
___________________________________ 

Adaptive image interrogation for PIV 

– Application to compressible flows and interfaces – 

 

 

Proefschrift 

 

ter verkrijging van de graad doctor  

aan de Technische Universiteit Delft,  

op gezag van de Rector Magnificus Prof.ir. K.C.A.M. Luyben,  

voorzitter van het College voor Promoties  

in het openbaar te verdedigen op 18 februari 2010 om 15.00 uur  

door Raf THEUNISSEN  

Ingenieur Luchtvaart en Ruimtevaart  

geboren te Genk, België 

___________________________________ 

 



Dit proefschrift is goedgekeurd door de promotor:  

Prof.dr. F. Scarano  

 

Samenstelling promotiecommissie:  

 

Rector Magnificus,  

Prof.dr. F. Scarano, Technische Universiteit Delft, promotor  

Prof. M.L. Riethmuller, von Karman Institute for Fluid Dynamics België  

Prof.dr.ir. A. Hubin, Vrije Universiteit Brussel  

Prof.dr.ir. J. Westerweel, Technische Universiteit Delft  

Prof.dr.ir. P.G. Bakker, Technische Universiteit Delft  

B. Wieneke, LaVision GmbH Duitsland  

Dr. T. Astarita, Università di Napoli ‘Federico II’ Italië  

 

Prof. M.L. Riethmuller heeft als begeleider in belangrijke mate aan de  

totstandkoming van het proefschrift bijgedragen. 

 

 

ISBN 978-2-87516-000-3 



 

 

Vrije Universiteit Brussel 

Faculteit Ingenieurswetenschappen 

Vakgroep Materialen en Chemie 

Research Group Electrochemical and Surface Engineering 

 

Adaptive image interrogation for PIV  

- Application to compressible flows and interfaces -  

 

ir. Raf Theunissen  

 

Proefschrift ingediend tot het behalen van de graad van  

Doctor in de Ingenieurswetenschappen  

Dit proefschrift is goedgekeurd door de promotoren:  

Prof.dr. Fulvio. Scarano  

Prof.dr.ir. Annick Hubin  

Academia 2009-2010 



Doctoral Committee: 

 

Prof.dr.ir. Philippe Lataire, Vrije Universiteit Brussel, voorzitter  

Prof.dr.ir. Rik Pintelon, Vrije Universiteit Brussel, vice-voorzitter  

Prof.dr. Fulvio Scarano, Technische Universiteit Delft, promotor  

Prof.dr.ir. Annick Hubin, Vrije Universiteit Brussel, promotor  

Prof.dr.ir. Jeroen van Beeck, von Karman Institute, co-promotor  

Prof.dr. Steve Vanlanduit, Vrije Universiteit Brussel  

Prof.dr. Christophe Schram, von Karman Institute  

Dr. Bertrand Lecordier, UMR 6614 Complexe de Recherche 

Interprofessionnel en Aérothermochimie 

Dr.ir. Sam Dehaeck, Université Libre de Bruxelles  

 

 

Prof. M.L. Riethmuller (von Karman Institute for Fluid Dynamics) heeft 
als begeleider in belangrijke mate aan de totstandkoming van het 
proefschrift bijgedragen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



von Karman Institute for Fluid Dynamics 
Environmental and Applied Fluid Dynamics Department 

 
Technische Universiteit Delft 

Aerospace Engineering 
 

Vrije Universiteit Brussel 
Faculteit Ingenieurswetenschappen 
Vakgroep: Materialen en Chemie 

 
 

Adaptive image interrogation for PIV 
 

Application to compressible flows and 
interfaces 

 
 

Cover art: The cover image depicts a PIV snapshot of the flow around a sphere at Mach 
6 (J. Haertig et al. 2005) and the different stages of the iterative adaptive image 
interrogation procedure. Clockwise are displayed the detected particle images 
(undersampled by a factor 2 for clarity) and the standard deviation in measured velocity. 
These two quantities are combined into a single probability distribution function to 
assign an adequate sampling mesh (i.e. sampling locations). Interfaces and regions with 
strong velocity gradients (e.g. shocks) are attributed a higher number of smaller 
interrogation windows, whereas regions with large flow scales and poor seeding density 
correspond to a low sampling density. Correlation windows are rotated and stretched 
parallel to detected interfaces to further increase spatial resolution. The final image 
depicts the resulting streamline pattern extracted at random locations.  
 
 
Thesis presented by Raf THEUNISSEN, M.Sc. in Aerospace Engineering, in order to 
obtain the degree of “Doctor”, Technische Universiteit Delft, The Netherlands and 
Vrije Universiteit Brussel, Belgium, February 2010. 
 
This doctoral thesis is published in the context of a partnership agreement governing the 
joint supervision and awarding of a doctorate diploma. 
 
Promoters: Prof. Dr. F. Scarano (Technische Universiteit Delft, TU Delft, The 
Netherlands) and Prof. Dr. Ir. A. Hubin (Vrije Universiteit Brussel, VUB, Belgium) 
 
Supervisors: Prof. M.L Riethmuller (von Karman Institute for Fluid Dynamics VKI, 
Belgium) 



A selection of doctoral theses published by the von Karman Institute: 
 
Modeling and simulation of dispersed two-phase flow transport phenomena in electrochemical 
processes 
(Th. Nierhaus, Université Libre de Bruxelles and RWTH Aachen, October 2009) 
 
Tunable diode laser absorption spectroscopy characterization of impulse hypervelocity CO2 
flows 
(J. Meyers, Université Libre de Bruxelles, September 2009) 
 
Physical models for nonequilibrium plasma flow simulations at high speed re-entry conditions 
(M. Panesi, Università degli Studi di Pisa, Italy, 2009) 
 
Aero-thermal impact of purge flow and rotor platform cooling on a transonic HP turbine stage - 
experimental, numerical and correlation based study 
(M. Pau, Università degli Studi di Cagliari, Italy February 2009) 
 
A component environment for high-performance scientific computing design and 
implementation 
(T. Quintino, Katholieke Universiteit Leuven, Belgium, December 2008) 
 
An object oriented and high performance platform for aerothermodynamics simulation 
(A. Lani, Université Libre de Bruxelles, Belgium, December 2008) 
 
Efficiency of a HP turbine tested in a compression tube facility 
(T. Yasa, Université Catholique de Louvain, Belgium, April 2008) 
 
A full catalogue of publications is available from the library 
 

Adaptive image interrogation for PIV - 
Application to compressible flows and interfaces 
 
Keywords: PIV, image processing, adaptive interrogation, spatial resolution, aircraft wake 
vortex, cylinder, shock-wave-boundary layer interaction, interface treatment, Fast Fourier 
transforms, correlations, vector relocation, robustness, compression ramp, boundary layer, 
statistical adaptivity, non-isotropic correlation, window overlap ratio, transonic airfoil 
wake, data analysis, backward-facing step, hypersonic sphere, over-expanded supersonic 
jet, statistical error, integral time-scale, confidence level, dependent circular block 
bootstrap 
 
© 2010 by R. THEUNISSEN 
    D/2010/0238/562, J.P.A.J. van Beeck, Editor-in-Chief 
Published by the von Karman Institute for Fluid Dynamics with permission. 
 
All rights reserved. Permission to use a maximum of two figures or tables and brief excerpts in 
scientific and educational works is hereby granted provided the source is acknowledged. This 
consent does not extend to other kinds of copying and reproduction, for which permission 
requests should be addressed to the Director of the von Karman Institute. 
 
ISBN 978-2-87516-000-3 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my amazing daughter Elissa, 
my wonderful wife Silvana, 

and my fantastic parents Grietje and Renier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A word of thanks… 
 
 
 
 

I cannot believe it; I am actually writing the last part of the thesis; 5 years of hard work 
have come to an end. And closing the door behind me as a doctoral student, I open with 
great anticipation the very welcomed door as a husband and father… starting a new life in 
Switzerland…and working on gas turbine performances. This thesis hasn’t been easy to 
accomplish but I could always fall back on the support of some wonderful people I would 
like to thank in the following lines. 

  
I would like to thank Prof. Fulvio Scarano. Fulvio, not only have you been an amazing 

supervisor with great ideas and a critical eye, you went further than many supervisors 
would, passing many programming (nightly) sessions side by side nourished with your 
pasta (also thank you Ines). You have become a personal friend with a listening ear and 
good advice. Prof. Michel Riethmuller I am indebted for allowing me to perform the PhD 
at the von Karman Institute. By encouraging me to participate at several conferences and 
workshops I have been able to build up quite some self-confidence. 

 



 

Special thanks go to Alberto Di Sante, who introduced me the problem discussed in 
Chapter 7 and with whom I had the pleasure to publish two journal articles. Moreover, 
Alberto helped me to find the job in Switzerland and I firmly believe he is the only person 
who immediately knows when I quote from Top Gun. 

I would further like to acknowledge Prof. Jeroen van Beeck for all his efforts in 
arranging the administrative difficulties related to the bi-promotion and Christelle Debeer 
for coping with all the issues related to the printing of this thesis. 

 
It is difficult for anybody not being part of the scientific world, to understand the 

dedication required to bring a PhD to a successful ending. Nights, days, weeks (including 
weekends), months are often sacrificed, only to find out that a promising idea does not 
work. In those depressing moments, the loving support of close friends or family may 
provide the necessary strength to keep on going. Especially when such blows have to be 
endured at high frequency of occurrence. In my case I count myself fortunate to have 
been able to count on the love of my (now) wife Silvana and my parents. Although my 
name stands alone as author of this manuscript, they really have been co-authors. Merci 
princesse pour ton support. Je sais que ce n’était pas  toujours facile. Certainement pas 
pendant la grossesse, mais finalement on l’a fini avec succès et une super belle petite 
princesse. Je t’aimerai pour toujours. Liefste oudertjes, het is eindelijk gedaan. Na vijf 
jaar hard werken hebben we eindelijk het doctoraatsdiploma op zak. Hartelijk bedankt 
voor al jullie steun en liefde al die vorige, huidige en toekomstige jaren. 

 
It looks easy enough; saying “thank you”, but reflecting back I have met so many 

special people at the VKI and I’m too afraid I would forget someone if I started to 
mention individual names. At this point I therefore cannot resist to refer to a very nice 
phrase from the all-time epic “The Lord of the Rings”; I didn’t know half of them half as 
well as I should like, and I liked less than half of them half as well as they deserved. All 
of you who are special to me and close to my heart, THANK YOU for all your services (a 
big thanks to the VKI library, press, reception, technicians and secretary) and the great 
moments (this part refers mostly to VKI fellow students) we had in climbing, going out, 
having a drink, tumbling in cars, sharing living spaces, talking, listening etc. 

 
The suitability of the developed PIV image interrogation procedure has been argued 

mostly by means of image recordings from experiments performed by people other than 
myself. I would like to gratefully acknowledge the following persons; Vincent Ruwet 
(cylinder, alveoli), Ray Humble (shockwave boundary layer interaction), Airbus Bremen 
(aircraft wing vortex), Gerrit Elsinga (boundary layer), Ferry Schrijer (hypersonic double 
ramp), Annand Ashok (airfoil wake), Damiano Caimano (backward facing step), Jacques 
Haertig (hypersonic sphere), Anna Jerónimo (over-expanded supersonic jet), Alberto Di 
Sante (time-resolved diverging channel), Catherine Baivier (large scale windtunnel), 
Nicolas Buchmann (alveolated tube) and Josu Beloki Perurena (liquid cross-flow). 

 
This work has been supported by the Instituut voor de aanmoediging van innovatie 

door Wetenschap & Technologie in Vlaanderen (IWT, SBO project nr. 040092). 



i 

 

CONTENTS 
 
 
 
Introduction   1 
 Background.........................................................................................................  1 
 Operational principle of PIV...............................................................................  2 
 PIV technique development................................................................................  3 
 PIV algorithm evolution ....................................................................................  4 
 Current limitations .............................................................................................  5 
 Motivation of present work ...............................................................................  6 
 Objectives .........................................................................................................  8 
 Thesis outline .....................................................................................................  9 
 
 
1  Particle Image Velocimetry  11 
 1.1 Introduction ................................................................................................  13 
 1.2 Particle tracers ............................................................................................  14 
  1.2.1 Tracking characteristics of particles ...............................................  14 
  1.2.2 Illumination .....................................................................................  14 
  1.2.3 Particle imaging ..............................................................................  15 
  1.2.4 Image recording ..............................................................................  17 
 1.3 Image velocimetry modes ..........................................................................  18 
 1.4 Tracer motion evaluation ...........................................................................  20 
  1.4.1 Particle tracking ..............................................................................  20 
  1.4.2 Particle pattern tracking ..................................................................  21 
 1.5 Image pre-processing .................................................................................  26 
 1.6 Conclusions ................................................................................................  27 
 
 
2 PIV Image Evaluation  29 
 2.1 Introduction ................................................................................................  30 
 2.2 Single pass cross-correlation analysis ........................................................  31 



ii Contents 

  2.2.1 Basic rules for motion analysis .......................................................  32 
  2.2.2 Vector validation .............................................................................  35 
 2.3 Iterative interrogation methods ..................................................................  36 
  2.3.1 Multi-grid analysis with discrete window offset .............................  36 
  2.3.2 Multi-grid analysis with window deformation ................................  38 
  2.3.3 Implementation ...............................................................................  40 
 2.4 Advanced iterative interrogation methods .................................................  44 
  2.4.1 Predictor filtering ............................................................................  44 
  2.4.2 Performance assessment .................................................................  46 
 2.5 Typical PIV experiment: Cylinder wake ...................................................  49 
  2.5.1 Background .....................................................................................  49 
  2.5.2 Experimental facility .......................................................................  49 
  2.5.3 Image evaluation .............................................................................  50 
 2.6 Conclusions ................................................................................................  53 
 
 
3 Adaptive sampling and windowing interrogation in PIV  55 
 3.1 Introduction.................................................................................................  57 
 3.2 Problem statement.......................................................................................  58 
 3.3 Proposed methodology ...............................................................................  61 
  3.3.1 Signal adaptivity ..............................................................................  62 
  3.3.2 Flow adaptivity ................................................................................  63 
  3.3.3 Combination of signal and flow adaptivity......................................  64 
 3.4 Implementation ...........................................................................................  66 
  3.4.1 Signal quantization...........................................................................  66 
  3.4.2 Data interpolation.............................................................................  69 
  3.4.3 Data allocation .................................................................................  71 
 3.5 Interrogation methodology..........................................................................  73 
 3.6 Performance evaluation ..............................................................................  75 
  3.6.1 Isotropic random fluctuations ..........................................................  75 
  3.6.2 Transport aircraft wake vortex.........................................................  78 
  3.6.3 Shock-wave boundary layer interaction...........................................  81 
  3.6.4 Cylinder wake flow..........................................................................  85 
 3.7 Conclusions.................................................................................................  87 
 
 
 



Contents iii 

4 Improvement of PIV image interrogation near stationary interfaces  89 
 4.1 Introduction.................................................................................................  91 
 4.2 Problem statement.......................................................................................  92 
 4.3 Numerical assessment.................................................................................  95 
  4.3.1 Image pre-processing .......................................................................  95 
  4.3.2 Adapted correlation schemes ...........................................................  97 
  4.3.3 Vector relocation..............................................................................  99 
 4.5 Symmetric-mask-exclusion direct cross-correlation implementation.........  101 
 4.6 Adaptive interrogation near interfaces........................................................  103 
 4.7 Experimental assessment ............................................................................  105 
  4.7.1 Subsonic turbulent boundary layer over a flat plate.........................  105 
  4.7.2 Double compression ramp at Mach 7 ..............................................  111 
 4.8 Conclusions.................................................................................................  114 
 
 
5 Statistical adaptivity in PIV interrogation  117 
 5.1 Introduction.................................................................................................  118 
 5.2 Proposed methodology ...............................................................................  120 
 5.3 Implementation ...........................................................................................  123 
  5.3.1 Adaptive sampling and window sizing ............................................  123 
  5.3.2 Statistical validation.........................................................................  125 
  5.3.3 Non-isotropic correlation .................................................................  126 
  5.3.4 Number of correlation windows ......................................................  127 
  5.3.5 Adaptive image snapshot interrogation............................................  129 
 5.4 Experimental application ............................................................................  130 
  5.4.1 Shock-wave boundary layer interaction...........................................  130 
  5.4.2 Transonic airfoil wake .....................................................................  138 
 5.5 Conclusions.................................................................................................  142 
 
 
6 Experimental assessment of adaptive PIV interrogation  143 
 6.1 Introduction.................................................................................................  144 
 6.2 Hypersonic sphere.......................................................................................  145 
  6.2.1 Background ......................................................................................  145 
  6.2.2 Experimental facility........................................................................  145 
  6.2.3 Image evaluation..............................................................................  146 
  6.2.4 Flow diagnostics ..............................................................................  148 



iv Contents 

 6.3 Backward facing step flow..........................................................................  150 
  6.3.1 Background ......................................................................................  150 
  6.3.2 Experimental facility........................................................................  151 
  6.3.3 Image evaluation..............................................................................  151 
  6.3.4 Flow diagnostics ..............................................................................  154 
 6.4 Over-expanded supersonic jet.....................................................................  157 
  6.4.1 Background ......................................................................................  157 
  6.4.2 Experimental facility........................................................................  158 
  6.4.3 Image evaluation..............................................................................  159 
  6.4.4 Flow diagnostics ..............................................................................  161 
 6.5 Discussion...................................................................................................  165 
 6.6 Conclusions.................................................................................................  167 
 
 
7 Statistical analysis of PIV measurements  169 
 7.1 Introduction.................................................................................................  170 
 7.2 Dependent circular block bootstrap ............................................................  174 
 7.3 Dependent circular bootstrap implementation ............................................  175 
 7.4 Practical examples ......................................................................................  177 
  7.4.1 Time-resolved PIV in a diverging channel flow..............................  177 
  7.4.2 Classic PIV in a backward facing step flow.....................................  179 
 7.5 Conclusions.................................................................................................  181 
 
 
8 Summary and perspectives  183 
 8.1 Summary.......................................................................................................  183 
 8.2 Perspectives ..................................................................................................  185 
  8.2.1 PIV in the fast lane.............................................................................  185 
  8.2.2 An everlasting yearn for more spatial resolution ...............................  186 
  8.2.3 Extended adaptivity ...........................................................................  187 
  8.2.4 Adaptivity philosophy in 3D..............................................................  188 
 
 
References   191 
 
 
 



Contents v 

A Adaptive image evaluation: literature survey  205 
 A.1 Introduction.................................................................................................  206 
 A.2 Signal quantization .....................................................................................  206 
  A.2.1 Feature tracking ...............................................................................  206 
  A.2.2 Image statistics.................................................................................  208 
  A.2.3 Particle image segmentation ............................................................  209 
 A.3 Data interpolation .......................................................................................  209 
  A.3.1 Adaptive Gaussian Windowing averaging (AGW)..........................  210 
  A.3.2 Polynomial fitting ............................................................................  210 
  A.3.3 Kriging interpolation........................................................................  210 
  A.3.4 Natural Neighbor interpolation (NN)...............................................  211 
 A.4 Post-processing: vorticity calculation .........................................................  212 
  A.4.1 Differential schemes ........................................................................  212 
  A.4.2 Least-squares fitting.........................................................................  212 
 
 
B PIV resolution across normal shocks  215 
 B.1 Introduction.................................................................................................  216 
 B.2 Tracer response ...........................................................................................  217 
 B.3 Image evaluation limits to PIV resolution ..................................................  219 
  B.3.1 Model shock response for ideal tracers............................................  219 
  B.3.2 Interrogation intrinsic shock response for ideal tracers ...................  220 
  B.3.3 Model shock response for real tracers..............................................  221 
 B.4 Shock position retrieval ..............................................................................  222 
 B.5 Conclusions.................................................................................................  224 
 
 
C Robust image evaluation for sub-optimal PIV recordings  225 
 C.1 Introduction.................................................................................................  225 
 C.2 Implementation ...........................................................................................  226 
 C.3 Experimental applications...........................................................................  227 
  C.3.1 Large scale wind tunnel ...................................................................  227 
  C.3.2 Alveolated bend ...............................................................................  229 
  C.3.3 Liquid ejection in a hypersonic cross-flow ......................................  230 
 C.4 Adaptivity in robust image evaluation: application to an alveolated tube ..  231 
  C.4.1 Background ......................................................................................  231 
  C.4.2 Experimental facility........................................................................  231 



vi Contents 

  C.4.3 Image evaluation..............................................................................  232 
  C.4.4 Flow diagnostics ..............................................................................  234 
 C.5 Conclusions.................................................................................................  235 
 
 
D Non-isotropic weighting functions in tomographic flow  237 
 D.1 Introduction.................................................................................................  238 
 D.2 Non-isotropic weighting .............................................................................  238 
 D.3 Performance assessment .............................................................................  240 
  D.3.1 Synthetic flow field generation ........................................................  240 
  D.3.2 Results..............................................................................................  241 
 D.4 Conclusions and prospects..........................................................................  243 
 
 
Nederlandstalige samenvatting  245 
 
 
Curriculum Vitae  249  
 
 
 
 
 



1 

 

INTRODUCTION 
 
 
 
 

Background 
 
Powerful computers are nowadays able to make flow predictions based on the 

mathematical treatment of the fluid flow governing equations. Nevertheless, these 
computations explicitly or implicitly contain simplifications and assumptions and often 
lack sufficient validation. Experimental approaches on the other hand do not involve 
simulations but consist of in-situ sampling of Nature’s arranged orchestration of physical 
phenomena. 

Till the advent of laser in the 1960’s, only probe-based measurement techniques such 
as pitot-tubes and hot-wires were available for an accurate velocity measurement of 
flows. The Laser Doppler Velocimeter (LDV) allowed for the first time to investigate by 
a non-intrusive procedure several types of flows and contributed to the development and 
verification of theories and models for the prediction and simulation of turbulence (Flack, 
1975). Measurements were limited however to one specific spatial location at a time. The 
determination of the velocity field over an extended flow domain was therefore a time 
consuming and laborious process. Moreover, it prohibited the direct measurement of 
spatial velocity gradients, which are of importance in the characterization of turbulence. 
Not to mention the matter of experimental repeatability; repetition of the experiment 
while extracting flow information at different spatial locations was only feasible in 
applications involving steady flows. Unsteady flows on the other hand can only be 
characterized from a statistical point of view, most notably turbulent flows.  

 

 
Fig. 1: Instability of smoke from a cigarette. The smoke rises vertically and smoothly for some 
distance (laminar flow) followed by transition into the turbulent regime due to growing 
undulations (taken from Van Dyke, 1988). 
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Flow visualization techniques such as smoke injection, hydrogen bubble wires and 
streak photography on the other hand, would allow at a glance to visualize and identify 
the large scale organization of complex flows which mostly undergo transition from 
laminar to turbulent regimes. A textbook example is the thermal convection of hot air 
upwards from a burning cigarette (Van Dyke, 1988) visualized by its tendril of smoke 
(Fig. 1).  

While visualization primarily allows qualitative analyses, quantitative data can be 
obtained through adequate processing of the recorded image sequences of the visible flow 
motion i.e. image velocimetry. Molecular diffusion in case of laminar flows or the more 
efficient mixing in case of turbulent flows smears out the distinct boundaries of the 
visualized coherent structures however, which can be clearly observed in Fig. 1. This 
smearing complicates the derivation of accurate velocity estimates in the image 
processing stage and can be circumvented by observing sharp, individual tracer images 
instead of coherent (smoke) patterns; hence the acronym particle image velocimetry. 
 
Operational principle of PIV 
 

The advent of Particle Image Velocimetry (PIV) was obtained by the combined 
application of a controlled illumination technique (pulsed light sheet) and a flow seeding 
method based on distinct particle tracers.  

 

 
Fig. 2: Typical layout of single-camera image velocimetry. 

 
A typical configuration of a PIV experiment is depicted in Fig. 2 and consists of the 

following; 
1. to visualize the flow, small tracer particles are added which are assumed to ideally 

follow the fluid motion. 
2. a pulsed light source provides illumination of the tracers twice. The separation time 

between pulses is set taking into account the fluid velocity and magnification factor 
of the imaging system. 
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3. cylindrical and spherical lenses shape the light beam into a thin, sheet-like region. 
The typical size† of the measurement domain ranges from 5×5cm2 to 50×50cm2.  

4. the scattered light from the tracers is imaged through a lens and recorded by a CCD 
or CMOS sensor at two different time instants.  

5. the digital recordings are divided into small interrogation areas (Fig. 3) where the 
particle displacement is estimated by means of spatial cross-correlation or other 
statistical operators. 

 

 
 

(a) (b) 
Fig. 3: (a) The image of the recorded light scattered by the tracer particles is divided into small 
sections called interrogation areas or interrogation windows (b) where the particle displacement is 
estimated. 
 
PIV technique development 

 
Particle Image Velocimetry experiments nowadays cover the breadth of fluid 

dynamics; from hypersonic flows (Schrijer et al., 2006) to fundamental turbulence 
research (Poelma et al., 2006) and artery flow in chicken embryos (Vennemann et al., 
2006). The technique’s increase in maturity has been documented by hundreds of 
dedicated scientific papers (Adrian, 2005).  

It’s success must be ascribed to its non-intrusive character, the simplicity of its 
principle and the high amount of flow information relative to the short operation time. 
Additionally, with the advent of new technological advances, this laser-based 
measurement technique has grown exponentially over the last years in its domain of 
application. An example where hardware improvements have been beneficial is the case 
of PIV experiments applied to high speed flows. Powerful lasers now provide sufficient 
energy over short pulse durations to adequately illuminate the tracers while advanced 
digital cameras allow short time intervals between exposures. Such developments have 
made accurate image velocimetry measurements possible in high speed flows up to 
hypersonic regimes. 

The majority of developments in the PIV technique took place in the last 20 to 30 
years and were initiated by the Lecture Series organized at the von Karman Institute in 
1988. Since, PIV embodies a collection of imaging methodologies, based on the original 
operational principle, but each aimed at extracting as much velocity related information 
                                                      
† Measurement domains below a square millimeter can be obtained, but not with the depicted PIV 
setup. This technique is commonly known as Micro-PIV (Kähler and Scholz, 2006). 
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as possible with high resolution. Existing techniques can be classified based on the 
optical imaging arrangement and targeted flow velocity components;  
2D 2C: basic PIV configuration with a single camera (Fig. 2). Velocity components 

within the thin light plane are measured 
2D 3C: two cameras record the scattered light within a thin light sheet from different 

observation angles (Fig. 4-a). This allows the extraction of the third velocity 
component (Gauthier and Riethmuller, 1988). This technique is referred 
nowadays to as Stereoscopic PIV (Prasad, 2000) 

3D 2C: A different approach involves scanning, i.e. recording, multiple parallel 
illumination planes. Afterwards the out-of-plane flow motion is derived by 
interpolating the 2D velocity fields (Brücker, 1997). The third dimension may 
also refer to time. With lasers able to operate at high repetition frequencies and 
digital cameras capable of recording at high frame rates, two dimensional 
velocity fields are obtained which are resolved in time (Hain and Kähler, 2007).  

3D 3C: Fig. 4-b illustrates the use of multiple cameras, which allows the three 
dimensional reconstruction of the intensity field within an illuminated volume 
rather than a plane (Elsinga et al., 2008). Image processing then yields fully 3 
dimensional velocity fields. 

4D 3C: when the 3D 3C experimental setup is equipped with high frame grabbing 
frequency cameras, time-resolved, 3D velocity fields can be obtained. 

 

 
(a) (b) 

Fig. 4: Examples of camera arrangements for (a) stereo-PIV (2D 3C) and (b) tomographic PIV 
(3D 3C). 
 
PIV algorithm evolution 
 

In parallel to the evolution in PIV hardware (camera, laser, computing resource, etc.), 
PIV image evaluation algorithms have become continuously faster and more accurate. In 
the following, the development in PIV algorithm is briefly discussed with a slightly more 
elaborate discussion in Chapter 2. An extensive review of the different PIV image 
evaluation techniques can be found in Scarano (2002) and Willert (2009).  
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The most straightforward method of extracting tracer motion from a digital image pair 
was, and still is, cross-correlating common-sized image sections at coincident positions. 
Because the displacement estimates are calculated in a single pass (Willert and Gharib, 
1991), stringent restrictions are imposed on the interrogation window size limits to avoid 
aliasing artifacts or loss of signal. Shifting the sampling areas with respect to one another 
with a constant, integer, displacement improved the matching of the recorded particle 
images and the algorithm performances (Westerweel et al., 1997). Of course, prior 
knowledge of the necessary (displacement) shift is needed and can be retrieved by 
repeating the image interrogation procedure in multiple passes using the recovered 
displacement field from the previous iteration. In addition to the interrogation area offset, 
the image pairs can be processed with smaller interrogation windows on a finer grid. Such 
multi-grid approaches offered an additional increase in spatial resolution (Soria, 1996). 
Further improvements in algorithm accuracy are achieved by incorporating sub-pixel 
window shifts rather than integer values (Lecordier et al., 1999) and by distorting the 
imaged area according to various approximations of the underlying velocity field (Huang 
et al. 1993a, 1993b; Tokumaru and Dimotakis 1995). Nowadays, multiple iterative cross-
correlation passes combined with sub-pixel accurate image distortion and recursive 
interrogation window refinement have become standard practice in PIV image 
interrogation. 
 
Current limitations 
 

Irrespective of the applied PIV techniques mentioned above, velocity fields are 
extracted by means of evaluating the digital recordings. Consequently, the measurement 
quality is dependent on recording conditions. Recordings with strong image noise are apt 
to yield lower accuracy. Especially near interfaces, strong light reflections may occur 
which have a strong negative effect on measurement accuracy and robustness†. Moreover, 
the experimental settings determine the amount of flow detail measurable; the larger the 
separation time between images the larger the measurable time scale, the higher the 
magnification factor, i.e. the better the optical resolution or image discretization, the more 
detailed the flow observation becomes. One only has to look at the effectiveness of long 
range microscopes to see an example of the drastic improvements in resolution gained by 
zooming in (Kähler et al., 2006). This additionally brings forward the centrality of proper 
seeding as the tracer spacing and tracer size ultimately define the lower limit in possible 
resolution.  

On the other hand there are limitations imposed by the image interrogation process 
itself. As a result of the many gatherings among the community of PIV users (PIV 
Challenges: Stanislas et al., 2003, 2005, 2008), the image processing inherent to PIV has 

                                                      
† Accuracy states how close a given velocity measurement is to the actual velocity. A measured 
velocity is still considered valid if it remains representative of the particle image motion. 
Otherwise we speak of lack in robustness and the associated error is usually an order of magnitude 
larger. 
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reached a certain level of standardization and consensus on the methodology’s accuracy 
and limitations has been established. The response of the PIV technique is linked to the 
size of the sensing domain, i.e. the interrogation area‡. A sufficient amount of particle 
images must be contained within each area to ensure a reliable displacement estimate. 
However, since each interrogation area yields a single displacement vector representative 
of the tracer motion inside, the area must not be chosen too large when tracer motion 
varies spatially as few tracers will then correspond to this estimate. Additionally, in-
plane displacement gradients are recognized as limitations with respect to the 
robustness of the statistical operation i.e. cross-correlation tends to fail in case of strong 
displacement variations. Out-of-plane displacement meaning tracer motion 
perpendicular to the illumination sheet, has a similar degrading effect on the robustness of 
the image interrogation routines. Although the latter type can be dealt with by more 
adequate PIV techniques (multiple cameras, thicker light sheet), it remains a problem in 
planar (2D 2C) PIV and both effects require specialized image evaluation methods and 
suitable interrogation area sizes.  
 
Motivation of the present work 
 
• Adaptive resolution 
 

Current image evaluation routines all interrogate the recordings by means of 
interrogation areas which are of uniform size throughout the entire image and are placed 
in a structured fashion, i.e. at regular spacing (Willert and Gharib, 1991). Both the vector 
spacing and interrogation window size are determined by the user.  The search for the 
optimal image evaluation parameters is both arduous and time consuming since the 
optimization procedure is generally very specific for each experiment and dependent on 
the image quality, flow phenomena (steady, unsteady, turbulent, transition, separated, 
vortices …), user type (scientific, industry …), field of application (environmental, 
combustion, fluid mechanics …), etc. For each parameter setting the user must evaluate 
the obtained vector field compromising between spatial resolution and robustness. The 
decision which parameter setting is best, in principle the interrogation area size, thus 
ultimately depends on the user. A direct consequence of this trade-off in parameter 
optimization is a local loss of information; non-optimal experimental conditions occur 
rather frequently as do non-uniform velocity fields (e.g. jets, wakes, vortices, boundary 
layer, laminar-turbulent transition, etc.). An image evaluation technique where the 

                                                      
‡ Many research papers are devoted to comparing the response of PIV to other techniques such as 
e.g. hot-wire anemometry (e.g. Lavoie et al., 2007). This is to my opinion unfair. The spatial 
resolution of a hot-wire is directly determined by mainly hardware; the physical dimensions of the 
wire and its distance from the neighboring interface (Khoo et al., 1997). While it is true that the 
response of PIV is linked to the geometry of the sensing domain i.e. the correlation window, the 
resolution is foremost fixed by the covered field of view. The more you zoom in the more detail 
you may see. 



Motivation of the present work 7 

distance between neighboring interrogation windows and the determination of the optimal 
window size adapts to local velocity field fluctuations and local imaging conditions 
would thus be a useful contribution, especially when the user dependency can be relaxed‡ 
simultaneously.  

To clarify the above concept, consider the theoretical example of a wall jet (Fig. 5). 
The use of large interrogation areas (Fig. 5-top right) yields a structured velocity field 
containing few vectors. Although such correlation windows provide few outliers (i.e. high 
robustness), the resulting flow field is not representative of the underlying truth (Fig.5-
bottom right). Small interrogation windows (Fig.5-bottom left) on the other hand lead to 
dense velocity measurements (i.e. many vectors or high resolution) but clearly with 
numerous outliers which undermine the measurement confidence. The current example 
also addresses the limitation imposed by setting interrogation parameters globally. The 
outer-jet region consists of nearly uniform flow, sufficing a sampling by few large 
interrogation areas. On the contrary, strong spatial flow variations are encountered in the 
jet’s core region where sampling must be denser and smaller interrogation areas must be 
applied (Fig 5-bottom right). 

 

 
Fig. 5: Illustration of trade-off in interrogation parameter setting; large interrogation areas yield 
robust velocity estimates whereas the use of small areas leads to more representative flow fields 
marked by measurement outliers. Additionally, flow variation demands adequate sampling of the 
flow. (Top-Left) Contrast enhanced PIV snapshot of a walljet. Resulting vector fields with 
window-sizes of (Top-Right) 64×64 pixels2 (Bottom-Right) 20×20 pixels2 (Bottom-Left) 8×8 
pixels2. (Bottom Right) Adequate sampling in terms of window sizing and window spacing. 

                                                      
‡ This statement has been supported by the Editorial Board of the scientific journal Measurement 
Science and Technology, who awarded the paper on adaptivity in PIV (Theunissen et al., 2007) 
stating that their selection was influenced by the perceived utility of the contribution to the 
numerous investigators who utilize PIV methods. 
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• PIV measurement near interfaces 
  

Accurate measurement of flow velocities near interfaces is generally recognized as 
problematic due to strong spatial variations in, not only flow characteristics, but also 
imaging conditions. Light reflections and signal (i.e. seeding) discontinuity near the 
interface require specific image interrogation routines. Although the treatment of 
interfaces has been the topic of many research studies (e.g. Tsuei and Savas, 2000), 
current image evaluation procedures do not allow a variation in image treatment or 
processing parameters from one image area to the other as a result of the constraint 
imposed by global interrogation parameter settings. Concomitantly the problem of 
insufficient measurement resolution discussed above is once more emphasized.  

 
• PIV data reduction 

 
After the experimentalist has obtained Giga-bytes of velocity data, the difficult task of 

post-processing is at hand. Although one can extract fanciful quantities such as e.g. the 
viscous dissipation (Piirto et al., 2003), the data analysis is often limited to mean velocity 
and turbulence intensity. At this point one can wonder about the meaning of these average 
values in terms of flow physics; how sure are we that by averaging all the measurements 
we have a correct estimate for the mean flow field? Because this question has been 
subject of scrutiny many a times, a variety of statistical approaches have been reported in 
literature to estimate the confidence interval of the measurements, with equally varying 
outcome. A unique and generally applicable methodology is thus lacking. 
 
Objectives 
 

Once the images have been recorded the task of the image interrogation software is to 
retrieve as much velocity information as possible, as accurate as possible and with 
adequate resolution to yield experimental data with the highest affinity to the underlying 
flow field. Exactly this goal is emphasized within the presented work by pursuing the 
following objectives; 
1. Alleviate the constraint of global interrogation parameter settings which impose 

limitations on achievable resolution. 
2. Increase the reliability and resolution of PIV image processing near stationary 

interfaces. 
3. Ensure the proposed interrogation methodologies to be generally applicable in terms of 

varying flow and imaging conditions 
4. Reduce computational/user effort and minimize the need of expertise by introducing a 

certain degree of autonomy in the selection of interrogation parameters.  
5. Improve the confidence estimation in the determination of flow statistics. 
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Thesis outline 
 

In this chapter the general aspects of Particle Image Velocimetry have been introduced. 
In its simplest form this optical measurement technique provides two dimensional 
instantaneous velocity data within a planar slice of the flow. Over the years PIV has 
matured as measurement technique and has gained popularity among the scientific and 
industrial communities. Despite numerous developments, the inherent image evaluation is 
limited in resolution due to the adopted structured sampling and global interrogation 
settings. Moreover, image analysis near stationary interfaces has been identified as a 
problem area.  

The remainder of this thesis discusses a possible approach to overcome the above 
difficulties. In chapter 1 a description of the PIV technique is given regarding the 
experimental components. The involved image interrogation in its basic form is presented 
while a detailed elaboration on advanced image evaluation follows in chapter 2.  

Image recordings are often performed under non-optimal experimental conditions and 
pose particular difficulties for conventional interrogation approaches where the flow 
sampling follows the nodes of a Cartesian grid while adopting uniform processing 
parameters. In chapter 3 adaptivity criteria are proposed which allow the process of 
image interrogation to optimize the inherent parameters and enhance the resolution where 
possible while avoiding a user-defined trade-off between robustness and resolution. The 
adaptivity criteria include signal and flow adaptivity, responding respectively to 
underlying questions where is it possible to extract velocity information, where is it 
necessary and how can we extract the most information? Combined these drive the 
interrogation parameter settings. Chapter 3 further includes a detailed description of the 
adaptivity implementation and an assessment of the proposal based on experimental 
recordings†. 

Chapter 4 addresses the lack in interrogation robustness and accuracy near stationary 
interfaces. A modified correlation scheme is proposed to improve robustness while an 
extension of the adaptive interrogation reported in chapter 3 aims at enhancing the 
measurement resolution. 

While so far the focus lied on the analysis of instantaneous flow fields, the interest 
often lies in averaged quantities. To reduce the computational effort, image interrogation 
can then be adapted to mean signal and flow statistics. This is the topic in chapter 5. 

                                                      
† The use of synthetic images to demonstrate improvements has been reduced to a minimum within 
this work. Synthetic images, although very useful during the development of novel algorithms, can 
always be “tweaked” and may return unrealistic improvements by reduction of image noise, 
lowering the degree of image discretization, changing the imposed seeding density, increasing 
optical resolution etc. Moreover, the inadequacy of computer generated images to reflect true 
conditions has been the topic of many discussions in the PIV research community. Therefore 
synthetic images are conducive in visualizing an inherent tendency, but improvements in image 
analysis performance can only be demonstrated by using real images and comparing the results 
with reference values obtained by a more accurate method. 
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Adaptive PIV interrogation is further assessed in chapter 6 by the application to three 
experimental flow cases; a hypersonic sphere, a backward facing step and an over-
expanded supersonic jet. The image evaluation is for each case discussed in detail, 
emphasizing limitations and improvements of the advanced interrogation methodology. 

The application of a statistical technique known from econometrics to PIV 
measurements is the subject in chapter 7. It is shown that the proposed bootstrapping 
method is capable of yielding unique and robust confidence level estimates, especially for 
time-resolved measurements. 

A summary and perspectives of the applicability of the reported work is included in 
chapter 8. 

 
To finalize this introduction, a small comment concerning the programming of the 

routines reported within this thesis; all routines have been written in Matlab© to facilitate 
any future continuation of the work. Its user-friendliness and multitude of built-in 
routines made Matlab© the most adequate choice. Moreover, most engineering students 
are nowadays well-familiar with this programming language or had at least a brush with 
the basics during their studies. Special care has been taken to optimize the computational 
efficiency by vectorizing mathematical operations. The contrived and implemented 
special programming “tricks” are not reported herein for sake of conciseness. Last but not 
least, operations deemed computationally intenser have been translated into so-called 
MEX (Matlab Executables) files, which are written in C++ language to limit their 
execution time. 
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CHAPTER 1 
 
 
 
 

PARTICLE IMAGE VELOCIMETRY 
 
 
 

Abstract 
 

This chapter presents the fundamental principles of the PIV technique and covers the 
theoretical and practical aspects regarding the choice of tracer particles, illumination, particle 
imaging and image recording. Different types of image velocimetry modes are introduced as a 
function of the applied seeding concentration. The chapter also discusses the extraction of 
quantitative particle motion estimates from image recordings on an individual basis or on the 
basis of particle image ensembles. The mathematical background on the statistical cross-
correlation operator is presented and approaches to reach sub-pixel accuracy are discussed.  

 
 
Nomenclature 
 
δ Dirac function 
δx fractional displacement in horizontal direction (pixel) 
δz depth of focus (meter) 
∆t snapshot time separation (seconds) 

x∆  tracer displacement vector between exposures (meter or pixels) 
∆xm measured tracer displacement (meter) 
∆z0 laser sheet thickness (meter) 
εδx fractional error (pixel) 
ε∆x displacement measurement error (meter or pixels) 
λ light wavelength (meter) 
λm minimum resolvable length scale (meter) 
λp tracer spacing (pixels or meter) 
ρ, ρp fluid density, particle density (kilogram meter-3) 
µ dynamic fluid viscosity (kilogram meter-1 second-1) 
τ particle relaxation time (seconds) 
φ cross-correlation function 
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cov covariance 
cr ratio between particle image diameter and pixel size 
C seeding density (particles per pixel2 or ppp) 
d  relative shift in the correlation plane (pixels) 
dτ particle image diameter (meter or pixel) 
do diffraction spot diameter (meter or pixel) 
dp particle diameter (meter) 
dr dimension of pixel element (meter) 
D aperture diameter (meter) 

( )y,xD ∆∆=  uniform tracer displacement (pixels) 
DCC Direct Cross-Correlation 
DSR Dynamic Spatial Range 
f lens focal length (meter) 
f# f-number 
fps frames per second 
FFT Fast Fourier Transform 
g  gravitational acceleration vector (meter second-2) 
(i, j) image coordinates 
Io peak intensity 
Ia, Ib intensity distributions recorded at time ‘to’ and ‘to+∆t’ 

aI , bI  mean intensities 
IS scattered light intensity 
lxy dimension of image plane (meter) 
LXY dimension of object plane (meter) 
LSV Laser Speckle Velocimetry 
m, n spatial correlation shifts (pixels) 
mp, np integer locations of the correlation peak (pixels) 
M magnification factor 
NI image density 
NS source density 
PIV Particle Image Velocimetry 
PTV Particle Tracking Velocimetry 
ro diffraction spot radius (meter or pixel) 
SSD Sum of Squared Differences 
t time (seconds) 
u  fluid velocity vector (meters per second) 

pu  tracer velocity vector (meters per second) 
WS correlation window size (pixels) 
x  tracer position vector 
zo, Zo lens to image plane and lens to object plane distance (meter) 
 



1.1 Introduction 13 

1.1 Introduction 
 
The PIV technique hinges on the principle of evaluating instantaneous fluid velocities 

by recording and evaluating the position of images produced by small tracers suspended 
in the fluid at successive time instants. Though image velocimetry originates from flow 
visualization (e.g. VKI LS 1986, Tokumaru and Dimotakis 1995), the main difference 
lies exactly in the visualization approach. While for the latter the aim is to make certain 
flow structures visible by selective seeding of the flow regions, for particle image 
velocimetry a homogenous seeding must be established. Flow structures become visible 
only when the velocity field has been determined.  

Following the work of Westerweel (1997), the velocity of the flow ( )tu  is measured 

indirectly as a function of the tracer displacement ( )t,t,xx o ∆∆  between images recorded 

within a finite time extent ∆t as mathematically expressed in (1.1). Here, ( )tu p  represents 
the tracer’s velocity which in the ideal case is identical to the fluid velocity. Given the 
discrete nature of the temporal sampling, this equation simplifies to (1.2) under the 
assumption of a sufficiently small time separation ∆t to neglect the effect of flow 
acceleration. 

 

( ) ( )∫
∆+

=∆∆
tt

t
po

o

o

dtt,xut,t,xx  (1.1)

( ) ( ) ( ) ( ) tt,xutxttxt,t,xx pooo ∆⋅=−∆+=∆∆  (1.2)
 

 
Fig. 1.1: The displacement of the tracer particles is an approximation of the fluid velocity 
(following Westerweel, 1997). 

 
Since the velocity of the fluid is inferred from the motion of the tracer particles, their 

properties are key parameters to be assessed (Melling, 1997). Ideal tracers follow exactly 
the fluid motion without altering the flow or fluid properties. In a practical situation the 
ideal tracers can only be approximated as depicted in Fig. 1.1. Fluid mechanics then 
prescribes small particle diameters to minimize the relative velocity between fluid and 
tracers while on the other hand, the conflicting requirement of efficient light scattering 
favors larger particle diameters. In the remainder of this chapter a brief discussion is 
presented on the main parameters to be taken into account in setting up a typical PIV 
experiment (Raffel et al., 1998). 
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1.2 Particle tracers 
 

1.2.1 Tracking characteristics of particles 
 

The tracer motion can be theoretically estimated by the results for a spherical particle 
of diameter ‘dp’ moving in the fluid in Stokes flow regime (Melling, 1997); 
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where ‘ g ’ refers to the gravitational force, ‘ρp’ to the density of the particle, ‘ρ’ to the 
fluid density and ‘µ’ to the dynamic viscosity of the fluid. The relaxation time ‘τ’ is 
characteristic of a particle’s capability to follow a sudden velocity change in the flow. 
Ideally, ‘τ’ is smaller than the smallest time scale of the flow which imposes stringent 
conditions on the seeding properties, especially in compressible flows. To obtain particles 
following the flow with fidelity, small values of ‘τ’ are thus desirable and can be 
achieved by either using a seeding material with low density or by reducing the tracer 
particle diameter.  

While adequate tracer response requires small diameters, the particles must remain 
visible. For spherical particles, Mie light scattering theory predicts the intensity ‘IS’ of the 
scattered light to be a strong function of both the particle’s size parameter ‘IS~(dp/λ)2’ and 
refractive index. Clearly high intensities necessitate large diameters while constraining 
the choice in seeding material.  

As a compromise, particles of 0.5 to 3 micrometer diameter are typically applied for 
experiments conducted in gaseous flows while larger particles of 10 to 100 micrometer 
can be used in liquid flows. Because the flow can only be characterized at those random 
spatial locations sampled by a particle, a high seeding density with a homogeneous 
distribution is a desirable condition. 

 
1.2.2 Illumination 

 
The camera projects the three dimensional environment onto a two dimensional image. 

Concomitantly, resolved motion will be constraint to two dimensions and cannot be 
extended to three dimensions without additional information. For the obtained 
displacement field to be a non-ambiguous representation of the fluid motion the 
illuminated volume must therefore be reduced to a slice. The limited thickness of 
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typically 1mm furthermore minimizes the disturbances in image quality as a result of out-
of-focus particles† (Stanislas and Monnier 1997).  

The duration of the light pulses is important and determines the degree to which the 
particle images are frozen during the pulse exposure. While streak photography has been 
applied earlier, its range of applications is limited to two dimensional fields to avoid 
numerous truncations in streak formation (Adrian, 1991). Moreover, the disadvantage of 
this early method is the poor accuracy of the measurement based on the estimation of the 
length of the traces. Instead, short pulses are more appropriate requiring high energy light 
sources since the recording device receives only a fraction of the scattered light which 
itself is limited in energy due to the small particle sizes.  

Lasers are widely used in PIV because of their ability to emit coherent light with high 
energy density which can easily be transformed into a thin sheet of light by means of 
cylindrical and spherical lenses. The most common is the Nd:YAG laser, which can 
provide as much as 400mJ of monochromatic light (λ=532nm) with a pulse duration of 5 
to 10 nano-seconds (10-9 seconds) and repetition rates typically between 10 and 50Hz. 
The time separation between successive laser pulses requires meticulous selection taking 
into account  
a) the influence or random noise sources‡  
b) errors inherent to fluid acceleration (Boillot and Prasad, 1996).  
c) temporal resolution; irrespective of tracers being ideal, the flow field is sampled at 

discrete moments yielding velocity estimates averaged over the separation time 
(Westerweel, 1997). 

d) a minimization of the loss of particle images due to the out-of-plane velocity 
component (Lin and Perlin, 1998).  

 
1.2.3 Particle imaging 
 

When illuminating the seeded flow, impinged light is scattered by the individual 
tracers and spread through a lens system onto the recording plane (Fig. 1.2-a). Because 
seeding particles are small (in the order of the incident light wavelength), the imaged light 
(Mie-scattering) pattern  does not appear as a magnified circle but forms a diffraction 
pattern. This Fraunhofer diffraction pattern is characterized by concentric rings and can 
be mathematically described by the Airy function (Fig. 1.2-b). The latter represents the 
impulse function of the optical system and can be conveniently approximated by a 
Gaussian distribution. 

                                                      
† Particles are in focus when the light sheet thickness ‘∆zo’ is less than the object focal depth ‘δz’, 
which is determined by the optical system (par. 1.2.3); ( ) λ⋅⋅+⋅≈δ − 2

#
21 fM14z  

‡ The flow velocity ‘u’ is derived from the measured marker displacement ‘∆xm’ between 
consecutive image snapshots separated by a time delay ‘∆t’ as; u=(∆xm+ε∆x)/∆t. Here ‘ε∆x’ refers 
to the unavoidable error on the pixel displacement estimate, on average in the order of 0.01 pixels 
(Willert, 2009). By reducing the time separation between recordings this error term gains 
importance, lowering the accuracy of the velocity measurement. 
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The diameter of the diffraction spot ‘do’ is defined by the first minimum of the Airy 
disc and reads (Hecht, 2002) 
 

#oo f)M1(44.2r44.2d ⋅λ⋅+⋅=⋅=   (1.4)
 
where ‘λ’ refers to the light wavelength, ‘M’ the magnification and ‘f#’ the f-number. 
Both magnification and f-number, and as a result also the size of the diffraction spot, 
depend on the optical system characteristics; 
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with ‘D’ symbolizing the aperture diameter. The resulting particle image diameter ‘dτ’ 
can be expressed as (Adrian and Yao, 1984) 
 

( ) 2
o

2
p ddMd +⋅=τ  (1.6)

 

 

(a) (b) 
Fig. 1.2: (a) Optical arrangement of PIV optics (b) the radial intensity profile of the Airy function 
and the corresponding Gaussian approximation. 
 

While particle images must be sharp and small to distinguish them against the sensor 
noise, the most important consideration in optimizing a PIV setup for a given experiment 
is the size of the particle with respect to the resolution of the recording medium. If the 
particle image diameter is too small with respect to the sensor elements, the image is 
under-sampled yielding uncertainty in locating the image centroid and mean bias errors in 
the displacement. This effect is known as peak-locking. Here the analogy with a 
chessboard patterns can be drawn. Suppose the white squares represent the particle 
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images. When shifting two overlaying patterns, white squares overlap either again a white 
square (correlation) or their counterparts (no correlation). Correlation peaks will thus 
appear only at integer shifts, expressed in terms of number of squares. At high flow 
velocities and/or high magnification, measurement errors of a pixel may easily convert 
into several meters per second giving rise to unacceptable inaccuracies. In general the 
particle image is recommended to cover about two pixel units (Westerweel, 1993).  
 
1.2.4 Image recording 
 

Historically photographic film was first applied as recording medium. The shutter of a 
photographic camera was opened for a sufficient amount of time during at least two 
consecutive light pulses. Accordingly, the recorded images would contain multiple tracer 
exposures, making it difficult to distinguish the temporal sequence of the tracer images 
(e.g. Marzouk and Hart, 1998). Moreover, tedious processing of the photographic film 
meant a difficult on-line control of experimental parameters in terms of focusing and 
appropriate tracer concentration. 

Nowadays, because of recent advances in electronic imaging, electronic image sensors 
with high resolution provide immediate access to a digitized image ready for immediate 
processing. Accordingly, electronic image sensors have forced the photographic film 
aside and have become standard practice in image velocimetry. Of these, Charge Coupled 
Devices or CCD have found the most widespread use. CCD sensors are composed of 
several sensitive elements, pixels, arranged in a rectangular array. Continuous light 
distributions impinging on the sensor are spatially discretized by the pixel elements who 
convert light into electrical charge. Sensor areas are typically in the order of 1000×1000 
pixels with pixel sizes of 10×10µm2.  

At this point the concepts of digital image resolution and Dynamic Spatial Range 
(DSR) are introduced. The former is defined as the number of pixel elements per 
millimeter in the object space (~lxy/dr·1/LXY) and is relevant to adequately resolve images 
incident on the sensor (cf. peak-locking effect discussed in 1.2.3). Dynamic spatial range 
(Adrian, 1997) relates to the level of measurable detail and is expressed as the ratio 
between the field-of-view in object space ‘LXY’ and the smallest resolvable spatial 
variation ‘λm’; 
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Large dynamic spatial resolution allows the measurement of small-scale variation 
embedded in larger scale motion, as occurs in e.g. turbulence. The field-of-view in the 
fluid is directly defined by the dimensions of the recording medium ‘lxy’ and 
magnification through geometrical optics. The minimum resolvable scale is related to the 
image sampling rate ‘cr’ on the basis that the more pixels per particle image, the better the 
accuracy in determining the displacement. For a given optical arrangement (read, 
magnification), the DSR can thus be increased either by reducing the dimensions of the 
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pixel elements ‘dr’, and improving the digital image resolution, and/or by enlarging the 
overall sensor area ‘lxy’. This explains the current tendency in CCD development (Table 
1.1).  

