
Geometry and Reconstruction of Bipartite
Quantum Correlations

by

Jan Bosma

To obtain the degree of Bachelor of Science in Applied Mathematics and
Applied Physics at the Delft University of Technology

Student number: 4667093
Supervisors: Dr. D. de Laat (EEMCS)

Dr. S. Groeblacher (TNW)
Other committee members: Prof. Dr. Ir. A.W. Heemink (EEMCS)

Dr. D. Elkouss Coronas (TNW)

Delft, August 2020

ABSTRACT

The first part of this thesis provides a mathematical description for bipartite quantum
correlations, aiming to analyze the geometry of several sets of correlations. We explain
why quantum entanglement can be used to simulate shared randomness: Cloc(Γ) ⊆C d

q (Γ)
for a sufficiently large d . The known bound for this dimension d in the literature is
d ≥ dim(Cloc(Γ))+ 1, but we improve this by showing that the inclusion is always true
for d ≥ dim(Cloc(Γ)). For the proof of this bound, we show that the set Cprivate(Γ) of cor-
relations using private randomness is connected, which allows the use of an improved
version of Carathéodory’s Theorem. In the second part of this thesis, we define and an-
alyze a see-saw method to determine the state and measurement operators that recon-
struct both the correlation itself as its entanglement dimension, by solving consecutive
semidefinite programs. One of the strengths of the algorithm is its generality: it applies
to different dimensions, question sets, and answer sets. Some numerical experiments
demonstrated that the method can indeed reconstruct quantum correlations, although
some highly entangled correlations failed to be reconstructed due to the computational
limitations. The numerical experiments motivated several new theorems, for example
the fact that every correlation with |A| = 1 or |B | = 1 has entanglement dimension 1,
which means that it can be written as a private randomness correlation. The proof of
this result is based on the earlier described improvement for the dimension d .

i

CONTENTS

1 Introduction 1

2 Theory on Bipartite Correlations 3
2.1 Bipartite Correlations . 4

2.1.1 General Setting. 4
2.2 Classical Correlations . 6

2.2.1 Deterministic Protocols . 6
2.2.2 Private Randomness Protocols . 6
2.2.3 Shared Randomness Protocols . 8
2.2.4 Generalized Classical Correlations 9

2.3 Bipartite Quantum Correlations. 10
2.4 Final Remarks on Correlation Reconstruction. 12

3 Using Entanglement to Simulate Shared Randomness 13
3.1 Introduction to the Theorem . 13
3.2 Writing P as a Convex Sum of dim(Cloc(Γ)) Terms 14
3.3 A Convex Sum of N Terms has Entanglement Dimension N 15

4 Theory of Semidefinite Programming 18
4.1 Positive Semidefinite Matrices . 18
4.2 Semidefinite Program . 20
4.3 Complex Semidefinite Program . 21
4.4 Semidefinite Program in Block-form . 22

5 An SDP for the Reconstruction of Bipartite Quantum Correlations 24
5.1 See-Saw Algorithm . 24
5.2 SDP for POVM’s . 26
5.3 SDP for Density Matrix . 28

6 Results of the Algorithm 29
6.1 Analysis of Given Correlations . 29

6.1.1 Given Deterministic Correlations 30
6.1.2 Given Private Randomness Correlations 31
6.1.3 Given Shared Randomness Correlations 32

6.2 Randomly Generated Correlations . 34
6.2.1 Reconstructing Quantum Correlations. 34

7 Conclusion 37

A Code 41

ii

1
INTRODUCTION

Quantum mechanics. May I ask, how does it make you feel? Baffled? Impressed? Chal-
lenged? Fascinated? Personally, whenever I see it, a warm grin appears on my face.
Quantum mechanics always teases me with its complexity, its hidden behaviour, and its
perplexing properties. However, as confusing as quantum mechanics may be, it appears
to be even more promising! Recent research shows that it has innumerable applications:
from the supremacy of quantum computers [Aru+19], to a vision for quantum internet
[WEH18]. Also, Bell’s hypothesis [Bel64] regarding entanglement was recently success-
fully tested [Hen+15], suggesting quantum-nonlocality ("spooky action at a distance");
an instantaneous and invisible connection between separated particles. Curiously, this
experiment was performed in Delft, only a few meters from my house!

In this thesis, the concept of a bipartite correlation is used to investigate how we can
reconstruct a bipartite quantum correlation. In other words, we seek ways to efficiently
make any correlation that you wish. Also, we are interested in determining the amount
of entanglement necessary to construct a correlation. This is a nontrivial task, as this
can not be directly measured in a lab. Nowadays, if you want to determine the entan-
glement dimension, you must know some a priori properties of the system (such as the
density matrix), which are not always available. And even if they are, you can only find
lower bounds of entanglement measures, by performing measurements on the correla-
tion [MB07]. In the second part of this thesis, we define and analyze a see-saw method
to determine the state and measurement operators that reconstruct both the correlation
itself as its entanglement dimension, in a see-saw method of semidefinite programs.

The first part of the thesis provides an improvement over a theoretical result, about
how much entanglement one needs to be able to reconstruct all classical correlations.
As a new upper bound for the required entanglement dimension, we found that

1

1

2

Cloc(Γ) ⊆C d
q (Γ),

for d ≥ dim(Cloc), which is an improvement over the bound d ≥ dim(Cloc)+1, as given
in the literature. This is achieved by demonstrating that the set of correlations using pri-
vate randomness is connected, which allows for an improved version of Carathéodory’s
theorem.

In Chapter 2 we start by giving an example explaining the setting of bipartite corre-
lations. Also, we give an overview of several relevant definitions for both classical and
quantum correlations. In the classical case, we define the sets Cdet(Γ) (deterministic cor-
relations), Cprivate(Γ) (private randomness correlations) and Cloc(Γ) (shared randomness
correlations). To describe the set C d

q (Γ) (quantum correlations), we need the concepts of
Positive Operator Valued Measurements (POVM’s) and an (entangled) state . In Chapter 3
we use these definitions to proof the earlier described upper bound for the entanglement
dimension such that Cloc(Γ) ∈ C d

q (Γ).
In Chapter 4 we start working towards the reconstruction algorithm, by introduc-

ing definitions and results concerning Semidefinite Programming (a particular form of
optimization). We also extend the standard SDP program to the complex- and block
form-case, to better suit the algorithm we’ll use.

In Chapter 5 we describe the see-saw algorithm for the reconstruction of a corre-
lation as a see-saw method of Semidefinite Programs (in complex block form). This is
important, as it allows the use of efficient SDP-solvers in the implementation of the al-
gorithm.

Finally, Chapter 6 provides some results of the algorithm, for example for the corre-
lations discussed in Chapter 2. Also, we mention some empirical results from the algo-
rithm, some of which can be explained with the earlier described theory.

This thesis is written as part of the double bachelor’s degree in Applied Mathematics
and Applied Physics at the Delft University of Technology.

I hope you enjoy reading this work as much as I did creating it!

2
THEORY ON BIPARTITE

CORRELATIONS

In this chapter, the basic notation and definitions concerning bipartite correlations are
introduced. In Section 2.1, the general setting is described, in which two parties (Al-
ice and Bob) perform experiments in order to answer the questions they receive. In this
framework, the concept of a (bipartite) correlation will be introduced as a way of describ-
ing the relationship between the two parties.

Next, in Section 2.2 we consider how the answering protocols of the two parties de-
termine which correlations can be constructed. We start by considering the classical
answering protocols, in which the use of entanglement is not allowed. While doing this,
some important sets of correlations are defined; Cdet(Γ), Cprivate(Γ), and Cloc(Γ).

Finally, the effects of using entangled states in the measurements is investigated in
Section 2.3. It turns out that the use of entanglement enables a new set of correlations,
Cq (Γ), which contain correlations that can not be obtained classically. This quantum-
mechanical description requires the introduction of some additional notions, such as
quantum states, a Positive Operator Valued Measure (POVM) and the entanglement di-
mension. Some important results are given that connect Cq (Γ) with the classically ob-
tainable correlations.

I would like to emphasize that this chapter is mostly a collection of already known
definitions and results. For additional resources in which entanglement in the bipartite
setting is described, see for example [GLL18], [WW01] or [PV16]. Also note that the use of
POVM’s and bipartite correlations is only one possible interpretation; alternatively one
could express the same ideas in terms of observables and quantum XOR games, as in
[RV15] and [Bri11].

3

2.1. BIPARTITE CORRELATIONS

2

4

2.1. BIPARTITE CORRELATIONS

2.1.1. GENERAL SETTING
A bipartite correlation is, as the name suggests, a way to describe the relation between
two parties. Historically, these parties are called Alice and Bob. They both receive a
question from a third party; Alice receives a question s from a "question set" S, and Bob
receives a question t from "question set" T. Next, Alice and Bob are required to give an
answer to their question; Alice can respond with an answer a from an "answer set" A
and Bob can respond with an answer b from his "answer set" B. In this paper, the sets
A, B, S and T are assumed to be finite. The set Γ = A ×B ×S ×T represents the set of all
possible configurations of questions and answers. Crucially, Alice and Bob are not able
to communicate after receiving the questions, and they do not know which question the
other party received.

We are interested in the probability that Alice and Bob receive the questions (s,t) and
that they answer with (a,b). The collection of all these probabilities is given by a bipar-
tite correlation P(a,b|s,t) ≡ P , also known as a correlation table, or simply a correlation.
From this probability interpretation, it is clear that every bipartite correlation must sat-
isfy P (a,b|s, t) ≥ 0 for all (a,b, s, t) ∈ Γ and

∑
a,b P (a,b|s, t) = 1 for all (s, t) ∈ S ×T .

Definition 2.1. Let Γ= A×B ×S ×T . Then P ∈RΓ is a bipartite correlation if it satisfies :

1. P (a,b|s, t) ≥ 0 for all (a,b, s, t) ∈ Γ, and

2.
∑

a,b P (a,b|s, t) = 1 for all (s, t) ∈ S ×T .

Another condition on the bipartite correlations follows from the fact that the parties
are unable to communicate after they receive their questions. That is, the probabilities
for the answers of Bob should not depend on the answer (or the question) from Alice.
These conditions are called the no-signalling conditions, which can be expressed as fol-
lows: ∑

b
P (a,b|s, t) =∑

b
P (a,b|s, t ′) for all a, s, t , t ′, (2.1)

∑
a

P (a,b|s, t) =∑
a

P (a,b|s′, t) for all b, s, t , s′. (2.2)

Before we go on with more definitions about bipartite correlations, it is worth im-
proving our understanding of what exactly a bipartite correlation represents. In my opin-
ion, the concept of a bipartite correlation can best be explained by means of an example.

Example 1. Suppose we have the usual setting with Alice and Bob. Since you heard so
many great stories about Alice and Bob, you decide to send each of them some of your
questions. You would like to ask them about their gender and their year of birth. Obvi-
ously, you can’t do this, as one must never ask a woman about her age! Therefore, you
decide to ask Alice about her name instead. Therefore, the question sets are as follows:

• S = Question set Alice = { Gender , Name }

2.1. BIPARTITE CORRELATIONS

2

5

• T = Question set Bob = { Gender , Birth-year }

Having worked extensively with Alice and Bob over the last couple of months, I can
assure you which answers they will give you: Alice identifies as a Woman with the name
Alice, and Bob identifies as a Male, born in the year 2000. The answer sets are therefore
as follows:

• A = Answer set Alice = { Female , Alice }

• B = Answer set Bob = { Male , 2000 }

We are now ready to think about the correlation table P (a,b|s, t), or the probability
that Alice and Bob give answers a and b to questions s and t . In this case, the probabil-
ities are trivial, as Alice and Bob will always give the clearly correct answers: the proba-
bilities are either 0 or 1 (this makes the correlation deterministic, as we will describe in
Section 2.2.1). Therefore, the correlation table looks as follows:

P (Female, Male | Gender, Gender) 1 P (Alice , Male | Gender , Gender) 0
P (Female , Male | Gender , Birth-year) 0 P (Alice , Male | Gender , Birth-year) 0
P (Female , Male | Name , Gender) 0 P (Alice , Male | Name , Gender) 1
P (Female , Male | Name , Birth-year) 0 P (Alice , Male | Name , Birth-year) 0

P (Female, 2000 | Gender, Gender) 0 P (Alice , 2000 | Gender , Gender) 0
P (Female , 2000 | Gender , Birth-year) 1 P (Alice , 2000 | Gender , Birth-year) 0
P (Female , 2000 | Name , Gender) 0 P (Alice , 2000 | Name , Gender) 0
P (Female , 2000 | Name , Birth-year) 0 P (Alice , 2000 | Name , Birth-year) 1

Table 2.1: An example of a bipartite correlation.

Keep in mind that the correlation table P (a,b|s, t) is an element in RΓ, so it assigns a
real number to every combination of questions and answers. This can be conveniently
shown in a table as above. Of course, correlation tables might be more complicated, for
example by using probabilities between 0 and 1. This is exactly what we are about to do
in the following sections.

