

Delft University of Technology

Accelerating Gossip-Based Deep Learning in Heterogeneous Edge Computing Platforms

Han, Rui; Li, Shilin; Wang, Xiangwei; Liu, Chi Harold; Xin, Gaofeng; Chen, Lydia Y.

DOI
10.1109/TPDS.2020.3046440
Publication date
2021
Document Version
Final published version
Published in
IEEE Transactions on Parallel and Distributed Systems

Citation (APA)
Han, R., Li, S., Wang, X., Liu, C. H., Xin, G., & Chen, L. Y. (2021). Accelerating Gossip-Based Deep
Learning in Heterogeneous Edge Computing Platforms. IEEE Transactions on Parallel and Distributed
Systems, 32(7), 1591-1602. Article 9303468. https://doi.org/10.1109/TPDS.2020.3046440

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TPDS.2020.3046440
https://doi.org/10.1109/TPDS.2020.3046440

Accelerating Gossip-Based Deep Learning in
Heterogeneous Edge Computing Platforms

Rui Han , Shilin Li , Xiangwei Wang, Chi Harold Liu , Senior Member, IEEE,

Gaofeng Xin, and Lydia Y. Chen

Abstract—With the exponential growth of data created at the network edge, decentralized and Gossip-based training of deep learning

(DL) models on edge computing (EC) gains tremendous research momentum, owing to its capability to learn from resource-strenuous

edge nodes with limited network connectivity. Today’s edge devices are extremely heterogeneous, e.g., hardware and software stacks,

and result in high performance variation of training time and inducing extra delay to synchronize and converge. The large body of prior

art accelerates DL, being data or model parallelization, via a centralized server, e.g., parameter server scheme, which may easily turn

into the system bottleneck or single point of failure. In this artice, we propose EdgeGossip, a framework specifically designed to

accelerate the training process of decentralized and Gossip-based DL training for heterogeneous EC platforms. EdgeGossip features

on: (i) low performance variation among multiple EC platforms during iterative training, and (ii) accuracy-aware training to fastly obtain

best possible model accuracy. We implement EdgeGossip based on popular Gossip algorithms and demonstrate its effectiveness

using real-world DLworkloads, i.e., considerably reducing model training time by an average of 2.70 times while only incurring accuracy

losses of 0.78 percent.

Index Terms—Deep learning, decentralized training, gossip, edge computing

Ç

1 INTRODUCTION

THE fast development Edge computing (EC) platform in
recent years extends cloud service capability to the edge

ends of the network [1], [2], e.g., mobile and sensing devi-
ces. The prosperity of EC platforms, either in the industry
(e.g., AWSGreengrass and Azure IoT Edge) or in the open-
source community (e.g., KubeEdge and Apache Edgent),
promotes the adaptation of deep learning (DL) models at
edge devices [3]. Today’s EC platforms however are highly
heterogeneous, i.e., roughly 2 million types of devices con-
figurations [4], due to following two reasons. First, EC plat-
forms have versatile types of hardware (e.g., accelerators
such as TITAN Xp or RTX 2080 Ti Graphics Cards, or differ-
ent CPU types), and different resource capacities (e.g., num-
ber of processor cores, and amount of memory and I/O
bandwidths). Second, platform resources are shared by
both training tasks and its co-running workloads which are
often short-running and cause intermittent inferences. Such
a complex heterogeneity increases the difficulty of DL train-
ing by multiple folds.

Example Scenario. Fig. 1 illustrates an example of DL train-
ing on heterogeneous EC platforms. Three participants work

together to learn a DL model and each participant performs
her/his own training task in a separate EC platform. Conse-
quently, each task has a distinct execution environment: plat-
form 1 has a GPU accelerator, platforms 2 and 3 have
different CPU types and resource capacities, and the work-
loads co-run with the training task continuously change. At
each epoch, eachplatformfirst processes its own local training
data, updates model parameters, and synchronizes informa-
tion (gradients or parameters) either using a central parame-
ter server or in a peer-to-peer fashion via a gossiping protocol.

To enable DL algorithms on distributed environment, the
prior art leverages data parallelism [5], [6], [7], [8] and
model parallelism [9], [10], or develops asynchronous train-
ing algorithms [11], [12] for unreliable networks. Federated
learning paradigm takes a step further to enable training on
datasets distributed among multiple participants [13], [14].
Most of aforementioned approaches, however, rely on a
central scheduling node which easily become the system
bottleneck and a single point of failure.

Decentralized and Gossip-based DL1 training algorithms
are emerging alternatives that offer synchronisation free
solution without the central server [15], [16], [17], [18]. The
prevailing underlying assumption here is that participant
nodes are homogeneous – strongly invalidated by the real-
ity. Indeed, the tasks running in slow platforms can signifi-
cantly delay the overall decentralized training process. Such
a severe yet over-looked performance discrepancy among
EC platforms calls for a new solution that can accelerate the
Gossip-based training process while producing the the best
possible model accuracy.

� Rui Han, Shilin Li, Xiangwei Wang, Chi Harold Liu, and Gaofeng Xin are
with the Beijing Institute of Technology, Beijing 100811, P. R. China.
E-mail: hanrui@bit.edu.cn, byuegv@163.com, {wangxw-cn, 2361417120}
@qq.com, liuchi02@gmail.com.

