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ABSTRACT 
In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle 

image pattern superimposed on a variety of noise sources. The inherent amount of signal mutual information between 
consecutive images governs the strength of the resulting PIV cross correlation and ultimately the accuracy and 
uncertainty of the produced PIV measurements. Hence we posit that correlation signal-to-noise-ratio (SNR) metrics 
calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty 
of an individual measurement. In this paper we present a framework for evaluating the correlation SNR using a set of 
different metrics, which in turn are used to develop models for uncertainty estimation. A new SNR metric termed 
“mutual information” (MI) which quantifies the amount of common information (particle pattern) between two 
consecutive images is also introduced and investigated. This measure provides a direct estimation of the apparent 
NIFIFO parameter of an image pair providing an alternative approach towards uncertainty estimation but also connecting 
the current development to one of the most fundamental principles of PIV and the previously established theory. The 
SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered 
correlations and the notion of “valid” measurement is redefined with respect to the correlation peak width. These 
advancements lead to more robust uncertainty estimation models, which are tested against both synthetic benchmark 
data as well as actual experimental measurements. For all cases considered here, expanded uncertainties are estimated at 
the 95% confidence level, and the resulting calculated coverages are approximately 95% thus demonstrating the 
feasibility and applicability of these new models for direct estimation of uncertainty for individual PIV measurements. 

1 Introduction 

Particle Image Velocimetry (PIV) is a non-invasive, quantitative, flow visualization tool developed to measure fluid 
velocities over a wide range of length and time scales. The technique typically employs micron-size flow tracer 
particles, which are illuminated by a pulsed laser and imaged with a high-frequency camera. Processing algorithms are 
then used to determine the displacement of particle patterns within an image sequence and to estimate the velocity field 
[1]. An overview of the development of DPIV over the first 20 years of the method is given by Adrian [2].  

PIV was first developed in the 1980s, and the initial work of Meynart [3] was followed by numerous seminal 
contributions that established the foundations of the method [4-7]. The introduction of digital image acquisition [1] 
(DPIV) provided a transformative evolution of the method and triggered its widespread use and an explosive growth of 
applications. Refinements over the next 20 years improved robustness and accuracy of the technique, including the 
development of stereoscopic (3-component) planar PIV [8, 9], iterative, and adaptive methods [10-14]. A 



comprehensive history of these improvements can be traced through early reviews [7, 15] and more recent sources [2, 
16-18]. Currently, the term PIV is used to encompass the extensive family of methods that are based on evaluating the 
particle patterns displacement using statistical cross-correlation of consecutive images with high number density of flow 
tracers [16].  

However, the development of PIV methods did not involve simultaneous rigorous quantification of measurement 
uncertainty.  As a result, despite the numerous applications, theory, and contributions, there is currently no widely 
accepted framework for reliable quantification of PIV measurement uncertainty. The situation is exacerbated by the fact 
that PIV measurements involve instrument and algorithm chains with coupled uncertainty sources, rendering 
quantification of uncertainty far more complex than most measurement techniques.  Consequently PIV results are 
often received with skepticism. Therefore developing a fundamental methodology for quantifying the uncertainty for 
PIV is an important and outstanding challenge.   

The first attempt to tackle this problem employed an “error-surface” methodology which would be constructed by 
mapping the effects of selected primary error sources such as shear, displacement, seeding density, and particle 
diameter to the true error for a given measurement [19]. This approach is roughly analogous to a more traditional 
instrument calibration procedure for standard experimental instruments. The generated error surface provides the means 
to associate the corresponding distribution of errors to any combination of inputs of the error sources within their 
parameters space, as quantified directly from the actual experiment. Ultimately in order to comprehensively quantify the 
uncertainty, all possible combinations of displacements, shears, rotations, particle diameters, and any other parameter 
used must be exhaustively tested which can make this method computationally expensive. Moreover, many of the 
relevant parameters may not be easily obtained from a real experiment. 

Sciacchitano et al. proposed a method to quantify the uncertainty of PIV measurement based on image matching 
[20]. The uncertainty of measured displacement is calculated from the ensemble of disparity vectors, which are due to 
incomplete match between particles, within the interrogation window. This method accounts for random and systematic 
errors, however peak-locking errors and truncation errors cannot be detected. Moreover to calculate the instantaneous 
local uncertainty, researchers need to do particle image pair detection and image matching for every single interrogation 
spot which makes this method also computationally expensive. 