A third noticeable evolution is the reduction in frame separation time. Especially in 
high speed flows, the temporal resolution must be high to limit the loss of particle images 
between recordings. In the case of high-speed imaging (thousands of frames per second) 
this requires short exposure times and strong illumination with fast read-out. Here 
CMOS† image sensors provide a cost-effective alternative with respect to traditional CCD 
cameras.  

 
Table 1.1: Examples of CCD camera data 
 

Manufacturer/Model Kodak 
Megaplus ES 1.0 

PCO 
SensiCam QE 

LaVision 
Imager Pro X 4M 

Resolution (pixels2) 1008×1018  1376×1040  2048×2048 

Pixel size ‘dr’ (µm) 9 6.45 7.4 

Frame rate (fps) 30 10 14  

 
 
1.3 Image velocimetry modes 
 

Image velocimetry is subdivided into different classes based on the amount of injected 
and imaged seeding tracers (Adrian, 1991). Different operation modes are distinguished, 
relating to the source density ‘NS’ and image density ‘NI’ (Adrian and Yao, 1984) who 
are symbolically defined as follows 
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where ‘C’ is the number density of particles, ‘∆z0’ the light sheet thickness, ‘M’ the 

image magnification, ‘dτ’ the particle image diameter and ‘λp’ the typical inter-particle 
distance. The source density indicates whether the image consists of individual, NS«1, or 
overlapping, NS»1, particle images, while the image density relates to the average number 
of particle images within an interrogation domain of area ‘WS

2’ (cf. Fig. 1.5). Examples 
of the working ranges for the different image classes are presented in Table 1.2.  
 

                                                      
† CMOS stands for Complementary Metal Oxide Semiconductor. Traditionally CCD cameras 
provided higher quality images. However, CMOS quality is getting better and better with each 
new generation of chip design. 
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Table 1.2: Image velocimetry modes (gray scales inverted for clarity)†. 
 

PTV PIV PIV (LSV) 

NS«1, NI«1 NS«1, NI»1 NS»1, NI»1 

   

 
Criteria for applying Particle Image Velocimetry (PIV) are a low occurrence of particle 

images overlapping while maintaining a sufficient number present within each 
interrogation area. Data is obtained by tracing an ensemble of particle images which 
constitute a pattern convected by the flow. Particle Tracking Velocimetry (PTV) and 
Laser Speckle Velocimetry (LSV) occupy the two extremes of the spectrum of 
information density. Particle Tracking Velocimetry acts on the premise that the 
displacement of individual, identifiable markers in the object plane can be measured from 
one image to the next. Accordingly, PTV operates at the low image and source density 
ensuring a correct pairing between identified particles. In the case of high levels of 
seeding concentration, particles can no longer be unambiguously identified in the image 
due to interference between their images. In Laser Speckle Velocimetry velocity 
information was originally extracted from the Young’s interference fringes appearing 
when a coherent light beam passes through two transparencies of speckle images which 
are placed one over one another and slightly displaced (Meynart, 1983). However, as 
these speckles still contain sufficient texture, the interrogation procedures common in 
PIV remain adequate as demonstrated by the application of PIV-image analyses to for 
example smoke images (Fawcett and Komerath 1991) and even Schlieren images (e.g. 
Jonassen et al., 2006).  
 
 
 
 
 
 
 

                                                      
† Because of the application of the PIV concept to a broad range of imaging conditions it is to the 
author’s belief now permitted to deviate from the traditional categorization of image velocimetry 
into three separate classes but instead merge PIV and LSV into a single class. 
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1.4 Tracer motion evaluation 
 

The experiment is not concluded until the velocity information is obtained. 
Mathematical operators determine the most probable displacement of the captured 
particle images. The nature of the operator and adopted processing strategy depends on 
the velocimetry operation mode (Fig. 1.3). 
 

  
(a) (b) 

Fig. 1.3: (a) With PTV velocity components for individual particle images are determined whereas 
(b) PIV yields the representative displacement of particle patterns inside interrogation windows 
(dashed grid). 
 
1.4.1 Particle tracking 
 

PTV operates on the most straightforward principle of tracking individual particle 
images throughout the recording sequence, (Fig. 1.3-a). As the spatial resolution in image 
velocimetry is ultimately limited by the distance between tracer particles†, tracking 
individual particles would theoretically define the upper limit in achievable resolution. 
Assessments based on computer generated images demonstrated PTV to yield resolutions 
two to three times higher compared to PIV (Marxen et al., 2000). Notwithstanding, 
practice rather shows the opposite as seeding densities and turbulent velocity fluctuations 
are kept way below those encountered in PIV, mainly to ensure sufficiently high success 
rates in pairing particle images (Malik et al., 1993). The problem of ambiguous particle 
pairing is illustrated in Fig. 1.4-b. Despite such drawbacks, PTV remains extremely 
suitable in the extraction of quasi steady particle trajectories. 

By making a prediction of the particles’ shift, based for instance on a previous cross-
correlation analysis, particle pairing ambiguity can be greatly reduced allowing an 
extension of PTV into high image densities (Cowen and Monismith 1997). Hybrid 
routines combine PIV and PTV and improve the spatial resolution proportional to the 
                                                      
† Spatial resolution determines the smallest measurable flow scale. The goal is to reach the highest 
resolution for the more details are known, the better the flow phenomena can be described and 
understood. Flow features with a wavelength shorter than twice the distance between particles 
cannot be recovered from the data according to the Nyquist sampling criterion (Agüí and Jiménez, 
1987). 
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allowed increase in image density (Keane et al., 1995). The concept is depicted in Fig. 
1.4. Even so, hybrid techniques lean on the spatial response of PIV. Consequently in case 
of flow structures with higher spatial frequency, no noticeable improvement should be 
expected. PTV is at best complementary to PIV vis-à-vis resolution. 

 

 
(a) (b) (c) 

Fig. 1.4: Particle Tracking Velocimetry; (a) at low image density particle pairing (→) can be 
performed unambiguously between the particle images recorded at time ‘to’ (light gray) and a 
time-instant later (dark grey) (b) at higher image densities or larger displacements multiple 
matches are possible within the search area (--) (c) when applying a predictor (+) the search area 
can be reduced yielding an increase in successful pairing. 

 
Accuracy and precision in tracking methodologies remain inferior to PIV mainly due 

to the uncertainty in locating the particle images centroids (Stanislas et al., 2005). While 
fruitful attempts have been made in elevating accuracies to levels equivalent in PIV 
(Theunissen et al., 2004), precision remains a weak point. The supremacy of PIV is to be 
credited to its statistical nature i.e. it operates on tracer ensembles rather than individual 
particle images. Combined with its non-intrusive nature and whole field measurement 
capacity, it is this resilience in robustness which makes PIV attractive and conducive in 
most experimental applications.  

 
1.4.2 Particle pattern tracking 

 
PIV operates on ensembles of particle images, captured within regularly spaced 

interrogation windows (Fig. 1.3-b). The aim is to extract the spatial shift ‘(∆x,∆y)’ of the 
particle patterns by means of a statistical operator. The tracking of features throughout an 
image sequence is essentially based on finding the similarity of corresponding gray-level 
patches by minimization of disparity between pixel intensity values within windows of 
fixed size at two time moments ‘to’ and ‘t+∆t’ (Fig. 1.5). Nowadays, the method of 
choice† in retrieving the spatial shift ‘(∆x,∆y)’ of the particle patterns is the statistical 
technique of spatial cross-correlation. 

                                                      
† An alternative measure of the disparity is the search for a minimum in the summation of squared 
intensity differences (SSD) within the interrogation areas (Lucas and Kanade, 1981); 
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Fig. 1.5: PIV determines the displacement of particle patterns, captured by the regularly spaced so-
called interrogation windows of area ‘WS

2’ (red lines), from images separated by a time-step ‘∆t’. 
 
• Mathematic background 
 

As anticipated, most PIV interrogation techniques nowadays rely on the cross-
correlation operator to retrieve the flow velocity between particle image pairs. The 
application of this operator intrinsically refers to an optimization process whereby the 
correlation function ‘φ’ between the continuous distributions ‘Ia’ and ‘Ib’ is maximized in 
function of the parameter ‘ d ’ i.e. the relative spatial displacement   
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 (1.9)

 
with the intensity field ‘Ia’ described through the expression 
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where Io(h) is the peak intensity level associated to the hth particle located at 
‘ hx =(xh,yh,zh)’.  

A detailed analysis regarding the properties of the cross-correlation operator is given in 
e.g. Keane and Adrian (1992), Westerweel (1993) and Raffel et al. (1998)  and is reduced 
to a minimum in the current paragraph.  In the present discussion the hypothesis is made 
that the displacement between the two exposures is restricted to a uniform, planar 
translation ‘ D ’, leading to a resulting intensity field in the second exposure ‘Ib’† 
                                                                                                                                                 
Several image processing algorithms apply this technique in the estimation of the underlying 
velocity distribution (e.g. Gui and Merzkirch 2000). However, the last term in the above equation 
refers to a standard correlation indicating that the spatial shift (m,n) producing a minimum in SSD 
corresponds to a correlation maximum. Note that in the above definition the intensity distributions 
are already in discretized form 
† Because of particles entering and exiting the interrogation windows, the number of particle 
images ‘M’ and ‘N’ differs. 
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With (1.10) and (1.11) the continuous cross-correlation function of the intensity 
distributions (1.9) becomes 
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The integration is non-zero only for dDxx kh −+= . Accordingly, two contributions to 
the correlation function are distinguished;  
1. kh xx ≠  represents the contribution due to particle images at different exposures that 

do not correspond to the same physical particle and is referred to as spurious pairing. 
This correlation noise term is statistically evenly distributed over the correlation space 
with low amplitude peaks. 

2. kh xx =  produces a high correlation peak for a separation vector ‘ d ’ in the correlation 
plane at a location distant from the origin that corresponds to the, sought for, uniform 
displacement ‘ D ’. This component corresponds to the correlation of particle image 
pairs, produced by the same particle. 

This principle of extracting displacement estimates by means of intensity cross-
correlation is illustrated in Fig. 1.6. 

 
Fig. 1.6: After cross-correlating interrogation windows ‘Ia’ and ‘Ib’, the peak location (dashed 
lines) of the correlation coefficient ‘φ(m,n)’ indicates the relative pixel shift between the intensity 
distributions. 
 
 
• Discrete normalized cross-correlation 
 

The electronic sensor area integrates the light intensity over small, individual and finite 
pixel elements. Although the intensity distributions ‘Ia’ and ‘Ib’ are accordingly spatially 
discretized, the operational principle of the correlation operator remains valid. A detailed 
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mathematical formulation is provided in Westerweel (1993), but it suffices to note that 
(1.9) in discrete form reads as 

 
( ) ( ) ( )∑ ++⋅=φ
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ba nj,miIj,iIn,m  (1.13) 

 
The coordinates corresponding to the location of the correlation maximum quantify again 
the pattern shift. Because in practice interrogation windows contain spatial variations in 
particle motion, the returned displacement can be thought of as the volume averaged 
displacement of the captured particle images. However, it is more precise to denote it as 
the most representative displacement or yielding the best pattern match (i.e. the most 
probable displacement).  

To reduce the sensitivity of the correlation function expressed in (1.13) to intensity 
changes between exposures, a normalization is introduced (Huang et al., 1997); 

 

( ) ( )( )
( )( )

( ) ( )( )
( ) ( )( )

∑
∑∑

=

==

−++

−++
⋅

−

−
=φ

S

SS

W

1j,i
W

1j,i

2
bb

bb

W

1j,i

2
aa

aa

n,mInj,miI

n,mInj,miI

Ij,iI

Ij,iI
n,m  

(1.14)

 
The proposed normalization has the advantage of making the result independent of linear 
transformations. The mean subtraction eliminates the contribution of the DC term in the 
correlation map (originating from the mean intensity correlation), which would otherwise 
introduce a strong bias error.  
 
• Correlation by means of Fast Fourier Transforms 
 

The calculation of ‘φ’ directly in the spatial domain as presented in (1.14) is referred to 
as direct cross-correlation (DCC) and requires the mean intensities of the two exposures 
to be computed in a different way. Whereas ‘ aI ’ is determined only once before the 
correlation operation, ‘ bI ’ must be calculated each time a new pixel offset ‘(m,n)’ 
between the two distributions is chosen.  

Willert and Gharib (1991) introduced the implementation of Fourier transforms in the 
calculation of ‘φ’ as a simplification and significant speed-up (1.15). The use of Fourier 
transforms (FFT) neglects the spatial dependency of ‘ bI ’ sufficing a mean intensity value 
subtraction in the interrogation areas prior to the correlation operation. 
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• Sub-pixel accuracy 
 
Having obtained the correlation map pertinent to a selected interrogation window, the 

correlation peak can be localized with only half a pixel accuracy because of the discrete 
nature of the image recordings.  

The optics applied in PIV are for the majority of applications diffraction-limited. The 
diffraction pattern can be mathematically described by the Airy function and 
approximated by a Gaussian (paragraph 1.2.3). Accordingly, the correlation function can 
be considered to be a discrete representation of the convolution between several 
continuous Gaussian functions, which mathematics predicts to ultimately retrieve a 
Gaussian anew. Following Westerweel (1993) sub-pixel accuracy can ipso facto be 
achieved by estimating the peak location of the continuous Gaussian function underlying 
the correlation (Fig. 1.7-a). While Whittaker interpolation outperforms the Gaussian fit, 
the latter is generally chosen for its trade-off between accuracy and computational 
simplicity (Roesgen, 2003). 

Sub-pixel accuracy in each component of the displacement estimate can be obtained by 
a three-point Gaussian fit to the detected correlation peak. The fitting equation for the 
horizontal displacement component is presented in (1.16).  
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(a) (b) 

Fig. 1.7: (a) Zoom of the correlation peak in Fig. 1.6. Gray dashed lines indicate the integer peak 
position. Dashed black lines point towards the sub-pixel position. The latter is obtained by fitting 
Gaussian functions (black line) to the discrete correlation function. While originally the retrieved 
shift equaled ∆x=7 and ∆y=0, peak fitting yields ∆x=7.36 and ∆y=-0.14. (b) Fractional error for 
Gaussian peak fitting vs. fractional displacement following Westerweel (1993). Included in the 
figure are typical correlation maps at different fractional displacements. 
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As a result of correlation asymmetry a certain amount of error will always be introduced 
despite the estimation of the correlation peak through interpolation (Fig. 1.7-b). This bias 
error or fractional error ‘εδx’ defined as the difference between the measured and imposed 
fractional displacements, although small, can significantly degrade the measurements 
when small velocity fluctuations are to be detected and becomes prominent in the display 
of derivative field quantities such as e.g. vorticity (Scarano and Riethmuller, 1999). 

Though the measurement accuracy can be greatly improved by peak-fitting function, it 
is important to stress the importance of experimental conditions. Individual particle 
images must cover two to three pixels to avoid a systematic under-estimation of the 
fractional displacement (Westerweel 1998; cf. section 1.2.3).  
 
 
1.5 Image pre-processing 
 

Ideal PIV images consist of a completely black background on which the particle 
images are superimposed as bright spots. Image recordings inevitably suffer from noise 
originating from the CCD sensor array (thermal noise) or non-ideal experimental 
conditions (background light, day light, light reflections from interfaces, etc.). While 
some sources of image noise can be removed or at best minimized by appropriate 
filtering, others, such as thermal camera noise, are embedded into the recorded signal 
making their removal close to impossible.  

Statistical de-noising methods exist (e.g. Katkovnik et al., 2002), but tend to minimize 
high frequency contents within the image which, in case of PIV images, would 
undoubtedly remove also the particle images. Consequently the objective must be to 
enhance the image quality by modifying the recorded intensity distribution towards ideal 
conditions.  

Image pre-processing steps may involve actions such as enhancement of intensity 
gradients (e.g. Westerweel, 1993), intensity histogram redistribution (e.g. Roth and Katz 
2001), temporal and/or spatial intensity filtering (e.g. Fore et al. 2005, Wereley et al. 
2002a) etc. The most common approach however to remove background noise is by mere 
background subtraction. A background image is typically constructed by spatial filtering 
of the image recording. The filter operator can either be a local intensity averaging or a 
determination of the local intensity minimum whereas the availability of a large 
collection of image snapshots allows full exploitation of the statistical nature of noise. 
Wereley et al. (2002b) compose their background image by selecting the pixel-wise 
minimum intensity throughout the data set, whereas Stitou and Riethmuller (2001) take 
into account the ensemble average and standard deviation statistics in intensity. To 
remove background noise, Lourenco and Krothapalli (2000) took this idea one step 
further and rebuilt the PIV image by transferring detected particle images onto a black 
background. Though this method eliminates spurious background due to reflections and 
parasite illumination, its effectiveness is strongly dependent on particle segmentation 
performance.  

Overall the degradation in image quality cannot be attributed to a single parameter but 
is dependent on an interplay of factors. The optimal type of image treatment must 
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therefore be selected for each case individually. Nevertheless, background subtraction in 
general already provides a sufficient primary reduction in background noise. 
 
 
1.6 Conclusions 
 

One of the most widely applied measurement techniques nowadays is image 
velocimetry. PIV is non-intrusive and provides instantaneous flow velocity within a field 
of view from recorded image pairs of the seeded flow. While the experimental setup 
requires meticulous preparation its concept is rather simple and is founded on the 
principle of flow visualization. In this chapter the working principle of Particle Image 
Velocimetry is described covering the sequence of choice of seeding, illumination, 
particle imaging and recording. 

Pivotal in the selection of tracer particle diameter and material is the inherent 
relaxation time to minimize the particle’s lag with respect to the flow. Because of the 
consequent small particle image diameters, high energy light sources are required for 
which lasers provide the best solution. Moreover, lasers allow short duration light pulses 
to ensure frozen markers on the image recording. The projected particle image is for 
typical applications diffraction limited and the physical background has been presented. 
To eliminate the probability of pronounced bias errors in the displacement measurement, 
it comes out that particle image must cover at least two sensor elements. Regarding image 
recording, advances in electronic imaging have pushed digital CCD cameras to the 
foreground with on-going developments to reduced pixel dimensions and enlarged sensor 
arrays. 

Different velocimetry modes can be distinguished as a function of the image seeding 
density with accompanying motion-extraction methodologies. While PTV evaluates the 
motion of individual markers, PIV extracts the displacement of tracer ensembles by 
means of the statistical cross-correlation operator. The underlying mathematics of cross-
correlation have been presented and dominating maxima in the resulting signal are shown 
to correspond to representative tracer displacements. Because of the discretized 
representation of the continuous image recording, displacement accuracies are limited to 
integer pixel values but can be improved to sub-pixel levels by Gaussian fitting of the 
correlation peak. 

Given the statistical nature of PIV image interrogation, performance limitations are 
imposed related to the quality of the signal and its evaluation. Whereas idealized 
recording conditions may be approximated by image pre-processing, adequate data 
validation criteria and advanced interrogation methodologies are needed to overcome 
basic restrictions in correlation effectiveness. These are the topic in the following chapter. 
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CHAPTER 2 
 
 
 
 

PIV IMAGE EVALUATION 
 
 
 

Abstract 
 
Though cross-correlation is an effective method in the determination of purely translational 

motion, the basic statistical technique is inadequate to resolve strong velocity variations common 
to the majority of fluid dynamical applications. This chapter introduces the limitations of and 
basic rules for motion analysis by means of cross-correlation. To increase the range of 
applicability, advanced iterative interrogation algorithms have been developed over the years with 
the intention to improve both reliability and spatial response. The concept, implementation and 
assessment of such interrogation techniques are presented within this chapter. These methods 
form the foundations upon which the interrogation methodology developed within the PhD 
framework has been built. Finally, the discussion is concluded by the demonstration of image 
evaluation applied to a typical PIV experiment conducted on the wake behind a cylinder.  

 
 

Nomenclature 
 

β bias error (pixels) 
δξ0

k fractional displacement obtained at kth iteration (pixels) 
∆t time separation between successive recordings (seconds) 
∆x,∆y,∆z particle displacement along respective axes e.g. ∆x=u⋅∆t (pixels) 
ε acceptable sub-pixel accuracy, error in intensity reconstruction (pixels) 
εn estimate of correlation noise (pixels) 
εδx fractional displacement error (pixels) 
εmod error in reconstruction due to modulation effects (arbitrary unit) 
λ imposed sinusoidal wavelength (pixels) 
λm minimum measurable flow length scale (pixels) 
ξ0

k raw displacement field obtained at kth iteration (pixels) 
ξk filtered and/or validated displacement field obtained at kth iteration (pixels) 
σ random error (pixels) 
φ cross-correlation 
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ωz out-of-plane vorticity component ; ωz=∂v/∂x - ∂u/∂y (pixel/pixel) 
Cξ

k displacement corrector for ξ obtained at kth iteration (pixels) 
F0 fraction of particles lost due to out-of-plane motion 
F1 fraction of particles lost due to in-plane motion 
h vector spacing (pixels) 
Ia, Ib intensity distribution recorded at time ‘to’ and ‘to+∆t’ 
k iteration number 
K number of refinements 
m, n spatial shifts in horizontal and vertical direction (pixels) 
N number of samples 
NIF0F1 effective particle image density 
rc normalized median threshold 
t time (seconds) 
u, v horizontal and vertical velocity components (pixels) 
uo imposed sinusoidal amplitude (pixels) 
WOR window overlap ratio 
WS correlation window size (pixels) 
WSx,y,z correlation window size along respective axes (pixels) 
⎣ ⎦X  rounded value of variable X towards minus infinity 
Xm measured value of variable X 

mX  ensemble average value of measured variable X 
Xmax, min maximum and minimum value of variable X 

 
 

2.1 Introduction 
 

The basic particle image interrogation methodology presented so far is extremely 
suitable in the description of smooth flow fields i.e. in the assumption that the velocity 
difference between tracers belonging to the same interrogation area is negligible. Limits 
in spatial resolution become apparent however in case of stronger variations in tracer 
displacement, which are common to the majority of fluid dynamical applications. 

The final achievable resolution depends on several parameters; the seeding density or 
inter-particle spacing, the digital imaging resolution expressed in pixels/mm (cf. section 
1.2.4), the sampling rate (number of vectors per mm) and the spatial response of cross-
correlation. The latter two contributions are inherent to the image evaluation technique 
and related to the interrogation window sizes as will be shown in this chapter. PIV’s 
spatial response has therefore been a topic intensively covered with the aim to alleviate 
the resolution limit imposed by the finite dimensions of the interrogation window (e.g. 
Nogueira et al. 1999, 2005; Scarano 2003; Astarita 2007).  

Furthermore, the effect of velocity gradients must be taken into account, especially 
when dealing with vortex dominated or turbulent flows that contain displacement 
fluctuations which result in random motion of seed particles. The appearance of a unique 
displacement as assumed in section 1.4.2 thus becomes highly unlikely and will cause a 
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failing of the correlation operator. Moreover, particles’ out-of-pattern motions decrease 
the effectiveness of the statistical operator since they are imaged only once in either of the 
interrogation windows. This absence in particle image pairs is associated to particles 
entering or escaping the interrogation volume between laser pulses.  

A general consensus has been reached in the PIV community on methodologies 
minimizing the effect of out-of-plane and out-of-pattern motion. Adequate measures have 
been extensively reported in literature and are discussed hereafter. In essence, each 
method aims at restoring the displacement uniformity within each selected interrogation 
area and maximizing the number of particle image doublets. 

 
 

2.2 Single-pass cross-correlation analysis 
 
The operating principle of basic PIV image analysis has been introduced in the 

previous chapter;  
1. image pre-processing may be performed to reduce the influence of noise sources. 
2. image recordings are divided into sub-sections of equal size, called interrogation areas 

or correlation windows. 
3. corresponding windows between consecutive exposures are analyzed by means of 

spatial cross-correlation to extract the most probable motion of the ensemble of tracer 
markers that belong to the interrogation regions. 

4. the correlation peak is fitted with a Gaussian distribution to achieve displacement 
estimates with sub-pixel accuracy. 

5. the position of the correlation peak is converted into velocity knowing the optical 
magnification and time separation between two exposures 
 
Denoting the light intensity distributions ‘Ia’ and ‘Ib’ at time instants ‘to’ and ‘to+∆t’ 

respectively, the local image displacement is evaluated as the absolute maximum in the 
cross-correlation function (2.1) and corresponds to the best match between the 
distributions in a statistical sense. 

 
( ) ( ) ( )∑ ++⋅=φ

j,i
ba nj,miIj,iIn,m  (2.1)

 
According to this definition, the correlation operator only takes into account linear 

shifts ‘(m,n)’ between the two images as a single parameter and acts as a rigid-block 
matching. In practice however, fluid motion is significantly more complex than pure 
translation and situations are often encountered (e.g. vortical flow, turbulent flow, flows 
with shock-waves, etc.) where basic cross-correlation is inadequate to yield representative 
motion estimates and may even fail entirely.  

Failure is referred to situations where the highest correlation peak does not correspond 
to the particle average displacement. The causes for degradation in the correlation peak 
can be several; low seeding density, high image noise levels (CCD noise, background 



32 PIV Image evaluation 

noise, reflections, degraded optical access, etc.) and a strong velocity gradient. The 
purpose of data validation is then to detect the local occurrence of spurious vectors and 
increase the confidence level of the measurements.  

Moreover, the spatial response of the correlation technique at this stage is poor and 
resembles that of a moving average, as will be shown in the remainder. Efforts in PIV 
image processing development are therefore aimed at improving the technique’s response 
and alleviate factors limiting the robustness of the correlation operator. First, basic rules 
to consider in image evaluation with standard cross-correlation are discussed to 
appreciate advanced interrogation routines. 

 
2.2.1 Basic rules for motion analysis 

 
• Minimization of loss of particle pairs due to out-of-plane motion 

 
PIV intrinsically estimates the displacement of image features, i.e. particle patterns. An 

adequate number of particle images is firstly needed to constitute a discernable pattern. 
At high image densities, particle images will furthermore overlap at each imposed 
correlation shift ‘(m,n)’ (Fig. 2.1-a) requiring a sufficient number of tracer images to 
ensure a correlation peak related to the best overall match dominating this correlation 
noise level (Hart and Meinhart, 2003). Performances of the correlation operator are 
therefore strongly related to the number of particle image pairs.  

 

 

 
(a) (b) 

Fig. 2.1: (a) More than one particle image overlaps at any window offset, resulting in an increase 
in the relative correlation noise level compared to the peak correlation. (b) Assuming an 
interrogation volume with dimensions ‘(WSx, WSy, WSz)’, the effective particle image density is 
related to ‘NI’ (in this example NI=15 particle images) and the particles’ in-plane motion ‘(∆x, 
∆y)’ and out-of-plane motion ‘∆z’. The volume ratio between the gray cube and original 
interrogation volume corresponds to ‘F0·F1’ (Keane and Adrian, 1992). 
 

Because of in-plane motion, particle images escape the interrogation windows during 
the separation time. Furthermore, fluid motion perpendicular to the light sheet causes out-
of-plane motion and consequently distortions of the traceable particle pattern. Keane and 
Adrian (1992) introduced the term mean effective particle image density, denoted as 
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‘NIF0F1’, where the factors ‘F1’ and ‘F0’ represent respectively the in-plane and out-of-
plane motion and ‘NI’ denotes the particle image density. This effective density can be 
thought of as the number of common particle images recorded at two time instants within 
an interrogation volume (Fig. 2.1-b) or in other words the number of corresponding 
particles contributing to the correlation peak. On the basis of practical experience and 
following an assessment based on computer generated PIV images, Keane and Adrian 
proposed the following criteria to optimize the PIV performance; 

The amplitude of the correlation peak is proportional to the number of image pairs 
present. Accordingly, the minimum number is 2 because this low density does not give 
enough pairs to unambiguously define the correct pairing of images or yield a sufficiently 
high correlation peak. The image density ‘NI’ should in general be at least 15 to have a 
correlation peak above the noise in 90% of the cases.  

Because interrogation areas have a fixed spatial location in the image analysis, particle 
motion between exposures causes certain particles to leave the interrogation volume 
either within or perpendicular to the plane defined by the laser sheet. To limit the 
reduction in the correlation peak amplitude as a result of this loss of particles, maximum 
displacements must be limited to 1/4th the interrogation volume (Fig. 2.1-b). This 
recommendation is generally known as the one-quarter rule. Note that the constraint on 
the out-of-plane component can be relaxed to some extent by increasing the light sheet 
thickness (cf. section 1.2.2). 
 

25.0Wx Sx ≤∆ ,   25.0Wy Sy ≤∆    and   25.0zzWz oSz ≤∆∆=∆  (2.2)
 

 

  
(a) (b) 

Fig. 2.2: (a) weak (0.01 pixel/pixel) and (b) strong (0.5 pixel/pixel) velocity gradient with typical 
correlation maps. Velocity gradients decrease the number of common particle images (the 
effective area is visualized by the gray overlapping area) in case of fixed, rigid interrogation 
windows (black rectangles) while retaining particles with lower velocities. If the windows would 
distort according to the reigning flow velocity (blue windows) all tracers would be retrieved. 

 
Many applications of PIV involve turbulent flows exhibiting small scale velocity 

fluctuations, associated to large spatial velocity gradients. These gradients cause 
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additional disturbances in the image patterns as cartooned by Fig. 2.2, degrading the 
quality of correlation between the rigid interrogation windows pertinent to reliability and 
accuracy. With increasing velocity gradient the area of overlap decreases, indicating 
fewer particles contribute to the correlation (lower reliability). Due to the variety in 
captured displacements, the correlation peak broadens and flattens yielding increasing 
uncertainties in peak localization. The distortions in correlation map are clearly visible in 
Fig. 2.2. Moreover, the images of particles having smaller velocities remain inside the 
windows, biasing the displacement estimate towards lower values (less accuracy). Keane 
and Adrian (1990) therefore propose an upper limit of 5% for the displacement 
differences within the interrogation window with respect to the mean displacement. 
 
• Cross-correlation spatial response 
 

The spatial response of a spatial operator refers to its capability in accurately 
representing the various length scales present within a flow. Under ideal recording 
conditions (a black background with superimposed a homogeneous spatial distribution of 
particle images having identical diameters and identical peak intensities) the cross-
correlation is known to return a volume averaged displacement (Willert and Gharib, 
1991). Length scales smaller then the physical dimensions of the interrogation windows 
will be attenuated as a result of the correlation operation’s low-pass filtering effect. 
Although the frequency response of the correlation function has a complex non-linear 
behavior, a qualitative approximation can be obtained using the moving average 
frequency response as a model (Nogueira et al., 1999).  

 

  
(a) (b) 

Fig. 2.3: (a) Starting from a given sinusoidal displacement field (─) moving averaging filters of 
various size (--, --) are applied. The amplitude of the filtered sinusoids (─, ─) decreases with 
increasing filter kernel. (b) Plotting the ratio between retrieved and imposed amplitude versus 
normalized window size yields the spatial response (─).  

 
Figure 2.3-a graphically explains the reasoned similarity by considering a sinusoidal 

displacement field. The modulation in amplitude of the filtered sinusoids becomes 
appreciable at larger values of the normalized filter kernel. Based on these considerations, 
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accurate measurement (within 10%) of the velocity spatial fluctuations would require a 
window-size below 20% of the spatial wavelength of the velocity distribution (Fig. 2.3-b) 
as reported by Scarano (2002). In other words, the smallest resolvable physical length 
scale with PIV, ‘λm’, must be sampled by at least 5 windows of size ‘λm’. This 
emphasizes the necessary accuracy-resolution trade-off. Decreasing the window size 
enhances the spatial response but lowers the accuracy on the basis of the reduced image 
density and equation (2.2). Clearly the interrogation window size requires a meticulous 
selection. 

 
• Interrogation cell overlap 

 
On the account of widespread applications reported over the last decade, a general 

consensus has been reached on the PIV technique’s limits in spatial resolution. The 
limiting factors have been identified as under-sampling of the continuous flow field either 
through insufficient seeding or too coarse vector spacing and volume averaging 
(Nogueira et al., 2005). Whereas the limits imposed by seeding spacing can only be 
controlled experimentally, volume averaging is governed by the applied window size and 
light-sheet thickness. The vector spacing ‘h’ is prescribed in the processing stage by 
imposing a certain window overlap ratio ‘WOR’; 

 
( ) SWWOR1h ⋅−=  (2.3)

 
The minimum detectable wavelength, i.e. ‘λm’ at which the measured amplitude equals 

zero (Fig 2.3), theoretically corresponds to the adopted window size (WS/λm=1). Ensuring 
adequate flow sampling by a sampling rate at least two times the frequency encountered 
in the flow translates into the typical minimum window overlap ratio of 50%;  

 
( ) 5.0WORWWOR125.0h mSm ≥→λ≤⋅−⋅→λ⋅≤  (2.4)

 
In these conditions the error is dominated by the modulation effect. 

 
2.2.2 Vector validation 

 
Measurement results with PIV may contain spurious displacements which degrade the 

reliability and accuracy of statistical flow information (Westerweel, 1994). In general, 
spurious displacement estimates are the result of interrogation spots containing 
insufficient particle-image pairs, causing random correlation peaks to dominate the true 
peak in amplitude. An accustomed measure of the correlation peak’s ascendancy and 
reliability is the signal-to-noise ratio defined as the amplitude ratio between the highest 
and second highest correlation peak. High ratios indicate high certainty in valid peak 
detection allowing a threshold criterion to act as first displacement validation. A typical 
threshold in signal-to-noise of 1.5 is often imposed.  
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(a) (b) 

Fig. 2.4: (a) Uniform vector field with detected outlier (red) (b) replacement of outlier by linear 
interpolation. 

 
Stray vectors show unphysical deviations in magnitude and direction from nearby 

vectors (Fig. 2.4-a). Accordingly Westerweel (1994) proposes detection through a 
comparison of each vector with its close neighbors considering the local velocity median 
and standard deviation. In line of this observation the recent normalized median test 
(Westerweel and Scarano, 2005) has been introduced for its robustness and efficient 
detection capability also in situations where multiple outliers appear. If the vector does 
not satisfy the condition presented in (2.5), the vector is excluded from the data-set and 
substituted by an interpolation of neighboring values (Fig. 2.4-b). Typical values for the 
threshold ‘rc’ range between 2 and 4.  
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where ‘ξi’ represents the analyzed vector and ‘εn’ is a conservative estimate of the cross-
correlation noise (≈0.1 pixels). The median of the vectors {ξ1, …,ξn} within the 
neighborhood of ‘ξi’ is represented by ‘Um’. Vectors falling within a spatial extent (from 
the location of ‘ξi’) of 1.5 times the locally reigning window size are considered to be 
neighbors. The normalization factor ‘rm’ is estimated as the median of the deviations 
between the neighboring vectors and the median ‘Um’. 
 
 
2.3 Iterative interrogation methods 

 
2.3.1 Multi-grid analysis with discrete window offset 
 

The selection of the interrogation window size in case of basic cross-correlation is 
based on a compromise between accuracy and spatial resolution (cf. section 2.2.1). On 
one hand smaller windows improve the spatial resolution, but on the other hand the 
window must be sufficiently large to provide a sufficiently large effective particle image 
density and ensure a detectable correlation peak.  

As a result of the finite extent of the interrogation windows, the selected segments of 
image signal can be modeled as the product between the complete image signal and top-
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hat windows. The auto-correlation of these distributions thus creates a weighting of the 
original correlation map with higher values close to the origin (Westerweel, 1997). As a 
result, basic cross-correlation yields displacement measurements which systematically 
underestimate the actual particle image displacement. This velocity bias is appreciable 
when observing the negative sign of the mean error in displacement (Fig. 2.5). 
Corrections for this effect are based on a proper normalization of the correlation function 
or the use of interrogation windows with different sizes (Westerweel, 1997). 

An alternative solution is provided by discrete window offset (Westerweel et al. 1997, 
Scarano and Riethmuller 1998); interrogation windows are offset by the integer part of 
the particle image displacement. This technique compensates for the in-plane loss of pairs 
and yields a more accurate result compared to the original analysis (Fig. 2.5). Figure 2.5 
demonstrates the advantage of sub-pixel window offset over discrete window offset; bias 
errors are practically removed and random errors are reduced to levels in the order of 10-3 
pixels. 

 

 
(a) (b) 

Fig. 2.5: (a) Mean displacement error (imposed – measured displacement) and (b) displacement 
RMS error as a function of the displacement for different window sizes and offset procedures 
based on synthetic images (taken from Scarano and Riethmuller, 2000). 

 
The local displacement of each interrogation area is anticipated by a flow pattern 

obtained by a previous interrogation, which implies the need of adopting an iterative 
procedure. 

As the window shift technique alleviates the constraint on the interrogation window 
size to maximize the number of particle doublets imposed by the one-quarter rule, smaller 
window sizes can be applied to simultaneously improve the correlation’s spatial response 
and dynamic velocity ranges about three orders of magnitude† (Adrian, 1997). This is the 
underlying rationale of multi-grid analyses.  

                                                      
† The dynamic range is a measure of the technique’s ability to represent velocity differences and is 
defined as ( ) 1Wc

u
uu

m
S1

min
minmax −λ=− . Ratios close to unity imply poor spatial resolution as 

minimum measurable wavelengths ‘λm’ are in the order of the interrogation window size ‘WS’. For 
basic cross-correlation, the ratio ‘c1’ between the maximum in-plane displacement and the window 
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At the start of the process the interrogation window size is set respecting the one-
quarter rule for the in-plane motion. The subsequent iteration consists of reducing the 
window sizes and using the previously coarse result to guide the integer window offsets. 
 
2.3.2 Multi-grid analysis with window deformation 

 
To overcome the problems inherent to velocity variations within interrogation areas, 

smaller interrogation volumes must be applied. These bound the displacement variation 
within but are in conflict with the image density requirements. A reduction in time 
separation between the images also circumvents the problematic, yet exacerbates to 
unacceptable relative displacement errors (Boillot and Prasad, 1996).  

The possibility to iteratively describe the velocity field allows an estimation of not 
only the displacement field but also the spatial distribution of the velocity gradients. In 
the correlation matching procedure, the domain transformation by rigid blocks (cf. 
equation 2.1) is replaced by an approximation in space of the displacement distribution 
(2.6). Accordingly, the affine motion provides a better representation of the actual fluid 
motion by taking into account the deformation of fluid elements due to shear, rotation or 
dilation and maximizes the number of matching particle images between the two 
exposures. As shown in Fig. 2.6 the displacement distribution can be approximated by 
different orders of domain transformation. A first order, linear, interpolation generally 
suffices. 

 

∫ ⋅∇++=φ xd)xddx(I)x(I)d( ba  (2.6)
 
 

(a)

 

(b)

 

(c)

 
Fig. 2.6: Schematic of the adopted iterative domain transformations; (a) rigid body (b) first (c) 
high order. Black lines represent the domain at time ‘to’, blue lines the one at ‘to+∆t’. 

 

                                                                                                                                                 
linear size, equals ¼ according to the one-quarter rule (section 2.2.1). With velocity uncertainties 
in the order of 0.1 pixels (Willert and Gharib, 1991), and typical window sizes of 32 pixels, a 
dynamic range of two orders of magnitude is obtained. With window discrete offset and multigrid 
resolution, the uncertainty is reduced to 0.01pixels (Fig. 2.5) and the maximum displacement may 
exceed the window size yielding an increase in dynamic range by at least an order of magnitude 
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By recursively distorting the images following a predicted displacement field (Huang 
et al. 1993a,b; Scarano and Riethmuller 2000) demonstrated that a velocity gradient up to 
0.5 pixels can be followed.  

It is evident that a proper image interpolation procedure is needed to evaluate intensity 
values at non-integer positions. Because of this fractional window offset, the fractional 
pattern displacements intrinsically diminishes iteratively to zero which practically 
minimizes any effect of peak-locking (Scarano, 2002). The latter is evidenced by the 
systematic analysis performed by Scarano and Riethmuller (2000) shown in Fig. 2.5; bias 
errors remain below 0.01 pixels with RMS levels reduced to 10-3 pixels. Additionally, 
deformation of the interrogation areas compensates for the in-plane loss of pairs due to 
velocity gradients (as indicated by the blue sheared window in Fig. 2.2) augmenting the 
correlation-peak amplitude, reducing the gradient bias and allowing a further 
improvement of the dynamic velocity range.  

 

  
(a) (b) (c) 

Fig. 2.7: Example of window distortion. (a) imposed vortex flow. Compared to the rigid and fixed 
correlation windows (b) distortion of the corresponding interrogation cells (c) allows a better 
matching of the particle patterns recorded at time ‘t’ (•) and ‘t+∆t’ (•) by assuming the estimated 
deformation of the fluid elements. 

 
Figure 2.7 visually explains the latter benefit by considering the example of rotational 

flow; following the vortical flow pattern in Fig. 2.7-a, particle images recorded at time 
instant ‘t’ (•) shift towards their new position at time ‘t+∆t’ (•). When keeping the 
interrogation windows fixed and rigid (Fig. 2.7-b), particles move out of the windows and 
cause a loss in particle image pairs (i.e. no matching between gray and blue particles 
within a window). The latter becomes especially evident near the vortex center where 
stronger displacement gradients occur. The reduction in effective image density will 
consequently cause a spurious vector. On the contrary, when the images are deformed 
(Fig. 2.7-c), corresponding interrogation windows retain particle image pairs thereby 
increasing the probability of correlating the same particles with each other and increasing 
the probability of detecting a valid correlation peak. 
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2.3.3 Implementation 
 

The above mentioned interrogation improvements have become general concepts in 
the PIV community and standard in commercialized PIV software (e.g. DaVis LaVision, 
FlowManager Dantec Dynamics, etc.). Nowadays, image interrogation procedures are typically 
composed of the main steps shown in Fig. 2.8. Within this paragraph, further details are 
provided concerning their implementation.  

 

 
Fig. 2.8: Layout of a typical iterative image interrogation routine adopting discrete window offset 
or image deformation (ξ=u,v). 

 
• Window refinement 

 
Windows are iteratively reduced according to relation (2.7), which imposes a gradual 

refinement; 
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were ‘K’ refers to the number of refinement steps and ‘k’ the iteration number. The initial 
window size’ WS

0’ can be chosen arbitrarily but must not exceed one-fourth of the 
maximum displacement to minimize in-plane loss of particle images and assure a 
detectable correlation peak (Keane and Adrian, 1990). The lower limit in possible final 
window size ‘WS

K’ remains dominated by the need of a sufficient quantity of 
corresponding particle images to avoid spurious/erroneous displacement estimates. The 
number of refinement steps must therefore be selected with meticulous care. 
 
• Vector validation 
 

For iterative algorithms the validation is even more crucial because the deleterious 
effect of an outlier at early iterations can compromise the final result to a relatively large 
extent. Prior to the interpolation sequence, a thorough validation procedure is therefore 
needed as to eliminate spurious vectors.  
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Besides the two criteria introduced in section 2.2.2, additional criteria can be proposed 
which are based on the knowledge that the fractional displacement should gradually 
decrease towards zero as a result of iterative image distortion. The first measure consists 
in a recursive reduction of the correlation peak’s search area centered on the origin. 
Typically halving the radius aids in effectively minimizing the probability of detecting 
stray random correlation peaks. The second related criterion considers the convergence of 
the displacement estimates; 
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where the displacement in ξ-direction measured in the kth iteration is symbolized by 

‘ξk’ and ‘ε’ is an estimate of the acceptable sub-pixel accuracy. While an accuracy of 0.1 
pixels suffices for displacements in excess of a pixel, sub-pixel displacements may 
require more stringent accuracies; 
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The empirical relation (2.9) ensures the required sub-pixel accuracy to be an order of 

magnitude below the total displacement. As an example, a displacement corrector ‘Cξ
k’ of 

0.1 pixels with a median of 0.01 pixels yields according to (2.8) a valid ratio of 0.90 for 
‘ε=0.1’. While this corrector would be acceptable for displacements in excess of a pixel, 
this level of accuracy is unsuitable for sub-pixel displacements (ξk<1pixel). This stringent 
restriction is incorporated by requiring higher sub-pixel accuracy, one order below the 
displacement measurement i.e. ‘ε=0.01’ (yielding an invalid ratio of 5).  
 
• Image deformation 
 

To enlarge the measurable velocity gradient range, matching between regions which 
undergo transformation has to be improved. Interrogation windows are deformed (read, 
images are distorted) respectively forwards and backwards by half the imposed 
displacement as depicted in Fig. 2.7-c and expressed in equation (2.10). This central 
difference interrogation philosophy has been proven to produce second order accuracy, 
compensating to an extent for the effect of particle path curvature (Wereley and Meinhart, 
2001). 
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The predictor ‘ξo
k’ guiding the image deformation is iteratively updated; the window 

displacement evaluated at the k-1th iteration is corrected by the term ‘δξo
k’ which follows 

from the cross-correlation of the deformed images; 
 

k
o

1-kk
o δξ+ξ=ξ  (2.11)
 
In this work the deformation is given by a continuous first order approximation of the 

discrete displacement field by means of bi-linear interpolation over all the pixels (Fig. 
2.6-b). Though linear interpolation is in general less accurate compared to higher order 
interpolation schemes (e.g. Tokumaru and Dimotakis, 1995), it has the advantage of 
requiring less CPU time. Moreover, in comparison with the error introduced by 
modulation, the increase in accuracy is negligible at larger window overlap ratios.  

 
• Interrogation cell overlap 

 
The statement that the increase in accuracy is negligible at larger window overlap 

ratios when applying higher order interpolation schemes to predict the displacement field 
for image deformation, is argued with a numerical example. One-dimensional sinusoids 
of various wavelength ‘λ’ are considered which are sampled by regularly spaced 
windows of size ‘WS’ (Fig. 2.9-a). The spacing is defined by equation (2.3). The response 
of the correlation windows is modeled as a moving average and retrieved values are 
interpolated pixel-wise to calculate the difference between the original and reconstructed 
sinusoid (Fig. 2.9-b).  

 

  
(a) (b) 

Fig. 2.9: (a) The imposed sinusoid uo⋅sin(2πx/λ) (black line) is sampled by windows of various 
size at discrete locations separated by distance ‘h’ (equation 2.3). The response of the correlation 
operator is assumed to be that of a moving average. (b) The difference between the reconstructed 
sinusoid from the discrete samples (red line) and the original sinusoid is used as a measure for the 
reconstruction error. 
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In Fig. 2.10 the evolution of the absolute reconstruction error ’|ε|’, integrated over a 
wavelength and normalized with imposed amplitude ‘uo’ (2.12), is plotted versus 
normalized window size for different window overlap ratios and a linear and quadratic 
interpolant (Dogson, 1997). The reconstruction error gains amplitude with ‘WS/λ’, which 
is to be anticipated in view of growing modulation effects (‘εmod’). Vector spacing proves 
to be important as increasing window overlap ratios provoke a reduction in error. 
Moreover, in case of high overlap coefficients, the reconstruction error is clearly 
dominated by ‘εmod’ given by (2.13). 
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(a) (b) 
Fig. 2.10: Numerical comparison between linear and higher order interpolations modeling the 
correlation operation as a moving averaging filter in case of a sinusoidal displacement 
uo⋅sin(2πx/λ). The displacement estimates at discrete locations were interpolated pixel-wise over a 
single wavelength from which the reconstruction error could be determined. (a) Evolution of the 
error with normalized window size for different window overlap ratios. (b) Zoom for WS/λ<0.3. 

 
Nyquist’s sampling criterion combined with the relation between sample spacing ‘h’ 

(h/λm≤½) and window overlap ratio ‘WOR’ (equation 2.3) imposes an upper bound for 
the normalized window size indicated by the vertical lines. Above the limit value the 
sinusoid is subject to under-sampling rendering accurate reconstruction impossible, 
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independent of the interpolant order. When proper sampling is ensured, application of the 
higher order interpolant offers a reduction in reconstruction error only for low WOR. 
However, the advantages remain questionable; the gain in error reduction when changing 
between linear and quadratic interpolation is marginal compared to the total 
reconstruction error. Overlap ratios of 75% turn out to be a good trade-off between 
computational effort and error since discrepancies with 90% WOR are minute inherent to 
an over-sampling. 

Concluding, as the normalized window size approaches zero or overlap ratios in the 
order of 75% are selected, lower order interpolation schemes show to be sufficient as 
higher order schemes are no longer beneficial and modulation effects dominate the error 
transmission. Moreover, only overlap factors of at least 75% ensure that the signal 
modulation is solely associated to the window size and not to the data spacing which is in 
agreement with Schrijer and Scarano (2008) and Astarita (2007). 

 
• Image interpolation 
 

Since the images must be deformed with sub-pixel accuracy, intensity re-interpolation 
is necessary. Scarano and Riethmuller (2000) implemented the cardinal function 
interpolation following Hall (1979) related to the image reconstruction. Image 
reconstruction however has a broad range of applications such as e.g. medical imaging 
and computer graphics and each discipline offers its own number of research articles 
devoted to finding the best image interpolation scheme (e.g. Mitchell and Netravalli 1988, 
Dodgson 1997, Thévenaz et al. 2000). Overall, the preferred schemes are those involving 
splines of various orders (Lehmann et al., 2001). Astarita and Cardone (2005) and Kim 
and Sung (2006) indeed separately conclude quintic B-spline interpolation to offer the 
best trade-off between accuracy and computational time after conducting a performance 
assessment of various schemes based on synthetic images. In parallel, Lecordier and 
Trinité (2006) showed B-spline interpolation to have better performances compared to the 
cardinal function based on real particle images. While retaining the accuracy, the 
computational effort involved showed a drastic decline. 

In the remainder of the presented work, quintic B-spline interpolation will be applied 
when image re-interpolation is involved. The algorithmic implementation is based on the 
procedure described by Unser et al. (1993a, 1993b) which yields a considerable reduction 
in execution time. 

 
 

2.4 Advanced iterative interrogation methods 
 
2.4.1 Predictor filtering 
 

One of the main results of the worldwide PIV Challenges (Stanislas et al., 2005, 2008) 
is the recognition that iterative image deformation has become a standard interrogation 
method, where the most straightforward approach of setting the predictor equal to the 
value obtained from the previous interrogation is adopted. While this approach avails in 
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coping with flows exhibiting large velocity gradients, Nogueira et al. (1999) reported the 
occurrence of a numerical instability causing the growth of a sinusoidal wave when using 
multigrid PIV methods incorporating equation (2.11).  

The nature of this unstable behavior has been linked to the negative amplitude 
response shown in Fig. 2.3. Analyses have shown that flow wavelengths 2/3 times the 
applied window size are amplified corresponding to the maximum of the first sign 
reversal in the spatial response (Scarano, 2004) as explained in Fig. 2.11. In the idealized 
case of a sinusoidal velocity field with ‘WS/λ=1.5’, the measured displacement at the 
centre of the interrogation window is the opposite of the imposed. Consequently, images 
are deformed in opposite directions, increasing the deformation between matching 
particle patterns tending towards a higher probability in formation of spurious vectors 
(Nogueira et al., 2001). When implementing successive iterations this process will 
diverge and unrecoverable errors will occur. 

 

  
(a) (b) 

Fig. 2.11: Example of instability origin (a) interrogation window containing a sinusoidal 
displacement field, WS/λ=1.5 (b) measured displacement. 

 

 
Fig. 2.12: Flow diagram of a iterative predictor-corrector image interrogation with predictor 
filtering (Note, ξ may represent either the u displacement component or the v-component). 

 
With the aim of stabilizing the iteration scheme, Schrijer and Scarano (2008) 

investigated both numerically and theoretically filtering methods for the predictor and 
reported a second order polynomial least-squares regression to yield limited modulation 
effects with simultaneous reduction in RMS values. Based on their findings, the current 
work implements the 2nd order polynomial regression model defined in (2.14) involving 
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all neighboring displacement estimates within a radius of ’⋅WS
k’. Once the unknown 

coefficients have been determined, the displacement values ‘ξo
k’ are substituted by their 

counterparts ‘ξk’ prescribed by the analytic function. 
 
( ) i,ii,ii,iii,
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The flow chart of the predictor-corrector iterative loop (Fig. 2.8) has been repeated in 

Fig. 2.12 with the additional stage of predictor filtering. The option of window shifting 
has been omitted since the window deformation also includes the case of window 
shifting. 
 
2.4.2 Performance assessment 

 
• Synthetic images 

 
The performance of the advanced iterative image interrogation routine described afore 

is assessed by means of synthetic images (Stitou, 2003). Zero background intensity arrays 
of 256-by-256 pixels2 were populated by particles at random locations followed by an 
integration of the Gaussian particle image intensity distributions over the virtual sensor. A 
pixel fill factor of 0.7 was adopted. The maxima in particle intensity amplitude were 
selected randomly between 0 and 255 corresponding to 8bit images. A normal 
distribution in particle image size was assumed with a mean particle image diameter of 3 
pixels and a standard deviation of 1 pixel. In total the generated images contained 5243 
particles corresponding to a particle density of 0.08 particles per pixel.  

 
• Spatial resolution 

 
Figure 2.13 shows the spatial response of the implemented interrogation procedure 

considering a 1D sinusoidal displacement field of varying wavelength λ and a constant 
amplitude of 2 pixels, omitting image noise. The image interrogation was performed with 
window sizes of 33 pixels, imposing a window overlap ratio of 90% to exclude influences 
of poor vector spacing (cf. Fig. 2.9 and Fig. 2.10). Measured amplitudes were extracted 
from a sinusoidal fit to the resulting displacement fields. 

Evident from Fig. 2.13 is the non-linear behavior of the cross-correlation routine. The 
spatial response clearly exhibits an evolution surpassing that of the moving average filter, 
the latter being defined as ‘sinc(WS/λ)’. Whereas the moving average returns 80% of the 
imposed amplitude for wavelengths 2.8 times the imposed window size (WS/λ≈0.36), this 
lower limit is now further reduced to a factor of about 2 (WS/λ≈0.6).  

The attenuation of sub-grid scales is of importance especially in turbulence 
measurements. To ensure sufficient resolution Westerweel et al. (1996) applied 
arguments similar to those found in DNS simulations; ‘(WS⋅WS⋅∆z)1/3<π⋅η’, where ‘∆z’ 
refers to the laser sheet thickness and ‘η’ the Kolmogorov length scale. When flow 
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integral length scales are less than around ten times the size of the interrogation cells, 
Spencer and Hollis (2002) report significant errors in second-order statistics calculated 
from the velocity field measured with the conventional metrologies. With increasing 
order of the involved statistics, requirements become more stringent yielding spatial 
resolutions of around twice the Kolmogorov scale to enable the measurement of 90% of 
the turbulent energy dissipation (Saarenrinne et al. 2001, Baldi and Yanneskis 2004). As 
the window size can now be enlarged while retaining a sufficiently low modulation, the 
robustness of the interrogation method can be increased. Vice versa, for a given window 
size the modulation error is decreased yielding more accurate velocity estimates.  

