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Executive summary
The Flying-V is a new aircraft which breaks with the conventional tube and wing layout. This "Flying-Wing"
layout promises an increased aerodynamic efficiency of 25% compared to the Airbus A350.

This research focuses on developing a new aerodynamic model using flight data for a 4.6% scaled version
of the Flying-V. This model can be used to get better insights in the handling characteristics and stability
of the novel aircraft.

Flight data gathered in eight test flights. The two-step method used consists of first, the state estimation
using an Iterated Extended Kalman Filter(IEKF), and second the polynomial model structure is determined
using a stepwise regression algorithm. Using the state estimate a stepwise regression performed a model
structure estimation. The longitudinal models generally also perform better, with an average RRMSE of
13.2% compared to 13.4% for the lateral models. In addition, more higher order terms were needed for the
lateral models. This indicates that more informative data is needed to model the lateral system behaviour.
For CX it is found that the current thrust model is not adequate. The model for the pitching moment gave a
large deviation from the model that was found during wind tunnel tests. Finally, for Cn a clear relationship
with β could not be found. This is likely due to the relatively small rudder and short arm of the Flying-
V.
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Preface
This thesis develops a new aerodynamic model of the Flying-V. In addition, this model is used to get an
insight in the handling during the flight tests. The thesis is divided into two main sections: the scientific
paper and the literature study. The thesis is concluded with the conclusions of the research and recom-
mendations for further research.

This thesis is the final milestone of my Aerospace Engineering master program.

I would like to take this opportunity to express my gratitude to my family and Borui Song who were always
there to support me. Finally I wish to thank my supervisor Coen de Visser for guiding me thought the
final part of my master and providing me with new insights and different perspectives on the topics of this
thesis.
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Nomenclature
Abbreviations

SSR Sum of squares of the regression

MSE Mean squared error

PSE Predicted squared error

RLI Resin Liquid Infusion

RRMSE Relative root mean square

TAS True Airspeed

VLM Vortex Lattice Method

Symbols

α Aerodynamic angle of attack [r ad ]

β Aerodynamic sideslip angle [r ad ]

δa Aileron deflection [r ad ]

δe Elevator deflection [r ad ]

δr Rudder deflection [r ad ]

λi Estimated sensor bias [−]

c Mean aerodynamic chord [m]

q Dynamic pressure [Pa]

φ Body axis angle around the x-axis [r ad ]

ψ Body axis angle around the z-axis [r ad ]

σ2 Variance

θ Body axis angle around the y-axis [r ad ]

θi Model parameter of regressor i [−]

Ai Acceleration in i-direction [m/s2]

CD Drag coefficient [−]

CL Lift coefficient [−]

Cl Moment coefficient around x-axis [−]

Cm Moment coefficient around y-axis [−]

Cn Moment coefficient around z-axis [−]

CX X-force coefficient [−]

CY Y-force coefficient [−]

CZ Z-force coefficient [−]

Fa Aerodynamic reference frame [−]

v



NOMENCLATURE vi

Fb Body-fixed reference frame [−]

TC Thrust force coefficient [T /qS]

VT AS True Airspeed [m/s]

b Wing span [m]

D Propeller diameter [m]

J Advance ratio [V /nD]

L Moment around x-axis [N m]

M Moment around y-axis [N m]

m Mass [kg ]

N Moment around z-axis [N m]

n Propeller rotational velocity [RPS]

p Rotational velocity around the x-axis [r ad/s]

q Rotational velocity around the y-axis [r ad/s]

r Rotational velocity around the z-axis [r ad/s]

S Wing surface area [m2]

T Thrust force [−]

u Velocity in x-direction [m/s]

v Velocity in y-direction [m/s]

w Velocity in z-direction [m/s]

X Force in x-direction [N ]

Y Force in y-direction [N ]

y Estimated output vector

Z Force in z-direction [N ]

z Sensor measurement output vector
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1 | Introduction
From the iconic Douglas DC3 to the state-of-the-art Airbus A350, for the past ninety years, air transporta-
tion has been reliant on aircraft with a tube and wing layout. To improve fuel efficiency, the Flying-V was
proposed by Benad [2015], which breaks with the conventional tube and wing layout. This "flying wing"
configuration where passengers and cargo will be placed inside the wing offers multiple advantages ac-
cording to Martinez-Val [2007], like reduced fuel consumption and noise levels at take-off and landing.
Studies have shown an aerodynamic efficiency increase of 25% compared to the Airbus A350[Faggiano
et al., 2017]. This significant improvement in efficiency sparked great interest in the industry and from TU
Delft1. Here, more aerodynamic analysis and optimisations were performed [Faggiano et al., 2017; R.Viet,
2019; Palermo, 2019; Empelen, 2020; Johnson, 2021]. In addition, preliminary aerodynamic models have
also been developed. Cappuyns et al. [2019] made an initial model using computational methods. Later
Garcia [2019], continued by developing a model using wind tunnel data.

This study is focused on exploring the possibilities of using in-flight experimental data of a 4.6% scaled
Flying-V model. The goal is to estimate a new aerodynamic model which can be used to replicate the
behaviour of the Flying-V. The knowledge gained from this new model will be compared to the previously
estimated wind tunnel models. In addition, this model will also give new insights on the behaviour and
stability of the Flying-V.

1.1. RESEARCH OBJECTIVE
The goal of this study is to estimate a new aerodynamic model using in-flight data which can closely re-
semble the flight characteristics of a 4.6% scaled Flying-V.

"The aim of this research is to contribute to the development of the Flying-V, by generating
a new aerodynamic model using the available in-flight test data. This model can give new
insights on the behaviour of the Flying-V."

To aid the process of generating a new model and investigating the in-flight behaviour of the Flying-V,
several research questions are formulated. The first question is

Which methods are most suitable for aerodynamic system identification of the Flying-V using
the available experimental flight data and information gained from previous studies?

This question is the starting point of the investigation. Using the knowledge gained from wind tunnel
tests and restrictions of the flight tests a good indication of a suitable estimation method can already be
determined.

What influence does the amount of input parameters and the individual parameters have on
the model behaviour?

The second question focuses on analysing the influence of the parameters on the model. Different param-
eters can have a different improvement on the model quality. In addition, certain parameters can indicate
certain system behaviour of the Flying-V. Which leads to the final question.

What new information on handling and stability of the Flying-V can be gathered compared to
the wind tunnel models?

This final research question targets both the quantitative and qualitative performance of the in-flight
model compared to the wind tunnel models. It is known that wind tunnel experiments have their limita-
tions. So the flight experiments may give information on parts where the wind tunnel experiments could
not.

1https://news.klm.com/klm-and-tu-delft-present-successful-first-flight-flying-v/[visited 9-9-2021]
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1.1. RESEARCH OBJECTIVE 3

1.1.1. OUTLINE

This thesis report has three main parts, Part I, the research paper, Part II, the literature survey and Part III
the overall conclusion of this thesis.

Part I contains the contributions to the research in the form of a research paper. The Part II, contains the
literature survey where background information on the project is presented, followed by an investigation
into state- and parameter estimation methods and finally information on what is already available on
information on the Flying-V. The final part, Part III, contains the overall conclusion of this research.
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Aerodynamic Model Identification of a Sub scale Flying-V
using In-flight Data

K. Siemonsma
Control & Simulation Aerospace Engineering, TU Delft

An aerodynamic model of a 4.6% scaled version of the Flying-V is estimated
using flight data gathered in eight test flights. The two-step method used
consists of first, the state estimation using an Iterated Extended Kalman
Filter(IEKF), and second the polynomial model structure is determined
using a stepwise regression algorithm. Using the state estimate a stepwise
regression performed a model structure estimation. The longitudinal
models generally also perform better, with an average RRMSE of 13.2%
compared to 13.4% for the lateral models. In addition, more higher order
terms were needed for the lateral models. This indicates that more
informative data is needed to model the lateral system behaviour. For
CX it is found that the current thrust model is not adequate. The model
for the pitching moment gave a large deviation from the model that was
found during wind tunnel tests. In addition, for Cn a clear relationship
with β could not be found. Both of this is likely due to the relatively low
level of excitations present in the data set.

I. Introduction
From the iconic Douglas DC3 to the state-of-the-art Airbus A350, for the past ninety years, air
transportation has been reliant on aircraft with a tube and wing layout. To improve fuel efficiency,
the Flying-V was proposed[1], which breaks with the conventional tube and wing layout. This
"flying wing" configuration where passengers and cargo will be placed inside the wing offers multiple
advantages[2], like reduced fuel consumption and noise levels at take-off and landing. Studies have
shown an aerodynamic efficiency increase of 25% compared to the Airbus A350[3]. This significant
improvement in efficiency sparked great interest in the industry and from TU Delft1. Here, more
aerodynamic analysis and optimisations were performed [3–7]. In addition, preliminary aerodynamic
models have also been developed. First only using computational methods [8]. Later a new model
was developed using wind tunnel data[9].

This study is focused on exploring the possibilities of using in-flight experimental data of a 4.6%
scaled Flying-V model to estimate an aerodynamic model. The following sections dive into the
Flying-V project itself and the scaled model used for this research.

A. Background
In this section, a brief background on the Flying-V project is presented. In subsubsection I.A.1 a
summary on the research done can be found. Then subsubsection I.A.2, the layout of the scaled
version on the Flying-V used for this project.

1https://news.klm.com/klm-and-tu-delft-present-successful-first-flight-flying-v/[visited 9-9-2021]
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1. Flying-V Project
The Flying-V was first proposed in 2015[1]. This revolutionary new aircraft is comparable to an
Airbus A350-900. However, initial simulations have shown that the new shape is estimated to have a
10% higher L/D and a 2% lower empty weight. Moreover, in the design, the engines are mounted on
top of the aircraft, reducing the noise level as compared to the reference aircraft.

At the TU Delft, the development of the Flying-V was continued. An initial optimisation was
performed at the cruise condition of Mach 0.85 and a lift coefficient (CL) of 0.26 at an altitude of
13,000m[3]. A key adjustment made to the design was to increase the outer wing sweep from 15° to
30° to reduce high local Mach numbers on the wing and improve the lift distribution. Moreover, this
also improved the L/D ratio from 22.8 to 23.5. Finally, this newly optimised design was compared
to the NASA Common Research Model. With an L/D of 18.9, it was found that the Flying-V is
25% more efficient than the reference model.

After the aerodynamic optimisation, the flight characteristics were analysed[4]. Experiments were
conducted on a 4.6% scaled model in the Open Jet Facility at the Delft University of Technology.
Using balance measurements it was shown that at untrimmed configuration the wind tunnel model
has a maximum lift coefficient of 1.09 at 41 degrees angle of attack. The same measurements
concluded that the stability derivative of the pitching moment is negative up to an angle of attack
of 20°, measured at the quarter mean aerodynamic chord. Furthermore, the trimmed flight was
investigated. It was found that due to trim limitations the centre of gravity location is limited
between 1.345 and 1.425 meters behind the nose. An optimal centre of gravity location of 1.365
meters behind the nose was found when approach was taken into account. At this trimmed condition,
the stall speed was found to be at 14.8m/s at an angle of attack of 28.5°.

Continuing with experimenting in the wind tunnel, the static stability and control characteristics
were researched[5]. At an angle of attack range from −10° to 35° deep-stall characteristics were not
observed, meaning that at least within this range control surfaces will stay effective. Also, it was
found that the position of the optimal centre of gravity for maximised lift coefficients occurs at 1.336
meters from the nose. The maximum lift coefficient in clean configuration at horizontal steady flight
is 0.7. It is concluded that statically stable flight can be achieved with a maximum lift coefficient of
0.7 at the most forward centre of gravity location of 1.33 meters and 0.6 with the centre of gravity
at the most aft location of 1.39 meters from the nose.

The wind tunnel data was also used to estimate a first aerodynamic model using experimental
data[9]. It was found that in general global polynomials achieve appropriate prediction performance.
This model structure was determined by using a Modified Stepwise Regression. Deficiencies were
found due to the large range of measured angles of attack. Therefore, splines were used to estimate
a continuous model with a better fit. Unfortunately, it was not possible to compare these results
with other Flying-V model data, since these were not available at the time. The estimated models
did provide the possibility to determine thrust and control surface settings required for level flight at
different airspeeds and flight angles. An analysis into the centre of gravity range was also included.

The previous wind tunnel experiments did not include any engines on the scaled model. The
investigation of the effects on the performance when engines are integrated was the following step[6].
It was found that this integration generates additional lift due to jet inference. However, an increase
in drag has also been observed. Moreover, Cmα gets influenced by the addition. Between 5° and
12.5° Cmα is negative, while it is positive between 12.5° and 22.5°. In addition, an initial thrust
model was formulated using isolated wind tunnel data, resulting in the following expression

TC = 0.025J−2 + 0.011J2 − 0.0297 Where J =
V∞
nD

(1)

Here V∞ is the free stream airflow velocity, n is the rotational velocity in RPS and D is the rotor
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diameter.
Finally, winglets were added to the wind tunnel model[7]. An analysis of the effects of a winglet

and rudder deflection was done since these are integrated into the winglets. For angels below 10°,
it was found that the lift coefficient slightly increases with about 0.0035 per degree and for higher
angles decreases by about 0.016 per degree. The drag coefficient increases by about 0.004 per degree
for angels below 28°. In addition, a winglet also reduces the maximum untrimmed L/D ratio from
14.4 to 12.3 at 10° angle of attack and increases the pitching moment. The rudder deflections have
also been found to reduce the lift coefficient, with a maximum of 0.0024.

2. Flying-V Layout
The layout of the full scale Flying-V is presented in this section. In Table 1 the important physical
parameters of the Flying-V can be found and in figs. 1a to 1d multiple views of the Flying-V are
presented2.

Parameter Value Unit

Length 55 [ m]

Wingspan 65 [ m]

Height 17 [ m]

Pax 314 [−]

Fuel capacity 140.000 [l]

Cargo Capacity 160
[
m3

]

Design Mach number 0.85 [−]

Cruise altitude 43,000 [ft]

Table 1. Design parameters of the full-scale Flying-V [8]

B. Scaled Flying-V
In the previous sections, subsection I.A, the full-scale Flying-V is briefly discussed. For this research,
a downsized version of the Flying-V is used. This section elaborates on the aircraft which is being
used for flight testing. In subsubsection I.B.1 information on the manufacturing and physical sizing
of the Flying-V can be found. All the onboard systems are discussed in subsubsection I.B.2.

1. Physical Layout
For the flight test a 4.6% scaled model is used, so the test model complies with the legal weight
limitation of 25kg for drones in the Netherlands. The Flying-V is constructed from glass fibre using
Resin Liquid Infusion (RLI) with epoxy, in a negative mould. At the leading and trailing edges,
Airex C70.75 foam panels are used. The ribs and spars are water jet cut from honeycomb reinforced
glass fibre panels, see Fig. 2. The physical parameters of the scaled Flying-V can be found in Table 2.

2https://www.tudelft.nl/en/ae/flying-v/
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(a) Isometric (b) Top

(c) Front (d) Left

Figure 1. Renderings of the Flying-V

2. Onboard Systems
The test model has various systems onboard. These systems can be split up into two categories,
flight control devices and onboard sensors.

The flight control devices are responsible for the control surfaces and engine. The control surfaces
are the elevons and rudders. In Fig. 3, CS1, CS2 and CS3 are the elevons. The rudders are integrated
into the winglets.

The specifications of the servos used to move the control surfaces can be found in Table 3. Both
the two engines comprise of an electric motor and a ducted fan. The specifications can be found in
Table 4.

Various sensors are used to measure the state of the aircraft. Two systems are responsible for the
collection of the data, the build-in sensors of the Pixhawk 4 autopilot system3 and the Aeroprobe
Voyager4. The Pixhawk 4 uses the internal GPS and INS to estimate the position and Euler angles.
The Aeroprobe Voyager, gathers aerodynamic parameters such as airspeed and aerodynamic angles.
Table 5 gives an overview of the sensors and the standard deviations provided by the manufacturer
or literature[10].

C. Outline
This thesis report has two main parts, Part I, the research paper and Part II, the literature survey.

3https://docs.px4.io/master/en/flight_controller/pixhawk4.html
4http://www.aeroprobe.com/micro-air-data-computer-models/
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Value Unit

Mass 22.947 kg

S 1.866 m2

c 0.817 m

b 2.9 m

Ixx 6.165 kgm2

Iyy 7.442 kgm2

Izz 13.289 kgm2

Ixy 0.024 kgm2

Iyz −0.002 kgm2

Ixz 0.397 kgm2

xcg/c 34.02 %

xref/c 25 %

Table 2. Physical parameter of the scaled Flying-V

Part I is set out as follows. In section II the flight test data and flight path reconstruction using
an Iterated Extended Kalman Filter are discussed. Continuing on that, the methodology behind the
aerodynamic model identification is explained in section III. Then finally, the results of the methods
can be found in section IV. In Part II the literature survey is presented.
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Figure 2. Flying-V during assembly

Figure 3. Half wing Flying-V sizing [7]

Unit

Manufacturer Hitec Multiplex Hitec Multiplex Hitec Multiplex -
Model D954SW D89MW HS-5070MH -

Control surface Inboard (CS1) Middle (CS2)
Rudder

Outboard (CS3) -

Max torque range 18-29 5.3-8.5 3.0-3.7 kg/cm
Operating voltage range 4.8-7.4 4.8-7.4 6.0-7.4 V

Idle current 30 30 3 mA
No load operating current 500 300 240 mA

Stall current 5200 2900 1300 mA
Speed (Seconds to 60°) 0.19-0.12 0.17-0.11 0.14-0.12 s

Table 3. Servo Specifications

6



Value Unit

Manufacturer Schubeler Jets -
Model number fan DS-86-AXI HDS -

Model number electric motor HET800-68-685kV -
Diameter 120 mm

Thrust static 60 N
Max. Thrust 86 N
Max voltage 52 V
Max current 108 A
Max RPM 33000 RPM

Table 4. Ducted fan specifications [6]

Symbol Sensor System Standard Deviation Unit
Ax Accelerometer Pixhawk 4 1.294 · 10−2 m/s2

Ay Accelerometer Pixhawk 4 1.324 · 10−2 m/s2

Az Accelerometer Pixhawk 4 2.012 · 10−2 m/s2

p Gyroscope Pixhawk 4 7.026 · 10−4 rad/s

q Gyroscope Pixhawk 4 6.325 · 10−4 rad/s

r Gyroscope Pixhawk 4 6.218 · 10−4 rad/s

ϕ GPS/INS Pixhawk 4 0.3 ◦

θ GPS/INS Pixhawk 4 0.3 ◦

ψ GPS/INS Pixhawk 4 0.8 ◦

VTAS Air Data Probe Aeroprobe Voyager 1 m/s

α Air Data Probe Aeroprobe Voyager 1 ◦

β Air Data Probe Aeroprobe Voyager 1 ◦

Table 5. Sensor noise statistics
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II. Flight Path Reconstruction
A two-step method is applied to determine the an aerodynamic model using flight data. The first
step is the flight path reconstruction, where a Kalman filter is used to estimate the states needed for
the second step, the model identification step. This chapter contains an elaboration on the state
estimation step. First a brief description is given on the data acquisition. Second, the method and
results of the state estimation are discussed.