In this work we adopt an alternative approach and we seek to quantify the PIV displacement uncertainty directly 
from the information contained within the cross-correlation plane. The cross-correlation plane represents the 
distribution of probabilities of all possible particle image pattern displacements between consecutive frames, combined 
with the effect of the number of particles, the mean particle diameter and effects that contribute to loss of correlation. 
As described by Adrian and Westerweel [21] (p. 322): “The height of the peak is proportional to the image density NI, 
the out of plane loss of correlation FO and the in-plane loss of correlation FI. The shape of the peak is determined by the 
convolution of the particle image self correlation with the displacement distribution in the measurement volume.” In 
other words, the correlation plane is a surrogate of the combined effects of the various sources of error that govern the 
accurate estimation of a particle pattern displacement. Hence, in this work we will seek to establish appropriate 
measures that quantify the cross-correlation quality by means of signal-to-noise ratio (SNR) and establish the 
relationship of these metrics to the individual measurement uncertainty. 

One measure of the cross-correlation SNR is the primary peak ratio (PPR), namely the ratio between the highest 
correlation peak to the second tallest peak as shown in Figure 1. In early PIV papers, PPR was used as a measure of the 
detectability of the true displacement [22, 23]. A measurement would be considered as valid if PPR were higher than a 
user defined threshold (often 1.2), or the measurement is rejected if PPR is smaller than that value. Based on this 
criterion, it was established that the product of NIFIFO would determine the probability of getting a valid detection and 
in order to get a 95% probability of valid detection, the minimum NIFIFO value should be approximately 5 [24]. 
Unfortunately, the effects of in-plane and out-of-plane loss of correlation are difficult to quantify in real experiment, 



thus making NIFIFO difficult to estimate in real experiment cases. However this establishes a clear relationship between 
a measure of the correlation strength (PPR) and number of correlated particle image pairs. 

The PPR value is easy to compute and provides a practical measure of the quality of a cross-correlation. Hain and 
Kahler [25] suggest that a threshold PPR value of about 2 can reliably avoid spurious vectors, and based on this they 
proposed a scheme for the optimal selection of cross-correlations across a range of interframe time delays. Similarly for 
extending the PIV velocity dynamic range using multiple pulse separation imaging, Persoons and O’Donovan used a 
weighted peak ratio value as a criterion to calculate the optimum pulse separation [26].   

Recently, Charonko and Vlachos proposed an uncertainty quantification method based on PPR [27]. The 
relationship between the distribution of velocity error and PPR value was studied and a model for calculating the 
uncertainty based on the PPR value of a given measurement was developed. Using this method, the uncertainty of PIV 
measurement can be predicted without the a-priori knowledge of image quality and local flow condition. Reliable 
uncertainty estimation results using a phase-filtered correlation [28-30] were shown. However for standard 
cross-correlation techniques, the uncertainty estimation provided by this method is not as good. This was attributed to 
the insufficient treatment of noise effects inherent in the standard cross-correlation. 

 

Figure 1: Left: Single cross-correlation peak with high probability of accurate detection. Right: Two 
primary peaks in the correlation plane. The closer the peak heights are with respect to each other, the lower 
the probability of accurate detection. 

Beyond the PPR other metrics exist for quantifying the cross-correlation SNR. Kumar and Hassebrook defined 
several signal to noise ratios of the correlation related to peak detectability, namely peak ratio (PPR), peak-to-root mean 
square ratio (PRMSR), and peak-to-correlation energy (PCE) [31]. All three of these metrics measure the strength of 
correlation but the PPR is a mostly heuristic parameter while in contrast the PCE and PRMSR are more fundamental 
routed to signal processing theory [31]. However, within the scope of PIV methods, neither PCE nor PRMSR have been 
considered. 

