obtained from the
expression value of the gene coding for the same protein. The label uncertainty has
motivated several authors to address this issues also on a statistical level, incorporating
the label uncertainty in the model used for classification [Zhan 06b,Li 07]. Furthermore,
the small sample availability imposes strong assumptions, such as gene independence,
which is implied by the univariate gene selection. Therefore, larger cohorts and more
extensive experimental validation are needed to reach more generally applicable and
reproducible results.

Data integration

Data integration is becoming more and more important, and is attracting increasing ef-
forts of the scientific community [Alli 06, Buss 07]. Initially, the integration of different
expression datasets has been investigated, as a possibility to obtain larger cohorts. For
example, Segal et al. [Sega 04] presented an integrated analysis of published gene ex-
pression datasets across 22 tumor types, Hwang et al. [Hwan 05] proposed a method to
combine different datasets to obtain a unique network model, and applied it to 18 yeast
datasets, Teschendorff et al. [Tesc 06] built a prognostic gene expression classifier using
three independent cohorts of ER positive breast cancer.

The interest for integration is becoming even more relevant with the availability of var-
ious data types, which provide different views of the same biological processes [Edgr 06,
Alli 06,Buss 07]. Besides expression measurements, other examples are DNA copy num-
ber variations [Pink 05], single nucleotide polymorphisms (SNPs) [Shas 03], transcrip-
tion factors binding sites [Jeff 07], protein levels [Buck 04], and the diverse databases
which contain information on gene annotation. Many tools that aim at facilitating
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an integrated analysis and the interpretation of the results have appeared [Anal, Al
S 07, Chan 06, Nam 06]. Recent studies have included Transcription Factors activi-
ties [Buss 07, Jeff 07], SNPs [Stra 07], specific sequence of DNA called motifs [Noto 06,
Eden 07], and metabolome data [Caki 06]. The aim is to obtain a more complete pic-
ture of the biological processes via the combination of different aspects described in the
diverse data types. Similarly, our work in Chapters 6 and 7 has investigated the depen-
dencies between copy number and expression datasets, suggesting that data integration
allows the identification of potential marker genes, and the generation of novel hypoth-
esis regarding cancer mechanisms. However, it is too early to have a consensus on the
methodology used and on the findings obtained.






Afterword

Current cancer research is mainly focused on the molecular mechanisms within cells, re-
ducing the human being to his/her DNA material. However, the human being is not only
composed of his/her physical body, but also of his/her emotional and thinking processes.
It is becoming a shared consensus that stress, unhealthy habits and environmental influ-
ences have a great impact in the development of diseases. In recent years, several medical
doctors have promoted a more radical view of the illnesses, cancer included, being a result
of emotional stress and unhealthy thinking patterns, which are often not only unsolved,
but not even expressed at a conscious level [Deth 02,Bens 96, Chop 91, Weil 04, Hame 02].
The philosophy behind these approaches is that the human being is considered as a
whole, not only as the sum of his organs and tissues. The patient is empowered, since
the healing is believed to originate within the patient rather than from the physician.
The change in perspective and the implications that these approaches require are very
radical. Therefore, the integration of these ideas with conventional medicine is just in
its infancy and presents many challenges [Bell 02, Rees 01]. However, the awareness
towards these approaches is increasing. This is testified, for example, by the growing
adoption, besides the conventional therapies, of what is today referred to as complemen-
tary and alternative medicine (CAM), which include e.g. traditional Chinese medicine,
Ayurveda and homeopathy. From a research view point, several cancer institutes have
presented, for example, studies on the effect of diet, stress reduction, meditation and
yoga on the development of the diseases or on the symptoms of stress, such as sleep
disorders [Cohe 04,Saxe 01,Spec 00,Zama 96]. However, the effort and investments are
heavily unbalanced towards conventional medicine. I'm convinced that in order to un-
derstand cancer a more holistic approach should be considered, and that cancer research
should take on the challenge to incorporate the more subtle components of the human
being, such as mind and emotions.

Delft, February 2008 Carmen Lai
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Genome and gene array description

The genome and its annotation

Every eukaryotic cell is defined by a membrane that holds the cytoplasm and the nucleus,
which contains the DNA. In humans, the DNA material is organized in two copies of
twenty-three chromosomes (from 1 to 22 plus the chromosome Y or X, which characterize
the sex of a person). Some parts of the DNA are coding regions, these are referred to as
genes. These parts may produce RNA copies and release these transcripts in the nucleus.
The transcripts are used as templates for the translation into proteins.