A. Flight data
Between June 22nd, 2021 and June 25th, 2021 a total of eight flight tests were carried out. An
overview of the weather on those days can be found in table 6. The Flying-V is equipped with
an Aeroprobe Voyager Digital Air Data Computer (DADC) and a Pixhawk 4 autopilot, which are
responsible for the acquisition of the measurement data.

Date Data sets Temperature [°C] Wind speed [m/s] Wind Direction [°]
22-06-2021 1 14.5 3.7 24
23-06-2021 2, 3 14.6 2.5 14
24-06-2021 4, 5 15.0 1.4 352
25-06-2021 6, 7, 8 14.8 2.2 193

Table 6. Average weather statistics on test flight days5

It is important to mention that on June the 24th, 2021 the side slip angle was measured incorrectly
due to sensor issues. Therefore, the data sets gathered on this day will not be used for lateral
analysis.

The test flights usually consisted of various circles at different altitudes. In the later flights,
(Flights 4-8) special identification manoeuvres were performed. During these flights, the pilot gave
more extreme inputs, in order to generate more valuable data for system identification.

B. State estimation
The data gathered during the test flights contains noise. Sensor noise statistics provided by the
manufacturers will enable an Iterated Extended Kalman filter (IEKF) to perform a state estimation.
The IEKF is a nonlinear state estimation method based on the linear Kalman filter. The theory on
how the linear Kalman filter and Extended Kalman filter work can be found in section VII.

In the regular EKF the perturbation equations are linearised around the nominal state. In the
IEKF the nominal states are recursively updated in order to reduce the linearisation error. These
iterative steps happen after step four of the EKF, as described in section VII, and are done as
follows:

5) Measurement equation Jacobian recalculation:

Hx(ηi) =
δ

δx
h(η

i
, u(t), t) (2)

6) Kalman gain recalculation:

Kk+1(ηi) = Pk+1,k(x(t), u(t), t)H
T
x (ηi)

[
Hx(ηi)Pk+1,k(x(t), u(t), t)H

T
x (ηi) +Rk+1

]−1 (3)
5URL https://weerverleden.nl/ [cited 31/03/2022]
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7) Measurement update, update state estimate:

η
i+1

= x̂k+1,k +Kk+1(ηi)
(
zk+1 − h(η

i
, uk+1)−Hx(ηi)(x̂k+1,k − η

i
)
)

(4)

x̂k+1,k+1 = η
l

(5)

The iteration continues until it reaches the following performance measure:
∥∥∥η

l
− η

l−1

∥∥∥
∥∥∥η

l−1

∥∥∥
≤ ε (6)

After the iterative part, the covariance matrix will be calculated the same way as with the EKF
with Eq. 76. A flowchart visualising each step of the IEKF can be found in Fig. 24a.

The following equations of motions are used

f(x(t), u(t), t) =




u̇

v̇

ẇ

ϕ̇

θ̇

ψ̇

λ̇x

λ̇y

λ̇z

λ̇p

λ̇q

λ̇r




=




Axcg + λx − (q + λq)w + (r + λr)v − g sin(θ)

Aycg + λy − (r + λr)u+ (p+ λp)w + g cos(θ) sin(ϕ)

Azcg + λz − (p+ λp)v + (q + λq)u+ g cos(θ) cos(ϕ)

p+ λp + (q + λq) sin(ϕ) tan(θ) + (r + λr)cos(ϕ) tan(θ)

(q + λq) cos(ϕ)− (r + λr) sin(ϕ)

(q + λq) sin(ϕ) sec(θ) + (r + λr) cos(ϕ) sec(θ)

0

0

0

0

0

0




(7)

Here λi is the estimated sensor bias, it is assumed that these sensor biases are time-invariant. The
acceleration equations for u̇, v̇ and ẇ take the accelerometer measurements into account. However,
the accelerators are not located in the centre of gravity therefore the following correction equations
are included in the IEKF

Axcg = Axpixhawk
+ (xcg − xac)

(
q2 + r2

)
− (ycg − yac) (pq − ṙ)− (zcg − zac) (pr + q̇) (8)

Aycg = Aypixhawk
+ (ycg − yac)

(
r2 + p2

)
− (zcg − zac) (qr − ṗ)− (xcg − xac) (qp+ ṙ) (9)

Azcg = Azpixhawk
+ (zcg − zac)

(
p2 + q2

)
− (xcg − xac) (rp− q̇)− (ycg − yac) (rq + ṙ) (10)

In these equations the subscript cg indicates the position of the centre of gravity and subscript
ac the position of the sensor. The measured distances from the nose and centre line for the centre of
gravity and sensor locations are:

xcg = 1305 mm xpixhawk = 384 mm (11)
ycg = 0.946 mm ypixhawk = 0 mm (12)
zcg = 34.645 mm zpixhawk = 55 mm (13)
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The sensor equations are defined as

h(x(t), u(t), t) =




Axpixhawk

Aypixhawk

Azpixhawk

p

q

r

ϕ

θ

ψ

VTAS =
√
u2 + v2 + w2

α = tan−1(wu )

β = tan−1( v√
u2+w2

)




(14)

1. Assumptions
Several assumptions were made for the state estimation:

• The measurement noise variance matrix, R, consists of the noise statistics provided by the
sensor manufacturers or found in literature[10], see Table 5.

• The process noise matrix, Q, is determined using trial and error. The best converging output
was given when Q = 0.10 · I.

• In eqs. (8) to (10) ṗ, q̇ and ṙ cannot be determined directly. To estimate these, p, q and r are
filtered with a 5 Hz lowpass filter and the time derivative of these filtered signals is taken.

• Thrust is calculated using the thrust model estimated using wind tunnel experiments[6].

C. State Estimation Results
The IEKF was performed on all eight flights. In fig. 4 the result of the state estimation for an
attempted 3211 manoeuvre is shown. The duration of each of the 3211 input sequence was reduced
to a 1-0.5-0.3-0.3 manoeuvre. For the angle of attack (α), it is clear that a small bias and delay is
present between the measured and predicted results. The bias is also present in the pitch angle
(θ). This is most likely due to a fuselage-induced angle of attack. A large difference is found for
the sideslip angle (β). For this flight, the operators noted that the sideslip angle sensor did not
perform accordingly and did not give reliable results. Therefore, the predicted estimate of β is the
best available estimate.

For the estimated biasses (λi) it was found that these are not constant, as for example for flight
5 can be seen in fig. 5. This means that the sensor bias is dependent on external factors. It is likely
that this occurs because the sensors are relatively small and not as accurate as sensors on a full-scale
airliner or a fixed wind tunnel setup. The biases for multiple initial conditions converge quickly after
a few seconds as can be seen in fig. 6. The estimation results for the eight data set is displayed in
Fig. 7, the other data sets can be found in section VIII.
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Figure 4. Reconstructed states (u, v, w, ϕ, θ, ψ) and observed parameters (VTAS, α, β)
for a longitudinal δe 3211 manoeuvre in the fifth flight.

D. Data Coverage
The data is manually picked for both the longitudinal and lateral directions to contain the most
information for each case. The main focus was to extract the identification manoeuvres for training
the model. However, to ensure safe flight operations the operators decided not to explore the full
flight envelope and stay within the predictable boundaries. This is where the Flying-V remains easy
to control. Therefore, only a limited amount of these manoeuvres were performed. In order to enrich
the data set, other motions containing large pilot inputs and excitations were selected. For this, the
source of the excitation was also taken into account. For example, take-off and landing were ignored
since these involved aerodynamic effects such as ground effect, turbulence from the ground and the
airplane touching the ground. In order to visualise the limitations of the aerodynamic model, a
convex hull is formed around the data points. This is used to estimate the model, this can be seen
in figs. 8 and 9. In these figures the α-β, α-VTAS and β-VTAS ranges are displayed. The convex hull
surrounding the estimation data signifies the region of validity. Outside of this region, the accuracy
of the model decreases.
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Figure 5. Linear and rotational sensor biases for flight 5
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Figure 6. Convergence of biases for different initial conditions for flight 5
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(a) X-Y position (b) VTAS, α and β

(c) p, q and r (d) δa, δe and δr

Figure 7. Set 8

(a) α-β range of training and validation data
(b) α-VTAS range of training and validation
data

Figure 8. Longitudinal data range
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(a) α-β range of training and validation data
(b) β-VTAS range of training and validation
data

Figure 9. Lateral data range
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III. Aerodynamic model identification
This chapter explains the method for the aerodynamic model identification. First, a description of
the basic shape of the model function is presented. Second, the estimation and model structure
determination methods are described. Finishing up with a validation of the presented method.

A. Aerodynamic Model Definition

1. Model postulation
In previous research it was found that nonlinear unstable behaviour occurs at high angle of attacks.
During the flight tests performed for this research these angles of attack were avoided. Therefore,
a polynomial model will be used to represent the aerodynamic model of the Flying-V. The basic
polynomial form of this model is

y = θ0 +
n∑

j=1

θjxj (15)

Where n is the number of regressors, xj are the regressors and θ the model parameters. This
polynomial form can be used for both the force and moment representation. Adding higher order
regressor terms to the polynomial may aid the model performance. These contain behaviour which
is not directly available from the first order terms. To incorporate these higher order terms, the
expression of eq. (15) can be changed to

y = θ0 +

n∑

j=1

θjpj (16)

or in vector form

y = X · θ (17)

where X = [1, p1, p2, ..., pn].
Here Pj are functions of the independent variables [11]. y is the dependent variable.

2. Coefficient Definition
The aerodynamic force and moment coefficients in each Cartesian direction are defined as:

CX(x) =
X − T

q̄S
Cl(x) =

L

q̄Sb
(18)

CY (x) =
Y

q̄S
Cm(x) =

M

q̄Sc
(19)

CZ(x) =
Z

q̄S
Cn(x) =

N

q̄Sb
(20)

Where

q̄ =
1

2
ρV 2 (21)

Here X, Y , Z are the body-axis components of the forces experienced by the airframe. Similarly,
L, M , N are the body-axis components of the moment on the airframe. These are defined as:
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X = AX ·m (22)
Y = AY ·m (23)
Z = AZ ·m (24)

L = ṗ · IXX + p · q(IZZ − IY Y )− (p · q + ṙ)IXZ (25)

M = q̇ · IY Y + r · p(IXX − IZZ)− (p2 − r2)IXZ (26)
N = ṙ · IZZ + p · q(IY Y − IXX)− (q · r − ṗ)IXZ (27)

(28)

Here the moment of inertia, Inn are measured using the CAD model and can be found in Table 2.
The thrust force T is defined as:

T =
TC
qS

(29)

As explained in subsubsection III.A.1 the model will consist of dependent and independent
variables. The dependent variables are the force and moment coefficients. The independent variables,
also regarded as regressors, will be the aerodynamic inputs. These consist of the translational
velocities, rotational velocities and inputs. These are

x =
[
u v w p q r

]T
(30)

and

u =
[
δa δe δr

]T
(31)

Since the forces and moments are expressed as non-dimensional coefficients the aerodynamic
variables will be non-dimensionalised using the following relations:

û =
u

VTAS
α =

w

VTAS
β =

v

VTAS
(32)

p̂ =
pb

2VTAS
q̂ =

qc̄

VTAS
r̂ =

rb

2VTAS
(33)

This leads to the following non-dimensional state equation

x =
[
û α β p̂ q̂ r̂

]T
(34)

The pilot inputs, u, have the following definitions:
• δa

– δa =
δa,L+δa,R

2 > 0 When left aileron,δa,L, is up, and right aileron,δa,R, is down.

• δe
– δe > 0 when elevator, δe, is down.

• δr
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– δr > 0 when both left and right rudders,δe, are right.

To improve on the simplicity of the model the following assumptions are made[12]:
• Aircraft is a rigid body.
• Aircraft mass is constant.
• Earth is non-rotating.
• Earth is flat.
• Gravity is constant.
• Thrust acts perpendicular to the x-axis.

B. Model Structure Determination
Not every independent variable in the polynomial will have a significant effect on the model. So, a
stepwise regression is used to determine the model structure. This is done by determining which
regressors contain the most relevant information. This method consists of two parts namely, Forward
Selection and Backwards Elimination.

Forward Selection This method starts with only the independent constant term θ0. One by one
new terms will be added to the model. The order in which regressors are added to the regression
depends on the simple correlation between the orthogonalised regressor ξj and z, this correlation is
defined as

rjz =

∑N
i=1

[
ξj(i)− ξ̄j

]
[z(i)− z̄]√

SjjSzz
(35)

Where Sjj is the centred sum of squares for ξj , calculated as:

Sjj =

N∑

i=1

[
ξj(i)− ξ̄j

]2 (36)

and the centred sum of squares for Szz is calculated as:

Szz =
N∑

i=1

[z(i)− z̄]2 (37)

When the partial F-statistic of the regressor with the highest absolute simple correlation exceeds
the predefined entry value, Fin, the regressor enters the model. The partial F-statistic is defined as

F0 =
SSR

(
θ̂p+j

)
− SSR

(
θ̂p

)

s2
(38)

Here SSR(θ̂p) is the sum of squares of the regression with p terms. Furthermore, SSR
(
θ̂p+j

)
is

the sum of squares of the existing model with p terms and the jth regressor added. s2 is the fit error
variance which is computed as

s2 ≡ σ̂2 =
vTv

(N − p− 1)
=

∑N
i=1[z(i)− ŷ(i)]2

(N − p− 1)
(39)

In this equation, it is assumed that the jth term is included in the regression. The addition
of terms will continue until new regressors cannot pass Fin or all available regressors are added to
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the model. This goes on either until all regressors are added or until the partial F-statistic entry
requirement cannot be satisfied anymore.

Backward Elimination Backward elimination is the opposite of forward selection. Backward
elimination starts with all the regressors already in the regression equation. In this case, the partial
F-statistic of each term is determined and the term with the lowest statistic will be eliminated if it
is lower than the predefined value Fout, so

F0 = min
j

SSR

(
θ̂p

)
− SSR

(
θ̂p−j

)

s2
< Fout (40)

Stepwise Regression As explained, Stepwise Regression is a combination of forward selection
and backward elimination. This algorithm can produce more efficient models, for example, the
elimination step may find that earlier added terms have become irrelevant because a combination
of other terms contains better information about the system. In Fig. 10, a flowchart is displayed
describing the phases of the stepwise regression.

1. Model Criteria
The partial F-statistic is used to determine whether parameters are selected or eliminated. The entry
and exit criteria are determined, αin and αout. This is done by trial and error. Initially, 0.015 is
taken for both αin and αout. For each force and moment component, the Mean Squared Error (MSE)
is used to estimate the entry and exit criteria. The selection criteria used can be found in table 7.

αin αout

CX 0.6 · 10−5 1.5 · 10−4

CY 0.11 · 10−3 1.5 · 10−4

CZ 0.1 · 10−3 1 · 10−5

Cl 0.3 · 10−4 1.5 · 10−4

Cm 0.5 · 10−6 1.5 · 10−3

Cn 2.5 · 10−5 1.5 · 10−3

Table 7. Selection criteria

2. Candidate Regressors
The basic regressors are the states and inputs described in eqs. (31) and (34). Each of the candidate
regressors for each force and moment coefficient are carefully selected using comparable models[12].
Higher order terms are products between each of the states and inputs. The candidates are selected
to go up to fourth-order regressors. This is in order to achieve a relatively high approximation power
and at the same time have a simple model with a limited amount of terms, and later it is found that
higher order terms do not significantly add to the performance. The candidates for each force and
moment coefficient are:

∑
xikx

j
l where i+ j = n n = 1, ..., n (41)
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Here n is the order of the polynomial and xk and xl are the regressors namely:
• Longitudinal (CX , CZ and Cm):

– 1, û, q̂, α, δe

• Lateral (CY , Cl and Cn):
– 1, p̂, r̂, β, δa, δr

In Table 8 the fixed terms can be found. These terms are expected to have a close relation to
the output. In addition, these terms are able to provide important information about the stability of
the Flying-V.

Fixed Parameters

CX 1, û, δe
CY 1, β
CZ 1, α
Cl 1, p̂, δa
Cm 1, α, δe
Cn 1, β, δr

Table 8. Fixed parameters

20



Figure 10. Stepwise regression flowchart
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3. Final model structure
The final model structure can be chosen to be the final model that the algorithm will give. In
general, this model structure would suffice, because it is the most suitable structure according to the
algorithm. However, in this case, the principle of Parsimony is used. Thus a model with similar
but lower performance can be chosen over the complex model. This can be done even though the
complex model is more precise. To determine whether to choose a less accurate model the Predicted
Squared Error [PSE] is applied. This is explained in Eq. 78. This metric compensates for the number
of parameters in the model and will give a good estimation if more parameters are needed for better
performance. The chosen model structure will be the one with the lowest PSE.

C. Multivariate Orthogonal functions
To improve the selection of, especially, higher order regressors, multivariate orthogonal functions
are used. This is a method to uncorrelate regressors so the unique behaviours of each regressor
is isolated[13]. For a stepwise regression, orthogonalisation can be performed after each selection
or elimination step. The regressors will then be orthogonalised with respect to the, at that point,
estimated model structure. However, for this analysis the multivariate orthogonal functions will be
generated before the stepwise regression to improve on simplicity. These functions are generated
using a Gram-Schmidt orthogonalisation procedure.

The goal is to generate orthogonal regressors which satisfies

pTi pj = 0 (42)

The orthogonalisation is started by choosing the first orthogonal polynomial. In this case, this is
a vector containing only the number one, so p0 = 1. The next regressors is calculated using

pj = ξj −
j−1∑

k=0

γkjpk j = 1, 2, ..., n and k = 0, 1, ..., j − 1 (43)

Where

γkj =
pTk ξj

pTk pk
(44)

In Eq. 43, ξj , is an original independent variable. The order in which these are orthogonalised
does not matter. The process is repeated until all independent variables are orthogonalised.