In the remainder of this chapter, we consider several types of bipartite correlations.
We categorize the correlations based on the resources that are available to Alice and Bob.
These resources determine the answer protocols that the parties can use. These proto-
cols can, for example, consist of a probabilistic process (randomness), or they can be
based on measuring entangled particles. In the next sections, we describe all such pro-
tocols. Before introducing the quantum correlations, we start by considering all classical
correlations.

2.2. CLASSICAL CORRELATIONS

2

6

2.2. CLASSICAL CORRELATIONS
Classical correlations are all correlations that do not make use of entanglement. The only
resource that might be available classically is randomness, either private randomness or
shared randomness. In the next three subsections, we consider the three classical answer
protocols: the set Cdet(Γ) of deterministic correlations, the set Cprivate(Γ) of correlations
with private randomness and the set Cloc(Γ) of correlations with shared randomness. As
will become clear, we have that Cdet(Γ) ⊆ Cprivate(Γ) ⊆ Cloc(Γ).

2.2.1. DETERMINISTIC PROTOCOLS
The simplest answer protocol is the deterministic protocol. Alice and Bob will decide for
every question which answer they will give, without using any randomness. The set of
all deterministic correlations is denoted by Cdet(Γ).

Definition 2.2. A bipartite correlation is said to be deterministic if it can be written as
P (a,b|s, t) = P A(a|s)PB (b|t) for all (a,b, s, t) ∈ Γ, with:

1. P A(a|s),PB (b|t) ∈ {0,1} for all (a,b,s,t) ∈ Γ, and

2.
∑

a P A(a|s) =∑
b PB (b|t) = 1 for all (s, t) ∈ S ×T .

Example 2. For an example of a deterministic correlation, we refer to Example 1. To
see that Definition 2.2 is satisfied, we introduce the personal probabilities P A(a|s) and
PB (b|t) exactly as one would expect from the story:

P A (Alice | Name) 1 PB (Male | Gender) 1
P A (Alice | Gender) 0 PB (Male | Birth-year) 0
P A (Female | Name) 0 PB (2000 | Gender) 0
P A (Female | Gender) 1 PB (2000 | Birth-year) 1

Table 2.2: Personal probabilities P A (a|s) and PB (b|t) for deterministic protocol.

It is immediately clear that the conditions in Definition 2.2 are satisfied; all personal
probabilities are either 0 or 1, the sum over all answers is one for every question set, and
the product of the personal probabilities reproduces the correlation table as in Table 6.1.

2.2.2. PRIVATE RANDOMNESS PROTOCOLS
In the private randomness answer protocol, both parties are able to implement random-
ness locally. That is, they can use probabilistic events to determine their own answer, but
they can not both use the same probabilistic event. So instead of using a public proba-
bilistic event, Alice and Bob are only allowed to use their own private probabilistic event.

2.2. CLASSICAL CORRELATIONS

2

7

The set of all correlations that can be constructed with such private randomness is de-
noted by Cprivate(Γ). In modern literature, this set is relatively unknown compared to
Cloc(Γ). In Chapter 3, we show that Cprivate(Γ) is connected.

Definition 2.3. A bipartite correlation that is based on a private randomness protocol
can be written as P (a,b|s, t) = P A(a|s)PB (b|t) for all (a,b, s, t) ∈ Γ, with:

1. P A(a|s),PB (b|t) ∈ [0,1] for all (a,b,s,t) ∈ Γ, and

2.
∑

a P A(a|s) =∑
b PB (b|t) = 1 for all (s, t) ∈ S ×T .

Example 3. After receiving insightful answers from Alice and Bob on your somewhat
trivial questions, you decide to ask them to perform some experiments for you. You ask
Alice and Bob for either the result of flipping a coin, or whether the outcome of throwing
a die is even. To make things interesting, you provide Alice with a fair coin and die, but
you secretly give Bob an unfair coin and die. The question set is therefore

• S = { Coin, Die }, and

• T = { Coin , Die },

and the answer sets are:

• A = { Heads , Tails , Even , Odd }, and

• B = { Heads, Tails, Even , Odd }.

If Bob’s coin gives Heads with probability 0.25 and his die gives an even number with
probability 0.10, the personal probabilities will be as follows:

P A (Heads | Coin) 0.5 PB (Heads | Coin) 0.25
P A (Heads | Die) 0 PB (Heads | Die) 0
P A (Tails | Coin) 0.5 PB (Tails | Coin) 0.75
P A (Tails | Die) 0 PB (Tails | Die) 0
P A (Even | Coin) 0 PB (Even | Coin) 0
P A (Even | Die) 0.5 PB (Even | Die) 0.10
P A (Odd | Coin) 0 PB (Odd | Coin) 0
P A (Odd | Die) 0.5 PB (Odd | Die) 0.9

Table 2.3: Personal probabilities P A (a|s) and PB (b|t) for private randomness protocol.

A quick inspection shows that these personal probabilities indeed satisfy Definition
2.3. For example, when we sum over all possible answers when we ask Bob about his
Coin, we find 0.25+ 0.75+ 0+ 0 = 1. With these personal probabilities, the correlation
table is now completely defined. Writing it out completely is a bit excessive, considering
the fact that |Γ| = 2×2×4×4 = 64, so P ∈R64. As an example, we can see that

2.2. CLASSICAL CORRELATIONS

2

8

P(Even , Odd | Die , Die) = P A (Even | Die) · PB (Odd | Die) = 0.5×0.9 = 0.45.

2.2.3. SHARED RANDOMNESS PROTOCOLS
This answer protocol for classical correlations is by far the most important, as it repre-
sents all correlations that can be made without entanglement. In a shared randomness
protocol, both parties can again use randomness to determine their answer, but this
time they can make use of the same probabilistic event. That is, they can both observe
the same probabilistic event. The set Cloc(Γ) of shared randomness correlations is de-
fined as the convex hull of the deterministic correlations.

Definition 2.4. A bipartite correlation using shared randomness can be written as a con-
vex combination of deterministic correlations:

P (a,b|s, t) =∑
i
λi P A,i (a|s)PB ,i (b|t), (2.3)

with

1. λi ≥ 0 for all i,

2.
∑

i λi = 1,

3. P A(a|s),PB (b|t) ∈ {0,1} for all (a,b,s,t) ∈ Γ, and

4.
∑

a P A(a|s) =∑
b PB (b|t) = 1 for all (s, t) ∈ S ×T .

Example 4. After making Alice and Bob perform so many experiments before, you feel
a bit sorry for them. But, since you still have not made all classical correlations, you
come up with a new plan. You ask Alice and Bob to watch a live-stream, in which your
friend Casino repeatedly throws two (fair) Coins and two (fair) Dice. You use the follow-
ing questions sets:

• S = { Same_Coins, Same_Dice },

• T = { Number_Heads , Sum_Dice },

on which Alice and Bob may answer with

• A = { Yes, No }, and

• B = { 0 , 1 , 2, . . . , 12 }.

2.2. CLASSICAL CORRELATIONS

2

9

For example, we have that P(Yes , 8 | Same_Coins , Sum_Dice) = 1
2 × 5

36 = 5
72 , but also

P(Yes , 7 | Same_Dice , Sum_Dice) = 0. It is clear that this correlation can not be written
as a private randomness protocol, since the probabilities are not independent:
0 = P(Yes , 7 | Same_Dice , Sum_Dice) 6= P A(Yes | Same_Dice) ×PB (7 | Sum_Dice) =
1
6 × 1

6 = 1
36 .

Checking if this set-up satisfies Definition 2.4 is not straightforward; let’s say I leave
it to the reader as an exercise. However, it is certain that this correlation can be written
as in 2.3, which we will show in the following subsection.

From this example, it is clear that Cprivate(Γ) ⊆ Cloc(Γ), since you can always decide
that Alice is only allowed to use half of the live-stream and Bob the other half. In this
example, you can ask both Alice and Bob to only use "their own" die and coin from the
live-stream.

2.2.4. GENERALIZED CLASSICAL CORRELATIONS
We have now seen all three types of protocols that can be used to construct classical cor-
relations. The major difference between the described sets is the way that randomness is
utilized. In general, this randomness can influence the individual answer-probabilities.
This can be formalized by introducing a hidden variable λ ∈Λ, as is done in the following
definition.

Definition 2.5. We say that a bipartite correlation is classical, or that it allows a classical
model, if it can be represented in the following form:

P (a,b|s, t) =
∫
λ∈Λ

M(dλ)P A,λ(a|s)PB ,λ(b|t), (2.4)

where M is a probability measure on Λ, and where for each λ, P A,λ(a|s) and PB ,λ(b|t) are
personal probabilities, such that

1. P A(a|s),PB (b|t) ∈ {0,1} for all (a,b,s,t) ∈ Γ, and

2.
∑

a P A(a|s) =∑
b PB (b|t) = 1 for all (s, t) ∈ S ×T .

In this thesis, the sets A, B, S and T are finite. Therefore, the integral in Equation 2.4
can be written as a convex combination:

P (a,b|s, t) =∑
i

∫
Λi

M(dλ)P A,i (a|s)PB ,i (b|t)

=∑
i
λi P A,i (a|s)PB ,i (b|t),

(2.5)

where λi =
∫
Λi

M(dλ) is the probability corresponding to the region Λi .
By comparing this definition with 2.3 it is indeed clear that all classical correlations

can be written in terms of shared randomness protocols. This makes the set Cloc(Γ) the
most important set in this section. It has been studied extensively, for example by Bell

2.3. BIPARTITE QUANTUM CORRELATIONS

2

10

[Bel64]. Due to his contributions, the polytope Cloc(Γ) is commonly known as the Bell
polytope, bounded by the Bell inequalities. The study of Bell inequalities is still an active
research topic [Bru+14] [WW01][PV10].

Note that the terminology of Cloc(Γ) is somewhat confusing, as it is not the set of cor-
relations with local randomness. Instead, the "loc" refers to the fact that the correlations
can be described by a local hidden variable, λ.

The dimension of Cloc(Γ) can be bounded by observing that there are |S||T| condi-
tions of the form

∑
a,b P (a,b|s, t) = 1 for all (s, t) ∈ S ×T (from Definition 2.1), so the di-

mension of Cloc(Γ) is at most |Γ|-|S||T|. If we also include other conditions, such as the
non-signalling conditions 2.1 and 2.2, it can be shown that the dimension of the Bell
polytope is [Wil+08]

D = |S|(|A|−1)+|T |(|B |−1)+|S||T |(|A|−1)(|B |−1). (2.6)

2.3. BIPARTITE QUANTUM CORRELATIONS
When considering bipartite quantum correlations, it is helpful to imagine that Alice and
Bob both receive a particle from a common source, on which they can perform measure-
ments to reach an answer. Moreover, these particles can be entangled, which enables
even more correlations.

Before introducing the necessary definitions, it is worth thinking about what kind
of correlations can be made, besides the classical correlations from Definition 2.5. In
Definition 2.5, the assumption is made that the probabilities P A,λ(a|s) and PB ,λ(b|t) do
not depend on the answers of the other party. However, this condition is not required
for a bipartite correlation, as demonstrated by Definition 2.1. While the fact that the
parties cannot communicate seems to rule out any relationship between the parties, it
can actually be achieved by making use of an entangled quantum state.

The quantum mechanical framework of bipartite quantum correlations is commonly
modelled in the tensor model and in the commuting model [Slo16],[GLL18]. For the pur-
poses of this thesis, the description in the tensor model will be sufficient.

In general, a quantum state is described by a density matrix ρ , which is a d ×d Her-
mitian positive semidefinite matrix, with trace equal to 1. In this thesis, we often take ρ
to be rank 1, so that it can be written as ρ =ψψ∗ with ψ a unit vector ∈Cd .

One special feature of quantum mechanics is that a quantum mechanical system
can consist of multiple subsystems or parts, which might be spatially separated. The
following definition of entanglement can be interpreted by assuming a tensor product
structure on the Hilbert space.

Definition 2.6. A finite-dimensional pure bipartite state

ψ ∈Cd ⊗Cd (2.7)

is called non-separable if it cannot be written as a simple tensor product ψ=ψ1 ⊗ψ2.

In this setting, the particles of Alice and Bob are both half of the whole quantum state
ψ ∈ Cd ⊗Cd . In this way, the measurement performed by Alice can depend on the mea-
surement performed by Bob and vice versa, obtaining a dependency that is impossible

2.3. BIPARTITE QUANTUM CORRELATIONS

2

11

with classical correlations. We often say that the states of the particles are entangled,
which is equivalent to the states being non-separable.

To make quantum correlations more precise, we model a measurement by introduc-
ing a Positive Operator Valued Measure (POVM). (For the definition of a positive semidef-
inite matrix, see Section 4.1.)