In view of the above the use of a window overlap factor above 0.5 is justified in case 
of iterative image deformation. In fact, for an overlap factor of 0.5, the effect of discrete 
sampling would introduce an error significantly larger than the modulation error. The two 
errors instead become comparable when an overlap factor of 0.75 is used. 

 

 
Fig. 2.13: Spatial response of the implemented interrogation procedure when applying uniform 
window sizes placed on a structured grid with 90% window overlap. Error bars indicate 95% 
confidence level.  

 
• Accuracy 

 
Particle images were uniformly displaced with intervals of 0.05 pixels to assess the 

accuracy of the interrogation algorithm. Both ideal conditions and more realistic 
conditions were considered simulating image noise with a mean intensity of 40 gray 
levels and a variation of 10. The interrogation was performed with two refinement steps 
starting with window sizes of 81 pixels2 and 63 pixels2 yielding final window sizes of 33 
pixels2 and 15 pixels2 respectively. A global window overlap ratio of 75% was applied 
resulting in a number of velocity samples ‘N’ at least 25 104.  
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Bias error ‘β’ and random error ‘σ’ are presented in Fig. 2.14 and are defined in (2.15) 
in accordance with Gui and Wereley (2002) where ’um,i’, ‘u’ and ‘ mu ’ are respectively 
the measured, the imposed and the mean measured displacements. 

 

 
(a) (b) 

Fig. 2.14: (a) Bias measurement error (b) Random measurement error for different window sizes 
and imaging conditions. 

 
The bias error is observed to have a periodicity of two pixels crossing zero at integer 

displacements which is in agreement with the observations of Scarano and Riethmuller 
(2000) and Astarita and Cardone (2005). The period of two pixels can be easily explained 
by noting the symmetric image deformation in equation (2.10). Only when the imposed 
displacement is a multiple of 2 are both images displaced over an integer number of 
pixels leading to zero errors in intensity reconstruction. The latter would correspond to 
the asymmetric situation where one of the two images is translated over one pixel.  

A slight peak-locking can still be observed as measured displacements are biased 
towards integer values. In the present work the bias error reaches absolute maxima of 
0.015 pixels at displacements of one plus-minus a quarter pixel whereas the research 
mentioned afore reported maxima at fractional displacements of 1±0.5 pixels. This 
discrepancy is thought to be the result of the difference in implemented predictor filter.  

Whereas the introduction of image noise or enlarging the interrogation area leads to 
minimal variations in bias error, the effects become more pronounced in the random 
error. Minima in random error are again reached for zero fractional displacements and 
maxima of in average 0.013 pixels are attained for fractional offsets of half a pixel, 
yielding a dynamic velocity range of almost three orders of magnitude when considering 
a maximum displacement of typically 8 pixels. Enlarging the interrogation area is clearly 
beneficial in reducing the variation in error while image noise yields an increase in ’σ’, as 
to be expected.  
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2.5 Typical PIV experiment: Cylinder wake 
 

A typical PIV experiment is considered in the following to illustrate the interrogation 
routine improvements discussed within this chapter. As benchmark, the case of the wake 
flow behind a cylinder at a Reynolds number ‘ReD’ of 2000 (based on the diameter) has 
been considered as it contains challenging flow features; strong spatial gradients in the 
separated shear layers and vortical structures convected downstream. 

 
2.5.1 Background 
 

The flow behind a submerged cylinder is likely to be the most famous and well-studied 
flow in fluid mechanics. Depending on the Reynolds number (based on the cylinder 
diameter; ‘ReD’) intricate and complex 3D patterns appear in the unstable wake 
(Williamson, 1996).  

As the laminar boundary detaches from the cylinder a turbulent wake is formed. The 
wake consists of pairs of vortices shed alternatively from the upper and lower part of the 
cylinder (Fig. 2.15-a). The vortices are arranged in two staggered rows with opposite 
sense of rotation; the so-called street vortex (Fig. 2.15-b). Even though the wake becomes 
more complex and turbulent with increasing Reynolds number, the alternate shedding can 
still be detected up to ReD≈107. For the current Reynolds number of 2000, literature 
(Lienhard, 1966) reports a Strouhal number for vortex shedding of 0.21±0.05. 

Vortex streets occur in almost any bluff body flow and are of importance to 
engineering structures. As the vortices (with opposite circulations) are shed off 
alternately, an oscillating lift force is generated. A frequency of vortex shedding close to 
the natural frequency of some mode of vibration of the structure will result in an 
appreciable lateral vibration which may lead to structural failures. 
 

 

(a) (b) 
Fig. 2.15: (a) Boundary layer separation for a circular cylinder at ReD=2000 (taken from Van 
Dyke, 1988). The pocket of slow (with respect to the freestream velocity ‘U∞’) fluid motion 
behind the cylinder is visible as well as the onset of the oscillating wake (b) Schematic of the 
oscillating wake pattern. 
 
2.5.2 Experimental facility 
 

Experiments were conducted in a low-speed windtunnel with a turbulent free stream 
velocity of 3.1 m/s. A cylinder of 1cm in diameter was placed in a test-section height of 
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9.5 cm. Measurements were performed in the vertical mid-plane to avoid wall 
interferences. 

Oil droplets with mean diameters of 1µm provided the necessary flow seeding. 
Droplets were generated by a Laskin’s nozzle seeding generator which works on the 
principle of oil vaporization to produce smoke. 

An 8bit TSI camera (640×480 pixels2) recorded the scattered intensities within a thin 
laser sheet (~1mm thickness). The light sheet was formed by letting the laser beam 
emanated by an Nd-Yag laser pulsating at 10Hz pass a spherical and cylindrical lens 
before being reflected vertically towards the test section by a prism. With an optical 
resolution of 6.87 pixels/mm the recordings covered a field of view of 70×93 mm2. The 
time separation between image snapshots was set to 0.2 milliseconds with a 
corresponding maximum displacement of 7 pixels in the sensor spatial domain. 

An exemplary PIV snapshot is presented in Fig. 2.16. The vortex shedding is 
emphasized by spatial variations in seeding density. The cylinder is situated to the left of 
the image and is accompanied by strong light reflections. With the laser sheet entering the 
test-section from the top, a shadow region is cast below the cylinder. Moreover, an 
oblique strip of high light intensity is visible further downstream, which is caused by 
impurities (i.e. scratches or dust) in the lens, prism and walls. The wake in the immediate 
vicinity of the cylinder suffers from poor optical access due to impurities on the 
transparent walls of the test-section. Imaging conditions are clearly far from optimal for 
PIV analysis, but remain representative as ideal experimental conditions are not always 
achievable and the presented problems may occur rather frequently. 
 

 
Fig. 2.16: Instantaneous PIV image of the wake flow behind a circular cylinder at ReD≈2000. 
 
2.5.3 Image evaluation 
 

Image interrogation routines based on basic cross-correlation and multigrid routines 
(incorporating predictor filtering) are considered in the following. Basic image evaluation 
was performed with correlation window sizes of 65 and 21 pixels and 75% mutual 
window overlap yielding vector spacings of 16 and 5 pixels respectively. In the multigrid 
structure initial window sizes were set to 65 pixels and reduced to 21 pixels within 5 
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iterations. As the maximum displacement was in the order of 5 pixels, all selected 
window sizes fulfilled the one-quarter criterion introduced in (2.2). 

 
 

(a) (b) 

(c) (d) 
Fig. 2.17: Velocity field underlying the exposure in Fig. 2.16 obtained with different interrogation 
routines (WOR=75%). (a) basic cross-correlation with window sizes of 65 pixels, no vector 
validation (b) basic cross-correlation with window sizes of 21 pixels, no vector validation (c) basic 
cross-correlation with window sizes of 21 pixels, vector validation (d) multigrid analysis reducing 
initial windows of 65 pixels to 21 pixels in 5 iterations, no vector validation. Blue squares indicate 
the adopted interrogation area sizes. 

 
Instantaneous velocity fields underlying the exposure shown in Fig. 2.16 are presented 

in Fig. 2.17-a for basic correlation with 65 pixels correlation windows. The use of large 
correlation windows yields a poorly resolved flow field though robust. Reducing the 
interrogation window size results in an improved flow sampling and spatial response, 
however at the expense of robustness as can be verified by the patches of displacement 
outliers (Fig. 2.17-b). Especially the near-cylinder wake suffers from multiple outliers as 
a result of strong velocity gradients whereas erroneous vectors in the shadow region of 
the cylinder are caused by insufficient seeding density. Fig. 2.17-c vividly illustrates the 
importance of vector validation as the proposed outlier detection criteria are able to 
minimize the occurrence of false displacement estimates. The decoupling between 
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accuracy and spatial resolution inherent to the multigrid allows the same resolution as the 
basic correlation operation adopting window sizes of 21 pixels while maintaining 
robustness (Fig. 2.17-d). As the image is iteratively deformed, the tracer motion 
distribution is approximated which allows a reduction in correlation window size while 
maximizing the number of particle image doublets. 
 

 
(a) (b) 

 
(c) (d) 

Fig. 2.18: Vorticity fields underlying the exposure in Fig. 2.16 obtained with different 
interrogation routines. (a) basic cross-correlation with window sizes of 65 pixels, 75% WOR with 
data validation (b) multigrid analysis reducing initial windows of 65 pixels to 21 pixels in 5 
iterations, 0% WOR, with vector validation (c) basic cross-correlation with window sizes of 21 
pixels, 75% WOR, with vector validation (d) multigrid analysis reducing initial windows of 65 
pixels to 21 pixels in 5 iterations, 75% WOR, with vector validation. 
 

Imposing a window overlap ratio of 0%, the vector spacing of the multigrid analysis is 
almost equivalent to that of basic interrogation with WS=65pixels (Fig. 2.18-a vs. -b). 
Comparing the vorticity fields however, the multigrid routine is more adequate to 
represent the shear layers emanating from the cylinder hemispheres and vortex cores with 
higher vorticity. This may serve as an indicator for improved resolution. After all, the 
velocity resulting from cross-correlation is a volume averaged representation of the tracer 
motion.  
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Especially in regions of strong velocity gradients i.e. the separated shear layers and 
vortex core regions, the application of small rigid correlation windows is inappropriate 
which explains why the vorticity field obtained with basic cross correlation adopting 
interrogation windows of 21 pixels in size is noisy and less coherent (Fig. 2.18-c) 
compared to the multigrid approach (Fig. 2.18-d). 
 
 
2.6 Conclusions 

 
Basic analysis of the PIV recordings is performed via the two-dimensional spatial 

cross-correlation function over relatively small interrogation areas, obtained by image 
segmentation into so-called interrogation windows. Insufficient seeding and high velocity 
gradients have a detrimental effect on the reliability of the cross-correlation operation. 
Allowable window sizes are limited respecting seeding density and displacement 
magnitudes to ensure a sufficient number of particle image pairs within. By distorting the 
interrogation windows the condition of zero velocity gradients within the flow is 
approached. This allows a drastic increase in number of retained particle image pairs, 
relaxing the sizing requirement in function of the maximum displacement measured. 
Consequently, window sizes can be iteratively refined enhancing the ability to represent 
large velocity differences and spatial resolution of the interrogation process. 

To maximize the number of particle doublets, background-subtracted images are 
iteratively deformed to enhance the matching between image regions. Quintic B-splines 
have been currently implemented to perform the intensity re-interpolation. To increase 
the spatial resolution correlation windows are gradually reduced with iteration number, 
but must be ensured to contain an effective particle image density of at least 7. A filtering 
of the displacement field prior to the image deformation sequence further improves the 
spatial resolution. Vectors are validated based on iterative convergence of the 
displacements, signal to noise and neighbor similarity.  

An assessment of the iterative multigrid routine based on computer generated PIV 
images attested the improved spatial response with respect to that of the basic correlation 
method. Given a modulation factor of 0.8 the minimum measurable wavelength is 
reduced from more than 3 times the window size to less than 2 times the window size. 
Simultaneously, the bias measurement error expressed in pixels could be limited to 2 
orders of magnitudes with a random error of the same amplitude yielding a dynamic 
range of nearly three orders of magnitude. Application to experimental image recordings 
of a turbulent cylinder wake confirmed these performance enhancements compared to 
basic correlation routines. 

However, the achieved interrogation quality depends strongly on the selection of final 
interrogation window size and window overlap, both of which need to be set by the user. 
Based on the enhanced spatial response and optimal trade-off in accuracy and 
computation effort in image reconstruction, the overlap factor has been argued to be at 
least 75%. 

Interrogation parameters such as number of refinements, final window size and 
window overlap ratio are not chosen arbitrarily but are methodical choices made by the 
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user. Based on his experience, the user must select these parameters such that the image 
analyses will yield the sought for quantities, representative of the underlying truth in 
those regions of interest to him. 
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CHAPTER 3 
 
 
 
 

ADAPTIVE SAMPLING AND WINDOWING 
INTERROGATION IN PIV† 

 
 
 

Abstract 
 

This chapter proposes a cross-correlation based PIV image interrogation algorithm that adapts 
the number and location of interrogation windows as well as their size to the image properties and 
to the velocity field. The proposed methodology releases the (commonly adopted) constraint that 
the window size has to be uniform all over the image as well as the distance between neighboring 
vectors. Especially in non-optimal experimental conditions where the flow seeding is 
inhomogeneous this leads either to loss of robustness (too few particles per window) or 
measurement precision (too large or coarsely spaced interrogation windows). 
Two criteria are investigated namely adaptation to the local signal content in the image (i.e. 
seeding density) and adaptation to the local velocity field properties (i.e. spatial velocity 
variations). The location and size of the interrogation windows is locally adapted to the image 
signal (i.e. seeding density) and flow length scale (i.e. velocity variance). Also the local window 
spacing (commonly set by the overlap factor) is put in relation with the spatial variation of the 
velocity field.  

The suitability of the method to analyze images from real experimental conditions is illustrated 
by three test cases; a shock-wave boundary-layer interaction, an aircraft vortex wake and a 
cylinder wake flow. Additionally synthetic images of isotropic random velocity fluctuations are 
considered where the limitation of a uniform interrogation approach clearly appears. The 
examples show that the spatial sampling rate can be adapted to the actual flow features and that 
the interrogation window size can be arranged such to follow the spatial distribution of seeding 
particle images and flow velocity fluctuations. In comparison with the uniform interrogation 
technique, the spatial resolution is locally enhanced while in poorly seeded regions the level of 
robustness of the analysis (signal-to-noise ratio) is kept almost constant. 

 
 
 
                                                      
† This work has been partly published in Theunissen et al., 2007, Measurement Science and 
Technology. 
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Nomenclature 
 

∆ vector spacing (pixels) 
ε measurement error (pixels or meter second-1) 
κ0,1 particle segmentation constants related to intensity pedestal and variation 
λf spatial wavelength of flow fluctuation (pixels) 
λm minimum measurable wavelength (pixels) 
λp particle spacing (pixels) 
λw spacing between neighboring measurement points (pixels) 
ϕ two dimensional sampling rate (expressed in samples per pixel² or spp) 
σu velocity standard deviation (pixels) 
ωz out-of-plane vorticity component ; ωz=∂v/∂x - ∂u/∂y (pixel/pixel) 
(xi,yi) projected spatial location corresponding with a probability p(xi,yi) 
A amplitude of flow fluctuation (pixels) 
b transport aircraft model wingspan (meter) 
c conditional density function, vector containing interpolation coefficients 
C, M cumulative density functions 1D and 2D respectively 
D cylinder diameter (meter) 
f exact node value 
h grid spacing in case of uniform sampling (pixels) 
Imax, min maximum and minimum intensity respectively 
Ip particle intensity 
k modulation factor 
[Lx,Ly] spatial domain dimensions (pixels) 
m marginal density function 
NI number of particles within the interrogation window 
NW number of interrogation windows 
p(xi,yi) probability density function 
Sd local seeding density (particles per pixel² or ppp) 
SN Signal-to-Noise Ratio 
u, v velocity component in horizontal and vertical direction (pixels) 
u  interrogation window-averaged velocity (pixels) 
wi weighting function 
WOR interrogation window overlap ratio 
WS interrogation window size (pixels) 
WS

* calculated interrogation window size based on seeding density (pixels) 
X downstream distance from aircraft wing (meter) 
{X} total collection of values of variable X 
{X}S collection of values of variable X within the vicinity S 
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3.1 Introduction 
 
Currently most interrogation parameters, namely the size of the interrogation window 

(‘WS’) and overlap factor (‘WOR’) are set by the user and applied uniformly throughout 
the image, independent of variations in seeding density (defined as the number of 
particles per pixel) or flow property, even in the multigrid analysis. Since the progressive 
window refinement is applied uniformly over the entire image, the interrogation process 
is unaware of the possible spatial non-homogeneity either on the side of seeding density 
or in terms of velocity fluctuations. Non-homogeneous information distribution occurs in 
the majority of the flows of interest. From this consideration a need arises to adopt more 
flexible interrogation algorithms. Previous studies have been dedicated to overcome this 
problem. At least two approaches can be identified being Particle Tracking Velocimetry 
(PTV) and the second consists in making the correlation based interrogation more 
flexible.  

Particle Tracking Velocimetry (Hassan and Canaan 1991, Keane et al. 1995) 
algorithms are based on the tracking of individual particle images and allow in principle 
the highest spatial resolution, i.e. one vector for each detected particle. However, pairing 
particle images in the presence of a large out-of-plane component still causes a lack of 
robustness. For this reason PTV algorithms were limited to flows with low seeding 
density, with clear limits in spatial resolution. The super-resolution approach (Keane et 
al. 1995, Stitou and Riethmuller 2001) incorporates conventional cross-correlation PIV 
followed by sub-grid particle tracking within the interrogation window. Despite the 
increased pairing success rate, tracking individual particles was shown to introduce larger 
noise due to the low precision of particle to particle matching (Spencer and Hollis, 2005; 
PIV challenge 2005). Because cross-correlation PIV analysis provides an average 
displacement of an ensemble of tracers still representative of the in-plane motion, the 
advantage over PTV is the relative increase in robustness and precision (about a factor 3 
according to the 2005 PIV challenge). An additional point is that PTV performances are 
still strongly dependent on the choice of the detection, pairing and validation algorithms 
and the technique has not yet reached a sufficient level of standardization. As such, every 
single user applies specific rules and algorithms to optimize the analysis for the given 
problem. 

For the analysis of PIV images by cross-correlation few attempts have been reported in 
literature to adapt the cross correlation analysis to the spatial variations in the seeding 
density (Rohály et al. 2002, Susset et al. 2006) or cross-correlation signal as proposed by 
Wieneke and Susset (2004), who used the Signal-to-Noise-ratio (SN-ratio) as a criterion 
to increase the interrogation window. The SN-ratio is defined as the ratio between the 
amplitude of the highest correlation peak versus the second highest. Rohály et al. (2002) 
adapted the window-size to the correlation signal within a reversed hierarchical structure. 
The proposed method starts with the smallest window size (2×2 pixels) and locally adds 
correlation maps (i.e. larger interrogation areas) until a reliable signal peak is found. 
Susset et al. (2006) performed grid refinement and modified the window size depending 
on whether or not a valid result was obtained in the previous iteration. Both methods 
improved the spatial resolution through the ability to use larger windows in areas with 
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low seeding density and to reduce the size in areas of high density. Indeed, application to 
experimental images showed promising performances. However, the degradation of the 
correlation signal can also occur due to velocity gradients (none of the mentioned 
methods applies window deformation), therefore introducing an ambiguous behavior of 
the SN-ratio with respect to the interrogation window size. Adjustment of the window 
size to the correlation signal can be seen as a signal adaptivity mechanism and to a small 
extent flow adaptation. Despite all improvements, study of the cross-correlation map does 
not allow to distinguish between a drop in Signal-to-Noise ratio due to a lack in seeding 
particles or due to velocity gradients. On the other hand several procedures have been 
presented to incorporate adaptation to the spatial flow fluctuations. An algorithm to vary 
the interrogation window size with respect to the local velocity fluctuations has been 
proposed by Scarano et al. (2002) for the analysis of vortex wakes. The shape of the 
windows can also be adapted to the local flow properties namely flow direction (Di Florio 
et al., 2002) or the velocity field curvature (Scarano, 2003). The application of the above 
methods showed best results when applied within an iterative structure. Recently Becker 
et al. (2008) proposed adaptation of the interrogation parameters based on a variational 
approach minimizing an error function. The latter takes into account the influence of 
window size, eccentricity, displacement gradients and image noise on the velocity 
measurement accuracy. Though the method showed significant improvements, it however 
does not account for degradation in accuracy due to improper flow sampling or spatial 
variation in signal content.  

The present study investigates separately the aspects of non-homogeneous seeding 
density and that of spatial velocity fluctuations, proposing a method that adapts the 
windows and sampling rate of the interrogation to varying seeding and flow properties by 
removing the unnecessary constraint of uniform windowing and placement of 
interrogation areas on a Cartesian mesh. The first part of the chapter introduces the 
problem in general terms discussing the concept of adaptive interrogation and its need 
under critical experimental conditions. The following section presents the implementation 
of the adaptive interrogation procedure followed by the application to computer generated 
images of homogeneous fluctuations and experimental images from the wake vortex 
behind a transport aircraft model and a supersonic flow over a shock-wave boundary 
layer interaction.  
 
 
3.2 Problem statement 

 
When performing PIV measurements of complex flows, in some parts of the 

investigated domain a high spatial resolution might be required i.e. small windows, 
whereas in other regions of the flow a lower spatial resolution may be sufficient. The 
conventional interrogation is optimized in a global sense and non-optimal conditions are 
often accepted in some regions of the measurement domain, which in turn introduces 
spurious vectors (when seeding density is too low) or large uncertainties due to poor 
spatial resolution. Two typical examples are shown where the user encounters a dilemma 
between the interrogation window size with respect to the seeding density, flow scales, 
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non-homogeneous image and flow properties. Here non-homogeneous image properties 
relate to non-homogeneous illumination, the presence of interfaces, areas with no seeding 
at all etc. but not to variations in density within the seeded areas.  

 

 
(a) (b) 

Fig. 3.1: PIV recordings of inhomogenously seeded flows (a) aircraft vortex wake (b) Shock-wave 
Boundary Layer interaction. 

 
The first image shown in Fig. 3.1-a is a recording with inhomogeneous seeding and 

illumination of a wake vortex behind a transport aircraft. As the external flow area ‘A’ is 
poorly illuminated, the particle image density is at such a level, that no interrogation 
windows should be placed. Flow data can be extracted only in an area of about 80% of 
the image size, in which again a gradient in seeding density and flow scales can be found; 
region ‘B’ in the external flow has optimum illumination and seeding while a lower 
seeding level and smaller flow scales can be found in the vortex core (‘C’). Fig. 3.1-b 
depicts an image of a shock-wave boundary layer interaction, characterized by an 
intrinsically non-homogeneous seeding density due to compressibility effects (shocks) 
and temporal intermittency. Uniform flow regions (supersonic domains) are separated by 
sharp flow features (shocks, expansions). Empty regions as in ‘A’ would ideally require 
larger windows to collect enough particle images to yield a robust cross-correlation 
analysis. As no extra information on the flow itself can be obtained from ‘A’, only few 
velocity vectors would suffice. Region ‘D’ points in the uniform flow upstream of the 
oblique shock, where small fluctuations in the velocity are to be expected. After the 
oblique shock impinges on the wind tunnel wall at ‘C’ where a turbulent boundary layer 
has fully developed (Humble et al., 2006) a complex interaction exist in region ‘B’, 
characterized by sharp flow features in the form of the oblique shock and a thin shear 
layer emanating from the interaction point. In order to capture the large displacement 
difference associated to these features, a high spatial sampling rate is required. Preventing 
the shock to be smeared out, would additionally necessitate the use of small interrogation 
windows to limit the well-known spatial filtering effect (Scarano, 2002). Based on this 
line of thought the flow sampling rate should be varied throughout the recording with a 
higher sampling rate in ‘B’ and ‘C’ and a relatively lower one in ‘A’ and ‘D’.  

The resulting velocity field of the analysis with a constant interrogation window size 
distributed along a uniform mesh are presented in figures 3.2 and 3.3. When analyzing the 
images with 64×64 windows and an overlap factor of 75% the number of outliers is 
limited (Fig. 3.2-a, Fig. 3.3-a). Nevertheless, because the seeding distribution is 
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inhomogeneous, the poorly seeded flow in the peripheral regions of the vortex still 
introduces a large number of outliers. Due to the filtering effect the vortex core is most 
probably enlarged and will result in a smearing out of the expected vorticity peak. The 
shock wave and the flow close to the wall are sampled with relatively coarse spacing and 
with a window size probably larger than optimum. As such the spatial resolution is 
insufficient to adequately characterize the flow across the shock and the boundary layer 
properties. 

 

 
(a) (b) 

Fig. 3.2: PIV analysis with uniform window size and uniform sampling rate (‘WOR’ of 75%) of 
the recordings of the vortex wake. (a) ‘WS’ of 64 pixels, (b) ‘WS’ of 16 pixels (velocity field is 
undersampled by factor 4 in both directions for readability). 

 
 

(a) 

 

(b) 

 
Fig. 3.3: PIV analysis with uniform window size and uniform sampling rate (‘WOR’ of 75%) of 
the recordings of the shockwave-boundary layer interaction. (a) ‘WS’ of 64 pixels, (b) ‘WS’ of 16 
pixels (velocity field is undersampled by factor 8 in horizontal direction for readability). 



3.3 Proposed methodology 61 

Fig. 3.2-b and Fig. 3.3-b present the results of the analysis performed with 
interrogation windows of 16×16 pixels and an overlap of 75% (‘h=4’) yielding a spatial 
sampling rate of ‘1/h²=0.0625’ samples per pixel². With the improved spatial resolution 
the shock locations in case of the shockwave-boundary layer interaction become now 
visible. The decrease in final window-size improved the spatial resolution, but also 
increased the number of outliers elsewhere in the recording since too few tracers will be 
captured to perform a reliable correlation. Moreover, in case of the vortex wake the flow 
spatial sampling rate is almost everywhere higher than necessary, since most of the high-
frequency information is concentrated at the vortex core, which occupies less than 10% of 
the overall measurement area. These conflicting settings oblige the user to opt either for a 
high vector resolution in certain areas with a large number of outliers in other regions or 
for a low resolution with fewer outliers. Based upon a compromise between 
robustness/precision and resolution a window size of 32×32 is chosen in most cases.  

 
 

3.3 Proposed methodology 
 
The above examples demonstrate the need of suppressing the unnecessary constraint of 

uniform spatial sampling (Cartesian grid) and constant interrogation window size over the 
whole domain of analysis. Instead, the measurement points should be chosen with a 
spatial density according to the local amount of available signal and flow scales.  

Signal theory dictates that the smallest detectable wavelengths are determined by the 
Nyquist theorem, requiring a fluctuation to be sampled at least twice. From an 
experimental standpoint, this concept is of little use since one should know or estimate a-
priori how the velocity fluctuations are spatially distributed and what is their wavelength 
in order to apply the appropriate flow seeding. In experimental practice one tries to obtain 
the highest possible seeding density before multiple scattering or multiphase flow effects 
or excessive facility contamination occur. 

The window size ‘WS’ is set by the user as a compromise between robustness and 
spatial resolution. The spatial sampling rate ‘ϕ’, defined as the number of samples per 
pixel² (spp), can then be varied through the window overlap ratio ‘WOR’. A uniform 
sampling with a grid spacing of ‘h’ pixels corresponds to a two-dimensional spatial 
sampling frequency ‘ϕ = h-2 =[(1-WOR)⋅WS]-2’. For non-uniform sampling however the 
spacing, ‘λw(x,y)’, between neighboring measurement points varies throughout the image 
and the spatial sampling rate may be defined as: 

 

( )
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=ϕ  (3.1)

 
In the proposed methodology two main criteria are set for the adaptive windowing and 

sampling; signal adaptivity and flow adaptivity. 
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3.3.1 Signal adaptivity 
 
In order to maintain an approximately constant number of particle images, ‘NI’, within 

the interrogation window (Adrian, 1991) ‘WS’ should be inversely proportional to the 
local seeding density ‘Sd’ (in particles per pixel). The minimum amount of image pairs 
necessary to obtain a robust and accurate estimate of the displacement is somehow still 
under debate and may depend on the interrogation algorithm. However, the effective 
particle image density or number of particle image pairs ranges between 4 and 10 
(Westerweel, 1994; Raffel et al, 1998). The available signal in the PIV recordings hence 
dictates the information that can be extracted from them, in turn determining the optimal 
size and location of the interrogation windows. The implementation of this criterion 
involves image pre-processing in order to estimate the amount of signal in the images 
(scattered light from the seeding particles).  

A straightforward approach well known in Particle Tracking Velocimetry is to count 
individual particles over selected areas (Agüí and Jiménez 1987, Takehara and Etoh, 
1999). The particle detection algorithm is based on intensity background removal (sliding 
minimum subtraction, Wereley et al. 2002b) and local intensity thresholding (see 
paragraph 3.4.1). For the required ‘NI’ the evaluation of ‘Sd’ returns the value of the 
window sized based solely on signal content ‘WS

*’. The signal adaptivity criterion in 
principle reads as  
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while the spatial sampling rate ‘ϕ’ is directly proportional to ‘Sd’ (3.3)  

 
dS∝ϕ  (3.3)

 
An example of signal adaptation is shown in Fig. 3.4. A computer generated PIV 

image has been produced with inhomogeneous seeding density decreasing from left to 
right (Fig. 3.4-b). Following equations (3.2) and (3.3) more and smaller windows 
(represented by the red squares) are placed in those areas with a higher seeding density 
whereas the lower seeded regions are sampled more sparsely with enlarged interrogation 
windows. 
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(a) (b) 

Fig. 3.4: (a) Generated PIV image with inhomogeneous seeding density and interrogation 
windows (red squares) (b) imposed, normalized seeding density. 

 
3.3.2 Flow adaptivity 

 
The flow fluctuations can be characterized by their amplitude ‘A’ and spatial 

wavelength ‘λf’. Knowing their value would allow to optimize the window size and to 
make an accurate estimate of the measurement error associated to the limited spatial 
resolution (Scarano, 2003). Contrary to signal adaptation however both parameters are 
unknown a-priori and the flow adaptivity criterion can only be implemented within a 
recursive structure. Eventually, the resolution limits for the minimum wavelength that can 
be described ‘λm’ turns out to be as follows, ‘λm>2⋅λp’, ‘λm>k⋅WS’ and ‘λm>2⋅∆’, where 
‘λp’ represents the particle spacing, ‘∆’ the vector grid node distance, ‘WS’ the 
interrogation window size and ‘k’ a modulation factor (Nogueira et al., 2005). The 
presented methodology takes the estimator for the local spatial velocity fluctuations as the 
local velocity standard deviation over a kernel as large as the average interrogation 
window size. By increasing the number of samples in those areas with high values for the 
standard deviation, the limitation set by the vector grid node distance is relaxed (read, 
spatial resolution is increased). Minimizing WS, but preserving the robustness, will 
further decrease ‘λm’.  

After cross-correlation of the sampling windows a velocity field with pixel spacing is 
obtained through a linear interpolation of the individual vectors (cf. paragraph 3.4.2). The 
calculation of the velocity standard deviation is then defined as 
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In the above expression u is the horizontal velocity component varying throughout ‘WS’, 
‘ u ’, ‘ v ’ and ‘σu’ are the local mean and standard deviation within the kernel 
respectively. The spatial sampling rate ‘ϕ’ is also set directly proportional to ‘σu’ (3.5). 

 

uσ∝ϕ  (3.5)
 
The following example illustrates the above described concept of flow adaptivity. 

Consider a jet-like Gaussian velocity distribution (Fig. 3.5-b). The sampling rate is scaled 
according to the standard deviation and shows two peaks. The interrogation windows 
scaled by the standard deviation, according to (3.4), are shown in Fig. 3.5-a, with a 
minimum size in the region of largest velocity gradients. 

 

 

(a) (b) 
Fig. 3.5: (a) imposed velocity field with interrogation windows (red squares) (b) imposed velocity 
profile and calculated standard deviation profile using moving windows of 27 pixels in width. 
 
 
3.3.3 Combination of signal and flow adaptivity 

 
At the beginning of the iterative process, ‘WS’ is chosen large enough such to obey the 

¼ rule (Adrian, 1991). In the subsequent steps, the windows are gradually modified in 
size adapting locally to the seeding density distribution ‘Sd’ and the velocity standard 
deviation ‘σu’. The algorithm used for the combined adaptation of the local window size 
reads as (3.6) 
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In the above equation ‘WS

*’ is the window size based on the evaluation of the local 
seeding density (3.2). The empirical constant ‘C0’ is set at 0.3 to limit the effect of flow 
adaptivity correction with respect to the signal adaptivity criterion (30% variation with 
respect to ‘WS

*’). The range of ‘k’ is limited between -1 and 1 in order to avoid too large 
fluctuations of ‘k’ (and therefore ‘WS’) in case of spurious vectors.† 

Implementation of signal and flow adaptivity results in spatial distributions for both 
the velocity standard deviation and seeding density. The normalized product of a 
modified ‘σu’ and ‘Sd’ is used to produce a spatial distribution for a single scalar i.e. the 
spatial sampling rate ‘ϕ’ (3.7). This is needed because the projection of the sampling 
positions is based on a single scalar distribution. The modified velocity variance ‘σu

*’ 
ensures regions of higher velocity variance to be attributed the majority of sampling 
locations. 
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During the first interrogation no information on the velocity distribution is available. 

Therefore the sampling rate will be based only on ‘Sd’. To distribute the sampling points 
in accordance with the value of the sampling rate ‘ϕ’ use is made of the 2D 
transformation method (Secord et al., 2002), which is summarized in the following 
paragraph. By updating the velocity field within an iterative structure, the local sampling 
rate and local window overlap factor will vary accordingly. The latter implies that every 
iteration the number of correlation windows may be freely adapted. Estimates for the 
number of windows can be based on statistical evaluations as discussed further in chapter 
5. However, in the current implementation, the number of windows ‘NW’ is a constant 
and is determined solely by the number of identified particle images, imposed minimum 
number of tracers within the window ‘NI’ and mean area overlap ‘WOR’ (3.8). The latter 
is defined by the user prior to the interrogation process. Equation (3.8) further ensures the 
                                                      
† At this point it is worth mentioning that trials have been performed to relate the window size to 
the effective image density. For each correlation window of size ‘WS’, the number of particle 
image pairs ‘Npairs’ between image snapshots at ‘t’ and ‘t+∆t’ is determined with the aid of the 
displacement field determined in the previous iteration. Imposing an effective number of particles 
images of 10, the updated, correct window size is given by WS⋅(10/Npairs)½. Though correct in 
principle, it is argued that because of sub-grid scales a correct estimate of particle pairing is 
impossible, not to mention the effect of out-of-plane motion. This problem is typically 
encountered in particle tracking and poses a stringent limitation in the PTV technique’s spatial 
resolution (Spencer and Hollis, 2005). 
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upper limit in number of retrieved vectors to be restricted by the number of tracers who 
dictate the amount of extractable flow information.  

 

( )2I

W
WOR1N

particlesdetectedofNumberN
−⋅

=  (3.8)

 
The combination of ‘σu’ and ‘Sd’ represents the relative importance of the information 

contained over different areas in the image. As soon as the local velocity fluctuation 
increases, the displacement standard deviation will increase, requiring a higher sampling 
rate in that region (Fig. 3.6-a). Concerning the signal distribution the more is the available 
signal, the closer smaller windows can be placed to each other, increasing the sampling 
rate and finally the spatial resolution. Eventually the PIV image with seeding density and 
velocity profile as depicted in Fig. 3.4-b and Fig. 3.5-b respectively are analyzed with 
windows of non-uniform size located according to the calculated sampling rate (Fig. 3.6-
b). 

 

 

 
(a) (b) 

Fig. 3.6: (a) Sampling rate obtained as a linear combination between the velocity standard 
deviation and seeding density (b) image of 16000 interrogation windows distributed according to 
the sampling rate. The squares depict the size of randomly selected interrogation windows, 
calculated according to equation (3.6). 
 
 
3.4 Implementation 

 
3.4.1 Signal quantization 

 
In PIV, seeding particles sample the a-priori unknown velocity distribution which 

allows an estimation of the convective velocity through appropriate image analysis. More 
exotic approaches involving intensity eigenvalues and image statistics have been proven 
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inadequate in the estimation of the tracer, read signal, concentration (cf. Appendix A). 
The most straightforward approach is the identification and localization of the individual 
particle images.  

The extraction of individual particles is challenging; apart from uneven brightness 
levels in background, random noises are often superimposed. The latter complicates 
identification based on intensity gradients e.g. in feature detection with automatic scale 
selection (Lindeberg, 1993). Takehara and Etoh (1999) proposed the floating computation 
of the cross-correlation between the target image and a function representing a typical 
particle image. The latter commonly has a Gaussian character considering its close 
affinity with the Airy distribution of the point spread function of a diffraction limited lens 
(Adrian and Yao, 1984). The mask method is however very sensitive to random noise 
requiring conducive thresholding in the selection of particle-related correlation function 
amplitudes. More straightforward particle segmentation involves an intensity threshold 
criterion (Guezennec and Kiritsis, 1990), which must be locally defined as reported by 
Ohmi and Li (2000) to incorporate spatial fluctuations in background intensity 
amplitudes.  

Whereas the pixelwise statistical threshold proposed by Stitou and Riethmuller (2001) 
necessitates a sufficiently large collection of reference images the tracer distinction 
implemented in this work is conditioned to single snapshots and hinges on three 
considerations; 
1. Instead of accuracy and high detection success rate, which are both important in 

analyses related to particle tracking (Marxen et al. 2000, Theunissen et al. 2004), 
robustness in the estimation of signal quantity is preponderant. This negates the need 
of sub-pixel accuracy. 

2. Pixel intensities originating from particle images are in general easily discernable from 
those belonging to noise. 

3. The correlation operation is sensitive to elevated image intensities (Young et al., 2004), 
requiring the signal of importance to differ sufficiently from the surroundings and 
background. 

Combined these are translated in the following segmentation criterion; symbolizing the 
collection of detected local maxima and minima in intensity by ‘{Imax}’ and ‘{Imin}’ 
respectively, a local intensity peak ‘Ip’ (element of ‘{Imax}’) is classified as a particle 
image when satisfying equation (3.9). 

 
10p 5.3I κ⋅≥κ−    with   { }( )0S1 Imedian κ−=κ  

                                   and   { }( )Smin0 Imedian=κ  
(3.9)

 
Terms ‘κ0’ and ‘κ1’ relate respectively to the DC intensity pedestal and surrounding gray 
levels. Factor 3.5 has been empirically determined and incorporates sufficient 
discernment between candidate pixel intensity and surrounding intensities. Subscript ‘S’ 
refers to those pixel intensities within the spatial vicinity ‘S’ centered on ‘Ip’ (typically 
around 15 pixel units). An example of the proposed segmentation criterion’s performance 
when applied to an experimental intensity profile is depicted in Fig. 3.7-a. High intensity 
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amplitudes can be easily spotted visually and are classified as particle images 
accordingly. Those surrounded by stronger intensity variations on the other hand 
complicate the identification and have a lower occurrence of being categorized as particle 
image-related. The latter is furthermore consistent when considering their negligible 
influence on the correlation function. In case of a randomized intensity distribution (Fig. 
3.7-b), none of the detected maxima are affiliated to particle images, demonstrating the 
robustness of the proposed criterion. 

 

 
(a) 

 
(b) 

Fig. 3.7: Segmentation criterion defined in (3.9) applied to (a) an experimental intensity profile (b) 
random pixel intensities. 

 

 
Fig. 3.8: (Left) PIV image of supersonic jet with enhanced contrast for clarity (Right-top) Detected 
particle images (+) based on (3.9). (Right-bottom) Results from segmentation criterion defined in 
(3.9) combined with dynamic intensity range threshold. The central jet region is clearly more 
discernable as well as the seeded protuberances at the jet’s edge. 

 
Strong seeding density gradients are typically encountered in compressible flows, 

which concomitantly produce high scattering intensities. An example is shown in Fig. 3.8 
which depicts the PIV recording of a supersonic jet (see also section 6.4). In this case 
areas with heightened intensities should not be categorized as having increased 
background noise levels, but as zones with high information content. By introducing a 
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further threshold on the dynamic intensity range ‘Ip/max({Imax})>0.5’ these regions can be 
isolated more adequately as demonstrated in Fig. 3.8.  

The convolution between a binary image containing the detected particle locations and 
a window of unit intensity yields the number of detected tracers captured within the 
sliding window for each pixel location. By repeating the procedure for various window 
sizes the inherent quadratic dependency between particle image density and window size, 
‘NI = a⋅WS

2 + b⋅WS’ , can be extracted by means of a parabolic fit where coefficient ‘a’ 
directly relates to the searched for concentration estimate. 

 
3.4.2 Data interpolation 

 
• Linear interpolation 

 
To enlarge the measurable velocity gradient range, matching between regions which 

undergo transformation has to be improved. To do so, the images are deformed based on 
a continuous first order approximation of the displacement field. Though linear 
interpolation is in general less accurate compared to higher order interpolation schemes, it 
has the advantage of requiring less CPU. For this reason displacements were chosen to be 
linearly interpolated over all the pixels from an unstructured mesh of points using the 
nearest neighbors, i.e. using for each pixel the three nodes of the circum-triangle based on 
a Delaunay triangulation (Sambridge et al., 1995).  

 

X⋅c=f+ε     where    X=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1yx
1yx
1yx

44

22

11

,  c=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

c
c
c

  and  f=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

f
f
f

 (3.10)

3P2P1P cycxcf +⋅+⋅=  (3.11)
 

Calling ‘P’ the point which to interpolate to, the nodes of the circum-triangle of ‘P’ are 
used to construct a linear system of equations. Considering Fig. 3.9, the circum-triangle 
of ‘P’ corresponds to triangle 1-2-4 resulting in the set of equations presented in (3.10). 
The vector containing the measurement error is symbolized by ‘ε’. In general ‘ε’ is 
omitted from the equation as the measurement error is typical unknown a-priori and the 
summation of the exact values ‘f’ and error are combined into the measured values. The 
solution of the system yields the coefficients ‘c1’, ‘c2’ and ‘c3’ allowing the evaluation of 
the interpolated value at ‘P’ (3.11). 

 
• Natural Neighbor interpolation 

 
Natural Neighbor (NN) interpolation has been selected to redistribute the data onto a 

final Cartesian grid to facilitate the post-processing of the obtained displacement field. 
The Natural Neighbor scheme has been selected in view of its low computational 
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intensity and robustness compared to more common interpolation schemes such as 
Adaptive Gaussian Windowing, Krigging and polynomial fitting (cf. Appendix A). 

NN-interpolation is initiated by constructing the Voronoi cells given the unstructured 
node locations. Voronoi diagrams divide the plane into a set of regions, one for each 
node, such that all points in a particular region are closer to its node than any other node 
(Fig. 3.9-a). Delaunay tessellation is formed by connecting the nodes whose Voronoi cells 
have common boundaries. For any point ‘P’ (Fig. 3.9-a), the neighborhood support is 
given by the natural neighbors defined as the nodes whose triangulation relationships 
would be modified by the insertion of point ‘P’ (Fig. 3.9-b). A straightforward means to 
arrive at the same end is to use the empty circumcircle criterion (Sakumar et al., 1998); 
the natural neighbors are those points whose circumcircle of the Delaunay triangulation 
contains point ‘P’ (Fig. 3.9-a). For the case cartooned in Fig. 3.9-a, point ‘P’ has 6 natural 
neighbors.  
 

  
(a) (b) 

Fig. 3.9: Nearest neighbor interpolation (a) Delaunay triangulation (gray) with circum-circles 
(blue). Data points 1-6 are the nearest neighbors of point P. (b) Voronoi diagram before (black) 
and after (blue) insertion of point P.  

 
The Voronoi cell about ‘P’ (blue lines) overlaps all the original cells of its natural 

neighbors. The interpolation weights attributed to the extent of neighboring functional 
values are related to the ratio of the area of the overlapping Voronoi cells to the total area 
of the Voronoi cell about ‘P’. In the example case, the interpolated value at ‘P’ is 
therefore defined as 
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The interpolation algorithm has been implemented adopting the routine descriptions of 
Sambridge et al. (1995) and modifications suggested by Triguï (2005).  

 
 



3.4 Implementation 71 

3.4.3 Data allocation 
 

• PDF weighted 2D point distribution 
 
Lets consider a number of points to be distributed in space with the probability density 

function ‘p’ as depicted in Fig. 3.10-a. The calculation of the cumulative probability 
function ‘C’ (3.13) allows to project randomly distributed points onto the target space 
(3.14), approximating the required sampling distribution (Fig. 3.10-b). For the purpose of 
illustration, regular separated points were chosen. 
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(a) (b) 

Fig. 3.10: (a) 1D probability density function (b) and its cumulative density function and regular 
sampling of its inverse. The red line serves as a mere heuristic of the original PDF. 

 
The procedure can be extended to two-dimensional signals. Given a 2D probability 

density function ‘p(x,y)’ defined on a domain with size ‘[Lx,Ly]’, then the marginal 
density function ‘m’ and its cumulative density function ‘M’ are given by the integrals in 
(3.15). Random values for the probability in x- and y-are chosen, ‘px,i’ and ‘py,i’. By 
taking the inverse of the cumulative density function ‘M’, the y-location of point ‘i’ is 
retrieved (3.16). Given ‘yi’ the x-coordinate ‘xi’, is determined by transforming ‘px,i’ 
according to the pdf at ‘yi’ i.e. ‘p(x,yi)’ by using the conditional density function ‘c’ and 
its cumulative ‘C’ (3.17). The x-location is then given by the inverse of the latter function 
(3.18). 
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• Sample re-distribution  
 
A mesh returned by the 2D transformation method described by Secord et al. (2002) is 

of poor quality as can be seen in Fig. 3.11. Similar to grid adaptation in computation fluid 
dynamics, a mesh smoothing is applied prior to the re-interpolation process.  

 

  
(a) (b) 

Fig. 3.11: Mesh smoothing (a) original sampling distribution (b) distribution of sampling points 
after 3 Laplacian smoothing iterations. Points lying on the convex hull (�) remain unchanged. 

 
Following a Laplacian smoothing operation (Zhou and Shimada, 2000), the 

measurement points are redistributed to the center of gravity of the area spanned by its 
neighboring nodes (Fig. 3.11-b) without changing the connectivity. Doing so the 
Delaunay triangles are equilateralized and the grid quality is enhanced. For a given 
circum-circle’s radius the area of the inscribed triangle is maximized when it is 
equilateral. The smoothing operator thus maximizes the determinant of ‘X’ in (3.10) and 
minimizes the influence of the measurement uncertainty ‘ε’ concomitantly when solving 
the linear system (Simpson, 1994). 

 
• Grid spacing 

 
To facilitate the post-processing of the irregularly spaced data a redistribution of the 

velocity data towards a Cartesian grid is in order. The new Cartesian grid spacing ‘h’ 
should respect the typical spacing of the unstructured field to keep the same data density 
since over-sampling does not add extra information. Proper sampling of the original data 
and flow structures is already ensured by taking into account the estimated spatial 
distribution of flow length scales yielding a structured nodal distance at least equal to the 
smallest unstructured sample spacing; regions of strong velocity gradients (high variance) 
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are attributed a local increase in sampling density while regions with low velocity 
gradients are sampled by few windows.  

Each Delaunay triangle is replaced by a circle of equal area and whose radius serves as 
indicator for the sample spacing ‘λw’. A weighted averaging of all radii (3.19) results in 
the final grid spacing where the applied weighting function must minimize the bias 
caused by sporadically small distances and put more importance to smaller radii. An 
example of such a weighting function is given in equation (3.19) prescribing typical final 
grid spacings in the order of 2 pixels. 
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3.5 Interrogation methodology 
 
Fig. 3.12 schematically displays the outline of the implemented algorithm. The 

displacement is determined at the chosen locations by cross-correlating the interrogation 
windows with an iterative algorithm which applies window deformation following the 
WiDIM algorithm described in section 2.3.2 (Scarano and Riethmuller, 2000). Five multi-
grid steps are applied, followed by two iterative loops. 

 

 
Fig. 3.12: Blockdiagram of the implemented interrogation method. 

 
In the image deformation sequence, the displacements are linearly interpolated over all 

the pixels from an unstructured mesh of points using the nearest neighbors, i.e. locating 
for each pixel the three value points based on a Delaunay triangulation (Sambridge et al., 
1995). Prior to the interpolation, the predictor corrector iterative interrogation is stabilized 
with a Least-Squares Fit (Schrijer and Scarano, 2008), which consists in re-interpolating 
each determined displacement vector using a 2nd Order Least-Squares Fit. 



74 Adaptive sampling and windowing interrogation in PIV 

As the window size adaptation is driven by the velocity spatial fluctuations, the 
recently proposed normalized median test combined with criteria based on signal-to-noise 
ratio and iterative convergence in displacement corrector has been implemented as 
validation procedure to eliminate spurious vectors (cf. paragraphs 2.2.2 and 2.3.3). 
Erroneous vectors are replaced by a linear interpolation of their direct neighbors.  

Contrary to conventional interrogation processes, the proposed methodology returns 
displacement vectors placed on an unstructured grid. To allow further post-processing of 
velocity data the algorithm makes use of Natural Neighbour interpolation of the data to 
obtain a structured representation (Sambridge et al., 1995). Though the NN interpolation 
allows a direct computation of the first order derivatives, it was found that the final 
results were noisy. In order to retrieve more smooth results for derivative operations, 2nd 
order polynomials were fitted onto the structured grid allowing a direct evaluation of e.g. 
the vorticity.  

The vortex image presented in Fig. 3.1-a served as a test case to allow a comparison in 
CPU time between WiDIM and the proposed adaptive methodology. Square windows of 
41×41 pixels² with an overlap of 75% were imposed in the WiDIM process. The adaptive 
sampling and omission of superfluous correlation windows allowed the implemented 
technique to reduce the computation time by a factor two compared to the classical 
approach. Fig. 3.13 depicts the distribution in computation time over the different sub-
processes for the two image processing methods. Distorting the images and cross-
correlating the interrogation windows are in general the most computationally 
demanding. Fig. 3.13-b further indicates that the extra computational time associated with 
mapping and interpolation accompanying the sampling on an unstructured grid does not 
exceed 25% of the overall CPU time. 

 

 
(a) (b) 

Fig. 3.13: Distribution in computational time (a) WiDIM (b) Adaptive PIV. 
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3.6 Performance evaluation 
 
In this section the performances of the method incorporating the proposed adaptive 

criteria is compared with the improved WiDIM algorithm of DUTAE (Stanislas et al., 
2005). The latter can be considered as state of the art, based on the conventional approach 
of structured image sampling with uniformly sized and spaced interrogation windows. 
The assessment is based on four flows of very different nature. Computer generated 
images of isotropic turbulence represent a theoretical case, whereas the experimental 
wake vortex images behind a transport aircraft are more of industrial interest. The shock-
wave boundary layer interaction (Humble et al., 2006) on the other hand can be 
considered to be a state of the art aerodynamics problem while the cylinder wake flow is 
a well-known problem in academics. 

Improvements related to the adaptivity criteria are assessed on the basis of 
performance indicators with respect to the different quantities of interest depending on 
the considered flow; 
• In case of homogeneous and isotropic velocity fluctuations, performances are related 

to the capability of accurately measuring the various spatial scales. In terms of power 
spectra, this translates in accurately representing the underlying spectra up to wave 
numbers as high as possible. 

• The wake vortex image has typical characteristics for recordings taken in industrial 
conditions (inhomogeneous illumination and seeding). The performance heuristics are 
here the robustness with respect to illumination and seeding while resolving the flow 
in more detail around the vortex core. The improvements can therefore be quantified 
by means of the vorticity statistic. 

• The shock-wave boundary layer interaction is characterized by various flow domains 
exhibiting spatially strong variations in flow scales and seeding density. The response 
of the adaptive approach to the required spatial resolution in the different image 
domains is considered in this case to be the performance indicator. 
Improvements in case of the cylinder wake can be judged on the basis of a more 

detailed representation of the flow field. Here, similar to the vorticity scalar in the wake 
vortex images, the λ2 parameter introduced by (Jeong and Hussain, 1997) enables to 
quantify to a certain extent the achieved performance improvements as the parameter is in 
direct relation with the interrogation inherent modulation effects and the proposed 
approach’s capability of measuring spatial velocity gradients.. 

 
3.6.1 Isotropic random fluctuations 

 
To quantify the capacity of the proposed interrogation method in the characterization 

of turbulent flows, synthetic PIV images simulating isotropic turbulence were generated. 
Imposing a seeding concentration of 0.2 particles per pixel, 5⋅104 particles were randomly 
distributed onto a 500-by-500 pixel array. Image discretization was taken into account by 
integrating the Gaussian shaped intensity profiles over a 70% central effective sensor 
area. To emulate homogeneity in the velocity field, a pixelwise random isotropic 
displacement field with maxima of 5 pixels in absolute value was smoothened in three 
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consecutive passes by a moving Gaussian filter. The simulated flow length scales are 
controlled by the variance of the moving kernel as demonstrated in Fig. 3.14; larger 
variances yield smoother displacement fields and therefore larger length scales. Under the 
assumption of the known velocity map to be invariant in time, the evolution of particle 
positions can be determined by Euler integration. 

 

  
(a) (b) 

Fig. 3.14: Computer generated velocity field of homogeneous fluctuations by means of Gaussian 
smoothing with a variance of (a) 21 pixels and (b) 71 pixels. Vectors are undersampled and scaled 
for readability. 

 
The produced velocity fields are qualitatively very similar to those from DNS 

simulations (Lecordier et al., 2001). Nevertheless, a simple flow field cannot fully 
simulate the complex structure of a real flow. The purpose of this test case is therefore 
merely to evaluate the behavior of the interrogation method in a turbulent-like flow field 
containing small fluctuations. 

To provide a reference, images were analyzed with the structured, more conventional, 
WiDIM method discussed in Chapter 2 (symbolized as ■). Because adaptivity 
(represented by ●) predicted a minimum window size of 11 pixels, the structured routine 
applied final windows of equal size with an overlap factor of 0.75, leading to a vector 
spacing of 3 pixels and a total of around 28000 correlation windows.  

The suitability in representing velocity fluctuations of various length scale is expressed 
through the longitudinal power spectrum ‘Euu’, which has been calculated as 
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In (3.20) ‘h’ represents the grid spacing between the entries of ‘um’, the latter being an 
array of dimensions ‘N×N’.  
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(a) (b) 

Fig. 3.15: Synthetic isotropic random fluctuations (a) Longitudinal power spectrum of the 
horizontal velocity component in case of a smoothing variance of 71 pixels. (b) Euu spectrum for a 
smoothing variance of 21 pixels. Black lines represent the imposed spectrum‡. 