� Lydia Y. Chen is with the Delft University of Technology. Mekelweg 5,
2628 CD Delft, The Netherlands. E-mail: lydiaychen@ieee.org.

Manuscript received 30 June 2020; revised 16 Oct. 2020; accepted 30 Nov.
2020. Date of publication 22 Dec. 2020; date of current version 11 Feb. 2021.
(Corresponding author: Chi Harold Liu.)
Recommended for acceptance by P. Balaji, J. Zhai, and M. Si.
Digital Object Identifier no. 10.1109/TPDS.2020.3046440

1. We interchangiblely use the term of decentralized and Gossip-
based learning in this paper.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021 1591

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6894-1921
https://orcid.org/0000-0001-6894-1921
https://orcid.org/0000-0001-6894-1921
https://orcid.org/0000-0001-6894-1921
https://orcid.org/0000-0001-6894-1921
https://orcid.org/0000-0002-6156-3355
https://orcid.org/0000-0002-6156-3355
https://orcid.org/0000-0002-6156-3355
https://orcid.org/0000-0002-6156-3355
https://orcid.org/0000-0002-6156-3355
https://orcid.org/0000-0002-0252-329X
https://orcid.org/0000-0002-0252-329X
https://orcid.org/0000-0002-0252-329X
https://orcid.org/0000-0002-0252-329X
https://orcid.org/0000-0002-0252-329X
https://orcid.org/0000-0002-4228-6735
https://orcid.org/0000-0002-4228-6735
https://orcid.org/0000-0002-4228-6735
https://orcid.org/0000-0002-4228-6735
https://orcid.org/0000-0002-4228-6735
mailto:hanrui@bit.edu.cn
mailto:byuegv@163.com
mailto:wangxw-cn@qq.com
mailto:2361417120@qq.com
mailto:liuchi02@gmail.com
mailto:lydiaychen@ieee.org

Motivated by the challenge of heterogeneity, we propose
EdgeGossip, a framework to accelerate the Gossip-based
DL training on different EC platforms. The basic approach
taken by EdgeGossip is to maintain low performance het-
erogeneity, i.e., differences in training times, among multi-
ple EC platforms by dynamically determining local data
computation per training epoch. At the same time, Edge-
Gossip minimizes result accuracy losses by first processing
the most accuracy-related parts of input data in each plat-
form through the novel concept of aggregated data points.
In detail, we make the following technical contributions:

� EdgeGossip Framework on Heterogeneous EC Platforms.
A first of kind heterogeneity-aware Gossip train-
ing framework that can ensure the performance
homogeneity.

� Predictive Gossip Training Balancer. The ultra light-
weight balancer dynamically sets the amounts of
data processed in different EC platforms according
to their predicted performances, thus balancing their
training times to accelerate the completion of each
training epoch.

� Accuracy-Aware Trainer. In each platform, the trainer
quickly estimates the effects between different parts
of the input data and model accuracy, and first pro-
cesses the most-accuracy related parts to minimize
accuracy losses.

� Implementation and Evaluation. We implement Edge-
Gossip on KubeEdge, an emerging EC platform in the
Kubenetes ecosystem and incorporate our approach
with the deep ML algorithms in Intel BigDL [7] and
PyTorch [19]. By applying EdgeGossip in the typical
Gossip-based training algorithm and heterogeneous
platforms of CPU and GPU nodes, the evaluation
results show our approach considerably reduces
model training time by 2.70x with small accuracy
losses of 0.78 percent.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the background of this work and Section 3
presents our approach. Section 4 evaluates the proposed
approach, and finally, Section 5 summarizes the work.

2 BACKGROUND AND RELATED WORK

In this section, we first introduce background of decentral-
ized and Gossip-based training (Section 2.1), following by a
discussion of existing techniques on improving distributed
mode training and challenges of running Gossip-based DL
training in heterogeneous EC platforms (Section 2.2).

2.1 Decentralized and Gossip-Based Training

Parameter server is a major category of centralized training
techniques that can be divided into three categories: (1)
bulk synchronous parallel model that requires all workers
to wait until parameter server completes gradient synchro-
nization and model updating at each iteration [20]; (2) stale
synchronous parallel model that only requires a worker to
wait for other workers once a bounded stale iteration is
reached [21]; (3) asynchronous parallel model that allows
all workers to be fully asynchronous during training [22].

The ring AllReduce approach improves the scalability of
centralized training by organizing all n workers in a ring
topology and dividing each worker’s parameters into n
parts. At each iteration, this approach has two steps: (1) at
the scatter-reduce step, each worker uses one communica-
tion to obtain one part of parameters from another worker.
After n� 1 communications, the worker gets its final set of
parameters; (2) at the allgather step, the worker sends its
final set of parameters to other workers using n� 1 commu-
nications, where each communication transmits one part of
parameters to the subsequent worker in the ring.