In this work, we will extend the original work by Charonko and Vlachos [27] to calculate cross-correlation SNR 
metrics using only the information from the correlation plane to develop models for uncertainty estimation. Here, in 
addition to the PPR, we will consider PRMSR and PCE and cross-correlation entropy (based on information entropy 
[32]) and we expand the previous work to make these measures applicable to both standard and phase filtered 
cross-correlation. More importantly, we develop a new metric we term “mutual information” (MI) that we hypothesize 
provides a direct estimation of the apparent NIFIFO for each image pair. This metric also will be used to develop a 
model for uncertainty estimation but in contrast to the other models that are adopted from the generic signal processing 
literature, MI directly connects to the fundamental PIV principles.  

Details of the definition and calculation of these metrics will be provided in the following section. The relationship 
between velocity error distribution or standard uncertainty and each metric are obtained by statistical analysis. The 
functions used to quantify each relationship are calculated from curve fittings.  



1. Background and Methodology 

1.1. Correlation plane signal to noise ratio (SNR)  

The random correlation peaks distributed along the correlation plane correspond to correlations between distinct 
particle image pairs. A valid displacement measurement is achieved when the highest detectable peak in the plane 
represents the true displacement. As a result, the strength (detectability) of the primary peak with respect to surrounding 
peaks represents the signal to noise ratio of the correlation plane. Hence following the work by Kumar and Hassebrook 
[31], measures of the correlation SNR can be defined and are shown in Table 1. These include the PPR, PRMSR, and 
PCE. Table 1 also provides the definitions of these filters and a one-dimensional graphical representation. 

Table 1: Definition, separate parts and 1-D example of PPR, PRMSR and PCE 

 

Effectively all three of these metrics measure the detectability of the primary peak with respect to alternative 
correlations. However, in contrast to the PPR which is an ad-hoc metric, the PRMRS and PCE are amenable to 
analytical derivation if the signal statistical properties are known [31], hence they offer the potential for developing a 
corresponding theoretical foundation for the uncertainty estimation. This aspect however will not be pursued during this 
work. 

Another signal to noise ratio measure considered herein is the cross-correlation entropy or information entropy [32]. 
This is based on the notion that if perfect matching between two image patterns exists in the absence of any noise, the 
correlation will yield a single sharp peak and the correlation entropy will be minimum.  As more random correlations 
exist the entropy would increase. To calculate the entropy of the cross correlation plane, we first construct the histogram 
of the correlation plane based on the correlation value of every point on the plane. In our work, we use 30 bins to build 
the histogram. After the histogram is made, the probability of finding one point in a certain bin is calculated as: 

plane  wholeof points # Total
bin  @ points of # ipi =

                               

Then the entropy of the cross correlation plane was calculated as: 
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1.2. Role of image background noise on correlation SNR 

The information about the true displacement in the correlation plane is contained in the correlation of the fluctuating 
intensities. If the correlation is written as: 

 ( ) ( ) ( ) ( ), R , , ,C F DR s t s t R s t R s t= + +         (2) 

where the overall correlation plane is decomposed into RC RF and RD which are respectively the correlation of the 
mean background intensity over the interrogation windows, the correlation of the background noise in one window with 
the fluctuating intensity in the other window, the cross correlation of the fluctuating image intensities. It is common 
practice to subtract the image mean intensity before preforming a cross-correlation, which would effectively remove all 
contributions from the background and only provide RD. However in practice this does not always hold true due to 
various illumination effects and imaging distortions. Although for the estimation of the true displacement such residuals 
would have negligible effect, in contrast for the calculation of the correlation SNR they can profoundly affect the 
metrics. In the work by Charonko and Vlachos [27] the standard correlation which was subject to this effect performed 
inferiorly to the phase filter correlation which in turn is largely immune to such effects. Hence in order to address this 
limitation and provide more robust estimation of the different correlation metrics we propose that it is appropriate to 
subtract the minimum value of the correlation plane. This is demonstrated below. 

Figure 2a and b shows an example of a particle image with and without background noise. The cross correlation 
plane of these two image sets are shown in Figure 3a and b. The minimum correlation value of the cross correlation 
plane is on the order of 106. After we subtract the correlation plane of Figure 3b (RD) from Figure 3a (R), the left plane 
Figure 3c can be considered as the correlation related to background image noise, the RN term. The mean value of this 
plane is also close to 106. Subtraction of the minimum correlation value from the correlation plane effectively 
eliminates the effect of background image noise on the cross correlation plane. 