 
Considering the homogeneous distributions in seeding density and spatial velocity 

fluctuations, sampling rate as well as window sizes will not exhibit strong spatial 
variations. In flows containing large coherent structures (Fig. 3.14-b), modulation effects 
are less important and the spectra of both adaptive and conventional methodologies 
nearly superimpose (Fig. 3.15-a). In that case the measured spectra coincide perfectly 
with the imposed spectrum for small wavenumbers ‘k’ i.e. large flow structures. In highly 
turbulent conditions (Fig. 3.15-b) the combined effect of spatial modulation and an 
insufficient number of imposed adaptive sampling windows (‘NW=104’) prevents a 
faithful reconstruction of the power spectrum. The spectrum of the adaptive technique 
clearly infers an incorrect representation of lower wavenumbers. While smaller flow 
scales seem to be well measured based on the spectrum, these small fluctuations are 
artificial byproducts stemming from measurement errors. Doubling the concentration of 
sampling windows (‘NW=20⋅103’), thus equalizing the number of interrogation areas 
applied by the conventional, structured, interrogation analysis, yields an enhanced 
spectral response (Fig. 3.15-b, ). With exception of the small flow scales, the spectrum 
now faithfully approaches the truth contrary to the conventional routine. 

Two remarks finalize the discussion on the application of adaptive interrogation to 
computer generated images of homogeneous fluctuations;  

1. The total number of correlation windows with the structured and adaptive approach 
generally amounted to 20000 and 10000 respectively. Even though this involves 
                                                      
‡ The spectral lobes at higher wave number are directly reminiscent of the moving averaging 
operator used in the generation of the velocity field underlying the synthetic PIV images of 
homogeneous fluctuations. 



78 Adaptive sampling and windowing interrogation in PIV 

reduction by a factor two, adaptive interrogation generally retains the spatial resolution 
and as such, in addition to being fully automated, certainly offers a benefit.  

2. The smallest length scale, in other words the largest wavenumber, measurable is 
ultimately limited by the finite tracer spacing. This further enforces the statement made in 
the introduction that studies such as the current are inappropriate in describing 
quantitatively the achievable spatial resolution of PIV as a measurement technique 
because of the strong dependency on experimental conditions. Moreover, in case of a 
large range in flow scales the achieved performance in measuring power spectra will be 
heavily dependent on the adopted velocity interpolation schemes and original vector 
density as proclaimed by Lindken et al. (2003) and Vedula and Adrian (2004). 

 
3.6.2 Transport aircraft wake vortex 

 
• Background 

 
When an aircraft wing generates lift, the pressure difference between top and bottom of 

the airfoil creates wingtip vortices. These are tubes of circulating air which are left behind 
by the wing and trail from the tip of each wing as vividly illustrated in Fig. 3.16.  

To characterize vortex structures, information is needed on both size and strength 
within the core. Because the rate of rotation is a derivative operation on the individual 
velocity components, a high spatial resolution is needed which can be achieved by a 
sufficient number of correlation windows with reduced dimensions. On the other hand, 
these core regions contain the highest spin velocities which consequently causes a 
reduction in seeding as a result of strong centrifugal forces (Fig. 3.17-a). The quantity of 
interest, vorticity, is a derivative operation and its eduction is consequently sensible to 
erroneous displacement estimates or even small deviations. Correlation windows must 
therefore be also sufficiently large to ensure robustness. Once the velocity distribution is 
known, mathematical models can be fitted to estimate the vortex size. Again, the 
importance of accuracy and resolution is eminent. 

 

 
Fig. 3.16: Wing-tip vortices of descending aircraft visualized by clouds (with permission of Steve 
Morris; www.airliners.net). 
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• Experimental conditions 
 
An aircraft model scale 1:48 is towed at 3m/s in a water tank where 2C-PIV 

measurements are performed at a fixed station. The aircraft configuration at a few degrees 
incidence generates powerful vortical structures emanating from wingtips, winglets and 
flaps. After a single vortex has formed, the circulatory motion persists with a considerable 
strength and lifespan downstream (Rossow, 1999). Such flow experiment has been 
selected because of some challenging and peculiar features which are foreseen to 
complicate the analysis with conventional interrogation routines. First, the imaged region 
covering a field of view of 1.3×1.3m² is neither uniformly seeded nor illuminated. 
Second, the flow properties are strongly non-uniform with small-scale fluctuations 
concentrated in a very small portion of the imaged flow, namely the vortex core.  

 
• Image evaluation and flow diagnostics 

 
Fig. 3.17-a shows the recording of the wake vortex at ‘X/b=30’, with the inherent large 

spatial variation in seeding where ‘X’ is the distance downstream of the model and ‘b’ is 
the aircraft wingspan relating to a value of 1.25m. By adapting the sampling rate to the 
seeding density and to the velocity standard deviation, samples are located in the region 
of interest, i.e. around the vortex core. Making use of the information on the velocity 
spatial fluctuations and that on the seeding density, a higher spatial resolution (higher 
sampling rate and smaller window size) can be obtained within the vortex core ensuring a 
better representation of its characteristics (Fig. 3.17-b).  

 
(a) (b) 

Fig. 3.17: Aircraft wake vortex (a) instantaneous recording and (b) adaptive sampling (red squares 
represent selected interrogation areas, scaled with a factor 2 for readability). 
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(a) (b) 

Fig. 3.18: Vorticity field (pixels/pixels) of the wake vortex (a) uniform sampling (b) adaptive 
sampling. 

 
As discussed in the introduction, processing the recorded images with a structured grid 

requires a trade-off for the choice of interrogation area, between the number of outliers 
and spatial resolution. A constant sample area of 41 by 41 pixels with an overlap of 75% 
was applied. The large number of outliers appearing strongly affects the representation of 
the vorticity field (Fig. 3.18-a vs. -b). Moreover, because of the fixed distance between 
interrogation windows, the sampling of the vortex core is relatively poor (‘h=10 pixels’ or 
‘ϕ=0.01spp’), which results in an under estimation of the peak vorticity (–0.4 
pixels/pixels) compared to the peak of –0.6 pixels/pixels obtained by adaptive PIV. The 
adopted methodology in the eduction of vorticity was a polynomial fitting (2nd order) in a 
least squares sense to the displacement field (Fouras and Soria 1998). Further details on 
the extraction of vorticity by means of polynomial fitting can be found in Appendix A. 

 

 
Fig. 3.19: Time history of the peak vorticity ( ) WiDIM ( ) Adaptive PIV. 
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The time history of vortex structure properties is important to determine the behavior 
of the vortex in the mid-field and far-field. Fig. 3.19 shows the time history of peak 
vorticity as obtained from WiDIM and from the adaptive method. Although the diagram 
shows more scatter for the adaptive methodology, a constant underestimate can be 
observed for the data obtained from WiDIM. For ‘X/b>100’ the discrepancy reduces as a 
result of the increase in vortex core radius. 

 
3.6.3 Shock-wave boundary layer interaction 

 
• Background 

 
As a result of the pressure rise across the incident shock, the boundary layer thickens 

and the resulting streamline curvature generates compression wavelets which merge into 
a reflected shock. This reflected shock-wave has a low frequency dynamic which is 
associated with the behavior of the incoming boundary layer. Having crossed the 
reflected shock, the incident shock reflects from the thickened layer as a Prandtl-Meyer 
expansion. If the pressure gradient is sufficient, the boundary layer may even separate. 
The typical features observed are illustrated schematically in Fig. 3.20.  

Whole-field quantitative information is needed to make a complete characterization of 
the spatial structure associated with the shock-wave turbulent boundary layer and the 
dynamical aspects of the flowfield. In view of the boundary layer influencing the 
unsteady motion of the reflected shock, a good characterization is in order. Besides the 
oblique shocks, also the boundary layer must therefore be attributed a high spatial 
resolution, categorically in capturing the recirculation zone. 

 
Fig. 3.20: Conceptual drawing of the features observed in the reflection of shocks from walls with 
turbulent boundary layers (following Shapiro, 1953). 

 
• Experimental conditions 

 
Experiments were performed in a Mach 2.1 free-stream where the oblique shock-wave 

generated by a wedge (deflection angle of 10 degrees) impinges on the wind tunnel wall 
where a turbulent boundary layer has fully developed (Humble et al., 2006). This case has 
been chosen because the flow seeding density experiences considerable spatial variations 
due to the flow compressibility (shown in Fig. 3.21). Moreover, seeding intermittency 
(Fig. 3.21) in the region of interaction makes the experimental conditions even more 
critical for a robust interrogation. From the flow features point of view, the challenging 
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aspects are represented by the shock waves as well as the large range of flow scales 
associated to the turbulent boundary layer. 

 

 
(a) (b) 

 
(c) (d) 

Fig. 3.21: (a)-(c) Instantaneous PIV recordings of the shock boundary layer interaction at different 
time instances (d) Ensemble averaged image intensity (400 image pairs). 

 
• Image evaluation and flow diagnostics 

 
The analysis was performed over 400 image pairs. The images were processed with the 

adaptive scheme and WiDIM-based interrogation algorithm (cf. Chapter 2). In the latter 
case the interrogation was performed with 21 by 21 pixels² and 75% overlap. For 
comparison at the end of the image interrogation process, the unstructured data was re-
interpolated onto a grid of 5 pixels spacing. 

Fig. 3.21 shows the typical conditions encountered during the experiment. The seeding 
level close to the wall is relatively homogeneous due to vigorous turbulent mixing, 
however the external flow is affected by intermittency caused by the limited mass flow 
output of the seeding supply system. Turbulent structures also affect locally the seeding 
distribution with centrifugal forces that reduce the seeding level in the core of the 
vortices. The mean scattering pattern (Fig. 3.21-d) clearly shows the variation of seeding 
density associated to the flow density, which changes sharply across shock waves. 

 

 
Fig. 3.22: Ensemble averaged velocity field with velocity profiles for the shock-wave boundary 
layer interaction. 
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The contours of velocity magnitude clearly show the incident and reflected shocks as 
well as the boundary layer before and after the intersection (Fig. 3.22). From the spatial 
distribution of the mean interrogation window size, one can conclude that the adaptive 
algorithm automatically reduces the window size in the boundary layer and to some 
extent across the shocks. The uniform flow regions are therefore sampled with windows 
in the range of 37 to 45 pixels (Fig. 3.23). Across the λ-structure and after the interaction 
with the boundary layer, the variation in displacement is expected to increase. The 
window size is accordingly automatically scaled to a value ranging between 13 and 21 
pixels. The flexibility in window sizing further allowed a gradual reduction of the 
calculated window size towards the interface with a maximum factor of 3/2. This 
reduction was simultaneously accompanied by an increase in sampling rate. The 
instantaneous sampling distribution corresponding with image (a) presented in Fig. 3.21 
is shown in Fig. 3.24. The adaptive sampling methodology places windows concentrated 
in those areas with sufficient tracers and in the area where the complex interactions take 
place. 

 
Fig. 3.23: Ensemble averaged window-size distribution for the shock-wave boundary layer 
interaction.  

 

 
Fig. 3.24: Unstructured mesh for a single snapshot (Fig. 3.21-a) of instantaneous velocity field for 
the shock-wave boundary layer interaction. Red squares represent selected interrogation areas. 
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(a) 

 

(b) 

 
Fig. 3.25: Shock-wave boundary layer interaction instantaneous displacement field corresponding 
to image (a) in figure 3.21, with (a) uniform sampling (b) and adaptive sampling. 

 
The instantaneous displacement field corresponding to image (a) in Fig. 3.21, is 

depicted in Fig. 3.25. Contour levels are based on the calculated vorticity. Within the free 
stream regions, spurious peaks can be noticed when processing the image with WiDIM 
(Fig. 3.25-a), indicating the presence of outliers. The adaptive methodology (Fig. 3.25-b) 
on the other hand provides less noisy vorticity contours. Due to the augmented sampling 
rate near the wall, the adaptive methodology is furthermore able to return a smoother 
boundary layer velocity profile, especially upstream of the interaction region. Square 
windows of 21 pixels in size were used in the interrogation with WiDIM. According to 
the proposed window-size distribution by the adaptive process (Fig. 3.23) this is the 
minimum size to be applied in the bulk of the flow. Overall, the differences between the 
two methodologies are therefore small. 

Ensemble averaged velocity profiles obtained with both the adaptive and conventional 
methodology reveal no large differences in the bulk of the flow nor in the shock-wall 
interaction region (Fig. 3.26-a). However, close to the wall a slight improvement can be 
observed with the velocity profile approaching zero more systematically for the adaptive 
method. The extracted profiles of velocity fluctuations (Fig. 3.26-b) show again that the 
adaptive and conventional analysis are quite comparable for this flow case, except for the 
trends approaching the wall where the adaptive method better captures the peak. 
Moreover, downstream of the interaction a slightly lower level of fluctuations is 
observed, which is ascribed to a lower occurrence of outliers. 
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(a) (b) 

Fig. 3.26: Extracted profiles of the ensemble averaged (a) total displacement and (b) RMS in the 
displacement for the shock-wave boundary layer interaction. ( ) WiDIM ( ) Adaptive PIV. 

 
3.6.4 Cylinder wake flow 

 
The test case concerning the wake flow behind a circular cylinder placed in a turbulent 

flow (diameter-based Reynolds number ‘ReD’ of around 2000) has been previously 
encountered in Chapter 2 and is repeated here. An exemplary PIV snapshot is presented 
in Fig. 3.27-a. At a Reynolds number of 2000 the downstream von Karman vortex street 
emanating from the separated shear layers is fully turbulent yielding strongly three-
dimensional vortical structures. The cylinder can therefore be considered as a challenging 
test case for any interrogation metrology in the eduction of vorticity. 

 

 

(a) (b) 
Fig. 3.27: (a) PIV snapshot of the cylinder wake flow (ReD≈2000) (b) Adaptively imposed 
instantaneous sampling locations and correlation window sizes. 
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(a) (b) 

Fig. 3.28: Spatial distribution of instantaneous spanwise vorticity over a circular cylinder obtained 
by (a) conventional PIV image interrogation (WS/D≈0.29) and (b) adaptive interrogation (0.2 ≤ 
WS/D ≤ 0.35). 

 
The degree of adaptivity is vividly visible in the distribution of correlation windows 

depicted in Fig. 3.27-b. The detached shear layers and wake are attributed high densities 
in correlation windows compared to the outer flow. The typical sample spacing in the 
wake region is 2 pixels. In total 8000 correlation windows sampled the flow with (square) 
window sizes ranging between 15 pixels (WS/D≈0.2) and 19 pixels (WS/D≈0.26) in the 
wake and 25 pixels (WS/D≈0.35) in the free stream. For comparison the image snapshot 
was analyzed by the conventional metrology discussed in Chapter 2. Final correlation 
windows of 21×21 pixels2 (WS/D≈0.29) were adopted with an overlap coefficient of 75% 
yielding a vector about every 5 pixels.  

The attainable enhancement in spatial resolution is evinced by the vorticity fields (Fig. 
3.28). While the overall topology is identical, the adaptive approach yields more detail 
and predicts vorticity values which are around 50% higher in both the vortex cores and 
shear layer. The improved ability to detect vortices is further illustrated by observing the 
λ2-field defined by Jeong and Hussain (1997) in (3.21).  
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Equation (3.21) has been implemented through 2nd order polynomial fitting (cf. Appendix 
A). As indicated by Fig. 3.29, negative values identify the vortex cores. In case of 
adaptive image interrogation parameters, ‘λ2’, besides being more detailed, reaches 
higher values in absolute magnitude and is better resolved in the core regions. The latter 
is beneficial in the identification of isolated vortices and in accurately locating the vortex 
cores.  
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(a) (b) 

Fig. 3.29: Spatial distribution of instantaneous λ2-fields obtained by (a) conventional PIV image 
interrogation (WS/D≈0.29) and (b) adaptive interrogation (0.2 ≤ WS/D ≤ 0.35). 

 
 

3.7 Conclusions 
 
An adaptive image interrogation method is proposed with the purpose of increasing 

robustness and spatial resolution. The location, number and size of the interrogation 
windows is related to the local amount of particle images (i.e. seeding) and magnitude of 
the velocity fluctuations. The general criteria for flow adaptivity are stated treating 
separately signal adaptivity and flow adaptivity. The implementation of the adaptive 
methodology requires that interrogation windows are placed on an unstructured grid, 
which requires a technique for projection according to a target probability density 
function. The combination of the two criteria results in a single parameter describing the 
distribution of measurement windows.  

While the limit in achievable spatial resolution is given by the particle size and 
distance between particle images, in current practice this theoretical limit is not used due 
to the compromise between spatial resolution and robustness in global sense. The 
proposed method decouples the mechanism allowing to put more and smaller windows 
where the flow requires it and using less of these unnecessary small windows in regions 
where the flow does not require it i.e. more uniform or potential regions. 

Applied to computer generated images of homogeneous fluctuations, the adaptive 
metrology improved the measurement of the longitudinal power spectrum despite a force 
reduction in number of adopted correlation windows. Three experimental test cases have 
been chosen to further assess the proposed methodology; an aircraft vortex-wake, a 
cylinder wake and a shockwave boundary-layer interaction. In the first cases the method 
automatically allowed to reduce the number of outliers in poorly illuminated regions, still 
keeping a high resolution in the vortex core. In the third case the comparison with respect 
to a non-adaptive method yielded less pronounced differences, due to smaller variations 
of the image properties, except in case of seeding intermittency, which might occur in 
high speed flows. Even when the performance of the adaptive technique did not yield a 
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net improvement on the measurement, the fact that limited user input was needed (tuning 
window size and overlap factor) can be regarded as a significant improvement.  

Given the marginal improvements near the static interface, further efforts are to be 
directed towards refined implementation of the criteria such as boundary treatment.  
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CHAPTER 4 
 
 
 
 
PIV IMAGE INTERROGATION NEAR STATIONARY 

INTERFACES† 
 
 
 

Abstract 
 

In the following chapter the problem posed by interfaces when present in PIV measurements is 
addressed. Different image pre-processing, processing and post-processing methodologies with 
the intention to minimize the interface effects are discussed and assessed using Monte Carlo 
simulations.  

Image treatment prior to the correlation process is shown to be incapable of fully removing the 
effects of the intensity pedestal across the object edge. The inherent assumption of periodicity in 
the signal causes the FFT-based correlation technique to perform the worst when the correlation 
window contains a signal truncation. Instead, an extended version of the masking technique 
introduced by Ronneberger et al. (1998) is able to minimize the interface-correlation, resolving 
only the particle displacement peak. Once the displacement vector is obtained, the geometric 
center of the interrogation area is not the correct placement. Instead, the centre of mass position 
allows an unbiased representation of the wall flow (Usera et al., 2004).  

The aforementioned concepts have been implemented in the adaptive interrogation 
methodology where additionally non-isotropic resolution and re-orientation of the correlation 
windows is applied near the interface, maximizing the wall-normal spatial resolution. The 
increase in resolution and robustness are demonstrated by application to a set of experimental 
images of a flat-plate, subsonic, turbulent boundary layer and a hypersonic flow over a double 
compression ramp. 

 
 
 
 
 
 
 

                                                      
† This chapter has been partly published in Theunissen et al., 2008, Experiments in Fluids. 
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Nomenclature 
 
* cross-correlation operation 
δ boundary layer thickness (pixels) 
∆x, ∆y horizontal and vertical image correlation offset (pixels) 
∆t image time separation (seconds) 
(η,ξ) interface-fitted coordinate system 
θ boundary layer momentum thickness (meter) 
κ, B logarithmic-law constants 
ρ radius of curvature (pixels) 
ν kinematic viscosity (meters2 per second) 
φ correlation coefficient 
a.i.i. adaptive interface interrogation; increased sampling and non-isotropic 

window rotation 
AR Aspect Ratio 
conv. conventional interrogation methodology 
dξ wall-normal distance (pixels) 
DCC Direct Cross-Correlation 
enh. correlation enhancements; vector relocation and SME-DCC 
FFT Fast Fourier Transform 
FOV Field Of View 
I intensity distribution 
Ia, Ib intensity distributions recorded at respectively time ‘t’ and ‘t+∆t’ 
Io undisturbed image intensity distribution 
kR, kB intensity scaling parameter for reflections and background intensity 
MA Moving Average 
PDF Probability Density Function 
PIV Particle Image Velocimetry 
S step function 
SFmax user-defined maximum stretching factor 
SME Symmetric Mask Exclusion 
T top hat function 
u wall-tangent velocity component (pixels) 
u’ fluctuating wall-tangent velocity component (pixels) 
u+, y+ inner-law variables 
uτ wall-friction velocity (meters per second) 
U∞ freestream velocity (pixels) 
V total velocity (pixels) 
WOR Wall Overlap Ratio 
Ws correlation window size (pixels) 
WS

+ non-dimensional window size expressed in wall units 
WU Wall Unit; 1 WU = uτ/ν 
(x,y) CCD coordinate system 
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4.1 Introduction 
 

Nowadays, the majority of image processing algorithms involve a correlation operation 
between two images to extract the motion of detectable features. The problem of PIV 
measurements close to interfaces due to the presence of strong reflections and/or 
appearance of ghost particles is widely recognized (Stanislas et al., 2003). These 
reflections constitute detectable features (Shi and Tomasi, 1994) and will create 
anomalies within the correlation-map, biasing the measured displacements towards zero 
and decreasing the reliability of the image analysis. Lindken and Merzkirch (2002) made 
use of fluorescent particles and shadowgraphy in an attempt to filter out these unwanted 
reflections. Depardon et al. (2005) on the other hand reduced the effect of optical 
disturbances by painting the complete test section and object with fluorescent paint. By 
placing the camera under the Brewster angle with the interface, Lin and Perlin (1998) 
were able to minimize the mirror-like behavior. Especially when dealing with curved 
interfaces or multiphase flows, a change in camera orientation is not always the simplest 
and most straightforward solution. In addition, surface treatments are not always possible. 
The truncation in signal density (i.e. seeding density) and velocity gradients imposed by 
the submerged object are known to cause an additional distortion in the correlation maps 
(Gui et al. 2003, Keane and Adrian 1990) leading to less accurate tracer displacement 
estimates. In these cases adjustment of the experimental setup will not avoid the 
degrading influence of the signal truncation. Consequently it is interesting to investigate 
the possibility to minimize the effects arising from interfaces in the image processing 
stage.  

Current image analysis software samples the recordings at fixed locations within a 
Cartesian grid where the user selected parameters (correlation window size and overlap) 
are applied globally. As such, the processing parameters set are not optimal near 
interfaces. One therefore commonly resorts to PIV algorithm improvement or image 
enhancement prior to the correlation operation. The performance of several image pre-
processing, image processing and data post-processing routines are assessed within this 
chapter when the field of view involves a static interface using computer generated PIV 
images.  

In case of an interface, the windows overlapping it are susceptible to a lack of tracer 
particle images making the estimate of the displacement less reliable (Keane and Adrian, 
1992). Ideally the interface is completely excluded from the correlation process while 
taking into account a sufficient number of tracers by careful positioning and orientation of 
the correlation windows. The second part of this chapter therefore presents an extension 
of the adaptive PIV algorithm. To improve the robustness of the PIV technique, 
correlation windows are rotated parallel to the interface boundary. Considerable 
improvements in resolution are achieved by augmenting the sampling rate near the object 
interface, while applying a stretching factor proportional to the radius of curvature of the 
object’s surface.  
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4.2 Problem statement 
 

Performing PIV measurements near interfaces, the experimentalist is confronted with 
the appearance of non-uniform image properties in the wall-normal direction and 
reflections, which are usually more intense than the individual particle images. Under this 
circumstance the image interrogation by cross-correlation is strongly affected. The 
mathematical expression of the cross-correlation operation between the intensity 
distributions ‘Ia’ and ‘Ib’ is presented in (4.1) for clarity.  
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Calculating ‘φ’ in the spatial domain through direct cross-correlation (DCC), requires 
mean intensities ‘ aI ’ and ‘ bI ’ to be computed in a different way. Whereas the former is 
determined only once before the correlation operation, the latter must be calculated each 
time a new pixel offset ‘(m,n)’ between the two distributions is chosen. The use of 
Fourier transforms on the other hand neglects the spatial dependency of ‘ bI ’ sufficing a 
mean intensity value subtraction in the interrogation areas prior to the correlation 
operation.  
 

 
Fig. 4.1: Computer generated images with correlation map. White arrow indicates true imposed 
tracer displacement. 
 

An example of the distortion in the correlation map due to the presence of a step in the 
intensity distribution across the interface is shown in Fig. 4.1. The interface is represented 
as delimiting the region where particle images are present from an ideally dark region. 
The location in the correlation map indicating the displacement of the tracer particles is 
highlighted by the white arrow. However, a wide region of high-intensity is present 
around the origin, decreasing the peak detectability. Approaching closer to the wall will 
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ultimately lead to an erroneous measurement of the displacement, either biased towards 
the origin or even false peak detection.  

In Particle Image Velocimetry the signal consists of tracer particles sampling the flow 
from which velocity information can be extracted. The interface region may either 
contain no particle images (typical for opaque-diffuse surface properties) or contain some 
particle images due to light reflection at the wall (e.g. metallic objects, glass, etc.). In the 
first case the light intensity may drop at the interface causing a step-like discontinuity. In 
the latter case the intensity level is kept approximately constant while differences in 
refraction index between fluid and interface give additionally rise to strong reflections. A 
further discontinuity in background noise can be encountered across the interface due to 
an absence of secondary particle intensity scattering.  

In their simplest form this signal truncation and reflection across the interface may be 
modeled by a step ‘S’ and top hat function ‘T’ respectively. Fig. 4.2 pictorially presents 
the decomposition of a PIV recording of intensity ‘I’, affected by the truncation and 
reflection, into a summation of the product between the undisturbed image ‘Io’ and the 
step, and the scaled step and top hat functions. The mathematical expression is presented 
in (4.2). The first term models the signal truncation while the last terms represent 
respectively the truncation in background noise and presence of reflections. Scaling 
parameters ‘kB’ and ‘kR’ are introduced and can be time-dependent if reflections vary in 
intensity between recordings. 
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According to (4.3) the cross-correlation of the signals ‘Ia’ and ‘Ib’ can be decomposed 
into the correlation of each term individually and cross-terms. The influence exerted by 
the step and top hat on the correlation map will therefore depend on the prominence of 
the truncation and will affect the entire correlation-map. For conciseness only the 
dominant terms in (4.3), being the autocorrelations and cross-correlation, are depicted in 
Fig. 4.2.  
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From visual inspection the distortion in the measured signal’s correlation can be traced 

back to the cross-correlation of the undisturbed images and the autocorrelation maps of 
the DC components (‘S’ and ‘T’). These anomalies, which have maximum amplitudes at 
the origin, will undoubtedly cause a systematic error in the measured displacement, i.e. a 
bias towards zero, and in the worst case lead to spurious vectors due to poor signal peak 
detectability. 
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Fig. 4.2: (Top) The signal truncation can be represented as a multiplication between the 
undisturbed image and binary masks belonging to the intensity pedestal and reflections. (Bottom) 
Depicting only the dominant terms, the correlation of the images can be approximated as a 
summation of the cross-correlation of the undisturbed images and the individual autocorrelations. 
 
If coefficients ‘kB’ and ‘kR’ could be estimated as well as the interface location and 
extent, the influence exerted by the reflection and background truncation could be 
minimized, correcting the cross-correlation to 
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Possible means to estimate the coefficients are related to background intensity 

characterization (e.g. sliding mean filter, statistical minimum pixel intensity, etc.) while 
the interface can be detected through proper morphological operations (e.g. image 
erosion, edge detection, etc.). The signal truncation however cannot be removed by mere 
intensity-related transformations but must instead be dealt with by an adequate correlation 
method. Additionally, the presence of an interface manifests itself in a positional 
uncertainty in vector location. When the correlation window overlaps the interface, the 
centroid of the measurement area is moved from the center of the interrogation area 
towards one side. Attributing the vector to the geometrical centre of the interrogation 
window is therefore no longer suitable. Viscous effects moreover cause a difference in 
motion between flow and submerged object, leading to gradients in the velocity field 
close to the interface. In combination with improper vector location this is reported to 
bias the measurement (Keane and Adrian, 1992).  

 
In conclusion the following problems are identified as crucial for PIV measurements in 

wall proximity;  
(a) signal truncation at the wall,  
(b) presence of spurious light reflected from the wall,  
(c) biased velocity estimates and  
(d) insufficient wall-normal spatial resolution.  

The remainder of the chapter describes possible solutions to points (a) and (b) by 
means of image pre-processing and correlation schemes. Furthermore, point (c) is 
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addressed recalling the vector-relocation technique. Finally the possible improvement of 
wall-normal resolution is handled by an adaptive algorithm based on non-isotropic 
resolution. The proposed methods are presented with computer simulated particle images 
and further assessed under experimental conditions. 
 
 
4.3 Numerical assessment 
 

Different pre- and processing methodologies will be assessed by means of Monte 
Carlo simulations with computer generated PIV images (Okamoto et al., 2000). The 
generated PIV images all had a maximum intensity level of 255 corresponding to a depth 
of 8bits. The background was simulated with a uniform component of 16% and a 
fluctuating term (i.e. pixel noise) of 3%. A seeding concentration of 0.08 particles per 
pixel² was applied where particles were distributed randomly in a Gaussian shaped laser 
sheet. Gaussian particle images were integrated over a pixel array with fill factor 0.7 
representing the virtual sensor. A normal distribution was applied for the particle image 
diameters with a mean of 3 pixels and variance of 1 pixel.  
 

  
(a) (b 

Fig. 4.3: Synthetic images: (a) Image type 1, 0° wall inclination. (b) Image type 2, 30° wall 
inclination. 
 

Two types of images were generated; the first image type contained a simple transition 
from the flow region to the object without interface. Reflections and flare were imposed 
in the second image type. For each of the image types the interface was placed either at 0° 
inclination or 30° to simulate respectively flat or inclined walls (Fig. 4.3). Tracer particles 
were uniformly displaced parallel to the interface by a finite amount. Interrogation 
windows were set to 33 pixels and did not overlap. For the two image types the case of 
50% wall overlap ratio (WOR) between the correlation windows and interface was 
considered while preserving a high enough number of particle image pairs for reliable 
correlation. 
 
4.3.1 Image pre-processing 
 

In absence of temporal fluctuations in reflection and flare, background subtraction is in 
principle able to adequately remove the truncation and reflection terms ’kB⋅S’ and ’kR⋅T’ 
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in the original image (4.2). According to Wereley et al. (2002b) the proper way is to select 
at each pixel location the minimum intensity over an ensemble of PIV image recordings. 
Having eliminated reflection and noise truncation (or in case of ideal intensity transition 
from flow to object, cf. image type 1), the intensity distribution involves only signal 
truncation. Comparison between correlation maps of the original and background 
subtracted image shows an almost complete removal of the reflection’s and flare’s 
autocorrelation (Fig. 4.4-a vs. -b). However, when coefficients ‘kB’ and ‘kR’ vary between 
images, background subtraction is unable to provide a valid noise estimate for each image 
individually, resulting in a distorted correlation map with only a minimal reduction in 
width of the reflection’s autocorrelation (Fig. 4.4-e vs. -d). 

 

 
Fig. 4.4: Typical correlation maps for images of interfaces at 0 degrees inclination with constant 
(top) and varying reflection and flare (bottom). Imposed displacement peaks are indicated by the 
arrows. (a-d) no pre-processing (b-e) background subtraction according to Wereley et al. (2002b) 
(c-f) background subtraction and intensity fill within masked area (g) image subtraction according 
to Honkanen and Nobach (2005). 
 

Recalling the definition of the cross-correlation operation (4.1), the remaining mean 
intensity pedestal will create an additional distortion. A direct approach is therefore to 
equalize the gray-scale values inside image areas covering the flow and interface. Having 
identified the area within the correlation window containing flow-related information, its 
mean intensity is pasted within the masked area. Fig. 4.4-c indicates this operation to 
slightly enhance the peak detectability in case no reflection or flare is present. Otherwise, 
the improvement is more pronounced and the pasting operation furthermore reduces the 
DC component within the correlation map (Fig. 4.4-f).  
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However, as image properties commonly have a spatial variation in the direction 
perpendicular to the interface, the mean intensity is not an accurate estimation for the 
amplitude of the pedestal. A pixel-wise approach will therefore be more accurate, such as 
e.g. the image subtraction proposed by Honkanen and Nobach (2005). Pedestals and 
reflections are removed from image pairs by subtracting each consecutive image within a 
pair i.e. Ib-Ia. The autocorrelation function of the signal truncation is no longer present 
and a distinct correlation peak is retrieved (Fig. 4.4-g). Nevertheless the subtraction also 
removes objects with displacements smaller than one particle image width, which makes 
it unsuitable for boundary layers where the displacement gradually decreases towards 
zero when approaching the interface. 

In conclusion, some attenuation of the effects of a stationary reflection can be achieved 
by means of local minimum intensity subtraction from each image. The problem of signal 
truncation can be partly addressed by masking techniques involving equalization of the 
mean intensity throughout the image. However, as image pre-processing does not allow a 
complete removal of the artifacts prior to the correlation operation, the correlation 
operator itself must be adapted in an attempt to reduce the prominence or effect of the 
autocorrelations related to the DC components. 
 
4.3.2 Adapted correlation schemes  
 

Since Willert and Gharib (1991) introduced the concept of digital image processing 
techniques in PIV, the use of Fast Fourier Transforms (FFT) for the image cross-
correlation operation has become widespread. FFT is however sensitive to signal 
dependency both in the amplitude and phase domain. This is noticeable by the large peak 
at the origin of the correlation map originating from the image’s DC component (Fig. 4.5-
a). In this case the particle displacement peak is hidden and cannot be recovered. For this 
reason Wernet (2005) proposes to filter the Fourier transform of each interrogation area 
such that only the phase contributes to the cross-correlation. After filtering, the 
correlation map shows two distinct Dirac-functions at the origin and most probable tracer 
displacement (Fig. 4.5-b). However, when dealing with sub-optimal conditions (number 
of effective particle image pairs) it was observed that the central peak can outgrow the 
true peak, decreasing detectability.  

Results from Monte Carlo simulations with synthetic images of the second type for 
wall overlap ratios of 50% are presented in Table 4.1. Filtering the Fourier transform 
reduces the displacement error. Largest displacement errors are obtained with unfiltered 
FFT when correlation windows are not parallel to the interface i.e. 30 degree inclination. 
Though the filtered version shows to be an improvement in this case, the method is more 
susceptible to random errors due to a lack in tracer images causing frequently peak 
detection at the origin. The latter explains the higher RMS error for the filtered FFT 
method. 
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(a) (b) (c) 

Fig. 4.5: Typical correlation maps for images as shown in Fig.4.3-b. The imposed displacement 
peak is indicated by the white arrow. Correlation using (a) FFT (b) FFT with filtering (Wernet 
2005) (c) Symmetric Mask Exclusion Direct Cross-Correlation. 
 
Table 4.1: Displacement error and RMS error after application of different correlation schemes to 
synthetic images of type 2, imposing uniform displacement of 5 pixels over flat walls at 0 and 30 
degrees inclination. Correlation windows of 33 pixels, no mutual overlap and 50% WOR. Single 
correlation iteration. 
 

Correlation method Displacement error Displacement RMS 

 0 deg. incl. 30 deg. incl. 0 deg. incl. 30 deg. incl. 

FFT no filtering -80% <-100% 32.8% 6.8% 

FFT with filtering -4% -27% 14.6% 48% 

SME-DCC 0% -0.2% 2.8% 0.6% 

 
A simpler solution is to completely avoid signal truncation by excluding the interface 

region from the interrogation area. Ronneberger et al. (1998) applies direct cross-
correlation (DCC) with an additional masking of the first interrogation window to 
exclude pixels covered by the interface from the correlation. DCC is beneficial in case of 
low seeding density as it utilizes an enlarged search area in which the smaller 
interrogation window is shifted. This explains its improved performances concerning 
displacement error and RMS error (Table 4.1). In addition, direct correlation does not 
assume periodicity in the image pattern as is the case with FFT. Here the application of 
pixel exclusion in both interrogation windows is proposed and will refer to the method by 
the acronym SME-DCC (Symmetric Mask Exclusion Direct Cross-Correlation). The 
correct numerical implementation of SME-DCC is deemed important and is dealt with in 
paragraph 4.5. With DCC the prominence of the autocorrelation peak of the DC 
component has decreased compared to the original map (Fig. 4.5-c). Moreover, the 
correlation peak has almost constant height, minimizing any bias towards the origin and 
reducing the possibility of false peak detection around the origin. At larger wall overlap 
ratios (≥70%), the true peak is engulfed by the rim and can no longer be detected. 
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4.3.3 Vector relocation 
 

Conventionally the obtained displacement vectors are attributed to the centre of the 
interrogation area. Tsuei and Savas (2000) discuss that when the centre of the correlation 
domain is located on a rigid stationary wall the obtained non-zero displacement vector is 
erroneous. The problem thus reduces to a proper repositioning of the vector representing 
the tracers’ ensemble displacement when correlation windows overlap with the interface.  
 

  
(a) (b) 

Fig. 4.6: Vector attribution (a) to the geometrical centre of the correlation window (b) to the 
centroid of the seeded area within the correlation window. 
 

According to Willert (2000) a more correct approach is to position the velocity vector 
at the centre of gravity of the signal contained inside each correlation window whereas 
Young et al. (2004) locate the vector to the position of maximum intensity in the 
multiplication plane†. Similarly Lindken et al. (2003) place the displacement vector at the 
centroid of the multiplication plane. While these relocation approaches may enhance the 
spatial resolution in free stream conditions, their strong dependence on the recorded 
image intensities induce strong errors near interfaces owing to the presence of reflections. 
Instead, Usera et al. (2004) proposes to place the vector in the geometrical centre of the 
truncated correlation window which offers a more representable attribution as shown in 
Fig. 4.6.  

In the present study the effect of vector relocation following the latter approach is 
assessed using synthetic data of a boundary layer with exponential velocity profile of 
equation; 
 

( ) ( )yeyu ⋅−−⋅= β13    where   ( )
20

01.0log−=β  (4.5)
 
The boundary layer thickness was set to 20 pixels. Correlation windows did not overlap 
mutually such as to study the effect of the velocity gradients for a single WOR between 
window and interface. The correlation operation was performed with SME-DCC. As 
reference, the response of a moving averaging filter (MA) on the imposed velocity 

                                                      
† The multiplication plane is the matrix containing the pixel-wise multiplications between the 
intensity fields of the two images shifted by the determined optimal displacement. 
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distribution is plotted. The applied kernel size was 33 pixels excluding signal inside the 
interface in the averaging operation. 
 

(a) (b) 
Fig. 4.7: Measured displacements for an imposed exponential velocity profile (red line) after a 
single iteration with a correlation window of 33 pixels applied to synthetic images of type 1 at 
different WOR with the interface at 0 degrees inclination. (a) Vector positioned in the geometrical 
center of the interrogation window (b) relocation of the vector to the centroid of the seeded area 
within the correlation window. Horizontal bars correspond to 95% confidence level. 
 

Without vector relocation the maximum overlap possible between correlation window 
and interface is 50%. At higher overlaps the geometrical centers of the windows fall 
inside the interface in which case the vectors are set to zero displacement to satisfy the 
no-slip condition. The latter causes a strong discontinuity in the velocity profile near the 
wall, which is more pronounced in the MA profile (Fig. 4.7-a). More accurate 
displacement estimates are obtained by placing the vector in the geometrical centre of the 
information containing part of the correlation window. Relocation allows wall overlap 
ratios exceeding 50%, accompanied however by a higher displacement measurement 
uncertainty (Fig. 4.7-b). Nevertheless, the obtained values better follow the imposed 
profile and the discontinuity near the wall has disappeared.  

As shown in Scarano and Riethmuller (2000), the MA offers a good approximation of 
the cross-correlation’s response when there is a low variation in displacement within the 
correlation window. In case of highly sheared flows, the equivalence between MA and 
cross-correlation does not hold anymore. When displacement gradients exceed a particle 
diameter, correlation peaks detach (Westerweel, 2007). The non-linear response of the 
cross-correlation accordingly favors regions with less displacement variance. In the case 
of a boundary layer these zones correspond to the free-stream, biasing the measured 
displacement to higher values compared to the linear averaging operator. With increasing 
wall overlap ratio (WOR) the discrepancy between the moving average (MA) filter and 
cross-correlation response thus augments. This non-linear behavior further causes an 
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increase in displacement RMS, as indicated by the enlarged confidence intervals (Fig. 
4.7), which agrees with the findings of Keane and Adrian (1990). 
 
 
4.5 Symmetric-mask-exclusion direct cross-correlation 

implementation 
 

Previously the direct cross-correlation (DCC) approach was demonstrated to be 
conducive in retrieving tracer displacements when the correlation window overlapped 
with an interface. The direct calculation is however resource intensive as for a square 
window of size ‘WS’ it involves in the order of ‘WS

4’ number of calculations. In contrast, 
Fast Fourier Transforms (FFT) are able to considerably reduce this number to the order 
of’ ‘WS

2⋅log(WS)’. The benefits of a frequency based correlation are eminent, which is the 
reason why the DCC has been translated into a simple sequence of FFT operations.  

Similar to the digital mask methodology proposed by Gui et al. (2003), the normalized 
correlation coefficient is defined as 
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To separate the seeded flow from the object area, binary masking arrays ’ma’ and ’mb’ 

are introduced for the first and second recording respectively (Fig. 4.8-e,-f). After 
expanding the multiplicative operation in the nominators of (4.6) and (4.7), each of the 
individual terms involves a cross-correlation, which can be performed by means of fast 
Fourier transforms. However, while ’F’ needs to be computed only once before the 
correlation operation, both mean intensity ’ bI ’ and mask ’mb’ require recalculation for 
each offset (m,n). The latter necessitates a direct approach for the computation of ’φ’, 
rendering the presented scheme computationally intensive.  

Following the FFT-based free shape correlation (Ronneberger et al., 1998), the 
interrogation area in the first image is extended and padded with zeros to equal the size 
’k⋅WS’of the larger search area in the second partial image (Fig. 4.8-a,-b,-c,-d). This zero 
padding operation can be automatically taken into account by the binary mask ’ma’. 
When measurement points are located on a structured grid factor ’k’ is set to 2. With 
every iteration the disparity between the deformed images will converge to zero, 
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eventually allowing values of ’k’ approaching unity. In case of window rotation and non-
isotropic sizing the dimensions of the enlarged search area are given by ’kη⋅WSη’ and 
’kξ⋅WSξ’ respectively in wall-tangent and normal direction (Fig. 4-10), where  
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To negate the need of repetitive computation of ’ bI (m,n)’ and ’mb(m,n)’, the 

introduction of a third binary mask ‘W’ of similar size as the search area is proposed 
containing unity values inside the interrogation area and zero otherwise as depicted in 
Fig. 4.8-g. Consequently, the mean operator can be translated into a correlation involving 
’W’, ’mb’ and ’Ib’ (4.9). Calculation of ’ bI (m,n)’ in equation (4.9) is hence reduced to a 
one-time correlation operation by means of two Fourier transforms. Hereafter 
determination of ’ bI ’ at (m,n) becomes a mere lookup action. Concisely, the direct cross-
correlation function can be expressed as a series of FFT operations (4.10), which 
drastically reduces the computational effort compared to the direct spatial computation. 
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Fig. 4.8: (a) Image with selected interrogation area of size ’WS’ (b) second snapshot with 
extended search area ’k·WS’ (c) extended and padded interrogation area ’Ia’ (d) selected search 
area ’Ib’ (e) mask ’ma’ (white =1) (f) mask ’mb’ (g) mask ’W’ used in calculation of mean 
intensity and covariance. 
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4.6 Adaptive interrogation near interfaces 
 
Summarizing the previous results, the image pre-processing may enable to 

substantially attenuate the effect of reflections responsible for poor peak detectability. 
The latter is further enhanced exchanging the FFT method with SME-DCC. Finally the 
bias error can be compensated (if enough correlation signal is given) by a vector 
relocation technique. The problem however remains when reflections cannot be 
completely accounted for and when the interface is not aligned with the coordinates of the 
pixel grid. Moreover, as drawn in Fig. 4.7, even applying vector relocation, the spatial 
resolution close to the wall is in most cases the limiting factor for a PIV measurement. 

In this section the earlier discussed schemes are implemented within the adaptive 
interrogation algorithm previously developed. The imposed adaptivity properly locates 
interrogation windows with the intention to sample regions with higher seeding densities 
and flow variances more densely with reduced window sizes. Briefly, the source density 
is mapped through a particle detection algorithm which allows dictation of the necessary 
window size by imposing a local image density. Estimates for the spatial fluctuations in 
the flow are taken as the spatial standard deviation of the velocity. Selected window sizes 
are inversely proportional to the seeding density and velocity standard deviation. Through 
a linear combination of velocity variance and source density the information concerning 
the signal distribution and flow scales is used in order to produce a single normalized 
distribution for the spatial sampling rate. A 2D transformation method distributes the 
window locations according to this sampling rate.  

In the present case the aim is to keep constant the number of particle images when 
moving the interrogation area closer to the wall. This can be achieved by allowing the 
interrogation area to gradually expand in the direction tangent to the wall (assuming the 
flow to have a displacement parallel to the interface close to the object), resulting in a 
non-isotropic wall-normal resolution enhancement. The evolution of the window aspect 
ratio ’AR’ with wall-normal distance ‘dξ’ is described by the following relation  
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where ‘β’ assumes a general value of 15 pixels, based on the typical lower size limit for a 
square interrogation window. Subscripts ‘η’ and ‘ξ’ refer to wall-tangent and normal 
abscissa of the coordinate system aligned with the interface (Fig. 4.10).  

Equation (4.11) incorporates a user-defined maximum stretching factor ‘SFmax’, with 
representative values ranging between 2 and 6. Both rotation and stretching will increase 
the effective interrogation areas as cartooned in Fig. 4.9, which has a beneficial effect on 
the correlation robustness (Adrian, 1991). Enforcing simultaneously a reduction in total 
correlation window size further limits any spatial modulation. Following the principles of 
adaptive interrogation, the sampling rate is modified approaching the wall, increasing the 
windows’ mutual overlap such to minimize the error due to coarse spatial sampling 
(Theunissen et al., 2006b). The latter can be achieved by adequate weighting of the 
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sampling rate imposed by e.g. the convolution between a Gaussian kernel and the eroded, 
binary image of the detected interface boundaries. 
 

 
 

Fig. 4.9: Interface treatment: (a) standard (b) rotation only (c) rotation and stretching (d) effect of 
curvature. 
 

The proposed methodology may be generalized for the case of curved interfaces by 
including the interface curvature radius ‘ρ’ as an additional parameter to control the 
window aspect ratio; 
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The local slope of the interface is obtained from a point-wise second order polynomial 

fit after successful identification of the interface border† (Xu and Prince 1997, Scholz and 
Kähler 2004). With increasing flatness of the interface the curvature tends to zero, in 
which case a maximum stretching can be applied. The maximum length of the stretched 
window is then limited to ’Wsη ≈ SFmax

½·Ws’ with a corresponding minimum width of 
’Wsξ≈Ws·SFmax

-½’ where ’Ws’ symbolizes the side of a square window of equal area 
(4.12). When the radius of curvature becomes significantly smaller compared to the 
correlation window, such as for example near corners, the aspect ratio must tend to unity 
(Fig. 4.9-d). In this case the gradients in the spatial velocity distribution would anyway 
prohibit an accurate velocity measurement. For this reason, aspect ratios are set to unity 
within a radius of 45 pixels of detected corners (He and Yung, 2008). 

The calculation of the displacement within the rotated (η,ξ)-grid requires an image 
intensity re-interpolation (Fig. 4.10). A B-spline interpolation scheme (Unser et al., 
1993b) was implemented, constituting a trade-off between accuracy and computational 
effort. Rotation and iterative image deformation are combined in a single step, reducing 

                                                      
† It is interesting to note that the temporal evolution of a non-stationary interface can be 
successfully deduced by a combination of snakes and interpolation of the path-related frequencies 
obtained through Fourier Transforms (Abu-Gharbieh et al., 2001). 
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both computation time and image degradation due to resampling (Scarano et al., 2005). In 
addition the concept of intensity capping proposed by Shavit et al. (2007) was applied to 
further decrease the bias influence of bright flares. Overall the additional processing time 
imposed by the adaptive interface interrogation is negligible compared to the 
computationally more intensive direct correlation approach. The latter causes increases in 
computational effort typically in the order of 20%, but is only needed however in a small 
fraction of the PIV image where an interface is present. Moreover, the increase in 
computational effort can be deemed negligible compared to the expected drastic 
improvements in achievable spatial resolution. 

 

 
Fig. 4.10: Rotation of the correlation windows near interfaces requires re-interpolation of the 
original pixel intensities in the (x,y) coordinate system to the rotated (η,ξ) system. 

 
 

4.7 Experimental assessment 
 

4.7.1 Subsonic turbulent boundary layer over a flat plate 
 

The improved robustness and resolution of the proposed technique in case of real 
experimental conditions is attested in the following with the study of a subsonic turbulent 
boundary layer over a flat plate. 
 
• Background  
 

When submerging a body within the flow, the fluid velocity will gradually tend 
towards the body’s surface velocity. This change takes place in wall-normal distance and 
gives rise to so-called boundary layers (BL) schematically presented in Fig. 4.11-a. In 
most cases these layers are turbulent and contain a variety in flow scales. One of the pivot 
variables of a boundary layer is the wall-shear velocity ‘uτ’ which is a measure of the 
shear stress on the body’s surface or in other words the viscous drag acting on the body. 
To estimate this velocity form accurate predictions of the velocity gradient, read 
displacement, near the wall are necessary which demands sufficient spatial resolution by 
means of small correlation windows. To give an indication, the boundary layer’s wall-
normal extent is illustrated in Fig. 4.11-b. Adrian (1997) argues that the spatial resolution 
can be controlled by meticulous selection of the field of view, i.e. the resolution can be 
improved by zooming in on a particular domain in the flow. In this case it would be the 
lower viscous sublayer of the boundary layer if only the wall-shear velocity would be of 
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interest. Accurate characterization of a boundary layer also requires its thickness ‘δ’ to be 
known for which a larger field of view is needed. 

 

  
(a) (b) 

Fig. 4.11: (a) Theoretical boundary layer profile (b) PIV boundary layer image after contrast 
enhancement for clarity (Elsinga et al., 2007). 

 
Furthermore, the presence of strong light reflections and mirror images of particles 

commonly hampers a robust image analysis close to the interface. The presence of an 
interface within the experimental field of view further complicates the image processing 
by posing a signal truncation; the image area occupied by the object is without tracer 
particles. Whereas the lack of seeding particles imposes the use of larger interrogation 
windows, the boundary layer needs a higher sampling rate using smaller window sizes to 
resolve the flow fluctuations within. These are conflicting requirements for which a 
special treatment in the interrogation process is needed. 

 
• Experimental facility  
 

  
(a) (b) 

Fig. 4.12: Recordings of flat plate boundary layer experiment (a) original images (b) images 
rotated over 30 degrees. 

 
Experiments on a turbulent boundary layer were conducted in a low speed wind tunnel 

with 40×40cm² test section and Plexiglas side-walls minimizing reflections (Fig. 4.12-a). 
The flow was seeded with particles of 1µm in diameter, produced by a fog generator. A 
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Nd:Yag dual-head laser of 400mJ provided the illumination and a 12bit LaVision Imager 
Intense recorded the scattered light intensities. With a conversion factor of 1 pixel per 
30µm in the image plane, the field of view corresponded to approximately 4.2×3.2cm2. 
The boundary layer was measured at a free-stream velocity of 9.8m/s. A tripping wire 
placed 2 meters upstream ensured a fixed location of the transition to the turbulent regime 
with a Reynolds number of Reθ=1900 based on the momentum defect thickness ‘θ’. 
Further details regarding the experimental setup can be found in Elsinga et al. (2007).  

 
• Image evaluation and flow diagnostics 
 

The tests are performed on the original images providing a reference for the more 
difficult case where the wall is inclined over 30 degrees with respect to the CCD 
coordinates (Fig. 4.12-b). The proposed correlation method is expected to be invariant of 
any rotation of the system of axis. To provide a comparison, the same sets of images were 
analyzed with a more conventional procedure (referred to in the following figures as 
“conv.”) involving three iterative image deformation and refinement steps whereby 
correlation windows are placed on a Cartesian grid (Scarano and Riethmuller, 2000). 
Windows mutually overlapped by 75% and were correlated with the conventional FFT 
procedure.  

Overall 100 images were used in the statistical analysis. To limit the influence of pixel-
noise, background subtraction was performed prior to the correlation procedure as 
proposed by Wereley et al. (2002b). To assess the measurement capacities individually of 
the different image interrogation metrologies, no-slip boundary conditions were neglected 
during iterative image deformation. 

 

 
Fig. 4.13: Mean velocity profile obtained by ensemble correlation with superimposed law of the 
wall. 
 

Reference values for the wall-friction velocity were obtained by analyzing the original 
images by means of ensemble cross-correlation (Meinhart et al., 2000). Images were 
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iteratively deformed while simultaneously reducing the interrogation area, producing a 
wall-normal spatial resolution of around two wall units (WU). The value for the wall-
friction velocity ‘uτ=0.355m/s’ was derived from a curve-fit of the inner-law to the 
resulting velocity profile (Fig. 4.13). Expressions for the inner variables and non-
dimensional window size are given in (4.13) for conciseness. 
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For the rotated images a typical distribution of 8000 correlation windows as applied by 

the improved adaptive interrogation methodology is depicted in Fig. 4.14-a. Hereafter the 
adaptive algorithm combined with adaptive interface interrogation and correlation 
enhancements will be referred to in the graphs by the synopsis “adaptive+a.i.i.+enh.”. 
From a visual inspection the sampling is denser in an area parallel to the interface. The 
latter is put further into evidence by plotting the probability density function (PDF) of the 
distance between the sample, i.e. center of the correlation window, and the wall (Fig. 
4.14-b). Combined with the algorithm’s adaptivity of the sampling positions to the 
velocity fluctuations, a re-interpolation of the unstructured data to a Cartesian grid with 
approximately 1.5 WU (2 pixels) spacing was permitted.  

 

(a) (b) 
Fig. 4.14: Interrogation adaptivity (a) average window locations with zoom showing stretching 
and rotation of correlation windows (b) probability density function of the distance between the 
interface and sample locations. 
 