Compared to centralized training, the main advantage of
decentralized training lies on addressing the limitation of
communication traffic and computing capacity of the cen-
tral node, thus avoiding the failure of the entire system due
to the synchronization problems with the node’s critical
resources [23]. The basic idea of this training paradigm is to
eliminate the use of the central node and allow training par-
ticipants to exchange information with some of the other
participants in a peer-to-peer fashion [11], [16]. Some
improvement techniques have been proposed to improve
this training paradigm by introducing backup workers and
bounded staleness [24] or joint synchronization [25].

Gossip is a dominant algorithm used in decentralized DL
model training [16], [17], [18], [26]. This algorithm is initially
developed for distributed averaging problems [15], [27],
which iteratively calculate the average vector across all mul-
tiple nodes in a peer-to-peer network topology. When
applying Gossip in DL training, all the training participants
(EC platforms) communicate information according to a
mixed matrix and finally converge to the same minimum.
For example, the process of the typical GoSGD algo-
rithm [18], [26] consists of three steps in a training epoch.
First, for each participant and iteration, the algorithm calcu-
lates gradients using the participant’s local input data and
model, and updates the parameters using the gradients.
The mini-batch gradient descent method is usually used in
this step. Second, it sends weights to other participants
according to the matrix. Finally, it receives weights from
other participants, and merges them with the local weights
to update the model.

Relationship to Federated Learning. After first proposed by
Google in 2016, federated learning [13], [14] enables multiple

Fig. 1. Example heterogeneous EC platforms.

1592 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

participants (data owners) to build a common, robust
machine learning model without making public their own
data. To this end, federated learning is designed to solve var-
ious issues related to training data, such as data privacy,
data security, and data heterogeneity. The general principle
of federated learning is to train local models using local data,
while exchanging parameters among different participants,
typically through a central scheduling node like parameter
server [9]. The central node acts as a reference clock for dis-
tributed working nodes, and orchestrates the different steps
of the algorithm by controlling data and computing resource
allocation. The decentralized training studied in this work
naturally applies to federated learning, which enables using
decentralized data for training models. Decentralized train-
ing is prospering topic in federated learning, in particular for
training conducted in an EC environment [14].

2.2 Techniques on Improving Distributed Training

Improving performance in distributed ML and DL has been
the subject of extensive research in recent years, as summa-
rized in Table 1.

First, data parallelization is the most widely used tech-
nique that accelerates the training process by processing
data points in a parallel and distributed manner [5], [6], [7].
Many of these techniques are developed to handle chal-
lenges in data parallelization, such as stragglers [28], I/O
bottlenecks [29], data locality [30], and algorithm-level par-
allelization [31]. MapReduce [5] is a mainstream technique
in this area, some other popular ML engines include Tensor-
Flow [32], PyTorch [19], and MLbase [6].

Some other techniques focus on optimizing the perfor-
mance of specific computations such as join operations [33] or
matrix computations [34] in model training, or they are
designed for specific applications such as graph mining [35],
decision tree ensembles [36], and DL [37].

In addition, approximate computation techniques either
use approximate programs or codes over large datasets
[38], or apply lossy compression schemas to model param-
eters to reduce computation and communication overheads
in training [39].

The above performance improvement techniques cover
different aspects of distributed model training, and most of

them (either data parallelization or model parallelization [9],
[10]) are designed for training built upon a central schedul-
ing node. This work is complementary to existing techni-
ques that it focuses on improving decentralized training
deployed in heterogeneous EC platforms. We summarise
the two key characteristics of such training as follows:

� Real EC nodes, e.g., mobile devices or server nodes,
usually have different resource capacities, and slow
nodes may delay the overall training process in the
Gossip framework. The first challenge, therefore, is
how to coordinate the model training among these
nodes with consideration of their discrepancy of
resources and performances, and try to produce the
best possible results.

� Moreover, even given a resource capacity in a node,
the actual performance of the training task may
degrade, or vary, with time, because it shares devices
resources such as memory, and processing cycles,
and communication bandwidth with other co-run-
ning workloads. The second challenge is to control
how the training algorithm adapts its processing of
data in response to such changes.

3 EDGEGOSSIP

In this section, we first present an overview of EdgeGossip
in Section 3.1, followed by an explanation of its modules in
Sections 3.2, 3.3, and 3.4.

3.1 Overview

For a DL training task, EdgeGossip is presented to acceler-
ate its decentralized model training using modules devel-
oped for both the pre-training stage and the the iterative
training stage, as shown in Fig. 2.

The Pre-Training Stage. The module at this stage trans-
forms the input dataset X into multiple aggregated data
points using three steps. Step 1 transforms X into a low-
dimensional dataset X0 that can be processed efficiently by
the following data division step. Step 2 divides the data
points X0 into multiple subsets and preserves data similar-
ity in the division process. Note that at steps 1 and 2, we
selected two and three techniques respectively. These tech-
niques have both good effectiveness and acceptable over-
heads. Finally, step 3 aggregates the information of original
input data point in each subset to generate an aggregated
data point. Note that the above creation process is only
applied once before model training.