        
(a)          (b) 

Figure 2: Particle image sets examples (a) with background noise; (b) same particle images without 
background noise 

  
(a)        (b)        (c) 

Figure 3: (a) cross correlation plane of particle images with background noise (b) cross correlation plane 
of particle images without background noise (c) the correlation plane related to background noise 



1.3. Mutual Information (MI) and relationship to NIFIFO 

As discussed earlier, the correlation peak height is proportional to the product of the image density NI, the out of 
plane loss of correlation FO and the in-plane loss of correlation FI, and the shape of the peak is determined by the 
particle image self correlation and displacement distribution. Based on this insight we introduce a new measure of the 
correlation SNR which we term Mutual Information (MI). MI is defined as: 

 

MI provides the means to directly calculate the NIFIFO from the information contained within the correlation plane. 
The calculation of the MI is based on dividing the peak magnitude of the cross-correlation by the autocorrelation of the 
“mean” particle as measured by the diameter of the image autocorrelation. A schematic of the calculation flow chart is 
shown below (Figure 4) 

 

Figure 4: Schematic illustrating the calculation of MI  

The image of one representative particle can be written as: 
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where J0 and d0 are the intensity and diameter of the particle, xp and yp are the particle center coordinates. Then the 
autocorrelation can be calculated as: 

 ( , )  ( , ) ( , )A s t P X Y P X s Y t dXdY= × + +∫∫   (4) 

Contribution of all correlated particle pairs
Contribution of one correlated particle pair

= Total number of correlated particle pairs =  Mutual information



The autocorrelation peak height is the magnitude of autocorrelation plane: 

 2 2
0 0 0

1
16
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We can write the analytical form of the cross correlation plane for image 1 and image 2 as: 

 1 2( , ) ( , ) ( , )R s t I X Y I X s Y t dXdY= + +∫∫   (6) 

I1 and I2 are the expressions for image 1 and 2, with removing the background image noise effect we can consider the 
image as the summation of all particles within the window area: 
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where p1 and p2 are the number of particles in image 1 and 2, Ji and di are the intensity and diameter of the ith particle. 

As mentioned before, the cross correlation peak can be considered as the summation of the autocorrelation of all 
correlated particles in both. By assuming the correlated particles in frame 1 and frame 2 are identical (Ji1 = Ji2, di1 = di2), 
we can show that the primary peak height of the cross correlation plane is: 
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where pc is the number of correlated particles in both frames, Ji and di are the intensity and diameter of the ith particle. 
Thus the number of correlated particle pairs or the amount of mutual information between consecutive frames (MI) can 
be estimated as: 
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It is clear then that in the case where every correlated particle has the same intensity and diameter as the reference 
particle (Ji=J0, di=d0), then MI will be equal to pc.  For interrogation regions where the particle size and brightness 
varies, the contribution of each particle will be proportionally weighted in terms of their effect on the final correlation 
signal. 

1.4. Correlation width and valid measurements 

The primary peak diameter can be calculated by [21]: 

 2 242
3Dd d aτ= +   (11) 



where dτ is the particle image diameter and a is a gradient parameter. But for given a correlation plane, the correlation 
peak width is usually calculated by performing a three-point Gaussian fit and then computing the diameter as 4 times 
the standard deviation for that Gaussian distribution. The location of the maximum value of that Gaussian distribution 
provides the sub-pixel displacement estimation for the PIV measurement. This is subject to the assumption that the true 
displacement is within the primary peak region. Thus, if the difference between the measured displacement and true 
displacement (error) is less than half of the peak diameter, the measurement should be considered as valid because the 
peak corresponds to the true displacement. However, previous works often use a fixed threshold value for detecting the 
failed measurement or outliers. Outliers are identified if the difference between the measured value and true value is 
larger than a pre-determined value, for example 0.5 or 1 pixel, regardless if the correct peak is detected or not. By using 
this criterion, the conventional definition of outliers is inconsistent with the notions of error and uncertainty. Namely, a 
wide peak at a location corresponding to the true displacement although it could yield errors in excess of 1 pixel, it 
would still be accurate but it will not be precise. Hence, using the traditional definition would inhibit the development 
of models for uncertainty quantification. Instead, we suggest that the criterion for a valid measurement should be based 
on the diameter of the correlation peak. If the error is less than half of the peak diameter, we conclude that the 
measurement successfully found the correct peak and it is indeed a valid measurement. Only those measurements 
providing the wrong primary peak are considered as invalid. An example of this “half peak diameter” criterion is shown 
in Figure 5. Note that the concepts of valid measurements versus outliers are different and distinct. An outlier is 
determined by statistical comparison with its neighbourhood while a valid or invalid measurement should be based on 
an independent assessment of the measurement’s success or failure, regardless of the statistical properties of the 
neighbourhood in which it is located.  Using this model, a peak that has a width wider than a single pixel due to 
contributions of the particle size and a large shear gradient may be correctly identifying the velocity distribution within 
the interrogation region even if the highest point within that peak is located more than one pixel away from the velocity 
value at a location in the center of the correlated image.  Thus, it should not be counted as a failure, but should be 
instead included as a valid measurement but with a larger than normal uncertainty. 