In 1982 the sequencing of the human genome started. This huge project is a shared
effort of the American GenBank, the European EMBL (European Molecular Biology Lab-
oratory) and the Japanese DDBJ (DNA Data Bank of Japan). The human genome has
been nearly fully sequenced, and this information is stored in shared primary databases
of the mentioned three initiatives, and is accessible via the world wide web. However, this
work has not been completed, the sequence information is constantly improving, and the
databases which store it are regularly updated. These primary databases do not contain
meta-information, e.g. to which gene the annotated sequence belongs. Therefore, this
need is addressed by a second layer of databases (Unigene, TIGR GI, RefSeq). These
databases aim to cluster together the sequences into unique genes. In particular, the
RefSeq database contains high-quality and well-annotated information [Stek 03]. A third
level is provided by the Ensembl database, which builds on both the low level informa-
tion stored in the primary databases, and the higher level annotations of the sequences
contained in the second level databases. The Ensembl database aims at organizing all the
sequence information into chromosome sequences in such a way that each chromosomes
appears as a long single sequence, the so-called Golden path. Therefore, it facilitates
efficient querying and mining of the complete genome.

The knowledge about the genome sequence is used to create the arrays, which measure
e.g. the quantity of mRNA expressed, or the amount of DNA at a specific genomic loca-
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Figure A.1: Illustration of the process that leads to a high throughput dataset. The
two-color technique, used e.g. in the Agilent platform, is depicted.

tion in the cells of interest. This data can be employed to study the genetic mechanism
of the cell and to learn about the alterations, which lead to and govern the cancer.

Gene array description

The first paper to introduce micro-array technology was published in 1995 by Schena et
al. [Sche 95]. Since then, many techniques have become available and have improved the
reliability and quality of the micro-arrays. Major advances are pushing the high through-
put technology towards higher resolution and more reliable data generation. Here, we
will briefly summarize the process of fabricating and using the micro-arrays employed
to quantify the expression or copy number of thousands of genes simultaneously. For a
more detailed description see [Cheu 99, Stek 03, Dugg 99].

The array fabrication process is illustrated in Figure A.1. The first stage consists of
the creation of the microscope slide onto which the DNA molecules have been chemically
bound. To this end, the main techniques are robotic spotting and in-situ synthesis.

The robotic spotting consists of three steps (Figure A.1 (a)). A library of DNA
clones is prepared. The probes can be either polymerase chain reaction (PCR) products
or oligonucleotides. The spotting is done by a robot, using a set of pins. The pins are
first dipped in the wells containing the DNA, so that the clones are collected. Then the
pins are moved onto the glass, and the DNA is spotted. Finally, the pins are washed to
remove all residual material. The process is repeated on the successive set of wells till
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the array is complete. The array is then fized so that no other DNA material can attach
to it.

The in-situ synthesis is schematized in Figure A.1 (a). Instead of presynthesising
the oligonucleotides, the procedure consists of growing the oligos, base after base, on
the surface of the array. There are three main technologies which differ in the way the
oligos are grown. The Affymetrix technology uses photolithography to glue the desired
bases together. The light passing through particular masks directs the reaction only to
desired spots in the array. Other technologies, such as Nimblegen, use micromirror arrays
instead of masks to direct the light and consequently the position where a base is attached.
The third technique uses chemical reactions with synthesis via ink-jet technology. This
is the strategy adopted by Agilent. The advantage of the micro-mirroring and ink-jet
techniques is the high versatility. The operator can fully control the process via the
computer, choosing to make the array with any oligo that he/she wishes. Although
limited in flexibility by the fixed masks, the Affymetrix technique is very efficient in
large scale production of identical arrays. Concerning the synthesis effectiveness, the
techniques which make use of light have an efficiency of 95%, while the chemical ink-jet
synthesis has a 98% efficiency. The diffraction of light through the masks limits the
quality of the spots of the Affymetrix arrays. This problem is addressed in their specific
image-processing software. The ink-jet approach gives the best spot quality [Stek 03].