The Iterative Training Stage. At this stage, the three mod-
ules are designed to accelerate the model training process.
Before each training epoch, the performance predictor in each
platform reports its estimated performance to the Gossip
training balancer. The balancer reduces the discrepancy
among different platforms’ training times by setting differ-
ent ratios of input data for the coming epoch. In the setting,
platforms of higher performances or smaller input data
sizes are set to process larger ratios of input data. Moreover,
the Accuracy-aware trainer module minimizes the accuracy
losses due to the removed input data. This is achieved by
identifying and first processing the most accuracy-related
input data based on the aggregated data points.

TABLE 1
Existing Performance Improvement Techniques

in Large-Scale ML Applications

Category Introduction

Data
parallelization

Stragglers [28]
I/O bottlenecks [29]
Data locality and task dependency in
MapReduce jobs [30]
Hybrid parallelization strategy [31]

Specific ML
operations or
algorithms

Join operations [33]
Matrix computations [34]
Graph mining [35]
Ensemble learning [36]
Deep learning [37]

Approximate
computation

Approximate programs [38]
Lower precision [39]

HAN ETAL.: ACCELERATING GOSSIP-BASED DEEP LEARNING IN HETEROGENEOUS EDGE COMPUTING PLATFORMS 1593

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

3.2 Input Data Aggregator

The input data aggregator generates aggregated data points
with two basic purposes: preserving data similarity when
grouping input data points and low generation overheads.
To this end, we design an end-to-end process with three
steps (Table 2 lists the symbols used here):

� Dimensionality Reduction. This step is designed to
reduce generation overheads when dealing with high-
dimensional datasets. It employs a dimensionality
reduction technique to transform the original N � d
datasetX into a reducedN � d0 (d0 < < d) datasetX0.

� Similarity-Preserving Data Division. This step divides
the N � d0 dataset X0 into M subsets {X1, X2, ...,XM }
while preserving data similarity. That is, each subset
consists of multiple data points of similar feature
values.

� Aggregated Data Points Generation. Using the first two
steps, the Input Data Aggregator module divides the
reduced dataset X0 (and the original input dataset
X) into M subsets. For each subset, it generates an
aggregated data point using the original input data
points inX in the final step. Specifically, this step cal-
culates the jth feature of the aggregated data point of
subsetXi (1 � i � M and 1 � j � d) as

aj ¼
PjXij

k¼1 x
ðkÞ
j

jXij ; (1)

where x
ðkÞ
j denotes the jth feature of the kth point in

Xi. In generation, each subsets consists of data points
belonging to the same class.

Selection of Aggragation Techniques. We note that there
exists a variety of dimensionality reduction and data vision
techniques. Prevalent techniques of the first type include sin-
gular value decomposition (SVD) based on single data points
or the entire dataset, incremental SVD [40], Hash, Principal
components analysis (PCA), and histogram. Prevalent tech-
niques of the second type include k-means clustering, Local-
ity Sensitive Hash (LSH), and Gaussian mixture model
(GMM). In EdgeGossip, we implemented eight representa-
tive combinations of the above techniques as listed in Fig. 3,
and compare their them with both overhead and accuracy
metrics. The overhead metric is each combination’s time con-
sumption, including the execution times of the three aggre-
gation steps and their total time. The similarity-preserving
metric is denoted by the top-1 classification accuracy of the

Fig. 2. The overview of EdgeGossip.

TABLE 2
A Summary of Symbols

Symbol Symbol meaning

d Data dimensionality of input data
~x The attribute vector ðx1; x2; . . . ; xdÞ of an input

data point
X Input dataset
y The class label of input data point
N The number of points inX
~a An aggregated data point
M The number of aggregated data points

corresponding to the original data points inX Fig. 3. Comparative evaluations of eight combinations of dimensionality
reduction and data vision techniques.

1594 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

DL model trained using the generated aggregated data
points. This accuracy represents these points’ approximation
level to the input data. In evaluation, AlexNet and Cifar10
dataset [41] are tested and one aggregated data point corre-
sponds to five original data points. We can observe in 3(a)
that the generation times of four combinations (SVD+GM,
PCA+K-means, PCA+LSH, SVD (based on the entire data-
set)+LSH) are 10 times longer than those of other combina-
tions. In addition, although the last combination (histogram
+K-means) has a similar generation time with the first three
combinations, it has the lowest classification accuracy among
all combinations (Fig. 3b). In conclusion, we select the first
three combinations that achieve both low overheads and

high accuracy. Table 3.2 summarizes the time complexities
of the selected techniques.

Example. Fig. 4 shows an example of generating aggregated
data points. Step 1 transforms a 12� 5 input datasetX into
a 12� 2 dataset X0 using three data aggregation techni-
ques. We can see that in all techniques, the data points
with similar feature values (e.g., points ~x1 and ~x2) still
have similar features in X0. In dimensionality reduction,
the incremental SVD technique uses the longest time (12
time units), and the other two techniques (SVD and hash)
use much shorter times. Based on the reduced dataset X0,
step 2 divides it into four subsets using either k-means
clustering or LSH. We can see that although the two tech-
niques have different data division process, similar data
points in X0 are still divided into the same category.
Finally, step 3 creates aggregated data points according the
divided subsets. Each aggregated data point corresponds
to one to seven original data points.