    
 (a)        (b) 

Figure 5: 1-D example of half peak diameter criterion (a) good measurement; (b) outlier 

1.5. Synthetic image sets 

Synthetic image sets with known displacements information were used to develop the relations between the 
uncertainty or error distribution and the measured metrics’ value.  

1.5.1. Taylor vortex 

The first data set is 100 image pairs of an ideal Taylor vortex flow field as was previously used by Charonko and 
Vlachos [27]. The vortex is located at the center of the image. The maximum circumferential velocity is umax = 4 
pixels/frame at distance of R0 = 128 pixels from the center. The velocity profile is given by: 
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The image size is 1024X1024 pixels. Particles in the images are Gaussian with 3-pixel diameter at the 4 standard 
deviation level and had 8-bit intensity resolution. Seeding density is 20 particles per 32*32 pixel window on average.  

1.5.2. Turbulent boundary layer 

The second data set is 100 image pairs of turbulent boundary layer flow field (Case B of the Second International 
PIV challenge in 2003 [33]). The image quality is: 70 particles pairs per 32X32 region with 2.6 pixel average particle 
diameter at the 4 standard deviations. 

1.5.3. Laminar separation bubble 

The last data set is 18 image pairs of laminar separation bubble flow field (Case B of the Third International PIV 
Challenge in 2005 [34]). 25 particles per 32x32 window is the average seeding density of this data set. The average 
particle diameter is about 2.0 pixels. 

1.6. Statistical analysis and Uncertainty estimation 

After we got the value of metrics mentioned before and the error of all the vectors in the three synthetic image data 
sets, we divided all the data points into 40 bins based on the value of the calculated metrics. Previous work has shown 
that the difference between the absolute magnitudes of mean velocity error and absolute mean error plus the standard 
deviation was very small [35], justifying the continued use of the definition of vrms δ  from that work for the error 
distribution calculation. In each bin, the vrms δ  is calculated as: 
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where N is the number of data points in the ith bin. 
Measurement errors were first estimated at the standard uncertainty level, which should reflect one standard 

deviation level for the parent population of possible errors from which the true error on some measurement of the metric 
is drawn without respect of the exact shape of that distribution. The expanded uncertainty was calculated by making the 
assumption that all errors were drawn from normal distribution and the large sample assumption applied. We multiplied 
the standard uncertainty by a coverage factor, tCI to get the expanded uncertainty. In this work we took t95 = 2.0, which 
means the true value of the measured quantity lies within a range bounded by the measured value plus or minus the 
expanded uncertainty (twice the standard uncertainty) 95% of the time. If the uncertainty model is correct, 95% of all 
data points will have a velocity error within the provided uncertainty range. 

2.  Result and discussion 

2.1. Mutual information (MI) 

As mentioned above, the MI is a more general form of NIFIFO combining the effects of particle intensity and 
diameter. To further prove the above idea, PIV standard image sets [36] were tested to show the relationship between 
MI and NIFIFO. This data set was selected because in addition to the true velocity, the position and diameter of each 
particle in the image were also reported, which was necessary for a comparison between the two metrics.  As 
mentioned before, different particles contribute differently in building the correlation plane, and thus the number of 
correlated particles (NIFIFO) must be scaled by the particle intensity and diameter within each window. The result is 
shown in Figure 6. The X-axis shows the value of MI and the Y-axis shows the value of intensity scaled NIFIFO. It is 



clear that most of the results are aligned along the white dash line corresponding to MI = NIFIFO supporting the notion 
that the MI provides a direct estimate of the apparent NIFIFO for an individual image pair. 