Definition 2.7. A Positive Operator Valued Measure (POVM) with a possible outcomes is
described by a collection of Hermitian positive semidefinite operators E 1, ...,E a that sum
to the identity matrix:

∑
i∈[a] E i = I . The probability of observing outcome i ∈ [a] when

measuring pure state ψ is equal to 〈ψ,E iψ〉 = Tr(E iψψ∗).

So if Alice uses the POVM {E a
s }a∈A to answer question s ∈ S and Bob uses the POVM

{F b
t }b∈B to answer question t ∈ T , the probability of observing outcome (a,b) is given by

P (a,b|s, t) = Tr((E a
s ⊗F b

t)ψψ∗) =ψ∗(E a
s ⊗F b

t)ψ. (2.8)

If a correlation can be written the form of equation 2.8, it is called a quantum correla-
tion. We say it is realizable in the tensor model in local dimension d (or in dimension d 2)
if ψ ∈ Cd ⊗Cd and E a

s ,F b
t ∈ Cd×d . The set C d

q (Γ) is used to denote all such correlations,
and we define

Cq (Γ) = ⋃
d∈N

C d
q (Γ). (2.9)

Using equation 2.8 for a POVM, we can see that a correlation using a quantum state
that is not entangled can also be obtained by a classical correlation. This is demonstrated
in the following theorem.

Theorem 2.1. If a quantum state ψ is not entangled, then the corresponding bipartite
correlation is classical. In particular, it can be written as a correlation P ∈ Cprivate(Γ).

Proof. From Definition 2.6, a non-entangled quantum stateψ can be written asψ=ψ1⊗
ψ2. Substituting this expression in equation 2.8 and using the mixed-product property
of the Kronecker product: (A ⊗B)(C ⊗D) = (AC)⊗ (BD) together with the distributivity
of the conjugate transposition: (A⊗B)∗ = A∗⊗B∗, we can write:

P (a,b|s, t) =ψ∗(E a
s ⊗F b

t)ψ

= (ψ1 ⊗ψ2)∗(E a
s ⊗F b

t)(ψ1 ⊗ψ2)

= (ψ∗
1 ⊗ψ∗

2)(E a
s ⊗F b

t)(ψ1 ⊗ψ2)

= (ψ∗
1 E a

s)⊗ (ψ∗
2 F b

t)(ψ1 ⊗ψ2)

= (ψ∗
1 E a

s ψ1)⊗ (ψ∗
2 F b

t ψ2)

= (ψ∗
1 E a

s ψ1)(ψ∗
2 F b

t ψ2).

(2.10)

To demonstrate properties 1. and 2. in definition 2.3, we note that
∑

a P A(a|s) =∑
a(ψ∗

1 E a
s ψ1) =ψ∗

1 (
∑

a E a
s)ψ1 =ψ∗

1 Iψ1 = 1 for all s ∈ S, as ψ is a unit vector. Also, since
the POVM E a

s is positive semidefinite, we have by definition thatψ∗
1 E a

s ψ1 ≥ 0, soψ∗
1 E a

s ψ1 ∈
[0,1].

2.4. FINAL REMARKS ON CORRELATION RECONSTRUCTION

2

12

It can be shown that an entangled state ψ can always be used to construct a nonclas-
sical correlation P. This raises the question if any classical correlation can be described
as a quantum correlation. That is, does Cloc(Γ) ⊆ C d

q (Γ)? To answer this question, we de-
fine the (minimal) entanglement dimension as Dq (P), which is the smallest dimension
for which P ∈ C d

q (Γ) in the tensor model .

Definition 2.8. Let P be a bipartite correlation. We define the (minimal) entanglement
dimension of correlation P as

Dq (P) = min{d ∈N : P ∈C d
q (Γ)}. (2.11)

In words, the entanglement dimension describes the minimal entanglement that is
required to construct a given bipartite correlation. This measure for bipartite correla-
tions will be of great interest in the rest of this thesis, as we will work towards a method
to determine Dq (P). In the next chapter, we derive a new theoretical upper bound for
Dq (P).

2.4. FINAL REMARKS ON CORRELATION RECONSTRUCTION
Before moving, it is important to realize that the examples given in this chapter do not
represent the problem we want to solve in this thesis. In the examples, we first described
the answering protocols of Alice and Bob, and then derived the correlation table. This
is, as we have seen, quite a trivial task. Our goal is, however, to do the reverse process:
we want to derive the answering protocols from a given bipartite correlation. In other
words, we want to reconstruct a given correlation, as well as the POVM’s and the state
that create it. This is a much harder task, especially when entangled states are involved.
Have a look, for example, at the following correlation table (which is now given as an
array), in which the meaning of the questions and answers are unknown:

[[[[0.24044465753586122, 0.2661454322752907], [0.22690520877331788,
,→ 0.2468762754054039]], [[0.22147307310746026,
,→ 0.19577229836803078], [0.22778207858411725,
,→ 0.20781101195203128]]], [[[0.26475386497278075,
,→ 0.2876650922595557], [0.2782933137353241,
,→ 0.30693424912944256]], [[0.27332840438389755,
,→ 0.25041717709712247], [0.26701939890724047,
,→ 0.23837846351312209]]]]

Later, in Chapter 6, we come back to this correlation to try to reconstruct it with an
algorithm, which we will develop in Chapter 4 and Chapter 5.

3
USING ENTANGLEMENT TO

SIMULATE SHARED RANDOMNESS

In the previous chapter, the set Cloc(Γ) of bipartite correlations using shared randomness
and the set Cq (Γ) using a shared quantum state were introduced. In this chapter, the
relation between C d

q (Γ) and Cloc(Γ) is investigated further. We will show that Cloc(Γ) is

entirely contained in C d
q (Γ) for a sufficiently large entanglement dimension d. In other

words, shared randomness can be simulated by using an entangled state. In this process,
we also show that Cprivate(Γ) ⊂C 1

q (Γ).

The first section consists of a proof that Cloc(Γ) ⊆ C d
q (Γ) for d ≥ dim(Cloc(Γ)), which

is an improvement of the commonly used bound of dim(Cloc(Γ)) +1. The reduction is
mainly based on the fact that Cprivate(Γ) turns out to be connected, which enables the
use of a stronger version of Carathéodory’s theorem, without the "+1".

3.1. INTRODUCTION TO THE THEOREM
The fact that Cq(Γ) might contain non-classical correlations has been known for a long
time. It was first demonstrated in 1976 by Bell [Bel64], who showed that the inclusion
Cloc(Γ) ⊂ Cq(Γ) is strict whenever A,B,S and T all contain at least two elements.

The proposition in this chapter states something subtly different, as it concerns C d
q (Γ)

instead of Cq (Γ) (which is the union of C d
q (Γ) over all d ≥ 1). It is already known that

C d
q (Γ) will contain Cloc(Γ) if d is sufficiently large. In [Wil+08], the non-signalling condi-

tions 2.1 and 2.2 were used to determine the dimension of Cloc(Γ), resulting in Equation
2.6. With Carathéodory’s Theorem, this gives the lower bound dim(Cloc(Γ)+1.

In Proposition 3.1, a new lower bound for d is derived:

Proposition 3.1. For the set Cloc(Γ) of correlations with shared randomness and the set
(Cq(Γ)) of correlations using a shared quantum state of dimension d the following inclu-
sion holds:

13

3.2. WRITING P AS A CONVEX SUM OF dim(Cloc(Γ)) TERMS

3

14

Cloc(Γ) ⊆C d
q (Γ) (3.1)

for d≥ dim(Cloc(Γ)).

The most relevant improvement over the current lowerbound is that the "+1" is shown
to be unneccesary, as a result of the connectedness of Cprivate(Γ).

Proposition 3.1 will be proved by using the following two lemmas:

Lemma 3.1. If P is a correlation in Cloc(Γ), then P can be written as a convex combination
of at most N correlations from Cprivate(Γ), with N = dim(Cloc(Γ)).

Lemma 3.2. If a correlation P can be written as a convex combination of N correlations
from Cprivate(Γ), then P ∈C N

q (Γ).

Together, it is clear that these two lemmas prove Proposition 3.1.

3.2. WRITING P AS A CONVEX SUM OF dim(Cloc(Γ)) TERMS

Lemma 3.1. If P is a correlation in Cloc(Γ), then P can be written as a convex combination
of at most N correlations from Cprivate(Γ), with N = dim(Cloc(Γ)).

Proof. The proof of this lemma is strongly based on a result that can be viewed as
"Carathéodory’s theorem for connected sets". The "normal" Carathéodory’s Theorem
reads:

Let S ⊂Rd be a set. Then every point x ∈ conv(S) can be written as a convex combination
of at most d+1 points from S.

However, if S is connected, we have a stronger result [Bun34]:

Let S ⊂Rd be a connected set. Then every point x ∈ conv(S) can be written as a convex
combination of at most d points from S.

So in order to prove Lemma 3.1, it suffices to show that Cprivate(Γ) is connected, be-
cause the theorem above then implies that every P ∈ conv(Cprivate(Γ))=Cloc(Γ) can be
written as a convex combination of at most dim(Cloc(Γ)) terms.

It remains to be shown that Cprivate(Γ) is indeed connected. This will be done by using
the fact that the continuous image of a connected set is connected [Car00].

Suppose we have two arbitrary bipartite correlations V ,W ∈ Cprivate(Γ). From the
definition of Cprivate(Γ) in Section 2.2.2, it follows that:

there is a R0 ∈P (A|S), and a Q0 ∈P (B |T) : V = R0 ·Q0 for all a,b, s, t ∈ Γ, (3.2)

and

there is a R1 ∈P (A|S), and a Q1 ∈P (B |T) : W = R1 ·Q1 for all a,b, s, t ∈ Γ, (3.3)

where the set of functions P (A|S) is defined as the functions P(a|s) in R|A|x|S| for which:

P (a|s) ≥ 0 for all a,b, and
∑
a

P (a|s) = 1 for all s ∈ S. (3.4)

3.3. A CONVEX SUM OF N TERMS HAS ENTANGLEMENT DIMENSION N

3

15

We will use these two correlations V and W to create a continuous path from V to W,
that is entirely in Cprivate(Γ), which shows that Cprivate(Γ) is connected.

We introduce two new correlations for λ ∈ [0,1]:

Cλ(a|s) = (1−λ)R0 +λR1 (3.5)

and
Dλ(b|t) = (1−λ)Q0 +λQ1. (3.6)

Clearly, Cλ ∈ P (A|S) and Dλ ∈P (B |T) for every λ ∈ [0,1]. But now we can define Eλ as:

Eλ(a,b|s, t) =Cλ(a|s) ·Dλ(b|t), (3.7)

so Eλ ∈ R|A|x|B |x|S|x|T | is also in Cprivate(Γ) for every λ. So Eλ represents a continuous
path in Cprivate(Γ) from V to W. Since V and W were chosen arbitrarily, this implies that
Cprivate(Γ) is connected.

3.3. A CONVEX SUM OF N TERMS HAS ENTANGLEMENT DI-
MENSION N

Lemma 3.2. If a correlation P can be written as a convex combination of N correlations
from Cprivate(Γ), then P ∈C N

q (Γ).

Proof. Suppose there is a correlation P (a,b|s, t) that can be written as a convex combi-
nation of N correlations from Cprivate(Γ), that is:

P (a,b|s, t) =
N∑

i=1
λi ·P A,i (a|s) ·PB ,i (b|t) (3.8a)

λi ≥ 0,
N∑

i=1
λi = 1 (3.8b)

P A,i (a|s),PB ,i (b|t) ∈ [0,1]. (3.8c)

For P to be in C N
q (Γ), we need to show that P can be written in terms of a normalized

state ψ and two POVM’s, as defined in subsection 2.2:

P (a,b|s, t) = Tr((E a
s ⊗F b

t)ψψ∗). (3.9)

We now give a direct construction to determine such a ψ and POVM’s. We start by
definining the two POVM’s as diagonal matrices:

E a
s = diag(P A,1(a|s),P A,2(a|s), ...,P A,N (a|s)), (3.10)

F b
t = diag(PB ,1(b|t),PB ,2(b|t), ...,PB ,N (b|t))). (3.11)

We can now write the tensor product E a
s ⊗F b

t as follows:

3.3. A CONVEX SUM OF N TERMS HAS ENTANGLEMENT DIMENSION N

3

16

E a
s ⊗F b

t =


P A,1(a|s) 0 . . . 0

0 P A,2(a|s) . . .
...

...
...

. . . 0
0 . . . 0 P A,N (a|s)

⊗


PB ,1(b|t) 0 . . . 0

0 PB ,2(b|t) . . .
...

...
...

. . . 0
0 . . . 0 PB ,N (b|t)


(3.12)

=


P A,1(a|s)(F b

t) 0 . . . 0

0 P A,2(a|s)(F b
t) . . .

...
...