Further rotation and stretching of the interrogation areas parallel to the inclined wall 
become prominent when zooming in on the interface (Fig. 4.14-a). The evolution of the 
tangent and normal correlation window sizes ‘WSη,ξ

+’ (expressed in wall units) with 
normal distance from the wall is presented in Fig. 4.15-a. Within 11 WU windows remain 
constant in size with normal and tangent extensions of respectively 6.4 and 40 wall units, 
corresponding to a maximum stretching factor of around 6. Beyond, the window aspect 
ratio gradually decreases tending towards a square-shaped interrogation area at 50 WU 
(Fig. 4.15-b).  
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(a) (b) 

Fig. 4.15: Original boundary layer images: (a) evolution of the tangent and normal window sizes, 
expressed in wall units and (b) window aspect ratio as function of the wall-normal distance. 
 

Averaged non-dimensional velocity profiles obtained by the extended adaptive and 
more conventional metrology are shown in Fig. 4.16-a for the original boundary layer 
images. In the latter approach window sizes of 12.5 WU and 24.2 WU (respectively 17 
and 33 pixels) were applied globally. With an overlap coefficient of 75% this translated in 
a data-spacing of respectively 3.1 WU and 6 WU, compared to 1.6 WU with the adaptive 
scheme. Due to the large window sizes with respect to the viscous length scale ‘ν/uτ’ the 
conventional metrology is associated with insufficient resolution to measure the viscous 
sublayer (for which y+≤5). The resolution of the wall-adaptive approach on the other hand 
is sufficient to resolve the viscous sublayer (Fig. 4.14-b), yielding a u+y+ profile fitting the 
theoretical models (Fig. 4.16-a). Implementation of the enhancements discussed within 
this chapter, being vector relocation and SME-DCC (hereinafter abbreviated to “enh.”), 
reforms the performances of the conventional interrogation approach in two ways. First, 
spatial resolution is increased through vector relocation, which is deducible in Fig. 4.16-a 
from the better fit of the non-dimensional profiles to both theory and results from 
adaptive interrogation. Second, the SME-DCC correlation scheme limits the number of 
erroneous vectors. The improved robustness is appreciable by plotting the RMS of the 
velocity component tangential to the wall (Fig. 4.16-b). Whereas previously the RMS 
evolved inversely proportional to the wall distance ‘y/δ’ (δ≈24mm), results now decrease 
near the wall and compare well with data reported by Klebanoff (1995). With decreasing 
window size the peak in RMS tends towards the adaptive measurement both in amplitude 
and spatial location, attesting the latter methodology to provide values representative of 
the investigated boundary layer. 
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(a) (b) 

Fig. 4.16: Original boundary layer images: (a) mean velocity profile (b) profile of fluctuation in 
the wall-tangent velocity component. Image interrogation was performed by the adaptive approach 
combined with adaptive interface interrogation (a.i.i.) and correlation enhance-ments (enh.) ( ), 
the conventional approach (conv.) ( ,▲) and the conventional approach including correlation 
enhancements (conv. + enh.)) ( ,∆). 
 

 
(a) (b) 

Fig. 4.17: Rotated boundary layer images: (a) mean velocity profile (b) profile of fluctuation in the 
wall-tangent velocity component. Image interrogation was performed by the adaptive approach 
combined with adaptive interface interrogation (a.i.i.) and correlation enhancements (enh.) ( ), the 
conventional approach (conv.) ( ,▲) and the conventional approach including correlation 
enhancements (conv. + enh.) ( , ∆). Profiles are undersampled for readability by a factor (a) 2 and 
(b) 3 if y/δ<0.04 or 9 otherwise.  
 

Mean velocity profiles in inner-law scaling for the case of the rotated boundary layer 
images are presented in Fig. 4.17-a. Results from the discussed image interrogation 
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methodologies were re-interpolated to a pixel-wise grid beforehand allowing the 
extraction of the velocity data along a profile normal to the interface boundary. 
Conventional metrologies suffer from too poor resolution to resolve the linear sublayer 
(Fig. 4.17-a), proving them not to be conducive for PIV analysis in proximity of 
interfaces not aligned with the coordinates of the pixel-grid. Amelioration of the spatial 
resolution is achieved by incorporating vector relocation and SME-DDC in exchange of 
FFT. Whereas before a maximum WOR of 27% could be encountered, the WOR now 
spatially varies, making the correlation windows more susceptible to a strong reduction in 
effective correlation area (Fig. 4.9-a). In turn this increases the number of outliers and 
causes high RMS levels in the vicinity of the wall as shown in Fig. 4.17-b. A compromise 
is therefore needed in parameter settings (i.e. window size) to find a trade-off between 
spatial resolution and robustness. Compared to the original case (Fig. 4.16-a) the 
enhanced adaptive code on the other hand shows to return consistent results in mean 
velocity (Fig. 4.17-a) while retaining robustness (Fig. 4.17-b). Small dissimilarities 
between the velocity profiles are attributed first to uncertainties in wall-normal distance 
and second to poor image quality. The degradation in image signal is due to the 
performed morphological operation involving intensity re-interpolation. The latter further 
induces slightly enlarged window sizes away from the wall, modulating smaller 
fluctuations in the horizontal velocity component (Fig. 4.17-b). Near the interface the loss 
in signal explains the deviation of the u+y+-profiles from the analytical function in the 
logarithmic overlap layer and the slightly higher amplitudes of the RMS distribution, 
while preserving the peak location.  
 
4.7.2 Double compression ramp at Mach 7 
 

To further attest the benefits of the correlation enhancements in wall-normal spatial 
resolution in vicinity of stationary interfaces, the case of a two-dimensional double ramp 
model with deflection angles of respectively 15° and 45°, placed inside a Mach 7 free 
stream (860±10m/s) is considered.  

 
• Background  
 

The flow over a double compression ramp configuration at Mach 7 constitutes a 
challenging application due to the presence of weak and strong shock waves at the 
leading edge of the ramp and at the second ramp respectively. When the leading edge 
shock interacts with the curved shock, an area is formed where complex flow features are 
to be expected (Olejniczak et al., 1997).  

After passing several oblique shocks, the flow close to the wall has a higher 
momentum compared to the flow behind the curved shock (Fig. 4.18). As a result, a jet-
like contact surface is formed. The two layers are separated by slip-lines due to shock-
shock interactions. The transition of these slip-lines into a shear layer causes the advent of 
large coherent turbulent structures downstream. Near the wall the flow undergoes 
separation on the first ramp with transition to turbulence in the form of recirculation (Ball 
and Korkegi, 1968). This small zone of lower velocities continues along the second ramp. 
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The numerical simulation of such flows is nowadays still very challenging and 
experimental techniques can barely visualize all the involved flow phenomena, not to 
mention the difficulty in measuring the finite separation zone near the ramp corner. 
 

 
Fig. 4.18: Schematic shock pattern of the flow over a 15°-45° double-ramp at Mach 7. 
 
• Experimental facility 
 

A complete presentation of the experimental setup is described by Schrijer et al. 
(2006). Summarizing, experiments were conducted in a hypersonic facility based on the 
Ludwieg tube concept. Titanium dioxide seeding particles with a median diameter of 
400nm were introduced in the storage tube off-line by means of a high-pressure cyclone 
device. The procedure provided a relatively homogeneous seeding of the free-stream 
within a limited time interval (typically 20ms) during the windtunnel run. A Quanta Ray 
Spectra-Physics dual head Nd:Yag laser served as illumination source. Scattered light 
was digitally recorded by a LaVision Imager Intense CCD cameras with 600ns time 
separation between exposures. Approximately 32pixels covered one millimeter giving a 
field of view (FOV) of 4.3×3.3cm2. The complex flow physics involved are visualized by 
the schlieren image presented in Fig. 4.19-a where the analyzed field of view is indicated 
by the white rectangle. Leading edge shock, curved compression shock and the 
interaction region between the two are distinguishable.  

 

(a) (b)

Fig. 4.19: (a) Schlieren image of the double wedge model at Mach 7 (b) Instantaneous PIV 
recording of the FOV (contrast has been enhanced for clarity). 
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• Image evaluation and flow diagnostics 
 

Near the ramp corner the existence of boundary layer separation, reattachment and 
recirculation zones has been demonstrated extensively in both numerical and 
experimental studies (Korolev et al. 2002, Verma 2003, Fletcher et al. 2004, among 
others). However, detection of these phenomena with PIV measurements proves to be 
challenging. The strong spatial variations in seeding and flow velocity in the 
instantaneous PIV recording (Fig. 4.19-b) cause the cross-correlation to fail either 
because not enough tracers are encountered within the interrogation area or because the 
flow velocity is too inhomogeneous within it. Larger correlation window sizes lead to an 
increase in correlation reliability and dynamic range but simultaneously lowers spatial 
resolution (Scarano and Riethmuller, 1999). The latter explains why close to the wall, 
PIV measurements in general fail to sufficiently resolve the flow to infer small-scaled 
features. Besides the lack in tracer images due to large portions of the correlation 
windows overlapping the wall, strong reflections from the wall are encountered in the 
corner region. A strong bias of the measurements to zero is expected to appear in the 
proximity of the wall, which will further filter out smaller velocity fluctuations. 
 

 
Fig. 4.20: Statistical mean of the total velocity for the FOV in Fig. 4.19-a. 
 

An example of a statistical mean of the total velocity is presented in Fig. 4.20, taking 
into account 40 background subtracted (Wereley et al. 2002b) image snapshots. Here the 
PIV analysis was performed placing correlation windows of 0.43mm2 on a Cartesian grid 
with 0.19mm spacing. The included iterative window deformation and refinement in the 
interrogation process cause velocity profiles to tend towards the imposed no-slip 
condition at the wall. None of the streamlines indicate however presence of a 
recirculation zone (Fig. 4.21-a). Implementation of the SME-DCC routine and vector 
relocation is beneficial since the recirculation zone becomes discernible (Fig. 4.21-b). 
Still, only through the adaptive approach can both the dynamical range and spatial 
resolution be optimized by respectively maximizing the window size range and relocation 
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of the correlation windows (Theunissen et al., 2006b). With the imposed adaptivity 
criteria the proximity of the ramp is oversampled (0.06mm gridspacing) by correlation 
windows of 1.3×0.3mm2, which are aligned with the interface. The enhancement in wall-
normal spatial resolution is appreciable as the thin layer of recirculating flow near the 
interface is now sufficiently resolved (Fig. 4.21-c). 
 

(a) (b) 

 

(c)  
Fig. 4.21: Streamlines in vicinity of the ramp after analysis with (a) the conventional approach (b) 
the conventional approach including correlation enhancements (c) the adaptive approach combined 
with adaptive interface interrogation and correlation enhancements. 

 
 

4.8 Conclusions 
 

In proximity of a wall, conventional correlation methodologies suffer from large 
distortions in the correlation map due to signal truncation and reflections. In this chapter, 
several common image pre-processing, image processing and data post-processing 
routines are considered in the attenuation of the bias towards zero of the measured 
displacement and the probability of false peak detection. An assessment has been 
performed by means of Monte Carlo simulations with computer generated PIV images 
representative of fields of view involving static interfaces.  
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Local minimum intensity subtraction combined with equalization of the mean intensity 
throughout the image has been shown to be effective when reflections do not possess a 
temporal variation in intensity and image properties do not vary spatially. Under the 
opposed circumstances pixel-wise approaches are more appropriate in the removal of the 
artifacts from the images, but inherently degrade the signal of importance. There are 
numerous advanced image pretreatment methods, but all of them have some limit, where 
eventually the algorithms of this chapter will become meaningful. Furthermore, the 
problem of signal truncation remains and demands proper windowing techniques for 
correlation. Given wall overlap coefficients below 70%, correlation of only the signal 
containing area within the correlation window by means of direct cross-correlation 
proved to be most effective when symmetrically excluding the masked regions. Further 
repositioning of the obtained displacement vectors towards the geometrical center of the 
information containing section reduces the positional uncertainty and increases the spatial 
resolution. The shortcomings of the conventional methodologies, as well as the 
effectiveness of the proposed enhancements, have been attested by application to 
experimental images of a flat-plate turbulent boundary layer. Ameliorations in spatial 
resolution and robustness of the image analysis were appreciable. 

Despite all efforts, even after implementation of the correlation enhancements, 
windows are still susceptible to a low spatial resolution and a lack in number of effective 
particle image pairs when the interface is misaligned with the CCD coordinates. This 
reduction in effective correlation area causes a growing probability of erroneous 
displacement vectors. An innovative interrogation method has therefore been presented 
with the intention to increase robustness and resolution. Besides the implementation of 
vector relocation and DCC-based image correlation near the interface, the method 
incorporated wall adaptivity in an automated manner. The enhanced interface treatment 
consisted of a) an increase in sampling rate in the vicinity of the wall, b) rotation of the 
correlation windows parallel to the interface and c) a reduction in wall-normal window 
size. Application of the proposed methodology to original and morphed flat plate 
boundary layer images has shown to yield consistent results both in velocity and 
turbulence intensity while retaining robustness. The benefits of the enhanced spatial 
resolution have been further demonstrated by comparing the PIV methodologies when 
applied to image recordings of a double compression ramp in a hypersonic flow. The 
adaptive approach was proven to possess sufficient spatial resolution to discern a 
recirculation zone near the corner, previously irresolvable by the conventional approach. 
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CHAPTER 5 
 
 
 
 

STATISTICAL ADAPTIVITY IN PIV 
INTERROGATION† 

 
 
 

Abstract 
 

This chapter proposes an extension of the adaptive approach proposed afore to achieve an 
autonomous and robust adaptive interrogation method for PIV data sets with the focus on the 
determination of mean velocity fields. Under circumstances such as sub-optimal flow seeding 
distribution and large variations in the velocity field properties, neither multi-grid techniques nor 
adaptive interrogation with criteria based on instantaneous conditions offer enough robustness for 
the flow field analysis. A method based on the data ensemble to select the adaptive interrogation 
parameters, namely window size, aspect ratio, orientation, and overlap factor is followed in this 
study. Interrogation windows are sized and spatially distributed on the basis of the average 
seeding density and the gradient of the velocity field. Compared to the instantaneous approach, 
the ensemble-based criterion adapts the windows in a more robust way especially for the 
implementation of non-isotropic windows (stretching and orientation), which yields a higher 
spatial resolution. If the procedure is applied recursively, the number of correlation samples can 
be optimized to satisfy a prescribed level of window overlap ratio.  

The relevance and applicability of the method are illustrated by an application to experimental 
data from a shock-wave-boundary layer interaction problem. Furthermore, the application to a 
transonic airfoil wake verifies by means of a dual-resolution experiment that the spatial resolution 
in the wake can be increased by using non-isotropic interrogation windows. 

 
 
Nomenclature 

 
δs infinitesimally small area (pixels2) 
δU instantaneous displacement corrections (pixels) 
θ correlation window orientation (radians) 
λw nearest neighbor sample spacing (pixels) 

                                                      
† This work has been partly published in Theunissen et al., 2009, Experiments in Fluids. 



118 Statistical adaptivity in PIV interrogation 

Λ Hessian eigenvalue 
µ velocity mean 
(ξ,η) coordinate system rotated over angle θ with respect to (x,y) system 
σ velocity standard deviation 
σI intensity standard deviation 
ϕ sampling rate (number of windows per pixel) 
c airfoil chord length 
Conv. Conventional image interrogation 
det(X) determinant of matrix X 
Ecc correlation window eccentricity 
H Hessian matrix 
I image intensity 
IA Instantaneous Adaptivity 
Ithr threshold intensity 
N number of instantaneous data fields 
Nδs number of equidistant samples within an area δs 
Nw total number of correlation windows 
s shock-normal coordinate 
SA Statistical Adaptivity 
Sd signal source density 
Taw adiabatic wall temperature (Kelvin) 
Te temperature at boundary layer edge (Kelvin) 
u’, v’ fluctuating velocity components in horizontal and vertical direction 
uτ wall-friction velocity 
ueq van Driest equivalent velocity 
un1,2 shock-normal velocity respectively upstream and downstream  
U* filtered displacement field (pixels) 
U0 velocity defect in the wake 
Ue velocity at boundary edge 
U∞ free stream velocity 
WS square correlation window size (pixels) 
WOR Window Overlap Ratio 
X  spatial average over a single instantaneous data field 
|X| absolute value of variable X 
<X> the ensemble-average value taken over N instantaneous data fields. 

 
 

5.1 Introduction 
 
The analysis of PIV recordings is nowadays fairly well established; the motion of 

particle images is obtained by multi-step cross-correlation analysis with typically square 
interrogation windows of decreasing size along the iterations. The multi-grid approach 
enables to overcome the ¼ rule (Keane and Adrian, 1990) and when window deformation 
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is applied, the effect of the in-plane velocity gradient is largely compensated (Huang et 
al. 1993a,b, Scarano 2002). Nevertheless, the choice of some crucial parameters is left to 
the user, most important the size of the interrogation window. According to Adrian 
(1991) the correlation window should typically contain at least 8 particle image pairs. 
Although it is well known that the seeding density and the optical and digital resolution 
can be optimized through the appropriate choice of experimental parameters (e.g. 
magnification, numerical aperture, seeding concentration, light sheet thickness), it is very 
common to encounter the situation where not all parameters can be optimized. Moreover, 
it is not uncommon that for a given experiment no such thing as a single value for the 
window size, aspect-ratio and orientation, overlap factor can be found that optimizes the 
measurement performance (i.e. minimizes the measurement uncertainty and improves the 
confidence level). It has been shown for instance (Fouras and Soria, 1998) that the 
optimum flow sampling can be well controlled by the digital interrogation process. In the 
previous chapters, adaptive techniques have been introduced to remove the unnecessary 
constraint of a uniform size of the interrogation window (cf. Chapter 3) along with the 
possibility to implement non-isotropic spatial resolution (Scarano, 2003) and optimize it 
in a robust way for stationary interfaces (cf. Chapter 4). In the above mentioned 
approaches, the optimization is based on a single pair of images, which turns out to be 
particularly critical especially for the implementation of non-isotropic (elliptical) 
windows whereby the eccentricity and orientation depend upon the spatial second 
derivatives of the velocity field and are therefore prone to error propagation. Instead, the 
mean velocity field constitutes a suitable basis for the interrogation optimization in that 
the averaging process minimizes the influence of noise by taking into account its intrinsic 
stochastic nature (Westerweel, 2000). 
Despite the difficulty of adapting the interrogation parameter to the image and flow field 
properties, the issue of obtaining an automatic (and possibly optimal) choice of the 
interrogation window is still relevant. The present study discusses the possible 
implementation in a weaker form when compared to the instantaneous approach, which is 
only based on the image and flow properties as obtained from the entire ensemble of 
recordings. Here the hypothesis is made that the measurement conditions remain 
unchanged during the recording time in such a way the information inferred from the 
ensemble will be relevant to the instantaneous pairs to a good extent. Moreover, in many 
in industrial applications such as in aeronautics, the primary interest lies in the mean 
flow.  

In the present work, the adaptive interrogation procedure is extended to include non-
uniform sampling (resulting in a variable window overlap ratio) and interrogation 
window size and geometrical aspect ratio. These parameters are adapted to the ensemble-
averaged particles image density (signal adaptivity). The adaptivity to the flow pattern is 
driven by the spatial variance and curvature of the mean velocity field. The effectiveness 
of the method is assessed with two experiments; first, a flow containing both normal 
discontinuities and a high rate of shear (shock-wave-boundary layer interaction) and 
second, a specific investigation of the flow behind a transonic airfoil performed 
simultaneously at two different resolutions to capture the momentum defect in the wake. 
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5.2 Proposed methodology 
 
The measurement of time-averaged flow properties is of high relevance in turbulent 

flows. One of the parameters of interest, often beyond measurement capabilities, is the 
rate of strain associated with the mean velocity gradient for shear flows. The mean 
velocity gradient is furthermore in direct relation with the length scale of the turbulent 
fluctuations and the production of turbulent kinetic energy (cf. equation 6.5). As recently 
discussed by Astarita (2009) the modulation effects introduced by spatial averaging pose 
a general requirement to analyze at higher resolution sheared regions (shear layers), 
discontinuities (shock waves and interfaces) or highly curved regions (e.g. vortices).  

In analogy with computational fluid dynamics (CFD) methods, the regions in the flow 
domain where the velocity field exhibits non-linear spatial variations can be considered as 
a good heuristic that indicates the regions that require grid refinement i.e. a high spatial 
resolution. The cross-correlation analysis in PIV returns in principle a spatially filtered 
measurement of the particle motion obeying the Navier-Stokes equations, with the filter 
being the interrogation area and to some extent the region in between neighbouring 
measurement points. Consequently this necessitates the need of an interrogation with 
adapted sampling locations instead of a conventional Cartesian approach.  

The current method is built on the basis of the adaptive interrogation technique 
previously proposed (Chapter 3) where the main objective is to properly distribute in 
space the interrogation windows such to maximize the spatial resolution only within the 
flow regions that require it. The main difference with the previous approach is that the 
estimate for the required spatial resolution is obtained by the spatial standard deviation of 
the average velocities instead of the instantaneous velocity field. A linear combination of 
the velocity spatial variation (local variance) and the average image source density is used 
in order to produce a single normalized distribution for the spatial sampling rate ‘ϕ’ 
(typically ϕ <<1 expressed in vectors/pixel). A 2D transformation method (valid for 
planar PIV measurements) distributes the window locations according to this sampling 
rate. Additionally, the size of the interrogation window is chosen with inverse proportion 
to the seeding density and velocity local variance.  

The adaptive interrogation performance can be further extended to incorporate non-
uniform window shape and orientation as proposed by Scarano (2003). The indicator 
function for this optimization is provided by the second spatial derivatives of the velocity 
field. However, previous attempts to apply the non-isotropic resolution on an 
instantaneous basis showed that the velocity pattern is often too complex to perform such 
an optimization, and the measurement uncertainty and confidence level do not allow a 
correct estimation of the second derivatives of the velocity field. The concern is not only 
the presence of erroneous vectors, which could be efficiently removed by data validation 
(Westerweel and Scarano, 2005) but also the measurement precision needed to evaluate 
the second derivatives, limiting the approach of instantaneous adaptivity to window size 
and distribution only. A straightforward procedure to simplify the target flow pattern and 
overcome the adaptive interrogation parameters’ sensitivity to measurement noise is to 
refer it to the time-averaged velocity vector field. This approach largely decreases the 
effect of outliers and instantaneous velocity fluctuations enhancing the overall robustness 
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of the process (Fig. 5.1) that estimates the target sampling rate ‘ϕ’, window size ‘WS’, 
window eccentricity ‘Ecc’ and window orientation ‘θ’, to tracer concentration (signal 
adaptivity) and spatial velocity variance (flow adaptation). Average correlation window 
settings and flow field are eventually obtained by averaging the ‘N’ instantaneous 
interrogation parameters and velocity fields respectively. Within the remainder of this 
chapter the notation ‘ X ’ will imply the spatial average over a single instantaneous field 
while ‘<X>’ indicates the ensemble-averaged value taken over N instantaneous fields. 

 

 
Fig. 5.1: Flow diagram of interrogation adaptation to instantaneous particle density and velocity 
pattern. A robust choice of the interrogation parameters is based on mean properties. Interrogation 
window characteristics and instantaneous velocity fields are determined for ‘N’ individual image 
couples followed by an ensemble averaging. 
 

Fig. 5.2 visually compares the application of two adaptive approaches to the case of 
the supersonic flow where a planar shock wave impinges on a solid flat wall where a 
turbulent boundary layer has fully developed. Details of the experiment are given in 
Humble et al. (2007). In Fig. 5.2-a, the instantaneous adaptivity process described in Fig. 
5.1 is illustrated. The distribution of 9000 sampling locations is obtained considering data 
averaged from 400 instantaneous sampling distributions. Instead, the situation depicted in 
Fig.5.2-b is that obtained from the adaptive sampling directly based on the ensemble-
averaged flow and image properties. The more distinct treatment of the potential flow 
regions and shocks and boundary layer in the second case is due to the fact that for 
ensemble-averaged information a higher refinement can be reliably imposed. It should be 
specified here that the region close to the wall (below the dashed red line), is refined with 
an interface-proximity-based criterion whereby the window shape and orientation are 
based on the distance from the wall and not on the velocity field (Chapter 4). This 
example already indicates the potential benefits of an ensemble-based adaptive criterion 
in terms of increased robustness. Moreover, once the initial difficulty of dealing with non-
uniform data distribution is overcome, the approach offers advantages compared to a 
structured grid analysis with uniform spacing. Firstly, the distribution of correlation 
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windows shows more conformity to the underlying flow field. Additionally, the 
implemented adaptivity may offer a computational advantage when implemented, 
considering that a similar resolution is obtained by a uniform mesh with a total of over 
30000 windows. 
 

(a) 

 

(b) 

 
Fig. 5.2: Comparison of adaptive interrogation (sampling grid shown) for a shock wave boundary 
layer interaction experiment (9000 measurement points). Sampling locations are obtained (a) as 
the average of instantaneous adaptivity (Chapter 3) (b) from ensemble adaptivity (average flow 
field is assumed to be known) 

 
The following objectives are finally put forward in the proposal of the new 

interrogation methodology; 
a) the interrogation approach must return a reliable mean velocity field with high 

resolution. 
b) the method must be robust with respect to outliers and spatial velocity variations 

especially in view of the required estimation of window shape and orientation. 
c) the spatial resolution both in terms of sample spacing and window size should be 

advantageous compared to image analyses implementing a Cartesian mesh. 
Additionally, the method could potentially give a basis for a reduction of computational 
effort considering that the calculation of cross-correlation of measurement points may be 
chosen in a more flexible manner than for the Cartesian distribution. 
 

 
Fig. 5.3: Flow diagram of interrogation adaptation to ensemble particle density and motion. 
Adaptivity criteria are based on ensemble-averages. 
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In conclusion, the ensemble adaptivity translates the adaptivity criteria proposed in 
Chapter 3 to ensemble-averaged estimates for signal and flow adaptivity as schematically 
presented in Fig. 5.3. The statistical averaging operation will reduce the influence of 
random fluctuations in the tracer density and velocity field and strongly simplify the flow 
topology, thereby enabling the use of non-isotropic interrogation windows in a reliable 
manner. This variant, however, comes with the limitation that the increase in spatial 
resolution and robustness can only be obtained for the mean flow field. As will be shown 
in the remainder, the depicted procedure moreover allows an estimation of the necessary 
number of correlation windows to properly sample the image given a pre-defined window 
overlap ratio. Once the window characteristics have been determined, these remain 
unchanged throughout the analyses of the entire image set (Fig. 5.4). To obtain an 
average velocity field, the image interrogation itself can be performed either by means of 
ensemble correlation (Meinhart et al., 2000) or by analysis of the image snapshots and 
averaging the instantaneous velocity data after applying data validation (Westerweel and 
Scarano, 2005).  

Ensemble correlation maps peak at the most occurring (and most probable) 
displacement. Accordingly, ensemble correlation offers the advantage of yielding high 
signal-to-noise ratios and high reliability in the measured mean displacement, even in 
case of poor image quality. However, only when the velocity probability distribution 
function is symmetric around the maximum, the location of the peak with highest 
amplitude will correspond to the mean displacement. Moreover, one should retain in 
mind that the ensemble correlation approach can only be used efficiently with steady 
flows or exhibiting small fluctuations. The latter is a more strict constraint than that 
imposed to the currently proposed method, which can be also applied to turbulent flows 
with temporal fluctuations of the particle displacement exceeding a particle image 
diameter. Nevertheless, also in the current method, for the window characteristics derived 
from ensemble-averaged conditions to be correlated with the flow field at the varying 
instantaneous conditions, the flows should not exhibit fluctuations larger than typically 20 
to 30%. For instance, the current approach would be adequate to treat wall-bounded 
turbulence and moderately separated flows (e.g. boundary layers, airfoils, cavities, 
slender obstructions). It is instead not appropriate in bluff-body wakes (e.g. Karman 
vortices past cylinders) or unsteady/pulsating jets, where the relative velocity fluctuations 
can attain levels of 100%. Still, the latter requirement is intended less strictly than that for 
ensemble correlation because the correlation peak is built for each individual pair of 
images. 
 

 
Fig. 5.4: Evaluation of average velocity fields for ensemble adaptive interrogation. The velocity 
field can be obtained either through ensemble correlation or by averaging the correlation of 
individual snapshots. Both approaches apply a-priori determined number of correlation windows, 
window sizes, sampling locations, eccentricity and orientation. 
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5.3 Implementation 
 

5.3.1 Adaptive sampling and window sizing 
 
The ensemble-averaged source density ‘<Sd>’ is mapped through particle segmentation 

performed on the basis of an intensity threshold criterion. Pixel intensities exceeding the 
threshold intensity ‘Ithr’ are classified as belonging to a particle image. In line with the 
work of Stitou and Riethmuller (2001), the intensity threshold is chosen from the 
ensemble-average intensity, ‘<I>’, and RMS intensity fluctuations, ‘σI’, calculated pixel 
wise;  
 

1.5thr II I σ=< > + ⋅  (5.1)
 

 
Fig. 5.5: Typical intensity histogram for a digital 8-bit PIV image (•). The dashed line assumes a 
Gaussian distribution for camera noise. The solid line is a theoretical reference (Westerweel 2000). 

 
Following the work of Westerweel (2000), a typical intensity histogram of a digital 

PIV image is shown in Fig. 5.5. The distribution is composed of thermal camera noise 
(modeled by a normal function) and a theoretical probability distribution based on 
particle images following a Gaussian intensity distribution within a light sheet with a 
Gaussian profile. For such common probability functions, the selected factor of 1.5 
ensures the probability of a pixel with a grey level intensity higher than the threshold 
defined in (5.1) to be noise always to be less than 10%. From the set of pixel intensities 
exceeding the threshold, only those constituting a spatially local maximum are considered 
as particle centroid. The segmentation takes into account image noise to be typically 
associated with low pixel intensities compared to those belonging to particle images. 
Furthermore, the correlation operation is known to be more sensitive to higher image 
intensities (Young et al., 2004), which is translated into the threshold requirement of the 
important signal to be sufficiently discernible from the surrounding intensities. According 
to Keane and Adrian (1990) a prerequisite for reliable correlation is that each 
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interrogation window should contain at least 7 particle image pairs. Because a-priori the 
loss of particle pairs due to in-plane and out-of-plane motion and partial laser beam 
overlap is unknown, a safe estimate is to consider 20 particle images to typically ensure a 
sufficient number of particle image pairs. This requirement automatically sets a lower 
limit on the local size of the correlation windows. 

To retrieve a first estimate of the average velocity field, an iterative analysis by cross-
correlation is applied on a regular grid and with uniform window size (Fig. 5.6). Window 
sizes are reduced from 81 pixels to 31 pixels in two refinement steps with the WIDIM 
algorithm (Scarano and Riethmuller, 2000) maintaining a window overlap ratio ‘WOR’ 
of 50%. The choice of initial and final interrogation size provides a sufficiently large 
velocity dynamic range while maintaining sufficient robustness. 

The second interrogation pass refines the measurement of the velocity field by 
adapting the window size, shape and distribution. The interrogation windows are 
distributed on an unstructured grid and have location and size prescribed by the outcome 
of the previous iteration. Note that the applied window characteristics are identical for 
each snapshot pair.  

 

 
Fig. 5.6: Flow chart of the implemented methodology to estimate correlation window 
characteristics. A conventional interrogation routine is followed by adaptive interrogation of each 
couple of snapshots. The adaptive routine applies window sizes, sampling location and number of 
windows based on the average seeding density and average velocity field obtained from the 
conventional iteration. 

 
5.3.2 Statistical validation 

 
To minimize the detrimental effect of vector outliers in the determination of the mean 

flow field, a robust statistical data validation is necessary (Fig. 5.4). Displacement 
outliers are characterized as strong deviations in magnitude and direction from 
neighboring values (Westerweel, 1994). The anomaly can occur both spatially and over 
the sequence of recordings. Whereas in the former the vector differs from its spatial 
surrounding neighbors, sequence deviations imply that given a specific location in space, 
the obtained displacement estimate is unlikely to occur. Spatial deviations need to be 
identified within each instantaneous velocity field while improbable deviations require a 
statistical approach based on the local velocity probability density function. 

In the current work, the procedure is based on the validation proposed by Heinz et al. 
(2002), assuming a normal probability density function for the local instantaneous 
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displacement. For each vector location ‘(x,y)’, the Gaussian variance ‘σ’ of the collection 
of instantaneous displacements ‘{U}’ is determined. Samples exceeding in absolute value 
the collection’s statistical mean ‘µ’ by three times the standard deviation are excluded. 
The routine is then repeated for each vector in the validated collection of measurements 
until convergence in ‘µ’ and ‘σ’ is reached (Fig. 5.7). By repeating the above process for 
each sampling location, the combination of statistical, validated, means yields an average 
displacement field which will serve in the determination of window characteristics and 
image deformation field. 

 

 
Fig. 5.7: Layout of iterative statistical vector validation; for a given sampling location (x,y), each 
instantaneous vector ‘Ui’ is validated by considering the statistics ‘µ’ and ‘σ’ of the collection of 
(validated) instantaneous displacement measurements at the corresponding location. 

 
5.3.3 Non-isotropic correlation 

 
The non-isotropic window characteristics are expressed through the eccentricity and 

orientation angle. In the ensemble-based adaptive approach these quantities are based on 
a pixel-wise defined displacement field ‘(<u>,<v>)’ which is obtained by re-interpolating 
the average displacement field, defined at the correlation window locations, to each pixel 
by means of e.g. bi-linear interpolation. At each new window location selected from the 
ensemble-average sampling rate ‘<ϕ>’, both eccentricity ‘<Ecc>’ and orientation ‘<θ>’ 
are derived for each displacement component from the maximum (‘Λmax’) and minimum 
eigenvalues (‘Λmin’) of the relevant Hessian matrix, ‘H’. The latter is composed of the 
second spatial derivatives ‘<u>ii’ of the ensemble-averaged velocity components. The 
involved mathematical definitions are reported in Scarano (2003) and some results are 
reported here for the horizontal displacement component in (5.2), (5.3) and (5.4) for 
clarity.  
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Second order derivatives are provided at each pixel location by means of a parabolic 
Least-Square fit on the average pixel-wise displacement field. The fitting kernel size is 
set to 11-by-11 pixels and takes into account the variable sample spacing returned by the 
adaptive interrogation routine; regions with strong velocity variations are attributed the 
highest density of correlation windows with an average spacing of around 3 pixels. The 
fitting basis, which according to the theoretical considerations of Fouras and Soria 
(1998), should involve points lying within a radius of about 2 to 3 times the grid spacing, 
corresponds to a stencil of 11 pixels for the interpolated data at pixel resolution. An upper 
limit for the window eccentricity is set to ¾ (aspect ratio 4:1) following Scarano (2003). 
Because of the inflection point in the velocity profile across a shear layer or shock, the 
second derivatives tend to zero yielding zero eccentricity and undefined value of ‘θ’. To 
bridge the zero eccentricity gap, local eccentricity and angle are replaced by the 
maximum and mean value, respectively, within their immediate vicinity, followed by a 
sliding averaging operation to force regularity in the obtained distributions. The above is 
illustrated in Fig. 5.8 for the case of a shear-layer. 

 

 
Fig. 5.8: Example of eccentricity filtering in case of a shear layer modeled by a hyperbolic 
tangent. Sampling locations are indicated by the arrows. To avoid zero eccentricity at the 
inflection point (•), local eccentricity values are substituted by the maximum within their 
immediate vicinity (□). 
 

The extent of the interrogation window along the major ‘ξ’ and minor axis ‘η’ (Fig. 
5.9) is given by  
 

Ecc1
1

S,S WW
−ξ =    and   Ecc1WW S,S −=η    with   y,Sx,SS WWW ⋅=  (5.5)

 
Fig. 5.9: Non-isotropic window by Gaussian weighting (Left) and by pixel grid rotation (Right). 

 
Conventional interrogation methodologies adopt Gaussian intensity weighting 

functions to incorporate the window non-isotropy. Here interrogation windows need to be 
enlarged in order to limit the undesired truncation effects of the weighting functions and 
consequently augment the computational requirement. The current method instead 
involves a direct reshaping and rotation of the interrogation areas (Fig. 5.9), which does 
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not require the use of intensity weighting. The intensity re-interpolation is performed by 
means of quintic B-splines (Unser et al. 1993a,b, Astarita and Cardone 2005). 

 
5.3.4 Number of correlation windows 

 
The adaptive placement of measurement points in the image offers the potential 

advantage of reducing the number of correlation windows in turn reducing the 
computational effort without overly compromising the measurement performance. The 
procedure locally associates an adequate number of correlation windows ‘NW’ to the 
ensemble-average sampling rate ‘<ϕ>’ and window size ‘<WS>’ while respecting an 
imposed mean window overlap ratio ‘ >< WOR ’ †. Currently the ratio has been set to 0.75 
to reduce errors related to image deformation and maintain a high spatial resolution. This 
choice clearly privileges the aspect of measurement performance with respect to 
computational efficiency. 

Both ‘<ϕ>’ and ‘<WS>’ are functions of the spatial coordinates. Ideally, the number of 
equidistant samples ‘Nδs’ located within a small area ‘δs’, centered on pixel coordinates 
‘(xi,yi)’ can be approximated by ‘Nδs(xi,yi)=NW⋅<ϕ>(xi,yi)⋅δs’, where ‘NW’ is the overall 
total number of windows. The area ‘δs’ is sufficiently small to assume the sampling rate 
and window size distribution locally constant. According to Stephens (1972), the 
probability density function for the distance ‘λw’ describing the distance between the 
sampling locations then equals  
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The latter ‘λm’ represents the most probable nearest neighbor distance and will serve as 
an indicator of the local sample spacing. With the simplification of equidistant samples, 
the expression for the local window overlap ratio ‘<WOR>(xi,yi)’ is given in equation 
(5.7) followed by the spatial averaged window overlap ratio ‘ >< WOR ’ in equation (5.8). 
Because the number and location of the windows is not known initially, a recursive 
operation will be needed, minimizing ‘ >< WOR ’ with respect to ‘NW’. The method to 
project the sampling locations onto the spatial domain according to a given probability 
density function has been adopted from Secord et al. (2002). 
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† Note that this estimator for ‘NW’ is not suitable in case of individual snapshots, such as in 
Chapter 3. Because of its sensitivity to irregularities in the sampling and sizing distribution, the 
number of windows would be too dominated by local displacement outliers. 
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Without loss of generality, a one dimensional example is considered in Fig. 5.10 

assuming a line interval of 300 pixels (note that for the 1D case the area ‘δs’ is also 
reduced in dimension and becomes a line segment yielding ‘λm=(δs/Nδs)’ which allows 
omitting the square root in equation 5.7 and 5.8). For each ‘NW’, windows are spatially 
distributed according to the given PDF ‘<ϕ>’ and sized following the ‘<WS>’ function 
(Fig. 5.10-a). As ‘NW’ is gradually increased, the calculated ‘ >< WOR ’ will surpass the 
imposed ratio indicating a sufficient number of samples (Fig. 5.10-b). 

 

 
(a) (b) 

Fig. 5.10: (a) Imposed sampling distribution function and window size (b) Evolution of the 
spatially averaged mean window overlap ratio >< WOR  versus the number of adopted windows. 
Sampling locations corresponding to 75.0WOR =>< are indicated by gray lines in (a). 
 
5.3.5 Adaptive image snapshot interrogation 

 
As mentioned in section 5.1 and shown in Fig. 5.4, the statistical approach requires the 

interrogation of snapshots once more using the parameters obtained from the ensemble-
average analysis. In the following more detail is given concerning the implemented 
snapshot interrogation (Fig. 5.4 and Fig. 5.6). When opted for ensemble correlation, the 
routine shown in Fig. 5.11 remains unchanged except for postponing the search for the 
correlation peak after averaging of the instantaneous correlation maps. 

Following the average spatial sampling and sizing distributions, ‘<ϕ>’ and ‘<WS>’, 
correlation windows are stretched and rotated according to the pre-determined 
eccentricity and orientation distributions, ‘<Ecc>’ and ‘<θ>’, derived from the average 
velocity field, ‘<U>’. The adopted number of correlation windows ‘NW’ follows from the 
procedure reported in the previous paragraph. To allow for instantaneous deviations ‘δU’ 
from the average velocity, the interrogation consists of two iterations with the first cycle 
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applying twice the imposed window size ‘<WS>’ while leaving the location, orientation 
and eccentricity unchanged. A normalized cross-correlation coefficient is calculated 
either in a direct manner near interfaces or by means of Fourier transforms in the bulk of 
the flow (Chapter 4). To eliminate spurious vectors, validation of the instantaneous 
displacement vectors involves a signal-to-noise threshold, a normalized median test 
(Westerweel and Scarano, 2005) and a convergence test of the corrective displacements 
‘δU’. Detected outliers are replaced by an interpolated value in function of their natural 
neighbors (Sambridge et al., 1995). The instantaneous displacement field is updated to 
allow the measurement of instantaneous deviations from the average flow field consistent 
with the concept of Reynolds decomposition into mean and fluctuating flow properties. 
The updated field is given by the initial average displacements of the previous iteration 
‘<U>’, modified by the instantaneous corrections ‘δU’ for each individual image 
recording; ‘U=<U>+δU’. The predictor field for image distortion was constructed by 
means of a linear interpolation of the filtered displacements ‘U*’ (Schrijer and Scarano, 
2008) over all the pixels from the smoothened unstructured mesh of measurement points 
using the natural neighbors (Sambridge et al., 1995).  

The average velocity field is retrieved after statistical validation of the ensemble of 
instantaneous velocity fields. 

 

 
Fig. 5.11: Flow chart of the implemented adaptive interrogation of instantaneous image recordings 
(ensemble-based adaptive approach). 

 
 

5.4 Experimental application 
 

5.4.1 Shock-wave-boundary layer interaction 
 
The performance of the proposed methodology is assessed through application on a set 

of experimental images of a shock-wave-boundary layer interaction (Humble et al., 
2007). The shock-wave-boundary layer interaction has been chosen as it represents a 
challenging test case considering the presence of strong velocity gradients and both 
spatial and temporal intermittent seeding densities. In addition, the formation of shocks 
requires a high spatial resolution and allows a thorough assessment of the proposed 
interrogation procedure. Experiments were conducted in a supersonic blow-down wind 
tunnel. A single-sided wedge with 10 degrees deflection angle was placed in the free 
stream at Mach 2.1 thus generating an oblique planar shock-wave. The latter impinges the 
fully developed turbulent boundary layer 20mm thick giving rise to a complex flow 
interaction. In total, 200 image pairs were utilized for the analysis. 
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To provide a reference, the image set is additionally analyzed by means of a 
conventional methodology based on the WIDIM algorithm (Scarano and Riethmuller, 
2000). In the current analyses, two refinement steps were imposed leading to final 
window sizes of 21 pixels with 75% window overlap. Sampling locations correspond to 
the nodes of a Cartesian grid whereby window sizes and overlap factor are applied 
globally throughout the individual recordings and image set. The ensemble of velocity 
fields is post-processed afterwards to retrieve the mean flow field (cf. paragraph 5.3.2). A 
second iteration then repeats the image interrogation taking into account window 
eccentricity and orientation determined from the average velocity field. 

In Fig. 5.12 the contours are shown of the horizontal velocity component following 
statistical adaptivity normalized with the free stream velocity. Incident shock and 
reflected shock are clearly distinguishable as well as the retarded flow within the 
boundary layer and at the interaction. The wall-adaptive image interrogation 
automatically makes a distinction between the wall region and free-stream (indicated by 
the dashed line). Near the interface, wall adaptivity (Chapter 4) will impose a larger 
number of stretched interrogation windows regardless of the seeding density. The 
adaptive interface interrogation consists of window stretching parallel to the wall while 
gradually reducing the interrogation area. 

 

 
Fig. 5.12: Shock-wave-boundary layer interaction: ensemble-averaged velocity field. Horizontal 
velocity component color contours and wall-normal velocity vector profiles. 

 
• Sampling distribution 

 
Figure 5.13 displays the spatial distribution of correlation windows as determined by 

the outcome of the process sketched in Fig. 5.3, 5.4 and Fig. 5.6. Clearly the distribution 
of interrogation windows follows the various flow features; the incoming and reflected 
shock, the expansion fan and the boundary layer. In this case, 9000 measurement points 
are included at an average window overlap ratio of 0.75 (Fig. 5.14). The strong reduction 
in sample spacing will reduce any limitation in spatial resolution inherent to coarse 
vectors spacing. Of importance is the fact that to reach the same overlap coefficient and 
spatial resolution in the shocks when adopting a structured grid, around 40000 correlation 
windows would be needed (Fig. 5.14), which typically puts the user with the trade-off 
between computational efficiency and the desired spatial resolution. 
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Fig. 5.13: Distribution of 9000 sampling locations according to statistical adaptivity. 

 

 
Fig. 5.14: Evolution of spatial averaged window overlap ratio with varying number of 
interrogation windows. 

 
• Interrogation window characteristics 

 
Besides a stretching of the correlation windows parallel to the shocks, non-isotropic 

window characterization imposes windows reduced in size to maximize the spatial 
resolution. Fig. 5.15-a depicts the eccentricity for the horizontal velocity component with 
some interrogation windows drawn at random locations. The eccentricity is clearly 
smeared across the shocks as a result of the filtering operations explained in paragraph 
5.3.3. The square window sizes of 15 pixels in the vicinity of the shock combined with a 
typical maximum eccentricity of 0.5 yields a shock normal vector spacing of around 3 
pixels. Near the wall a maximum stretching of 4 is imposed by wall adaptivity leading to 
wall-parallel window sizes of 37 pixels (Fig. 5.15-b) and 9 pixels in wall-normal 
direction.  

With the conventional WIDIM analysis, windows of 21 pixels2 were applied. When 
subjected to a second iteration including non-isotropic windows, a global window overlap 
factor of 0.75 combined with an eccentricity of 0.66 within the shock vicinity yield a 
resolution equal to that of the statistical adaptivity.  

As a result, the velocity profile along the shock-normal abscissa ‘s’ in Fig. 5.12, shows 
small differences between the following methods (Fig. 5.16): statistical adaptivity 
followed by correlation of the snapshots (‘SA-snapshot’), statistical adaptivity followed 
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by ensemble correlation of the snapshots (‘SA-ensemble’), interrogation with 
instantaneously determined adaptivity criteria (‘IA’) and the conventional technique 
(‘Conv.’) after the 1st and 2nd iteration. To avoid misunderstandings, it is stressed here 
that the ‘IA’ approach does not include non-isotropy in interrogation areas in that the 
extreme sensitivity in the determination of the optimum window eccentricity and 
orientation to velocity spatial fluctuations makes this option unmanageable.  

 

(a) 

 

(b) 

 
Fig. 5.15: (a) Correlation window eccentricity and orientation (window sizes are enlarged by 
factor 3 for readability) (b) window-size along major axis according to statistical adaptivity. 

 

 
Fig. 5.16: Shock-normal velocity profile across the incident shock-wave (un1,2

 represents the 
shock-normal velocity respectively upstream and downstream). 
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The reason for the marginal improvements is that the shock-wave was already well 
resolved within the digital recording, causing the measured shock profile to be dominated 
by the particle response as indicated by the exponential fit. The particle relaxation 
distance was estimated around 0.82mm, which is in reasonable agreement with the 
0.76mm reported by Scarano and van Oudheusden (2003). It is worth noting that as such, 
the adaptive interrogation approaches are capable of returning the same measurement 
performance as the iterative multigrid analysis after a second iteration, with the advantage 
that a user input is not required for the selection of the window size. 

 
• Wall-adaptive interrogation 

 
Presented in Fig. 5.17 are the velocity profiles within the undisturbed boundary layer 

as returned by the various interrogation approaches, expressed in inner-law variables ‘u+’ 
and ‘y+’. Velocities are transformed into equivalent velocities following the concept of 
van Driest (5.9) to account for compressibility effects.  
 

 
Fig. 5.17: Undisturbed boundary layer profile. 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

κ
⋅=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅= +

τ
− Bylog1u

U

uasin
a

Uu
e

1e
eq   with 

aw

e2

T

T1a −=   

                            with   κ=0.41   and   B=5.0 

(5.9)

 
For the current case the temperature at the edge of the boundary layer, ‘Te’, reached 152K 
while the adiabatic wall temperature, ‘Taw’, equaled 284K. The velocity at the boundary 
layer edge, ‘Ue’, was taken as 99% of the free stream velocity (525m/s). For further 
details the reader is referred to Humble et al. (2006). By zooming in on the boundary 
layer Humble et al. estimated the wall friction velocity, ‘uτ’, with sufficient reliability to 
be 19.5 m/s. 
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(a) (b) 

Fig. 5.18: Recirculation zone; streamlines and non-dimensional streamwise velocity component 
(a) Conventional (b) Statistically Adaptive interrogation approach with interface adaptivity. 

 
None of the obtained velocity profiles correspond with the theoretical functions (Fig. 

5.17) as a result of low digital resolution related to the large field of view covered 
compared to the boundary layer extension. According to Fig. 5.17 the conventional 
methodology performs worst but can slightly be improved by incorporating non-isotropy 
in window characteristics. Adaptation of the interrogation parameters to ensemble-
averaged flow and signal conditions is almost identical to instantaneous adaptation which 
is caused by the imposition of equal wall adaptivity criteria (Chapter 4) for both 
approaches.  

The improvement in wall resolution is further illustrated by observing the recirculation 
zone below the interaction region (Shapiro, 1953). While conventional image 
interrogation only hints at the presence of a separation bubble, the region of reverse flow 
becomes prominent only when applying wall adaptivity (Fig. 5.18). 
 
• Turbulence statistics 
 

Although the statistically adaptive approach is intrinsically appropriate for flows with 
only relatively small fluctuations this requirement can be partly relieved by building the 
correlation peak from individual pairs of images. In case of the shock-wave-boundary 
layer interaction, such fluctuations are limited†  and as a result comparison of the 
Reynolds shear stresses with those stemming from the conventional technique shows an 
overall very good topological agreement (Fig. 5.19). Statistical adaptivity returns slightly 
noisier stress distribution with higher amplitudes especially in the reattached boundary 
layer and incident and reflected shock foot regions. The higher stress values are to be 
attributed to an improved spatial resolution which is further attested by the resolution of 
the expansion wave.  

                                                      
† According to the results of Humble et al. (2006), maximum fluctuations in ‘u’ and ‘v’ are in the 
order of respectively 20% and 10% of the freestream velocity (i.e. approximately 2 and 1 pixels 
respectively), which is sufficiently small to be adequately measured by correlation windows of 16 
pixels in size (Fig. 5.15-b).  
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(a) 

 

(b) 

 
Fig. 5.19: Reynolds shear stress distribution obtained through (a) Conventional approach and (b) 
Ensemble-based adaptive interrogation methodology. 

 

• Potential saving in computation time 
 
Shock-normal velocity profiles and boundary layer profiles are presented for a varying 

number of correlation windows ‘NW’ in Fig. 5.20. Two hundred image recordings were 
taken into account and analyzed with statistical adaptive interrogation followed by 
ensemble correlation (Fig. 5.4). The normalized CPU time is depicted in Fig. 5.20-a. A 
linear tendency can again be observed with increasing number of correlation windows. 
Imposing 1000 correlation windows clearly causes both the incident shock and boundary 
layer to be under-resolved (Fig. 5.20-b,-c). Convergence of the results for ‘Nw’ exceeding 
5000 becomes evident as the remaining profiles superimpose nearly exactly. This result 
verifies the approach presented in paragraph 5.3.4 to be adequate in the selection of 
number of correlation windows. 

 

(a) (b) (c) 
Fig. 5.21: Partition of computational effort. Statistical adaptivity with (a) snapshot correlation (b) 
ensemble correlation (c) conventional structured image analysis (final window size of 21 pixels 
with 75% mutual overlap). 
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Inherent to the possibility of reducing the number of required correlation windows, the 
proposed ensemble adaptivity offers the potential of lowering the computation time. To 
further advocate the possible computational benefits, the partition in CPU time for a 
varying extent of image set is considered in Fig. 5.21.  

 

  
(a) (b) 

 
(c) . 

Fig. 5.20: (a) Partition of computational time for varying number of correlation windows (a) 
normalized, perpendicular velocity profile across the oblique shock-wave (c) undisturbed 
boundary layer profile in inner-law variables. 
  
The total computational time is normalized by the time necessary to analyze a single 
snapshot with the instantaneous adaptivity approach. The latter serves as a reference unit. 
The first and second iterations refer to the analysis scheme presented in Fig. 5.6. Nine 
thousand correlation windows were involved. All image analyses methodologies obey a 
linear increase in CPU time with number of images as indicated by the dashed line. Once 
the window characteristics have been determined, ensemble correlation (Fig. 5.4) yields 
the lowest computational effort (Fig. 5.21-b). The slightly higher CPU time for the 
statistical adaptivity with snapshot correlation is attributed to the statistical vector 
validation routines. Still, statistical adaptivity yields a reduction in computational time of 
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a maximum factor 1.5 compared to the instantaneous approach. The conventional 
approach leads to a doubling of the CPU time when incorporating non-isotropic window 
characteristics (Fig. 5.21-c). Keeping in mind Fig. 5.14, the computational load will 
further increase when maintaining a spatial resolution equal to that achievable with the 
adaptive metrologies. 
 
5.4.2 Transonic airfoil wake 

 
• Background 

 
When there is mixed sub- and supersonic local flow in the same flow field, transonic 

flow occurs. Transonic effects typically appear with free stream Mach numbers from 0.6 
to 1.2. When the critical Mach number is reached, the flow becomes locally sonic at a 
single point on the airfoil surface. Further increasing the free stream velocity leads to the 
appearance of shock waves. Depending on the specific geometry of the airfoil and the 
Mach number, these shocks grow in strength and progress downstream (Fig. 5.22). 
Because of this spatial variation in flow conditions and flow phenomena, transonic flows 
are computationally challenging for numerical codes. The NACA0012 profile has become 
a benchmark case in the validation of the numerical predictions with experimental data 
being airfoil lift, drag and pressure distribution.  

Apart from providing qualitative insight in the flow features through visualization, PIV 
allows the eduction of quantitative velocity data and turbulence statistics data. By making 
use of the aerodynamic governing equations, pressure and aerodynamic loads can be 
deduced from PIV data allowing the technique to be implemented for non-intrusive 
aerodynamic force characterization. This approach is appealing in that it establishes a 
direct link between flow behavior and forcing mechanisms. The method relies upon the 
application of control-volume approaches (van Oudheusden et al., 2007) and requires 
velocity and its gradients as well as the velocity second moments, which are related to 
turbulent stresses, to be accurately determined on the outer contour of the control volume. 
Given the spatial and temporal intermittency of the seeding, its coherency and the various 
flow scales involved, the last point can and will be problematic for conventional image 
analysis.  