Both the spotted and the in-situ synthesis technologies provide as an outcome an
empty array with the DNA probes attached to it. The goal is now to obtain and prepare
the DNA or mRNA material to be measured. Figure A.1 (b) schematically depicts
the necessary steps. The DNA or mRNA material has to be extracted from the samples,
purified and amplified. When the interest is in the expression of the genes, the messenger
RNA (mRNA molecules) are collected and reverse transcribed into the corrispondent
DNA nucleotides. If our focus is on the genomic aberrations, we want to measure the
copy number of the genes. Therefore, the DNA from the chromosomes is collected. The
extraction is a complex process, that is performed in various ways in different laboratories.
When the interest is in the amount of DNA material present in the cell, as is the case in
the Affymetrix arrays, we measure each sample separately. A reference sample is used
when we want to compare the sample with it, e.g. to measure the relative difference of
the sample versus a normal tissue, or versus a pool of tumor samples. The DNA material,
from the sample and the reference, are then labeled with different fluorescent dyes. Two
dyes are mainly used: Cy3 (that emits green light when excited with the corresponding
laser wavelength) and Cy5 (red light emission). The hybridization is the step in which the
labeled DNA binds the specific complementary DNA probe on the array. This process
generally takes place over a period of 12 to 24 hours. The slides are then washed. In
this way the excess DNA is removed from the slide. Another result of the washing is
to reduce the cross-hybridizations, i.e. the bonds between not complementary pieces of
DNA, which are generally weaker then the matching ones.

The final step in Figure A.1 (c¢) consists of obtaining the measurements from the
hybridized array. The slide is put into a scanner, where a laser with the proper wavelength
(green or red light) focuses on a point in the array, and excites the dyes present at that
spot. After excitation, the red (or green) fluorofors emit the light, which is collected by a
photomultiplier tube in the scanner. The quantity of the signal collected is proportional
to the DNA material present in the sample. The scanner focuses on every point of the
array, by moving either the laser or the slide, so that an intensity image of the array is
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obtained. If the interest is in an absolute measurement then a single channel is collected.
For a two-color measurement the green and red channel are acquired separately and then
combined to produce a ratio of intensities. The image is finally stored as a tagged image
file format (TIFF). The array image provide us with the per pixel intensity of the dye
emissions. The image needs to be processed in order to obtain the quantitative measure
of each probe. The information of different samples is combined together in a dataset to
be used for the statistical analysis. Since there are many sources of systematic variation
in microarray experiments, several normalization procedures are needed to correct for
it [Yang 02,Stek 03,Spee 03]. A necessary normalization is done within a slide to correct
for spatial and intensity dependent dye biases. Another normalization can be applied if a
dye-swap experiment is performed. Two arrays are hybridized using two different dyes for
the same sample. Since the efficiency of the dyes is different, the normalization conducted
on the results of the combined arrays will correct for this effect. However, a dye-swap
experiment requires double the number of arrays. A third type of normalization maybe
performed between slides. The aim is to adjust for sample variances in the intensities
across slides. However, the risk is to artificially increase variability in the data. Therefore,
if the difference between samples are fairly small, it is advisable to perform only a within
sample normalization [Yang 02].

After the normalization step, the data from all samples is organized in a matrix
N x P, with N samples and P probes. This is the starting data that was employed in
the research presented in this thesis.
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Summary

Cancer consists of cells of the body which proliferate in an uncontrolled fashion. Under-
standing of the genetic mechanisms of the disease would greatly improve its treatment.
The advent of high throughput biomolecular measurements, such as gene expression ar-
rays, allows a close look at the molecular mechanisms of cancer. This thesis studies data
analysis procedures tailored to analyze and learn from high throughput data, finalized
both to clinical applications such as cancer classification, and to build knowledge of bi-
ological mechanisms. A gene expression array measures the expression of thousands of
genes simultaneously, via the quantification of the mRNA present in the samples. Since
it is hypothesized that cancer is reflected in changed mRNA expression levels, analyzing
this data potentially gives insights into cancer development or might enable to predict
therapies. One reason for altered mRNA expression stems from genetic mutations. These
can be measured through DNA copy number arrays . Since human cells are diploid, aber-
rations in the amount of DNA copies pinpoint towards genetic mutations related to the
initiation and development of cancer.

