
Mathematical Model of the
Arctic Gyre and its Analysis

Exploring the behaviour of a
non-linear ordinary differential
equation describing the vortic-
ity of Arctic Gyres

S.P.T. Wiechers





Mathematical
Model of the

Arctic Gyre and
its Analysis

Exploring the behaviour of a non-linear
ordinary differential equation describing the

vorticity of Arctic Gyres
by

S.P.T. Wiechers
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Wednesday June 26, 2024 at 12:00

Student number: 4948262
Project duration: April 25 2024 – June 26, 2024
Thesis committee: Dr.Kateryna Marynets TU Delft, supervisor

Dr.Cornelis Kraaikamp TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface

"I would like to thank Dr. Kateryna Marynets for her help and guidance during the project, as well as Dr.
Cornelis Kraaijkamp for being part of my graduation committee."

S.P.T. Wiechers
Delft, June 2024

iii





Contents

1 Introduction 5

2 Literary study 7
2.1 Introduction to Ocean Gyres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Formation of Oceanic Gyres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The Coriolis effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Origin of the model for Arctic gyres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 The Stream function and Vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Stereographic projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Simplification of the model to the second order differential equation . . . . . . . . . . . 9

2.3 Solution to the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Oceanic Vorticity F(u) and Lipschitz-Continuity . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Lipschitz-Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Existence and uniqueness to the problem for Lipschitz-continuous F (u) . . . . . . . . . 11

3 Methods, Results and Analysis 13
3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Non Lipschitz-continuous functions of F(u) . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Numerical analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Stability analysis of scaling F (u) by parameter ϵ . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Solutions u(t ) for bounded F (u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Numerical approximation of solutions to the nonlinear differential equation . . . . . . . 15

3.3 Uniqueness of results for the nonlinear model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Existence of solutions when scaling F (u) by ϵ . . . . . . . . . . . . . . . . . . . . . . . 18

4 Conclusion and Discussion 21
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Numerical Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Simplification of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A Python model of fixed point integration for different F(u) 23
A.1 Python Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B Proofs and results outside the scope of the project 27
B.1 Eigenfunction solution for arbitrary t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 29

v





Contents 1

List of Variables

Variable Description Dependencies
ψ Represents the stream function in fluid dynamics, used

to describe the flow of a fluid in a two-dimensional in-
compressible flow.

directional components
(x,y),(θ,φ), r or t

x Directional component describing horizontal location
y Directional component describing vertical location
u The velocity of the fluid in the x-direction
v The velocity of the fluid in the y-direction
θ Angle measured from the polar axis, used in spherical

coordinates.
φ Angle measured around the polar axis, used in spheri-

cal coordinates.
ω Parameter that accounts for the Coriolis effect due to

the Earth’s rotation, influencing the fluid’s movement.
The value equals 4649.56.

u(t ) Vorticity function in terms of variable t. Depends on t
F (u(t )) Function representing the vorticity of the ocean flow,

which is a measure of the rotation of fluid particles.
Depends on u(t )

r Distance from the origin in spherical coordinates.
t A spatial variable
t0 Initial value of the spatial variable.
ξ Complex coordinate used in stereographic projection

to map points on a sphere.
∆ Differential operator given by the divergence of the gra-

dient of a function, important in describing the flow.
ϵ Parameter used to scale the impact of the oceanic vor-

ticity function.
λn Value characterizing the eigenfunctions in the eigen-

value problem.
Dependent on the form of
the differential equation

φn Function corresponding to the eigenvalue in the eigen-
value problem, non-zero and orthogonal.

Dependent on λn

M Constant used in depicting upper bounds
Ψ Component of the stream function related specifically

to the vorticity.
Dependent on ψ

R Standard mathematical set of real numbers.
N Standard mathematical set of natural numbers.

X ,Y Abstract spaces in which distance is defined.
dX ,dY Distance measures defined on the metric spaces X and

Y .
Dependent on X ,Y
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Laymen Summary
In the world there are five primary oceanic gyres: the North Atlantic, South Atlantic, North Pacific, South Pa-
cific, and Indian Ocean gyres. These gyres are bounded by the continents and are driven by the wind patterns
associated with Earth’s climate [9]. Besides these large gyres, there exist smaller gyres near the North and
South Pole. This paper will specifically be delve into the behaviour of Arctic gyres. These gyres are large sys-
tems of circulating ocean currents that play a crucial role in regulating the planet’s climate by redistributing
heat from the equator to the poles and supporting marine life. The main goal of this report is to explore and
expand a mathematical equation, that was first presented by Constantin and Johnson [4], and later simplified
by Jifeng Chu [3], to model Arctic gyres in particular.

The model uses complex equations to describe the vorticity of these Arctic gyres. Vorticity is a concept in
fluid dynamics describing the rotation of fluid particles. In Chu’s paper [3], the author preforms an analysis
of the oceanic vorticity component within the model. The focus of this analysis lies predominantly in prov-
ing that there exist unique functions describing Arctic gyres, when the oceanic vorticity function has certain
properties.

By extending the model, this report shows that different properties of the oceanic vorticity function, than
those discussed by Chu [3], can also yield functions describing these gyres. Moreover, an analysis of scaling
the oceanic vorticity component by a parameter ϵ > 0, yields unstable results. These findings indicate how
the original model can use different vorticity functions to correctly model Arctic gyres.
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Summary
Arctic gyres are large systems of circulating ocean currents that form in the polar region. They play a crucial
role in Earth’s climate system by redistributing heat from the equator to the poles, facilitating the exchange
of nutrients and gases between the ocean and atmosphere, and supporting marine ecosystems. Modeling
Arctic gyres is important for understanding their impact on global climate patterns and predicting changes
in marine environments. In 2017, A. Constantin and R.S. Johnson presented a shallow-water model [4], in
which the authors derived a partial differential equation (PDE) describing gyres. Hereafter, in 2018, Jifeng
Chu simplifies this model using the stereographic projection to rewrite this PDE into an ordinary differential
equation (ODE)[3]. The present report investigates and expands this mathematical model describing Arctic
gyres.