...
. . . 0

0 . . . 0 P A,N (a|s)(F b
t)

 . (3.13)

So this tensorproduct will again be a diagonal matrix, with on the diagonal the NxN
elements

P A,1(a|s) ·PB ,1(b|t),P A,1(a|s) ·PB ,2(b|t), ...,P A,1(a|s) ·PB ,N (b|t),

P A,2(a|s) ·PB ,1(b|t),P A,2(a|s) ·PB ,2(b|t), ...,P A,N (a|s) ·PB ,N (b|t). (3.14)

Finally, we define the corresponding state ψ as follows:

ψ=
N∑

i=1

√
λi ·ei ⊗ei , (3.15)

where ei is the i th basisvector with dimension N .
Note that ψ is indeed a unit vector, as

||ψ||2 =
N∑

i=1
|
√
λi |2 = 1, (3.16)

since P was assumed to be a convex sum with weights λ.
Now we get that:

ψψ∗ = (
N∑

i=1

√
λi ·ei ⊗ei)× (

N∑
i=1

√
λi ·ei ⊗ei)∗ (3.17)

3.3. A CONVEX SUM OF N TERMS HAS ENTANGLEMENT DIMENSION N

3

17

=



λ1
...

√
λ1λ2

...
√
λ1λN

0
...

...
. . .

...
...

. .
... 0

...√
λ2λN

... λ2
...

√
λ1λN

...
. . .

...
. .

...
... 0

...
...

. . .√
λ1λN

...
√
λ2λN

... λN



, (3.18)

where the dots in the matrix represent NxN blocks within the matrix. On the diago-
nal, the elements are ai+n−1,i+n−1 =λi for i = 1,2, ..., N .

When multiplying the last two matrices, and using Equation 3.8a, we indeed see that:

Tr((E a
s ⊗F b

t)ψψ∗) =
N∑

i=1
λi P A,i (a|s)PB ,i (b|t) = P (a,b|s, t). (3.19)

Later in the research, while determining the entanglement dimension for a correla-
tion in Cprivate(Γ) (Section 6.1.2), the hypothesis was raised that

Cprivate(Γ) ⊂C 1
q (Γ). (3.20)

The proof of this statement follows directly from Lemma 3.2, namely for N=1.
With this result, we end our analysis of the geometry of the sets of bipartite correla-

tions. The result from this section is the most important new contribution to the theory.
In the rest of this thesis, we develop a method to reconstruct a given bipartite corre-

lation, from which we can also derive the entanglement dimension. In the next chapter,
we start by summarizing the relevant theory from Semidefinite Programming.

4
THEORY OF SEMIDEFINITE

PROGRAMMING

In the previous chapters, the theory of bipartite quantum correlations was discussed,
as well as some new theoretical results. In the remainder of this paper, this knowledge
is applied in an optimizational context. Specifically, we will investigate how one might
reconstruct a given bipartite correlation, by choosing the best possible measurement
operators and state. This requires insights form the field of optimization, which are in-
troduced in this chapter.

In section 4.1, we introduce the definition of a Positive Semidefinite Matrix, together
with some important properties. This type of matrix is essential in Section 4.2, where
Positive Semidefinte Programs are discussed. Finally, we extend the Semidefinite Pro-
grams to the complex case in Section 4.3 and to the block-form case in section 4.4.

Later, in Chapter 5, we use the insights from this chapter to find an explicit construc-
tion of measurement operators and state.

4.1. POSITIVE SEMIDEFINITE MATRICES
Semidefinite programming (SDP) is an important topic in optimization, which has been
studied extensively in the previous couple of decades. It can be seen as a generalisation
of several standard problems, such as linear and quadratic optimization. In semidefinite
programming, a linear objective function is minimized, but with nonlinear (but convex!)
constraints. Despite the generality of SDP’s, research has shown that they can generally
be solved in polynomial time, just like linear programming.

For a more extensive survey on semidefinite programming, or on the different meth-
ods to find their solution, see for example, [Fre04], [LV12],[VB96].

The crucial aspect of semidefinite programming is that the variable X must lie in the
cone of positive semidefinite matrices.

Definition 4.1. A symmetric n × n matrix X is called positive semidefinite (PSD) matrix if

18

4.1. POSITIVE SEMIDEFINITE MATRICES

4

19

υT Xυ≥ 0 for any υ ∈Rn

We use the notation X º 0 to denote that X is positive semidefinite. Let Sn denote
the set of symmetric n × n matrices, and let Sn+ denote the set of positive semidefinite n
× n matrices. We now show that Sn+ is a closed and convex cone, a property that will be
very useful when solving optimizational problems with positive semidefinite matrices.
For example, it guarantees that all local minima of an interior point method are equal to
the global minimum.

Theorem 4.1. The set Sn+ of positive semidefinite n ×n matrices is a closed and convex
cone.

Proof. We first show that Sn+ is a convex cone, i.e. it is closed under linear combinations
with positive coefficients. Let X ,Y ∈ Sn+. Then we have for any scalars α,β≥ 0 and every
υ ∈Rn that

υT (αX +βY)υ=αυT Xυ+βυT Y υ≥ 0, (4.1)

demonstrating that Sn+ is a convex cone.
That Sn+ is closed follows from

Sn
+ = {A ∈ Sn : xT Ax ≥ 0∀x ∈Rn} = ⋂

x∈Rn
{A ∈ Sn : xT Ax ≥ 0}. (4.2)

We conclude that Sn+ is an intersection of closed halfspaces, so Sn+ is closed. Note that
this argument is a different way of showing that Sn+ is convex.

For the norm that corresponds to the set Sn+ ∈Rn×n , we first introduce the trace inner
product:

Definition 4.2. For two matrices X ,Y ∈Rn×n , we define the trace inner product as

〈X ,Y 〉 = Tr(X T Y) =
n∑

i , j=1
Xi j Yi j (4.3)

This defines the Frobenius norm on Rn×n , obtained by setting ‖X ‖ =p〈X , X 〉.
We now give some results that give an insight to the properties of a semidefinite ma-

trix, some of which we will use later on. For a proof of these results, see [LV12].

Theorem 4.2. Let X ∈Sn be a symmetric matrix. The following assertions are equivalent:

1. X is positive semidefinite (X º 0)

2. All eigenvalues of X are non-negative, i.e. the spectral decomposition of X is of the
form X =∑n

i=1λi ui uT
i with all λi ≥ 0.

3. There exist vectors υ1, . . . ,υn ∈ Rk (for some k ≥ 1) such that Xi j = υT
i υ j for all i , j ∈

[n]; the vectors vi are called a Gram representation of X.

4. 〈X ,Y 〉 ≥ 0 for all Y ∈ Sn+
Also, if X º 0 and if Xi i = 0, then Xi j = X j i = 0 for all j = 1, . . . ,n.

4.2. SEMIDEFINITE PROGRAM

4

20

4.2. SEMIDEFINITE PROGRAM
We are now ready to introduce the concept of a semidefinite program. Generally speak-
ing, we want to optimize the variable matrix X for a linear objective function, character-
ized by the matrix C. The objective function can be compactly written as 〈C , X 〉, using
the trace inner product from 4.2. Since X is symmetric (because it is PSD), we can also
assume, without loss of generality, that the objective matrix C is symmetric as well. The
variable X can either be viewed as a symmetric n × n matrix, as an array of n2 compo-
nents (x11, x12, . . . , xnn), or even as a vector in the space Sn .

There are two types of constraints in an SDP. The first one is that the variable matrix
X must be a positive semidefinite matrix: X º 0. It might be useful to draw the analogy
with an LP, by thinking of the constraint X º 0 as stating that all n eigenvalues of X must
be nonnegative, in contrast to an LP where all n components of x must be nonnegative.

The second constraint consists of m linear equations that X must satisfy. All m con-
straints can be written by using m symmetric matrices A1, . . . , Am , and the vector b ∈Rm :
〈Ai , X 〉 = bi for i ∈ [m].

Definition 4.3. Let C ∈ Sn , Ai ∈ Sn and bi ∈ Rn for i ∈ [m] be given, and let X ∈ Sn be a
matrix variable. A semidefinite program (SDP) is an optimization problem of the form:

min 〈C , X 〉 (4.4a)

s.t. 〈Ai , X 〉 = bi for i ∈ [m] (4.4b)

X º 0. (4.4c)

To illustrate the resemblance with an LP, we give a short example for n = 3 and m = 2.
Suppose the following matrices are given:

A1 =
1 2 3

2 4 5
3 5 6

 , A2 =
4 0 3

0 2 1
3 1 5

 , and C =
1 2 4

2 5 7
4 7 2

 ,

with b1 = 12 and b2 = 20. Note that all matrices are symmetric, as required. The matrix X

will be a 3 × 3 symmetric matrix: X =
x11 x12 x13

x21 x22 x23

x31 x32 x33.


Using the symmetry of X , we can rewrite the objective function 4.5a as:

〈C , X 〉 = 1x11 +2x12 +4x13 +2x21 +5x22 +7x23 +4x31 +7x32 +2x33

= 1x11 +4x12 +8x13 +5x22 +14x23 +2x33.

The complete SDP can therefore be written as:

4.3. COMPLEX SEMIDEFINITE PROGRAM

4

21

min 1x11 +4x12 +8x13 +5x22 +14x23 +2x33

s.t. 1x11 +4x12 +6x13 +4x22 +10x23 +6x33 = 12

8x11 +0x12 +6x13 +2x22 +2x23 +5x33 = 20x11 x12 x13

x21 x22 x23

x31 x32 x33

º 0.

4.3. COMPLEX SEMIDEFINITE PROGRAM
The description of a semidefinite program in Definition 4.3 is not sufficient in the con-
text of bipartite correlations, as the POVM’s and the density matrix might be complex.
Therefore, we need to extend the notion of a semidefinite program to complex matrices.
Such a program is called a complex (or Hermitian) semidefinite program.

In a complex SDP, the n×n matrices A1, . . . , Am ,C belong to H n , the set of Hermitian
n ×n matrices. Furthermore, the variable X is no longer symmetric, but X ∈ H n+ , the set
of n ×n Hermitian PSD matrices.

Note that the trace inner product will now contain a Hermitian transpose: 〈X ,Y 〉 =
Tr(X ∗Y) =∑n

i , j=1 Xi j Yi j

Definition 4.4. Let C ∈ H n , Ai ∈ H n and bi ∈Rn for i ∈ [m] be given, and let X ∈ H n be a
matrix variable. A complex semidefinite program is an optimization problem of the form:

min 〈C , X 〉 (4.5a)

s.t. 〈Ai , X 〉 = bi for i ∈ [m] (4.5b)

X º 0. (4.5c)

The vector bi is always a real vector. This result is proven in the following theorem.

Theorem 4.3. For all A,B ∈ H n , the complex trace inner product 〈A,B〉 is real.

Proof. Let A,B ∈ H n . Since A is Hermitian, we have AT = A. Using some basic properties
of the trace, we get:

〈A,B〉 = Tr(A∗B) = Tr((A∗B)T) = Tr(B T (A∗)T) = Tr(B T A) = Tr(AB T)

and

〈A,B〉 = Tr(A∗B) = Tr(A∗B) = Tr(A∗ B) = Tr(AT B) = Tr(AB T)

We see that 〈A,B〉 = 〈A,B〉, so we conclude that 〈A,B〉 ∈R.

4.4. SEMIDEFINITE PROGRAM IN BLOCK-FORM

4

22

4.4. SEMIDEFINITE PROGRAM IN BLOCK-FORM
As the last step before formulating an SDP for computing bipartite correlations, we need
to consider how the program can deal with multiple variables and constraints specifi-
cally. In particular, how can we formulate an SDP that minimizes an objective function
over multiple positive semidefinite matrices X 1, . . . , X K ?

Luckily, it turns out that the most straightforward way of dealing with this problem
is also efficient from an algorithmical viewpoint. All matrix variables X 1, . . . , X K and co-
efficient matrices C 1, . . . ,C K can be compactly written as a single matrix in block-form,
resembling the notation from Definition 4.4:

X =

X 1 0
. . .

0 X K

 , (4.6)

and

C =

C 1 0
. . .

0 C K

 . (4.7)

Similarly, the m × K constraint matrices can be written as m matrices A1, . . . , Am ,
where every matrix Ai is a block-form representation of the matrices A1

i , . . . , AK
i :

Ai =

A1
i 0

. . .

0 AK
i

 . (4.8)

In order to use these matrices in an SDP, it is required that that a block-form matrix
consisting of PSD matrices is itself PSD. This is demonstrated in the following Theorem.

Theorem 4.4. Let X be a block-form matrix, containing the positive semidefinite matrices
X 1, . . . , X K , as shown above. Then X is also positive semidefinite.

Proof. Let X be an arbitrary block-form matrix, containing the positive semidefinite ma-
trices X 1, . . . , X K . By the definition of an eigenvalue, every eigenvalue λ of X satisfies

det

X 1 −λI 0
. . .

0 X K −λI

= 0.

Rewriting this determinant, we find

det

X 1 −λI 0
. . .

0 X K −λI

=
K∏

k=1
det(X k −λI) = 0.

So the eigenvalues of X are precisely the eigenvalues of X 1, . . . , X K . Since those are
all nonnegative, we can conclude that X is positive semidefinite.