The underlying theme throughout this thesis is the investigation of dependencies in
gene expression and/or copy number measurements. Since cancer is a complex disease,
one expects that multiple genes are affected simultaneously when a cell becomes tumor-
ous. This in turn implies that the mRNA expression or the DNA copy number of multiple
genes will change in concordance with each other, or, in other words, that the change in
these genes are dependent on each other. One prominent clinical application that is being
studied in this thesis is that of classifying a patient’s tumor into one of the categories of
interest, e.g. aggressive/non-aggressive cancer, or a tumor that will/will not respond to
a certain treatment. This can be achieved by learning from examples, i.e. array data of
patients for which the classes of interest (labels) are known. A statistical model, called
a classifier, is built (trained) to discriminate the classes of interest. This model should
be able to generalize to data unseen during the training process, i.e. to tumor material
of new patients.

Part I of this thesis is dedicated to obtain and evaluate a reliable supervised clas-
sification procedure using gene expression measurements only. A gene expression array
produces measurements for a large number of genes, but not all of them are thought to
be involved in the development of cancer. Identifying a limited number of genes com-
pared with the number of genes on the array has several benefits. An informative set
of genes would increase the classification performance and it provides the biologists with
a tractable number of variables to be evaluated in order to gain understanding of the
cancer mechanisms. Moreover, a small number of genes, e.g. in the order of tens, would
allow cheaper tests to be used routinely in the clinic. In order to reduce the dimension-
ality of the original datasets, this thesis focuses on gene selection procedures. New ways
to perform outcome prediction have been investigated and these have been compared to
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state of the art gene selection and classification procedures in a rigorous framework. The
major contribution on this work is the first consistent evaluation study on univariate and
multivariate selection techniques, in order to identify the strong and weak characteristics
of both approaches.

Supervised classification based on gene expression data provides the possibility to
construct generalizing classifiers using gene subsets. However, in order to gain biological
insight into the mechanisms of cancer, the statistical analysis of gene expression arrays
alone is not sufficient. These insights could be revealed by integrating different sources
of information; in particular copy number data, expression data, and the genomic loca-
tion of alterations in these measurements. This is the theme of Part II of this thesis.
First, the focus is on analyzing DNA copy number data on itself. Here the questions
is whether there are genomic aberrations that define the classes of interest. For that a
systematic search across the complete genome has been built that identifies copy number
aberrations specific to the problem under study, e.g. cancer stratification and clinical
outcome. Then, this thesis continues to investigate the influence of genome aberrations
on alterations of gene expression and proposes procedures to identify genes that are af-
fected by the aberrations in the DNA copy number. The final contribution investigates
local and genome-wide spatial relationships between DNA alteration and changes in gene
expression. This study pinpoints genome-wide dependencies via the identification of the
correlation between a chromosomal aberration in a region and the expression on other
locations on the genome.



Samenvatting

De ziekte kanker refereert naar de ongeremde en ongecontroleerde vermenigvuldiging van
lichaamscellen. Het verkrijgen van inzicht in de genetische mechanismes die aan de basis
staan van deze ziekte, zou een enorme stap voorwaarts betekenen in de behandeling
ervan. De komst van biomoleculaire meetapparatuur met grote verwerkingscapaciteit
("high-throughput”), zoals genexpressie-arrays, faciliteert de gedetailleerde studie naar
de moleculaire mechanismes van kanker. Dit proefschrift beschrijft het onderzoek naar
methodes die zijn gericht op het leren en analyseren van de high-throughput data met
als tweeledig doel tumor classificatie in klinische toepassingen en het verzamelen van
fundamentele kennis over biologische mechanismes.

Een genexpressie-array kwantificeert de mRNA concentraties van duizenden genen in
een monster van cellen en geeft hiermee een indicatie van de expressie van alle genen in een
genoom. Aangezien kanker onder andere wordt gekarakteriseerd door veranderde mRNA
expressiewaardes, verschaft de analyse van deze data inzicht in tumorontwikkeling en mo-
gelijke therapieén. Eén verklaring voor veranderde expressiewaardes kan worden gevon-
den in mutaties in het DNA. Deze mutaties kunnen worden gemeten met zogenaamde
"DNA copy number arrays”. Omdat menselijke cellen diploide zijn, kunnen afwijkingen
in de hoeveelheid kopieén van bepaalde stukken DNA verwijzen naar bepaalde genetische
mutaties, die gerelateerd zijn aan de initiatie en ontwikkeling van kanker.