A key characteristic of this model is vorticity, a measure of the rotation of fluid particles. In particular,
Chu’s work [3] focuses on analysing the oceanic vorticity component: F (u), in the model describing Arctic
gyres. This analysis shows that there exists a unique continuous function describing the vorticity of an Arc-
tic gyre, if F (u) is a Lipschitz-continuous function. The results in this paper indicate that the model has
continuous solutions for function F (u) that are bounded. Additionally, numerical approximations of so-
lutions to the differential equation validate that the model converges to a specific starting parameter and
can effectively handle non-Lipschitz continuous functions. Furthermore the stability of the system is tested
when the oceanic vorticity function F (u) is scaled by a parameter ϵ. This analysis shows for linear functions
F (u) = au +b, where a,b are real valued constants, that there exist no unique solutions whenever there is a
n ∈N, such that ϵ= n(n−1)

a .
Overall, the findings that are presented, highlight the potential for extending the model to incorporate

more complex and realistic oceanic vorticity functions. This can improve the understanding of these crucial
components of Earth’s climate system.





1
Introduction

Ocean gyres are large systems of circulating ocean currents formed by the interaction of wind patterns and
the Earth’s rotation (the Coriolis effect). These gyres can span entire ocean basins and are a dominant feature
of the Earth’s oceanic circulation. There exist five major gyres: the North- and South Atlantic Gyre, the North-
and South Pacific Gyre, and the Indian Ocean Gyre, as well as smaller gyres in the Arctic and Antarctic region.
Gyres are characterized by a central area of calm water and a strong, circular flow around the periphery. They
play a crucial role in the global climate system by redistributing heat from the equator to the poles and facil-
itating the exchange of nutrients and gases between the ocean and the atmosphere[9]. The motion of these
currents is driven primarily by wind stress at the ocean surface, but the Coriolis effect also plays a signifi-
cant role, causing the currents to turn and form a circular pattern. In the Northern Hemisphere, gyres rotate
clockwise, while in the Southern Hemisphere, they rotate counterclockwise. These oceanic features are not
only vital for regulating global climate but also support marine ecosystems by distributing nutrients and sup-
porting the migration patterns of various marine species. The study of gyres, particularly in the polar regions,
is essential due to their influence on sea ice dynamics, their role in global heat circulation, and their impact
on regional climate patterns. This report aims to explore the non-linear model presented by Jifeng Chu [3]
describing Arctic gyres, exploring the mathematical formulations and delve deeper into possible extensions
and stability of the model.

Jifeng Chu’s 2018 paper, "On a nonlinear model for arctic gyres," published in the Annali di Matematica,
starts with a model given by Constantin and Johnson [4], where the authors describe circulation of the wa-
ter mass in the ocean as a shallow-water problem. Chu’s work begins by simplifying the partial differential
equation model presented in [4], into a second order ordinary differential equation. This model provides
significant insights into the dynamics of ocean gyres, specifically in the Arctic region.

The Arctic Ocean’s unique conditions, such as wind stress factors and the influence of the Coriolis effect,
give rise to specialized models to accurately describe the gyre’s motion. Chu’s work highlights the transfor-
mation of the spherical coordinate model into a planar elliptic boundary value problem, which simplifies
the analysis while retaining the essential physical characteristics of the gyre. By neglecting azimuthal varia-
tions and focusing on radially symmetric solutions, using stereographic projection, the model becomes more
manageable, while still providing a useful framework for investigating these systems

This report will explore and extend Chu’s work by researching different properties of the nonlinear model,
as well as providing stability and bifurcation analysis. The second chapter focuses on the exploration of the
model. This translates to the background information, theorems and general information. The section there-
after will give insight into the simplification of the model given by Constantin and Johnson [4] towards the
model that is used in the paper by J.Chu. Moreover, the results regarding the extension, and analysis of the
model will also be discussed. The last chapter of the report gives a conclusion and a possible discussion,
which summarises the report and gives possible recommendations for further research.

5





2
Literary study

To understand the results given by J.Chu [3], one must have some basic understanding of the origin of the
nonlinear model, as well as some results that arise in the field of real analysis and ordinary differential equa-
tions. This chapter will provide some background information concerning the derivation of the model and
related theorems, used for its analysis.

2.1. Introduction to Ocean Gyres
Ocean gyres are vast, circulating ocean currents, that dominate the surface circulation in the major ocean
basins. There are five primary oceanic gyres: the North Atlantic, South Atlantic, North Pacific, South Pacific,
and Indian Ocean gyres. These gyres are bounded by the continents and are driven by the wind patterns
associated with Earth’s climate [9].

2.1.1. Formation of Oceanic Gyres
The primary drivers of oceanic gyres are wind patterns and the Coriolis effect, which work together to cre-
ate the characteristic circular motion of gyres. Trade winds blow from east to west in the tropics, while the
westerlies blow from west to east in the mid-latitudes. These westerlies and easterlies create a pattern of sur-
face currents that converge and diverge, setting up the circular motion characteristic of gyres,leading to the
formation of gyres [9].

2.1.2. The Coriolis effect
The Coriolis effect is a phenomenon that describes the apparent deflection of objects moving across the sur-
face of the Earth, due to the planet’s rotation. Named after the French mathematician Gaspard-Gustave de
Coriolis, this effect is crucial in meteorology and oceanography for understanding the movement patterns
of air and water currents. As the Earth rotates, different points on the planet move at different speeds. The
Earth is at its widest at the Equator, therefore regions near the Equator travel faster relative to regions near
the poles. When an object travels long distances over the Earth’s surface, such as an air current or an ocean
current, it retains its initial speed relative to Earth’s rotation. However, as it moves to areas where the ground
speed is different, it appears to curve. This deflection to the right in the Northern Hemisphere and to the left
in the Southern Hemisphere is the Coriolis effect[7].

2.2. Origin of the model for Arctic gyres
The nonlinear model for gyres derived by Constantin and Johnson [4] begins by formulating oceanic flow in
spherical coordinates. This implies the coordinate system of a polar angle θ from 0 to π, representing the
South and North pole respectively. As well as an azimuthal angle φ ranging from 0 to 2π, corresponding to
the angle of longitude. The horizontal flow on the spherical Earth corresponding to a gyre is described in
terms of ψ(θ,φ), the stream function.