 
Figure 6: Mutual Information (MI) VS NIFIFO.  Color represents number of measurements in each bin. 

The relationship between the mutual information and the distribution of velocity error for Case B of 2003 PIV 
Challenge using standard cross correlation method with 32X32 window size is shown in Figure 7. Details of statistical 
analysis and error distribution calculation are provided in [27]. The scatter plot shows all the combinations of MI and 
error. It is obvious that large errors are expected when the MI value is small. As shown in the plot, almost no 
measurement had both large error and high MI value in this special case. Moreover, MI shows a 95% valid detection 
probability for MI values larger than 5 which is consistent with previous findings for the valid vector detection 
probability versus NIFIFO [24]. When the MI value is below 5, the probability drops rapidly. This result further supports 
that MI and NIFIFO are measuring the same properties of the PIV experiment 

 

Figure 7: Plot of the distribution of velocity error using SCC processing versus correlation peak ratio for 
the turbulent boundary layer images of the 2003 PIV Challenge. (blue scatter dot) the measured distribution 
of MI value and error of velocity magnitude; (red line) mean error of velocity magnitude on each MI value; 

(green line) valid detection probability on each MI value. 



2.2. Relationship of uncertainty versus cross-correlation SNR metrics 

2.2.1. Uncertainty estimation model 

The uncertainty model which provides a relationship between any of the SNR metrics to the standard uncertainty is 
based on a the fitting function proposed in [35].  Hence, the estimated standard uncertainty is calculated by 
determining the fitting parameters of the following equation: 
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The first term is a Gaussian function used to account for the uncertainty due to invalid measurements which 
contribute uncertainty M, where the exact value of M is related to the range of possible velocity measurements and the 
distribution of the true velocity within the sampled flow field [27]. The (φ-N) term allows the error to climb rapidly as 
the metric’s value approaches some small number, and N is the theoretical minimum value of the calculated metric.   

Based on the definition of each quantity, we can determine analytically what value of N we should use for each. 
For PPR, the minimum value is 1 when we have a primary peak and secondary peak with the same height. Based on the 
definition of PRMSR, when all points in Crms have a value of half the main peak height the theoretical minimum value 
for PRMSR is 4. The extreme case for PCE occurs when the peak is only slightly higher than the rest of the correlation 
plane, and the rest of the plane shares the same correlation value; in this case the PCE value is close to 1. Because 
entropy behaves the opposite way as other basic SNR metrics, we take the inverse of entropy, i.e. φ=1/entropy to keep 
the fitting function type consistent among all metrics. The theoretical minimum value for inverse entropy should be 0. 
The theoretical minimum value for MI is also 0 when no particles correlated between two consecutive image frames.  

The second term in equation 14 is the contribution to the uncertainty by the valid vectors, which means the largest 
uncertainty that could be expected would be governed primarily by A if it can be assured that the given measurement is 
valid. The last term C is a constant, which corresponds to the lowest uncertainty we can achieve. The estimated 
uncertainty for a measurement with a given calculated metric value is governed by the combination of the above three 
terms. 

Although outliers were detected by using the new half peak diameter rule described earlier, it is not appropriate to 
develop a model for uncertainty estimation using only the valid measurements. Unlike synthetic image sets, in real 
experiments the true velocity field is unknown and it is inevitable that velocity fields would be contaminated by invalid 
measurements. Therefore both invalid and valid vectors are included in developing the uncertainty model estimation. 
All three synthetic cases with 3 different window size (or effective window size for RPC method), 16X16, 32X32, and 
64X64 were included in the test providing a sample containing 12 million data points. 