The relationship between X, the matrix with columns ξj , and P , with matrix columns pj , is

X = PG (45)

Here

G =




1 γ01 γ02 · · · γ0n

0 1 γ12 · · · γ1n

0 0 1 · · · γ2n
...

...
...

...
...

0 0 0 · · · 1




(46)
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After performing the stepwise regression the output model is

ŷ = P â (47)

The final model structure can be extracted using the columns of G−1 corresponding to the
selected orthogonal functions.

A verification of the method explained can be found in section X.

IV. Results and Discussion
The results are presented in this chapter. First the results of the model structure determination
performed by the stepwise regression algorithm are revealed. Second, the estimated models are
presented. Third, the flight and the wind tunnel model are compared to each other.

A. Model Structure
The stepwise regression algorithm, as explained in subsection III.B, was provided with regressors up
to the third order. It was iteratively determined which regressors provide the most information to
reconstruct an aerodynamic model of the Flying-V. For all six degrees of freedom, the regression
converges to a model structure where the algorithm could not find terms which would improve
the performance. This can be observed in section XII. Eventually, the model structure with the
lowest MSE was chosen. The model structures can be found in eqs. (48) to (53) and the estimated
parameters in table 9. The influence of each model term on the MSE performance is displayed in
fig. 11. In these figures, it is clear that certain terms have a small influence on the performance of the
models. For both CY and Cn, β gives a relatively small improvement. This regressor was manually
selected to be in the model, since it can give information on the stability of the Flying-V. The small
influence of β in the model indicates that the Flying-V has a low directional stability. From the
model structure determination it is already clear that the longitudinal models do not benefit from
higher order terms. The algorithm determined that these higher order terms do not significantly
improve the fitting capability of the polynomials.

CX = CX0 + CXû
û+ CXδe

δe + CXαα+ CXq̂
q̂ + CXq̂α

q̂α (48)

CY = CY0 + CYβ
β + CYp̂

p̂+ CYp̂δa
p̂δa + CYδa

δa + CYr̂2
r̂2 + CYr̂β

r̂β

+ CYp̂r̂
p̂r̂ + CY

p̂δ2r
p̂δ2r + CYr̂δaδr

r̂δaδr + CYβ3
β3

(49)

CZ = CZ0 + CZαα+ CZû
û+ CZq̂

q̂ (50)

Cl = Cl0 + Clp̂ p̂+ Clδa
δa + Clr̂ r̂ + Clββ

+ Clr̂2
r̂2 + Clr̂δa

r̂δa + Clp̂δa
p̂δa

(51)

Cm = Cm0 + Cmαα+ Cmδe
δe + Cmq̂

q̂ + Cmû
û (52)

Cn = Cn0 + Cnβ
β + Cnδr

δr + Cnp̂
p̂

+ Cnp̂δa
p̂δa + Cnδa

δa + Cnr̂β
r̂β

(53)
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B. Flying-V Model Performance
In table 10 the quantitative performance metrics can be found. The R2 is measured compared to
the training set and for the MSE and Relative RMSE (RRMSE), the models are compared to a
separate validation data set. This table is also a comparison between a first-order model and the
current second-order model. Looking at table 10, it becomes clear that CY and Cn greatly benefit
from a higher order model. Looking at the fitting parameter R2, Cm is exceptionally low compared
to the other. This is due to a shortage of information provided by the available regressors. These
did not manage to capture very specific behaviour in Cm.

Comparing the performance of each component to each other, it is clear that the longitudinal
models manage to replicate the behaviour of the Flying-V notably better. Multiple factors can
be responsible for this behaviour. First of all, more identification manoeuvres, like 3-2-1-1 and
doublets, were performed by elevator input. Moreover, generally, the larger pilot inputs were the
elevator inputs. The inputs on the aileron and rudder were kept conservative by the pilot because a
catastrophic failure cannot be afforded. So controllability was the main consideration when executing
the flight tests, as was mentioned earlier. In addition, since the flights were performed outside,
external factors for example wind can influence the aircraft’s responses.

A time series rudder doublet response can be found in fig. 12. This input resulted in a dutch roll
like motion. The lateral models manage to replicate the system behaviour well. The longitudinal
components are influenced by the change in rudder deflection, as was found by [7]. These motions do
not achieve similar accuracy as for the lateral response. CX , CZ and Cm do not manage to replicate
the higher amplitudes witnessed in the measured set. For the 3-2-1-1 elevator input and response
displayed in Fig. 13. The models manage to approximate the response of the elevator input better
than the rudder input. This confirms that longitudinal motions are better modelled than the lateral
motions.
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Value MSE Change Parameter Value MSE Change

CX CX0 5.584 · 10−1 −1.6581 · 10−4 Cl Cl0 −2.003 · 10−5 −1.408 · 10−9

CXû
−6.192 · 10−1 −2.3401 · 10−4 Clp̂ 1.062 · 10−2 −1.037 · 10−8

CXδe
4.030 · 10−2 −2.0290 · 10−8 Clδa

9.090 · 10−3 −2.497 · 10−9

CXq̂
−4.823 · 10−1 −1.2110 · 10−6 Clr̂ 1.310 · 10−1 −5.810 · 10−7

CXα 3.174 · 10−1 −2.8236 · 10−5 Clβ −4.146 · 10−3 −1.711 · 10−7

CXq̂α
6.971 −3.0441 · 10−6 Clr̂2

−2.708 −9.683 · 10−8

Clr̂δa
4.466 −1.585 · 10−7

Clp̂δa
−7.562 · 10−1 −2.075 · 10−8

CY CY0 1.272 · 10−3 −2.6820 · 10−6 Cm Cm0 −5.296 · 10−2 −2.023 · 10−8

CYβ
−1.803 · 10−2 −5.9581 · 10−8 Cmα −1.344 · 10−1 −4.452 · 10−6

CYp̂
3.693 · 10−1 −1.5854 · 10−5 Cmδe

−1.023 · 10−1 −2.104 · 10−5

CYδa
1.626 · 10−1 −8.6718 · 10−7 Cmq̂

2.891 · 10−1 −8.889 · 10−7

CYp̂δa
1.201 · 101 −1.0927 · 10−5 Cmû

6.823 · 10−2 −2.896 · 10−8

CYr̂2
−1.279 · 101 −9.5546 · 10−7

CYr̂β
1.195 −9.1205 · 10−7

CYp̂r̂
−8.432 −2.5832 · 10−6

CY
p̂δ2r

3.989 −8.0889 · 10−7

CYr̂δaδr
−2.325 · 102 −6.6327 · 10−7

CYβ3
−7.656 · 10−3 −1.0383 · 10−9

CZ CZ0 −2.970 −7.3218 · 10−2 Cn Cn0 −3.138 · 10−4 −1.0368 · 10−9

CZα −1.854 −6.852 · 10−3 Cnβ
3.024 · 10−3 −1.0725 · 10−11

CZû
2.970 −5.949 · 10−5 Cnδr

4.501 · 10−4 −8.440 · 10−8

CZq̂
−4.250 · 10−1 −2.459 · 10−6 Cnp̂

−7.048 · 10−2 −5.791 · 10−7

Cnp̂δa
−2.508 −2.779 · 10−7

Cnδa
−1.396 · 10−2 −9.712 · 10−9

Cnr̂β
−2.576 · 10−1 −6.777 · 10−8

Table 9. Flying-V model parameters and the improvement of MSE for each parameter
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(a) CX (b) Cl

(c) CY (d) Cm

(e) CZ (f) Cn

Figure 11. MSE change for each parameter
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Current (3rd order) model First order

R2 MSE RRMSE R2 MSE RRMSE

CX 0.88 1.390 · 10−4 14.1 % 0.87 1.663 · 10−4 15.5 %
CY 0.26 8.125 · 10−5 13.3 % 0.16 9.3545 · 10−5 14.3 %
CZ 0.85 3.289 · 10−3 12.9 % 0.85 3.289 · 10−3 12.9 %
Cl 0.15 4.284 · 10−6 13.9 % 0.12 4.296 · 10−6 13.9 %
Cm 0.40 2.324 · 10−5 12.7 % 0.40 2.324 · 10−5 12.7 %
Cn 0.38 1.262 · 10−6 12.9 % 0.28 1.569 · 10−6 14.4 %

Table 10. Model fitting performance, 3rd order compared to 1st order

(a) Longitudinal (b) Lateral

Figure 12. Rudder doublet

(a) Longitudinal (b) Lateral

Figure 13. Elevator 3-2-1-1
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C. Comparison to Wind Tunnel Model
In this section, a comparison is made between the flight model and the earlier performed wind tunnel
model [9].

Unfortunately, an accurate analysis of the time responses, as was done in the previous section,
could not be performed. This is because the wind tunnel tests were performed in a controlled
environment where inputs are carefully managed. When real flight data is applied to these models
extreme outputs are observed. This makes it difficult to extract meaningful conclusions from such a
comparison.

Instead, an analysis is conducted by comparing the relationship between the models that resulted
from the wind tunnel tests and flight tests CX −α, CZ −α and Cm−α, see Fig. 14. When comparing
these two models it is important to take into account that the wind tunnel experiment was performed
with a half-wing model and no engines. The absence of the engines can explain the gap observed
for CX . Logically, the addition of engines should decrease CX since the drag, CD, should increase.
This is supported by fig. 15, where this increase in drag can clearly be identified in the CD − α and
CD − CL plots. This gap in CX may give an indication of the effect of the addition of the engines,
∆CXengines . By taking the average difference between the flight model and wind tunnel average it
is found that ∆CXengines = 0.0183. However, previous research on the effect of adding the engines
to the Flying-V[6] found a smaller engine penalty as can be seen in fig. 15. This result aids the
conclusion of the previous section, that an improved engine model is needed to get a better estimate
of CX .

CZ only has a small deviation from the wind tunnel results, similar to CL. This is likely also due
to interference with the engines.

Moreover, the difference of Cm is fairly large. This large difference cannot only be explained
by the engine integration. It is suspected that this difference is due to a shortage of excitations
contained in the training data set. As explained in the previous section, the stepwise regression
algorithm struggled to get a well-fitting model for Cm. This indicates that certain information is
missing from the available regressors. There is a possibility for the wind tunnel model to have
captured this information.
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Figure 14. CX , CZ and Cm comparison between flight model and wind tunnel model
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Figure 15. CL − α CD − α and CD − CL comparison between flight model, wind tunnel
model[9] and wind tunnel result including engine[6]
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V. Conclusion
A stepwise regression is used to determine a model structure for an aerodynamic model of a 4.6%
scaled Flying-V using flight data. The compact polynomials, with up to second order terms, manage
to simulate the behaviour of the novel aircraft reasonably well. All six degrees of freedom polynomials
manage to replicate the responses of typical identification methods, for example the doublet and
3-2-1-1 manoeuvres. Compared to the longitudinal polynomials, the lateral ones did use more
parameters. This indicates that the lateral motions are more complex than the longitudinal ones.
An interaction between longitudinal and lateral states are also found. Especially, rudder inputs
generated a delayed longitudinal response. The rudder deflection interacts with the lift generated by
the wing, as was also found during the wind tunnel experiments. This influence explains the delayed
longitudinal response.

When comparing the flight model to the previously estimated wind tunnel models, it becomes
clear that the available engine model does not suffice for this in-flight use case. Especially CX , and
consequently CD, suffer from the limited knowledge of the flight engine performance. Moreover,
a large deviation was also found for Cm. This was partly due to the interaction with the engines.
However, it is likely that the available data did not contain the information to fully evaluate the
extent of Cm.

Altogether, taking the previously mentioned conditions into account, the presented models will
give a realistic representation of the behaviour of the Flying-V. In conclusion, using the presented
method, improved models will be able to be estimated when more data becomes available.

VI. Recommendations
Even though in the presented work a suitable aerodynamic model was found, the process of getting
to the result gave rise to new questions and revealed more opportunities for future work as for
instance.

• The currently available engine model does not manage to model the thrust at the evaluated
flight states. For example currently the thrust is not influenced by the high angle of attack
motions according to the model.

• Similarly, more data from a larger variety of identification manoeuvres would greatly enrich
the available information for future iterations of the currently discussed aerodynamic model.

• It was also found that there is a possible interaction between longitudinal and lateral states.
It is expected that this is from an influence between the rudder and the wing. However, more
knowledge of these interactions will result in improved future models of the Flying-V and a
better understanding of the implications of this phenomena.

• The data set used for this analysis is fairly conservative when it comes to excitations. For future
test flights it is recommended to perform manoeuvres with larger control surface deflections
and aerodynamic angles. To improve the knowledge on, for example, control effectiveness and
directional sensitivity.
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Appendix

VII. Kalman filter theorem
The Kalman filter is an optimal filter, meaning that it will estimate the minimum covariance error
based on the available observations. Using statistical sensor data and a multitude of different sensors,
a state estimation problem can be formulated. The linear filter process is set out as.

A. Linear Kalman filter
The linear Kalman filter is based on the assumption that the equations of motion are linear, so the
state-space form is:

ẋ = Ax+Bu+w (54)

Where A are the system dynamics, B the control dynamics and w white noise. The sensor
measurements (z) are linearly dependent on the states, so:

z = Hx+ v (55)

Where H is the measurement matrix, and v is white measurement noise. Both eqs. (54) and (55)
need to be discretised to be able to use the Kalman filter. The discretised versions are:

xk+1 = Φk+1,kxk +Ψk+1,kuk + Γk+1,kwd,k (56)

zk+1 = Hk+1xk+1 +Dk+1uk+1 + vk+1 (57)

The filter itself is set up in the following recursive steps:
1) One step ahead measurement prediction
2) One step ahead covariance prediction
3) Determine Kalman gain
4) Measurement update
5) Covariance matrix of state estimation error
Before these steps two initial conditions are determined:

x̂(0|0) = x0 (58)
P (0|0) = P0 (59)

Where x̂ is the optimal estimate of the state and P is the covariance matrix. The the Kalman
filter steps are defined as follows[13].

• One-step ahead measurement prediction:

x̂k+1,k = Φk+1,kx̂k,k +Φk+1,kuk; x̂0,0 = x̂0 (60)

(61)

Where x̂k+1,k is the state prediction, x̂k,k the current state.
• One-step ahead covariance prediction:

Pk+1,k = Φk+1,kPk,kΦ
T
k+1,k + Γk+1,kQd,kΓ

T
k+1,k; P0,0 = P0 (62)
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Where Pk+1,k is the covariance prediction and Pk,k the current covariance matrix. Qd,k is the
white noise characteristic, defined as E

{
wd,iw

T
d,j

}
= Qd,i.

• Determine Kalman gain (Kk+1):

Kk+1 = Pk+1,kH
T
k+1(Hk+1Pk+1,kH

T
k+1 +Rk+1)

−1 (63)

Where Rk+1 is the sensor noise covariance defined as: Evivtj = Ri.
• Measurement update:

x̂k+1,k+1 = x̂k+1,k +Kk+1

(
zk+1 −Hk+1x̂k+1,k

)
(64)

Where xk+1,k+1 is the optimal state estimate.
• Covariance matrix of state estimation error:

Pk+1,k+1 = (I −Kk+1Hk+1)Pk+1,k (65)

Pk+1,k+1 is the optimal covariance matrix

B. Non-linear Kalman filter
In addition to the linear Kalman filter, several different other Kalman filters exist. The most common
non-linear Kalman filter is the Extended Kalman filter(EKF).

C. Extended Kalman filter
Contrary to the linear Kalman filter, in the EKF the state is estimated using perturbations. Which
results two extra steps. The non-linear equations of motion are in this case:

ẋ(t) = f(x(t), u(t), t) +G(x(t), t)w(t) (66)

And the observation equation:

z(t) = h(x(t), u(t), t) (67)

The perturbation equations derived from Eq. 66 and Eq. 67 are:

δẋ(t) = Fx(x, u(t))δx(t) +G(x(t), t)w(t) (68)

δz(t) = Hx(x(t), u(t), t)δx(t) (69)

It is assumed that f(x(t), u(t), t) and h(x(t), u(t), t) are continuous and differentiable with respect
to x and u. The addition of the EKF compared to the linear Kalman Filter, is that the nonlinear
state and observation equations will be linearised about the nominal values of x∗(t) and u∗(t). This
is done by calculating the Jacobian of eqs. (66) and (67), which results in the perturbation equations
eqs. (68) and (69). The Jacobians, Fx(x, u(t)) and Hx(x(t), u(t), t) will be discretised. The remainder
of the EKF is the same as the linear Kalman filter. The steps are set out as follows, the extra steps
with respect to the linear Kalman filter are marked in bolt.
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1) One-step ahead prediction:

x̂k+1,k = x̂k,k +

∫ tk+1

tk

f
(
x̂k,k, u

∗
k, t

)
dt (70)

2) Calculate Jacobians:

Fx (x
∗(t), u∗(t), t) =

∂

∂x
f(x(t), u(t), t)

and

Hx (x
∗(t), u∗(t), t) =

∂

∂x
h(x(t), u(t), t)

3) Discretise the Jacobians
4) Covariance matrix of state prediction error:

Pk+1,k (x
∗(t), u∗(t), t) = Φk+1,k (x

∗(t), u∗(t), t)Pk,kΦ
T
k+1,k (x

∗(t), u∗(t), t) (71)

+Γk+1,k (x
∗(t), u∗(t), t)Qd,k (x

∗(t), u∗(t), t) ΓT
k+1,k (x

∗(t), u∗(t), t) (72)

5) Calculate Kalman gain:

Kk+1 (x
∗(t), u∗(t), t) = Pk+1,k (x

∗(t), u∗(t), t)HT
x (x∗(t), u∗(t), t) (73)

[
Hx (x

∗(t), u∗(t), t)Pk+1,k (x
∗(t), u∗(t), t)HT

x (x∗(t), u∗(t), t) +Rk+1

]−1 (74)

6) Measurement update:

x̂k+1,k+1 = x̂k+1,k +Kk+1 (x
∗(t), u∗(t), t)

[
zk+1 − h

(
x̂k+1,k, u

∗
k+1

)]
(75)

7) Covariance matrix of state estimation error:

Pk+1,k+1 (x
∗(t), u∗(t), t) =

[In −Kk+1 (x
∗(t), u∗(t), t)Hx (x

∗(t), u∗(t), t)]Pk+1,k (x
∗(t), u∗(t), t)

(76)
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VIII. Flight data
In this appendix figures containing the measured flight data captured for each test flight can be
found. These figures also include the results of the Iterated Extended Kalman Filter.