7
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2.2.1. The Stream function and Vorticity
In fluid dynamics, the stream functionψ is a critical tool used to describe the flow of an in-compressible fluid
in two dimensions. One of the essential properties of the stream function is that it ensures mass conservation.
This is mathematically expressed by the continuity equation, which for an in-compressible flow in the xy-
plane is given by

∂u

∂x
+ ∂v

∂y
= 0.

Here, u and v are the velocity components of the fluid in the x and y directions respectively,

u = ∂ψ

∂y
, v =−∂ψ

∂x
.

The continuity equation is automatically satisfied, since

∂u

∂x
= ∂2ψ

∂y∂x
,

∂v

∂x
=− ∂2ψ

∂y∂x

implies
∂u

∂x
+ ∂v

∂x
= ∂2ψ

∂y∂x
− ∂2ψ

∂y∂x
= 0.

Using spherical coordinates (θ,φ), the velocity components (u, v) are expressed as

uφ = 1

sin(θ)

∂ψ

∂φ
,uθ =−∂ψ

∂θ
.

To further analyse the motion of the gyre, the stream function ψ(θ,φ) is decomposed into two parts:

ψ(θ,φ) =−ωcos(θ))+Ψ(θ,φ),

where ω is the Coriolis parameter and Ψ is associated with the oceanic vorticity. Vorticity is a measure of
the rotation of a fluid and is defined as the curl of the velocity.[1]. This measure has two components, one
for the absolute rotation of the Earth, and one with respect to the fluid, relative to the rotation of the Earth.
The vorticity describes both the rotation and direction of a fluid parcel. In the case for modeling gyres, Ψ is
connected to the vorticity of the underlying motion of the ocean with governing equation

1

sin2θ

∂2Ψ

∂φ2 + ∂

∂θ

(
cotθ

∂Ψ

∂θ

)
+ ∂2Ψ

∂θ2 = F (Ψ−ωcosθ). (2.1)

Note that the vorticity of the flow consist of two distinct components. The first are given by 2ωcos(θ), describ-
ing the rotation of the Earth. The second is the oceanic vorticity, F (Ψ−ωcosh(θ), which has Earth’s spin as a
variable. This equation can be rewritten into a semi-linear elliptic equation using the stereographic project.

2.2.2. Stereographic projection
Stereographic project is a method of mapping a point on a sphere onto a plane. This projection is particu-
larly useful in various fields such as cartography, complex analysis and, notably, fluid dynamics, as it often
simplifies the analysis of spherical problems. Moreover, the mapping of the stereographic projection has the
property that it preserves angles[6]. To visualize this projection, consider a sphere centered at the origin with
a radius R. The projection is typically performed from the North Pole of the sphere onto the plane passing
though the equator. Figure (2.1) below will give a visual idea of the map.

Note, while usually the projection is made form the North pole, the model presented in [3] makes use of a
projection form the South Pole.

In the model for Arctic gyres, the projection plays a crucial role in deriving the nonlinear ordinary dif-
ferential equation that models the motion of the gyre, given its property that it reduces to the system of one
dimension less than the original. The projection maps the spherical coordinates (r,θ,φ) to the points (x, y) in
a two dimensional plane[4], by taking

r = cot(
θ

2
), x = r cos(φ), y = r sin(φ)
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Figure 2.1: Illustration of the stereographic projection from the North pole onto the equatorial plane[6]

from which follows

θ = 2ar ccot (r ), r =
√

x2 + y2.

Furthermore define

ξ= r e iφ with r = cot

(
θ

2

)
= sinθ

1−cosθ
.

where (r,φ) are the polar coordinates in the equatorial plane. This gives

cosθ = ξξ̄−1

ξξ̄+1
, sinθ =

√
ξξ̄

ξξ̄+1
, ∂θ =− ξ

sinθ
∂ξ−

ξ̄

sinθ
∂ξ̄, ∂φ = iξ∂ξ− i ξ̄∂ξ̄.

Applying these to the governing equation

1

sin2θ

∂2Ψ

∂φ2 +cotθ
∂Ψ

∂θ
+ ∂2Ψ

∂θ2 = F (Ψ−ωcosθ)

Constantin and Johnson [4] rewrite this equation into

∂ξξ̄ψ+2ω
1−ξξ̄

(1+ξξ̄)3
− F (ψ)

(1+ξξ̄)2
= 0.

Or, using the points (x,y) as Cartesian coordinates in the complex ξ-plane, one finds

∆ψ+8ω
1− (x2 + y2)

(1+x2 + y2)3 − 4F (ψ)

(1+x2 + y2)2 = 0 (2.2)

where ∆= ∂2
x +∂2

y is the Laplace operator.

2.2.3. Simplification of the model to the second order differential equation
As seen, one is able to model gyres on the xy-plane O using stereographic projection. To simplify this even
further towards the modeling of Arctic gyres specifically, one can look at the interval θ ∈ [ 14π

15 ,π], correspond-

ing to the area surrounding the North pole. Note that in this region r = cot( θ2 ) < e−2. For the Arctic gyres a
simplification is made such that the flow velocity has no azimuthal variation, provided that ψ=ψ(r ) is radi-
ally symmetric. Setting t0 = ln(r0) ≥ 2, r = e−t and ψ0 = u(t ),with t ≥ t0, the model can be simplified using
change of variables [3]. Note that in this particular case t is not time-dependent, but a spacial variable.
Let r = e−t , and consider the Laplacian ∆ψ with respect to r =

√
x2 + y2, then

∆ψ= ∂2ψ

∂r 2 + 1

r

∂ψ

∂r

Using the change of variable r = e−t , one finds the derivatives relative to t:
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∂ψ

∂r
= ∂ψ

∂t

∂t

∂r
=−e−t ∂ψ

∂t

and similarly

∂2ψ

∂r 2 = ∂2ψ

∂t 2

(
∂t

∂t

)2

+ ∂2t

∂r 2

∂ψ

∂t
= e−2t ∂

2ψ

∂t 2 +e2t ∂ψ

∂t

Combining these into equation(2.2) with ψ(r ) = u(t ) yields

e2t u"(t )+8ω
1−e−2t

(1+e−2t )3 −F (ψ)
4

(1+e−2t )2 .

Next consider

sinh(t ) = 1−e−2t

2e−t and cosh(t ) = 1+e−2t

2e−t .