4.4. SEMIDEFINITE PROGRAM IN BLOCK-FORM

4

23

Now that we know that a block-form of PSD matrices is itself PSD, we are ready to
define a (complex) semidefinite program in block form. The notation is somewhat cum-
bersome, but keep in mind how the matrices X ,C and A1, . . . , Am are defined in equa-
tions 4.6,4.7,4.8.

Definition 4.5. Let the Hermitian matrices X ,C and A1, . . . , Am be given as described
above. We denote the dimensions of the k th matrix on the diagonal as nk ×nk . The di-
mensions of the matrices X ,C and A1, . . . , Am are equal to

∑K
k=1 nk = n. Also, let bi ∈ Rn

for i ∈ [m] be given. A complex semidefinite program in block-form is an optimization
problem of the form:

min
K∑

k=1
〈C k , X k〉 (4.9a)

s.t.
K∑

k=1
〈Ak

i , X k〉 = bi for i = 1, . . . ,m (4.9b)

X k ∈ H nk+ for k = 1, . . . ,K . (4.9c)

Although the sub- and superscripts might seem somewhat confusing, it is actually
very convenient that we can write an SDP in block-form. In practice, it turns out that the
efficiency of an SDP solver depends on the size of the largest matrix in such a block-form.
Therefore, the use of block-form notation is also efficient from an algorithmic point of
view.

In the next chapter, we demonstrate that the problem of reconstructing a bipartite
quantum correlation can be solved by using an algorithm based on consecutive Semidef-
inite Programs.

5
AN SDP FOR THE

RECONSTRUCTION OF BIPARTITE

QUANTUM CORRELATIONS

With the theoretical background provided in the previous chapter, we are now ready to
formalize our problem as a Semidefinite Program, although this still requires some more
work.

In Section 5.1, we consider the problem of reconstructing a bipartite quantum cor-
relation in more detail. Also, we describe an algorithm that is able to reconstruct the
correlation, based on a see-saw method of Semidefinite Programs. This is a new way of
solving this problem.

Next, in Sections 5.2 and 5.3, we demonstrate that the algorithm consists of repeated
applications of Semidefinite Programs. We start by giving some crude descriptions of the
problem, and then gradually improve our notation, working towards the definition of a
complex block-form SDP as in Equation 4.9.

5.1. SEE-SAW ALGORITHM
Loosely speaking, we want to approximate a given bipartite correlation P (a,b|s, t) with
an approximation P̃ (a,b|s, t). As discussed in Section 2.3, a general bipartite correlation
can be written as

P̃ (a,b|s, t) = Tr((Ẽ a
s ⊗ F̃ b

t)ψ̃ψ̃∗), (5.1)

where a tilde indicates the approximation instead of the real value, which is generally
unknown. Before we go into the correct notation for this problem, we first give a general
remark about the method of solving this problem.

A close inspection of Equation 5.1 gives that there are three quantities over which can
be optimized: the two POVM’s E a

s and F b
t , and the quantum state ψ̃ψ̃∗, which could also

24

5.1. SEE-SAW ALGORITHM

5

25

be written as a density matrix ρ̃. Instead of immediately solving for all three quantities,
we solve for them one after another. This is useful, as we will see that this enables the use
of consecutive semidefinite programs, which can be solved efficiently. The idea is that
we use two approximations to determine a better approximation for the third quantity.
This method is known as the see-saw method, the inspiration for which comes from
[PV10] and [IIA06]. In these applications, the see-saw method is used to optimize a linear
function, for example a Bell-inequality. In this thesis we use the method with a different
goal, namely to approximate a correlation instead of a linear function.

The method is briefly summarized in the following algorithm.

Algorithm 1: Determining minimal entanglement dimension

Data: Bipartite correlation P (a,b|s, t) ∈RΓ,
number of randomly generated samples for one entanglement dimension :
max_samples,
precision ε ∈R,
maximum number of iterations of see-saw algorithm max_iterations,
maximum entanglement dimension d_max
Result: Minimal entanglement dimension Dq (P), with corresponding

approximations Ẽ a
s , F̃ b

t and ψ̃

initialization: d = 1
while d < d_max do

for i in [1:max_samples] do

generate random F̃ b
t and ρ̃ of dimension d

for iterations in [1:max_iterations] do
Solve SDP for Ẽ a

s ;

Update Ẽ a
s ;

Solve SDP for F̃ b
t ;

Update F̃ b
t ;

Solve SDP for ρ̃;
Update ρ̃;

if maxa,b,s,t |P̃ (a,b|s, t)−P (a,b|s, t)| ≤ ε then
stop and return d

end
end

end
d+= 1

end

The precise implementation of this implementation is irrelevant for the purposes of
this chapter, although the code does contain some interesting ideas, for example how to
generate the random POVM’s, or how to solve the SDP’s efficiently. For the code, we refer
to Appendix A.

5.2. SDP FOR POVM’S

5

26

In the remainder of this chapter, we are only interested in demonstrating that the
problems

• Solve for Ẽ a
s , given P (a,b|s, t), F̃ b

t and ρ̃

• Solve for F̃ b
t , given P (a,b|s, t), Ẽ a

s and ρ̃

• Solve for ρ̃, given P (a,b|s, t), Ẽ a
s and F̃ b

t

are indeed Semidefinite Programs. The notation we introduce to show this is not neces-
sary for the implementation, since the solvers can work with the constraints only. How-
ever, it is important to know for sure that the problems are SDP, because that allows the
use of efficient SDP-solvers.

5.2. SDP FOR POVM’S

In the problem that approximates the best possible POVM’s E a
s , we assume that F b

t and
ρ are given.

As a first try, we could describe our problem as follows:

min max
a,b,s,t

|P̃ (a,b|s, t)−P (a,b|s, t)| (5.2a)

s.t. . . . , (5.2b)

which minimizes the absolute distance between the estimated probability and the real
probability for every possible combination of questions and answers. We here use the
maximum norm, although other norms could be chosen as well.

One problem with this notation is that the objective function is not linear, so the
problem is not SDP. The solution is to encorporate the current objective function in the
constraints:

min m (5.3a)

s.t. P̃ (a,b|s, t)−P (a,b|s, t) ≤ m for all (a,b, s, t) ∈ Γ (5.3b)

P̃ (a,b|s, t)−P (a,b|s, t) ≥−m for all (a,b, s, t) ∈ Γ (5.3c)

. . . . (5.3d)

Now the objective function is clearly linear, but the constraints contain inequalities,
whereas equalities are required in Equation 4.9. As is commonly the case in such prob-
lems, the use of slack variables solves this problem. Because every inequality has its own
slack variable, we use the matrices S1 and S2, which are Γ×Γ diagonal matrices consist-

5.2. SDP FOR POVM’S

5

27

ing of s1(a,b|s, t) and s2(a,b|s, t) respectively:

min m (5.4a)

s.t. P̃ (a,b|s, t)−P (a,b|s, t) = m − s1(a,b|s, t) for all (a,b, s, t) ∈ Γ (5.4b)

P̃ (a,b|s, t)−P (a,b|s, t) =−m + s2(a,b|s, t) for all (a,b, s, t) ∈ Γ (5.4c)

S1,S2 ∈ HΓ
+ (5.4d)

. . . . (5.4e)

This last SDP is ready to be written in the form of 4.9, so in terms of matrices. Keep in

mind that this description is for solving Ẽ a
s for given F̃ b

t and ρ̃. The method for solving

F̃ b
t is of course analogous.

In our problem, the matrices C = diag(C1, . . . ,Ck) and X = diag(X1, . . . , Xk) are of the
form:

X =



m
S1

S2

E 1
1

. . .
E a

s


, (5.5)

and

C =


1

0
. . .

0

 . (5.6)

In particular, we see that X 1 = m, X 2 = S1, X 3 = S2, X 4 = E 1
1 , et cetera. Also, C 1 = 1,

C 2 =C 3 = ·· · =C K = 0. The fact that X and K are PSD follows from Theorem 4.4.
The way that the constraints are written in Equations 5.4b and 5.4c do not imme-

diately seem to be of the form of Equation 4.9b. We will not attempt to do this, as the
explicit form of the matrices Ak

i are not interesting to us. It is certain however, that such

matrices must exist, because the map E a
s 7→ Tr((E a

s ⊗ F b
t)ρ) is linear. And if f (X) 7→ R

is linear, then there is a matrix Y such that f (X) = 〈X ,Y 〉. This guarantees that Equa-
tion 4.9b is satisfied. We are not interested in the exact form of the matrices Ak

i , as the
software used for solving an SDP will also work with the constraints in 5.4b and 5.4c.

We now proceed to the remaining constraints in Equation 5.4e. One property of a
POVM is that the sum over all answers must give the identity matrix (see Definition 2.7).
This can be written in the form of 4.9 as follows:∑

a
〈E a

s ,1i j 〉 = δi j for all s, i , j , (5.7)

where 1i j is a matrix with only zeroes, except a 1 on (i , j).

5.3. SDP FOR DENSITY MATRIX

5

28

This completes the demonstration that the problem to approximate E a
s is a PSD of

the form from Equation 4.9.

5.3. SDP FOR DENSITY MATRIX
In the problem that approximates a density matrix, we assume that both POVM’s E a

s and
F b

t are given. The argument that this is an SDP is very similar to the argument from
the previous section. One difference is that the matrix X in the objective function now
becomes (compare with Equation 5.5):

X =


m

S1

S2

ρ

 . (5.8)

The eigenvalues of the density matrix ρ are probabilities, so they are nonnegative. There-
fore, ρ is PSD and so is X.

The other difference is that the constraint 5.7 is replaced by the constraint

Tr(ρ) = 〈I ,ρ〉 = 1. (5.9)

It is now clear that the see-saw algorithm 1 consists of repeated Semidefinite Pro-
grams. This allows the use of efficient SDP-solvers. Although a single SDP problem can
be solved in polynomial time, the problem as a whole is still NP-hard in the number of
states [Sta18].

In the next chapter, the results of the algorithm are demonstrated for different types
of correlations. With the demonstration in this section, we can be sure that we are al-
lowed to use efficient SDP solvers in that implementation.

6
RESULTS OF THE ALGORITHM

In this final chapter, we give the result of several numerical experiments to demonstrate
that the algorithm described in the previous section works in practice. This qualifies
more as a proof of concept than as an extensive analysis. The code to generate the re-
sults from this chapter can be found in the Appendix, so that you could also test some
correlations yourself.

In Section 6.1, we start by testing the algorithm for its intended use: the reconstruc-
tion of a given correlation. We see that the algorithm is able to successfully reproduce the
classical correlations from Cdet(Γ), Cprivate(Γ) and Cloc(Γ), by using the correlations from
the examples in Chapter 2. We also discuss the limitations of the algorithm, which seem
to be mainly caused by computational limitations. Also, the numerical experiments
demonstrate several interesting phenomena, which motivate us to formulate some new
results. For example, we find that every correlation with |A|=1 or |B|=1 has entanglement
dimension 1, so that the result from Chapter 3 implies that it can be written as a private
randomness correlation.

In Section 6.2 we analyze the behaviour of the algorithm by running it many times
with randomly generated correlations. We’ll see that all randomly generated quantum
correlations can be reconstructed within the expected dimension, but sometimes even
in a lower dimension. Analyzing the probabilities of those instances with a lower en-
tanglement dimension than the created dimension can give an insight in the relative
volumes of C d

q (Γ) for different dimensions. Finally, we propose a method to generate a
random correlation with a given entanglement dimension.

6.1. ANALYSIS OF GIVEN CORRELATIONS
In this section, we test the results of the algorithm by comparing them to theoretically
known results. Also, we give some empirical results based on the behaviour of the algo-
rithm.