(a) X-Y position (b) VTAS, α and β

(c) p, q and r (d) δa, δe and δr

Figure 16. Set 1
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(a) X-Y position (b) VTAS, α and β

(c) p, q and r (d) δa, δe and δr

Figure 17. Set 2
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(a) X-Y position (b) VTAS, α and β

(c) p, q and r (d) δa, δe and δr

Figure 18. Set 3
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(a) X-Y position (b) VTAS, α and β

(c) p, q and r (d) δa, δe and δr

Figure 19. Set 4
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(a) X-Y position (b) VTAS, α and β

(c) p, q and r (d) δa, δe and δr

Figure 20. Set 5
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(a) X-Y position (b) VTAS, α and β

(c) p, q and r (d) δa, δe and δr

Figure 21. Set 6
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(a) X-Y position (b) VTAS, α and β

(c) p, q and r (d) δa, δe and δr

Figure 22. Set 7
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(a) X-Y position (b) VTAS, α and β

(c) p, q and r (d) δa, δe and δr

Figure 23. Set 8

43



IX. Flowcharts

(a) IEKF flowchart (b) Stepwise regression flowchart

Figure 24. Comparison between in-flight and wind tunnel
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X. Verification
The model determination algorithm is verified using multiple identification control inputs to a known
Cessna Citation-II DASMAT model [14]. The stepwise regression algorithm is then used to estimate
a model, which can be compared to the results of the truth model. Looking at figs. 25c and 25d, it
can be seen that the model manages to estimate the system. At large inputs, the model deviates
from the original. This is likely due to the small amount of training data. In addition, the DASMAT
model is an non-linear table based model. Different flight conditions may give different model
parameters. In order to get a better estimate, more varying inputs which stretch to the edges of the
flight envelope should be given. This difference in estimation between the longitudinal and lateral
motions highlights that the estimation method is only as good as the provided.

(a) CX , CZ , Cm (b) Longitudinal inputs

(c) CY , Cl, Cn (d) Lateral inputs

Figure 25. Estimation results and model inputs

XI. Model Performance
A good model is not only defined by how well it can approximate the system, the usability is also an
important aspect. That means a model needs to be good enough to estimate a system, but also easy
enough to be used by the users. The principle of Parsimony[15] is taken into account to select the
most suitable model, this principle states states:

"Given two models fitted to the same data with nearly equal residual variances, choose

45



the model with the fewest parameters."

To test the model on both performance and usability the following accuracy and fitting perfor-
mance metrics are used:

• Mean Squared Error (MSE)
– Judges overal fitting performance of the model
– Defined as:

MSE =
1

N

N∑

i=1

v(i)2 (77)

• Predicted Squared Error (PSE)
– Similar to MSE, but corrected for the amount of model terms
– Defined as:

PSE =
1

N

N∑

i=1

v(i)2

︸ ︷︷ ︸
MSE

+2σ2max

n

N
(78)

• Coefficient of determination (R2)
– Assesses the overall fit of the model
– Defined as:

R2 =
SSR
SST

= 1− SSE
SST

=
θ̂XTz −Nz2

zT z −Nz2
where 0 ≤ R2 ≤ 1 (79)

• F statistic (F0)
– Can be used to find the optimal amount of parameters, since a large amount of parameters

will decrease the performance
– Defined as:

F0 =
SSR/n

SSE/(N − p)
=

θ̂XTz −Nz2

ns2
=

(N − p)

p− 1

R2

1−R2
(80)
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XII. Model Fitting Performance

(a) MSE and PSE (b) F-Statistic

Figure 26. MSE, PSE and RMSE of CX . The star indicates the itteration step for the
final model

(a) MSE and PSE (b) F-Statistic

Figure 27. MSE, PSE and RMSE of CY . The star indicates the itteration step for the
final model
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(a) MSE and PSE (b) F-Statistic

Figure 28. MSE, PSE and RMSE of CZ . The star indicates the itteration step for the
final model

(a) MSE and PSE (b) F-Statistic

Figure 29. MSE, PSE and RMSE of Cl. The star indicates the itteration step for the
final model
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(a) MSE and PSE (b) F-Statistic

Figure 30. MSE, PSE and RMSE of Cm. The star indicates the itteration step for the
final model

(a) MSE and PSE (b) F-Statistic

Figure 31. MSE, PSE and RMSE of Cn. The star indicates the itteration step for the
final model
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XIII. Fit over full data sets

(a) Longitudinal (b) Lateral

Figure 32. Flight 1 comparison between flight data and model, including regressors.

(a) Longitudinal (b) Lateral

Figure 33. Flight 2 comparison between flight data and model, including regressors.
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(a) Longitudinal (b) Lateral

Figure 34. Flight 3 comparison between flight data and model, including regressors.

(a) Longitudinal (b) Lateral

Figure 35. Flight 4 comparison between flight data and model, including regressors.

(a) Longitudinal (b) Lateral

Figure 36. Flight 5 comparison between flight data and model, including regressors.
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(a) Longitudinal (b) Lateral

Figure 37. Flight 6 comparison between flight data and model, including regressors.

(a) Longitudinal (b) Lateral

Figure 38. Flight 7 comparison between flight data and model, including regressors.

(a) Longitudinal (b) Lateral

Figure 39. Flight 8 comparison between flight data and model, including regressors.
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III
LITERATURE SURVEY
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10 | Introduction
From the iconic Douglas DC3 to the state of the art Airbus A350, for the past ninety years, air transportation
has been reliant on aircraft with a tube and wing layout. To improve fuel efficiency, the Flying-V was pro-
posed by Benad [2015], which breaks with the conventional tube and wing layout. This "flying wing" con-
figuration where, passengers and cargo will be placed inside the wing offers multiple advantages, as found
by Martinez-Val [2007], like reduced fuel consumption and noise levels at take-off and landing. Studies
have shown an aerodynamic efficiency increase of 25% compared to an Airbus A350[Faggiano et al., 2017].
Because of the incredible efficiency improvement interest has been shown by industry2 and the TU Delft,
where the project was picked up to continue development. Here more aerodynamic analysis and optimi-
sations were performed [Faggiano et al., 2017; R.Viet, 2019; Palermo, 2019; Empelen, 2020; Johnson, 2021].
In addition, preliminary aerodynamic models have also been developed. Cappuyns et al. [2019] made an
initial model using computational methods. Later Garcia [2019], continued by developing a model using
wind tunnel data.

This literature study is focused on researching the possibilities of using in-flight experimental data of a
4.6% scaled Flying-V model to estimate an aerodynamic model. To aid this process, the following research
questions are formulated:

• Which methods are most suitable for aerodynamic system identification of the Flying-V using ex-
perimental flight data?

• What new information on handling and stability of the Flying-V can be gathered compared to the
wind tunnel models?

To answer these questions the report is set up as follows. In chapter 11 the background of the project and
previous work done on it is treated. Followed by an elaborate chapter on the basics of system identification
and methods that can be used for it in chapter 12. And finally, system identification performed on the
Flying-V and the layout of the aircraft can be found in chapter 13.

2https://news.klm.com/klm-and-tu-delft-present-successful-first-flight-flying-v/[visited 9-9-2021]
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11 | Background
11.1. FLYING-V PROJECT
The Flying-V was first proposed in 2015 by Benad [2015]. This revolutionary new aircraft is comparable to
an Airbus A350-900, however initial simulations have shown that the new shape is estimated to have a 10%
higher L/D and a 2% lower empty weight. Moreover, in the design, the engines are mounted on top of the
aircraft, reducing the noise level compared the reference aircraft.

At the TU Delft the research into the advantages of the Flying-V was continued. Faggiano et al. [2017]
performed an optimisation at the cruise condition of Mach 0.85, lift coefficient (CL) of 0.26 and an altitude
of 13,000m. A key adjustment made to the design was to increase the outer wing sweep from 15° to 30°
to reduce high local Mach numbers on the wing and improve the lift distribution. To extend, this also
improved the L/D ratio from 22.8 to 23.5. Finally, this newly optimised design was compared to the NASA
Common Research Model. With an L/D of 18.9, it was found that the Flying-V is 25% more efficient than
the reference model.

After the aerodynamic optimisation, the flight characteristics were analysed by R.Viet [2019]. Experiments
were conducted on a 4.6% scaled model in the Open Jet Facility at the Delft University of Technology.
Using balance measurements it was shown that at untrimmed configuration the wind tunnel model has
a maximum lift coefficient of 1.09 at 41 degrees angle of attack. The same measurements concluded that
the stability derivative of the pitching moment is negative up to an angle of attack of 20°, measured at the
quarter mean aerodynamic chord. The opportunity was also taken to investigate trimmed flight. It was
found that due to trim limitations the centre of gravity location is limited between 1.345 and 1.425 meters
behind the nose. An optimal centre of gravity location of 1.365 meters behind the nose was found when
approach was taken into account. At this trimmed condition, the stall speed was found to be at 14.8m/s at
an angle of attack of 28.5°.

Continuing with experimenting in the wind tunnel, the static stability and control characteristics were
researched by Palermo [2019]. At an angle of attack range from −10° to 35° deep-stall characteristics were
not observed, meaning that at least within this range control surfaces will stay effective. It was found that
the optimal centre of gravity position for a maximised lift coefficients at a position of 1.336 meters from the
nose. The maximum lift coefficient in clean configuration at horizontal steady flight is 0.7. It is concluded
that statically stable flight can be achieved with a maximum lift coefficient of 0.7 at the most forward centre
of gravity location of 1.33 meters and 0.6 with the centre of gravity at the most aft location of 1.39 meters
from the nose.

Another wind tunnel research discussed in this paper is performed by Garcia [2019]. Here a model iden-
tification was performed using the gathered wind tunnel data of the Flying-V model. It was found that
in general global polynomials, where the model structure was determined using a Modified Stepwise Re-
gression, achieve appropriate prediction performance. Deficiencies were found due to the large range of
measured angle of attack. Therefore, splines were used to estimate a continuous model with a better fit.
Unfortunately, it was not possible to compare these results with other Flying-V model data, since these
were not available at the time. The estimated models did provide the possibility to determine thrust and
control surfaces settings required for level flight at different airspeeds and flight angles. It also included
the centre of gravity range that needs to be maintained to ensure controllable of the aircraft in the most
probable flight conditions.

The previous wind tunnel experiments did not include any engines on the scaled model. Empelen [2020]
investigated the effects on the performance when engines are integrated. It was found that this integra-
tion generates additional lift due to jet inference. However, an increase in drag has also been observed.
Moreover, Cmα

gets influenced by the addition. Between 5° and 12.5° Cmα
is decreased, while it increases

between 12.5° and 22.5°. For the trim, it was observed that the deflection will be less than ±2.5° due to
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11.2. FLYING-V LAYOUT 60

engine interference.

Finally, the winglets were added to the wind tunnel model. Johnson [2021] performed an analysis on the
effects of a winglet and rudder deflection since these are integrated into the winglets. For angels below 10°
it was found that the lift coefficient slightly increases with about 0.0035 and for higher angels decreases
by about 0.016. The drag coefficient increases by about 0.004 for angels below 28°. In addition, a winglet
also reduces the maximum untrimmed L/D ratio from 14.4 to 12.3 at 10° angle of attack and increases
the pitching moment. The rudder deflections have also been found to reduce the lift coefficient, with a
maximum of 0.0024.

11.2. FLYING-V LAYOUT
The layout of the Flying-V is presented in this section. In Table 11.1 the important physical parameters of
the Flying-V can be found and in figs. 11.1a to 11.1d multiple views of the Flying-V are presented3.

Table 11.1: Design parameters of the full scale Flying-V [Cappuyns et al., 2019]

Parameter Value Unit
Length 55 [ m]
Wingspan 65 [ m]
Height 17 [ m]
Pax 314 [−]
Fuel capacity 140.000 [l]
Cargo Capacity 160

[
m3

]
Design Mach number 0.85 [−]
Cruise altitude 43,000 [ft]

(a) Isometric (b) Top

(c) Front (d) Left

Figure 11.1: Renderings of the Flying-V

3https://www.tudelft.nl/en/ae/flying-v/
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12 | Aircraft model identification
Since the early years of science human try to develop models to approximate and predict the behaviour
of systems[Klein and Morelli, 2006], this has developed into the field of system identification. Scientists
observe the input and output behaviour of systems and identify mathematical models that can approxi-
mate certain behaviours of the system. This process can be applied to a wide variety of fields, from chem-
istry to meteorology and engineering, they all rely on a form of system identification to study system be-
haviour[Ljung, 2017]. Aircraft system identification is one important aspect of aircraft development. The
mathematical models are needed to analyse system behaviour, develop controllers and build simulators.
In this chapter a definition of system identification is explained in section 12.1, after that, in section 12.2,
the definitions of the important frames of reference are given. Followed by the equations of motion in
section 12.3. Then the steps of parameter estimation and different methods are discussed in section 12.4.
Measures of performance are given in section 12.5. Then the effects of scaling aircrafts are briefly elabo-
rated on in section 12.6. And finally, in section 12.7, manoeuvres are discussed which optimise the identi-
fication process.

12.1. SYSTEM IDENTIFICATION
As explained by Klein and Morelli [2006], system identification is one of the following three main problems
in aircraft dynamics and control:

1. Simulation: given input u and system S, find output y

2. Control: given system S and output y, find input u

3. System identification: given input u and output y, find system S

For aircraft system identification most commonly the inputs are often controller inputs, like ailerons, el-
evator, rudder and thrust or external inputs like gusts, i.e. the forces and moments acting on the aircraft.
The outputs are the vehicle attitudes or change in attitude. The data can be gathered using in-flight test-
ing or, when the aircraft is still in early developing stages the data can be obtained during wind tunnel
testing[García et al., 2020].

12.1.1. MATHEMATICAL MODELLING

Depending on the system, the prior knowledge and available tools, the eventual mathematical model that
represents the system can take different forms. Therefore it is important to know which system will be
identified, what the operational conditions are and data can be gathered.

CLASSIFICATION OF IDENTIFICATION PROBLEM

The available data and knowledge of the system direct the category of the identification problem, accord-
ing to Laban [1994]. The problems can be classified into three categories:

1. General system identification problem

• When prior knowledge about the of the system and possible model is scarce, it can be regarded
as a general system identification problem. These models purely rely on input-output relations.
Therefore, the model itself does not hold any information about the physics of the system.
These models are therefore also referred to as "black-box" models, as the user will not be able
to extract any meaningful relationships from the model. The main strength of this method is
that it can be used to model any system with a quantifiable input and output. However, the
main limitation is that the result of the black box model is generally only valid within the range
it has been trained in.

2. State-parameter estimation problem

61
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Figure 12.1: Vehicle carried normal Earth reference frame, with a spherical earth [Mulder et al., 2013].

• In the case that a model structure is known, but the states and parameters of this model are
still unknown it is a state-parameter estimation problem. This model can be determined by
performing a theoretical analysis of the system. The states can be determined indirectly using
a combination of different sensors and knowledge of the system and its environment. Using
the model and states, the parameters of the model can be estimated. This kind of problem is
very common for aircraft aerodynamic system identification. Models that can represent air-
craft behaviour have already been developed, [Klein and Morelli, 2006]. To fit these models to
different types of aircraft measured states will be used to estimate the model parameters.

3. Parameter estimation problem

• When the states of the system and the model structure are known, the problem can be reduced
to a parameter estimation problem. The only task required is the estimation of the model pa-
rameters. For example as is done by Garcia [2019].

12.2. FRAMES OF REFERENCE
Before any kind of dynamic system modelling can be performed, it is necessary to first consider the frames
of reference. A reference frames are needed to eventually derive a physical model and define the sign
conventions. The three reference frames used in this research will be the Body-fixed reference frame (Fb)
and the Aerodynamic reference frame (Fa). They are discussed in subsection 12.2.2 and subsection 12.2.3,
respectively.

12.2.1. VEHICLE CARRIED NORMAL EARTH REFERENCE FRAME, FE

A drawing of the Vehicle carried normal Earth reference frame can be found in Figure 12.1. The origin of
this frame is at the centre of gravity of the aircraft. Tangent to the Earth surface is the XE YE plane. The XE -
axis points towards the north and perpendicular towards the right is the YE -axis. In this case it is assumed
that the earth is spherical, so the ZE -axis points, parallel with the gravitational attraction vector gr , to the
centre of the earth, as can be seen in Figure 12.1 [Mulder et al., 2013].

12.2.2. BODY-FIXED REFERENCE FRAME, Fb
The body-fixed reference frame, depicted in Figure 12.2, is a right handed orthogonal coordinate system.
The origin is located at the centre of mass, and remains fixed independent of the aircraft motion. The
Xb-axis points forward and coincides with the symmetry plain of the aircraft. Similarly, the Zb-axis co-
incides with the symmetry plain of the aircraft, but points downwards. The Yb-axis points to the right,
perpendicular to the symmetry plain [Mulder et al., 2013].
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Figure 12.2: Body-fixed reference frame [Mulder et al., 2013]

12.2.3. AERODYNAMIC REFERENCE FRAME, Fa

The aerodynamic reference frame is coupled to the aerodynamic velocity of the vehicle. The origin and
sign conventions are the same as the body-fixed reference frame. However, contrary to the former, the
direction of the Xa-axis is not dependent on the symmetry plane. The Xa-axis is is in the direction of the
velocity vector Va . The Za-axis is on the symmetry plain of the aircraft. The Ya is perpendicular to the
Xa Za plane. The velocity vector Va is defined as:

Va =
ua

a

v a
a

w a
a

=
Va

0
0

 (12.1)

Expressing the aerodynamic velocity vector in the body-fixed reference frame yields:

V b
a =

ub
a

vb
a

wb
a

=
u

v
w

 (12.2)

Figure 12.3, depicts the relationship between the aerodynamic reference frame and the body-fixed refer-
ence frame. Here αa is the aerodynamic angle of attack and βa the aerodynamic angle of sideslip [Mulder
et al., 2013].

12.2.4. TRANSFORMATION BETWEEN REFERENCE FRAMES

In order to relate the three different reference frames to each other they have to be transformed [Mulder
et al., 2013]. The transformation is as follows:

FROM FE TO Fb

Three consecutive rotations need to be performed, therefore two intermediate reference frames are de-
fined. The steps are:

• FE → FE ′ → FE ′′ → Fb

The rotations are:
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Figure 12.3: Relation between aerodynamic and body-fixed reference frame [Mulder et al., 2013].

• Rotation yaw angle ψ about ZE -axis.

• Rotation pitch angle θ about YE ′-axis.

• Rotation roll angle φ about the XE ′′-axis.