Implementing these and multiplying by e−2t gives the differential equation stated in [3], given by

u′′(t ) = F (u(t ))

cosh2(t )
−2ω

sinh(t )

cosh3(t )
; t ≥ t0. (2.3)

This equation forms the basis for the rest of the research stated in the report. Note that t in unbounded in
this equation. This is due to the fact that the stereographic project exerts to infinity when nearing the pole.
This property can give complications when numerically modeling the stream of the gyre.

2.3. Solution to the model
Using some basic methods from ordinary differential equations, abbreviated to ODE, the author of the paper
[3] shows that the integration of the differential equation

u′′(t ) = F (u(t ))

cosh2(t )
−2ω

sinh(t )

cosh3(t )

over the interval [t ,∞) yields

u′(t )|∞t = ω

cosh2(t )
+

∫ ∞

t

F (u(s))

cosh2(s)
d s.

With physical restraint limt→∞(u′(t )cosh(t )) = 0 this results in

−u′(t ) = ω

cosh2(t )
+

∫ ∞

t

F (u(s))

cosh2(s)
d s.

Taking the integral of both sides over the same interval gives

lim
t→∞(−u(t ))+u(t ) =−ω+ω tanh(t )+

∫ ∞

t

∫ ∞

t

F (u(s))

cosh2(s)
d s

which equals

u(t ) = [ψ0 −ω]+ω tanh(t )+
∫ ∞

t
(s − t )

F (u(s))

cosh2(s)
d s (2.4)

Here, the boundary condition limt→∞ u(t ) =ψ0, as stated in [3], is used. This equation shows a result for the
ODE, equation (2.3), describing the motion of the Arctic gyre. Note that this has only feasible solutions if∫ ∞

t
(s − t )

F (u(s))

cosh2(s)
d s

is bounded.
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2.4. Oceanic Vorticity F(u) and Lipschitz-Continuity
F(u) is a nonlinear function that encapsulates the complex interactions of forces within the ocean. It typically
depends on various factors such as the Earth’s rotation, and the geometry of the ocean basin in which the
gyres are located. The model displayed in Constantin and Johnson [4], however, is derived as a shallow-water
model. Therefore only the wind and Coriolis effect have an impact on the gyre. The specific form of F (u)
can vary depending on the particular physical scenario being modeled. In general a goal is to select a F (u)
that accurately represents the oceanic vorticity dynamics of the gyre. In the paper of J.Chu [3] a proof is given
for the existence and uniqueness of functions of F (u) that are Lipschitz-continuous. The proof rests on the
definition of Lipschtiz-continuity and Banach’s fixed point theorem. These definitions and proofs are given
in the succeeding sections.

2.4.1. Lipschitz-Continuity
Lipschitz-continuity is a powerful property within mathematics. A function F (u) : X → Y , for two metric
spaces (X ,dX ) and (Y ,dY ), is said to have this property if there exists a constant M ∈ R+ such that for two
values u, v in the domain of F

dX (F (u),F (v)) ≤ MdY (u, v)

holds. Here dX and dY are the relative measures for sets X and Y, and M ∈ R is a constant. In words this
implies that the distance between two functions F (u) and F (v) has no relatively rapid change. For real valued
functions this translates into a function F : R → R. with

|F (u)−F (v)| ≤ M |u − v |.

The condition of Lipschitz-continuity is stronger then just continuity.

2.4.2. Existence and uniqueness to the problem for Lipschitz-continuous F (u)
Since the nonlinear ODE, written in equation (2.3), models a real world problem, one would expect that the
values of the stream function u(t ), for t ∈ [t0,∞), need to be bounded to be used in a physical model. Note
that the existence of u(t ) depends on the choice of F (u). In [3] a proof is given using Banach’s fixed point
theorem[8]. To explain this theorem, let (X ,d) be a complete metric space, and denote T : X → X a map. By
definition, a mapping T : X → X on a Banach space (X ,∥ · ∥) is called a contraction mapping if there exists a
constant 0 ≤ k < 1 such that for all x, y ∈ X :

∥T (x)−T (y)∥ ≤ k∥x − y∥.

Here, k is known as the contraction constant. This condition ensures that T brings points closer together,
meaning that the distance between the images of two points under T is strictly less than the distance between
the points themselves, scaled by the factor k. Banach’s fixed point theorem states that, if the mapping of
T : X → X is a contraction mapping, then T has a unique fixed point x ∈ X .To translate this to the nonlinear
model (equation (2.3), consider its solution, derived in section 2.3 and presented in [2]:

u(t ) = [ψ0 −ω]+ω tanh(t )+
∫ ∞

t
(s − t )

F (u(s))

cosh2(s)
d s.

Next, consider the map F : X → X , where X is a Banach space of all continuous and bounded functions
u : [t0,∞) →R, with norm ||u|| = supt≥t0 {|u|}. Here the operator F is denoted as:

[F (u)](t ) = [ψ0 −ω]+ω tanh(t )+
∫ ∞

t
(s − t )

F (u(s))

cosh2(s)
d s.

Suppose there exist two continuous solutions u, v : [T0,∞) → R to equation (2.3), then the distance between
these two solutions is

||F (u)−F (v)|| ≤ sup
t≥T0

∫ ∞

t
(s − t )

|F (u)−F (v)|
cosh2(s)

d s.

Note that F is Lipschitz-continuous, therefore there exists M ∈R, such that

|F (u)−F (v)| ≤ M |u − v |.

Applying this yields
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sup
t≥T0

∫ ∞

t
(s − t )

|F (u)−F (v)|
cosh2(s)

d s ≤ sup
t≥T0

∫ ∞

t
(s − t )

M |u − v |
cosh2(s)

d s.

≤ M ||u − v || sup
t≥T0

∫ ∞

t

s − t

cosh2(s)
d s

Using s, t ≥ 0, then sinh(s) ≥ s ≥ s − t , gives

M ||u − v || sup
t≥T0

∫ ∞

t

sinh(s)

cosh2(s)
d s = M

cosh(T0)
M ||u − v ||.

Choosing T0 such that cosh(T0) ≥ M , this indeed gives a contraction mapping. Thus F (u) provides a
unique continuous solution u(t ) : [t0,∞) if t0 = T0. Moreover, J.Chu [2] shows that this implies for all t0 using
the Lipschitz-continuity of F (u). The following chapter uses the theorems and definitions given in these
sections to expand the work of J.Chu in [3] and [2].