29

6.1. ANALYSIS OF GIVEN CORRELATIONS

6

30

6.1.1. GIVEN DETERMINISTIC CORRELATIONS
We start with the simplest case: is the algorithm able to reconstruct a given deterministic
correlation? To check this, we go back to Example 1, for which we found the following
correlation table:

P (Female, Male | Gender, Gender) 1 P (Alice , Male | Gender , Gender) 0
P (Female , Male | Gender , Birth-year) 0 P (Alice , Male | Gender , Birth-year) 0
P (Female , Male | Name , Gender) 0 P (Alice , Male | Name , Gender) 1
P (Female , Male | Name , Birth-year) 0 P (Alice , Male | Name , Birth-year) 0

P (Female, 2000 | Gender, Gender) 0 P (Alice , 2000 | Gender , Gender) 0
P (Female , 2000 | Gender , Birth-year) 1 P (Alice , 2000 | Gender , Birth-year) 0
P (Female , 2000 | Name , Gender) 0 P (Alice , 2000 | Name , Gender) 0
P (Female , 2000 | Name , Birth-year) 0 P (Alice , 2000 | Name , Birth-year) 1

Table 6.1: The correlation table from Example 1

We use the following function and parameters to run the code:

A=2
B=2
S=2
T=2
num_iterations = 20
samples = 5
d=1
d_max = 4
epsilon = 10^-8
P_det = [
[
[[0,0],[0,0]],
[[0,0],[0,0]]
],
[
[[0,0],[0,0]],
[[0,0],[0,0]]
]
]
P_det[1][1][1][1]=1
P_det[1][2][1][2]=1
P_det[2][1][2][1]=1
P_det[2][2][2][2]=1

P_used = P_det
println(givenP_increasing_d(P_used,num_iterations,d_max,epsilon,A,B,S

,→ ,T))

6.1. ANALYSIS OF GIVEN CORRELATIONS

6

31

The algorithm is consistently able to reproduce the correlation in dimension 1, within
the first sample. The error progression shows that the approximation improves dramat-
ically in the second SDP, in which the second POVM is optimized. A typical progression
of the errors is:

[0.7461100469238708, 0.3936224345080166, 9.36217736668965e-9],

where the first error is after no optimization, the second error after optimizing E and the
third error after optimizing F. The recovered POVM’s are of the form:

• E 1
1 = E 2

2 = 1 and E 2
1 = E 1

2 = 0

• F 1
1 = F 2

2 = 1 and F 2
1 = F 1

2 = 0,

and the recovered state is of course ρ = 1; the only state with dimension 1 that has a trace
of 1.

It can in fact easily be shown that every deterministic correlation is in C 1
q (Γ), as is

suggested by this result.

6.1.2. GIVEN PRIVATE RANDOMNESS CORRELATIONS
We now perform the same procedure for the correlations of private randomness. As an
example, we test if the algorithm can recover the correlation from Example 3. We use the
following function and parameters to run the code (inserting the correlation is some-
what cumbersome, as P ∈R64):

A=4
B=4
S=2
T=2
num_iterations = 10
samples = 2
d_max = 4
epsilon = 10^-8

function P_A_priv(a,s)
if a==1 && s==1

return 0.5
elseif a==2 && s==1

return 0.5
elseif a==3 && s==2

return 0.5
elseif a==4 && s==2

return 0.5
else

return 0
end

end

6.1. ANALYSIS OF GIVEN CORRELATIONS

6

32

function P_B_priv(b,t)
if b==1 && t==1

return 0.25
elseif b==2 && t==1

return 0.75
elseif b==3 && t==2

return 0.1
elseif b==4 && t==2

return 0.9
else

return 0
end

end

P_pcorr = [[[[P_A_priv(a,s)*P_B_priv(b,t) for t=1:T] for s=1:S] for b
,→ =1:B] for a=1:A]

println("Start")
println("====================================")
println(givenP_increasing_d(P_pcorr,num_iterations,d_max,epsilon,A,B,

,→ S,T))

Again, the algorithm easily reproduces the given correlation, with only one progres-
sion of the see-saw algorithm. The entanglement dimension is 1, and the recovered
POVM’s found are equal to the personal probabilities:

• E a
s = P (a|s) for all a, s, and

• F b
t = P (b|t) for all b, t .

This result hints at the fact that Cprivate(Γ) ⊂C 1
q (Γ), which indeed follows immediately

from Lemma 3.2.

6.1.3. GIVEN SHARED RANDOMNESS CORRELATIONS
We now perform the same procedure for the correlations with shared randomness. Ex-
cept... the correlation we used in Example 4 is a bit too complicated to implement in the
code. Of course, we could approximate the correlation by running simulations, but that
is bound to give problems for the entanglement dimension, as the algorithm has a high
precision (usually epsilon=10−8). How the algorithm responds to such small perturba-
tions is an interesting topic for future research.

For the purpose of this section, we simplify Example 4 a bit, by using the following
question sets:

• S = { Same_Coins, Same_Dice },

6.1. ANALYSIS OF GIVEN CORRELATIONS

6

33

• T = { Number_Heads , Number_Ones },

so that the answer sets are

• A = { Yes, No }, and

• B = { 0 , 1 , 2 }.

The following code runs the algorithm for this instance of the problem:

A=2
B=2
S=2
T=2
num_iterations = 100
samples = 5
d_max = S*(A-1)+T*(B-1)+S*T*(A-1)*(B-1)
epsilon = 10^-8

P_shar = [[[[0.0 for t=1:T] for s=1:S] for b=1:B] for a=1:A]

P_shar[1][1][1][1]=0.25
P_shar[1][1][1][2]=0.5*5/6*5/6
P_shar[1][1][2][1]=1/4*1/6
P_shar[1][1][2][2]=5/36
P_shar[1][2][1][1]=1/4
P_shar[1][2][1][2]=0.5*2*1/6*5/6 + 0.5*1/36
P_shar[1][2][2][1]=0.5*1/6 + 0.25*1/6
P_shar[1][2][2][2]=1/36
P_shar[2][1][1][1]=0.0
P_shar[2][1][1][2]=0.5*5/6*5/6
P_shar[2][1][2][1]=1/4*5/6
P_shar[2][1][2][2]=5/6*4/6
P_shar[2][2][1][1]=1/2
P_shar[2][2][1][2]=0.5*2*1/6*5/6 + 0.5*1/36
P_shar[2][2][2][1]=0.5*5/6+5/6*1/4
P_shar[2][2][2][2]=2*1/6*5/6

println("Start")
println("====================================")
println(givenP_increasing_d(P_shar,num_iterations,d_max,epsilon,A,B,S

,→ ,T))

Note that the parameters samples and num_iterations are set at larger values, since
we expect to find a larger entanglement dimension.

This time, the algorithm is not able to reproduce the correlation using entanglement
dimension 1. For example, the example correlation at the end of Chapter 2 has entan-
glement dimension 2. Interestingly, the outcome of the algorithm is not deterministic

6.2. RANDOMLY GENERATED CORRELATIONS

6

34

anymore; the code from the example above usually finds a construction in either di-
mension 4 or dimension 5, but sometimes even dimension 6. This suggests that the use
of multiple samples is indeed necessary to determine the entanglement dimension ac-
curately. Furthermore, calculations at such high dimensions might cause problems due
to machine precision. This could be prevented by using higher order solvers.

During the numerical experiments, the hypothesis arose that all correlations with
|A|=1 or |B|=1 have entanglement dimension 1. This result is easily proven, as it follows
immediately from the dimension of Cloc(Γ) in combination with our improved result from
Chapter 3. Note that this proof was not valid with the old result!

6.2. RANDOMLY GENERATED CORRELATIONS

6.2.1. RECONSTRUCTING QUANTUM CORRELATIONS
We now check if the algorithm is also able to reconstruct a quantum correlation. To this
end, we first define a method to create a quantum correlation in dimension d . Next, we
"forget" the POVM’s and state that we used to create the correlation, and try to approxi-
mate it with the algorithm. The implementation is as follows:

function randomP_increasing_d(num_iterations,d,d_max,epsilon,A,B,S,T)
#The complete algorithm, determining the correlation and the

,→ entanglement
dimension
This version generates a P itself
In most cases, a solution is found for samples =1. However,

,→ there have
been instances where samples was higher.
There is a bug, in which the POVM’s vanish, causing an error
rho, E, F = generaterandomoperators(d,A,B,S,T)
P_real = generateP(rho, E, F,d,A,B,S,T) # We want to approximate

,→ this P
d=1
errors = zeros(0)
while d<d_max+1

for sa in 1:samples
errors = zeros(0)
rho, E, F = generaterandomoperators(d,A,B,S,T) # We

,→ initialize with new rho,E,F
for i in 1:num_iterations

myerror = maximum(norm(P_real[a][b][s][t] -
,→ generateP(rho,E,F,d,A,B,S,T)[a][b][s][t])
,→ for t=1:T for s=1:S for b=1:B for a=1:A)

push!(errors,myerror)
println(errors)

E = findE(F,rho,P_real,d,A,B,S,T)
myerror = maximum(norm(P_real[a][b][s][t] -

,→ generateP(rho,E,F,d,A,B,S,T)[a][b][s][t])

6.2. RANDOMLY GENERATED CORRELATIONS

6

35

,→ for t=1:T for s=1:S for b=1:B for a=1:A)
push!(errors,myerror)
println(errors)

F = findF(E,rho,P_real,d,A,B,S,T)
myerror = maximum(norm(P_real[a][b][s][t] -

,→ generateP(rho,E,F,d,A,B,S,T)[a][b][s][t])
,→ for t=1:T for s=1:S for b=1:B for a=1:A)

push!(errors,myerror)
println(errors)

rho = findrho(E,F,P_real,d,A,B,S,T)
if myerror < epsilon

return errors, d,sa,E,F,"Success"
end

end
end
d+=1

end
return errors,"Failed"

end

A=3
B=2
S=2
T=4
d=4
num_iterations = 20
samples = 2
d_max = d+1
epsilon = 10^-8

println("Start")
println("====================================")
println(randomP_increasing_d(num_iterations,d,d_max,epsilon,A,B,S,T))

The results of the algorithm are very interesting. In the first place, with this method
the algorithm was able to correctly reconstruct all correlations thus far. However, some-
times the algorithm gets stuck in a local optimum, justifying the use of multiple samples
per dimension.

Interestingly, the entanglement dimension that the algorithm returns is not always
equal to the dimension that was used to create the random correlation; it might also be
lower (but never higher). This is to be expected, as we now that C i

q (Γ) ⊂C (
qΓ) for i < j . In

some cases, a randomly generated correlation in a high dimension turns out to be a clas-
sical correlation in C 1

q (Γ). By analyzing the algorithm over many runs, information can
be deduced about the "relative volume" of the quantum sets. This interesting behaviour
would be a nice topic of future research.

Finally, one might be interested in creating a correlation with a particular entangle-

6.2. RANDOMLY GENERATED CORRELATIONS

6

36

ment dimension. The method of randomly creating a correlation in that dimension does
not always work, as we just saw that the entanglement dimension is often lower than the
dimension in which the correlation is created. As a possible solution, one might try to
first solve an optimization problem, in which a linear objective function is minimized
over the set of quantum correlation in dimension d . This results in a correlation, which
can be reconstructed using the methods from this thesis.We propose the hypothesis that
such a correlation is more likely to have entanglement dimension d compared to a ran-
domly generated correlation in dimension d . However, future research is necessary to
confirm this hypothesis.

7
CONCLUSION

In the first chapter of this thesis, a thorough mathematical description of bipartite quan-
tum correlations is made. This description considers quantum correlations by using
POVM’s and the tensor model. Also, an effort has been made to explain the theory in
a simple manner, by introducing multiple examples.

This theory is used to analyze the geometry of several sets of bipartite correlations.
In particular, it is investigated how much entanglement is necessary to reconstruct all
classical correlations. This analysis has led to an improved upper bound on the entan-
glement dimension for which Cloc(Γ) ⊆ C d

q (Γ), namely for d ≥ dim(Cloc(Γ)). This new
bound is enabled by demonstrating that the set Cprivate(Γ) of correlations using private
randomness is connected, allowing the use of an extension of Carathéodory’s Theorem.
One correlation of this improvement is that every set with |A| = 1 or |B | = 1 has entangle-
ment dimension 1, and can thus be written as a correlation with private randomness.

In the second part of the thesis we describe a method for the reconstruction of bipar-
tite correlations. This method solves optimization problems for the POVM’s and density
matrix consecutively, in a so-called see-saw algorithm. It is shown that such problems
are semidefinite programs, which allows the use of efficient solvers. By using the algo-
rithm for different dimensions, it is also possible to determine the entanglement dimen-
sion of a correlation. One of the strengths of this algorithm is its generality: it applies
to different dimensions, question sets and answer sets. Finally, some numerical experi-
ments are performed, demonstrating that the algorithm can reconstruct several correla-
tions with different entanglement dimensions. For higher entanglement dimensions the
algorithm is not always able to reconstruct the correlation, possibly due to the compu-
tational limitations.

37

7

38

ACKNOWLEDGEMENTS
I would like to thank my review committee for taking the time to help me with this thesis.
In particular, I am very grateful to Dr. D. de Laat for providing me with amazing guidance
during the process, not only helping me with the research but also making me genuinely
excited about my studies. Of course, I am also thankful for the support of my family
and friends; especially Billy Verhage, Jort Bouma, Jort de Groot, Rona Roovers and Sarah
Jansen have helped me tremendously throughout my studies. Finally, I believe the TU
Delft deserves praise for supplying me with interesting and high-quality education over
the last three years.

BIBLIOGRAPHY

[Aru+19] Frank Arute et al. “Quantum supremacy using a programmable supercon-
ducting processor”. In: Nature 574.7779 (2019), pp. 505–510.

[Bel64] John S Bell. “On the einstein podolsky rosen paradox”. In: Physics Physique
Fizika 1.3 (1964), p. 195.

[Bri11] Jop Bri. “Grothendieck inequalities, nonlocal games and optimization”. In:
(2011).

[Bru+14] Nicolas Brunner et al. “Bell nonlocality”. In: Reviews of Modern Physics 86.2
(2014), p. 419.