Het onderliggende thema van dit proefschrift is het onderzoek naar de athankelijkhe-
den binnen genexpressie en/of copy number metingen. Aangezien kanker een complexe
ziekte is, kan men verwachten dat meerdere genen tegelijkertijd worden beinvloed, wan-
neer een cel tumorachtig wordt. Op zijn beurt betekent dit dat de mRNA expressie of het
DNA copy number van verschillende genen eendrachtig zal veranderen, of, met andere
woorden, dat de verandering in deze genen afhankelijk is van elkaar. Eén belangrijke
klinische toepassing, die wordt bestudeerd in dit proefschrift is de classificatie van de
tumor van een patiént in één van een aantal voorbestemde categorieén (of klasses), bv.
kwaadaardige/goedaardige kanker, of een tumor die wel/niet reageert op een bepaalde
behandeling. Dit doel kan worden bereikt door te leren van voorbeelden, d.w.z. data
van patiénten, waarvan de tumorklasses bekend zijn. Een statistisch model, genaamd
een klassificator, wordt gebouwd (getraind) om onderscheid te kunnen maken tussen de
klasses. Dit model moet daarnaast in staat zijn om data, die niet in het trainingsproces
is gebruikt, bv. tumormateriaal van nieuwe patiénten, te classificeren.

Deel 1 van dit proefschrift is gewijd aan het verkrijgen en evalueren van een be-
trouwbaar "supervised” classificatie systeem, dat enkel gebruik maakt van genexpressie-
metingen. Een genexpressie-array produceert metingen voor een groot aantal genen.
Echter, niet al deze genen zullen betrekking hebben op de ontwikkeling van kanker. De
identificatie van een beperkte groep genen heeft verschillende voordelen. Het gebruik van
een informatieve set van genen leidt tot verbeterde prestaties van de klassificator en het
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voorziet de bioloog van een handelbaar aantal genen, dat kan worden onderzocht om de
mechanismes van kanker te leren begrijpen. Daarnaast kan een klein aantal genen (in
de ordergrootte van tientallen) leiden tot goedkopere testen, die als gebruikelijke proce-
dures in de kliniek kunnen worden ingezet. Om de dimensionaliteit van de oorspronke-
lijke datasets te verkleinen, concentreert dit proefschrift zich op genselectieprocedures.
Nieuwe manieren om de tumorklasse te voorspellen worden onderzocht en vergeleken met
de laatste geavanceerde genselectie- en classificatieprocedures. Dit alles gebeurt binnen
een nauwgezet en zorgvuldig gedefinieerd kader.

Classificatie gebaseerd op genexpressie verschaft de mogelijkheid om klassificatoren
te maken met subsets van genen. Echter, voor het verkrijgen van biologisch inzicht
in de mechanismes van kanker is de statistische analyse van genexpressie-arrays niet
genoeg. Deze inzichten kunnen worden verkregen door de integratie van verschillende
informatiebronnen; in het bijzonder copy number data, genexpressiedata en de locaties
in het genoom waar deze metingen betrekking op hebben. Dit is het thema van Deel 2 van
dit proefschrift. In de eerste plaats is er de analyse van de DNA copy number data zelf.
Hier wordt gekeken naar de vraag of er op basis van DNA veranderingen onderscheid
kan worden gemaakt tussen verschillende tumorklasses. Hiervoor is een systematische
zoekstrategie ontwikkeld, die over het gehele genoom zoekt naar DNA copy number
veranderingen, die specifiek zijn voor een bepaald probleem, bv. kankerclassificatie of
klinische uitkomst. Het proefschrift wordt vervolgd met het onderzoek naar de invloed
van veranderingen in het genoom op veranderingen in genexpressie. De ontwikkelde
procedures voor de identificatie van genen, die op deze manier worden beinvloed, worden
uitvoerig besproken. De afsluitende bijdrage van deze thesis is het onderzoek naar lokale
en genoombrede relaties tussen DNA verandering en verandering van de genexpressie.
Hier worden afhankelijkheden binnen het genoom onderzocht door te kijken naar de
correlatie tussen chromosomale afwijkingen in een bepaalde regio en de expressie op
andere lokaties in het genoom.
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