This results to the following transformation matrix:

TbE =
1 0 0

0 cos(φ) si n(φ)
0 −si n(φ) cos(φ)

cos(θ) 0 −si n(θ)
0 1 0

si n(θ) 0 cos(θ)

 cos(ψ) si n(ψ) 0
−si n(ψ) cos(ψ) 0

0 0 1

 (12.3)

FROM FE TO Fa

Similar to the previous transformation, two intermediate frames are defined. The transformation se-
quence is:

• FE → FE ′ → FE ′′ → Fa

The three steps are:

• Rotation χa aerodynamic heading angle about the ZE -axis.

• Rotation λa aerodynamic flight-path angle about the YE ′-axis.

• Rotation µa aerodynamic bank angle about the Xa-axis.

This results in the following transformation matrix:
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TaE =
1 0 0

0 cos(µa) −si n(µa)
0 si n(µa) cos(µa)

cos(λa) 0 −si n(λa)
0 1 0

si n(λa) 0 cos(λa)

 cos(χa) si n(χa) 0
−si n(χa) cos(χa) 0

0 0 1

 (12.4)

12.2.5. FROM Fb TO Fa

In contrast to the previous two transformations, this transformation only has two steps and therefore only
needs on intermediate reference frame to be defined. The transformation steps are:

• Fb → Fb′ → Fa

The rotation sequences are:

• Rotation −αa aerodynamic angle of attack about the Yb-axis.

• Rotation βa aerodynamic sideslip angle about the Zb′-axis.

Which results in the following transformation matrix:

Tab =
 cos(βa) si n(βa) 0
−si n(βa) cos(βa) 0

0 0 1

 cos(αa) 0 si n(αa)
0 1 0

−si n(αa) 0 cos(αa)

 (12.5)

12.3. EQUATIONS OF MOTION
In order to mathematically describe the motion of the aircraft, the Equations of Motion(EoM) are con-
structed. The EoM consist of:

• Force and Moment equations

• Kinematic equations

• Wind-axis force equations

First, some assumptions are made in subsection 12.3.1. After that the three parts of the EoM are con-
structed in subsection 12.3.2, subsection 12.3.3 and subsection 12.3.4.

12.3.1. ASSUMPTIONS

To derive the equations of motion the following assumptions have to be made,[Klein and Morelli, 2006]:

• The aircraft is a rigid body with a fixed mass distribution and constant mass.

• The aircraft is symmetric.

• The air is at rest relative to the earth.

• The earth is fixed in inertial space.

• The earth’s (local) surface is flat and non-rotating

• Gravity is uniform

12.3.2. FORCE AND MOMENT EQUATIONS

Keeping the assumptions into account the general motion of a rigid aircraft model can be formulated by
Newton’s second law:

F = d

d t
(mV ) (12.6)

M = d

d t
(Iω) (12.7)
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Equation 12.6 describes the resulting force acting on the airplane,
∑

F . Where m is the airplane mass and
V the resulting velocity vector. The resulting moment, M , is expressed in Equation 12.7, where I is the
mass moment of inertia andω the rotational rate vector [Klein and Morelli, 2006]. The components of the
vectors are:

F =
Fx

Fy

Fz

 V =
u

v
w

 (12.8)

M =
Mx

My

Mz

 I =
 Ixx −Ix y −Ixz

−Iy x Iy y −Iy z

−Izx −Iy z Izz

 ω

p
q
r

 (12.9)

Since one of the assumptions is that the aircraft is symmetric all the asymmetric moments of inertia are
equal to zero, so

I =
 Ixx 0 −Ixz

0 Iy y 0
−Izx 0 Izz

 (12.10)

From Equation 12.6 and Equation 12.7, the vector derivatives, d
d t (mV ) and d

d t (Iω), are expressed as:

d

d t
(mV ) = d

d t
(mV )+ω× (mV ) (12.11)

and

d

d t
(Iω) = d

d t
(Iω)+ω× (Iω) (12.12)

Combining and expanding Equation 12.6 and Equation 12.11 results in:

F =
Fx

Fy

Fz

= m

u̇ +qw − r v
v̇ + r u −pq
ẇ +pv −qu

 (12.13)

Doing the same to Equation 12.7 and Equation 12.11 gives:

M =
Mx

My

Mz

=
ṗ Ix − ṙ Ixz +qr (Iz − Iy )−qpIxz

q̇ Iy +pr (Ix − Iz )+ (p2 − r 2)Ixz

ṙ Iz − ṗ Ixz +pq(Iy − Ix )+qr Ixz

 (12.14)

The external forces and moments (F and M) acting on the aircraft can be split up into the three main
forces:

• Gravity

• Aerodynamics

• Propulsion
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GRAVITY

Both the magnitude and direction are assumed to be constant. As stated in subsection 12.2.1, the gravity
vector coincides with the ZE -axis [Klein and Morelli, 2006]. Since the gravity vector originates at the centre
of gravity, it will not cause a moment. The gravity vector, F E

G , is defined as:

F E
G = m

0
0
g

 (12.15)

Where g is the gravitational constant. Ideally, every influence is expressed in the same reference frame, in
this case the body-fixed reference frame, Fb . Transforming the gravity vector to Fb results in:

F b
G =TbE F E

G

F b
G = m

gx

g y

gz

=
 −mg sin(θ)

g sin(φ)cos(θ)
g cos(φ)cos(θ)

 (12.16)

AERODYNAMICS

The airflow around the aircraft creates pressure differences, which generates forces on the body. The re-
sulting aerodynamic force can be expressed in both the body-fixed reference frame(F b

A ) and the aerody-
namic reference frame(F F a

A . The two force vectors are defined as:

F b
A =

X b

Y b

Z b

 F a
A =

X a

Y a

Z a


Where X , Y and Z are the forces in each corresponding carthesian axis. Using the transformation matrix
from Equation 12.5, F b

A and F a
A can be related to eachother resulting in[Mulder et al., 2013]:

F b
A =TF a

AX b

Y b

Z b

=
cos(βa)cos(αa) −sin(βa)cos(αa) −sin(αa)

sin(βa) cos(βa) 0
cos(βa)sin(αa) −sin(βa)sin(αa) cos(αa)

X a

Y a

Z a

 (12.17)

Since the resulting aerodynamic force does generally not act on the centre of gravity, it causes a moment.
The resulting aerodynamic moment in Fb and in Fa are defined as:

M b
A =

 Lb

M b

N b

 M a
A =

 La

M a

N a

 (12.18)

Where L, M and N are the moments about the x, y and z axis, respectively. The force and moment vectors
can also be expressed in non-dimensional coefficients:

FA = qS

CX

CY

CZ

 MA = qS

 bCl

cCm

bCn

 W i th q = 1

2
ρV 2 (12.19)
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Where q is the dynamic pressure, ρ the air density, V the magnitude of the airspeed, S the wing reference
area, b the wingspan, and c the mean aerodynamic chord[Klein and Morelli, 2006].

PROPULSION

It is assumed that the thrust provided by the propulsion system acts along the x-axis in Fb[Klein and
Morelli, 2006]. The thrust vector is defined as:

F b
T =

T
0
0


Where T is the magnitude of the thrust. The force vector may not act on the centre of gravity and can
therefore cause a moment [Mulder et al., 2013]. The moment vector in Fb is defined as:

M b
P =

M b
P,x

M b
P,y

M b
P,z


In addition, the angular momentum of rotating mass of the propulsion system may induce a moment.
Since the thrust is assumed to act along the x-axis, the angular momentum can be described as:

hp =
IpΩp

0
0


Where Ip is the moment of inertia of the rotational mass andΩp the angular velocity. When the angular ve-
locity is constant, the moment due to the angular momentum is defined as [Klein and Morelli, 2006]:

MT = d

d t
(hp ) =ω×hp =

 0 −r −q
r 0 −p
−q p 0

IpΩp

0
0

=
 0

IpΩp r
−IpΩp q

 (12.20)

Summarising, adding the external forces and moments together results in:

 u̇
v̇
ẇ

=

 r v −qw + qS
m CX − g sin(θ)+ T

m

pw − r u + qS
m CY + g cos(θ)sin(φ)

qu −pv + qS
m Cz + g cos(θ)cos(φ)

 (12.21)

and

ṗ − Ixz
Ix

ṙ

q̇

ṙ − Ixz
Iz

ṗ

=


qSb

Ix
Cl − (Iz−Iy

Ix
qr + Ixz

Ix
qp

qSc
Iy

Cm − (Ix−Iz )
Iy

pr − Ixz
Iy

(p2 − r 2)+ Ip

Iy
Ωp r

qSb
Iz

Cn − (Iy−Ix )
Iz

pq − Ixz
Iz

qr − Ip

Iz
Ωp q

 (12.22)

12.3.3. ROTATIONAL KINEMATIC EQUATIONS

The rotational kinematic equations describe the rate of change of the Euler angles of the angular velocity
in Fb [Klein and Morelli, 2006]. The derivation is as follows:
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p
q
r

=
φ̇0

0

+
1 0 0

0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

0
θ̇

0

+
1 0 0

0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

0
0
ψ̇


p

q
r

=
1 0 −sin(θ)

0 cos(φ) sin(φ)cos(θ)
0 −sin(φ) cos(φ)cos(θ)

φ̇θ̇
ψ̇

 (12.23)

Equation 12.3.3 can be rewritten to:

φ̇θ̇
ψ̇

=

p + tan(θ)(q sin(φ)+ r cos(φ))
q cos(φ)− r sin(φ)

q sin(φ)+r cos(φ)
cos(θ)

 (12.24)

12.3.4. WIND-AXIS FORCE EQUATIONS

In general, the aerodynamic force and moment coefficients, derived in Equation 12.19, are expressed as
functions of α, β and V

a , where a is the speed of sound. As can be seen in Figure 12.3, the angle of attack,
α, angle as sideslip, β, and airspeed, V , are defined as:

α= arctan(
w

u
) (12.25)

β= arcsin(
v

V
) (12.26)

V =
√

u2 + v2 +w2 (12.27)

Using these the velocity components in Fb can be expressed as:

V =
u

v
w

=
V cos(α)cos(β)

V sin(β)
V sin(α)cos(β)

 (12.28)

By differentiating Equation 12.25, Equation 12.26 and Equation 12.27 the following rotational rates can be
found:

V̇ = 1

V
(uu̇ + v v̇ +w ẇ) (12.29)

α̇=
(

uẇ −wu̇

u2 +w2

)
(12.30)

β̇=
(

V v̇ − vV̇

V 2

)[
1√

1− (v/V )2

]
= (u2 +w2)v̇ − v(uu̇ + v v̇ +w ẇ)

V 2
p

u2 +w2
(12.31)

Substituting Equation 12.28 gives:



12.3. EQUATIONS OF MOTION 70

V̇ =− q̄S

m
CDW + T

m
cos(α)cos(β)+ g (cos(φ)cos(θ)sin(α)cos(β)

+ sin(φ)cos(θ)sin(β)− sin(θ)cos(α)cos(β)) (12.32)

α̇=− q̄S

mV cos(β)
CL +q − tan(β)(p cos(α)+ r sin(α))

+ g

V cos(β)
(cos(φ)cos(θ)cos(α)+ sin(θ)sin(α))− T sin(α)

mV cos(β)
(12.33)

β̇= q̄S

mV
CYW +p sin(α)− r cos(α)+ g

V
cos(β)sin(φ)cos(θ)

+ sin(β)

V

(
g cos(α)sin(θ)− g sin(α)cos(φ)cos(θ)+ T cos(α)

m

)
(12.34)

Where

CL =−CZ cos(α)+CX sin(α) (12.35)

CD =−CX cos(α)−CZ sin(α) (12.36)

CDW =CD cos(β)−CY sin(β) (12.37)

CYW =CY cos(β)+CD sin(β) (12.38)

12.3.5. COMPLETE SET OF EQUATIONS OF MOTION

The previous discussed eqs. (12.21), (12.22), (12.24) and (12.32) to (12.34) make up the EoM. Now the air-
craft motion can be described as

ẋ = f (x , u) (12.39)

where x is the state vector, u the input vector and f (x , u) the system model [Klein and Morelli, 2006].

12.3.6. LINEARISED EQUATIONS OF MOTION

Equation 12.39 is a nonlinear first order differential equation. In order to improve usability, the EoM can be
linearised. They will be linearised around a given flight condition, meaning that the final results will only
be valid for that flight condition [Mulder et al., 2013]. The linearisation will be performed using a Taylor
series expansion. Take Equation 12.39, this will be expanded to:

y = f (x0,u0)+ [
fx (x0,u0)∆x + fu (x0,u0)∆u

]
+ 1

2!

[
fxx (x0,u0)∆x2 +2 fxu (x0,u0)∆x∆u + fuu (x0,u0)∆u2]

+ 1

3!

[
fxxx (x0,u0)∆x3 +3 fxxu (x0,u0)∆x2∆u (12.40)

+ 3 fxuu (x0,u0)∆x∆u2 + fuuu (x0,u0)∆u3]
+ . . .
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Where x0 and u0 are the given flight condition. Each part of the EoM can be linearised in this manner.
Linearising the Equations of Motion yields:

X = Xo +Xu∆u +Xw∆w +Xq q +Xδ∆δ (12.41)

Y = Yo +Yv∆v +Yp p +Yr r +Yδ∆δ (12.42)

Z = Zo +Zu∆u +Zw∆w +Zẇ∆ẇ +Zq q +Zδ∆δ (12.43)

L = Lo +Lv∆v +Lp p +Lr r +Lδ∆δ (12.44)

M = Mo +Mu∆u +Mw∆w +Mẇ∆ẇ +Mq q +Mδ∆δ (12.45)

N = No +Nv∆v +Np p +Nr r +Nδ∆δ (12.46)

Where Xi , Yi , Zi , Li , Mi and Ni are the derivatives of the moment or force in the corresponding direction
with respect to i [Klein and Morelli, 2006].

12.3.7. NON-DIMENSIONAL MODEL

A non-dimensional model is used to make it it independent of airspeed and air density. The forces and
moments will be expressed as non-dimensional coefficients which are dependent on the states, so:

CX =CX (u, w, q,δ) (12.47)

CY =CY (v, p,r,δ) (12.48)

CZ =CZ (u, w, ẇ , q,δ) (12.49)

CL =CL(v, q,r,δ) (12.50)

CM =CM (u, w, ẇ , q,δ) (12.51)

CN =CN (v, p,r,δ) (12.52)

Since u, v and w will be normalised with the pre-set velocity and when it is assumed that only small angles
will occur, the velocities can be replaced by aerodynamic angles, since:

α≈ δu

V0
β≈ δv

V0
γ≈ δw

V0

In addition, since small angles are assumed and using eqs. (12.35) and (12.36), CX ≈ −CD and CZ ≈ −CL .
The non-dimensional force and moment equations can be expressed as:

Longitudinal

CL =CL0 +CLV

∆V

V0
+CLα∆α+CLα̇

α̇c

2V0
+CLq

qc

2V0
+CLδ∆δ (12.53)

CD =CD0 +CLV

∆V

V0
+CDα

∆α+CDq

qc

2V0
+CDδ

∆δ (12.54)

Cm =Cm0 +CmV

∆V

V0
+Cmα

∆α+Cmα̇

α̇c

2V0
+Cmq

qc

2V0
+Cmδ

∆δ (12.55)
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Lateral

CY =CY0 +CYV

∆V

V0
+CYβ∆β+CYp

pb

2V0
+CLr

r b

2V0
+CLδ∆δ (12.56)

Cl =Cl0 +ClV

∆V

V0
+Clβ∆β+Clp

pb

2V0
+Clr

r b

2V0
+Clδ∆δ (12.57)

Cn =Cn0 +CnV

∆V

V0
+Cnβ

∆β+Cnp

pb

2V0
+Cnr

r b

2V0
+Cnδ

∆δ (12.58)

The coefficients Cai are the stability derivatives. These derivatives quantify the dependence of certain
inputs (subscript i ) and the forces and moments (subscript a). For example, if the coefficient is negative,
when the input increases the force or moment decreases and vice versa. While with a positive coefficient
the force or moment increases when the input increases. The magnitude of the coefficient influences the
magnitude of the output force. The definition of each coefficient can be found in chapter 15 [Mulder et al.,
2013].

12.4. PARAMETER ESTIMATION
In the previous section a general aircraft dynamic model is derived. The next step is to determine the
parameters to complete the model. The methods to perform this task are explained in this section.

In subsection 12.1.1 three different categories of model identification are explained. Since the explained
EOM is a possible model structure, the classification task reduces to either a state-parameter estimation
problem or parameter estimation problem. Whether the state has to be estimated depends on the avail-
ability and quality of the sensors. Therefore, both the state and parameter estimation steps will be ex-
plained.

12.4.1. STATE ESTIMATION

To account for noise, sensor limitations and inaccuracy, a state estimation needs to performed. The most
common state estimation method is the Kalman filter, according to [Klein and Morelli, 2006]. The Kalman
filter is an optimal filter, meaning that it will estimate the minimum covariance error based on the available
observations. Using statistical sensor data and a multitude of different sensors, a state estimation problem
can be formulated. The linear filter process is set out as follows.

LINEAR KALMAN FILTER

The linear Kalman filter is based on the assumption that the equations of motion are linear, so the state-
space form is:

ẋ = Ax +Bu +w (12.59)

Where A are the system dynamics, B the control dynamics and w white noise. The sensor measurements
(z) are linearly dependent on the states, so:

z = H x +v (12.60)

Where H is the measurement matrix, and v is white measurement noise. Both eqs. (12.59) and (12.60)
need to be discretised to be able to use the Kalman filter. The discretised versions are:

xk+1 =Φk+1,k xk +Ψk+1,k uk +Γk+1,k wd ,k (12.61)

zk+1 = Hk+1xk+1 +Dk+1uk+1 + vk+1 (12.62)
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The filter itself is set up in the following recursive steps:

1. One step ahead measurement prediction

2. One step ahead covariance prediction

3. Determine Kalman gain

4. Measurement update

5. Covariance matrix of state estimation error

Before these steps two initial conditions are determined:

x̂(0|0) = x0 (12.63)

P (0|0) = P0 (12.64)

Where x̂ is the optimal estimate of the state and P is the covariance matrix. The the Kalman filter steps are
defined as follows[Klein and Morelli, 2006].

• One-step ahead measurement prediction:

x̂k+1,k =Φk+1,k x̂k,k +Φk+1,k uk ; x̂0,0 = x̂0 (12.65)

(12.66)

Where x̂k+1,k is the state prediction, x̂k,k the current state.

• One-step ahead covariance prediction:

Pk+1,k =Φk+1,k Pk,kΦ
T
k+1,k +Γk+1,kQd ,kΓ

T
k+1,k ; P0,0 = P0 (12.67)

Where Pk+1,k is the covariance prediction and Pk,k the current covariance matrix. Qd ,k is the white

noise characteristic, defined as E
{

wd ,i wT
d , j

}
=Qd ,i .