3
Methods, Results and Analysis

Understanding and extending the differential equation (2.3) used to model the Arctic gyre [3] requires math-
ematical skills and the application of various theorems. This chapter will detail the methods employed to
achieve these extensions and provide an analysis of the results that are found.

3.1. Methods
This section focuses on the methods and techniques used to extend the work of J.Chu. The model has been
expanded in three directions. The first is the search for functions of the oceanic vorticity F (u), that are not
Lipschitz-continuous, but do have real, physically relevant solutions to the ODE (2.3), modeling Arctic gyres.
The second is concerned with numerically modeling the behaviour of the nonlinear ordinary differential
equation [3]. Lastly the effects of scaling F (u) with a parameter ϵ ∈R are considered.

3.1.1. Non Lipschitz-continuous functions of F(u)
There has been given a rigorous proof stating the existence and uniqueness of a solution u : [t0,∞) →Rwhen
the oceanic vorticity F (u) is Lipschitz-continuous. However, real oceanic flows are influenced by a multi-
tude of factors including wind and transient effects due to the climate variability. These factors can result in
vorticity functions that exhibit rapid changes, or have non-linear behaviour. By considering non-Lipschitz
continuous functions, one can better capture the true complexity of ocean dynamics. When solving the dif-
ferential equation in [3] it is important to note that u(t ) describes a physical system, namely the vorticity in
the Arctic gyre. Therefore the solution to u(t ) is expected to be bounded for every t ∈ [t0.∞).

3.1.2. Numerical analysis
There are multiple approaches used in numerical analysis to solve differential equations. It is possible to
analyse the entire differential equation

u"(t ) = F (u)

cosh2(t )
− 2ωsinh(t )

cosh3(t )

as a boundary value problem using a finite difference method. However, Jifeng Chu [3] has already given a
nonlinear result for u(t ) (equation (2.4)), which contains an improper integral. Using this analytic notation
of the solution u(t ), a python code (Appendix A.1) can be written that makes use of an expected fixed value to
the function u(t ), for a given t ∈ [t0, N ], where N is a large integer representing infinity. Here it is wise to note
that using infinity in a numerical approach can cause for some problems or inconsistencies.

3.1.3. Stability analysis of scaling F (u) by parameter ϵ
In the abstract of Jifeng Chu[3], there are many examples for solutions to oceanic vorticity functions F (u) that
are linear combinations of u(t ). However, one can wonder if it is possible to take different or more complex
values for this oceanic vorticity function. By multiplying F (u) by a parameter ϵ ∈ R, the possibility arises to
scale the impact that F (u) has on the system. Implementing this parameter yields the following differential

13
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equation.

u"(t ) = ϵF (u)

cosh2(t )
+ 2ωsinh(t )

cosh3(t )
. (3.1)

The following sections will discuss the existence, uniqueness and stability of solutions to equation (3.1).
This is done by rewriting equation (3.1) into a well studied Sturm-Liouville eigenvalue problem, with known
eigenvalues, using a change of variables. If such a problem is found, theorems involving eigenvalues and
eigenfunctions, can be used to indicate or refute the aforementioned properties of possible solutions. To
write an equation into a Sturm-Liouville eigenvalue problem, consider the following differential equation:

a2(x)y ′′+a1(x)y ′+a0(x)y = f (x),

where a2(x), a1(x), and a0(x) are given coefficient functions, and f (x) is a given function. This can be written
in the form

d

d x

(
p(x)

d y

d x

)
+q(x)y = F (x)

where

p(x) = e
∫ a1(x)

a2(x) d x
,

q(x) = p(x)
a0(x)

a2(x)
,

F (x) = p(x)
f (x)

a2(x)
.

Using this notation, the Sturm-Liouville operator L can be defined as

L = d

d x

(
p(x)

d

d x

)
+q(x).

Next, writing this into an eigenvalue problem yields:

Lφn =−λnφn .

Here φn are the eigenfunctions and λn are the eigenvalues of the Sturm-Liouville operator L . Hereby it
is important to note that for each eigenvalue λn there exists an eigenfunctionφn . Moreover, these eigenfunc-
tions are nonzero and orthogonal, relative to each other.

3.2. Results and Analysis
In this section the results that are found by extending the differential equation presented by Chu[3] will be
discussed. The extension looks at solutions to the nonlinear equation for bounded functions F (u) that are not
Lipschitz-continuous. Moreover, some numerical approximations of the solution to the system, for various
functions F (u), will be given. Finally, a stability analysis of the ODE (3.1) shall be preformed.

3.2.1. Solutions u(t ) for bounded F (u)
Consider a continuous function F : X → X , where X is an Banach space and for each u ∈ X , F (u) is bounded
on X . From J.Chu [3] the solution to the system is given by.

u(t ) = [ψ0 −ω]+ω tanh(t )+
∫ ∞

t
(s − t )

F (u)

cosh2(s)
d s

If F (u) is bounded, then there exists M ∈R+ such that for every t ∈ [t0,∞) one has |F (u(t ))| ≤ M . Therefore it
is easy to see that

|
∫ ∞

t
(s − t )

F (u)

cosh2(s)
d s| ≤

∫ ∞

t
(s − t )

|F (u)|
cosh2(s)

d s

≤
∫ ∞

t

(s − t )M

cosh2(s)
d s

= M(ln(1+e−2t ))

Which is clearly bounded by zero as t →∞. Moreover, it is bounded on its domain [t0,∞), assuming t0 >−∞.
This shows that for a bounded F (u) there exists a real, physically valid, solution u(t ).



3.2. Results and Analysis 15

3.2.2. Numerical approximation of solutions to the nonlinear differential equation
The goal of this section is to find a numerical approximation of the solutions to the nonlinear differential
equation (2.3), describing the Arctic gyre. Since it is not always the case that an analytical solution can be
found for any F (u), these numerical approximations can provide some insight into the behaviour of a solu-
tion. As stated in section 3.1.2, J.Chu[3] has presented a solution to equation (2.3), given by

u(t ) = [ψ0 −ω]+ω tanh(t )+
∫ ∞

t
(s − t )

F (u)

cosh2(s)
d s. (3.2)

To approximate this nonlinear equation, one can begin by assuming that there exists a bounded solution to
equation (3.2) at t0. By starting with a value u0(t ) ∈R, and defining

u1(t ) = [ψ0 −ω]+ω tanh(t )+
∫ ∞

t
(s − t )

F (u0)

cosh2(s)
d s,

and similarly

un+1(t ) = [ψ0 −ω]+ω tanh(t )+
∫ ∞

t
(s − t )

F (un)

cosh2(s)
d s

for a n ∈N. The code is able to find a fixed value for a specific t ∈ [t0.∞), whenever |un+1 −un | < ϵ. Here ϵ ∈R
is a constant, defining the tolerance.