3.3 Predictive Gossip Training Balancing

In Gossip-based training, predicting performances of training
tasks deployed in different EC platforms is the key step to
accelerate unbalanced training in different platforms. This
prediction is based on the contention information of shared
resources collected by monitors. The proposed performance
predictor comprehensively considers both processor cores

TABLE 3
Time Complexities of Data Aggregation Techniques

Step Technique Time complexity

Dimensionality
reduction

SVD OðN � d3=2Þ
Incremental SVD Oðd0 � e� v�NÞ
Hash OðN � dÞ

Data division LSH Oðd�N � logNÞ
K-means Oðd�M � e�NÞ

1. d0 represent dimensionality after reduction.
2. e represents the number of iterations.
3. v represents the number of attributes used in each iteration.

Fig. 4. An example of generating aggregated data points with three steps.

HAN ETAL.: ACCELERATING GOSSIP-BASED DEEP LEARNING IN HETEROGENEOUS EDGE COMPUTING PLATFORMS 1595

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

(e.g., shared processing units and caches) and I/O resources
(disk and network bandwidths) contended by different
programs in the same node. Table 4 lists the contention infor-
mation of these shared resources, in which core usage repre-
sents the ratio of time running instructions on the cores
(including private cache hits). Note that the contention of
these resources comes from a training task’s co-running pro-
grams within the same service or across other applications,
and node’s hardware/software activities.

The performance predictor consists of two parts. First, in
the presence of fine-grained heterogeneity of resource con-
tentions in each node of the platform, the basic performance
predictor is responsible for collecting the information of
resource sharing and contention, and predicting the impact
on individual node’s performance. Second, the extended per-
formance estimator further calculates the overall perfor-
mance (throughput) of the platform based on the training
implementation topology. With these two parts, the perfor-
mance predictor finally exposes the platform performance
to the Gossip training balancer.

Performance Prediction for a Node. Given a training task
hosted in a node, the basicperformance predictor is developed
to capture the impact of resource sharing and contention on
task’s performance and estimate its processing time t per unit
of input data. The predictor employs a regression model to
describe the relationship between contention information and
processing time t. Specifically, the training of the regression
model takes a set of V samples {(~U1; t1Þ; ð~U2; t2),. . .,(~Uv; tV)}
as input and outputs a model RGð~UÞ, where ~Ui =
(Ucore

i ; UnetworkBW
i ; UdiskBW

i) (i= 1,. . .,V) and the training sam-
ples can be obtained from profiling runs or historical running
logs. In model RGð~UÞ, ~U = (Ucore; UnetworkBW;UdiskBW) repre-
sents the CPU, network, and disk utilizations of the task’s
co-running jobs in the same node. The task’s process time is
predicted as: t0 �RGð~UÞ, where t0 denotes the task’s original
processing time without performance inference and RGð~UÞ
denotes the performance depredation ratio (RGð~UÞ > 1). We
note that ECnodesmay have random slowdown,which influ-
ences t0 in the basic performance predictor. Hence the predic-
tion mechanism can handle such slowdown by dynamically
changing t0 according to themachine status.

Performance Estimation for an EC Platform. Support the
training task is parallelized across I executors (nodes) of the
platform. Using the basic performance predictor, the ith
executor’s processing time ti per unit of input data is calcu-
lated according to its hosted node. The extended perfor-
mance estimator then calculates the overall throughput p of
the platform by taking a summarization of all executors: p ¼PI

i¼1
1
ti
, where 1

ti
represents the number of processed input

data points per unit of time (e.g., 100 points per second).

The estimation of p is based on the assumption that the I
parallel executors have the same processing algorithm.

Algorithm 1. Gossip Training Balancing Algorithm

Require: E: the total number of EC platforms;
pi: the predicted throughput (number of processed data
points per second) in platform i (1 � i � E);
jXij: the number of data points in datasetXi;
T ½i�: platform i’s estimated processing time of completing
its epoch;
ri: the ratio of platform i’s kept trainingdata at the next epoch;
F ½i�: the failure status of platform i.

1. Obtains performances p1 to pE ;
2. for (i=1; i � E; i++) do
3. if (pi < pthreshold) then
4. F ½i� ¼ 1; // platform i is failed;
5. T ½i� ¼ 1;
6. else
7. F ½i� ¼ 0;
8. T ½i� ¼ jXij

pi
;

9. end if

10. if (

PE

j¼1
F ½j�

E > fthreshold) then

11. Halt the balancing process and trigger an exceptional
handling;

12. end if
13. end for
14. Sort theE platforms in ascending order according to their

estimated processing times,where T ½i� � T ½iþ 1�
(i=1,...E � 1);

15. for (i=1; i � Esuccessful; i++) do
16. t0i=

T ½i�
T ½1� ;

17. ri=
1
t0
i
;

18. end for
19. Return {r1, r2,..., rE}.