[Bun34] Lucas Nicolaas Hendrik Bunt. Bijdrage tot de theorie der convexe puntverza-
melingen. Rijksuniversiteit te Groningen, 1934.

[Car00] Neal L Carothers. Real analysis. Cambridge University Press, 2000, p. 82.

[Fre04] Robert M Freund. “Introduction to semidefinite programming (SDP)”. In:
Massachusetts Institute of Technology (2004), pp. 8–11.

[GLL18] Sander Gribling, David de Laat, and Monique Laurent. “Bounds on entan-
glement dimensions and quantum graph parameters via noncommutative
polynomial optimization”. In: Mathematical Programming 170.1 (2018), pp. 5–
42.

[Hen+15] Bas Hensen et al. “Loophole-free Bell inequality violation using electron spins
separated by 1.3 kilometres”. In: Nature 526.7575 (2015), pp. 682–686.

[IIA06] Tsuyoshi Ito, Hiroshi Imai, and David Avis. “Bell inequalities stronger than
the Clauser-Horne-Shimony-Holt inequality for three-level isotropic states”.
In: Physical Review A 73.4 (2006), p. 042109.

[LV12] Monique Laurent and Frank Vallentin. “Semidefinite optimization”. In: Lec-
ture Notes, available at http://page. mi. fu-berlin. de/fmario/sdp/laurentv. pdf
(2012).

[MB07] Florian Mintert and Andreas Buchleitner. “Observable entanglement mea-
sure for mixed quantum states”. In: Physical review letters 98.14 (2007), p. 140505.

[PV10] Károly F Pál and Tamás Vértesi. “Maximal violation of a bipartite three-setting,
two-outcome Bell inequality using infinite-dimensional quantum systems”.
In: Physical Review A 82.2 (2010), p. 022116.

[PV16] Carlos Palazuelos and Thomas Vidick. “Survey on nonlocal games and oper-
ator space theory”. In: Journal of Mathematical Physics 57.1 (2016), p. 015220.

[RV15] Oded Regev and Thomas Vidick. “Quantum XOR games”. In: ACM Transac-
tions on Computation Theory (ToCT) 7.4 (2015), pp. 1–43.

39

BIBLIOGRAPHY 40

[Slo16] William Slofstra. “Tsirelson’s problem and an embedding theorem for groups
arising from non-local games (2016)”. In: arXiv preprint arXiv:1606.03140
(2016).

[Sta18] Cyril J Stark. “Learning optimal quantum models is NP-hard”. In: Physical
Review A 97.2 (2018), p. 020103.

[VB96] Lieven Vandenberghe and Stephen Boyd. “Semidefinite programming”. In:
SIAM review 38.1 (1996), pp. 49–95.

[WEH18] Stephanie Wehner, David Elkouss, and Ronald Hanson. “Quantum internet:
A vision for the road ahead”. In: Science 362.6412 (2018).

[Wil+08] J Wilms et al. “Local realism, detection efficiencies, and probability poly-
topes”. In: Physical Review A 78.3 (2008), p. 032116.

[WW01] Reinhard F Werner and Michael M Wolf. “Bell inequalities and entangle-
ment”. In: arXiv preprint quant-ph/0107093 (2001).

A
CODE

In this Appendix, we give the code that is used to generate the examples in this thesis, as
well as some of the underlying functions. It is written in the language Julia, version 1.4.2.
Julia can be downloaded online, for example with an IDE such as Juno or VSStudio. To
run the code, several packages are needed. The package Mosek requires the installation
and set-up of a free license.

The first part of the code entails all relevant functions. In the second part, different
sections are commented out. You can un-comment sections to run the code.

The entire file can also be found at GitHub:
https://github.com/JanBosma/Entanglement-Dimension
Feel free to modify the code any way you want.

using Convex, Mosek, MosekTools, LinearAlgebra
Written in Julia Version 1.4.2
Mosek and Mosektools require a (free) license to be installed.
Alternatively, one could use the solver SCS

The code used to obtain the results from the thesis are given below
If you want to run some code for yourself, you can un-comment a

,→ section
by using CTRL + /

Variables:
A = number of answers Alice
B = number of answers Bob
S = number of questions Alice
T = number of questions Bob

P = given bipartite correlation
d = entanglement dimension

41

https://github.com/JanBosma/Entanglement-Dimension

A

42

E[s][a] is complex dxd matrix for all s in S and a in A
F[t][b] is complex dxd matrix for all t in T and b in B
psi = complex unit vector with dimension d^2
rho = complex (d^2)x(d^2) matrix with trace 1

function findE(F, rho, P::Array,d,A,B,S,T)
#Solves SDP for optimal E, given state rho, POVM F and desired P
E = [[ComplexVariable(d,d) for s=1:S] for a=1:A]
M = Variable(1, Positive())
objective = M
s_1 = [[[[Variable(1, Positive()) for t=1:T] for s=1:S] for b=1:B

,→] for a=1:A]
s_2 = [[[[Variable(1, Positive()) for t=1:T] for s=1:S] for b=1:B

,→] for a=1:A]

constraints = [E[a][s] in :SDP for s=1:S for a=1:A]
constraints += [P[a][b][s][t] - tr(kron(E[a][s], F[b][t])*rho) ==

,→ M - s_1[a][b][s][t] for a=1:A for s=1:S for b=1:B for t
,→ =1:T]

constraints += [P[a][b][s][t] - tr(kron(E[a][s], F[b][t])*rho) ==
,→ -M + s_2[a][b][s][t] for a=1:A for s=1:S for b=1:B for t
,→ =1:T]

ide = Matrix{Float64}(I, d, d)
for s in 1:S

constraints += sum(E[a][s] for a=1:A) == ide
end

problem = minimize(objective,constraints)
solve!(problem, () -> Mosek.Optimizer())

E = [[E[a][s].value for s=1:S] for a=1:A]

end

function findF(E, rho, P::Array,d,A,B,S,T)
#Solves SDP for optimal F, given density matrix rho, POVM E and

,→ desired P
F = [[ComplexVariable(d,d) for t=1:T] for b=1:B]
M = Variable(1, Positive())
objective = M
s_1 = [[[[Variable(1, Positive()) for t=1:T] for s=1:S] for b=1:B

,→] for a=1:A]
s_2 = [[[[Variable(1, Positive()) for t=1:T] for s=1:S] for b=1:B

A

43

,→] for a=1:A]

constraints = [F[b][t] in :SDP for t=1:T for b=1:B]

if d==1
Of course, this doesn’t seem neccessary, but there seems to

,→ be
a bug with the trace when d=1
constraints += [P[a][b][s][t] - E[a][s]* F[b][t]*rho == M -

,→ s_1[a][b][s][t] for a=1:A for s=1:S for b=1:B for t=1:T
,→]

constraints += [P[a][b][s][t] - E[a][s]* F[b][t]*rho == -M +
,→ s_2[a][b][s][t] for a=1:A for s=1:S for b=1:B for t=1:T
,→]

else
constraints += [P[a][b][s][t] - tr(kron(E[a][s], F[b][t])*rho

,→) == M - s_1[a][b][s][t] for a=1:A for s=1:S for b=1:B
,→ for t=1:T]

constraints += [P[a][b][s][t] - tr(kron(E[a][s], F[b][t])*rho
,→) == -M + s_2[a][b][s][t] for a=1:A for s=1:S for b=1:B
,→ for t=1:T]

end

ide = Matrix{Float64}(I, d, d)
for t in 1:T

constraints += sum(F[b][t] for b=1:B) == ide
end

problem = minimize(objective,constraints)
solve!(problem, () -> Mosek.Optimizer())

F = [[F[b][t].value for t=1:T] for b=1:B]
end

function generaterandomrho(d::Int)
generates random density matrix
psi = rand(Float64,(d^2,1)) + im*rand(Float64,(d^2,1))
psi /= norm(psi, 2)
rho = psi * psi’

end

function randomE(d,A,S)
generates random POVM E, by generating random matrices and

,→ solving for

A

44

the closest SDP matrices

E = [[rand(Float64,(d,d))+ im*rand(Float64,(d,d)) for s=1:S] for
,→ a=1:A]

E_SDP= [[ComplexVariable(d,d) for s=1:S] for a=1:A]
M = Variable(1)
objective = M

s_1 = [[Variable(1, Positive()) for s=1:S] for a=1:A]
s_2 = [[Variable(1, Positive()) for s=1:S] for a=1:A]

constraints = [E_SDP[a][s] in :SDP for a=1:A for s=1:S]
constraints += M >= 0

constraints += [norm(E_SDP[a][s] - E[a][s]) == M - s_1[a][s] for
,→ a=1:A for s=1:S]

constraints += [norm(E_SDP[a][s] - E[a][s]) == -M + s_2[a][s] for
,→ a=1:A for s=1:S]

ide = Matrix{Float64}(I, d, d)
for s in 1:S

constraints += sum(E_SDP[a][s] for a=1:A) == ide
end

problem = minimize(objective,constraints)
solve!(problem, () -> Mosek.Optimizer())

Making sure that all matrices are Hermitian
E = [[(E_SDP[a][s].value+E_SDP[a][s].value’)/2 for s=1:S] for a

,→ =1:A]

end

function generaterandomoperators(d,A,B,S,T)
rhostart = generaterandomrho(d)
ide = Matrix{Float64}(I, d, d)

Estart = randomE(d,A,S)
Fstart = randomE(d,B,T)
rhostart, Estart, Fstart

end

function generateP(rho, E, F,d,A,B,S,T)

A

45

[[[[tr(kron(E[a][s], F[b][t])*rho) for t=1:T] for s=1:S] for b=1:
,→ B] for a=1:A]

end

function testfindE(d,A,B,S,T)
rho, E, F= generaterandomoperators(d,A,B,S,T)
P = generateP(rho, E, F,d,A,B,S,T)
findE(F, rho, P,d,A,B,S,T)

end

function findrho(E,F,P,d,A,B,S,T)
solves SDP for optimal density matrix rho, given POVM’s E and F

,→ ,
and desired correlation P
rho = ComplexVariable(d^2,d^2)
M = Variable(1, Positive())
objective = M
s_1 = [[[[Variable(1, Positive()) for t=1:T] for s=1:S] for b=1:B

,→] for a=1:A]
s_2 = [[[[Variable(1, Positive()) for t=1:T] for s=1:S] for b=1:B

,→] for a=1:A]

constraints = rho in :SDP
constraints += [P[a][b][s][t] - tr(kron(E[a][s], F[b][t])*rho) ==

,→ M - s_1[a][b][s][t] for a=1:A for s=1:S for b=1:B for t
,→ =1:T]

constraints += [P[a][b][s][t] - tr(kron(E[a][s], F[b][t])*rho) ==
,→ -M + s_2[a][b][s][t] for a=1:A for s=1:S for b=1:B for t
,→ =1:T]

constraints += tr(rho) == 1

problem = minimize(objective,constraints)
solve!(problem, () -> Mosek.Optimizer())
rho.value

end

function randomP_fixed_d(num_iterations,d,A,B,S,T)
#executes see-saw algorithm of num_iterations iterations
#returns a list of errors per step
rho, E, F = generaterandomoperators(d,A,B,S,T)
P_real = generateP(rho, E, F,d,A,B,S,T) # We want to approximate

,→ this P
errors = zeros(0)
rho, E, F = generaterandomoperators(d,A,B,S,T) # We initialize

,→ with new rho,E,F

A

46

for i in 1:num_iterations
myerror = maximum(norm(P_real[a][b][s][t] - generateP(rho,

,→ E,F,d,A,B,S,T)[a][b][s][t]) for t=1:T for s=1:S for
,→ b=1:B for a=1:A)

push!(errors,myerror)
E = findE(F,rho,P_real,d,A,B,S,T)

myerror = maximum(norm(P_real[a][b][s][t] - generateP(rho,
,→ E,F,d,A,B,S,T)[a][b][s][t]) for t=1:T for s=1:S for
,→ b=1:B for a=1:A)

push!(errors,myerror)
F = findF(E,rho,P_real,d,A,B,S,T)

myerror = maximum(norm(P_real[a][b][s][t] - generateP(rho,
,→ E,F,d,A,B,S,T)[a][b][s][t]) for t=1:T for s=1:S for
,→ b=1:B for a=1:A)

push!(errors,myerror)
rho = findrho(E,F,P_real,d,A,B,S,T)

end

errors

end

function randomP_increasing_d(num_iterations,d,d_max,epsilon,A,B,S,T)
#The complete algorithm, determining the correlation and the

,→ entanglement
dimension
This version generates a P itself
In most cases, a solution is found for samples =1. However,

,→ there have
been instances where samples was higher.
Sometimes, here is a bug, in which the POVM’s vanish, causing

,→ an error
rho, E, F = generaterandomoperators(d,A,B,S,T)
P_real = generateP(rho, E, F,d,A,B,S,T) # We want to approximate