2.3. Results of uncertainty estimation 

In order to keep the calculation process consistent, we applied the minimum correlation value subtraction method as 
described earlier to both SCC and RPC. However, this method has a minimal effect on the RPC models since phase 
filtering is effectively immune to background noise effects. Figure 8 shows the curve fitting results for estimating the 
uncertainty using peak ratio with both RPC and SCC methods after the minimum subtraction. The corresponding curve 
fitting functions are: 
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In the previously reported results for SCC processing, the fitted curve only partially agreed with the original data 
[35]. The current results shown in Figure 8a, show that the model fit provides agreement with the original data almost 



across the whole range, with R square value of 0.98. The model for estimating uncertainty for SCC processing provides 
larger values by comparison to the RPC processing, but the relationships are now much more similar than they were in 
the previous work that did not use minimum subtraction. The green curves show the error distribution of velocity 
magnitude versus PPR of good vectors only.  

  
                         (a)                             (b) 
Figure 8: Plots of the relationship of the calculated standard uncertainty on velocity magnitude versus 

peak ratio for both the (a) SCC, and (b) RPC, for all three synthetic image sets. (red line) original curve of 
uncertainty on velocity magnitude versus peak ratio; (blue line) three term function fitted curve; (green line) 
uncertainty on velocity magnitude versus peak ratio for only valid vectors. 

Figure 9-Figure 11 show the curve fitting results for estimating the uncertainty using other basic SNR metrics with 
both RPC and SCC methods. The fitting functions are: 
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All these functions agree that the uncertainty would be larger for the SCC than the RPC for the same value of each 
metric. It is interesting to note that the maximum uncertainty predicted for PRMSR and PCE can be as large as 20 
pixels even for valid measurements for both SCC and RPC methods. Despite the theoretical minimum value for 
PRMSR and PCE, in fact the PRMSR and PCE value is typically hundred times higher than the theoretical minimum 
value, so the uncertainty for valid vectors would never be that high for real cases. All these functions showed an 
acceptable agreement with the raw data, and the corresponding R2 values for each function are shown in Table 2. 

 



Table 2: R2 vale of all fitting functions 

 PPR PRMSR PCE Entropy 

SCC 0.98 0.99 0.99 0.98 
RPC 0.99 0.97 0.95 0.92 

 

  
                         (a)                                   (b) 
Figure 9: Plots of the relationship of the calculated standard uncertainty on velocity magnitude versus 

PRMSR for both the (a) SCC, and (b) RPC, for all three synthetic image sets. (red line) original curve of 
uncertainty on velocity magnitude versus PRMSR; (blue line) three term function fitted curve; (green line) 
uncertainty on velocity magnitude versus PRMSR for only valid vectors 

 
                         (a)                                   (b) 
Figure 10: Plots of the relationship of the calculated standard uncertainty on velocity magnitude versus 

PCE for both the (a) SCC, and (b) RPC, for all three synthetic image sets. (red line) original curve of 
uncertainty on velocity magnitude versus PCE; (blue line) three term function fitted curve; (green line) 
uncertainty on velocity magnitude versus PCE for only valid vectors 



 
                         (a)                                   (b) 
Figure 11: Plots of the relationship of the calculated standard uncertainty on velocity magnitude versus 

Entropy for both the (a) SCC, and (b) RPC, for all three synthetic image sets. (red line) original curve of 
uncertainty on velocity magnitude versus Entropy; (blue line) three term function fitted curve; (green line) 
uncertainty on velocity magnitude versus Entropy for only valid vectors 

The curve fitting for MI was done using all three synthetic data sets with only 32X32 window size, as shown in 
Figure 10. The fitting functions are: 
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The R2 value is 0.99 for SCC model, and 0.98 for RPC model. The green curve shows the rms error of velocity 
magnitude only for valid vectors, which is almost linear in the logarithm domain. This fact further supports our 
assumption that the power-law term counts for uncertainty of valid measurements. It is interesting to note that the 
constant term in the SCC model is 0.05 pixels which matches well with the widely accepted value about the expected 
accuracy of PIV measurements under ideal (simulated) conditions [37] . The RPC function is similar to SCC with 
smaller error value. The curve for the RPC is not as smooth as the SCC one because in RPC processing the magnitude 
part of correlation which contains the particle image information is removed. As a result the MI value captures only the 
contribution of the loss of correlation and not the particle number density.  This is a limitation of the current 
formulation that will be addressed in the future.  