Gossip Training Balancer. Given a set ofE EC platforms and
their predicted performances, the steps of the Gossip training
balancer are detailed in Algorithm 1. This algorithm is exe-
cuted before each epoch of model training. It first obtains the
platforms of all E platforms (line 1). If platform i’s perfor-
mance pi is smaller than a threshold (e.g., 0.001), this platform
is judged as a failure one (lines 3 to 5) and its estimated proc-
essing time T ½i� is set as infinity; otherwise the processing
time is calculated as its input data size jXij divided by its pre-
dicted throughput pi (lines 6 to 8). The calculation is based on
the assumption that the E platforms have the same training
algorithm and their local input datasets have the same feature
space. Hence a platform’s estimated training time depends on
its performance and input data size. Note that previous stud-
ies show portion of devices that drop out due to computation
or network errors ranges between 6 to 10 percent [16]. In the
Gossip-based training scenario, a small portion of failure plat-
forms does not have an immediate negative impact on the
training convergency time, because remaining platforms will
continue to make progress. If this portion is larger than a
threshold fthreshold (e.g., 10 percent), the algorithm triggers an
exception handling that can execute the training tasks of the
failure platforms in other nodes (lines 10 to 12). Subsequently,
the algorithm ranks the E platforms in ascending order
according to their estimated processing times (line 14).
Finally, the algorithm sequentially calculates each platform’s

TABLE 4
Contention Information of Shared Resources

1596 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

ratio of kept input data (line 15 to 18). A platform of shorter
estimated time is set to process a higher ratio of input data,
and vice versa. Such setting balances the training time of these
heterogeneous platforms.

Overhead Analysis. In our predictive Gossip training bal-
ancer, the overhead of the performance predictor consists of
two parts. The first part comes from collecting different
resource usages (processor cores, disk and network I/O
bandwidths) by accessing the information stored in the
/proc filesystem in Linux based systems. The predictor
collects the information once every second and periodically
(e.g., 1 minute) writes the mean resource utilizations to a
Redis data store. Hence the second part is the communica-
tion cost between the predictor and the balancer. In addi-
tion, the time complexity of the Gossip training balancing
algorithm is OðElogEÞ, where E is the number of EC
platforms.

3.4 Accuracy-Aware Trainer

In each EC platform, the steps of accuracy-aware training in
an epoch are detailed in Algorithm 2. The algorithm first esti-
mates the M aggregated data points’ effects on model accu-
racy (line 1). In a multi-class problem, the effect of an
aggregated point ai is calculated as the value of the loss func-
tion to be minimized in training, similar to current impor-
tance sampling techniques [42]. Note that importance
sampling employs input data points’ loss values to skew the
sampling towards important ones and select a subset of input
data to improve the convergence speed. This subset is kept
unchanged during the iterative training process. In contrast,
our approach dynamically changes the ratios of processed
input data at each iteration according to the predicted per-
formances in all EC platforms. Subsequently, the algorithm
first ranks the aggregated data points in descending order
according to their effect values (line 2), it then uses each
point’s ranking order to decide the ranking order of its corre-
sponding subset of original data points (line 3). That is, a
higher value of ei means ai and its corresponding subset Xa

1

has a higher correlation to model parameter updating, thus
having a higher probability of improvemodel accuracy.

Based on the ranked subsets of input data, the algorithm
performs the training iterations in an epoch (line 6 to 16).
Specifically, the algorithm sequentially adds the ranked sets
to Xiteration, which includes at least b data points to be used
in the next training iteration (line 8 to 12). This addition is
based on the idea that the data points with higher ranks,
namely higher correlations to model accuracy, are first used
in model training, because processing a proportion of the
top ranked points determines most of the model accuracy.

4 EVALUATION

Our evaluation of EdgeGossip on real-life DL applications has
three objectives. First we show the effectiveness of EdgeGos-
sip against the typical Gossip algorithm in reducing model
training time (Section 4.2). Then, we present the timing and
accuracy advantages achieve in two keymodules of EdgeGos-
sip: the generation and processing overheads of aggregated
data points (Section 4.3), and the accuracy and overheads of
the proposed performance predictor (Section 4.4). Finally, we
discuss the factors that influence EdgeGossip (Section 4.5).

Algorithm 2. Accuracy-Aware Training in Platform i

Require:Xi: the training data in platform i;
{a1, a2,..., aM }: theM aggregated data points in platform i;
ei: ai’s effect on model accuracy (1 � i � m);
Xa

i : the set of original data points represented by ai;
ri: the ratio of kept data;
b: the batch size per training iteration;

1. Process theM aggregated data points to estimate their
effects e1 to eM ;

2. Rank theM points in descending order according to their
effect values;

3. Obtain the ranked sets {Xa
1 ; X

a
2 ,...,X

a
M } according to the

ranking orders of aggregated data points;
4. bprocessed=0; //the number of processed input data
5. i=1; //the index of processed aggregated data point
6. while (bprocessed � jXij � ri) do
7. Xiteration=f;
8. for (; i � M ; i++) do
9. Xiteration=Xiteration [Xa

i

10. if (jXiterationj � b) then
11. Break; //stop the for loop
12. end if
13. end for
14. Perform an iteration of model training usingXiteration;
15. bprocessed=bprocessed þ jXiterationj;
16. end while