,→ this P
d=1
errors = zeros(0)
while d<d_max+1

for sa in 1:samples
errors = zeros(0)
rho, E, F = generaterandomoperators(d,A,B,S,T) # We

,→ initialize with new rho,E,F
for i in 1:num_iterations

myerror = maximum(norm(P_real[a][b][s][t] -
,→ generateP(rho,E,F,d,A,B,S,T)[a][b][s][t])

A

47

,→ for t=1:T for s=1:S for b=1:B for a=1:A)
push!(errors,myerror)
println(errors)

E = findE(F,rho,P_real,d,A,B,S,T)
myerror = maximum(norm(P_real[a][b][s][t] -

,→ generateP(rho,E,F,d,A,B,S,T)[a][b][s][t])
,→ for t=1:T for s=1:S for b=1:B for a=1:A)

push!(errors,myerror)
println(errors)

F = findF(E,rho,P_real,d,A,B,S,T)
myerror = maximum(norm(P_real[a][b][s][t] -

,→ generateP(rho,E,F,d,A,B,S,T)[a][b][s][t])
,→ for t=1:T for s=1:S for b=1:B for a=1:A)

push!(errors,myerror)
println(errors)

rho = findrho(E,F,P_real,d,A,B,S,T)
if myerror < epsilon

return errors, d,sa,E,F,"Success"
end

end
end
d+=1

end
return errors,"Failed"

end

function givenP_increasing_d(P_real,num_iterations,d_max,epsilon,A,B,
,→ S,T)
#The complete algorithm, determining the correlation and the

,→ entanglement
dimension
This version takes the correlation as input
In most cases, a solution is found for samples =1. However,

,→ there have
been instances where samples was higher.
There is a bug, in which the POVM’s vanish, causing an error

d=1
errors = zeros(0)
while d<d_max+1

for sa in 1:samples
errors = zeros(0)
rho, E, F = generaterandomoperators(d,A,B,S,T) # We

,→ initialize with new rho,E,F
for i in 1:num_iterations

A

48

myerror = maximum(norm(P_real[a][b][s][t] -
,→ generateP(rho,E,F,d,A,B,S,T)[a][b][s][t])
,→ for t=1:T for s=1:S for b=1:B for a=1:A)

push!(errors,myerror)
E = findE(F,rho,P_real,d,A,B,S,T)

myerror = maximum(norm(P_real[a][b][s][t] -
,→ generateP(rho,E,F,d,A,B,S,T)[a][b][s][t])
,→ for t=1:T for s=1:S for b=1:B for a=1:A)

push!(errors,myerror)
F = findF(E,rho,P_real,d,A,B,S,T)

myerror = maximum(norm(P_real[a][b][s][t] -
,→ generateP(rho,E,F,d,A,B,S,T)[a][b][s][t])
,→ for t=1:T for s=1:S for b=1:B for a=1:A)

push!(errors,myerror)
rho = findrho(E,F,P_real,d,A,B,S,T)
if myerror < epsilon

return d,errors,E,F,rho,generateP(rho,E,F,d,A,B,S,T
,→),sa,"Success"

end
end

end
d+=1

end
return errors,"Failed"

end

############### Deterministic Correlations ###############

A=2
B=2
S=2
T=2
num_iterations = 20
samples = 5
d=1
d_max = 4
epsilon = 10^-8
#
P_det = [
[
[[0,0],[0,0]],
[[0,0],[0,0]]
],
[
[[0,0],[0,0]],

A

49

[[0,0],[0,0]]
]
]
P_det[1][1][1][1]=1
P_det[1][2][1][2]=1
P_det[2][1][2][1]=1
P_det[2][2][2][2]=1
#
P_used = P_det
#
println("Start")
println("====================================")
println(givenP_increasing_d(P_used,num_iterations,d_max,epsilon,A,B

,→ ,S,T))

############# Private Randomness Correlations #######################

A=4
B=4
S=2
T=2
num_iterations = 10
samples = 2
d_max = 4
epsilon = 10^-8
#
function P_A_priv(a,s)
if a==1 && s==1
return 0.5
elseif a==2 && s==1
return 0.5
elseif a==3 && s==2
return 0.5
elseif a==4 && s==2
return 0.5
else
return 0
end
end
#
function P_B_priv(b,t)
if b==1 && t==1
return 1/4
elseif b==2 && t==1
return 3/4

A

50

elseif b==3 && t==2
return 0.1
elseif b==4 && t==2
return 0.9
else
return 0
end
end
#
#
P_pcorr = [[[[P_A_priv(a,s)*P_B_priv(b,t) for t=1:T] for s=1:S] for

,→ b=1:B] for a=1:A]
#
println("Start")
println("====================================")
println(givenP_increasing_d(P_pcorr,num_iterations,d_max,epsilon,A,

,→ B,S,T))

############Approximated Shared Randomness Correlations
,→ #################3

A=2
B=13
S=2
T=2
num_iterations = 10
samples = 2
d_max = 4
epsilon = 10^-3
#
#the following empirical result is found using Python, with 10^6

,→ samples.
python = [[[[0.250679, 0.0], [0.041953, 0.0]], [[0.0, 0.0],

,→ [0.083058, 0.0]], [[0.249778, 0.014256], [0.041774,
,→ 0.027882]], [[0.0, 0.027541], [0.0, 0.0]], [[0.0, 0.041567],
,→ [0.0, 0.027583]], [[0.0, 0.05552], [0.0, 0.0]], [[0.0,
,→ 0.069334], [0.0, 0.027813]], [[0.0, 0.083663], [0.0, 0.0]],
,→ [[0.0, 0.069553], [0.0, 0.027837]], [[0.0, 0.055741], [0.0,
,→ 0.0]], [[0.0, 0.041969], [0.0, 0.02744]], [[0.0, 0.027966],
,→ [0.0, 0.0]], [[0.0, 0.014026], [0.0, 0.027884]]], [[[0.0,
,→ 0.0], [0.20881, 0.0]], [[0.500309, 0.0], [0.41673, 0.0]],
,→ [[0.0, 0.014123], [0.208567, 0.0]], [[0.0, 0.027882], [0.0,
,→ 0.055707]], [[0.0, 0.041501], [0.0, 0.055517]], [[0.0,
,→ 0.055349], [0.0, 0.11076]], [[0.0, 0.069946], [0.0,
,→ 0.111288]], [[0.0, 0.08325], [0.0, 0.166194]], [[0.0,

A

51

,→ 0.069919], [0.0, 0.111335]], [[0.0, 0.055449], [0.0,
,→ 0.110674]], [[0.0, 0.041436], [0.0, 0.055508]], [[0.0,
,→ 0.02827], [0.0, 0.055629]], [[0.0, 0.013967], [0.0, 0.0]]]]

#
println("Start")
println("====================================")
println(givenP_increasing_d(python,num_iterations,d_max,epsilon,A,B

,→ ,S,T))

################# Example Shared Randomness Correlations
,→ ####################

#
A=2
B=3
S=2
T=2
num_iterations = 5
samples = 1
d_max = 7#S*(A-1)+T*(B-1)+S*T*(A-1)*(B-1)
epsilon = 10^-4
#
P_shar = [[[[0.0 for t=1:T] for s=1:S] for b=1:B] for a=1:A]
#
P_shar[1][1][1][1]=0.25
P_shar[1][1][1][2]=0.5*5/6*5/6
P_shar[1][1][2][1]=1/4*1/6
P_shar[1][1][2][2]=5/36
P_shar[1][2][1][1]=0.0
P_shar[1][2][1][2]=0.5*2*1/6*5/6
P_shar[1][2][2][1]=0.5*1/6
P_shar[1][2][2][2]=0.0
P_shar[1][3][1][1]=1/4
P_shar[1][3][1][2]=0.5*1/36
P_shar[1][3][2][1]=0.25*1/6
P_shar[1][3][2][2]=1/36
P_shar[2][1][1][1]=0.0
P_shar[2][1][1][2]=0.5*5/6*5/6
P_shar[2][1][2][1]=1/4*5/6
P_shar[2][1][2][2]=5/6*4/6
P_shar[2][2][1][1]=1/2
P_shar[2][2][1][2]=0.5*2*1/6*5/6
P_shar[2][2][2][1]=0.5*5/6
P_shar[2][2][2][2]=2*1/6*5/6
P_shar[2][3][1][1]=0.0

A

52

P_shar[2][3][1][2]=0.5*1/36
P_shar[2][3][2][1]=5/6*1/4
P_shar[2][3][2][2]=0.0
#
println("Start")
println("====================================")
println(givenP_increasing_d(P_shar,num_iterations,d_max,epsilon,A,B

,→ ,S,T))

################ Given Shared Randomness correlation ##############

A=2
B=2
S=2
T=2
num_iterations = 20
samples = 2
d_max = S*(A-1)+T*(B-1)+S*T*(A-1)*(B-1)
epsilon = 10^-8

P_shar = [[[[0.0 for t=1:T] for s=1:S] for b=1:B] for a=1:A]
#
P_shar[1][1][1][1]=0.25
P_shar[1][1][1][2]=0.5*5/6*5/6
P_shar[1][1][2][1]=1/4*1/6
P_shar[1][1][2][2]=5/36
P_shar[1][2][1][1]=1/4
P_shar[1][2][1][2]=0.5*2*1/6*5/6 + 0.5*1/36
P_shar[1][2][2][1]=0.5*1/6 + 0.25*1/6
P_shar[1][2][2][2]=1/36
P_shar[2][1][1][1]=0.0
P_shar[2][1][1][2]=0.5*5/6*5/6
P_shar[2][1][2][1]=1/4*5/6
P_shar[2][1][2][2]=5/6*4/6
P_shar[2][2][1][1]=1/2
P_shar[2][2][1][2]=0.5*2*1/6*5/6 + 0.5*1/36
P_shar[2][2][2][1]=0.5*5/6+5/6*1/4
P_shar[2][2][2][2]=2*1/6*5/6

println("Start")
println("====================================")
println(givenP_increasing_d(P_shar,num_iterations,d_max,epsilon,A,B

,→ ,S,T))

A

53

################# Testing randomly generated classical correlations
,→ #########

function randomshared(A,B,S,T,dets)
Generates random classical correlations (C_loc(Gamma))
P_shar2 = [[[[[0.0 for t=1:T] for s=1:S] for b=1:B] for a=1:A] for

,→ i=1:dets]
lambda=rand(Float64,(dets,1))
sumlambda = 0.0
for i=1:dets
sumlambda += lambda[i]
end
for i=1:dets
lambda[i]/=sumlambda
end
for i=1:dets
for s=1:S
for t= 1:T
a=rand((1,A))
b=rand((1,B))
P_shar2[i][a][b][s][t]=1
end
end
end
#
result = [[[[0.0 for t=1:T] for s=1:S] for b=1:B] for a=1:A]
for t=1:T
for s=1:S
for b=1:B
for a=1:A
res=0.0
for i=1:dets
res+=lambda[i]*P_shar2[i][a][b][s][t]
end
result[a][b][s][t]=res
end
end
end
end
#
result = [[[[result[a][b][s][t] for t=1:T] for s=1:S] for b=1:B]

,→ for a=1:A]
end
#

A

54

A=2
B=2
S=2
T=2
num_iterations = 20
samples = 2
d_max = S*(A-1)+T*(B-1)+S*T*(A-1)*(B-1)
epsilon = 10^-4
dets=5
#
P_shar3 = randomshared(A,B,S,T,dets)
#
println("Start")
println("====================================")
println(givenP_increasing_d(P_shar3,num_iterations,d_max,epsilon,A,

,→ B,S,T))

############ Quantum correlations ###################

A=1
B=2
S=3
T=4
d=3
num_iterations = 20
samples = 5
d_max = d+1
epsilon = 10^-8

println("Start")
println("====================================")
println(randomP_increasing_d(num_iterations,d,d_max,epsilon,A,B,S,T))

	Introduction
	Theory on Bipartite Correlations
	Bipartite Correlations
	General Setting

	Classical Correlations
	Deterministic Protocols
	Private Randomness Protocols
	Shared Randomness Protocols
	Generalized Classical Correlations

	Bipartite Quantum Correlations
	Final Remarks on Correlation Reconstruction

	Using Entanglement to Simulate Shared Randomness
	Introduction to the Theorem
	Writing P as a Convex Sum of dim(Cloc()) Terms
	A Convex Sum of N Terms has Entanglement Dimension N

	Theory of Semidefinite Programming
	Positive Semidefinite Matrices
	Semidefinite Program
	Complex Semidefinite Program
	Semidefinite Program in Block-form

	An SDP for the Reconstruction of Bipartite Quantum Correlations
	See-Saw Algorithm
	SDP for POVM's
	SDP for Density Matrix

	Results of the Algorithm
	Analysis of Given Correlations
	Given Deterministic Correlations
	Given Private Randomness Correlations
	Given Shared Randomness Correlations

	Randomly Generated Correlations
	Reconstructing Quantum Correlations

	Conclusion
	Code