To test this approach, the script is evaluated against some analytical solutions given by Jifeng Chu in "On a
differential equation arising in geophysics" [2]. In this paper an analytical solution is presented for a constant
oceanic vorticity, F (u) = b:

u(t ) = [ψ0 −ω]+ω tanh(t )+b ln(1+e−2t )

where b ∈R. To visualise the numerical and analytical solution take

ω= 4649.56, ψ0 = 0, b = 1000.

Visualising u(t ) on the interval t ∈ [0,10) gives:

Figure 3.1: Analytical and numerical solution to F (u) = 1000

This graph illustrates that for constant values of F (u), the numerical approximation gives similar values as
the analytical solution.
For a more complex result, Chu’s paper [2] presents the result for functions F (u) = au where a =−2, formu-
lated as

u(t ) =−2ω

3
tanh(t ) ln(cosh(t ))+ [ψ0 +ω] tanh(t )− 2ω

3
+ 2ω

3
t tanh(t )+ b

2
− b

2
tanh(t ) t ≥ 1 (3.3)

However, note that for this solution limt→∞ = ω
3 (1 − 2ln(2)) +ψ0, instead of ψ0. To correct this consider

subtracting Chu’s solution (3.3), by the constant ω
3 (1−2ln(2)) to find:

u(t ) =−2ω

3
tanh(t ) ln(cosh(t ))+ [ψ0 +ω] tanh(t )− 2ω

3
+ 2ω

3
t tanh(t )+ b

2
− b

2
tanh(t )− ω

3
(1−2ln(2)). (3.4)
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For this equation the boundary conditions

lim
t→∞u(t ) =ψ0 lim t →∞cosh(t )u′(t ) = 0

hold. Moreover, inserting this back into the original differential equation (2.3) one finds that 3.2.2 gives a
solution for b = 4ω ln(2)

3 + 2ω
3 .

To visualise this, consider the same values for ψ0 and ω on the interval t ∈ [1,10], which produces the follow-
ing graph:

Figure 3.2: Analytic and numerical solution for F(u) = -2u

These plots illustrate that the algorithm can approximate the solution for some F (u). From here, the claim
that for every continuous function F (u), the solution u(t ) has the condition limt→∞ u(t ) =ψ0, shall be visu-
alised in figure (3.3).

Figure 3.3: The numerical solutions of u(t ) for different values of F (u), converging to ψ0

Next, in section (3.2.1), a proof has been stated that the model has a result for bounded function of F (u) that
are not Lipschitz-Continuous. Therefore, consider the functions

F (u) = sin(
1

u
)

F (u) = 1

u
−ω

Note that this function is bounded, but is not Lipschitz-continuous in t ∈ [0,∞). While it would be difficult
to provide an analytic result to the differential equation in [3], a numerical approximation does give a result.
This can be seen in figure (3.4).

These plots illustrate that the nonlinear differential equation presented in [3] can have solutions for periodic
and Lipschitz-continuous functions, as well as functions of F (u) that are only bounded.
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Figure 3.4: Numerical solution of u(t ) for F (u) = si n( 1
u )

3.3. Uniqueness of results for the nonlinear model
Writing the nonlinear dynamical system into a Sturm-Liouville eigenvalue problem can give some insight
into the uniqueness and stability of the system. Consider the equation

u"(t ) = ϵF (u)

cosh2(t )
− 2ωsinh(t )

cosh3(t )
, ϵ ∈R, t ≥ t0

written as

u"(t )+ϵF (u)
−1

cosh2(t )
=−2ωsinh(t )

cosh3(t )

with the homogeneous form

u"(t )+ϵF (u)
−1

cosh2(t )
= 0. (3.5)

Suppose F (u) = u, then the Sturm-Liouville operator is denoted as

L (u) = d

d t
(

du

d t
)+ϵ −1

cosh2(t )
u, (3.6)

which results in the eigenvalue problem:

φn"(t )+ϵ −1

cosh2(t )
φn =λnφn . (3.7)

This eigenvalue problem turns out to be quite hard to solve analytically. Therefore one can apply a change of
variables to rewrite it into a well studied problem. Consider the transformation:

t = tanh(x)

which implies that,
1

cosh2(t )
= 1− tanh2(t ) = 1−x2.

Applying the transformation to the derivatives:

du

d t
= du

d x

d x

d t
= du

d x
(1− tanh2(t )) = du

d x
(1−x2)

d 2u

d t 2 = d 2u

d x2

(
d x

d t

)2

+ d 2x

d t 2

du

d x
= d 2u

d x2 (1−x2)2 −2x(1−x2)
du

d x

Next, applying these changes to the homogeneous equation (3.5) gives

d 2u

d x2 (1−x2)2 −2x(1−x2)
du

d x
+ (ϵx2 −ϵ)u = 0 (3.8)

or in simplified terms
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(
1−x2)(d 2u

d x2 (1−x2)−2x
du

d x
−ϵu

)
= 0

For this problem, take x ̸= ±1, such that the non trivial case is considered where

d 2u

d x2 (1−x2)−2x
du

d x
−ϵu = 0 (3.9)

Rewriting equation (3.9) in to a Sturm-Liouville eigenvalue problem

(p(x)V ′)′+q(x)V =λV

using

p(x) = e
∫ −2x

1−x2 d x = x2 −1

q(x) = (x2 −1)
( −ϵ

1−x2

)
= ϵ

provides
((x2 −1)V ′)′ = (λ−ϵ)V. (3.10)

Now that the problem has been transformed into a Sturm-Liouville eigenvalue problem, one can try to
solve this differential equation by relating it to a problem with a known solution. Therefore consider the
Legendre equation [5]

−((1−x2)y ′(x))′+ µ2

1−x2 y(x) =λy(x) for all x ∈ (−1,1).