4.1 Evaluation Settings

Experimental Environment. The experiments are performed in
three types of heterogeneous EC platforms, including one
CPU platform and two GPU platforms. In the CPU platform,
each node is equipped with 18-core Intel E5-2695 v4 process-
ors, and 256 GB of DRAM. The first GPU platform has 12-core
Intel(R) Core(TM) i7-8700K processors, 12-GB TITAN Xp
Graphics Card, and 64 GB memory. The second GPU plat-
form has 88-core Intel(R) Xeon(R) Gold 6238 processors, 11-
GBGeForce RTX 2080 Ti Graphics Card, and 512GBmemory.
All nodes run Linux Ubuntu 18.04. In the Spark cluster, the
JDK, Spark, and KubeEdge versions are 1.8.0.181, 2.4.3, and
v1.15.3 respectively. In the PyTorch cluster, the python,
pytorch, cuda, cudnn, and redis versionts are 3.7.7, 1.6.0, 10.1,
7.6.3, and 4.0.9, respectively.

TestedWorkloads and Datasets. We consider two popular DL
models (LeNet-5 [43] and AlexNet [44]) based on the imple-
mentation of EdgeGossip in PyTorch. LeNet-5 has 60k param-
eters and it is tested using the MNIST dataset [45]. AlexNet
has 61.5 million parameters and it is tested using the Cifar10
dataset [41] and the downsampled ImageNet8� 8 data-
set [46]. Using Cifar10, we also tested two typical DL models
widely used in EC and mobile devices: Squeezenet [47] and
MobileNets-v2 [48]. Both models achieve similar levels of
accuracy with AlexNet but have much smaller numbers of
parameters and thus have lower inference time. Both MNIST
and Cifar10 datasets have 60k data points and the numbers of
training and testing points are 50k and 10k, respectively.
ImageNet dataset has 1.28 million data points from 1000 clas-
ses and 50k testing points (50 ones per class) [46].

Model Training Settings. The mini-batch gradient descent
method [49] is used in model training. For all models, the
learning rate, the momentum, and the batch size are set to

HAN ETAL.: ACCELERATING GOSSIP-BASED DEEP LEARNING IN HETEROGENEOUS EDGE COMPUTING PLATFORMS 1597

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

0.01, 0.9, and 64, respectively. Note that in all comparative
evaluations, we use the same hyperparameters and initial
model parameters.

Evaluation Metrics. For a fair comparison, we report both
performance and accuracy metrics in model training. The per-
formance is the model training time across different epochs.
In our approach, this time also includes the generation and
processing times of aggregated data points. The accuracy
metric is top-1 classification accuracy on the test set: the top
1 predicted class (the one having the highest probability) is
the same as the actual class label.

4.2 Effectiveness of Training Acceleration

Here, we evaluate the effectiveness of EdgeGossip in acceler-
ating model training. We implement our approach in the
representative GoSGD algorithm for deep learning [18], [26],
and compare the standard GoSGD algorithm with EdgeGos-
sip. We test different cases of Gossip-based training from
three aspects: (1) four DL models (LeNet-5, AlexNet, Squee-
zenet, and MobileNets); (2) three input data generation
methods, in which the dimension reduction techniques are
SVD, Incremental SVD, and Hash respectively, and the data
division techniques are K-means, LSH, and K-means respec-
tively. In all methods, the aggregation ratio (the number of
original input data points divided by the number of aggre-
gated data points) is 10. (3) Five training deployments. The
first deployment has four EC platforms (two CPU ones and

two GPU ones), and each platform has 25 percent of training
data. The following four deployments correspond to four
different numbers of platforms for LeNet-5 and AlexNet. In
each deployment, training tasks co-run with MapReduce
workloads (WordCount and Sort, whose input data size
ranges from 1MB to 10 GB) in the executor nodes.

Fig. 5 shows the comparative results in terms of training
time (x axis) and top-1 accuracy (y axis) for the first deploy-
ment. We can observe that during the iterative training pro-
cess, applying GossipEdge to balance the training times
across different EC platforms considerably accelerates the
training speed. In addition, both approaches obtain similar
accuracies after convergence. These results verify that using
aggregated data points (generated by any of the three meth-
ods), GossipEdge correctly identifies and removes less accu-
racy-related input data and the retained input data in slow
platforms contributes to large parts of model accuracy.

Fig. 6 further shows the comparative results under differ-
ent scales of deployments. For both models, the training
takes longer time when the scale becomes larger and the
communications among different EC platforms increase.
Figs. 6a1 to 6d1 show that in LeNet-5, the acceleration of
training time is smaller than other models. This is because
when the deployment scale increases, the accuracy quickly
increases to 0.95 in this simple model and hence the training
times in EdgeGossip and GoSGD are similar. In addition, the
results in Figs. 5c, 5d and 6(b1 show that Squeezenet and

Fig. 5. Comparison of training time and model accuracy with GoSGD.

Fig. 6. Comparison of training time and model accuracy under different numbers of EC platforms.