• Determine Kalman gain (Kk+1):

Kk+1 = Pk+1,k H T
k+1(Hk+1Pk+1,k H T

k+1 +Rk+1)−1 (12.68)

Where Rk+1 is the sensor noise covariance defined as: E v i v t
j = Ri .

• Measurement update:

x̂k+1,k+1 = x̂k+1,k +Kk+1
(
zk+1 −Hk+1x̂k+1,k

)
(12.69)

Where xk+1,k+1 is the optimal state estimate.

• Covariance matrix of state estimation error:

Pk+1,k+1 = (I −Kk+1Hk+1)Pk+1,k (12.70)

Pk+1,k+1 is the optimal covariance matrix
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NON-LINEAR KALMAN FILTER

In addition to the linear Kalman filter, several different other Kalman filters exist. The most common non-
linear Kalman filter is the Extended Kalman filter(EKF). The non-linear equations of motion are in this
case:

ẋ(t ) = f (x(t ),u(t ), t )+G(x(t ), t )w(t ) (12.71)

And the observation equation:

z(t ) = h(x(t ),u(t ), t ) (12.72)

For the EKF it is assumed that f (x(t ),u(t ), t ) and h(x(t ),u(t ), t ) are continuous and differentiable with
respect to x and u. The addition of the EKF compared to the linear Kalman Filter, is that the nonlinear state
and observation equations will be linearised about the nominal values of x∗(t ) and u∗(t ). This is done by
calculating the Jacobian of eqs. (12.71) and (12.72), which will need to be discretised. The remainder of the
EKF is the same as the linear Kalman filter. The steps are set out as follows, the extra steps with respect to
the linear Kalman filter are marked in bolt.

1. One-step ahead prediction:

x̂k+1,k = x̂k,k +
∫ tk+1

tk

f
(
x̂k,k ,u∗

k , t
)

d t (12.73)

2. Calculate Jacobians:

Fx
(
x∗(t ),u∗(t ), t

)= ∂

∂x
f (x(t ),u(t ), t )

and

Hx
(
x∗(t ),u∗(t ), t

)= ∂

∂x
h(x(t ),u(t ), t )

3. Discretise the Jacobians

4. Covariance matrix of state prediction error:

Pk+1,k
(
x∗(t ),u∗(t ), t

)=Φk+1,k
(
x∗(t ),u∗(t ), t

)
Pk,kΦ

T
k+1,k

(
x∗(t ),u∗(t ), t

)
(12.74)

+Γk+1,k
(
x∗(t ),u∗(t ), t

)
Qd ,k

(
x∗(t ),u∗(t ), t

)
ΓT

k+1,k

(
x∗(t ),u∗(t ), t

)
(12.75)

5. Calculate Kalman gain:

Kk+1
(
x∗(t ),u∗(t ), t

)= Pk+1,k
(
x∗(t ),u∗(t ), t

)
H T

x

(
x∗(t ),u∗(t ), t

)
(12.76)[

Hx
(
x∗(t ),u∗(t ), t

)
Pk+1,k

(
x∗(t ),u∗(t ), t

)
H T

x

(
x∗(t ),u∗(t ), t

)+Rk+1
]−1

(12.77)

6. Measurement update:

x̂k+1,k+1 = x̂k+1,k +Kk+1
(
x∗(t ),u∗(t ), t

)[
zk+1 −h

(
x̂k+1,k ,u∗

k+1

)]
(12.78)
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7. Covariance matrix of state estimation error:

Pk+1,k+1
(
x∗(t ),u∗(t ), t

)= [
In −Kk+1

(
x∗(t ),u∗(t ), t

)
Hx

(
x∗(t ),u∗(t ), t

)]
Pk+1,k

(
x∗(t ),u∗(t ), t

)
(12.79)

12.4.2. LINEAR PARAMETER ESTIMATION

After the states are estimated, the next step is to fit a model that can represent a system. The ordinary least
squares and stepwise regression are discussed in this section.

ORDINARY LEAST SQUARES

For simple linear models the ordinary least squares (OLS) is a common method to estimate the parameters
of a known model structure. For the following model:

y = Xθ (12.80)

y is the output vector and θ are the model parameters. The OLS estimates the parameters by minimising
the squared error between the measured output and the estimated output [Klein and Morelli, 2006]. The
cost function that needs to be minimised is:

J (θ) = 1

2
(y −X θ̂)T (y −X θ̂) (12.81)

The derivative with respect to θ is evaluated in order to minimise the cost function, so:

∂J

∂θ
=−X T y +X T X θ̂ = 0 (12.82)

The OLS estimator will be:

θ̂ = (X T X )−1X T y (12.83)

The most important properties of the OLS are:

• The OLS estimator is unbiased, meaning that E(θ̂) = θ.

• The OLS estimator is the best unbiased estimate for a linear model.

• The OLS estimator is consistent.

STEPWISE REGRESSION

The main weakness of the OLS is that it can only be performed when an adequate model structure is
already known. The stepwise regression method does not rely on a predefined model structure with un-
known parameters, instead it will determine a model by stepwise adding parameters which promise good
performance, assess the performances of previously added parameters when new ones are added and
delete them when they become redundant. It does this by combining two methods called Forward elimi-
nation and Backward elimination [Klein, 1989].

Forward selection
This method starts with only the independent constant term θ0. One by one new terms will be added to the
model, either until all regressors are added or until a selection criterion is satisfied. The order on which
new terms are added is dependent on the simple correlation with the dependent variable, adjusted for
mean value. The simple correlation between the regressor ξ j and z is determined using
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r j z =
∑N

i=1

[
ξ j (i )− ξ̄ j

]
[z(i )− z̄]√

S j j Szz
(12.84)

Where S j j is the centred sum of squares for ξ j , calculated by

S j j =
N∑

i=1

[
ξ j (i )− ξ̄ j

]2
(12.85)

and the centred sum of squares for Szz ,

Szz =
N∑

i=1
[z(i )− z̄]2 (12.86)

When the partial F statistic of the regressor with the highest absolute simple correlation exceeds a prese-
lected value (Fi n) it will enter the model. The following regressor selected to enter will be the one with the
highest simple correlation with the new model after the regressor of the previous step entered. So, for the
second step the regressor with the highest correlation with z −θ0 −θ1ξ1 will enter when its partial F statis-
tic passes Fi n . The partial F statistic (F0) for a model with p terms already in the model can be calculated
with

F0 =
SSR

(
θ̂p+ j

)−SSR
(
θ̂p

)
s2 (12.87)

Here SSRR (θ̂p ) is the sum of squares of the regression with p terms and SSR
(
θ̂p+ j

)
is the sum of squares of

the existing model with p terms and the j th regressor added. s2 is the fit error variance which is computed
as

s2 ≡ σ̂2 = v T v

(N −p −1)
=

∑N
i=1[z(i )− ŷ(i )]2

(N −p −1)
(12.88)

In this equation it is assumed that the j th term is included in the regression. The addition of terms will
continue until new regressors cannot pass Fi n or all available regressors are added to the model.

Backward elimination
Backward elimination is the opposite of forward selection. Backward elimination starts with all the regres-
sors already in the regression equation. In this case the partial F statistic of each term is determined and
the term with the lowest statistic will be eliminated if it is lower than the predefined value Fout , so

F0 = min
j

SSR
(
θ̂p

)−SSR
(
θ̂p− j

)
s2 < Fout (12.89)

Where SSR (θ̂p− j ) is the sum of squares of the regression without the j th regressor term. Equally to the
forward selection, the backward elimination will continue until Fout cannot be passed.

Stepwise regression
As mentioned before, the stepwise regression is a combination of forward selection and backward elimina-
tion. It starts the same as forward selection, the first regressor to enter is the one with the highest absolute
simple correlation, Equation 12.84. The model will then look like

z(i ) = θ0 +θ1ξ1(i )+ v(i ) (12.90)
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Where v(i ) is the residual, θ j will be fitted using the OLS. If the partial F statistic of the new regression
exceeds Fi n the new model is accepted, so

F0 = SSR (θ1)

s2 > Fi n (12.91)

The next step is to construct new regressors in the candidate pool using the previous candidate pool by
removing the part of the terms that are already modelled by the current regression. For example the new
second regressor is modelled as

ξ2(i ) = a0 +a1ξ1(i ) (12.92)

a0 and a1 are determined using the OLS. The new regressor will be the residual, so

v2 = ξ2(i )− â0 − â1ξ1(i ) (12.93)

This will be performed for each other remaining regressor, every time a new term is added to the model.
The second part of the stepwise regression is the elimination part. Every time a new term is added to
the regression, the partial F statistic, Equation 12.89, of each selected regressor in the model is evaluated.
When the F statistic of any of the regressors is lower than Fout it will be eliminated from the model. The
regression is finished when candidate regressors cannot be added and selected regressor cannot be elimi-
nated.

Modified stepwise regression
A regular stepwise regression often has the problem that the final model contains too many terms. This
negatively influences the performance of the model, since it will overfit the data so it will not be able to
represent extremer cases. Therefore, in aerospace, it is more common to use the modified stepwise re-
gression (MSR). The regular stepwise regression starts with an empty regression and then fully depends on
statistical methods to determine which terms will inter and exit the regression. The MSR gives preference
to the linear regressors and terms the user finds important, for example Cmα

. This can be done in two ways,
The first step of the MSR will be to only select the linear terms in the regression, after this the non-linear
terms are evaluated. The linear terms are kept in the model irrespective of their statistical performance
[Klein et al., 1983].

DATA PARTITIONING

The model identification methods mentioned above will produce continuous polynomial models. The
results are, unfortunately, not valid for extreme cases, that are not close to the flight conditions of the per-
formed manoeuvre. These models are not able to represent a wide range of conditions, like large variations
in angle of attack or control deflection. Data partitioning can be used to produce models that represent a
wide range of conditions [Batterson, 1981]. The data set will be split up in multiple partitions, each parti-
tion containing conditions that are important to be modelled. For example, when taking x, the set will be
partitioned in m subsets, like this

f1
[
x1(t ), x2(t ), . . . , xp−1(t ), xp+1(t ), . . . , xn(t )

]
for xp0 < xp < xp1

y
(
x̄p , t

)= f2
[
x1(t ), x2(t ), . . . , xp−1(t ), xp+1(t ), . . . , xn(t )

]
for xp1 < xp < xp2

fm
[
x1(t ), x2(t ), . . . , xp−1(t ), xp+1(t ), . . . , xn(t )

]
for xpm−1 < xp < xpm

(12.94)

Where
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xp = xpi+1 +xpi

2
(12.95)

The range, ∆xp = |xpi −xpi+1 | should be small enough such that

xp ≈ x = constant (12.96)

This means that the median of the subset is equal to the same point in the original set [Batterson and Klein,
1987]. It is important to note that by doing data partitioning the data set will not be continuous in time
anymore. Different sections in time may have the same condition.

MULTIVARIATE ORTHOGONAL FUNCTIONS

When performing a linearisation of the EoM using a Taylor series expansion, as is done in Equation 12.41.
In order to construct the regressors, higher order combinations of the various independent states are con-
structed. For example, α2 or α2δ3

e . The issue that arises here is that the regressors become highly cor-
related. For a parameter estimation method it will then get more difficult to identify which regressor is
responsible for which observed behaviour. Multivariate Orthogonal Functions is a method to make each
regressor uncorrelated and isolate important unique behaviours in each regressor [Morelli, 1993].

12.4.3. NON-LINEAR PARAMETER ESTIMATION

Often it is not possible to fit the system behaviour in a linear model. At high angles of attack non-linear sys-
tem behaviour is observed, since flow separation and vortices occur [R.Viet, 2019; Palermo, 2019]. Several
methods are available to model these behaviours as mentioned in subsection 12.4.3. Garcia [2019] used
simple polynomial splines to model the high angle of attack behaviours. Multivariate simplex splines, as
proposed by De Visser [2011], with extra refinement at conditions where non-linearities occur would be
a more advanced parametric method. A lot of interest has also been show to the use of neural networks
to model system behaviour. Boëly and Botez [2010]; Akpan and Hassapis [2011] used neural networks to
model fighter jet behaviour at high mach numbers and angle of attacks, good fitting performance was
achieved. However, it was also mentioned that it hard to study stability performance, since the model it-
self is hard to analyse. Another aspect that has to be taken into account, especially for neural networks,
is the complexity of the method. A simple polynomial splines model may already be sufficient in mod-
elling the desired behaviours. Several methods are explained to develop models that can fit this non-linear
behaviour in the following these methods are:

• Splines

• Neural network

SPLINES

Spline models are models that consist of multiple piecewise continuous functions connected to each other
to form one continuous model. B-splines have been used extensively to model non-linear systems [Bruce
and Kellett, 1998]. These splines consist of multiple polynomials expressed in terms of basis functions. It
is stated that cubic splines are most commonly used with second order continuity at the knots, where the
polynomials connect, this will in general render the connections invisible. The general representation of a
nonuniform B-Spline, over the interval 0 < u < 1, is defined as

f (u) =
m∑

i=0
bi ,k (u)pi (12.97)

Where bi ,k is the kth order blending function for the ith control point and pi are the coefficients. The
shape of each blending function can be determined using the Cox-deBoor algorithm [Schumaker, 2007].
Equation 12.97 can also be extended to a multivariate spline representation, the 2-d case defined as:
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f (u, v) =
n∑

i=0

m∑
j=0

bi ,k (u)b j ,l (v)pi , j (12.98)

The major disadvantage of B-splines is that they can only interpolate on a rectangular mesh and cannot fit
scattered data. Multivariate simplex splines are very well suited to model scattered data [De Visser, 2011].
It is shown that these models are more accurate in modelling non-linear systems than B-splines or poly-
nomials. Another advantage mentioned is that the parameters that form the simplex splines are linear.
Therefore, linear regression methods can be used to estimate these. A simplex spline consists out of mul-
tiple simplices joined together, each supporting a single B-form polynomial representing the data in their
section. The spline polynomials are defined by barycentric coordinates, b ∈Rn+1, which is a coordinate of
the point x ∈Rn . The Bernstein basis polynomial of degree d is defined by

B d
κ (b) := d !

κ!
bκ (12.99)

The single simplex t of degree d and dimension n is defined as

p(b) = ∑
|κ|=d

cκB d
κ (b) (12.100)

Here cκ is the B-coefficient. de Visser et al. [2009] states that the strength of multivariate simplex splines
lies in the possibility to vary simplex sizes. So, models can be locally refined to achieve a better represen-
tation.

ARTIFICIAL NEURAL NETWORKS

The previously mentioned methods all yield clear mathematical models, where the user can relate system
behaviour to parameters in the model. Neural networks, however, do not have this capability. Instead,
they purely rely on input-output relationships, not needing to take any physical knowledge into account.
Neural networks consists of multiple layers with several neurons each connected to the neurons of the
previous and the following layer. When an individual neuron receives a signal, it will trigger an activation
function ( f k ) and give certain output to the next neuron which will do the same. To initiate the network,
five parameters need to be chosen, input size, hidden layer size, output layer size, number of neurons in
each layer and an identification data set. Each neuron is mathematically described as

d k
i = f k

[
N∑

j=1

(
wk

i j d k−1
j

)
+bk

i

]
(12.101)

With d k
i the output, d k−1

j the input, wk
i j the weight and the bias bk

i [Boëly and Botez, 2010] at the kth layer.
A representation of a single neuron can be found in Figure 12.4.

Comparing neural networks to regression based models it was found that a neural network performs
slightly better. Schlechtingen and Ferreira Santos [2011] found that both a regression based model and
neural network managed to find defects, however, the neural network based model managed to detect
them quicker. Similarly, Marquez et al. [1991], concluded that when a data set is "clean" both types of
models perform similarly, neural networks prevail when the data set gets noisier.

12.5. MODEL PERFORMANCE
In order to judge the usability and accuracy of the estimated models, various measures can be used. In
subsection 12.4.2 the partial F-statistic is already discussed when performing the stepwise regression. In
order to judge the usability and accuracy of the estimated models or have additional performance param-
eters when doing a stepwise regression various additional measures can be used.
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Figure 12.4: A single neuron [Boëly and Botez, 2010]

By only using the partial F statistic in stepwise regression the model may get too large or too small. i.e.
the process of parameter selection may end prematurely if Fi n is too large or if Fout is too small regressors
with limited influence on the model may not be eliminated. The addition of other metrics are known to
improve the model selection process [Klein and Morelli, 2006].

A principle often used in system identification to limit the size of the model is the principle of parsimony
[Kashyap, 1977], which states:

Given two models fitted to the same data with nearly equal residual variances, choose the
model with the fewest parameters.

This means that a preference should be given to terms that significantly reduce the residual variance. The
significance of the residual variance is settled by comparing the effect on the residual variance of individual
terms with the variance of the measurement noise. If the magnitude of the residual variance does not
exceed that of the measurement noise it is likely this term is modelling (part of) the measurement noise,
which is a stochastic signal and should therefore not be included in the final model.

The coefficient of determination (R2) assesses the overall fit of the model. For every term that is added
to the model R2 will increase, the change in R2 can be used to judge the influence of adding terms. In the
beginning R2 will increase rapidly. However, eventually adding terms will will not significantly increase R2,
this can be a signal to stop the regression. An increase of less than 0.5% is often regarded as insignificant
[Klein and Morelli, 2006]. R2 is determined as follows

R2 = SSR

SST
= 1− SSE

SST
= θ̂X T z −N z2

zT z −N z2 where 0 ≤ R2 ≤ 1 (12.102)

Related to the R2 is the F statistic, specified as

F0 = SSR /n

SSE /(N −p)
= θ̂X T z −N z2

ns2 (12.103)

Combining this with Equation 12.102 yields the relationship

F0 = (N −p)

p −1

R2

1−R2 (12.104)

Using this metric the optimal amount of model terms can be found at the maximum F0. Since when in-
fluential terms are added to the model, R2

1−R2 will dominate the equation. However, when the amount of
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terms increases, (N−p)
p−1 will decrease more than R2

1−R2 . The total F0 will therefor decrease.