 

 
Fig. 5.22: Schematized flow pattern over a transonic airfoil. 
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As the air passes over the airfoil, it suffers a loss of momentum (Fig. 5.22). From this 
velocity deficit the profile drag per unit span can be inferred. Generally the wake flow is 
under-resolved as it occupies only a small portion of the total field of view (see Fig. 
5.23). To extract the velocity profiles with sufficient accuracy and resolution, special 
measures during the image interrogation process are necessary.  

 
• Experimental facility 

 
The following test-case involves the wake behind a NACA-0012 airfoil with a chord 

length ‘c’ of 100mm. The model was placed at 1 degree angle of incidence within a 
transonic flow. One micron diameter DEHS droplets were introduced in the TST27 
transonic blow-down type wind tunnel of Delft University of Technology, with a free-
stream Mach number of 0.6. A Quantronix Darwin Duo Nd-YLF laser provided the 
necessary illumination with 200ns pulse duration at a repetition rate of 500Hz. The time 
separation between pulses was set to 6 micro-seconds yielding a free stream particle 
displacement of 1mm. The light sheet had a thickness of 2mm. Images were recorded by 
two Photron FastCAM SA1 CMOS with a light-sensitive sensor area of 1024×1024 
pixels. Further details regarding the experimental campaign can be found in Ragni et al. 
(2009). Fig. 5.23 presents a typical PIV recording. The black areas in the central image 
portion are shadow regions created by the partially illuminated airfoil. Along with the 
straight wind tunnel walls on the top and bottom of the image, the outlines of the circular 
porthole can be observed.  

In this experiment the measurement is performed simultaneously at two different 
values of the optical magnification, leading to a digital resolution of 6.6 pixels/mm and 
33 pixels/mm for the fields of views of 150×150mm2 (covering the entire airfoil) and of 
30×30mm2 (wake momentum defect) respectively. The availability of image recordings at 
different optical resolution was a unique opportunity to validate the present method in 
terms of attainable spatial resolution and compare it to the other approaches. 

 

 
Fig. 5.23: Instantaneous PIV image of the airfoil with indicated field of views (Ashok et al., 
2008). 

 



140 Statistical adaptivity in PIV interrogation 

• Image evaluation and flow diagnostics 
 
The inherent difference in adopted interrogation parameters by the conventional 

approach and statistically adaptive technique is illustrated in Fig. 5.24 for the cropped 
region shown in Fig.5.23. The conventional technique applies square correlation windows 
of 25 pixels. In the ensemble-based adaptive technique the interrogation windows are 
sized, shaped and rotated. Large variations in the eccentricity are needed crossing the 
wake region due to the large curvature of the velocity profile. The interrogation windows 
are stretched and oriented approximately parallel to the airfoil chord to increase wall-
normal resolution. As a result, the velocity profile in the boundary layer measured by the 
adaptive technique already shows a fuller shape, expected for the flow around this type of 
airfoil whereas the conventional method tends to over-estimate the momentum defect in 
the boundary layer. Besides the evident discrepancy in wake profile at the trailing edge, 
ensemble-based adaptivity yields wake profiles with a more clear momentum defect as 
opposed to the conventional approach when the large field of view is considered.  

 

(a) 

 

(b) 

 
Fig. 5.24: Velocity profiles (5 grid units ≈ 125m/s) and interrogation windows adopted by (a) 
conventional interrogation technique (WS=25pixels) and (b) statistically adaptive interrogation. 
The field of view corresponds to the cropped area shown in Fig. 5.23. 
 
The achievable improvement in spatial resolution when the adaptivity criteria are based 
on statistical estimators is quantified in Fig. 5.25. Normalized axial velocity profiles (with 
free stream velocity ‘U∞’) obtained from the small field of view in the wake are displayed 
for reference. At such high resolution, the wake zoom recordings analyzed with statistical 
adaptivity and the conventional interrogation technique only differ marginally, indicating 
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that the velocity profile can be well captured by the available optical resolution. Instead, a 
marked difference can be observed among the data obtained using the large field of view. 
In this case the conventional interrogation largely underestimates the momentum defect 
whereas the ensemble adaptive analysis closely follows the reference data except for the 
first profile closest to the trailing edge. The instantaneous adaptivity slightly outperforms 
the conventional approach as a result of the adaptive window sizing and distribution 
criteria but the error level remains unacceptably high. It is worth mentioning that the 
application of non-isotropic windows on the instantaneous images did not return reliable 
results with unrealistic distribution of the window eccentricity and orientation. 
 

 
Fig. 5.25: Comparison of wake velocity profiles at several downstream distances ‘x’ from the 
trailing edge obtained by different interrogation methodologies; ‘SA’ statistical adaptivity, ‘IA’ 
instantaneous adaptivity, ‘Conv.’ conventional approach with windows of 25 pixels. 

 
The wake velocity deficit ‘U0’ along the wake axis gradually decreases with 

downstream distance from the airfoil trailing edge while the wake width increases. Fig. 
5.26-a depicts the evolution of the non-dimensional maximum velocity defect in the wake 
with downstream distance. Values are extracted from the zoomed wake measurements. 
The analytical function for a flat plate wake proposed by Weygandt and Mehta (1989) is 
plotted for comparison. For all downstream distances beyond 0.014 chord lengths, the 
statistical ensemble –based approach yields displacement estimates which agree with the 
reference data within 5% uncertainty for the large field of view (Fig. 5.26-b). The large 
differences near the airfoil between velocity profiles of the two fields of view are mainly 
ascribed to the correlation windows’ transversal size and partly to their length along the 
streamwise coordinate; near the wake origin the sharp (negative) velocity peak leads to 
underestimate of the momentum deficit. As the gradient reduces in strength with 
downstream distance, so does the error in the wake and the estimation of the momentum 
defect to infer the airfoil viscous drag.  
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(a) (b) 
Fig. 5.26: Evolution of the velocity deficit amplitude in the wake with downstream distance (a) 
obtained from the zoomed field of view (measurements are under-sampled by a factor 8 for 
readability) (b) obtained from the large field of view (under-sampling by a factor 3 for clarity). 
 
5.5 Conclusions 
 

A variant of the spatially adaptive interrogation method has been proposed that 
increases the robustness of the previously introduced technique based on individual 
snapshots such to enable non-isotropic resolution in the interrogation method. The 
method that refines window size, shape/orientation and spatial distribution on the 
ensemble-averaged velocity field and image properties has been investigated and its 
performances directly assessed by experiments. The use of ensemble-averaged properties 
enables the reliable application of non-isotropic resolution in contrast to the instantaneous 
adaptive approach where the latter was impracticable. The procedure requires a first-
guess average velocity field obtained by means of a conventional cross-correlation 
analysis. A second pass refines the window spatial distribution and size and shape. This 
approach allows to reduce the number of interrogation windows without overly 
compromising the measurement spatial resolution where needed. 

Application to a shock-wave-boundary layer interaction flow demonstrates that the 
method correctly selects the regions where most measurement points need to be 
concentrated. A higher refinement ratio with respect to the instantaneous adaptivity is 
obtained. A dual-resolution experiment in the wake behind a transonic airfoil 
demonstrates that the spatial resolution across sheared regions is actually increased by the 
ensemble-based adaptivity technique, returning a momentum defect measurement in good 
agreement with reference data obtained in fully resolved conditions.  
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CHAPTER 6 
 
 
 
 
EXPERIMENTAL ASSESSMENT OF ADAPTIVE PIV 

INTERROGATION 
 
 
 

Abstract 
 

In this chapter the adaptive interrogation principle is illustrated and its applicability assessed 
over three experimental cases; the backward facing step, the hypersonic flow over a sphere and an 
over-expanded supersonic jet. Rather than concentrating on specific bottlenecks, each of the cases 
offers a combination of processing difficulties allowing the assessment of adaptive interrogation 
as a whole.  

Adaptivity is categorically demonstrated to be a consistent improvement over conventional 
uniform interrogation in terms of spatial resolution, computational efficiency and limited user 
input.  

 
 

Nomenclature 
 
γ specific-heat ratio 
∆ shock stand-off distance (pixels or meter) 
θ shock angle (radians) 
ν kinematic viscosity (m2/s) 
τp particle relaxation time (seconds) 
τw wall shear stress (Pascal) 
ae exit speed of sound (m/s) 
C seeding concentration (particles per pixel2) 
Cf wall friction coefficient 
D tunnel diameter (meter or pixels) 
Dnoz nozzle exit diameter (meter or pixels) 
Dthr throat diameter (meter or pixels) 
ER channel expansion ratio 
h step height (meter or pixels) 
H channel height (meter or pixels) 
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IA Instantaneous Adaptivity 
M∞ freestream Mach number 
Me exit Mach number 
P turbulent kinetic energy production (m2/s3) 
R sphere radius / gas constant (meter or pixels / J⋅kg-1⋅K-1) 
Rc shock radius of curvature (pixels or meter) 
SA Statistical Adaptivity 
T static temperature (Kelvin) 
Tt total temperature (Kelvin) 
u’, v’ fluctuating velocity component (m/s or pixels) 
un shock-normal velocity (pixels or m/s) 
un1,2 shock-normal velocity before, after the shock (pixels or m/s) 
U∞ freestream velocity (m/s or pixels) 
WS correlation window size (pixels) 
xr reattachment length (pixels or meter) 
<X> ensemble average of variable X 
 
 
6.1 Introduction 
 

The previous chapters all focused on isolated problems in PIV image interrogation. 
Chapter 4 introduced the concept of adaptivity and applications involved mainly free 
flows without wall restrictions. The presence of interfaces was dealt with in chapter 5 
whereas adaptivity in case of large data sets was topic in chapter 6.  

In the following three experimental flow cases are considered to further illustrate the 
principle of adaptive interrogation parameters and to assess the viability of the proposed 
methodology; a sphere submerged in a hypersonic Mach 6 flow, a subsonic backward 
facing step at Reh≈5000 and an over-expanded supersonic jet at Mach 3.75. Each of these 
cases poses different combinations of processing difficulties; the single snapshot of the 
sphere contains a curved interface with strong gradients in both seeding density and flow 
velocity, image recordings of the homogenously seeded backward-facing step contain a 
variety in turbulent length scales with a simultaneous presence of an interface, the 
collection of supersonic jet images contain besides temporal and spatial variations in 
seeding density strong spatial gradients in velocity and non-homogeneity in image 
intensity. Given the generality of the experimental images considered and their associated 
difficulties, they are ideal to open the discussion on the performance of adaptive 
interrogation. Besides presenting the obtained velocity distributions, a more profound 
analysis is performed with the aim of extracting and evaluating those quantities typically 
of interest to the user performing such experiments. A short discussion on the 
performances and weaker points of adaptivity finalize the chapter. 
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6.2 Hypersonic sphere 
 

6.2.1 Background 
 

Because of the short testing times, typically in the order of milliseconds, short-time-
duration facilities present experimental challenges because of the strong spatial and 
temporal gradients. PIV is ideally suited in such conditions by virtue of its capability to 
perform instantaneous and multi-component measurements of the velocity field.  

 
Fig. 6.1: Hypersonic flow over a sphere. The dashed area indicates the subsonic regime. 

 
Its simplistic geometry has made the sphere very attractive in the validation of 

numerical codes. A sphere submerged in a high enthalpy flow is characterized by the 
formation of a curved bow shock (Fig. 6.1). Between this detached wave and the sphere’s 
surface the flow attains subsonic, transonic and supersonic regimes. On the symmetry 
axis the flow is decelerated through a locally normal shock wave and then decelerates 
further in the subsonic flow region up to the stagnation point. Along the sphere’s 
circumference the flow is accelerated and a boundary layer is formed. The subsequent 
strong spatial gradients in velocity and seeding density combined with the sharp velocity 
profile across the shock pose a challenge for the analysis of this type of recordings 
(Havermann et al., 2002). 
 
6.2.2 Experimental facility 
 

Experiments were conducted in the short-time-duration shock tunnel at the French-
German Research Institute of Saint-Louis (ISL). An intricate sequence of shock wave 
reflections pressurizes heated gas which is expanded in a convergent-divergent nozzle to 
supersonic velocities. Test times are in the order of two milliseconds during which the 
flow remains stationary. Further details on the ISL facility can be found in Haertig et al. 
(2002). 

A sphere of 120mm in diameter was placed in a uniform flow of 1780m/s 
corresponding with a Mach number ‘M∞’ of 6. Al2O3 particles acted as seeding in the PIV 
experiments. An Nd:Yag double-pulse laser provided the short illumination pulses with a 
separation time of 400 nano-seconds. Images were recorded by a sharpVISION 1300 DE 
camera. A field of view of 111×89mm2 was covered by an area of 1280×1024pixels2 
yielding a recording resolution of 86.8µm/pixel (Haertig et al., 2005). A PIV snapshot is 
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shown in Fig. 6.2-a. The prominent detached bow shock stands out due to the significant 
gradient in particle concentration. The highest seeding density is achieved near the 
stagnation region and gradually decreases towards the meridian in accordance with the 
flow density. Shock theory predicts a density ratio in the order of 5 between upstream and 
downstream conditions while concentration estimates based on particle detection yield a 
ratio of 3 (Fig. 6.2-e). Particle segmentation criteria mentioned in Chapter 3 did on the 
other hand intend to single out only those tracer images with importance to the correlation 
result rather than accurately retrieving seeding concentration estimates.  

 
6.2.3 Image evaluation 

 
The contour plot of the streamwise velocity component is depicted in Fig. 6.2-b 

obtained from the analysis of a single snapshot (Fig. 6.2-a) with the adaptive interrogation 
procedure. Prior to the correlation operation a background removal sequence was 
performed by means of a minimum intensity filter. Within a moving window of 
13×13pixels² in size, the minimum intensities were subtracted from the original image. 
Subsonic and supersonic flow regimes are readily distinguishable as blue and red/green 
colored zones as well as the sphere’s boundary layer. Patches of higher velocity are 
present in the freestream which correspond to poorer image quality and tend to appear 
also with more conventional analyses (Scarano and Haertig, 2003). In total, 10000 
correlation windows sampled the velocity field with a minimal nearest neighbor distance 
of 2 pixels. Highest resolutions are desirable across the shockwave and close to the 
surface of the sphere which from the point of sample spacing is clearly achieved when 
observing the sampling rate depicted in Fig. 6.2-c. Simultaneously, elongated windows 
are applied near the sphere’s surface aligned with its contours and sizes are reduced in the 
vicinity of the shock (Fig. 6.2-d). The free stream contains because of its low turbulence 
intensity large flow structures sufficing a few correlation points for adequate sampling. 
Figures 6.2-e and -f further explain the selection of sampling location; velocity variance 
imposes a higher sampling rate across the shock and interface with fewer points 
downstream of the shock and none upstream while seeding adaptivity forces the majority 
of points to be placed downstream of the detached shock. A clear contrast is visible 
between applied window sizes upstream and downstream of the shock. Flow regimes 
behind the shock span both sub- and supersonic requiring a denser sampling and reduced 
window sizes to cope with the smaller flow scales. Additionally, for typical concentration 
estimates of 0.06ppp and 0.03ppp downstream and upstream of the shock respectively, 
imposing at least 21 particle images per interrogation window yields basic correlation 
windows of around 1.6mm (≈19pixels) and 2.3mm (≈26pixels). Given the sphere’s radius 
of 60mm this is in agreement with the window sizes presented in Fig. 6.2-d 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 6.2: Adaptive interrogation of the Mach 6 flow around a sphere (a) PIV snapshot (b) 
streamwise velocity distribution. The dashed line shows the predicted shock position according to 
Billig (1967) (c) spatial distribution of correlation windows (d) applied window sizes (in vicinity 
of the sphere ‘WS’ indicates the window size aligned with the sphere’s surface) (e) measured 
particle concentration (f) probability density function based on velocity variance. 
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6.2.4 Flow diagnostics 
 
In addition to window size and velocity contours, the theoretical shock-wave shape 

according to Billig (1967) has been plotted in Fig. 6.2-b and -d and shows good 
agreement with the measured gradient in velocity. The correlations for normal shock 
standoff distance ‘∆’ and (x,y) coordinates of the shock in function of freestream Mach 
number ‘M∞’ and sphere radius ‘R’ are given by Billig (1967); 
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where the Mach angle ‘θ’ and vertex radius of curvature ‘Rc’ are defined as 
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For the present case this yields a standoff distance of 9.4mm (≈108 pixels), a Mach angle 
of 9.6 degrees and a radius of curvature of 74.2mm (≈856.4 pixels). 

A quantitative comparison is made with the conventional metrology adopting a 
structured sampling (cf. Chapter 2) with window sizes of 25 and 33 pixels and an overlap 
coefficient of 0.75. Velocity profiles are extracted across the shock at the locations 
indicated in Fig. 6.2-b where shock-wave positions were determined from (6.1) and (6.2). 
Profile 1 follows the stagnation streamline evidenced by the absence of a vertical 
displacement component (Fig. 6.3-a). While the velocity upstream of the shock ‘un1’ has 
been measured, the standoff distance is too small for the flow to reach the theoretical 
velocity ‘un2’ downstream of the normal shock. The velocity behind the normal shock is 
instead estimated from the isentropic shock relations; 
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Based on these profiles of the shock-normal velocities, particle relaxation times have 
been estimated to be around 2.28mm (1.82µs), the calculation procedure of which is 
recapitulated in Appendix B. This value agrees well with the theoretical 2.1mm reported 
by Havermann et al. (2002). Comparison with their estimated 1.8mm reveals an enhanced 
spatial response. The negligible difference between the different analysis methods hints 
that for the present case the measurement accuracy is limited by the particle tracers’ 
relaxation lengths. Converted into pixel units, the estimated particle relaxation length 
needed for the particle velocity to reach 50% of the downstream velocity equals around 
40 pixels. Because of this considerable shock thickness, no improvements in shock 
resolution are to be expected when adopting window sizes below this limit value. A more 
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thorough elaboration is incorporated in Appendix B. Nevertheless, the adaptive 
interrogation methodology offers an important benefit in that it requires no user expertise 
and is able to provide identical results while offering a reduction in number of windows 
by respectively a factor 3 and 2 compared to the conventional approach. 

 

 
(a) (b) 

Fig. 6.3: Shock-wave normal velocity profiles (a) Profile 1 (b) Profile 2 (cf. Fig. 6.2-b). 
 

 
(a) (b) 

Fig. 6.4: Streamline pattern near stagnation point (a) adaptive interrogation (b) conventional 
interrogation with window sizes of 25×25 pixels2. 
 

Figure 6.4 qualitatively displays the achievable gain of the adaptive interface treatment 
by comparing the streamline patterns near the stagnation point retrieved by adaptive 
interrogation and the conventional structured methodology adopting window sizes of 
25×25 pixels2. In both cases the stagnation line can be traced. The pattern calculated from 
conventional data lacks however vertical symmetry in the immediate vicinity of the 
stagnation point. Streamline anomalies are clearly present caused by erroneous 
displacement estimates, especially near the interface. Streamlines based on image 
analysis utilizing self-adapted interrogation parameters on the other hand show a certain 
degree of smoothness and vertical symmetry. Moreover, close to the interface the 
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calculated trajectories are tangent to the sphere’s surface as to be expected from the no-
slip condition. Ipso facto, adaptive interrogation with the incorporation of interface 
treatment is preferential in the retrieval of the boundary layer around the curved surface. 
 
 
6.3 Backward facing step flow 

 
6.3.1 Background 
 

Turbulent flow over a backward facing step is a widely used benchmark problem to 
evaluate the performance of turbulence models in the numerical prediction of separated 
flows. The flow over a backward-facing step has emerged as a prototype of a non-trivial yet 
simple geometry in which to examine the onset of turbulence as it embodies several 
important aspects of turbulent flow; separation, recirculation and reattachment. 
Statistically, a large recirculation region appears below the shear layer. Depending on the 
Reynolds number based on the step height and channel expansion ratio, a smaller 
recirculation zone is located near the step corner. As a result of Kelvin-Helmholtz 
instabilities, the shear layer emanating from the step edge breaks down into eddy 
structures and reattaches to the wall, downstream of which the boundary layer develops 
(Fig. 6.5-a). From the mean flow phenomena the obvious problematic appears of accurate 
representation of the shear layer because of the strong gradients in velocity which 
deteriorate the correlation quality. 

 

 

(a) (b) 
Fig. 6.5: Backward facing step for step height based Reynolds number of around 5000 (a) mean 
velocity field with stream lines (b) instantaneous PIV recording (contrast enhanced for clarity). 

 
From an instantaneous point of view, the above phenomena can not be observed. The 

instantaneous flow fields are characterized by the formation, roll-up and shedding of 
spanwise vortical structures in the separated shear layer. Mainly these structures are 
responsible for growth of the shear layer and momentum transfer as indicated by the 
peaks in production of turbulent kinetic energy (Kostas et al. 2002, Scarano and 
Riethmuller 1999). The vortices are convected across the shear layer downstream and 
grow in size via pairing interactions (Schram et al., 2004). The imposed, globally 
uniform, interrogation parameters are thus not necessarily conform to the instantaneous 
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flow variations and a general optimization of the analysis is needed. Characterization of 
turbulence furthermore requires accurate displacement measurements (Christensen, 
2004), a minimization of the modulation factor inherent to cross-correlation (Piirto et al., 
2003) and a high spatial resolution. The higher the resolution, the smaller the turbulent 
scales taken into consideration and the more realistic the flow estimates. The latter is 
especially important in the determination of turbulent quantities such as e.g. energy 
dissipation, kinetic energy production, etc. (Baldi and Yianneskis, 2004). While large 
correlation windows ensure robustness, the latter requirement translates into reduced 
window sizes. In that perspective, the ratio between size of the sensing domain and 
relevant flow scale i.e. the Kolmogorov scale should ideally not exceed unity. 
Simultaneously, this poses stringent requirements on the tracer spacing which ultimately 
determines the lower resolution limit.  

Last but not least, the backward facing step has a strong three-dimensional character 
which translates into convection of seeding in spanwise direction. PIV experiments 
consisting of a single camera will suffer from degradation of the results as a result of out-
of-plane motion. Moreover, capturing the reattachment point while maintaining a 
sufficiently large physical sensing domain imposes stringent requirements on the 
interrogation methodology not to mention the apparent image aberrations and velocity 
gradients near the wall (Fig. 6.5-b). 
 
6.3.2 Experimental facility 
 

The backward facing step geometry was created by an expansion of the main channel 
by a factor ‘ER=(H+h)/H’ of 1.2. The symbol ‘H’ refers to the height of the windtunnel 
section (10cm) upstream of the step with height ‘h=2cm’. A turbulent boundary layer was 
triggered upstream of the step with a thickness of 1.2⋅h visible from the velocity profile 
extracted a half step height upstream of the sudden expansion (Fig. 6.7-a). A freestream 
velocity of 3.75m/s and 2cm step height yielded at ambient temperature (ν=1.52×10-5 
m2/s) a nominal Reynolds number ‘Reh=U∞⋅h/ν’ of around 5000. 

The air flow was seeded by silicon oil droplets of 1µm diameter in average. A classical 
optical arrangement consisting of a cylindrical and spherical converging lens transformed 
the light beam emanated by a double pulsed Nd:Yag laser into a thin light sheet about 
1mm thick. Images focused in the test-section’s mid-plane were captured by a 12bit PCO 
Sensicam (1280×1024 pixels2) at an acquisition frequency of 5Hz. With an image 
separation time of 165µs and calibration factor of ≈78⋅10-3 mm/pixels maximum tracer 
displacements were set to orders of magnitude of 8 pixels. To allow a statistical analysis 
the image set consisted of 320 snapshot. An exemplary instantaneous snapshot is 
illustrated in Fig. 6.5-b. 
 
6.3.3 Image evaluation 
 

The ensemble average over 320 instantaneous interrogation locations is depicted in 
Fig. 6.6-a along with the sampling locations as predicted by statistical adaptivity in Fig. 
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6.6-b. The dense meshes stemming from wall adaptivity are clearly visible in both 
approaches. Although instantaneous adaptivity imposes a slightly elevated sampling 
density in the separated shear layer, the degree of clustering with respect to the freestream 
and region of secondary recirculation near the step base is more pronounced in the 
statistical approach (Table 6.1). Given the low levels in longitudinal and transversal 
velocity fluctuations near the step base and freestream the second interrogation mesh 
(Fig. 6.6-b) can be considered to be more appropriate. With exception of some isolated 
patches in the undisturbed boundary layer, an adopted instantaneous sampling rate (Fig. 
6.6-c) shows a high degree of similarity with the statistically adaptive version (Table 6.1). 
Considering the homogeneity in seeding density, the distribution of correlation windows 
is dominated by velocity variance. The latter is confirmed when visually comparing the 
projected window locations with the probability density functions in spatial velocity 
variance (Fig. 6.6-c vs. -e and Fig. 6.6-b vs. -f). Notice how the velocity variance in case 
of statistical adaptivity is a smoothened version of the instantaneous data field. 

Both figures 6.6-a and -b show the squared window sizes (‘WS=WSx
½⋅WSy

½’) 
normalized by the step height at random locations. Adaptivity automatically sets a 
dynamic range in interrogation window dimensions with reduced sizes in the separated 
shear layer and increased sizes in the freestream and secondary recirculation near the 
bottom of the step corner. Near the interface, non-isotropic correlation windows are 
applied with reduced wall-normal extents (Fig. 6.6-g) and maximum eccentricity factors 
of 0.75 yielding a maximum stretching factor of 4. Typical window sizes are one to two 
orders of magnitude smaller with respect to the step height. A quantitative comparison 
between the squared window sizes utilized in instantaneous and statistical adaptivity 
reveals an overall size ratio of ~1.7. This discrepancy is related to the methodologies 
fundamental difference in quantifying the signal density†. With instantaneous adaptivity 
spatial variations in intensity prescribe the particle identification while in statistical 
adaptivity temporal fluctuations are key factor. Even though the corresponding 
probability distributions are nearly identical, intensities categorized as spatially local 
maxima at a particular time instant do not necessarily constitute temporal maxima. 
Consequently, the signal quantization philosophies yield different seeding concentration 
estimates as illustrated by Fig. 6.6-d. Statistical adaptivity partially compensates the 
inherent loss in spatial resolution due to enlarged window sizes by incorporating window 
non-isotropy (Fig. 6.6-g). Window eccentricity and re-orientation is applied in flow areas 
with strong spatial gradients in mean velocity, i.e. the separated shear layer (Fig. 6.6-h), 
while square windows are applied in the free stream. 

 
 

                                                      
† Subsequent image recordings are non-correlated since the acquisition rate of 5Hz is one order of 
magnitude smaller than the frequency based on the characteristic time scale ‘(h/U∞)-1=187.5Hz’. 
Accordingly, particle motion has no influence in the statistically determined intensity threshold for 
particle image identification (cf. section 5.3.1). 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Fig. 6.6: Backward facing step (Reh≈5000). Interrogation mesh and squared window sizes (a) 
ensemble averaged instantaneous adaptivity (b) statistical adaptivity (c) instantaneous sampling 
grid (d) ratio in concentration estimates from instantaneous adaptivity (ensemble averaged) and 
statistical adaptivity. PDF in velocity variance (e) instantaneous (f) statistical adaptivity. (g) 
Contour of eccentricity and sampled window orientation in horizontal velocity component (scaled 
window sizes by factor 3 for clarity). (h) Flow topology measured with statistical adaptivity.  
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Table 6.1 recapitulates the discussed interrogation parameters in different flow areas 
adopted by the image analysis methodologies considered. The mean flow topology of the 
separated region from the statistical technique is illustrated in Fig. 6.6-h. The main 
recirculation originating from the separation point at the step edge and the secondary 
recirculation in the bottom corner of the step are visible. 
 
Table 6.1: Approximate adopted interrogation parameters normalized by step height (correlation 
window size ‘WS’ and sample spacing ‘λw’) in Instantaneous Adaptivity (IA), the ensemble 
average (<IA>), Statistical Adaptivity (SA) and a conventional approach (Conv.) with final 
correlation windows of 17 pixels and 75% window overlap.  
 

  WS/h (×10-2) λw/h (×10-2) 
  IA <IA> SA Conv. IA <IA> SA Conv. 

Freestream  7.3 7.3 10 6.6 17 6.4 21 1.9 
x/h<1 5 5 16.2×4 6.6 1.7 2.4 1.7 1.9 

Shear layer x/h>1 5 5 11×6 6.6 2.9 2.7 2.7 1.9 
Wall region  9.9×4.9 9.9×4.9 14.1×7 6.6 1.1 1.1 1.1 1.9 

 
Besides the two adaptive approaches, the image set was analyzed by the conventional 

interrogation technique discussed in Chapter 2 for different spatial resolution. Square 
window sizes of 17 and 33 pixels (WS/h≈0.066 and WS/h≈0.13) were utilized yielding for 
a constant window overlap ratio of around 0.7 a vector spacing of 5 and 9 pixels 
respectively. It is worthy of notice that while the adaptive analyses involved 8000 
correlation windows, the uniform approach utilized 32000 and 10000 windows 
respectively. The reduction in necessary correlation operations while maintaining, if not 
improving, performances emphasizes the possible computational advantage offered by 
adaptivity. 

 
6.3.4 Flow diagnostics 
 
• Velocity and vorticity profiles 
 

Velocity profiles in mean streamwise component at different locations downstream of 
the step are presented in Fig. 6.7-a. The profile extracted at ‘x/h=-0.5’ attests a boundary 
layer thickness or approximately 1.2 step heights. For abscissae exceeding one step height 
transversal gradients have become visibly smaller (Fig. 6.6-h). Given the comparable 
sampling resolution in terms of window sizes and vector spacing, differences between 
interrogation techniques will thus become negligible. Closer towards the step edge, the 
strongest velocity gradients are encountered. Because of slight reduction in vector 
spacing and correlation window size in the direction normal to the mean flow, statistical 
adaptivity yields marginally higher velocity gradients followed by instantaneous 
adaptivity (Fig. 6.7-b). The effects of enlarged interrogation areas and vector spacing are 
evidenced by the appreciable reduction in measurable gradient when applying window 
sizes of 33 pixels (WS/h≈0.13). The discrepancy between the numerical results obtained 
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by Le et al. (1997) and PIV results stem from variations in inlet conditions (according to 
Piirto et al., 2003). In effect, observing the data extractions at ‘x/h=0.5’ measured profiles 
are “fuller” with respect to their numerical counterpart, indicating a more developed 
turbulent boundary layer. According to Isomoto and Honami (1989) this explains the 
observed shortened reattachment length. 

 

 
(a) (b) 

Fig. 6.7: (a) Mean streamwise normalized velocity component measured with different 
interrogation methodologies at various abscissae (b) Normalized mean transversal gradient in 
streamwise velocity at different downstream locations. 
 
• Skin friction coefficient 
 

The distribution of the measured skin friction coefficient, which has been derived from 
the ensemble average flow fields using (6.4), is plotted in Fig. 6.8-a against the direct 
numerical simulation of Le et al. 1997) and BFS-related PIV experiments of Jovic and 
Driver (1994). The velocity gradient was evaluated by linear fitting through the two 
lowest positions in the measurement grid. The mean reattachment location for the current 
PIV measurements has been estimated at 5.4 step heights†. This estimate is lower 
compared to other values found in literature for reasons explained above but remains 
within the limits ‘4.86≤ xr≤ 7.86’ reported by Le et al. (1997). 
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† Because the PIV field of view did not cover the reattachment location (see Fig. 6.6-h), the 
reattachment length was estimated on the basis of the evolution in skin friction factor. The 
proposed estimate for ‘xr’ resulted in the best agreement between the reference evolutions (Le et 
al. 1997 and Jovic and Driver 1994) and the present PIV measurement analyses. 



156 Experimental assessment of adaptive PIV interrogation 

Small positive values of ‘Cf’ close to the step indicate the presence of the corner eddy 
while the negative values refer to the main recirculation bubble. The minimum friction 
coefficient is typically located around ‘x/xr≈0.6’. Conventional metrologies clearly 
underestimate the trough value with errors in function of the applied wall-normal window 
size. This problem of insufficient spatial resolution in the measurement of velocity 
gradients at the wall has been successfully addressed by implementing wall adaptivity (cf. 
Chapter 4). Friction coefficients measured by adaptive metrologies are in good agreement 
with reference values. The marginally higher coefficient measured with instantaneous 
adaptivity is attributed to the slightly lower wall-normal correlation window extents 
(Table 6.1). 
 

 
(a) (b) 

Fig. 6.8: (a) Distribution of wall friction coefficient (data is undersampled for readability). (b) 
Evolution of the normalized turbulent kinetic energy production extracted at ’y/h=1’ with 
downstream distance. Solid lines serve as mere indication and are determined from low order 
spline fitting. 
 
• Turbulent kinetic energy production 
 

Figure 6.8-b reports the turbulent kinetic energy production defined in (6.5) along 
‘y/h=1’. Despite significant data scatter†, general tendencies are visible and permit an 
assessment of the interrogation routines’ proficiency in turbulence characterization. The 
main part of the energy production occurs in a region situated along the mean stream 
separation streamline (Kostas et al., 2002). Arguing that according to Fig. 6.4-h the latter 

                                                      
† The scatter is believed to be the result of the uncertainty in the estimation of the statistical 
quantities. According to Benedict and Gould (1996) the fractional error in 'u'u  at a 95% 
confidence level is related to the number of flow fields ‘N’ by ~2.77⋅N-½. If this error is used as a 
mere indicator for the relative error in P, errors easily in excess of 15% (N=320) can be expected. 
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has descended by less than 10% of the step height at ‘x/h=2’, the extraction at ‘y/h=1’ 
will serve the current purpose. Large velocity gradients occur close to the step edge and 
cause the maximum production to be localized within the shear layer extending from 
‘x≈h’ to ‘x≈2h’. Beyond, the turbulent kinetic energy production decreases to a rather 
uniform level. This is in accordance with Fig. 6.8-b.  
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Results obtained by the conventional techniques confirm the tendency of a drop in peak 
amplitude in estimated turbulence production with decreasing spatial resolution (Piirto et 
al., 2003). For ‘x/h>>1’ the interrogation parameters with signal and flow dependency 
were reported to be nearly identical to those imposed by the conventional technique 
applying correlation window sizes of 17 pixels. This explains why the production 
estimates in those areas are nearly identical for the three analyses (Table 6.1). However, 
near the step edge where velocity gradients are largest, the ability to measure a higher 
energy production emphasizes the relaxation of the limits on spatial resolution by the 
adaptive metrologies and in particular the statistical adaptive technique. The ability of this 
technique to measure the small fluctuations despite a solid foundation in ensemble 
averaging is attributed to the implemented interrogation routine (cf. Fig. 5.4); the mean 
flow field serves as a first estimate for image distortion after which images are re-
interrogated to accommodate for small deviations from this average.  
 
 
6.4 Over-expanded supersonic jet 

 
6.4.1 Background 
 

The term over-expanded is referred to when the pressure within the exit nozzle is 
lower compared to the outer atmospheric pressure. To equate this pressure difference 
between exhaust and atmosphere the flow is subjected to a sequence of contractions and 
expansion (Norman and Winkler, 1985). The method by which the flow accomplishes 
these compressions and expansions is through different kinds of waves that form the basis 
of supersonic fluid dynamics. Among these types of waves are oblique and normal shock 
waves, Prandtl-Meyer expansion and compression waves (Fig. 6.9-a). 

                                                      
† Under the assumption of dealing with an ergodic process, the ensemble average ‘<X>’ will be 
equivalent to the time average ‘ X ’ taken over a sufficiently long time interval. The time interval 
is such that it contains a great number of characteristic time-scales and hence statistically 
independent measurements (see also Chapter 7). 
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The PIV recording of a supersonic over-expanded jet flow issuing from a conical 
nozzle at Mach 3.75 is presented in Fig. 6.9-b (Jerónimo et al., 2002). The first normal 
shock (Mach disk) is discernable by the variation in density. Outside of the characteristic 
shock cell pattern of the over-expanded jet, less seeding is present, giving rise to 
distinctive differences in image intensity. The large flow rates in supersonic flows involve 
significant seeding quantities in a flow field that is subjected to large displacement 
gradients across shocks and expansions. Therefore uniform seeding concentrations of 
good quality are very difficult to obtain as can be verified from Fig. 6.9-b. The presence 
of both inhomogeneous seeding concentrations and the rapid change in flow scales across 
the displacement discontinuities, make that supersonic flows are challenging for the 
viability of PIV interrogation routines. 

 

 
(a) 

 
(b) 

Fig. 6.9: (a) Idealistic wave structures in an over-expanded jet (b) experimental PIV recording of 
an over-expanded jet at Mach 3.75 (contrast enhanced for clarity). 
 
6.4.2 Experimental facility 
 

The supersonic over-expanded jet flow was issued from a conical nozzle with exit 
diameter ‘Dnoz’ of 17.3mm and throat diameter ‘Dthr’ of 5.85mm. With a pressure ratio 
between stagnation chamber and ambient of 25, the exit velocity corresponded to a Mach 
number of 3.75 (Jerónimo et al., 2002). Upstream of the nozzle, air was mixed with sub-
micron oil particles generated by a modified Laskin’s nozzle seeding generator. The laser 
sheet with a thickness of 0.5mm was generated by a sequence of cylindrical and spherical 
lenses. An Nd:Yag laser pulsed with regular intervals of 0.5µs provided the necessary 
light source. Images were acquired at a frequency of 8.2Hz with a 12bits PCO Digital 
Camera. The imaged area was approximately 4×2cm2 and sampled by a sensor area of 
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1280×544pixels2 or an optical resolution of around 34µm per pixel. More information 
concerning the experimental campaign can be found in Jerónimo et al. (2002).  

 
6.4.3 Image evaluation 
 
• Correlation window distribution 
 

The characteristic shock cell patterns of the over-expanded jet are emphasized by 
gradients in seeding density (Fig. 6.9-b). Despite the fact that seeding was introduced 
upstream of the nozzle, tracers are present outside the jet although in minor quantity. This 
spreading of seeding is caused by turbulent mixing layers. Real supersonic jets differ 
from such idealizations sketched in Fig. 6.9-a in that they do not have sharp, stable 
boundaries but turbulent boundaries where jet and ambient gases mix. These mixing 
layers, which grow as a result of Kelvin-Helmholtz instabilities, progressively eat their 
way into the jet core. When they reach the axis of the jet several nozzle diameters 
downstream the flow is subsonic and fully turbulent (Love et al., 1959). The presence of 
such a turbulent shear layer complicates the distribution of sampling locations. High 
values in velocity variance will be found near the normal and oblique shocks where the 
flow decelerates and in the shear layers where the flow is turbulent. These zones are 
accordingly attributed a higher sampling rate leaving the bulk part under-sampled as 
attested by Fig. 6.10-b. This would be an ideal distribution of samples to characterize the 
shear layers if not for the then far from optimal seeding conditions. One way of 
circumventing this drawback inherent to the imposed adaptivity criteria is to impose a 
dynamic threshold on the intensity (cf. Chapter 3 – paragraph 3.4.1). Regions of higher 
light scattering amplitude now correspond to the flow features of interest (cf. Fig. 3.8) 
and gain the largest share in interrogation areas (Fig. 6.10-c).  

To provide a more general solution without the need of dynamic intensity thresholding 
(cf. paragraph 3.4.1) and give the spatial variation in flow length scales (i.e. velocity 
variance) more weight in the choice of sampling locations, a statistical approach is more 
conducive. Fig. 6.10-d displays the unstructured grid generated following ensemble 
adaptivity. The turbulent outer edge of the jet and incident and reflected shocks are more 
pronounced compared to Fig. 6.10-c specifically further downstream of the nozzle. 
Considering the case dependent tweaking of the intensity threshold level and mainly 
owing to the current interest in the jet excluding its boundary (because the local imaging 
conditions do not allow a high information density anyway), a cropping of the images 
offers a more consistent solution. Mach disk, reflected shocks and expansion fan can be 
unmistakably identified from the average instantaneous correlation window distribution 
(Fig. 6.11-a). Regions of high velocity gradients become even further pronounced in case 
of ensemble statistics (Fig. 6.11-b) and are clearly emphasized by the Reynolds shear 
stresses (Fig. 6.11-c) and window size distribution (Fig. 6.11-d). Notice how regions 
partially overlapping the jet’s boundary are consistently attributed a higher sampling 
density. 
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(a) (b) (c) (d) 

Fig. 6.10: (a) Typical instantaneous PIV image of the over-expanded jet. Images are rotated over 
90 degrees and contrast enhanced for visual clarity. Flow goes from top to bottom. (b) Ensemble 
averaged distribution of 8000 correlation windows without (c) with intensity dynamic threshold. 
(d) Correlation window locations predicted by statistical adaptivity. 

 

  
(a) (b) (c) (d) 

Fig. 6.11: (a) Ensemble average of instantaneous distribution of correlation windows (b) 
correlation window locations predicted by statistical adaptivity (c) normalized Reynolds shear 
stress and (d) normalized correlation window sizes obtained by the ensemble adaptive 
interrogation metrology. 

 
• Qualitative flow diagnostics 

 
Wave structures within the supersonic core are buffeted by the turbulent boundary 

layer causing an oscillation in the normal shock location. Jerónimo et al. (2002) estimated 
the amplitude to be in the order of 1mm. These dimensions are in agreement with the 
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streamwise extent of the region with high sampling density in the vicinity of the Mach 
disk and reflected shocks (Fig. 6.11-b). The spatial variation in shock locations is further 
illustrated by observing two instantaneous unstructured grids (Fig. 6.12). Between the 
estimated shock locations (red lines) a clear spatial shift is present. Compared with the 
more concentrated sampling density obtained by ensemble adaptivity the instantaneous 
distribution of windows resembles a spatially smeared version exactly due to these 
oscillations (Fig. 6.11-a vs. -b). In the mean flow field these fluctuations are averaged out, 
which is why the shock locations are well defined in case of ensemble adaptivity. From 
this aspect, the inherent adaptivity criteria are able to take into account the fluctuations in 
shock locations whereas the rigid sampling locations imposed by conventional 
interrogation are unable to cope with the temporal variations in flow scales.  

 

   
(a) (b) (c) (d) 

Fig. 6.12: (a)-(c) Cropped instantaneous PIV images of the over-expanded jet (contrast enhanced) 
(b)-(d) Corresponding sampling grids imposed according to instantaneous adaptivity. Red lines are 
estimated shock locations inferred from velocity variance. 
 
6.4.3 Flow diagnostics 
 
• Instantaneous vorticity 
 

One of the advantages of instantaneous adaptivity lies in the eduction of vorticity. Fig. 
6.13 considers the instantaneous vorticity distribution for the image depicted in Fig. 6.10-
a calculated by a conventional metrology adopting windows sizes of 23 pixels 
(‘WS/Dnoz≈4.5×10-2’) on a structured grid and the adaptive technique with interrogation 
parameters based on instantaneous seeding and flow conditions (e.g. Fig. 6.12 and Fig 
6.13-d). While the flow behind the normal shock is subsonic, it is still supersonic behind 
the oblique shocks. This velocity discontinuity gives rise to slip-lines emanating from the 
intersection points of the oblique shocks with the Mach disk (Yüceil et al., 2000). The 
shear layers grow and merge at the jet’s centerline to develop as a wake. Both 
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metrologies are able to capture the above flow phenomena and clearly indicate the slip-
lines to originate from the triple points (i.e. the intersection between incident shock, 
reflected shock and Mach disk). Albeit the vorticity fields show a general agreement, 
vorticity peaks predicted by adaptive interrogation attain higher amplitudes attributed to 
enhanced sampling by means of reduced window sizes (Fig. 6.13-d). Additionally the 
regions upstream of the Mach disk and vicinity of the second cell pattern show more 
spurious vorticity peaks in case of the conventional approach which are apt to stem from 
a higher degree of erroneous fluctuation in displacement measurements. 

 

  
(a) (b) (c) (d) 

Fig. 6.13: (a) Contrast enhanced cropped instantaneous PIV image of the over-expanded jet. 
Corresponding instantaneous vorticity field calculated by (b) uniform interrogation 
(WS/Dnoz≈0.045) (c) instantaneous adaptivity. (d) Utilized window sizes based on (a) by adaptive 
interrogation in the calculation of vorticity. 
 
• Average shock-normal velocity profiles 
 

Although the instantaneous adaptivity can be considered as a conducive technique in 
the retrieval of instantaneous flow fields, it suffers from too strong oscillations in applied 
window sizes and sampling locations to provide a robust basis for ensemble statistics; the 
averaged sampling distribution shows quite a degree of smoothing (Fig. 6.11-a) and 
instantaneous window sizes are strongly directed by seeding density (compare e.g. Fig. 
6.13-d with -a). Moreover, the instantaneous sampling distributions vividly suffer from 
local anomalies caused by occasional erroneous vectors. Compared to instantaneous 
adaptivity a statistical approach has the advantage of being less susceptible to extrema in 
deduced tracer concentration. When considering multiple image exposures isolated events 
have a low probability of occurrence which automatically minimizes their influence and 
allows a consistent sizing of the interrogation areas as illustrated by Fig. 6.11-d. 
Discussion of statistical quantities hereafter will therefore involve only the statistically 
adaptive and conventional metrology with the former adopting ensemble correlation. 
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From the known nozzle exit area to sonic throat area and total temperature (‘Tt’) of 290 
Kelvin, the corresponding Mach number can be calculated to be 3.77 from equation (6.6). 
Substitution of the available data; Tt=290K, γ=1.4 and R=287.04 J⋅kg/K, in (6.7) yields a 
corresponding velocity of 655 m/s. The evolution of velocity and ratio in nozzle areas 
with exit Mach number is plotted in Fig. 6.11. 
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(a) (b) 

Fig. 6.14: (a) Evolution of velocity and the ratio between nozzle and throat area in function of the 
Mach number based on preservation of entropy (b) Schlieren image of the over-expanded jet 
(taken from Jerónimo et al., 2002). 
 
Maximum displacements measured are however in the order of 633 m/s. The discrepancy 
stems from boundary layer separation inside the nozzle which is a phenomenon well 
demonstrated numerically by e.g. Xiao et al. (2007). The separation is indicated by 
observing the Schlieren image in Fig. 6.14-b showing the oblique shocks not to be formed 
at the nozzle exit. As separation occurs, the formation of oblique shocks and Mach disks 
translates further upstream. Following the isentropic considerations in Fig. 6.14-a, this 
upstream shift towards a narrower cross-section is accompanied by a reduction in velocity 
and Mach number. Based on Fig. 6.14-a and given the measured displacement value, a 
conditional Mach number in the order of 3.33 was attained. Normal shock relations 
predict a downstream Mach number of 0.46 or a velocity of 153.4 m/s.  

Overlaying the mean jet’s centerline velocities measured by the conventional 
metrology and the adaptive evaluation technique adopting ensemble adaptivity, illustrates 
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the enhanced resolution of the latter approach (Fig. 6.15-a). While the conventional 
approach inherits a measurement error of 75% in shock downstream velocity, adaptive 
interrogation settings combined with correlation window eccentricities in the order of 0.7 
reduce this error to a mere 0.31%. Resolution improvements are further emphasized by 
the capability in adequately representing the velocity gradients across the Mach disk as 
illustrated by Fig. 6.15-b. 
 

 
(a) (b) 

Fig. 6.15: Over-expanded jet (a) Average centerline (Y/Dnoz=0) velocity measurements (b) shock 
normal velocity profiles obtained by the conventional interrogation procedure and the discussed 
approach with statistical adaptivity (un2 has been set equal to the theoretical value of 153.4 m/s). 
 

Across the incident oblique shock both interrogation approaches yield a ratio of 
particle relaxation distance to nozzle diameter of 0.0167 (Fig. 6.16-a). Normalized 
window sizes ‘WS/Dnoz’ are in the order of 0.029 for the adaptive (cf. Fig. 6.11-d) and 
0.045 for the conventional metrology. Because the hypothetical shock thickness of 0.046 
nozzle diameters† is larger than, respectively nearly equal to the adopted the adopted 
correlation windows, the achieved resolution in measured velocity across the shock has 
been prescribed by respectively particle relaxation and interrogation window sizing. 
Supporting this conclusion, based on the (normal) shock velocity profile across the Mach 
disk measured by the adaptive evaluation an equal relaxation distance is obtained (Fig. 
6.16-b). Once more the adopted window sizes of ‘WS/Dnoz=0.025’ are sufficiently small 
to conclude that the present enhancement in resolution by the adaptive technique can be 
attributed to the reduction in window size and augmented sampling. In case of the 
conventional image analysis on the other hand, the observed smoothing in the velocity 

                                                      
† Due to their finite response the tracer particles need 0.046 nozzle diameters downstream of the 
shock for the velocity to be reduced by a factor e-4. This distance can be used as an estimate of the 
measured shock thickness although the real thickness is of course a couple of orders smaller (cf. 
Appendix B).  
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profile depicted in Fig. 6.15-b is caused by the enlarged interrogation window sizes 
(WS/Dnoz=0.045) and sampling spacing, not by particle inertia. 
 

 
(a) (b) 

Fig. 6.16: Over-expanded jet (a) velocity profiles across the incident oblique shock near the nozzle 
exit (b) normal shock velocity profiles obtained by statistically adaptive interrogation. 
 

In the vicinity of the second Mach disk the obtained results by the two image 
evaluation procedures were, although no results have been presented, almost identical 
despite a reduced correlation window size and eccentricity factor of around 0.4 imposed 
by the adaptive technique. Because of viscous effects the jet tends to subsonic, turbulent 
conditions with downstream distance. Following the first Mach disk the sequence of 
characteristic cells no longer contain a normal shock as indicated by the Schlieren image 
(Fig. 6.14-b) but yield a diffused interaction region of the oblique shocks. Consequently, 
steep gradients in velocity are no longer present.  
 
 
6.5 Discussion 
 

Besides optical resolution, particle spacing and particle relaxation time proved to be 
the defining limiting factor in spatial resolution on several occasions. They are moreover 
considered as the ultimate limits in achievable resolution. This is however mostly the case 
in academic environments where experiments are meticulously prepared to measure the 
largest dynamic spatial range possible. In the majority of less specialized experiments, the 
resolution related to image interrogation routine was previously dictated by (a) the 
correlation window sizes, set uniformly throughout the image and chosen properly to 
ensure sufficient robustness and (b) the vector spacing. Now adequate sizing and 
sampling alleviate the limits imposed by these interrogation parameters and omit the need 
of a trade-off between robustness and resolution. 



166 Experimental assessment of adaptive PIV interrogation 

Examining the case of the backward facing step flow several step heights downstream, 
direct improvements in terms of spatial resolution were not always very pronounced in 
the free flow. Here imaging and seeding conditions permitted the uniformly set 
interrogation parameters to yield the highest possible resolution without compromising 
robustness. However, coming to those settings requires a certain user expertise but is in 
the majority of cases the result of laborious trial and error. From this angle adaptivity 
offers benefits to both user-types. The amount of user interference is minimized however 
for what concerns the correlation window settings (size, overlap, eccentricity, 
orientation). In turn this, let’s call it user friendliness, will make the utilization of PIV 
more attractive to a broader and often inexperienced public i.e. the industry. The user is 
offered a potential reduction in computational effort by minimizing the number of 
necessary interrogation windows thanks to flow adaptation while maintaining robustness 
and resolution. More important is the freedom allowed in spatial variation in window 
shape, which in case of present interfaces has been demonstrated conclusively to yield 
considerable improvements.  

The idea of a completely autonomous interrogation routine must be omitted though 
since there will be continuous need for user input. Flow features of interest are rarely 
isolated events which complicates an automated identification of the image region of 
interest to analyze. The case of the supersonic over-expanded jet can be considered as a 
textbook example on conflicts in interest; while the turbulent shear layer was in this work 
of no importance it might have been in a different study. When subjected to scrutiny the 
proposed sampling distribution obtained from instant adaptivity (cf. Fig. 6.10-b) would 
have been ideal. The question then poses how to translate such dubious requirements into 
a single, generally valid adaptation criterion. The answer is quite simple; there is no such 
manner. After all, the next experimentalist in line might have slightly optimized the 
seeding by injecting tracers also in the outer jet flow with the intention of accurately 
characterizing only the mixing layer and has no interest in the shock pattern. A third one 
might be interested in correlating the spatial oscillation in Mach disk with the jet edge 
instabilities. Consider as a second example a PIV campaign held within an experimental 
wind tunnel facility. While the walls of a windtunnel allow in one experiment a boundary 
layer characterization they do not require special treatment when the same field of view 
contains an airfoil profile. Given such identical circumstances from an image point of 
view (equal seeding densities, illumination, recording device…), the disparate and often 
opposing interests of the user cannot be converted into a unique criterion such that the 
algorithm is able to automatically understand the user’s interests in every specific 
situation. Instead, the proposed adaptivity criteria comply with typical user requirements; 
in general the boundary layer enveloping an interface needs to be well resolved, research 
typically focuses on turbulent flow characterized by velocity fluctuations, compressibility 
effects in supersonic flow generally require higher spatial resolution because they need to 
be well represented etc.  
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6.6 Conclusions 
 

The adaptive interrogation routines proposed within this dissertation have been applied 
to the following experimental flows; a hypersonic sphere, a backward-facing step and a 
supersonic jet. Besides numerical and analytical references, the obtained results have 
been compared to those of conventional, uniform image evaluation.  

In case of the hypersonic sphere at Mach 6, resolution across the bow shock was 
limited by tracer response and adaptivity did not yield any net improvement despite a 
reduction in number of utilized windows by a factor 2. Near the curved interface the 
adaptive approach returned nevertheless a more physical streamline pattern compared to 
the conventional approach. 

Highest velocity gradients immediately behind the backward facing step were 
measured with the adaptive techniques on the account of enhanced spatial resolution. 
Statistical adaptivity revealed to be most adequate in estimating the production of 
turbulent kinetic energy. Because of proper seeding and lower amplitudes in velocity 
fluctuations improvements became marginal further downstream but with a beneficial 
reduction in number of correlation windows by a factor 4. The functionality of wall 
adaptivity was further illustrated by the ability to measure peaks in wall shear friction 
coefficient matching numerical simulations. 