Taking µ = 0 and λ̄ = λ− ϵ, the Legendre equation equals the homogeneous differential equation used to
describe the Arctic gyre. For µ= 0, the spectral parameter is given by[5]:

λ̄n = n(n +1)

such that
λn = n(n +1)+ϵ (3.11)

are eigenvalues of equation (3.5). This shows that setting parameter ϵ > 0 implies that all eigenvalues of the
differential equation are greater than zero. Therefore that the system only emits unstable solutions when
scaling by such a parameter. Extending the problem for linear functions of F (u), namely F (u) = au + b,
gives similar results. As the Sturm-Liouville eigenvalue problems considers the homogeneous form, the same
transformation can be taken to arrive at

((x2 −1)V ′)′ = (λ−aϵ)V. (3.12)

This yields eigenvalues

Similarly, there exist no stable solutions when ϵ > −n(n+1)
a , for any n ∈ N. From here, the question arises

whether or not solutions can be unique.

3.3.1. Existence of solutions when scaling F (u) by ϵ
As seen in the previous section, the eigenvalues to the nonlinear differential equation 3.1 are given by λn =
n(n +1)+ ϵ. Considering the case where ϵ ≤ 0, such that there exists a λ = 0. Then the Fredholm alternative
states that there exists a unique solution to the differential equation (3.1) if∫ ∞

t
f (x)φ(x)d x = 0,
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where f (x) = 2ωsinh(x)
cosh3(x)

andφ(x) is the eigenfunction corresponding to λ= 0. Suppose that there exists an ϵ ∈R
such that, for an n ∈N, λn = 0. Then the Sturm-Liouville eigenvalue problem (3.10) turns into

((x2 −1)V ′)′ = 0.

Using simple analysis this can be written as

(x2 −1)V ′ = A and V ′ = A

x2 −1
= A

2

(
1

1−x
+ 1

1+x

)
which implies

V = A

2
ln

(
1+x

1−x

)
+B

for A,B ∈R
This provides an eigenfunction in terms of the original variable t by rewriting x = tanh(t ):

φ(t ) = A

2
ln

(
1+x

1−x

)
+B = A

2
ln

(
1+ tanh(t )

1− tanh(t )

)
+B

Using the Fredholm Alternative, there exists a solution if∫ ∞

t

(
2ωsinh(s)

cosh3(s)

)(
A

2
ln

(
1+ tanh(s)

1− tanh(s)

)
+B

)
d s = 0

For an arbitrary t ∈ R this yield quite and elaborate result. Therefore consider t0 = 0, such that the integral
converges to ∫ ∞

0

(
2ωsinh(s)

cosh3(s)

)(
A

2
ln

(
1+ tanh(s)

1− tanh(s)

)
+B

)
d s = (A+B)ω.

This results shows that there only exists a solution to the differential equation if A =−B . Note that the bound-
ary conditions to the differential equation are limt→∞ u(t ) = ψ0 and limt→∞ cosh(t )u′(t ) = 0. However, it
shows that for all A,B ∈R, the limt→∞φ(t ) diverges. Using the mathematical software "Maple", it shows that
this is the case for any t0 ∈R. This concludes that there exist no unique solution to the differential equation if
ϵ=−n(n +1), for any n ∈N.
Similarly for linear function F (u) = au +b, where a,b ∈R are constants, the integral∫ ∞

t

(
2ωsinh(s)

cosh3(s)
− b

cosh2(s)

)(
A

2
ln

(
1+ tanh(s)

1− tanh(s)

)
+B

)
d s = 0

poses no unique solutions for eigenfunctions that hold for the original boundary conditions.
To summarise, equation 3.1 has unique solutions if ϵ ̸= −n(n+1)

α , for α nonzero.





4
Conclusion and Discussion

The following sections will discuss the primary conclusions drawn from this report. It will address potential
limitations, and suggest directions for future research. By doing so, the existing model presented by Jifeng
Chu[3] can be expanded such that there exists a more detailed approach to model the Arctic gyre.

4.1. Conclusion
The study of Arctic gyres, large systems of circulating ocean currents formed by wind patterns and the Earth’s
rotation, is crucial due to their significant role in global climate. These gyres redistribute heat from the Equa-
tor to the poles and facilitate the exchange of nutrients and gases between the ocean and atmosphere [9].
The unique properties of Arctic gyres make it a well studied topic. Understanding these dynamic systems is
essential for comprehending the effect that these gyres can have.

This report dives into the nonlinear model for Arctic gyres presented by Jifeng Chu[3], exploring and
understanding its mathematical formulations, and extending its applications. The model Chu presents is
based on a model presented by Constantin and Johnson[4] who derive a two-dimensional ordinary differ-
ential equation, using the stereographic projection, describing the gyre. In the specific case, simplifying the
model by neglecting azimuthal variations results in a second order nonlinear differential equation. This of-
fers a manageable approach to studying the dynamics of the system. In this report, the extension of Chu’s
work involved researching different properties of the non-linear model for various functions F (u) represent-
ing oceanic vorticity. Furthermore the stability and uniqueness of the model has been analysed by rewriting
the system into a Sturm-Liouville eigenvalue problem, and applying Fredholm’s alternative, in the case of
eigenvalues that are zero.

The presented model has unique continuous solutions u : [t0,∞) → R if the oceanic vorticity function
F (u) is Lipschitz-continuous. The findings in this report indicate that the model has continuous solutions
for bounded functions of F (u), even if F (u) is not Lipschitz-continuous function. Additionally, numerical
approximations validated against analytical results confirm that the model eventually converges toψ0, a spe-
cific starting parameter describing the initial vorticity. Moreover, these numerical methods give light to the
possibility of the use of vorticity functions F (u) that are not-Lipschitz-Continuous. Moreover, it has been
shown that for linear function F (u) = au +b, where a,b ∈ R, there exist no unique solutions to the system
describing the vorticity of the Arctic gyre, if ϵ= n(n+1)

a , for any n ∈N.
The exploration in this report underscores the importance of accurately modeling of Arctic gyres. The

extensive understanding of this model, its parameters and its stability gives a manageable and comprehensive
model of Arctic gyres. Future work should focus on addressing the intricate behaviors of ocean dynamics
through the use of non-Lipschitz continuous functions. By doing so the model can better predict and mitigate
the impacts of gyres on global climate patterns and marine ecosystems.
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4.2. Discussion
This study delved into the non-linear model for Arctic gyres, focusing on its extension, stability, and bifurca-
tion analysis. While the findings provide valuable insights, there are several limitations and areas for further
exploration.