Another measure to judge the overall fitting performance of the model is the mean squared error (MSE),
defined as

MSE = 1

N

N∑
i=1

v(i )2 (12.105)

Where v(i) is the prediction error. The danger of this metric is that an increase of model terms will reduce
the MSE, so overfitted models will be better according to this metric. In order to account for a growing
amount of model terms the predicted squared error (PSE) is used [Morelli, 1993] and [Barron, 1984]. The
PSE is defined as

PSE = 1

N

N∑
i=1

v(i )2

︸ ︷︷ ︸
MSE

+2σ2
p

n

N
(12.106)

The first part of this equation is the MSE, the second part is a penalty to account for the amount of model
terms. Where n is the amount of model terms in the model, σ2

max is the highest error variance of the
prediction data, defined as

σ2
max = 1

N

N∑
i=1

[z(i )− z]2 (12.107)

When adding terms to the model the PSE will be dominated by the MSE part in the beginning when the
model is still small. The penalty factor will become more dominant with an increasing amount of model
terms. The optimal amount of model terms, according to the PSE, is the amount with the lowest PSE.

12.6. SCALED AIRCRAFT
The eventual goal of the Flying-V project is to develop a full scale passenger aircraft. However, for current
real world experiments a 4.6% scaled model is used. Several scaling effects need to be taken into account.
Wolowicz and Bowman [1979] developed requirements for scaling aircraft. It is stated that when incom-
pressible flow is assumed (M < 0.3) Froude scaling can be applied. Where for compressible flow (M > 0.3)
Mach scaling is applied. The scaled version of the Flying-V is physically scaled using the Froude scaling
rules. However, aerodynamically it is harder to scale the characteristics. Several plots were made that can
be used to perform the Froude scaling by Wolowicz and Bowman [1979] to scale aerodynamic values. Un-
fortunately, these are only suitable for a minimum scale of 20%. Another research, performed by Wang
et al. [2020], concluded that for a blended wing body in order to simulate stall characteristics, similari-
ties between a scaled and full scale model, regarding Froude and Reynolds number scaling, only yielded
meaningful relations at a scale of at least 50% of the full scale aircraft. Similarly, Haines [1994], concluded
that clear relationships between a scaled and full scaled model cannot be found. The only method avail-
able to get a guesstimate of the characteristics of the full scale version using a scaled model is by using
dimensionless models.

When performing flight test using a scaled airplane other considerations have to be taken into account
as stated by Simmons et al. [2019]. The higher sensitivity to atmospheric disturbances and reduced data
quality compared to larger aircraft pose extra challenges. They therefore proposed methods to improve
model quality. It was found that the flight test data by itself was of poor quality due to high noise levels,
measurement error and process noise are correlated and large perturbations were observed. They there-
fore aided the identification task by using knowledge gained from performing a VLM. This already gave
an indication on which parameters may be important and which are not relevant. This method improved
the fidelity of the longitudinal model. This method did not improve the fidelity of the lateral model, since
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the data set was rich enough to accurately estimate a lateral model. It is important to note that the VLM
method was used to aid the data set, because wind tunnel data was not available in this research.

12.7. SYSTEM IDENTIFICATION MANOEUVRES
Careful planning of flight manoeuvres can greatly benefit the model identification process. Important
considerations to be made for flight testing, as described by Klein and Morelli [2006], are:

• Flight conditions, for example:

– Trim angle of attack

– Mach number

– Aircraft configuration

– Altitude

– Power level

• Manoeuvre time length

• Control surfaces to be moved

• Input form

Typically, the flight conditions depend on the research objective, available resources and practical limita-
tions of the experiment. For the other three considerations the objective is to excite the system such that
the output data is sufficient to accurately model the system. This means that it should be possible to dis-
tinguish the deterministic signal from random noise. Klein and Morelli [2006] states that a signal-to-noise
ratio (SNR) of ten or higher should provide good modelling results and a SNR as low as three may still be
adequate. Another consideration is to ensure that the effects of control surfaces on aircraft behaviour are
uniquely identifiable. Meaning that inputs should be planned such that the effects of control surfaces do
not interfere with each other.

Single-Input manoeuvres are simple but offer accurate results. Since these are both deterministic and are
only performed on one input-axis. The following input forms are the most common forms according to
Klein and Morelli [2006]:

• Impulse

– A quick input spike, it could be one sided, only one impulse in either positive or negative direc-
tion, or two sided, one impulse in positive directly followed by an impulse in negative direction.

– Advantage:

⋄ Simple.

– Disadvantage:

⋄ Low power manoeuvre.

• Frequency sweeps

– A continuous sinusoid input with the frequency increasing in time. Commonly used when
knowledge about the dynamic system is very limited or not available.

– Advantage:

⋄ A comprehensive coverage of the frequency band, resulting in accurate models.

– Disadvantages:

⋄ Sweeps take a long time.
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⋄ Can only be applied to one input, very inefficient when multiple inputs have to be anal-
ysed.

⋄ Hard to maintain flight condition.

⋄ Frequency might pass through structural resonance frequency.

• Multisines

– A sum of sinusoids with different frequencies, amplitudes and phase angles. Frequencies can
be chose such that they cover frequencies of interest.

– A common multisine is the Schroeder sweep.

– Advantage:

⋄ Frequencies can be chosen using available knowledge to analyse frequencies of interest
and/or avoid frequencies that can cause unwanted behaviours.

⋄ Schroeder sweep is generally considered as the superior frequency input for dynamic mod-
elling.

⋄ Can be used with multiple inputs

• Doublets and Multisteps

– Multiple steps of various sizes following each other. A doublet is a square wave, where one
positive step is directly followed by a negative step. Common multistep inputs are the 3-2-1-1
and 2-1-1 manoeuvres. These sequences of numbers means that, for example for the 3-2-1-1,
the first step is three seconds and positive, second two seconds and negative, third one second
and positive and fourth one second and negative. Similarly, a doublet could be defined as a 1-1
or 5-5 multistep manoeuvre.

– Similar to frequency sweeps or multisines. The timing of the steps are usually chosen to repre-
sent interesting frequencies.

Other manoeuvres could also be used to measure specific characteristics. For example the q-isolation pull-
up or pushover, where the pitch rate is nonzero and the angle of attack approximately zero, as researched
by Grauer et al. [2017]. This was performed to aid previously done test flights data in accurately separating
Cmq and Cmα̇

.

In recent years the research focus on test manoeuvres has shifted on more advanced multiple-input ma-
noeuvres. Multiple-input manoeuvres offer the advantages of improved flight test efficiency, improved
excitation of aircraft dynamics and identification of control interaction, according to [Morelli, 2021]. The
main disadvantage of performing multiple-input manoeuvres is the danger of having correlated outputs.
This issue is omitted by producing orthogonal optimised multisines, as is done by Morelli [2012]. These in-
puts are made such that the inputs are uncorrelated on both the time and frequency domain. It was found
by Larsson et al. [2020] that the data acquired using multi-input has similar modelling performance as se-
quential single input manoeuvres while reducing the total manoeuvre time by almost 50%. This while
maintaining practicality, versatility and robustness, according to Morelli [2021]. However, it is recom-
mended to have these manoeuvres automated while a pilot is still in the loop. This to have accurate inputs
while the pilot can focus on maintaining the desired flight conditions [Morelli, 2012].



13 | Flying-V model
The system identification will be done using flight data from a scaled version of the Flying-V. However,
the estimated model will be developed to evaluate the handling qualities of the full scale version of the
Flying-V. The possibilities to scale the aircraft states and models are discussed in this chapter.

13.1. PREVIOUS STUDIES

13.1.1. FULL-SIZE FLYING-V
Extensive research has been done on the preliminary aerodynamic sizing optimisation of the Flying-V
by [Faggiano et al., 2017]. Using the initial sizing various aerodynamic analysis were performed on the full
size model using computational methods. [Cappuyns et al., 2019] assessed the handling qualities using the
Vortex Lattice Method(VLM) and lumped mass model. The results confirmed the lower centre of gravity
range and trivial effects of a shorter tail arm compared to a conventional aircraft.

13.1.2. WINDTUNNEL MODEL

The next step is to physically analyse the performance of the aircraft. This will be done in wind tunnels or
real flight. Unfortunately, performing these tests using a full size Flying-V is very costly, carries a lot of risk
with it and it simply does not fit in a wind tunnel. Therefore, the analysis are done using a scaled model.
[Garcia, 2019] performed an aerodynamic model identification on a scaled version of the Flying-V using
wind tunnel data. A modified stepwise regression (MSR) was used to determine the model structure. It was
found that in general global polynomials manage to establish a good model fit and for the majority of the
data set the prediction capabilities were satisfactory. The polynomial models determined by Garcia [2019]
are:

CX =CX 0 +CXα ·α+CXα2 ·α2 +CXα3 ·α3 +CXα4 ·α4 +CXδ1 ·δ1 +CXδ2 ·δ2+
+CXδ3 ·δ3 +CXδ2

1
·δ2

1 +CXδ2
2
·δ2

2 +CX V̂ · V̂ +CX V̂ 2 · V̂ 2 (13.1)

CZ =CZ 0 +CZα ·α+CZα2 ·α2 +CZα3 ·α3 +CZδ1 ·δ1 +CZδ2 ·δ2 +CZδ3 ·δ3 +CZ V̂ · V̂ (13.2)

Cl =Cl0 +Clα ·α+Clα2 ·α2 +Clα3 ·α3 +Clα4 ·α4 +Clδ1 ·δ1 +Clδ2 ·δ2 +Clδ3 ·δ3 +ClV̂ · V̂ (13.3)

Cm =Cm0 +Cmα ·α+Cmα2 ·α2 +Cmα3 ·α3 +Cmα4 ·α4 +Cmδ1 ·δ1 +Cmδ2 ·δ2+
+Cmδ3 ·δ3 +Cmδ2

1
·δ2

1 +Cmδ2
2
·δ2

2 +Cmδ1δ2 · (δ1 ·δ2)+Cmαδ2
1
· (α ·δ2

1

)+Cmαδ2
2
· (α ·δ2

2

)+
+Cmα2δ1

· (α2 ·δ1
)+Cmα2·δ2

· (α2δ2
)+CmV̂ · V̂ +CmV̂ δ1

· (V̂ ·δ1
) (13.4)

Cn =Cn0 +Cα ·α+Cα2 ·α2 +Cα3 ·α3 +Cα4 ·α4 +Cδ1 ·δ1 +Cδ2 ·δ2 +Cδ2
1
·δ2

1 +Cδ2
2
·δ2

2 +CV̂ · V̂ (13.5)

The values of the coefficients can be found in tables 13.1 to 13.5.

Some model deficiencies were found for the angle of attack, because of the large range of measurement
data. In order to account for this splines were used for the angle of attack. Data partitioning was recom-
mended as an alternative, however, splines were used to maintain continuous models. They are as follows,
with the coefficients in tables 13.6 to 13.10

CX =CXα ·α+CXα2 ·α2 +CXδ1 ·δ1 +CXδ2 ·δ2 +CXδ3 ·δ3+
+CX V̂ · V̂ +CX V̂ 2 · V̂ 2 +CXα2

20
· (α−α20◦)2

+
(13.6)

84
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Table 13.1: Coefficients in X-direction corresponding to Equation 13.1

Parameter Value ± confidence bounds
CX 0 −2.029 ·10−2 ± (

8.556 ·10−4
)

CXα 4.288 ·10−2 ± (
2.662 ·10−3

)
CXα2 9.792 ·10−1 ± (

2.227 ·10−3
)

CXα3 −1.617 ·10−2 ± (
7.731 ·10−2

)
CXα4 −1.519± (

1.639 ·10−1
)

CXδ1 1.060 ·10−2 ± (
6.473 ·10−4

)
CXδ2 7.162 ·10−3 ± (

1.193 ·10−3
)

CXδ3 6.893 ·10−4 ± (
1.294 ·10−4

)
CXδ2

1
−3.928 ·10−2 ± (

2.945 ·10−3
)

CXδ2
2

−2.047 ·10−2 ± (
4.027 ·10−3

)
CX V̂ 8.727 ·10−3 ± (

3.708 ·10−4
)

CX V̂ 2 −3.075 ·10−3 ± (
3.318 ·10−4

)
Table 13.2: Coefficients in Z-direction corresponding to Equation 13.2

Parameter Value ± confidence bounds
CZ 0 −7.583 ·10−2 ± (

5.310 ·10−3
)

CZα −1.943 ± (
1.564 ·10−2

)
CZα2 −1.026 ± (

1.288 ·10−1
)

CZα3 1.866± (
2.343 ·10−1

)
CZδ1 −1.353 ·10−1 ± (

5.239 ·10−3
)

CZδ2 −8.462 ·10−2 ± (
6.915 ·10−3

)
CZδ3 −5.012 ·10−3 ± (

7.192 ·10−4
)

CZ V̂ 3.747 ·10−2 ± (
7.564 ·10−3

)

CZ =CZ 0 +CZα ·α+CZδ1 ·δ1 +CZδ2 ·δ2 +CZδ3 ·δ3 +CZ V̂ · V̂ +
+CZα1

11
· (α−α11◦)++CZα2

17
· (α−α17◦)2

+
(13.7)

Cl =Clα ·α+Clδ1 ·δ1 +Clδ2 ·δ2 +Clδ3 ·δ3 +Clα1
2
· (α−α2◦)++

+Clα2
20
· (α−α20◦)2

++Clδ2α14 ·δ2 · (α−α14◦)0
++Clδ1α23 ·δ1 · (α−α23◦)0

+
(13.8)

Cm =Cm0 +Cmα ·α+Cmδ1 ·δ1 +Cmδ2 ·δ2 +Cmδ3 ·δ3 +CmV̂ · V̂ +
+Cmδ1δ2 ·δ1δ2 +Cmδ2δ3 ·δ2 ·δ3 +Cmδ2

2
·δ2

2 +Cmαδ2
2
·α ·δ2

2+
+Cmα2

20
· (α−α20◦)2

++Cmα2
26
· (α−α26◦)2

++
+Cmδ1α2 ·δ1 · (α−α2◦)0

++Cmδ1α23 ·δ1 · (α−α23◦)0
++

+Cmδ2α−7 ·δ2 · (α−α−7◦)0
++Cmδ2α14 ·δ2 · (α−α14◦)0

++
+Cmδ3α8 ·δ3 · (α−α8◦)+

(13.9)

Cn =Cn0 +Cnα ·α+Cnα2 ·α2 +Cnδ1 ·δ1 +Cnδ2 ·δ2 +Cnδ2
2
·δ2

2+
+CnV̂ · V̂ +Cnα1

8
· (α−α8◦)++Cnα2

5
· (α−α5◦)2

+
(13.10)

The spline models achieved a good model fit, small confidence bounds and small parameter variances.
For this analysis a half model of the airplane was used in a wind tunnel, therefore a model sideslip could
not be estimated. In addition, the accuracy of the asymmetric moments, Cl and Cn , may be affected by
this. Recommendations are done to use a Two-Step Method, so state estimation followed by parameter
estimation, this to acquire a more accurate state estimation. This is especially needed when using in-flight
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Table 13.3: Coefficients in the l-direction corresponding to Equation 13.3

Parameter Value ± confidence bounds
Cl 0 3.584 ·10−3 ± (

4.866 ·10−4
)

Clα 1.842 ·10−1 ± (
1.895 ·10−3

)
Clα2 −1.543 ·10−2 ± (

4.737 ·10−4
)

Clα3 3.215 ·10−1 ± (
4.315 ·10−2

)
Clα4 −8.141 ·10−1 ± (

8.337 ·10−2
)

Clδ1 1.842 ·10−2 ± (
2.649 ·10−4

)
Clδ2 1.450 ·10−2 ± (

3.125 ·10−4
)

Clδ3 9.893 ·10−3 ± (
5.844 ·10−4

)
ClV̂ −3.036 ·10−3 ± (

5.311 ·10−4
)

Table 13.4: Coefficients in the m-direction corresponding to Equation 13.4

Parameter Value ± confidence bounds
Cm0 3.361 ·10−2 ± (

2.788 ·10−3
)

Cmα −1.069 ·10−1 ± (
5.938 ·10−3

)
Cmα2 −2.883 ·10−1 ± (

6.506 ·10−3
)

Cmα3 −8.492 ·10−1 ± (
1.839 ·10−1

)
Cmα4 4.088± (

3.731 ·10−1
)

Cmδ1 −1.482 ·10−1 ± (
2.139 ·10−3

)
Cmδ2 −1.092 ·10−1 ± (

1.433 ·10−3
)

Cmδ3 −6.377 ·10−2 ± (
3.673 ·10−3

)
Cmδ2

1
1.039 ·10−1 ± (

1.608 ·10−2
)

Cmδ2
2

3.400 ·10−2 ± (
1.127 ·10−2

)
Cmδ1δ2 6.120 ·10−2 ± (

1.248 ·10−2
)

Cmαδ2
1

−5.459 ·10−1 ± (
5.529 ·10−2

)
Cmαδ2

2
−2.125 ·10−1 ± (

4.211 ·10−2
)

Cmα2δ1
1.729 ·10−1 ± (

4.450 ·10−2
)

Cmα2δ2 1.775 ·10−1 ± (
3.443 ·10−2

)
CmV̂ 8.071 ·10−3 ± (

3.664 ·10−3
)

CmV̂ δ1
2.203 ·10−3 ± (

4.492 ·10−4
)

data, since on-board sensors are less accurate and are not able to measure all the necessary states. In
order to get a better sense of the noise involved in acquiring the data a Maximum Likelihood estimator
is recommended. The noise statistics may be able to be determined and, when available, these can be
compared to the variances and covariances of the OLS estimators. As mentioned before, the spline models
managed to deliver a more accurate result than the polynomial models. More complex spline methods,
like B-splines or Multivariate simplex splines could be used to get a more accurate representation of the
system. Regarding the scaled wind tunnel model, it did not contain any winglets, engines and did not
simulate any thrust influence. These can have implications on the accuracy of the model, especially for
the force in the X-direction and moment around the Y-axis, Cm .

13.2. IN-FLIGHT MODEL
Previous studies, using simulation and wind tunnel data, have given an insight on the aerodynamic per-
formance and handling qualities of the Flying-V. The next step is to perform flight tests and verify the
previously acquired conclusions.