All adaptive methodologies had difficulties in properly sampling image recordings of 
the over-expanded supersonic jet as a result of a conflict in interest; poor signal quality 
vs. typical user requirements. Images were overall better evaluated by means of statistical 
adaptivity compared to instantaneous adaptivity owing to an enhanced sampling and 
window sizing. These benefits lead to improved measurement of the steep velocity 
gradient across shocks compared to uniform interrogation.  
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CHAPTER 7 
 
 
 
 
STATISTICAL ANALYSIS OF PIV MEASUREMENTS† 
 
 
 

Abstract 
 

An original application to Time-Resolved PIV of an existing method for confidence level and 
error determination, called dependent bootstrapping is shown. Due to the high sampling 
frequencies the measured velocity samples are no longer uncorrelated making classical statistical 
procedures not applicable. Examples show that the various ways in calculating the number of 
independent samples based on the autocorrelation function question the reliability of the rarely, if 
ever, mentioned confidence levels in literature. Instead, the dependent bootstrapping technique 
reports consistent results of confidence estimates for both correlated and uncorrelated PIV 
velocity samples making this technique robust and general for further applications. The step-by-
step description of the dependent circular block bootstrap implementation is given, including an 
estimator for the autocorrelation’s randomness. The practical application and viability of the 
method are illustrated by two experimental cases. 

 
 
Nomenclature 
 
1-α confidence level 
γ measure of autocorrelation function noisiness 
∆t sampling time (seconds) 
µ estimated value of the true mean µx (arbitrary units) 
µΒ mean of the ensemble of bootstrap replications (arbitrary units) 
µx true mean of variable x (arbitrary units) 
ξ desired statistical parameter (arbitrary units) 
ξest statistical estimator of ξ (arbitrary units) 
ρx autocorrelation coefficient 
σ estimated value of the true standard deviation σx (arbitrary units) 
σB variance of the ensemble of bootstrap replications (arbitrary units) 
                                                      
† This work has been partly published in Theunissen et al., 2008, Experiments in Fluids. 
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σx true standard deviation of variable x (arbitrary units) 
τmax maximum time-lag in the calculation of the ρx (seconds or samples) 
b block length (samples) 
B number of bootstrap replications 
erf error-function 
f(X) probability density function of variable X 
h step height of the backward facing step (meter or pixels) 
LSQ Least-Squares 
mX

n nth order statistical moment of variable X 
N number of recorded samples 
Neff number of recorded independent samples (effective sample size) 
PDF Probability Density Function 
PIV Particle Image Velocimetry 
R autocorrelation function 
std standard deviation 
t Student t-value 
T recording time (seconds) 
T* integral time-scale (seconds) 
X observed variable (arbitrary units) 
 
 
7.1 Introduction 
 

Beside instantaneous velocity information, statistical descriptions can be extracted 
from the large number of analyzed PIV measurements. With the exception of turbulence-
related research, these statistical quantities are very often limited to lower order 
moments†, in particular the mean flow field and fluctuating flow field or standard 
deviation. A fundamental principle of experimental science is that no real measurement is 
infinitely precise, but instead must necessarily include a degree of uncertainty in the 
value. Indeed quantitative evaluations from PIV images suffer from various sources of 
corruption acting on the instantaneous displacement estimates. Among these are the 
obvious degenerations in image quality, measurement errors inherent to the applied 
correlation technique and effects originating from the finite extent of the interrogation 
windows. A possible indicator of the former are the readily available signal-to-noise 
ratios while the second error can only be assessed by means of computer generated PIV 
images with imposed displacement fields (e.g. McKenna and McGillis, 2002). Combined 
with well-defined experimental conditions, corrections can be inferred which attenuate 
the limitations in spatial resolution inherent to the PIV technique (Lavoie et al., 2007). 
Eventually also the finite recording time and number of measurement repetitions play an 
                                                      

† the nth order moment ‘mx
n’ of a PDF ‘f(x)’ is defined as   ( )∫

+∞

∞−

= dxxfxm nn
x . 
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important role which is often overlooked. The following analogy clarifies; measuring the 
outside temperature with an accurate or less precise thermometer in a region where the 
temperature fluctuates daily will either way yield an erroneous estimate of the average 
monthly temperature if the measurement is conducted one-off. Even if multiple 
measurements are performed, but in a short time span of e.g. 1 hour, the extracted mean 
will still not be conclusive. On the other hand, in a place with nearly no temperature 
variations, the single measurement will provide a good representation of the average 
temperature. Estimates of confidence levels and statistical error must therefore 
complement the description of the extracted statistical parameters to give an indication of 
their reliability. 

Commonly used by the PIV community are standard expressions which follow large 
sampling (central limit) theory where the signal is conjectured to be normally distributed 
(Bendat and Piersol 1966, Benedict and Gould 1996). These express the uncertainty in the 
estimation of mean and standard deviation of a signal from a measurement to be related to 
the number of uncorrelated samples, the local level of signal fluctuation and to a given 
confidence percentile ‘(1-α)’; 
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where ‘Neff’ refers to the number of uncorrelated samples. Given the local turbulence 
intensity ‘σx/µx’, the necessary number of independent samples to obtain a predefined 
fractional error and confidence level in the measurement of the statistical variables can be 
derived from (7.1) (Riethmuller and Lourenco, 1981), as depicted in Fig. 7.1. Note that 
justified on the account of dealing with large data sets, the signal’s true standard deviation 
‘σx’ and mean ‘µx’ can be replaced by their estimated values ‘σ’ and ‘µ’ in the expression 
of the confidence interval. 

 
Fig. 7.1: Necessary effective sample size versus agitation level for varying confidence level and 
error percentages on the mean value estimate. 
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While these simplified equations are correct for typical turbulent flows having a 
normal shaped probability density (Tennekes and Lumley, 1972), Benedict and Gould 
(1996) report high inaccuracies when the probability distributions of the variables in 
question deviate from normality. Though normality can be easily verified by means of 
e.g. a Jarque-Bera test (Jarque and Bera, 1980), it is too often blindly assumed (Garcia et 
al, 2006). 

For general PIV applications where the characteristic flow time-scales lie below the 
typical laser’s repetition time of the order of 0.1 second (Raffel et al., 1998), ‘Neff’ is 
identical to the number of flow fields ‘N’ (Grant et al. 1992). In cases where recorded 
flow behavior shows strong spatial dependence, temporal over-sampling concomitant to 
the larger flow-characteristic time-scales might occur and undermine this conjecture. 
Because recording images of the seeded flow at high sampling frequencies allows an 
accurate description of the signal both in the amplitude and time/frequency domain, 
Time-Resolved PIV (TR-PIV) has gained growing interest in the PIV community. As a 
consequence of the short time interval between image recordings the obtained flow fields 
can no longer be considered independent and ‘Neff’ remains to-be determined. The 
estimation of the undeterminable effective sample size is therefore considered to be of 
importance in future applications.  

To estimate the number of independent samples from the recorded observation, 
information concerning the integral time-scale is necessary (Bruun, 1995). In literature a 
diversity exists in possible time-scale definitions, which may lead to error estimates 
varying as much as one order of magnitude when applied to a typical TR-PIV 
measurement. A first estimate of the time-scale can be made based on a dimensional 
analysis and Taylor’s hypothesis. A diversity exists however in how to define the typical 
length-scale. In the case of the Backward Facing Step for example, the characteristic 
length-scale can be defined on the basis of the step height or the re-attachment length. 
The second method constitutes inferring the integral time scale ‘T*’ directly from 
estimates of the effective sample size ‘Neff’ using the sampling interval ‘∆t’ as 
‘T*=Neff×∆t’. Thiébaux and Zwiers (1984) attempted a variety of techniques to determine 
the effective sampling size from the observed sequence. They concluded the precisions of 
the estimates to be dependent on the stochastic structure of the observed process and in 
some cases on the length of the available sample. Effective sample size estimations from 
the power spectrum showed a large diversity in precision and well-converged results in 
the low-frequency part were required in order to limit inaccuracies when extrapolating to 
zero frequency. The third and most common approach involves the autocorrelation 
function. In theory the time-scale can be determined from the integral of the 
autocorrelation function defined for an infinite number of time-lags, read recording time;  
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In practice however the finite measurement time prohibits an autocorrelation extending to 
infinity. Furthermore, to obtain an unbiased estimate of the autocorrelation function, the 
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number of possible lags taken into account in the calculation of the autocorrelation is 
limited (Bruun, 1995). Denoting the number of samples contained within recording time 
‘T’ by ‘N’ with sampling time-interval ‘∆t’, expressions for the unbiased autocorrelation 
and coefficient are respectively 
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Various alternative definitions have been proposed for the time-scale (Fig. 7.6): e.g. 

the time-lag needed by the autocorrelation to reach an amplitude of e-1, the time lag at 
which the first zero is reached or the necessary number of lags to reach the minimum of 
the negative part of the correlation function (Tritton 1988; 'O Neill et al. 2004). To 
demonstrate the diversity in resulting time-scales, time-resolved PIV measurements 
performed in air at a sampling frequency of 1.7kHz in a diverging channel are considered. 
The channel is 0.7m long with 0.079m hydraulic diameter at the inlet and 6 degrees total 
aperture angle. Further details on the setup can be found in Di Sante et al. (2008). The 
considered sample is recorded at a Reynolds number of 6300 (based on hydraulic 
diameter and mean velocity at the channel inlet), midway between inlet and outlet at 
2.5mm from the lateral wall (i.e. pressure side). Figure 7.2 shows the velocity versus time 
in the turbulent boundary layer. The evolution of the integral time-scale ‘T*’ is shown in 
Fig. 7.3 as function of the sample length ‘T’.  

 

 
Fig. 7.2: Time history record of turbulent boundary layer velocity measurements performed at a 
sampling frequency of 1.7kHz in the diverging channel described by Di Sante et al. (2008). 
 

The sensitivity of the time-scale estimate to the considered sampling time and number 
of applied time lags is indicated by the large scatter and variation in Fig. 7.3. Note that 
the integral of the autocorrelation could even lead to negative values of the integral time-



174 Statistical analysis of PIV measurements 

scale. Since the time-scale clearly cannot be based on the autocorrelation in a reliable 
way, the standard expressions for fractional error and uncertainty (Bendat and Piersol, 
1966) mentioned in (7.1) will lead to very different results. In the best case convergence 
in mean values and decrease in the scatter around with sample size can be demonstrated 
to follow a power-function (Ullum et al., 1998).  

 

 
Fig. 7.3: Estimated integral time-scale ‘T*’ as a function of record length ‘T’ and applied 
maximum time-lag ‘τmax’ in the calculation of the autocorrelation. 
 

To circumvent the above bottlenecks, an original application of a technique is 
proposed, whose results have been shown to be consistent for any degree of correlation 
between the measured velocity samples. Commonly known as dependent bootstrapping in 
the econometric community (Politis and White, 2004), this resampling technique has to 
the best of the author’s knowledge never been applied before to PIV data in the 
determination of error and confidence level.  

In this chapter the dependent bootstrapping technique is first explained followed by a 
step-by-step description of the method of implementation. The applicability of the 
dependent bootstrapping technique is illustrated by two experimental cases involving 
correlated and uncorrelated PIV data.  
 
 
7.2 Dependent circular block bootstrap 
 

The basic idea behind bootstrapping is to replace the original sample record by 
numerous bootstrap replicates (typically larger than 1000 according to Garcia et al., 
2006) of the same length (Fig. 7.4). Each series consists of randomly selected samples 
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with replacement from the original observation. From each of the bootstrap series the 
parameter of interest is calculated, which allows an estimate of the parameter’s 
probability distribution. As such, bootstrapping offers the possibility to calculate 
statistical moments with simultaneous errors and confidence levels provided that the 
recorded sample is a good approximation of the true signal distribution.  
 

 
Fig. 7.4: Principle of bootstrapping. The statistical quantity ‘ξ’ is determined for each of the in 
total ‘B’ generated pseudo-series {X*}. From the collection of ‘ξi’ values, the mean and standard 
deviation of the ‘ξ’ distribution can be calculated and used in the estimation of the true ‘ξ’ value. 
 

Convergence in the Fast Fourier Transform diagram can be used as indication for a 
sufficient cut-off time (Doebelin, 1990). The traditional simple bootstrap resampling 
scheme fails however to provide consistent results in the case of even weakly dependent 
processes (Singh, 1981). Künsch (1989) modified the bootstrap resampling algorithm to 
be applicable to correlated sample records; blocks of consecutive observations are 
selected rather than individual samples. This method of bootstrapping results in the 
lowest mean square errors in the variance compared to the other bootstrapping 
methodologies even for moderate sample sizes. As mentioned in Young (1994), the block 
length remained a crucial parameter to tune. Politis and White (2004) proposed an 
automatic procedure for its calculation compensating for the correlated nature of the 
original signal. Garcia et al. (2006) validated the moving block bootstrap with automatic 
block length calculation using both analytical data and experimental data and observed 
very good agreement. This method is hereafter applied to PIV data with the further 
improvement of implementing the circular block bootstrap (Politis and White, 2004). The 
latter methodology ensures all samples to have equal probability of being chosen. 
 
 
7.3 Dependent circular bootstrap implementation 
 

The summary of the practical implementation of the dependent circular block bootstrap 
procedure with automatic block length selection according to Politis and White (2004) is 
given hereafter. The procedure has been extended to include a possible, empirical, 
estimator of the autocorrelation’s randomness. The quantization is based on strong 
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fluctuations yielding high second order derivatives with respect to the auto-correlation 
range.  
a.  Calculation of the unbiased autocorrelation function ‘R’ of the signal (7.4). The 

maximum time-lag considered is half the sampling time since at higher lag number 
the autocorrelation becomes less accurate. 

b. Quantify the autocorrelation’s randomness as  
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 When γ>0.1 the autocorrelation suffers from a strong oscillating behavior, 

indicating a very low degree of correlation between the samples (see e.g. Fig. 7.8-a). 
A conservative unit block-length is opted for in that case ignoring steps ‘c’ and ‘d’. 

c.  Finding the smallest lag ‘m’ for which the ‘K’ consecutive values of the 

autocorrelation coefficient ‘ρx’ satisfy ( ) ( ) 2
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d.  Calculation of the optimal block length ‘b’; 
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e.  Construction of the wrapped data series {X1,…,XN+b-1} where XN+k=Xk 
f.  Dividing the wrapped observation into ‘N’ consecutive blocks of length ‘b’. 

Construction of ‘B’ pseudo series by selecting for each series ‘N/b’ blocks randomly 
and with replacement. 

g.  Calculating for each series the parameter of interest ‘ξi’ where i=1,2…B 
h.  Calculation of the mean ‘µB’ and variance ‘σB

2’ of the ‘B’ number of bootstrapped 
parameters ‘ξi’.  

i. The estimate ‘ξest’ of the true parameter value ‘ξ’ is defined in (7.6) where ‘t’ refers 
to the Student t-value (dependent of B) corresponding to a given bound in 
confidence. 
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ξest=µB ± t⋅σB (7.6)
 
Note that the above procedure may lead to an estimate of the effective sample size 
irrespective of the definition of integral time-scale by assuming equality† between the 
fractional error in first moment following from (7.1) and (7.6) 
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7.4 Practical examples 
 

The implemented bootstrap methodology is a point-wise technique. To obtain an 
overall view of the statistical error and uncertainty of a complete field of view, the 
procedure referred to in the previous paragraph must be repeated at each sampling 
location, for which a collection of ‘N’ values are available from the set of instantaneous 
flow fields (Fig. 7.5). Without loss of generality the practical examples hereafter will 
concentrate however on the application to individual sampling positions. 
 

 
Fig. 7.5: For each sample point within the flow field ‘N’ realizations are available. For each 
collection of values the bootstrap technique must be applied. 
 
7.4.1 Time-resolved PIV in a diverging channel flow 
 

To demonstrate the efficacy and simplicity of the improved circular block bootstrap 
method, an error analysis for the above mentioned time-resolved sample record (see Fig. 
7.2, total recording time of 5.74 seconds corresponding to around 10000 sample values) 
has been carried out. Figure 7.6-a presents the autocorrelation function where the 
locations corresponding to the different time-scale definitions mentioned in the 

                                                      
† this implicitly assumes the signal to have a Gaussian probability density distribution. 
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introduction (see also Fig. 7.3) are plotted for clarity. A decay of the autocorrelation 
coefficient, typical of turbulent velocity measurements (Tennekes and Lumley, 1972) can 
be observed. 
 

  
(a) (b) 

Fig. 7.6: (a) Autocorrelation function for the first 1.5seconds time lag of the signal depicted in Fig. 
7.1. The dashed line sketches a typical correlation shape of turbulent data. Symbols indicate the 
locations used to determine the various integral time-scales. (b) Histogram of the sample record of 
Fig. 7.1. The solid line represents a Least-Squares Gaussian fit of the histogram. 
 
Table 7.1: Mean values and errors comparison for a TR-PIV sample. Quotes are in ‘m/s’.  
 

Arithmetic 
mean Standard Statistical Method Bootstrap 

Method 

all samples integral 
(T*=0.0210s) 

1/e 
(T*=0.0252s)

1st root 
(T*=0.1600s) 

1st minimum
(T*=0.4057s) all samples 

0.4926 ± ? 0.4958 ± 4.3% 0.4930 ± 4.8% 0.5467 ± 10.6% 0.6003 ± 25 % 0.4925 ± 3.9% 
 

When using all samples in the computation of the arithmetic mean no error estimate 
can be assessed. Mean values and fractional error estimates, obtained from standard 
statistical methods (Riethmuller and Lourenco, 1981), show a large variation according to 
the different definitions of integral time-scale (table 7.1). Fractional errors, at 95% 
confidence level, ranged from ±4.3% to ±10.6% and even ±25%, making the error 
determination to be depending on the arbitrary choice of the experimentalist. 
Furthermore, the histogram of the sample record (Fig. 7.6-b) clearly undermines the 
assumption of signal normality on which the standard methods are based. With 
bootstrapping on the other hand a mean value almost equal to the arithmetic mean was 
retrieved but with a single error estimate.  

Following the circular block bootstrap procedure described in the third section, the 
block length was calculated automatically to be 247 samples. In total 3000 pseudo series 
(‘B’) were generated, resulting in a Gaussian distributed bootstrapped mean velocity (Fig. 
7.7-a). The latter ensures the validity of a central-limit theorem for the considered statistic 
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of interest, while the decay in the autocorrelation function demonstrates the fulfillment of 
mixing conditions†. Combined, these two requirements ensure the validity of applying 
dependent block bootstrapping technique for the sample-mean statistic (Politis and White, 
2004). The dependency of the bootstrap result on the number of bootstrap repetitions is 
presented in Fig. 7.7-b. Results in both mean and standard deviation of the bootstrap 
statistic’s density distribution varied in the order of 10-4m/s after 3000 repetitions, 
ensuring it to be a sufficient number to obtain a reliable estimate of the distribution. 
 

 
(a) (b) 

Fig. 7.7: (a) Histogram and Least-Squares Gaussian fit of the bootstrapped mean velocity (b) 
Evolution of the mean and standard deviation of the distribution of the bootstrapped statistic as a 
function of the number of bootstrap repetitions. 
 
7.4.2 Classic PIV in a backward facing step flow 
 

The generality of the bootstrap methodology is further assessed by applying it to the 
backward facing step flow at a step height-based Reynolds number of 5000 (cf. section 
6.3). Using a classical (not time-resolved) PIV system, images were recorded at a 
frequency of 10Hz ensuring all measurements to be uncorrelated. A point inside the shear 
layer (x/h=1, y/h=1)‡ has been selected. Independence between the observations is 
verified by the rapid decay of the sample record’s autocorrelogram (Fig. 7.8-a). Based on 
Fig. 7.8-a, samples can be considered as uncorrelated when separated by at least one 
sampling interval (equal to 0.1 seconds). Under these conditions and given the signal’s 
PDF to approach a normal distribution (Fig. 7.8-b), standard statistical methods are 
known to give reliable results. 
 

                                                      
† Loosely speaking mixing conditions imply processes with decaying auto-covariance function . 
‡ See point ‘b’ in Fig. A.3-a. 
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(a) (b) 

Fig. 7.8: Velocity measurements within the turbulent shear layer of a backward facing step with a 
classical PIV system (a) Autocorrelation function of the sample record (b) Histogram of the 
observations. The solid line represents a Least-Squares Gaussian fit of the histogram. 
 

Both statistical techniques returned equivalent values (table 7.2) proving the block 
bootstrap method to yield consistent results, insensitive to the degree of correlation 
between the samples. The latter complies with the automatic selection of a block length 
‘b’ equal to unity when proceeding according to paragraph 7.3. Slight differences 
between the techniques are to be ascribed to the strong parametric assumption concerning 
the signal (i.e. normality) by the common statistical technique. It should be clear that 
these differences will increase with the order of the statistical moment.  
 
Table 7.2: Mean and maximum fractional error at 95% confidence level calculated for a backward 
facing step flow. Quotes are in ‘m/s’. 
 

 Number of measurement samples involved in estimation 
 20 80 160 240 320 

Bootstrap 1.7699 ± 10.1% 1.7314 ± 6.3% 1.8254 ± 4.3% 1.8463 ± 3.6% 1.8905 ± 3.0% 

Standard 1.7709 ± 12.4% 1.7303 ± 7.8% 1.8249 ± 5.2% 1.8478 ± 4.3% 1.8904 ± 3.6% 

 
For the sake of completeness the evolution of the bootstrap result of the mean velocity 

of all 320 samples as function of the number of bootstrap repetitions ‘B’ is presented in 
Fig. 7.9-a. Generation of 3000 pseudo data series corresponds again to a reasonable trade-
off between computation time and sufficient number of samples for a reliable estimate of 
the bootstrapped statistic’s PDF. The bootstrapped mean velocity follows once more a 
Gaussian distribution (Fig. 7.9-b), which together with the fast decay of the correlogram 
permits dependent bootstrapping in the estimation of the true mean velocity and 
simultaneous uncertainties at given confidence levels (Politis and White, 2004). 
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(a) (b) 

Fig. 7.9: (a) Evolution of the mean and standard deviation of the distribution of the bootstrapped 
statistic as a function of the number of bootstrap repetitions (b) Histogram and Least-Squares 
Gaussian fit of the bootstrapped mean velocity. 
 
 
7.5 Conclusions 
  

In conclusion, results obtained by dependent circular block bootstrapping with 
automatic block length selection have been shown to be insensitive to the degree of 
correlation between the samples thus proving to be a robust and globally applicable 
method in the statistical analysis of PIV data. Moreover the method does not require any 
parametric assumption concerning the signal and is consistent, in that error estimates 
decrease with increasing number of measurement samples. 
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CHAPTER 8 
 
 
 
 

SUMMARY AND PERSPECTIVES 
 
 
 

Abstract 
 
This chapter contains a summary of the globally adaptive interrogation methodology and the 

accompanying achievements put forward in this dissertation. The current position of the approach 
with respect to existing techniques is discussed as well as its potentials. With more advanced 
measurement techniques the adaptivity criteria can be refined to be more robust. There is room for 
improvement in the sense that the level of adaptivity can be expanded but the philosophy of 
adaptive image interrogation has been substantiated to be a versatile and powerful concept 
offering many advantages. This assertion augurs and ascertains adaptive processing likely to 
become the next standardization in the near future of image velocimetry processing. 

 
 
PIV has reached without doubt a mature level of standardization. Developments in 

both hardware and software do not stop and the technological advances give rise to ever 
more powerful variants of the image velocimetry metrology. These are accordingly 
subjected to experimental flow fields of growing intricacy. In view of such advancements 
it is considered worthwhile to discuss after a summary of the presented work, the 
potential and possible prospects of the adaptive interrogation philosophy put forward 
within this dissertation.  

 
 

8.1 Summary 
 
As an experimental tool, Particle Image Velocimetry has quickly superseded 

traditional point-wise measurements. The inherent image processing has become 
standardized though the performances are strongly dependent on user experience. 
Moreover, the arduously selected image interrogation parameters are applied uniformly 
throughout the image snapshots and image sequence but seldom comply with the 
observed fluid’s convective motion, spatial distribution in length scales or signal 
distribution. Instead, a degree of adaptation in the image analyses is required to estimate 
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the velocity field underlying the image recordings as accurate as possible and preferably 
within an automated fashion.  

A variety of correlation methodologies exist each conducive for specific cases. Here, 
the aim has been a global solution which through adaptivity of the interrogation 
parameters (window size, location and overlap) remains adequate in the majority of 
encountered problems. This dissertation proposes to go in line of a recursive approach 
autonomously adapting to both signal and flow conditions. Correlation window location, 
number and size are regulated taking into account seeding quantity and flow fluctuation 
magnitude; high image densities and/or regions with strong flow gradients lead to a 
clustering of smaller interrogation windows. Signal quantization is based on individual 
particle image segmentation while spatial variance in velocity served as a heuristic for 
flow adaptation. The implementation of the proposed technique further requires 
specialized interpolation schemes and sample projection techniques to account for the 
non-Cartesian sampling grid.  

One of the main practical problems tackled is that of the user faced with a necessary 
trade-off between spatial resolution and robustness. The new interrogation method 
surpasses the compromise and places more and smaller windows where the flow requires 
it and seeding allows it. Vice versa, less of these unnecessary small windows are placed 
in regions where the flow does not require it (i.e. absence of gradients or fluctuations in 
velocity). As such mechanisms influencing correlation robustness i.e. lack in seeding or 
strong gradients, are decoupled. Performances of the adaptive approach were assessed by 
means of synthetic images of isotropic turbulence and experimental images of a turbulent 
shock-wave boundary layer interaction at Mach 2.1 and illustrated the improvements to 
be less pronounced in case of optimal recording conditions and optical resolution, albeit 
the limited user dependency offered a net improvement. However, the enhancements in 
spatial resolution were emphasized when applied to vortical flows behind a transport 
aircraft and a circular cylinder (ReD≈2000) where vector spacing and window dimensions 
are pivotal in accurate vorticity eduction. 

The second problem is posed in the vicinity of interfaces where large distortions are 
present in the correlation maps stemming from signal truncation across the walls and 
reflections. While adequate image pretreatment, advanced correlation schemes and vector 
repositioning ameliorate spatial resolution and robustness, the rigidity of the correlation 
windows in conventional correlation methodologies has been proven to be generally 
inappropriate. An innovative interface treatment has been proposed incorporating wall 
adaptivity in an automated manner by gradually increasing the sampling rate in the 
vicinity of the wall, rotating the correlation windows parallel to the interface and reducing 
wall-normal window sizes. When applied to original and morphed flat subsonic boundary 
layer images (Reθ=1900) consistent improvements in resolution and robustness were 
obtained. Even more persuasive was the new ability to discern a recirculation zone near 
the corner of a double compression ramp in a hypersonic (Mach 7) flow, previously 
irresolvable by the conventional approach. 

The interrogation approach with adaptation based on instantaneous conditions proved 
so far to yield convincing results especially in the presence of strong velocity gradients. 
Nevertheless, under circumstances such as sub-optimal flow seeding distribution and 
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large variations in the velocity field properties neither multi-grid techniques nor adaptive 
interrogation offer a robust estimate of the flow field. A variant of the spatially adaptive 
interrogation method is proposed that refines window size, shape, orientation and spatial 
distribution based on the ensemble averaged velocity field and image properties. The use 
of ensemble averaged properties enables the reliable application of non-isotropic 
resolution in contrast to the instantaneous adaptive approach where the latter is 
impracticable. This approach additionally allows to reduce the number of interrogation 
windows without overly compromising the measurement spatial resolution where needed. 
Application to a shock-wave boundary layer interaction flow demonstrated that the 
method correctly selects the regions where most measurement points need to be 
concentrated. A superior refinement ratio with respect to the instantaneous adaptivity was 
found. A dual-resolution experiment in the wake behind a transonic (Mach 0.6) airfoil 
confirmed that the spatial resolution in sheared regions can be significantly enhanced by 
the statistical adaptivity technique, which returned a momentum deficit in good 
agreement with reference data obtained in fully resolved conditions. 

Further applications included within the dissertation elaborately assessed the enhanced 
performances of all adaptive interrogation methodologies discussed over conventional 
techniques. The image data sets consisted of an over-expanded supersonic jet (Mach 
3.75), a hypersonic sphere (Mach 6) and rearward facing step (Reh≈5000). 

Extending the concept of statistical robustness, the application of a well-known 
statistical technique has been proposed for the extraction of mean data in PIV. The 
principle and proficiency were demonstrated through conventional PIV measurements of 
a backward facing step flow (Reh≈5000) and time-resolved measurements in a diverging 
channel (Re=6300). 

 
 

8.2 Perspectives 
 

8.2.1 PIV in the fast lane 
 
The computational power of computers follows an exponential growth. At the rate of a 

doubling in computational performance about every two years, one is tempted to question 
the importance of the proposed doctoral work and stick with conventional routines while 
imposing an over-sampling.  

The development in PIV hardware has not been dormant but has instead been boosting 
in performance owing to the unstoppable technological advancements. Lasers are 
becoming ever more powerful with decreasing pulse durations and are even capable of 
repetition rates of Mega- to Giga-Hertz. Owing to advanced electronics digital CCD 
cameras equipped with 2000×2000 pixels2 sensor areas are becoming more common. Not 
only has the optical spatial resolution improved over the years, so has the temporal 
resolution. Conventional PIV systems based on Nd:YAG lasers and CCD cameras 
typically acquire flow information at a rate of 5 Hz. Now acquisition at rates up to 1000 
times faster. High speed cameras are on the market allowing recording frequencies in the 



186 Summary and perspectives 

order of 20000 frames per second. Albeit such magnitudes of frame grabbing frequencies 
are inherently at the cost of higher levels of shot noise and enlarged dimensions of the 
sensor elements, these cameras may soon be expected to have performances superior to 
present-day standards.  

From this aspect, the amount of retrieved data also grows proportional with hardware 
capacity. Moreover, high repetition systems allow the extraction of time-derivates since 
the measurements are time-resolved and provide the necessary tools for space-time 
correlations, the temporal and 2D spatial tracking of coherent flow structure etc. While 
this aids in understanding the underlying flow phenomena, it also implies an extensive 
and time-consuming data post-processing, despite ever faster computers. Reduction of 
computational effort will therefore always remain pivotal, and as demonstrated, one 
possible way of achieving this goal has been identified as adequately sampling the flow 
with a reduced number of correlation windows. In addition, the optimized interrogation 
parameters will certainly improve spatial resolution and simultaneously the level of detail 
in which the investigated flow can be studied. 

 
8.2.2 An everlasting yearn for more spatial resolution 

 
When it comes to spatial resolution one tendency is clear; one can never have enough. 

The reason is straightforward; the higher the spatial resolution, the better one can resolve 
the smallest scales. One way of improving the optical resolution (i.e. the number of pixels 
per unit of distance) is the application of microscopes. Already long-distance microscopic 
PIV has shown a great potential for the measurement of very small flow scales and for 
high-resolution measurements of the velocity profile close to the wall. Even in these cases 
the significance of the chapter dealing with wall adaptivity retains its momentum as the 
importance of vector relocation and aligning the correlation windows with the wall 
interface were categorically illustrated.  

While applying large magnifications factors is very suited to study isolated flow 
phenomena, the majority of PIV experiments involve sampling all flow scales 
simultaneously i.e. from the macro- to the micro-scale. Here an area of the size of the 
largest scale has to be observed with the resolution of the smallest scale. Wall adaptivity 
has already attested to be capable of improving robustness and resolution near interfaces 
but the consistent advances in digital resolution may provide a second solution. Large 
format cameras with up to 10 million pixels are already available on the market 
increasing the pixel to millimeter conversion ratio. Especially for industrial applications 
this is a more attractive solution since recordings may cover large fields of view with 
adequate resolution to resolve the smaller scales. The general limitations in spatial 
resolution inherent to PIV will still be present though. Tracers must be properly spaced 
though keeping in mind Nyquist’s sampling criterion. Assuming the seeding quality to be 
appropriate, suitable processing parameters will be pivotal owing to the presence of a 
legion of flow scales; too large correlation windows with respect to the flow scale yield 
too strong modulation factors and especially strong velocity gradients require a high 
density of small correlation windows. This is only achievable by means of adaptive 
interrogation and is a valid assertion even for techniques touching the bounds of optical 
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resolution such as Microscopic PIV. From this point of view, the philosophy and ideas 
put forward within this dissertation will undoubtedly gain importance and always be 
advantageous to some degree. 

 
8.2.3 Extended adaptivity 

 
When images are of poor quality accuracy becomes inferior to robustness and a third 

adaptivity criterion is needed†. In case of sub-optimal PIV recordings, ensemble 
correlation has proven to be very efficient but when exactly do we use ensemble 
correlation? How do we know averaging the correlation maps works well when images 
are very noisy (low signal-to-noise), when seeding density is low (low concentration) or 
when the flow is expected to be rather stationary (low acceleration)? The answer is 
experience. Similarly, the experienced user knows that when tracer spacings ‘λp’ are in 
the order of typical correlation window sizes, individual particle tracking will enhance the 
spatial resolution compared to statistical (i.e. correlation) operators‡, but at the loss of 
some precision. Additionally, if hybrid tracking techniques are excluded because of the 
low seeding concentration, the tracer displacements ‘∆x’ must be smaller than the spacing 
between tracers to restrict ambiguity in particle pairing. To retain a sufficient probability 
in detecting the individual particle image and with sufficient accuracy, the image noise 
must be within bounds (high signal-to-noise ratios). Neural networks can be trained to do 
the decision making for us (Grant and Pan, 1997) but a sequence of yet undefined criteria 
will be required to direct the network’s choices. An exemplary flowchart capturing the 
tendencies mentioned above is outlined in Fig. 8.1 taking into account the source density 
’NS’, image density ‘NI’ (cf. Chapter 1), signal-to-noise ratio ‘SNR’, flow acceleration 
‘utt’, particle displacement ‘∆x’ and tracer spacing ‘λp’.  

Here adaptive interrogation may provide a relaxation in dependency on the a-priori 
unknown flow velocity and acceleration in that it is able to yield autonomously more 
robust velocity estimates with a higher resolution compared to conventional interrogation 
procedures. In turn, the selection of proposed interrogation procedures in Fig. 8.1 can be 
reached within a recursive structure where the adaptive routine encompasses all 
techniques. Statistical adaptivity already attested to be suitable under sub-optimal 
conditions and it will only be a slight step to further incorporate particle tracking. Given 
that acceleration, concentration and image quality may show spatial variations throughout 
an image, so will the eventually adopted correlation technique (standard vs. ensemble 
correlation, window vs. single point ensemble correlation, correlation vs. particle 
tracking) thus adding an extra degree of adaptivity. 

 

                                                      
† The first two criteria refer to flow and signal adaptivity 
‡ Recall that the need of in average at least 7 particle image doublets per correlation window to 
retrieve reliable correlation functions (Keane and Adrian, 1992) directly prescribes the lower 
bound in window size. 
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Fig. 8.1: Example flowchart relating imaging, seeding and flow conditions to the preferential 
correlation technique (E-PIV stands for Ensemble PIV). 

 
Not only PIV hardware undergoes evolution, but also the PIV technique itself. In his 

quest to understand the physics behind his observations the experimentalist has 
unrelentingly attempted to maximize the information quantity extractable from the PIV 
measurements. Seeing that originally the PIV technique yielded two velocity components 
within a plane while the majority of applications involve fully three dimensional motion 
and temporal evolutions, a multitude of PIV variants have arisen such as Stereo-PIV to 
measure the third velocity component and  Time-Resolved PIV to have temporal 
resolution. The principle of all the techniques remains the same however; extracting 
information from the recordings. Concomitantly, the proposed philosophy of adapting the 
image interrogation to both flow and seeding conditions remains applicable. The 
advantage of the improved techniques with respect to their classical variant is the 
availability of additional information to make the adaptive procedure more robust.  

In time-resolved PIV use is already made of the temporal resolution to enhance the 
measurement dynamic range and accuracy (Hain and Kähler, 2006). In stereoscopic PIV 
two cameras image the illuminated flow particles from different angles, which may aid in 
the signal quantization since the influence of random camera noise can be minimized. 
Moreover, quantitative estimates of the out-of-plane velocity may be incorporated in 
adequate sampling of the flow. The more out-of-plane motion, the larger the correlation 
windows since the inherent loss of tracers degrades the correlation signal and 
consequently the measurement reliability and accuracy. Such a procedure where the 
correlation windows are adapted to the measurement error and velocity gradients has 
already been proposed by Becker et al. (2008). Combining such an approach with signal 
adaptivity will be arduous though because of user ambiguity coming back into play; one 
user is keen on retaining accurate measurements even if it means sacrificing resolution 
while another praises resolution despite a loss in accuracy.  

 
8.2.4 Adaptivity philosophy in 3D 

 
The main limiting factor for the planar approach consists in the fact that the motion 

across the plane cannot be represented as accurately as the motion within the plane. This 
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drawback, and because of the technological advances in PIV hardware, has lead to the 
development of the 3D (or 4D) metrology (time-resolved) tomographic PIV (Elsinga et 
al., 2006). This technique yields a fully three-dimensional representation of the velocity 
field related to the observed phenomenon. In view of the sparse nature of the seeding 
distribution in Tomo PIV and the possibility of a fully three dimensional flow 
characterization, the adaptivity criteria proposed within this thesis may yield an 
improvement in the 3D spatial resolution which currently is rather limited. Moreover, as 
adequate sampling locations can be chosen, the number of correlation volumes can be 
reduced which leads to a further decrease in computational time. In the 2D PIV variant, 
the adaptive algorithm is currently based on seeding concentration estimates obtained 
from an identification of the individual particle images. These estimates are not trivially 
obtained from the reconstructed tomographic particle image distributions due to parasitic 
reconstruction artifacts in the form of so called ghost particles. Without doubt these will 
introduce erroneous concentration estimates leading to false boundaries in sampling 
volumes. Therefore it is essential to define a signal adaptivity criterion based on a 
different set of criteria rather than counting individual particles. Furthermore, in planar 
PIV the velocity gradients are a good measure of the involved flow length scales 
Tomographic PIV results contain a fully three dimensional representation of the flow 
velocity distribution which allows flow adaptation to be more precise if the related 
criteria are redefined. 

Further accuracy and resolution improvements are expected by extending (now 
standard) 2D processing schemes to volume processing. Such a line of thought is 
followed in Appendix C where the feasibility of 3D weighting functions is investigated. 
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APPENDIX A 
 
 
 
 

ADAPTIVE IMAGE EVALUATION: LITERATURE 
SURVEY 

 
 
 

Abstract 
 

The following appendix elaborates on the implementation of the adaptivity criteria and 
interrogation routines presented in Chapter 4. Various methodologies covering signal 
quantization, data interpolation and vorticity eduction are briefly discussed and evaluated based 
on their conduciveness for the applications presented within the thesis framework. Particle 
identifications proves to be the most straightforward and consistent approach in the determination 
of the signal content. Because of its robustness and locality Natural Neighbour interpolation has 
been selected for redistribution of data while Least-Squares polynomial fitting of velocity data 
with a 7×7 base kernel ensures smooth and accurate vorticity estimates.  

 
 
Nomenclature 
 
λ eigenvalue 
∆ grid/sample spacing (pixels or meters) 
ωbias bias error in vorticity (pixel/pixel or Hz) 
ωexact exact vorticity value (pixel/pixel or Hz) 
ωz out-of-plane vorticity component ; ωz=∂v/∂x - ∂u/∂y (pixel/pixel) 
dp particle image diameter (pixels) 
G intensity derivative matrix 
h step height of the backward facing step (meter or pixels) 
Imin,max minimum, respectively maximum pixel intensity 
Inoise noise intensities 
Ipart particle intensities 
L characteristic length scale (arbitrary unit) 
Np number of particle images 
NS source density 
ufit,vfit velocity components obtained through fitting (pixels or m/s) 
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var(X) variance in variable X (arbitrary unit) 
<X> ensemble average value of variable X (arbitrary unit) 
 
 
A.1 Introduction 
 

In Chapter 4 an adaptive image interrogation procedure was proposed. Opposed to the 
classical approach where correlation windows are placed on the nodes of a structured 
Cartesian grid, the sampling locations are projected in the interrogation domain following 
a probability density distribution. One of the parameters describing this pdf is the amount 
of signal contained within the image. In PIV the signal relates to recorded particle images 
as they constitute the fundamental sampling of the unknown velocity distribution. Their 
number plays an important role in the robustness of the image analysis. Interrogation 
windows must contain a certain number of particle images to yield a reliable correlation, 
which imposes stringent limitations on the window dimensions and inherently the 
potential spatial resolution. A method of quantifying the source density is therefore in 
order. This is the topic of discussion in the first paragraph. 

Once the velocity estimates are retrieved, redistribution onto a structured grid is often 
compulsory to facilitate the post-processing. The implemented PDF-weighted projection 
of the sampling locations inherently signifies an additional complexity since the samples’ 
spatial separation no longer follows an analytical description, a bottleneck typically 
encountered in e.g. LDV measurements. Similar problems have been tackled in the 
geodesic and meteorological community where measurements are always unevenly 
spaced be it across the globe surface or in altitude. An array of interpolation techniques 
exist which, and this is akin to vorticity estimates, each has optimal performances under 
specific conditions. In the current framework the implemented routines must be as 
general and globally applicable though. One therefore has to keep in mind, that the 
chosen procedures for data interpolation and vorticity estimation within this reported 
work might not be optimal for specific conditions but that they offer a broadly applicable 
solution. 
 
 
A.2 Signal quantization 
 

In the following a closer look is taken at advantages and disadvantages of estimators 
for the signal density alternative to straightforward particle image segmentation. 
 
A.2.1 Feature tracking 
 

PIV has a close resemblance to feature tracking given that the correlation operator 
searches for a minimum in disparity between two intensity distributions. According to 
Okutomi and Kanade (1992) precise determination of disparity in feature tracking is 
difficult though and unreliable either due to insufficient signal variation relative to noise 
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or too much disparity fluctuation within the window. Shi and Tomasi (1994) therefore 
select features providing sufficient information for the measurement and having high 
probability of success in tracking based on the eigenvalues of the intensity derivative 
matrix presented in equation (A.1) (taking only affine motion into account). 
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Fig. A.1: Computer generated images of (a) white noise (b) a typical PIV image. (c) Computed 
eigenvalues according to (A.1). Full and hollow symbols refer to respectively the noisy and typical 
PIV image. 
 

Both eigenvalues must be large to ensure sufficient exclusion of image noise 
influences. Small eigenvalues imply a uniform intensity profile while large values 
indicate a pattern which can be tracked reliably. The ratio of eigenvalues should remain 
however close to unity to avoid unidirectional intensity profiles. From this point of view, 
the considered eigenvalues could in principle serve as an indicator of the amount of signal 
available and allow an estimate of the appropriate correlation window size. This approach 
has however several important drawbacks. As can be deduced from the diagram in Fig. 
A.1, eigenvalue ratios close to unity are obtained not only for typical particle images, but 
also for randomized pixel intensities, i.e. white noise. Both image types yield eigenvalues 
with quadratic dependency in window size. A threshold criterion is therefore the only 
measure of discriminating between noise and signal of interest. The criterion will 
however be case-dependent, impeding the current objective of global signal adaptation. 
The strong reflections encountered near the boundary of a submerged body during PIV 
experiments are accompanied by a high and low eigenvalue due to their edge-like 
appearance. This will additionally hamper the use of a global threshold throughout the 
image and will furthermore cause selected windows to be concentrated near the interfaces 
leaving the bulk flow under-sampled. Moreover, no adequate window size can be inferred 
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from the depicted relation between eigenvalues and window size while it is well-known 
from Keane and Adrian (1992) that the lower limit in size is prescribed by the number of 
tracer images necessary to yield a reliable correlation.  
 
A.2.2 Image statistics 
 

Though the most straightforward estimate of seeding concentration can be based on the 
recorded intensity amplitudes† (Garcia et al., 2002), the involved technique suffers from 
numerous sources of measurement error (Stitou, 2003). Such errors include effects of 
electronic noise, the truncation of particle images due to the finite dimensions of the 
sliding analysis area, the out-of-plane extension of the light sheet, the dependency of the 
scattered intensity on the observation angle, etc. Instead, given ideal recording conditions 
(i.e. in absence of noise) and mono-phase PIV images Westerweel (2000) expresses the 
source density ‘NS’ in terms of the image contrast defined as the ratio between intensity 
spatial variance and mean intensity (A.2). Monte Carlo simulations based on computer 
generated images verify this relation (Fig. A.2). 
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Fig. A.2: Evolution of image contrast vs. source density for different particle image diameters in 
case of ideal computer generated PIV images. 

 
                                                      
† The denser the seeding, the brighter the image and vice versa. By measuring the total intensity 
captured by a window moving across the recorded image, the seeding concentration can be 
estimated. 
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Based on (A.2) the number of recorded particle images ‘Np’ can be evaluated after 
introduction of the particle diameter ‘dp’. In practice the particle image diameters are 
unknown a-priori but can be assumed to vary around 3 pixels in mean value as this is the 
most common value and smallest size to minimize the peak-locking effect (Westerweel, 
1998). Although the approach has been successfully applied (Theunissen et al., 2005), 
typical recording conditions are far from ideal. Since parasitic image noise and the signal 
particle image intensities are uncorrelated stochastic variables, the image contrast will 
involve both mean and RMS noise level (A.2). As a result, estimation of source density 
from the image contrast becomes impossible due to the present inability of accurate noise 
characterization.  
 
A.2.3 Particle image segmentation 
 

The methodologies discusses above both offer the advantage of speed and are very 
adequate in estimating the amount of signal providing the image recording is not 
degraded by noise. Although cameras are nowadays equipped with cooling thereby 
reducing the thermal noise, parasitic noise influences stemming from the experimental 
facility itself (e.g. spurious light sources, reflections, etc.) are not so easily wavered. As a 
result, a more robust technique must be adopted and one of the possible candidates is 
straightforward particle identification. Although it has been many a subject of discussion 
and research in particle tracking techniques, one must bear in mind that the present issue 
is not accuracy, but robustness. Accurate particle localization is only essential to have 
precise velocity estimates when tracking individual tracers. The implemented particle 
segmentation routine is described in further detail in Chapter 3. 
 
 
A.3 Data interpolation 
 

This paragraphs aims at scrutinizing several popular data interpolation schemes 
abundantly available in literature. Interpolation by means of global basis functions† will 
be discarded because of their high dependency upon the measurement density (Spedding 
and Rignot 1993). Turning therefore to weighted interpolation, the interpolated value ‘fP’ 
at location ‘P’ can in general be rewritten as an average of ‘n’ neighboring data values 
‘fi’, weighted by coefficients ‘wi’ whose definition depends on the adopted interpolation 
scheme;  
 

∑
=

=
n

1i
iiP fwf  (A.3)

                                                      
† The basic idea is to select a basis function ‘Fi’ and determine the coefficients ‘wi’ based on the 
given data points ‘fi’ such that the interpolated value is given as ‘fp=∑wi·Fi’. The difficulty lies in 
the appropriate selection of ‘Fi’. An example of such a basis function are Splines.  
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A.3.1 Adaptive Gaussian Windowing averaging (AGW) 
 

In the popular adaptive Gaussian window averaging methodology proposed by Agüí 
and Jiménez (1987), weighting coefficients are derived from a Gaussian kernel centered 
on the point of interest. The window size was prescribed as 1.24 times the unstructured 
sample spacing (i.e. particle image spacing), independent of the characteristic length scale 
of the assumed sinusoidal-like flowfield. Having to sum over all samples within the 
observation volume can introduce however a considerable smoothing due to the inherent 
non-locality of the scheme (Spedding and Rignot, 1993). In particle tracking related 
measurements, the limited bandwidth of the interpolation method can however be 
advantageous in reducing the influence of the random error (Theunissen et al., 2004)  
 
A.3.2 Polynomial fitting 
 

Cohn and Koochesfahani (2000) considered the concept of polynomial fitting which 
can be rewritten in the form of equation (A.3) through Lagrange’s formula (Press et al., 
1992). They concluded a 4th order polynomial to produce the most accurate remapping. 
However, for this least-squares fit to be well determined, at least 81(!) samples would 
have to be taken into account, disabling the reconstruction of high frequency fluctuations 
due to smoothing. Instead a second order polynomial would be more favorable at the 
expense of only a slight increase in bias and rms errors providing fulfillment of the 
Nyquist sampling criterion. The latter agrees with the findings of Jiménez and Agüí 
(1987) and Stüer and Blaser (2000) who both conclude lower order interpolation to yield 
suitable performances at adequate sampling densities compared to higher order schemes. 
Concluding, the strict requirements on original velocity data density inhibits a universal 
applicability of polynomial fitting; each sample spacing prescribes an optimal order of the 
polynomial which in turns goes with an ideal extent of the fitting base. 
 
A.3.3 Kriging interpolation 
 

Kriging interpolation involves a set of linear regression routines, minimizing the 
estimation variance from a predefined covariance model (Jones et al., 2003). From the 
scatter point set to be interpolated, a variogram is constructed through determination of 
the variance† of each point with respect to the other data points as a function of their 
inner-distance. Based on the model variogram, which mathematically describes the trend 
in the experimental variogram‡, the interpolation weights are computed. The fact that as 
such the degree of correlation between samples is taken into account, thereby minimizing 

                                                      
† The variogram used here is defined as ( ) ( ) ( )∑ −=∆γ ∆

2
jiN

1 uu ; the variogram for a particular 

sample spacing ‘∆’ is the averaged difference squared of the velocity or displacement values over 
all the data pairs separated by approximately that spacing.  
‡ e.g. a straight line, an exponential function, etc. 



A.3 Data interpolation 211 

the influence of redundant information, makes kriging an interpolation method worth the 
interest. The variograms of three locations in the case of a backward facing step (step 
height ‘h’ based Reynolds number Reh=5000) is depicted in figure A.3-a. Point ‘a’ is 
located within the free stream while ‘b’ and ‘c’ are situated within the shear layer and 
boundary layer respectively. The corresponding variograms in Fig. A.3-b show a rather 
smooth evolution up to a normalized sample spacing of around 0.8, 0.5 and 0.4 
respectively, after which the tendency becomes erratic. A model variogram taking into 
account all samples will therefore not yield an apposite representation of the degree of 
correlation between the neighboring points. Instead the number of neighboring samples to 
consider is critical and appears to be dependent on the character and spatial location 
within the flow. Furthermore, the determination of the experimental and model variogram 
must be repeated for each velocity component of the nodes within the unstructured grid, 
which then allows the derivation of the weights. As mentioned by Sibson (1981), the 
computational effort thus involved makes the technique quite unattractive.  
 

 
(a) (b) 

Fig. A.3: (a) Backward facing step flow at Reh≈5000. Contours of the horizontal velocity 
component, expressed in pixels (b) Variogram of points ‘a’, ‘b’ and ‘c’. ‘h’ and ‘∆’ denote the step 
height and sample spacing respectively. 
 
A.3.4 Natural Neighbor interpolation (NN) 
 

In view of the data density variation, natural neighbor interpolation (NN) will prove to 
be a more robust and conducive interpolant as remarked by Amidror (2002). Natural 
neighbor interpolation overrides the classical attribution of larger importance/weights to 
closer nodes compared to those placed at larger distances by defining the weights by an 
appropriate measure of the occupied space. Weights are based on both topological 
relationships and areas of influence, making the approach local (Sibson, 1981). Further 
properties of NN interpolation include linear completeness; constant functions and 
original data at the reference nodes are exactly reproduced. Furthermore, the interpolation 
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schemes guarantee smoothness (hence continuous differentiability) everywhere with 
exception of the nodes. Further details on the implementation can be found in Chapter 3. 

 
 

A.4 Post-processing: vorticity calculation 
 

If the vorticity field is known, a great deal of information can be obtained about the 
investigated flow. Metrologies have been reported in literature rendering velocity 
estimates superfluous (Ruan et al., 2003); rather than extracting the out-of-plane vorticity 
component from the estimated velocity distribution, the average rotational angle of 
particles from one pattern into its counterpart from consecutive particle recordings is 
evaluated. The current objective is however to estimate the vorticity field with reasonable 
accuracy from PIV-based velocity measurements, discarding momentarily the filtering 
effect of the underlying velocity field as a result of the limited spatial resolution inherent 
to the finite interrogation window (Pierce and Delisi, 1995). 
 
A.4.1 Differential schemes 
 

Besides techniques incorporating the philosophy of Stokes’ theorem and the definition 
of circulation (Raffel et al. 1998, Luff et al. 1999, Graftieaux et al. 2001), numerical 
derivative calculations are ingrained in the estimation of vorticity. Foucaut and Stanislas 
(2002) characterized the performance of a variety of differential schemes in the extraction 
of the out-of-plane vorticity component. As anticipated by Lourenco and Krothapalli 
(1995), the optimal choice of derivative filter in the deduction of vorticity turned out to be 
linked to a-priori knowledge of vortex characteristics, spatial resolution and measurement 
noise. Overall, the second-order central difference scheme presented the best trade-off in 
performance between bias and random error in vorticity at the expense of erratic vorticity 
fields due to noise amplification (Raffel et al., 1998). The latter is attested in Fig. A.4 
considering the vorticity contours of an Oseen-Lamb vortex field (201×201 pixels2 field 
of view, 60 pixels core radius and peak vorticity of 0.2 pixels/pixels) superimposed with 
random displacement noise of maximum 0.01 pixels in amplitude.  
 
A.4.2 Least-squares fitting 
 

In an attempt to reduce the error’s dependency on sampling resolution and random 
measurement noise Etabari and Vlachos (2005) propose a 4th order noise-minimizing 
compact-Richardson scheme after extensive comparison of differential schemes. An 
alternative approach towards reducing the effect of noise can be achieved by fitting an 
analytic polynomial to the discrete velocity field in a least-squares sense (Cohn and 
Koochesfahani 2000, Fouras and Soria 1998). To achieve a second order accuracy, it is 
assumed that the displacement field is well described locally by a second-order 
polynomial. The derivative is then obtained by an analytical derivation of the fitted 
function.  
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(a) (b) (c) 

Fig. A.4: Vorticity contours (a) imposed (b) obtained through 2nd order central difference (b) least-
squares fit (21 points). 
 

 
Fig. A.5: Normalized peak bias vorticity error (hollow) and random error transmission ratio 
(filled) as function of the normalized velocity sampling resolution. 
 