4.2.1. Numerical Divergence
One of the primary shortcomings of the numerical model is its struggle with approximating a solution for
values if t → ∞. The fact that these values can approach infinity is an aspect that is derived form using
the stereographic projection. Since water in the gyre moves closer to the North Pole, the projection will be
stretched out infinitely. In the numerical approximation of the integral, it mostly showed that around t. = 5
the value of the solution is already quite close to ψ0. This can be the result of the numerical approximation
of 1

cosh2(t )
that decease exponentially to zero. It is possible that the python module converts this to quickly

to zero as t grows. A solution for this could be taking a different approach then the fixed point iteration, or
using an approximation of cosh2(t ). Moreover, the numerical approximation of indefinite integrals poses
potential errors, particularly in ensuring the stability and convergence of the solutions over an unbounded
domain. The reliance on an expected fixed value for the function u(t) over a large but finite interval can intro-
duce inaccuracies. Therefore, improving the numerical methods, such as implementing more sophisticated
integration techniques or adaptive mesh refinement, could mitigate these issues and lead to more reliable
results.

4.2.2. Simplification of the model
The simplified model, while useful for initial analysis, may not fully capture the complexities of real-world
ocean dynamics. For instance, the model assumes no azimuthal variation and simplifies the flow to a radially
symmetric function. These assumptions may overlook critical factors such as transient effects, non-uniform
ocean bottom formation, and variable external forces, which are all influential in real oceanic systems. To
create a more realistic result, extension and further research of the model could incorperate these complexi-
ties.



A
Python model of fixed point integration for

different F(u)

This appendix states the python code that is used to numerically analyse the solution to the ODE.

A.1. Python Code

# -*- coding: utf-8 -*-
"""
Created on Tue Jun 11 16:13:49 2024

@author: sever
"""

# -*- coding: utf-8 -*-
"""
Created on Mon May 27 10:06:37 2024

@author: sever
"""

import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import quad

omega = 4649.56
psi_0 = 0

#define function of F(u):

def F(u):

return u
# return 10000

def integrand(u,s,t):
return (s-t)*F(u)/(np.cosh(s)**2)
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def u_t(t,u_iter):
res, err = quad(lambda s: integrand(u_iter, s,t),t,np.inf)
return psi_0 - omega + omega*np.tanh(t) + res

def approx_u(t, init = omega/2, tol = 1E-4, max_iterations = int(1E4)):
res = np.array([init])
u_iter = init
for i in range(max_iterations):

u_new = u_t(t, u_iter)
res = np.append(res,u_new)
if np.abs(res[-1]-res[-2]) < tol:

return u_new

u_iter = res[-1]
raise ValueError("Fixed-point iteration did not converge within tolerence")

t_vals = np.linspace(0,10,100)
u_vals = [approx_u(t) for t in t_vals]

def analytical_sol(t):
b = 4*omega*np.log(2)/3 + 2*omega/3
# b= 10000
C = (omega/3)*(1+2*np.log(2))
return (-2*omega*np.tanh(t)/3)*np.log(np.cosh(t)) + (psi_0+omega)*np.tanh(t) + 2/3 *
(-omega + omega*t*np.tanh(t)) +(b/2)*(1-np.tanh(t))-C
# return psi_0 - omega + omega*np.tanh(t)+b*np.log(1+np.exp(-2*t))

# def F(u):

# return -2*u

# u_vals = [approx_u(t) for t in t_vals]
# plt.plot(t_vals, u_vals, label= "F(u) = -2u")

# def F(u):

# return 1E4

# u_vals = [approx_u(t) for t in t_vals]
# plt.plot(t_vals, u_vals, label= "F(u) = 1000")

# def F(u):

# return u

# u_vals = [approx_u(t) for t in t_vals]
# plt.plot(t_vals, u_vals, label= "F(u) = u")
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def F(u):

return np.sin(1/u)

u_vals = [approx_u(t) for t in t_vals]
plt.plot(t_vals, u_vals, label= "F(u) = sin(1/u)")

# plt.plot(t_vals,analytical_sol(t_vals), label = "analytical solution")
plt.xlabel(’t’)
plt.ylabel(’u(t)’)
plt.axhline(y = psi_0,color = "r", linestyle = "--", label = "\u03C8_0")
plt.title("Numerical solutions F(u)= sin(1/u)")
plt.legend()
plt.show()





B
Proofs and results outside the scope of the

project

In this report, some proofs or equations were simplified, due to there complicated and extensive nature. This
appendix showcases some of these results.

B.1. Eigenfunction solution for arbitrary t
Solving for eigenfunctions if F (u) = u for an arbitrary t in "Maple" gives:∫ ∞

t

(
2ωsinh(s)

cosh3(s)

A

2
ln

(
1+ tanh(s)

1− tanh(s)

)
+B

)
d s

=−1

2
ω

(
I Aπcsgn(Ie t )csgn(Ie2t )e2t −2I Aπcsgn(Ie t )csgn(Ie2t )2e2t + I Aπcsgn(Ie2t )3e2t −4Ae2t ln(e t )−2Ae2t −4Be2t −2A

)
Which is equal to zero if:

A = −[
4I Be2tω+ (e2t )2 +2e2t +1

][
ωπcsgn(Ie t )2 csgn(Ie2t )e2t −2πcsgn(Ie t )csgn(Ie2t )2e2t +πcsgn(Ie2t )3e2t +4Ie2t ln(e t )+2Ie2t +2I

]
The same principle holds for all linear function F (u) = au +b. Then∫ ∞

t

(
2ωsinh(s)

cosh3(s)
− b

cosh2(s)

)(
ln

(
A

2

1+ tanh(s)

1− tanh(s)

)
+B

)
d s = 0

must hold.
Taking the limit of t → ∞ of the latter equation diverges, independent of the variable B. Therefore the

solution can not hold for the boundary condition. Thus there are no solutions to the problem if ϵ=−n(n+1)
a .
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