The above equations are used for estimating the standard uncertainty using the corresponding metrics. This standard 
uncertainty was then mutiplied by a coverage factor of t95=2.0 to yield an estimate of the uncertainty at the 95% 
confidence interval using the large sample approximation for a normal error distribution. Finally, the percent coverage 
of the expanded uncertainty was calculated in comparison to the exact true error for each velocity measurement 
according to the following formula: 

                   (25) 

The coverage should be close to 95% for the expanded uncertainty if the uncertainty estimation was correct on 
average. The exact values of coverage factor of all functions using all three synthetic data sets with 16X16, 32X32 and 
64X64 window sizes (for MI, we use 32X32 window size only) are listed in Table 3. All of the coverage factors are 
very close to 95%. 
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                     (a)                                (b) 
Figure 12:Plots of the relationship of the calculated standard uncertainty on velocity magnitude versus MI 

for both the (a) SCC, and (b) RPC, for all three synthetic image sets. (red line) original curve of uncertainty 
on velocity magnitude versus MI; (blue line) three term function fitted curve; (green line) uncertainty on 
velocity magnitude versus MI for only valid vectors 

Table 3: Coverage vale of all fitting functions with synthetic data sets 

 PPR PRMSR PCE Entropy MI 

SCC 95.9% 95.6% 96.1% 95.4% 95.7% 
RPC 94.9% 94.3% 94.7% 94.7% 96.0% 

 

2.4. Application to real flow fields 

Our uncertainty models were further tested with real experimental data. In this work, we are using the same data set 
of stagnation plate flow used by Charonko and Vlachos [27]. The experimental details can be found therein. The details 
of calculating the time average field and then the uncertainty introduced by the fitting process were also described in 
[27]. Afterwards the combined standard uncertainty from both PIV correlation and the experimental fit for the “true” 
field is multiplied by a factor of 2 to yield the expanded uncertainty Utotal, and finally the coverage factor is calculated 
by the following formula: 

%100
estimates velocity of # total

Uδfor which  estimates of #coverage totalv ×
≤

=                            (26) 

The exact values of coverage factor of each function using the real experiment data set with 32X32 window sizes 
are listed in Table 3. Values of all coverage factors are close to 95%. 

 
Table 4:Coverage vale of all fitting functions with real experiment sets 

 PPR PRMSR PCE Entropy MI 

SCC 95.2% 94.0% 96.1% 94.1% 95.4% 
RPC 95.3% 95.1% 96.4% 94.7% 96.4% 

 
 
 



3. Conclusion 
In this paper, we show that cross-correlation SNR metrics calculated exclusively from the correlation plane can be 

used to estimate the uncertainty of the PIV measurements. In the first part of our work, metrics of basic correlation SNR 
related to the peak detectability are introduced. We also develop a new metric termed Mutual Information (MI) to 
estimate the real and apparent NIFIFO directly from the calculated correlation plane. Both theoretical derivation and 
experimental results support that MI corresponds to the apparent NIFIFO and would be a practical measure of the 
correlation SNR with direct connection to the established PIV theory. A simple but consequential correction on the 
correlation plane is introduced using a minimum correlation value subtraction to remove the effect of the background 
image noise and thus improve the model’s performance for uncertainty estimation.  

The relationship between the uncertainty and the metrics of correlation SNR of individual velocity measurements 
were explored using both robust phase correlation (RPC) and standard cross correlation (SCC) method. The standard 
uncertainty is governed by a well-defined relationship between the correlation SNR using both methods. This relation is 
quantified using a three-term formulation for both processing methods. In the three-term function, the Gaussian 
distribution term is related to probability of occurrence of invalid measurements; the power-law term describes the 
primary behavior of the uncertainty versus the metrics; and a constant expresses the minimum expected uncertainty 
level for the corresponding methodology, regardless of value of the metrics. The formulas successfully predicted the 
expanded uncertainty coverage close to 95% over all three synthetic image sets as well as a 2D stagnation point real 
experiment case using all provided metrics using both SCC and RPC method.  

In conclusion, this paper provides a general framework of models for predicting the expected uncertainty levels for 
individual velocity measurement in a PIV flow field without the knowledge of local flow conditions using only the 
information contained in the calculated correlation plane. This work continues work establishing the foundations 
towards the growing understanding of PIV uncertainty estimation.  
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