13.2.1. SCALED MODEL DESIGN

The Flying-V design used for the flight tests is a 4.6% scaled model, the same scale as used in the wind
tunnel model discussed in subsection 13.1.2. Similar to that model, this one is also made with glass fibre
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Table 13.5: Coefficients in the n-direction corresponding to Equation 13.5

Parameter Value ± confidence bounds
Cn0 2.636 ·10−3 ± (

2.609 ·10−4
)

Cnα 5.085 ·10−5 ± (
4.599 ·10−4

)
Cnα2 9.565 ·10−3 ± (

5.479 ·10−4
)

Cnα3 −2.732 ·10−1 ± (
1.304 ·10−2

)
Cnα4 2.324 ·10−1 ± (

2.823 ·10−2
)

Cnδ1 −1.097 ·10−3 ± (
1.224 ·10−4

)
Cnδ2 −1.311 ·10−3 ± (

2.030 ·10−4
)

Cnδ2
1

−6.060 ·10−3 ± (
8.422 ·10−4

)
Cnδ2

2
−5.544 ·10−3 ± (

6.520 ·10−4
)

CnV̂ −1.075 ·10−3 ± (
2.293 ·10−4

)
Table 13.6: Spline coefficients in the m-direction corresponding to Equation 13.6

Parameter Value ± confidence bounds Variance VIF
CXα 4.590 ·10−2 ± (

3.49 ·10−3
)

9.003 ·10−7 1.169
CXα2 7.484 ·10−1 ± (

1.29 ·10−2
)

1.072 ·10−6 46.946
CXδ1 8.103 ·10−3 ± (

1.86 ·10−3
)

5.851 ·10−7 1.331
CXδ2 6.727 ·10−3 ± (

1.50 ·10−3
)

7.476 ·10−7 1.419
CXδ3 7.246 ·10−3 ± (

1.69 ·10−3
)

7.144 ·10−7 38.009
CX V̂ −2.276 ·10−2 ± (

2.03 ·10−3
)

3.166 ·10−6 9.810
CX V̂ 2 1.011 ·10−2 ± (

1.66 ·10−3
)

4.334 ·10−5 19.783
CXα2

20
−1.921 ± (

7.88 ·10−2
)

1.616 ·10−3 4.127

shaped using Resin Liquid Infusion (RLI) with epoxy in a negative mould. At the leading and trailing edges
Airex C70.75 foam panels are used. The ribs and spars are waterjet cut from earlier produced honeycomb
reinforced glass fibre panels. The inside is left hollow to fit flight related components, like sensors, com-
puters, batteries and servos. An image of the inside of the Flying-V can be found in Figure 13.1. The top
and bottom half of the model are glued together using epoxy glue.

Since the intention of this model is to fly, it has more features added with respect to the half wing wind
tunnel model. The important differences between the wind tunnel model and the flight model are:

• A whole aircraft instead of a half model

• Addition of landing gear

• Addition of engines

• Addition of winglets

13.2.2. DATA ACQUISITION

The purpose of flight testing is prove that the Flying-V is able to fly, but more importantly gather data
to improve flight models and optimise future designs. In order to monitor the system and gather data a
multitude of sensors are integrated. A Digital Airdata Computer (DADC) is responsible for the majority
of the flight data. This an off the shelf µADC Air Data Computer Voyager from Aeroprobe. It is fitted
with a five hole pitot tube, an Inertial Navigation System (INS) and a GPS module. Combining these the
DADC accurately measures the airspeed, pitch, roll, heading, angle of attack and side slip angle, among
others. The data is gathered at a sampling rate of 100 Hz. The specifications of the DADC can be found in
Table 13.11 [García, 2020].
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Table 13.7: Spline coefficients in the m-direction corresponding to Equation 13.7

Parameter Value ± confidence bounds Variance VIF
CZ 0 −8.554 ·10−2 ± (

5.53 ·10−3
)

6.866 ·10−6 42.245
CZα −1.869± (

8.62 ·10−3
)

7.966 ·10−6 46.476
CZδ1 −1.284 ·10−1 ± (

5.31 ·10−3
)

5.932 ·10−6 1.363
CZδ2 −7.395 ·10−2 ± (

3.70 ·10−3
)

3.878 ·10−3 4.860
CZδ3 −4.303 ·10−2 ± (

4.77 ·10−3
)

1.550 ·10−4 15.576
CZ V̂ 3.126 ·10−2 ± (

5.14 ·10−3
)

1.933 ·10−5 8.590
CZα1

11
−5.559 ·10−1 ± (

2.44 ·10−2
)

7.350 ·10−6 1.156

CZα2
17

3.176 ± (
1.22 ·10−1

)
3.572 ·10−6 1.247

Table 13.8: Spline coefficients in the m-direction corresponding to Equation 13.8

Parameter Value ± confidence bounds Variance VIF
Clα 1.959 ·10−1 ± (

2.21 ·10−3
)

1.269 ·10−6 27.538
Clδ1 1.891 ·10−2 ± (

7.38 ·10−4
)

1.072 ·10−7 1.425
Clδ2 1.690 ·10−2 ± (

8.42 ·10−4
)

9.441 ·10−5 1.689
Clδ3 9.542 ·10−3 ± (

6.42 ·10−4
)

2.832 ·10−7 2.897
Clα1

2
−1.077 ·10−2 ± (

2.60 ·10−3
)

1.416 ·10−7 1.288

Clα2
20

−6.556 ·10−1 ± (
1.90 ·10−2

)
1.847 ·10−7 2.944

Clδ2α14 −4.619 ·10−3 ± (
1.04 ·10−3

)
1.755 ·10−6 29.548

Clδ1α23 −4.795 ·10−3 ± (
2.37 ·10−3

)
1.468 ·10−6 1.104

CONTROL SURFACES

The control surfaces are controlled by servos. In total four different control surfaces on each side of the
Flying-V need to be controlled, these are

• Inboard control surface

• Middle control surface

• Outboard control surface

• Rudder

Each needs their own servo. In total three different servos are used the important specification data can
be found in Table 13.12 [García, 2020].

An accuracy of these servos is not given. Only for the Hitec Multiplex D954SW a resolution of 4096 is
available4. Which would translate to an accuracy of 360

4096 = 0.08789°. It is likely that the other two servos
have similar accuracy.

PROPULSION SYSTEM

Two ducted fans make up the external part of the propulsion system. In order to control and power these
fans, two electronic speed controllers (ESCs) and two or four 12S LiPo batteries make the system complete.
The specifics of the ducted fans can found in Table 13.13.

COMMUNICATION

In order to control and monitor the airplane in-flight wireless communication systems are used. An RC
control link is responsible for the control of the airplane. The transmitter on the ground is a Duplex DS-14
and the receiver in the airplane a Duplex REX-12 produced by Jeti, both working at 2.4GHz. Telemetry,
air data and system status are communicated using two RFD 868x radio modules produced by Pixhawk.
These continually transmit to the ground station, ensuring the operators can access important data in
real-time.

4URL https://hitecrcd.com/products/servos/d-series-servos/d954sw/product [cited 12/08/2021]

https://hitecrcd.com/products/servos/d-series-servos/d954sw/product
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Table 13.9: Spline coefficients in the m-direction corresponding to Equation 13.9

Parameter Value ± confidence bounds Variance VIF
Cm0 2.440 ·10−2 ± (

3.02 ·10−3
)

3.653 ·10−4 4.960
Cmα −1.461 ·10−1 ± (

3.41 ·10−3
)

2.061 ·10−6 43.964
Cmδ1 −9.921 ·10−2 ± (

7.30 ·10−3
)

5.728 ·10−1 18.881
Cmδ2 −8.065 ·10−2 ± (

9.34 ·10−3
)

1.661 ·10−5 7.801
Cmδ3 −7.077 ·10−2 ± (

4.85 ·10−3
)

2.595 ·10−5 1.171
CmV̂ 1.383 ·10−2 ± (

2.81 ·10−3
)

1.624 ·10−2 22.655
Cmδ2

2
4.729 ·10−2 ± (

1.05 ·10−2
)

2.273 ·10−5 27.494

Cmαδ2
2

−2.243 ·10−1 ± (
3.75 ·10−2

)
6.131 ·10−6 4.885

Cmδ1δ2 4.165 ·10−2 ± (
1.11 ·10−2

)
2.885 ·10−5 5.039

Cmδ2δ3 3.312 ·10−2 ± (
1.08 ·10−2

)
8.540 ·10−6 5.357

Cmα2
20

5.545± (
2.50 ·10−1

)
2.537 ·10−5 29.542

Cmα2
26

−8.353± (
1.48 ·100

)
3.035 ·10−5 2.330

Cmδ1α2 −4.691 ·10−2 ± (
7.99 ·10−3

)
1.386 ·10−5 7.560

Cmδ1α23 5.040 ·10−2 ± (
9.99 ·10−3

)
3.893 ·10−6 2.823

Cmδ2α−7 −3.080 ·10−2 ± (
9.87 ·10−3

)
3.196 ·10−5 1.602

Cmδ2α14 3.383 ·10−2 ± (
3.87 ·10−3

)
2.377 ·10−6 48.083

Cmδ3α8 1.476 ·10−2 ± (
5.73 ·10−3

)
3.023 ·10−6 4.656

Table 13.10: Spline coefficients in the m-direction corresponding to Equation 13.10

Parameter Value ± confidence bounds Variance VIF
Cn0 2.200 ·10−3 ± (

2.68 ·10−4
)

7.940 ·10−8 2.026
CnV̂ −1.039 ·10−3 ± (

2.31 ·10−4
)

7.877 ·10−8 17.719
Cnα −3.013 ·10−3 ± (

5.50 ·10−4
)

1.863 ·10−8 55.031
Cnα2 5.844 ·10−2 ± (

6.15 ·10−3
)

6.684 ·10−9 1.181
Cnδ1 −1.535 ·10−3 ± (

2.33 ·10−4
)

1.417 ·10−8 1.129
Cnδ2 −1.251 ·10−3 ± (

1.60 ·10−4
)

2.115 ·10−6 171.828
Cnδ2

2
−6.453 ·10−3 ± (

5.52 ·10−4
)

1.391 ·10−8 43.349

C 1
nα8

−1.423 ·10−2 ± (
2.85 ·10−3

)
9.836 ·10−6 337.844

Cnα2
5

−1.453 ·10−1 ± (
5.90 ·10−3

)
9.054 ·10−6 123.659

13.2.3. AVAILABLE DATA

An overview of the flight data gathered by the Flying-V can be found Table 13.14.
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Figure 13.1: Inside of Flying-V during assembly

Table 13.11: Aeroprobe DADC specifications

Property Value Unit
Manufacturer Aeroprobe -

Model Voyager -
Airspeed range 16-62 -

Airspeed accuracy ±1.0 m/s
Airflow angle range (AoA & SSA) ±20 °

Airflow angle accuracy ±1.0 °
Barometric altitude resolution 1.0 m
Barometric altitude accuracy ± 24 m

Roll and pitch accuracy 0.3 °
Heading accuracy 1.0 °

Table 13.12: Servo specifications

Value Unit
Manufacturer Hitec Multiplex Hitec Multiplex Hitec Multiplex -

Model D954SW D89MW HS-5070MH -
Control surface Inboard Middle & Rudder Outboard -

Max torque range 18-29 5.3-8.5 3.0-3.7 kg/cm
Operating voltage range 4.8-7.4 4.8-7.4 6.0-7.4 V

Idle current 30 30 3 mA
No load operating current 500 300 240 mA

Stall current 5200 2900 1300 mA
Speed (Seconds to 60°) 0.19-0.12 0.17-0.11 0.14-0.12 s
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Table 13.13: Ducted fan specifications

Value Unit
Manufacturer Schubeler Jets -

Model number fan DS-86-AXI HDS -
Model number electric engine HET800-68-685kV -

Diameter 120 mm
Thrust static 60 N
Max voltage 52 V
Max current 108 A

Max RPM 33000 -

Table 13.14: Sensor data gathered by Flying-V

Data name Unit Sensor manufacturer
Angle of attack ° Aeroprobe

Angle of sideslip ° Aeroprobe
Airspeed m/s MS4525DO

Barometric altitude m Aeroprobe
GPS/GLONASS position ° Ublox Neo-M8N

GPS position ° PCTel 5012D-RD
GNSS/INS data - XSENS MTi-10-100

Temperature °C MLX90614



14 | Conclusion
14.1. CONCLUSION LITERATURE STUDY
The objective of this literature review was to research suitable methods for system identification on the
Flying-V and investigate the limitations of using a scaled aircraft for this purpose.

Multiple methods to identify a model for the Flying-V are available. Each with its strengths and weak-
nesses, so determining which one is most suitable will be dependent on the data that will come available.
Previous studies in the wind tunnel have shown that for low angles of attack an ordinary least squares(OLS)
regression can yield accurate results. The model structure can then be determined using a stepwise regres-
sion. However, it was also found that at higher angles of attack, a linear method like the OLS will become
increasingly inaccurate. Therefore, polynomial splines were used. These piecewise continuous functions
managed to have a better approximation at higher angles of attack than the OLS method. An important
aspect to take into consideration is the fact that for the wind tunnel analysis a half wing was used, which
could only rotate around the y-axis. Consequently, forces in the y-direction could not be measured and ro-
tation measurements around the x- and z-axis may be inaccurate. Since for the continuation of this project
flight data will be used, forces and moments in and around all three Cartesian directions can be measured.
In case the flight data yields nonlinear system behaviour, more advanced spline methods would be more
appropriate, like B-Splines or Simplex Splines. Neural networks can also give accurate results, however,
parametric methods are preferred since these are easier to be analysed by the user.

Using a 4.6% scaled version of the Flying-V will have consequences. The scaled version is physically scaled
using Froude scaling, however, this method does not give any use full guides on how to relate a scaled
version model to a full-scale model. In addition, Reynolds scaling and Mach scaling are also not feasible at
this stage of the project, since these require extreme atmospheric conditions. The only method that may
give remotely relatable results is by using dimensionless models. Another difficulty found with using a
smaller aeroplane is the sensitivity to atmospheric disturbances and the reduced data quality since smaller
less accurate sensors has to be fitted. A method to cope with this is to use previously gained knowledge
from computational methods and wind tunnel testing to improve the quality of the model.
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15 | Stability derivatives
15.1. FORCE AND MOMENT COEFFICIENTS
Longitudinal parameters

CX = X
1
2ρV 2S

CZ = Z
1
2ρV 2S

Cm = M
1
2ρV 2Sc

Lateral parameters

CY = Y
1
2ρV 2S

Cl =
L

1
2ρV 2Sb

Cn = N
1
2ρV 2Sb

Longitudinal stability derivatives

CXu =
1

1
2ρV S

∂X

∂u
CZu =

1
1
2ρV S

∂Z

∂u
Cmu =

1
1
2ρV Sc

∂M

∂u

CXα
= 1

1
2ρV S

∂X

∂w
CZα

= 1
1
2ρV S

∂Z

∂w
Cmα

= 1
1
2ρV Sc

∂M

∂w

CZα̇
= 1

1
2ρV Sc

∂Z

∂ẇ
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16 | Conclusion
The objective of this research was to develop a new aerodynamic model of the Flying-V using flight data.
It was set up by, first, researching the possibilities and limitations of the different system identifications
methods in order to find the most fitting solution for the current problem. Secondly, the aerodynamic
system identification was performed using flight data. Then finally, using the new model the behaviour of
the Flying-V can be analysed and compared with the previous wind tunnel studies.

The first research question is:

Which methods are most suitable for aerodynamic system identification of the Flying-V using
the available experimental flight data and information gained from previous studies?

This was treated in the literature review. Where various model structure determination methods were
compared. A stepwise regression was chosen to determine the model structure, because previous studies
have found this to be an ideal method to determine the structure of the polynomial models. The estimated
polynomial models are especially useful in the early phases of the development of an aircraft.

After the model structure was determined the following question could be answered.

What influence does the amount of input parameters and the individual parameters have on
the model behaviour?

It was found that compared to the longitudinal polynomials, the lateral ones did use more parameters.
This indicates that the lateral motions are more complex than the longitudinal ones. When analysing the
influence of individual parameters Cnβ

, the weathercock stability, stands out. For a conventional layout
aircraft this stability parameter has a large influence on the directional stability of the aircraft. However,
for the Flying-V this influence is small. When looking at the layout of the Flying-V compared to a conven-
tional aircraft the rudder and arm to the rudder of the Flying-V are relatively small. This explains the small
influence of Cnβ

.

The final question was states as:

What new information on handling and stability of the Flying-V can be gathered compared to
the wind tunnel models?

For this the flight model was compared to the models found using the wind tunnel data. It became clear
that the available engine model does not suffice for this in-flight use case. Especially CX , and consequently
CD , suffer from the limited knowledge of the flight engine performance. Moreover, a large deviation was
also found for Cm . This was partly due to the interaction with the engines. However, it is likely that the
available data did not contain the information to fully evaluate the extent of Cm .

Altogether, taking the previously mentioned conditions into account, the presented models will give a real-
istic representation of the behaviour of the Flying-V. In conclusion, using the presented method, improved
models will be able to be estimated when more data becomes available.
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17 | Recommendations
Following the conclusions recommendations for future research are presented in this chapter.

• The data set used for this analysis is fairly conservative when it comes to excitations. For future test
flights it is recommended to perform manoeuvres with larger control surface deflections and aero-
dynamic angles. To improve the knowledge on, for example, control effectiveness and directional
sensitivity.

• In the wind tunnel experiments it was found that at high angles of attack a pitch-break occurs and
the aircraft can stall. Even though, this is hard to safely perform in test flights it is recommended to
research this in-flight behaviours to improve future models.

• The currently available engine model does not manage to model the thrust at the evaluated flight
states. For example currently the thrust is not influenced by the high angle of attack motions ac-
cording to the model.

• Similarly, more data from a larger variety of identification manoeuvres would greatly enrich the
available information for future iterations of the currently discussed aerodynamic model.

• It was also found that there is a possible interaction between longitudinal and lateral states. It is
expected that this is from an influence between the rudder and the wing. However, more knowledge
of these interactions will result in improved future models of the Flying-V and a better understanding
of the implications of this phenomena.

• For the method verification the Citation-II DASMAT model is used. To improve the verification a di-
rect comparison of parameters can be performed. Ideally the parameters estimated by the DASMAT
model should converge around the parameter values estimated using the model from the stepwise
regression.

99


	Executive summary
	Preface
	Nomenclature
	I Introduction
	Introduction
	Research Objective


	II Research Paper
	Introduction
	Background
	Scaled Flying-V
	Outline

	Flight Path Reconstruction
	Flight data
	State Estimation
	Data Coverage

	Aerodynamic Model Identification
	Aerodynamic Model Definition
	Model Structure Determination
	Multivariate Orthogonal Functions

	Results and Discussion
	Model Structure
	Flying-V Model Performance
	Comparison to Wind Tunnel Model

	Conclusion
	Recommendations
	Bibliography
	Appendix

	III Literature Survey
	Introduction
	Background
	Flying-V Project
	Flying-V Layout

	Aircraft model identification
	System identification
	Frames of Reference
	Equations of Motion
	Parameter estimation
	Model performance
	Scaled aircraft
	System Identification Manoeuvres

	Flying-V model
	Previous studies
	In-flight model

	Conclusion
	Conclusion Literature Study

	Bibliography
	Stability derivatives
	Force and moment coefficients


	IV Conclusion
	Conclusion
	Recommendations