All studies manifest the opposing dependency of the bias error in vorticity peak and 
random vorticity error with normalized sampling resolution dependency. The normalized 
spatial sampling resolution is here defined as the number of sampling points with spacing 
‘∆’ per characteristic flow scale ‘L’. Low resolution leads to low random vorticity errors 
but higher bias errors at the peak vorticity location while the converse applies at high 
resolutions. The tendencies are graphically captured in Fig. A.5 where the bias error in 
vorticity and the transmission coefficient for the random vorticity error are plotted in 
function of normalized sampling resolution. The transmission coefficient represents the 
amplification of the velocity random error in the vorticity estimation. Although the 
proposed 4th order compact derivation of Etabari and Vlachos (2005) yields the lowest 
bias in peak vorticity providing an adequate sampling (Fig. A.5), the scheme requires an 
extensive stencil size (81×81). This questions the achievable final resolution considering 
the assessment was performed on isolated vortex models. Fig. A.5 further attests second-
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order central differentiation of the discrete velocity field to yield an adequate choice in 
derivation scheme. However, in this work the least-squares approach has been deemed 
more suitable as it offers comparable error-related properties while omitting noise 
amplification inherent to derivative operations (Fig. A.4-c). Having redistributed the 
unstructured data towards a Cartesian grid of spacing ‘h’, datapoints lying within the 
isotropic rectangular grid extending two to three grid spaces from the point of interest are 
taken into account in the determination of the coefficients defining the applied parabolic 
model functions (Lourenco, 2000);  
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Following the procedure described by Fouras and Soria (1998), the dependency on 

sampling resolution of the random error transmission ratio and vorticity bias error for the 
afore-mentioned model functions are depicted in Fig. A.5.  

 
As a first additional remark, the least-squares operator does not require the velocity 

vector field to be sampled on an evenly spaced grid contrary to finite differencing, which 
in the present case can be of great benefit.  

Second, the natural neighbor interpolation allows a direct computation of the first order 
derivatives (Miozzi, 2005). Nevertheless, smoother results for derivative operations were 
obtained by 2nd order least-squares fitting.  

Third, Dong and Meng (2001) propose an original technique deploying the Chebyshev 
spectral method. While combined with the Chebyshev noise processing procedure, the 
accuracy in vorticity estimation is greatly enhanced in comparison to the least-squares 
method, the technique requires a specific distribution of the original grid points rendering 
the methodology solely suitable for wall-bounded flows. 



215 

 

APPENDIX B 
 
 
 
 

PIV RESOLUTION ACROSS NORMAL SHOCKS 
 
 
 

Abstract 
 

Particle inertia is the primary factor limiting the achievable resolution in PIV when dealing 
with strong velocity discontinuities such as shock-waves. The appendix therefore starts with a 
recapitulation of the equations quantifying the particle response to a normal shock-wave. 
However, even if the particles respond perfectly, the finite resolution inherent to the interrogation 
process influences the achievable spatial resolution. These resolution limits are evinced by a 
simplistic model of the correlation operator as a moving average filter. Monte-Carlo simulations 
however show the shock response of the image evaluation methodology to be better than the 
simplistic representation. In addition, an automated routine is proposed to extract shock position 
and particle relaxation distance from the measured velocity distribution. 

 
 
Nomenclature 
 
δs shock thickness (meters or pixels) 
∆ difference between estimated and measured relaxation distance (pixels) 
µ dynamic fluid viscosity (kg⋅m-1⋅s-1) 
ν kinematic fluid viscosity (m2⋅s-1) 
ξ particle relaxation distance (pixels or meter) 
ρ flow density (kg⋅m-3) 
ρp particle density (kg⋅m-3) 
τ particle relaxation time (seconds) 
a speed of sound (m/s) 
CD particle drag coefficient 
dp particle diameter (pixels) 
M Mach number upstream and downstream of the shock respectively 
Rep particle Reynolds number (Rep=dp⋅V⋅ν-1, with V the relative velocity between 

particle and fluid) 
tp tracer travel time starting from shock position (seconds) 
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un shock-normal flow velocity (pixels or m/s) 

nu  measured flow velocity through cross-correlation (pixels or m/s) 
un

* normalized velocity jump across shock 
up tracer velocity (pixels or m/s) 
W Lambert function 
WS correlation window size (pixels) 
x distance (pixels or meter) 
xξ measured relaxation distance (pixels or meter) 
xp distance downstream of shock, traveled by tracers (pixels or meter) 
xr random location (pixels) 
xs measured shock location (pixels) 
 
Subscripts 
1,2 upstream and downstream of the shock  
e estimated value from fitting procedure 
 
 
B.1 Introduction 
 

Supersonic flows are characterized by the presence of shock-waves and expansion 
waves across which the flow properties and streamlines change in a discontinuous 
manner in contrast to the smooth, continuous variations in subsonic flows. These 
discontinuities are further emphasized by strong gradients in density, both spatial and 
temporal, and are thus easily distinguishable within the captured recordings. A shock 
wave has a finite but very small thickness caused by packing of the molecules during the 
compression process. Traversing the shock, the fluid tries to redistribute density, pressure, 
velocity etc. evenly; a process governed by fluid viscosity. In fact the shock thickness ‘δs’ 
can be expressed in terms of upstream fluid viscosity and velocity jump (Kundu and 
Cohen, 2002); 
 

u
~s
∆

ν
δ  (B.1)

 
For a Mach number of 6 at sea-level conditions (ν= 1.46⋅10-5m2/s, a∞=340.29m/s) this 
results in a normal shock thickness of approximately 8 nano-meters (8⋅10-6 mm). In other 
words, over 8 nano-meters the velocity jumps from 2042m/s to 388m/s (cf. equation 6.3). 
Adequate optical resolution where the shock would cover at least one sensor element (1 
pixel ≈ 6⋅10-6m) would require almost impossible magnification factors in the order of 
103. In practical terms, the flow variation across a shock will therefore appear as a 
discontinuity of infinitely small thickness in the PIV image recordings.  
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The eduction of flow velocities with the PIV technique is based on the interrogation of 
the particle image recordings by means of correlation windows which should contain a 
sufficient number of particles images to ensure reliability in the results. Consequently, 
one of the limitations in the techniques’ spatial resolution is defined by the spatial density 
of particle images. This poses a problem considering non-uniform particle seeding 
densities because of the compressible flow features. The velocity returned from the 
correlation operator common in PIV image analyses is inherently an ensemble average of 
the particle velocities. The degree to which the instantaneous velocity distributions are 
spatially low-pass filtered depend on the size of the correlation windows. Additionally, 
due to the finite time response of the tracers (Melling, 1997), the exponential decay of the 
tracer velocity in case of steep velocity gradients (e.g. across a shock wave) causes the 
measured flow velocity discontinuity to be smeared.  

The two main limits in achievable resolution with PIV i.e. tracer inertia and image 
interrogation are discussed within this appendix. It goes without saying that experimental 
parameters such as recording frequency and exposure time (Scarano, 2008), not to 
mention the aberrations stemming from gradients in refractive index (Elsinga et al., 2005) 
are of importance too as they have a strong influence the correlation quality. However, a 
treatise on their influence would fall beyond the scope here and is accordingly discarded. 
Throughout the following elaboration, conditions identical to those reported for the 
hypersonic sphere (cf. Chapter 6) will be applied. 
 
 
B.2 Tracer response 
 

When neglecting buoyancy, gravity and external forces the steady state particle 
trajectory is prescribed as 
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where ‘τ’ represents the characteristic particle relaxation time, ‘u’ the fluid velocity and 
‘up’ the particle’s velocity†. In case of a shock with normal velocities ‘un1’ and ‘un2’ 
respectively upstream and downstream, consecutive integration of equation (B.2) yields 
the following expressions for particle velocity and position in function of time ‘tp’; 
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† Note that under Stokes conditions the drag coefficient CD=24/Rep which after substitution gives 
back equation (1.3) 
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Both equations can be combined to eliminate the terms containing ‘tp’ and express the 
velocity discontinuity across the shock in terms of the particle position; 
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where ‘W’ refers to the Lambert W function† and the included velocity ratios are 
prescribed by normal shock relations. Because this equation does not have a readily 
available solution, the particle’s response in PIV applications is conveniently quantified 
by the relaxation distance ‘ξ’ required for the particle velocity lag after the shock to be 
reduced by a factor e-1 (Melling, 1997); 
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Quantifying the relaxation length itself is accomplished through substitution of ‘tp’ by 

‘τ’ and ‘xp=ξ’ in equation (B.3).  
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(a) (b) 

Fig. B.1: (a) Velocity jump across a normal shock in function of relaxation length and time (b) 
Experimental velocity jump across a shock (hypersonic sphere cf. chapter 7). 
 

                                                      
† Equation (B.3) can be simplified into the form ‘a⋅ln(y)-y =b’ where ‘y=e-tp/τ’ with the solution 
‘y=-a⋅W(-a-1⋅eb/a)’. 
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An example is shown in Fig. B.1-a for a Mach 6 flow (un2/un1=0.1898) with an 
upstream velocity of 1780m/s. Relaxation length was set to 2.6mm translating into a 
relaxation time of 2.1µs. As illustrated, even in case of an ideal normal shock, particle 
inertia will prevent the measurement of an infinitely thin shock thickness. If the upper 
shock bound can be estimated by assuming the velocity ratio ‘(un-un2)/ (un1-un2)’ to have 
been reduced to e-4 (or ‘tp=4⋅τ’), the measurable shock thickness can be expressed as in 
(B.7). For this example it yields ‘ 4es −δ =6.5mm’. 
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In Fig. B.1-b the shock-normal velocity profile for the hypersonic sphere (cf. Chapter 

6) is repeated. The blue dashed line indicates the particle relaxation velocities defined by 
equation (B.5). The relaxation length can readily be extracted from the graphs as the 
intersection between the measured and relaxation velocity. Once ‘ξ’ is known, inversion 
of (B.6) leads to the relaxation time.  
 
 
B.3 Image evaluation limits to PIV shock resolution  
 
B.3.1 Model shock response for ideal tracers 
 

In practice, the physical dimensions of the shock thickness are negligible to those of 
the correlation windows, allowing the velocity jump across to be considered ideal. In its 
basic form, the correlation operator applied in PIV to estimate the tracer displacement 
within an interrogation window has a spatial response similar to that of a moving 
averaging filter. With the sketch in Fig. B.2-a and taking into account variations in 
density across the shock to weigh the up- and downstream velocities, the returned mean 
velocity by the linear operator is analytically given by  
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Addressing continuity and normal shock relations, the normalized velocity jump is 
simplified to  
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Equation (B.9) has been graphically represented in Fig. B.2-b simulating the ideal case 
(gradients across the shock are described by a step function) with an upstream Mach 
number of 6. With increasing window size the shock resolution worsens; the shock 
thickness is identical to’ WS’. Effects of finite resolution are more pertinent upstream 
compared to downstream. 
 

 
(a) (b) 

Fig. B.2: (a) Correlation window of area ‘WS
2’ overlapping an infinitely thin normal shock 

(dashed line) with upstream velocity, density and Mach number respectively ‘un1’, ‘ρ1’ and ‘M1’. 
The geometrical center of the window is indicated by ‘●’. (b) Evolution of normalized velocity 
across a normal shock (M1=6) according to (B.9) (conversion factor: 86.6µm/pixel). 
 
B.3.2 Interrogation intrinsic shock response for ideal tracers 
 

Monte-Carlo simulations have demonstrated the spatial response, even of the 
conventional interrogation method, to be superior to that of a moving averaging filter. To 
quantify the enhanced performances in case of a normal shock, the interrogation routine 
described in Chapter 2 has been applied to synthetic PIV images. Computer generated 
images simulated the case of a normal shock with freestream Mach number 6 taking into 
account gradients in density (ρ2/ρ1≈5.3) and velocity (Fig. B.3-a). The upstream flow 
contained a concentration of 0.1ppp of particle images 3 pixels in diameter. Tracers were 
assumed ideal (0 relaxation length). The interrogation was performed within a recursive 
structure imposing window overlap coefficients of 0.9 to avoid resolution limits imposed 
by inadequate vector spacing. 

Although not presented, simulations involving various shock strengths resulted in non-
dimensional velocity profiles almost identical to those displayed in Fig. B.3. With the 
analytical profiles according to (B.9) overlaid, Fig. B.3-b attests to the non-linear 
character of the correlation operator. For a window size of 11 pixels good agreement is 
observed with the analytical solution. While a general strong disparity is present in 
velocity evolution, the general tendency remains evident nonetheless; larger correlation 
windows yield poorer spatial resolution. Similar to the theoretical analysis above, 
resolution effects are most pronounced upstream of the shock.  
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In case of ideal flow seeding particles the achievable spatial resolution can be roughly 
scaled with the interrogation window size. For the current case of the hypersonic sphere, 
the shock thickness was estimated to be around 6.5mm (B.7). According to Fig. B.4 the 
shock is smeared over one window size as a result of purely the PIV image analysis. In 
case of small interrogation areas, the main factor limiting the achievable resolution across 
the normal shock will thus be the tracer response function. 

Regarding the response of the correlation approach to the discontinuity in velocity and 
density, each of the plotted velocity profiles contains undulations which tend to increase 
in wavelength and amplitude proportional to the correlation window size. These 
oscillations are inherent to the applied local velocity predictor filtering. Although not 
presented, the ringing disappears when adopting the integral predictor (Scarano, 2004). 
Typically, a local displacement predictor is chosen for nevertheless since it will generally 
yield higher accuracy. 
 

 

 
(a) (b) 

Fig. B.3: (a) Computer generated PIV image simulating a normal shock (M∞=6) (b) Shock 
response of the interrogation metrology described in Chapter 2 imposing different window sizes 
(conversion factor: 1pixel = 86.8µm). Solid black lines correspond to Fig. B.2-b. 
 
B.3.3 Model shock response for real tracers 
 

Fig. B.4 integrates particle response and moving averaging (correlation) operator, once 
again for the case of a Mach 6 flow with an upstream velocity of 1780m/s and particle 
relaxation length of 2.6mm. For the smaller window sizes i.e. WS=11, 31pixels, the 
measured profile covers 6 to 2 window lengths starting from the estimated shock location 
(x=0mm) respectively before attaining the flow velocity downstream. Velocity gradients 
are reduced with respect to Fig. B.2-b stemming from a smooth particle path allowing a 
more accurate representation. About half a window size upstream of the normal shock, 
measured velocities start to decrease as a result of the averaging effect. Compared to Fig. 
B.2 the effects of finite spatial resolution are less prominent.  
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Fig. B.4: (Red line) Simulated particle velocity (2.6mm relaxation distance) in case of a normal 
shock with 1780m/s upstream velocity (Mach 6) following equation (B.4). Symbols simulate the 
particle velocity including resolution effects (i.e. moving average filtering). 
 
 
B.4 Shock position retrieval 
 

The seamless transition between upstream flow and shock response shown in Fig. B.4 
caused by averaging inhibits an accurate localization of the original discontinuity. 
Furthermore, the byzantine Lambert function of (B.4) does not lend itself very well to a 
functional fitting. Consequently, neither the particle relaxation length ‘ξ’ nor time can be 
explicitly inferred from the obtained velocity profiles without a user-defined shock 
location. 

An iterative procedure is proposed to estimate the shock position and relaxation time 
automatically based on the knowledge of an exponential decay in normalized velocity 
with particle travel time. The different steps in the routine are itemized below, starting 
from the measured spatial evolution in velocity and shock normal velocities up- and 
downstream;  
a..  A point ‘xr’ sufficiently upstream of the shock is randomly picked and will serve as 

future reference for the estimated particle relaxation length ‘xξ’ (Fig. B.5). 
b. A first estimate of the shock location is made. If ‘xs’ denotes the shock location with 

respect to ‘xr’ then the particle will travel a distance ‘x=xp+xs’ in a time ‘t=tp+ts’ with 
‘ts=xs/un1’(Fig. B.5). Note that ‘xp’ is given by (B.3). 

c. The distance ‘xξ’ can be readily extracted from the measured velocity profile across 
the shock according to the e-1 criterion. With ‘xs’ estimated with respect to the 
reference point ‘xr’, the relaxation length ‘ξ’ can be calculated as ‘ξ=xξ-xs’. 

d. (B.6) converts the relaxation length into a relaxation time ‘τ’. 
e. Since ‘xp=x-xs’ and ‘tp=t-xs/un1’, (B.3) can be defined in terms of variables ‘x’ and ‘t’. 

Solving (B.3) for ‘t’ effectively transforms the measured velocity profile from the 
spatial domain into the time domain, similar to Fig. B.1-a.  

f. Because the tracer velocity behind the shock location follows an exponential function 
(B.3), the measured velocity profile, which is now transformed to vary with time, can 
be fitted with ‘e-t/τe’. 
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g. This results in a new estimate for the particle time response ‘τe’ and the relaxation 
distance ‘ξe’ using (B.6). 

h. The discrepancy ‘∆’ between the estimates relaxation distances ‘ξe’ and ‘ξ=xξ-xs’ is 
then used to update the shock location estimate ‘xs’. The routine re-iterates from step 
b until convergence in ‘∆’ is reached. 

 

 
Fig. B.5: Graphical representation of the most important variables in the iterative procedure to 
estimate shock location and particle relaxation distance from measured data. 
 

  
(a) (b) 

Fig. B.6: (a) Iterative convergence in estimated shock location and relaxation time (b) Obtained 
exponential fit from the iterative routine. 
 

An assessment is performed on the example encountered in Fig. B.5 for the case of 
WS=51 (Fig. B.6). The correct shock location is quickly retrieved, whereas slightly more 
iterations are needed to reach a stable estimate of the relaxation time (Fig. B.6-a). Both 
show a residual error caused by fitting errors stemming from deviations on the measured 
profile from the exponential function. As the applied window size reduces by means of 
e.g. adaptive interrogation, the measurement will veer towards the true value (cf. Fig. 
B.4) leading to a reduction in the error mentioned afore. The correspondence between 
final result of the fitting procedure, true profile and measured velocity profile is presented 
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in Fig. B.6-b. While the shock position matches with the true one, the lower portion of the 
iterative result is in good agreement with the measured velocity profile. 
 
 
B.5 Conclusions 
 

Particle inertia and interrogation window size have been effectively identified as 
limiting factors in the spatial resolution of PIV across a normal shock. Incorrect velocity 
estimates are returned in the area downstream of a shock due to particle lag. On the other 
hand, even if the particle responds correctly, interrogation window sizes will impact on 
the velocity estimates upstream of the shock due to averaging effects. From analytical 
considerations and Monte-Carlo simulations, the resolution imposed by the interrogation 
process itself was shown to be proportional to the correlation window size.  

Efforts to enhance the spatial resolution in the presence of a shock by decreasing the 
applied correlation window size are futile when the resolution is limited by the particle 
response. It is important to emphasize that to come to such a conclusion, the latter 
demands an evaluation of equation B.7 and its comparison with the physical dimensions 
of the interrogation area. 
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APPENDIX C 
 
 
 
 

ROBUST IMAGE EVALUATION FOR 
SUB-OPTIMAL PIV RECORDINGS 

 
 
 

Abstract 
 

The competence of Particle Image Velocimetry as measurement technique has inevitably lead 
to its advent in large field-of-views such as e.g. the study of natural convection within enclosed 
rooms where image and recording conditions are encountered which are below optimal for typical 
PIV analyses. To retrieve valuable and robust velocity information from the collection of image 
recordings one therefore refers to ensemble correlation. In the following a processing routine is 
presented incorporating the enhancements reported in Chapter 2 combined with ensemble 
correlation. The proposed approach’s performances are demonstrated through the application to 
experimental flows and are compared to that of the statistically adaptive routine discussed in 
Chapter 5.  

 
 
 
C.1 Introduction 
 
Since Willert and Gharib (1991) introduced the concept of digital image analysis in PIV, 
implementation of Fast Fourier Transforms (FFT) in the correlation operations has 
become widely accepted. Rather than convoluting in the spatial domain, operating in the 
frequency domain by means of FFT drastically reduces the execution time. FFT-based 
correlation remains however sensitive to lack in seeding density and poor image quality 
on the basis of individual snapshots (Keane and Adrian, 1990). Stemming from a low, 
inhomogeneous image density or high intensity noise level, spurious peaks will appear in 
the correlation map causing a low measurement reliability and high occurrence of 
outliers. For quasi-steady flow conditions the underlying flow velocity can still be educed 
by means of correlation function averaging. Meinhart et al. (2000) introduced the concept 
of ensemble correlation which consists in averaging the correlation map of the individual 
snapshots prior to locating the correlation peak. Especially in the estimation of the 
convection of larger flow structures, ensemble correlation proves to be a useful tool (Fig. 
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C.1). For these kind of applications small scale turbulent structures are no longer of 
interest. Instead the displacement of the larger, more energetic, structures is estimated.  
 

 
Fig. C.1: Example of typical image for large scale PIV. 
 

In the following an image evaluation routine is presented, incorporating 
simultaneously the ensemble correlation approach and iterative window deformation with 
refinement. The combination yields a net improvement in spatial resolution while 
retaining a high confidence level in obtained results. Following the implementation, the 
viability of the metrology is demonstrated by the application to three experimental flow 
fields; uniform smoke flow, Stokes’ flow through an annular bent tube and liquid cross-
flow in a hypersonic flow.  

The image evaluation can be further extended to incorporate a degree of freedom in the 
selection of correlation window location and sizing as reported in Chapter 5. To assess 
the performance of statistical adaptivity in case of sub-optimal image recordings a 
comparison is finally made for the case of an alveolated tube with Reynolds number 
approaching unity.  
 
 
C.2 Implementation 
 

The flow chart of the recursive structure is displayed in Fig. C.2. With exception of the 
correlation step the interrogation sequence is identical† to the evaluation of individual 
snapshots with the WiDIM algorithm (Scarano and Riethmuller, 2000). Simultaneous and 
gradual reduction in size of the interrogating windows (windows are halved in both 
directions) yields a finer resolution in space. Compared to one step interrogation methods 
this adopted approach thus increases the spatial resolution.  

When evaluating digital PIV recordings with conventional correlation algorithms, a 
sufficient number of particle images per interrogation window is required to perform a 
reliable cross-correlation. The common procedure to enhance the quality of the spatial-
average displacement in case of low image density or poor image quality for quasi-steady 

                                                      
† Owing to the emanation of correlation DC components by the ensemble operation, the retrieval 
of sub-pixel accuracy in peak location demands a modification in the definition of signal-to-noise 
ratio. Keane and Adrian (1990) define it as the ratio between the highest and second highest 
correlation peak. As the ensemble averaged correlation map is likely to contain a single dominant 
peak, the definition of the above ratio has been altered to involve the highest peak and the map 
average. 
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flow types is to average the spatial correlation of corresponding interrogation domains in 
successive image pairs. Denoting ‘φ(m,n)’ as the correlation function of a single image 
pair, the average (or ensemble) correlation function for ‘N’ PIV recording pairs is given 
by Wereley et al. (2002b) as 

 

( ) ( )∑
=

φ=φ
N

1k
kens n,m

N

1n,m  (C.1)

 
This procedure is generally called ensemble correlation and causes the random noise 
peaks to be significantly reduced through the averaging operation while enhancing the 
recurring signal peak (Fig. C.2). 
 

 
+ 

 
+ 
… 
+ 

 
= 

 
 

Fig. C.2: (Left) Block diagram of ensemble correlation implemented within a recursive structure. 
(Right) Through ensemble averaging of the instantaneous correlation maps, the DC displacement 
component becomes evident. 
 
 
C.3 Experimental applications 
 
C.3.1 Large scale wind tunnel 
 

Experiments were conducted in a large-scale wind tunnel facility with a test section 
area of 1×1.3 m2. Seeding was introduced through a rake emitting smoke rather than 
individual tracers (see Fig. C.1). The latter implies the use of a light sheet with 
dimensions in the order of the large smoke structures. A thin laser sheet hampers the 
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continuous recording of the structures due to out-of-plane motion. Images were recorded 
by a PCO Pixelfly camera (1392×1024 pixels2) at an optical resolution of almost one to 
one; 0.965mm per pixel. Because the experimental setup demands multiple specific 
adjustments compared to a typical PIV setup, a detailed treatise lays beyond the present 
scope. Information regarding necessary modifications in the experimental setup of a 
large-scale PIV experiment can be found in Simpson et al. (2005) and Riethmuller and 
Planquart (2006). 

 

  
(a) (b) (c) (d) 

Fig. C.3: (a) interrogation area containing a smoke structure (b) corresponding average correlation 
function of 200 images (c) intensity distribution after contrast correction (d) corresponding 
correlation function. 
 

A typical interrogation area partially covering a smoke structure is presented in Fig. 
C.3-a. Individual tracer images can no longer be identified. Scattered intensities are 
instead merged into a continuous intensity surface. Correlation maps are consequently 
absent of distinct peaks (Fig. C.3-b) causing a drop in reliability of the estimated 
displacements. As the Gaussian fitting functions are generally no longer adequate to 
retrieve the sub-pixel peak location, the accuracy of the displacement estimates decreases. 
This attenuation in relative measurement error has been experimentally demonstrated by 
Baivier (2006). By changing the image contrast (Fig. C.3-c) however smoke patterns of 
high intensity amplitude can be emphasized and tracked yielding eminently distinct peaks 
(Fig. C.3-d). The question remains how to choose the severity of the contrast correction. 
On one hand the strong spatial intensity gradients constitute good features to track (cf. 
Appendix A), but lead on the other hand to a low information density since only specific 
regions are interrogated. Up to now a general rule remains absent and the applied image 
pre-processing steps generally depend strongly on the user and image quality. 

An alternative to correlation is optical flow (Quénot et al., 1998) given the continuous 
intensity distributions. Optical flow has the advantage of yielding higher spatial and 
temporal resolution with respect to ensemble averaging. For the current purposes 
however optical flow will not be discussed further within this appendix. 
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C.3.2 Alveolated bend† 
 

This paragraph reports the experimental investigation conducted in a model of the 
alveolar lung region. The airway generation was modeled by a curved pipe with 
cylindrical cavities representing the alveolar structures. Silicone was used as carrier fluid 
with iron particles of 20µm in diameter acting as tracers. A continuous Innova 70C Argon 
laser supplied the coherent light source which was shaped into a thin laser sheet of 1mm 
at the symmetry plane by an optical assembly. The scattered light intensities were 
recorded by a 12bit PCO Sensicam camera, with a separation time of around 570µs. An 
instantaneous PIV recording is presented in Fig. C.4-a. At a conversion rate of 14.4 pixel 
per millimeter, the image size of 1056×672 pixels2 corresponded with an imaged area of 
73×47 mm2. For further details see Theunissen et al. (2006a). 

 

(a) 

 

(b) 

 
Fig. C.4: (a) Instantaneous PIV recording of the flow in the alveolated tube at Re=0.069 (b) 
streamline pattern. 

 
Initially interrogation windows of 80×80 pixels² are applied and reduced to final 

windows of 20×20 pixels² (1.4×1.4 mm²) in three iterations. Fig C.4-b depicts the 
streamline pattern. Tubular vortices are found in the corners of the outer radius of the 
bend which then merge into a larger vortex when reaching the inner radius. Although the 
velocity inside the alveoli is about two orders of magnitude smaller compared to the mean 
lumen velocity, through the advanced interrogation methodology even these slow rotating 
fluid elements can be properly identified. Compared to CFD calculations (van Ertbruggen 
et al., 2008) data agreed to within 1% in the central tube and 15% in the alveolar cavities. 

                                                      
† This paragraph has been partly published in van Ertbruggen et al., 2008, Journal of 
Biomechanics 
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Considering the harsh image conditions this demonstrates the conduciveness of the 
iterative ensemble correlation technique for data extraction in case of quasi-steady flows. 
 
C.3.3 Liquid ejection in a hypersonic cross-flow† 
 

Water is ejected from a flat plate positioned in a hypersonic flow at Mach 6. Halogen 
lamps provided the necessary background illumination. The negative images are recorded 
by a Phantom V7.0 digital high speed camera in order to capture the highly unstable 
process of clump detachment and droplet formation downstream of the injection point. A 
typical image is shown in Fig. C.5-a and scarcely reminds a typical PIV recording with 
individual particle images. Inherent to the high speed camera’s large pixel size, the image 
covers a mere 208×128 pixels2 and is degraded by camera shot noise (for further details, 
the reader is referred to Beloki et al.,2008). However, as cross-correlation allows the 
tracking of features, the shadows cast by the water can be tracked to give an estimate of 
the flow albeit mean conditions. Final window sizes of 17×17 pixels (1.37×1.37mm2) 
were applied in the analysis with an overlap factor of around 80% yielding a vector 
spacing of 3 pixels (0.24mm). In total, 500 image couples were considered. Fig. C.5-b 
shows streamtraces plotted onto the ensemble averaged intensities. Deflection of the jet 
due to the high pressure distribution on its surface above the injection point is noticeable. 
Approximately 11 orifice diameters downstream all vertical motion of the liquid jet’s 
large structures is diverted into horizontal direction. This flow case demonstrates the 
capability of ensemble correlation to provide displacement estimates for dimensional 
analyses despite high noise levels, poor illumination and untraditional seeding. 
 

 
(a) (b) 

Fig. C.5: Vertical injection of a liquid jet (shadow area) into a hypersonic crossflow (a) sample 
image recording (b) streamline pattern. The orifice diameter is symbolized by ‘dj’. 
 
 
 
 

                                                      
† This work has been partly published in Beloki et al., 2008, Experiments in Fluids. 
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C.4 Adaptivity in robust image evaluation: application to an 
alveolated tube 

 
The interrogation routine depicted in Fig. C.2 applies correlation windows with fixed 

uniform and large size, which are typically placed on the nodes of a structured grid. In 
typical PIV recordings where homogeneous seeding and illumination are present, particle 
images are distinct and image noise is minimal, the above restrictions cause results to be 
often of poor resolution, as discussed in the previous chapters.  

The adjustment of sampling density and window sizes to ensemble data offers an extra 
improvement in spatial resolution as described in Chapter 5. To evaluate such 
enhancements in the case of sub-optimal PIV conditions, a comparison between the 
ensemble multigrid correlation and the statistically adaptive routine is made in this 
paragraph for the case of an alveolated tube.  

It is important to bear in mind that signal adaptivity, as currently implemented, is 
based on the principle of counting individual particle images. For images such as Fig. C.1 
and Fig. C.5 signal quantization will have to be based on a different concept (see e.g. 
Appendix A). This is however not discussed in further detail in this paragraph.  
 
C.4.1 Background 
 

Lungs intrinsically consist of a complex system of dichotomic branches. Especially the 
lower alveolar airways where gas exchange between lungs and blood takes place are of 
special interest in studies involving the effect of environmental hazards to humans such as 
e.g. air pollution. As a result of the tubular dimensions in the order of micro-meters, in 
vitro studies are impossible. Numerical calculations are the only option but lack a 
thorough validation. An initial study at the von Karman Institute within a collaboration of 
the University of San Diego (California, USA) involved PIV experiments on symmetric 
alveolated bifurcations simplifying the alveolated airway geometry (Ruwet et al., 2008). 
A quasi Stokes-flow complied with the alveolar conditions. With Reynolds numbers in 
the order of unity characterizing the flow, turbulence is out of the picture. Consequently 
parabolic Poiseuille-like velocity profiles (van Ertbruggen et al., 2007) are transmitted 
throughout every daughter branch.  

The image analysis does not pose serious problems at first sight especially since flow 
fluctuations are negligible. Besides strong light reflections near the tubular walls, the 
main problem arises in measuring the slowly rotating fluid motion within the annular 
structures shown in Fig. C.4. Moreover, these areas contain a low signal density since the 
Stokes regime hinders entrapment of seeding particles. Here adapted correlation functions 
must be applied to counteract the inferior image and seeding quality. 
 
C.4.2 Experimental facility 
 

Experiments were conducted in a optically accessible 3D model of acinar lung 
bifurcations representative of airway lumen in generations 20, 21 and 22 of the human 
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lung. Tubes of 20mm in diameter were surrounded by three cylindrical cavities of 45mm 
in diameter representing the alveoli. The current area of interest is schematized in Fig. 
C.6-a. To permit Reynolds number (based on the main tube diameter) in the order of 0.1, 
silicon oil served as carrier fluid with neutrally buoyant iron particles of 20µm acting as 
seeding. The light source was provided by a continuous Innova 70C Argon laser, 
conveniently transformed into a thin laser sheet in the model’s mid-(or bifurcation) plane. 
A digital PCO Pixelfly camera recorded the scattered light intensities during 5 
milliseconds at an acquisition rate of 10Hz. The digital images had a typical resolution of 
1392×724 pixels2 covering a field of view of ~37.6×19.8 mm2 (conversion: ~0.027 
mm/pixel). The reader is referred to Ruwet et al. (2008) for further details on the 
experimental campaign. 

In Fig. C.6-b image snapshots are subtracted by a background image (cf. section 1.5) 
and superposed. The deformation of the partitions is clearly visible. A recirculation flow 
with clear core region is positioned in the centre of each cavity while a curvilinear 
streamline near the opening implies little convective change with the main tubular flow. 
Within the annular extremities the rotational motion is characterized by velocities in the 
order of 10-3mm/s. The superposition of images further emphasizes the poor optical 
access within the annular extremities. In the vicinity of the dividing walls strong light 
reflections and refractions are present and few tracers can be distinguished.  
 

 
 

(a) (b) 
Fig. C.6: (a) Schematic of the investigated field of view (b) Recirculation zones and curvilinear 
streamlines near the opening become distinguishable when overlaying 50 image snapshots (after 
contrast enhancement for clarity). 
 
C.4.3 Image evaluation 
 

The combination of displacements which are fractions of the particle image diameters 
and poor image quality complicates the image analysis by means of straight-forward 
correlation. Instead, techniques based on ensemble averages will be more conducive as 
stated by Meinhart et al. (2000). For this reason the image set comprising 50 
instantaneous recordings was analyzed by the statistical interrogation approach adopting 
the ensemble correlation routine (cf. Fig. 5.4). With 8000 correlation windows an average 
window overlap ratio of 71% was achieved. The automatically determined interrogation 
mesh is presented in Fig. C.7-a. Dense concentrations of correlation windows are 
imposed in the vicinity of the static walls (wall adaptivity) with fewer samples near the 
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outer annular perimeters and clustering towards the central tube. The latter is in 
agreement with the appearance of the strongest velocity gradients (Fig. C.7-b). Core 
regions of the rotational flow are however always comprised within the regions of dense 
sampling (compare the location of the rotation centers indicated by the closed streamlines 
in Fig. C.7-b with the mesh in Fig. C.7-a) and are analyzed with correlation windows 
reduced in size ranging between 11 pixels (≈ 0.3mm) and 15 pixels (≈ 0.4mm). The 
central regions of the cylindrical extremities are typically attributed windows in the order 
of 21 pixels (≈ 0.57mm).  
 

(a) 

 

(b) 

 
Fig. C.7: Analysis of image recordings of the alveolated tube with the statistical approach; (a) 
adopted interrogation mesh (b) imposed window sizes (in horizontal direction or parallel to the 
wall) with extracted velocity profiles across the rotation centers as indicated by the closed 
streamlines. 

 
The more conventional, interrogation methodology was applied for comparison (cf. 

Fig. C.2). Robust velocity information within square windows placed on the nodes of a 
Cartesian grid was retrieved by means of ensemble correlation. Iterative window 
deformation and refinement was incorporated to yield sufficient spatial resolution. Final 
window sizes of 17×17 pixels2 (≈0.57×0.57 mm2) were applied in the analysis with an 
overlap factor of around 80% yielding a vector spacing of 4 pixels (≈0.11mm) or around 
62000 vectors.  
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C.4.4 Flow diagnostics 
 

Vertical profiles across the vortex cores of the horizontal velocity component retrieved 
by the present statistical and more conventional approach are depicted in Fig. C.8-a. All 
profiles share topological similarities with lid-driven cavity flows (Shankar and 
Deshpande, 2000). Both adaptive and structured approaches yield results which nearly 
superpose perfectly which indicates the adaptive sampling rate to be sufficient even in the 
more sparsely sampled regions (Fig. C.7-a).  

 

 

(a) (b) 
Fig. C.8: (a) Vertical profiles across the vortex cores (Fig. C.7-a) of the horizontal velocity 
component predicted by Statistical Adaptivity (referred as “SA”) adopting ensemble correlation 
(cf. Fig. 5.5) (▬) and more “conventional” ensemble correlation (▬) (b) Superposition of 
streamlines for the first two annular rings (see a) for color coding). 
 

Streamline patterns in the first annular cavities are compared in Fig. C.8-b. As a result 
of extremely low seeding density and image quality reliable velocity estimates are lacking 
in the vicinity of the walls and produce erroneous streamlines. Under such severe 
conditions wall adaptivity does not pose an outcome as illustrated. Nevertheless, the 
streamline pattern returned by ‘SA’ in wall-vicinity overall shows a higher degree of 
smoothness and physical relevancy. In the vortex core’s environs on the other hand both 
interrogation methodologies are overall in close agreement; streamlines are smooth and 
follow the particle image traces (with exception of the spirals which are numerical 
artifacts related to the plotting of streamlines).  

Although the results of the adaptive routine are only marginally improved compared to 
those of the structured approach, the achieved reduction in correlation windows by a 
factor 8 and the autonomous selection of interrogation parameters without a loss in 
accuracy or spatial resolution can be considered as an important improvement.  
 
 



C.5 Conclusions 235 

C.5 Conclusions 
 

To retrieve robust velocity information from a succession of poor quality images, an 
analysis metrology based on ensemble correlation has been proposed. To obtain sufficient 
spatial resolution, iterative window deformation and refinement have been incorporated. 
The evaluation routine has been applied to several experimental images degraded by low 
image density and quality and has proven to be efficient in the eduction of the average 
convective motion in quasi-steady flows or at least an estimate of macroscopic flow 
scales.  

Implementation of adaptivity in sampling density and correlation window sizing lead 
to marginal improvements in resolution and accuracy whereas the autonomous selection 
of interrogation parameters and force reduction in number of interrogation windows can 
be considered as important advances.  

Still, continuous intensity distributions produce smooth correlation maps which 
decrease the estimation accuracy and require a-priori image enhancement. Further efforts 
may concentrate on automatic adaptive image pre-processing routines and/or the 
application of optical flow.  

 
 
 



236 Robust image evaluation for sub-optimal PIV recordings 

 



237 

 

APPENDIX D 
 
 
 
 

NON-ISOTROPIC WEIGHTING FUNCTIONS 
IN TOMOGRAPHIC PIV 

 
 
 

Abstract 
 

Tomography PIV has appeared very recently in the scenario of 3D measurement techniques. 
The metrology’s widespread acknowledgement in industrial environments remains currently 
hampered though by its severe hardware requirements as well as computational cost. Moreover, 
the involved image processing is still in its infancy which explains the interrogation routines’ 
current lack in spatial resolution. Nevertheless, Tomo-PIV may rely on and benefit from 
achievements in planar PIV. In the following a possible criterion for interrogation volume non-
isotropy is proposed based on vorticity. The effectiveness of the reported approach to enhance 
measurement accuracy and spatial resolution is demonstrated by its application to the synthetic 
flow field induced by a vortex ring.  

 
 
 
Nomenclature 
 
εu,v,w relative measurement error in u-, v- and w- velocity component with respect 

to the true values (voxels) 
σ vortex radius (voxels) 
ω true, imposed vorticity (voxels/voxels) 
ωm measured vorticity (voxels/voxels) 
ωpeak true, imposed peak vorticity (voxels/voxels) 
R vortex ring radius (voxels) 
(u,v,w) velocity along the axis of the (x,y,z) coordinate system (voxels) 
uθ angular velocity (voxels) 
WS cube interrogation volume window size (voxels) 
WSξ,η,ζ correlation window size along major and minor axes (voxels) 
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D.1 Introduction 
 

The main limiting factor for the planar approach consists in the fact that the motion 
across the plane cannot be represented as accurately as the motion within the plane. 
Insights on the instantaneous 3D structure of turbulent flows are lacking as the involved 
motion can only be partly captured by the current planar PIV techniques. Moreover 
because of the finite extent of the light sheet thickness, particle out-of-plane motion 
yields an unrecoverable loss in correlation signal, limiting the dynamic range of the 
measurement.  

In order to overcome the current limitations a breakthrough in the direction of full 3D 
measurement capabilities is needed. Tomography PIV has appeared very recently in the 
scenario of 3D measurement techniques (Elsinga et al., 2006). Rather than a sheet, a fluid 
volume is now illuminated. Scattered particle intensities are recorded simultaneously 
from several viewing directions using multiple CCD cameras. The 3D particle 
distribution is then reconstructed as a 3D light-intensity distribution from the obtained 
projections through an intricate reconstruction algorithm. The interrogation procedure to 
extract the displacement estimates is based on the traditional correlation operator 
extended to three dimensions. Since it has been applied to several aerodynamic problems, 
the present state-of-the-art for tomographic PIV reveals major bottlenecks on the side of 
hardware requirements as well as in computational cost. Moreover, the spatial resolution 
is quite limited owing to the finite extent of the interrogation volumes, but can be 
increased and controlled through the use of weighting functions (Astarita, 2006) during 
the calculation of the 3D correlation coefficient. Scarano (2003) introduced the concept of 
non-isotropic intensity weighting functions in planar PIV related to flow curvature to 
increase both accuracy and spatial resolution. However, each velocity component 
required a repetition of the interrogation routine, which in case of Tomo-PIV would infer 
a tripling of the computational effort. 

The idea proposed in this appendix adopts the philosophy of intensity weighting but 
bases the involved coefficients on a single parameter, vorticity, to limit the required 
computational time while enhancing spatial resolution. The effectiveness of the approach 
is demonstrated by the application to a synthetic ring vortex. 
 
 
D.2 Non-isotropic weighting 
 

The proposed weighting is based solely on vorticity and originates from the 
consideration of the Oseen-Lamb vortex extended to three dimensions (Fig. D.1-a). The 
use of a single parameter to describe the weighting function for each velocity component 
rather than evaluating for each component individually offers a strong computational 
benefit. While the vorticity vector in turbulent flows may spatially vary in both 
magnitude and direction, locally these variations are considered small, resembling the 
situation illustrated in Fig. D.1-a (with exception of the axis extents). Accordingly, 
gradients and curvature in velocity in the direction of the vorticity vector (‘ω

r
’) can be 
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considered to be locally zero and are restricted to perpendicular planes. This already 
favors a weighting function with major axis aligned with the vorticity vector (Fig. D.1-b). 
 

 

(a) (b) 
Fig. D.1: (a) Oseen-Lamb vortex model extended to 3D. The vorticity vector ‘ω

r
’ is aligned with 

the Z-axis (b) Definition of axes and window sizes. The major axis of the windowing function is 
aligned with the vorticity vector. 
 

With the assumption of rigid body rotation around the vorticity vector, the spatial 
extents of the correlation windows must be minimal within the planes perpendicular to 
the vorticity vector to improve both measurement accuracy and spatial resolution. While 
further window non-uniformity can be imposed for the remaining window extensions, 
this has currently been left out of consideration adopting the following aspect ratio 
between the interrogation window dimensions 
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where the ξ-coordinate is aligned with the vorticity vector and ‘WS’ is the cube window 
size.  

The non-isotropic window shapes are imposed by means of elliptical Gaussian 
weighting functions applied to the square interrogation windows. Identical to the proposal 
of Scarano (2003) the Gaussian variances are prescribed by twice the window sizes 
determined in (D.1). 
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D.3 Performance assessment 
 
D.3.1 Synthetic flow field generation 
 

The performance of the proposed weighting is illustrated through the application to a 
ring vortex. While analytically more sound formulas exist for the ring vortex induced 
velocity field (e.g. Yoon and Heister, 2004), they are mostly based on the Biot-Savart law 
for infinitely thin vortex rings and consequently prescribe unphysical (infinite) velocities 
on the ring itself. For this reason in the following the flow field has been generated 
adopting the Oseen-Lamb vortex model (D.2) centered on the perimeter of a ring of 
radius R=50pixels (see Fig. D.2) 
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The vortex radius ‘σ’ has been set to 50 pixels and a peak vorticity ‘ωpeak’ of 32×10-3 
voxels/voxels has been adopted.  

The ring’s axis of symmetry has been aligned with the Z-axis. At any location ‘p’ the 
velocity is assumed to be induced only by those points on the ring’s circumference lying 
within the plane determined by the point in question and the Z-axis (Fig. D.2-a). For the 
schematic cartooned in Fig. D.2-a the corresponding locations are indicated by ‘1’ and 
‘2’. To make the ring stationary, velocities in Z-direction are subtracted by the ring’s self-
induced velocity (equation (D.2) with r=2⋅R). A three dimensional representation of the 
imposed flow field complete with streamtraces and vorticity magnitude contours is given 
in Fig. D.2-b. 
 

 
(a) (b) 

Fig. D.2: (a) Schematic of the synthetic vortex ring (b) Simulated flow field with vorticity 
contours and vorticity iso-surface (|ω

r
|=28×10-3). 
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D.3.2 Results 
 

To simulate the image interrogation process, the correlation operator has been modeled 
as a moving average filter. Velocities are calculated every 4 pixels corresponding to the 
vector spacing obtained by correlation volumes of 17×17×17 voxels3 with an overlap 
ratio of 75%.  

The adopted elliptical Gaussian windowing functions are illustrated in Fig. D.3. Near 
the outer regions, where the vorticity attains low magnitudes, the weighting functions are 
spherical shaped. Towards the ring vorticity increases and the shapes become elliptical 
with the axis of maximum eccentricity tangent to the ring’s perimeter. 
 

 
Fig. D.3: Elliptical shaped weighting functions prescribed by (D.1) with vorticity contours and 
iso-surface. 
 

The advantages of non-isotropic correlation volumes become qualitatively visible by 
observing the obtained flow fields (Fig. D.4). Straightforward, the moving average 
operation yields a consistent sub-estimation of the vorticity. The effects are most 
prominent near the vortex cores. Besides slight alterations in streamtraces, a distorted 
(squared) vortex ring shape is obtained (Fig. D.4-a). Applying a weighted averaging on 
the other hand allows a flow measurement returning results in better agreement with the 
imposed values (Fig. D.4-b).  

A quantitative comparison between the two approaches is presented in Fig. D.5. 
Histograms of the relative error, with respect to the imposed values, in the most relevant 
flow statistics are extracted and proclaim the improvement in accuracy. Whereas the 
standard filter produced relative displacement errors up to 30% to 40%, weighting 
reduces the errors to orders of 0%-10%.  

The improved spatial resolution is further proclaimed by the shift in normalized 
vorticity error from 5% to 0% with an accompanying force reduction in distribution width 
(Fig. D.5-d). 
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(a) (b) 

Fig. D.4: Measured vortex ring flow fields vorticity contours and iso-surface with interrogation 
volumes of 173 voxels3 (a) moving average (b) weighted moving average. 
 

 
(a) (b) 

  
(c) (d) 

Fig. D.5: Relative errors in displacements along (a) X-axis (b) Y-axis (c) Z-axis 
 (d) Normalized error in vorticity. 
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D.4 Conclusions and prospects 
 

This appendix reports on an idea to enhance the spatial resolution in tomograhic PIV 
while limiting the additional computational efforts. The proposed approach applies 
weighting functions with alignment and aspect ratios predicted by vorticity. Test on the 
artificial flow field of a vortex ring attested the improvement in accuracy (relative errors 
decreased from ~30% to ~10%) and spatial resolution (error in vorticity decreased from 
~5% to ~2%)  
 

Currently only eccentricity between major and minor axis of interrogation volume non-
isotropy have been considered. Further non-uniformity in correlation volume extensions 
perpendicular to the vorticity vector may be incorporated. Possible criteria may be either 
gradients in velocity (Di Florio et al., 2002) or in vorticity. Compared to the former, 
vorticity derivatives offer the advantage of taking indirectly flow curvature into 
consideration which, as mentioned many a times, is strongly related to spatial resolution. 
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NEDERLANDSTALIGE 

SAMENVATTING 
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Als experimenteel hulpmiddel heeft PIV snel traditionele punt gewijze meetmethoden 
vervangen. De inherente beeldverwerking is gestandaardiseerd geworden hoewel de 
prestaties sterk afhankelijk zijn van gebruikerservaring. Voorts worden de vaak met 
moeite geselecteerde parameters voor de beeldverwerking uniform toegepast over gehele 
momentopnamen maar voldoen zij zelden aan de waargenomen convectie van de 
vloeistof, de ruimtelijke verdeling van lengteschalen of de distributie in signaal. In plaats 
daarvan is een zekere mate van aanpassing in de beeldanalyse vereist om het 
snelheidsgebied dat aan de beeldopnamen ten grondslag ligt zo nauwkeurig mogelijk te 
schatten en bij voorkeur in een geautomatiseerde structuur. 

Er bestaat een verscheidenheid in correlatiemethodologieën elk bevorderlijk in slechts 
specifieke gevallen. Hier is het doel nu een globale oplossing te bekomen welke door 
aanpassing van de beeldverwerkingsparameters (venstergrootte, plaatsing en 
overlapping), grotendeels adequaat blijft. Deze verhandeling stelt voor om in de richting 
van iteratieve procedures te gaan waar automatische aanpassing plaatsvindt, gebaseerd op 
stromings en signaal condities. De plaatsing van de correlatievensters, hun aantal en 
grootte wordt bepaald door rekening te houden met de hoeveelheid aanwezig signaal en 
schommelingen in het snelheidsveld. Hoge beeld dichtheden en/of regios met sterke 
snelheids gradiënten leiden tot een groepering van kleine vensters in de beeldanalyse. De 
kwantificatie van het signaal is gebaseerd op detectie van individuele deeltjes in de 
beeldopnames terwijl ruimtelijke variatie in de snelheid dienst doet als indicator voor 
aanpassing aan de stroming. De implementatie van de voorgestelde techniek vereist 
gespecialiseerde interpolatieschemas en ruimtelijke projectie van de vensterlocaties om 
op die manier rekening te houden met hun niet-Cartesiaanse verdeling. 

Één van de belangrijkste praktische problemen welk is aangepakt, is dat van de 
gebruiker die geconfronteerd wordt met een noodzakelijk compromis tussen ruimtelijke 
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resolutie en robuustheid. De nieuwe beeldverwerkingsmethode omzeilt de evenwichtige 
wisselwerking en plaatst meer kleinere vensters daar waar de stroom het vereist en het 
signaal het toelaat. Vice versa worden minder van deze onnodige kleine vensters geplaatst 
in gebieden waar de strooming het niet nodig heeft (d.w.z. ontbreken van gradiënten of 
schommelingen in de snelheid). Op die wijze vindt een loskoppeling plaats van 
mechanismes die de robuustheid van de correlatie kunnen beïnvloeden. De prestaties van 
de adaptieve benadering werden beoordeeld door middel van computer gegenereerde 
beelden van isotrope turbulentie en experimentele opnames van een turbulente interactie 
tussen schokgolf en grenslaag (Mach 2.1). Aangetoond werd dat verbeteringen minder 
uitgesproken zijn in geval van optimale opnames en optische resolutie, hoewel de 
beperking in de gebruikersinteractie een netto verbetering met zich meebracht. 
Desondanks werden de verbeteringen in ruimtelijke resolutie benadrukt door toepasing op 
wervelstromingen achter een transportvliegtuig en een cirkelvormige cylinder (Reh≈200) 
waar de korte afstand tussen de vectoren en kleine dimensies van de vensters garant staat 
voor een nauwkeurige schatting van de vorticiteit.  

Het tweede probleem stelt zich in de nabijheid van grensvlakken waar grote 
verstoringen aanwezig zijn in de correlatiefuncties als gevolg van bruuske 
signaalbeïndiging langs de muren en lichtreflecties. Hoewel adequate beeldbehandeling 
voorafgaand aan de correlatie en vector herpositionering een verbetering tot stand 
brengen in de ruimtelijke resolutie en robuustheid, is bewezen dat de starheid van de 
correlatievensters in de conventionele correlatiemethoden een nefaste invloed hebben. 
Een innovatieve behandeling van grensvlakken is voorgesteld waarin adaptiviteit is 
opgenomen op een geautomatiseerde manier door het geleidelijk verhogen van het aantal 
vensters in de nabijheid van de muur, het draaien van de correlatievensters: parallel aan 
het grensvlak en het verminderen van de grootte loodrecht op de wand. Bij toepassing op 
originele en getransformeerde beelden van een subsonische grenslaag over een vlakke 
plaat (Reθ≈1900) werden consistente verbeteringen in de resolutie en robuustheid 
vastgesteld. Nog overtuigender was de nieuwe mogelijkheid om de recirculatie te meten 
in de hoek van een dubbele compressie glooiing in een hypersone stroming (Mach 7), 
terwijl deze eerder onoplosbaar was met een conventionele benadering.  

De ondervragingsmethologie waarbij de parameters worden aangepast aan momentane 
kondities bleek tot dusver overtuigende resultaten op te leveren vooral in aanwezigheid 
van snelheidsgradiënten. Desondanks kunnen noch multi-grid technieken noch de 
adaptieve routine robuste schattingen maken van het snelheidsveld indien er sprake is van 
sterke schommelingen in de snelheidsverdeling van het stromingsveld of een niet-
optimale verdeling van signaal. Een variant van de adaptieve ondervragingstechniek is 
voorgesteld waarbij venstergrootte, vorm, richting en ruimtelijke verdeling worden 
verfijnd aan de hand van het gemiddelde stromingsveld en beeldeigenschappen. Het 
gebruik van zulke gemiddelden laat een betrouwbare toepassing toe van niet-isotrope 
resolutie in tegenstelling tot momentane aanpasbaarheid waar zulke resolutie niet 
haalbaar is. Deze benadering laat bovendien toe het aantal correlatievensters te beperken 
zonder de nodige ruimtelijke meetresolutie in het gedrang te brengen. Toepassing op de 
grenslaag-schokgolf interactie toonde aan dat de methode correct die zones selecteert 
waar het meeste aantal meetpunten moet worden geplaatst. Een experiment met 
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verschillende opname resoluties in het kielzog achter een transsoon (Mach 0.6) 
vleugelprofiel bevestigde dat de ruimtelijke resolutie in regio’s met schuifstromen 
beduidend verbeterd kan worden door de statistisch adaptieve techniek. Het gemeten 
impulsafname kwam goed overeen met de referentie data uit de opnamen met hoge 
resolutie. 

De verbeterde prestaties van alle adaptieve ondervragingsmethodologieën in 
vergelijking met conventionele technieken werden uitvoerig besproken en aangetoond 
met behulp van verdere toepassingen. De uitgebriede serie beeldopnamen bestond uit een 
supersonische straalstroom (Mach 3.75), een hypersone bal (Mach 6) en een 
achterwaartse stap (Reh≈5000). 

Het concept van statistische robuustheid is verder uitgebreid door het voorstel een 
bekende statistische techniek toe te passen in PIV voor het afleiden van gemiddelde 
gegevens. Het principe en de toepasbaarheid werden aangetoond met conventionele PIV 
metingen van een achterwaarts gekeerde stap (Reh≈5000) en de stroming in een 
divergerend kanaal met voldoende resolutie in tijd (Re=6300). 
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