1598 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

MobileNets-v2 have longer training time than AlexNet when
processing the same dataset (Cifar10). This is because both
models reduce parameters by increasing the numbers of fea-
ture maps using 3� 3 and 1� 1 convolutional layer, and thus
have much more expensive computations of convolutional
layers inmodel training. In conclusion, EdgeGossip is applica-
ble to models with high training complexity (e.g., Squeezenet
and MobileNets-v2), which causes a large discrepancy of
training times among different EC platforms and hence
EdgeGossip accelerates model training by reducing such per-
formance discrepancy. The effectiveness of EdgeGossip is
also influenced by the scale of training deployment for a simi-
lar reason, because the increase of scale may bring a higher
heterogeneity in EC platforms and thus increases of discrep-
ancy of training times among these platforms.

4.3 Overheads of Aggregated Data Points

In this section, we evaluate the overheads of aggregated data
points in terms of their generation and processing times. At
the pre-training stage, the generation overhead comes from
the three operations on the input data: dimension reduction,
data division, and generation of aggregated data points. We
report the execution time of each part. At the iterative training
stage, the processing overhead comes from calculating aggre-
gated data points’ losses. This calculation is performed before
each training epoch, and we report its percentage computation
time, which denotes the execution time of this calculation
divided by the total execution time in an epoch.

Evaluation Settings. We test the same generation methods
as the previous section. In SVD, the number of singular
value is 10, that is: the reduced dimensionality d0=10. In the
optimization process of Incremental SVD, 1 percent of origi-
nal feature values are used, the learning rate is 0.001, the
constant value l=0.015, and the number of iterations is 20.
The dimensionality after reduction is d0 ¼ log 2

0:1�d
aggregation ratio .

In Hash, the ”fingerprint” length, namely the reduced
dimensionality d0, is 10. In K-means clustering, the number
of iterations is 20 and the number of cluster centroids is

N
aggregation ratio . Similarity, in LSH, the number of buckets is

N
aggregation ratio . For each technique, we test three cases of

input data aggregation, whose aggregation ratios are 5, 10,
and 20, respectively. The evaluation is performed in a Spark
cluster with one master node and one executor node (both
nodes belong to the CPU platform).

Generation Time. Fig. 7 shows the generation times of
three operations in each technique. We can see that in tech-
nique 1 (Figs. 7a and 7d) and technique 3 (Figs. 7c and 7f),
data division (using K-means) take most of the generation
time. In contrast, dimensionality reduction (using incremen-
tal SVD) takes the longest time in technique 2 (Figs. 7b and
7e). These results verify the analysis of time complexity in
Table 3. In addition, a larger aggregation ratio (e.g., 20)
means a smaller number of aggregated data points, and
these points also need less time to generate. In conclusion,
the generation time of all three techniques is much shorter
than that of model training time.

Processing Time. Fig. 8 further shows the training time
breakdown of two parts: processing aggregated data points
and the training time using the retained input data. We can
see that the execution time of processing aggregated data
points is inversely proportional to the aggregation ratio.
That is, a larger ratio (less aggregated data points) means
shorter processing time. When considering all evaluation
cases, processing aggregated data points only takes an aver-
age of 3.0 and 8.78 percent of the training time in LeNet-5
and AlexNet, respectively.

4.4 Effectiveness of Performance Predictor

In decentralized DL training, the accuracy of the perfor-
mance predictor decides the ratio of kept input data in each
EC platform, and thus the training time of platforms in an
epoch. In this section, we first evaluate this accuracy with
consideration of both different resource capacities and changing
performance interferences. The evaluation is conducted in CPU
platforms, and each platform has a VM of 4 CPU cores and
4 GB in its executor node. In the VM, we run MapReduce
workload (WordCount or Sort) as the co-running job. We
tested 13 different input data sizes (between 1 MB to 10 GB)
for either workload to reflect the different performance inter-
ferences to the training task.

Prediction Accuracy. Fig. 9 shows the mean and variance
of prediction errors of our performance predictor under dif-
ferent co-running workloads. We can see that when the
input data size of the co-running workload increases, the
prediction error slightly increases. This is because the work-
load with larger input data consumes more resources and
thus may cause more interferences. To demonstrate this,
Fig. 10 shows the utilizations of three shared resources
(CPU cores, network and disk bandwidths) under different
input data sizes. For each resource type, the distribution of
its utilizations (mean � 2 standard deviations (SDs)) is
reported. We can observe that with larger input data sizes,
the CPU utilization of both workloads increases, and the
disk utilization of the Sort workload increases because this
workload is more I/O intensive than WordCount. Also,
both workloads have larger fluctuations in network and
disk bandwidths with larger input data sizes, thus may
cause larger performance interferences. Overall, the average
prediction error is 4.30 percent, which means our perfor-
mance predictor precisely estimates the platform perform-
ances under different resource contentions.

Fig. 7. Generation time breakdown under three aggregation ratios.

HAN ETAL.: ACCELERATING GOSSIP-BASED DEEP LEARNING IN HETEROGENEOUS EDGE COMPUTING PLATFORMS 1599

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

Prediction Overheads. Fig. 11 shows the two major over-
heads of the performance predictor: collecting resource
usages and communication with Redis. Each test was
repeated 10 times for consistency and the average is
reported. The evaluation results show: (i) both overheads
are two or three orders of magnitude shorter than 1 second,
thus having negligible impact on the model training; (ii) the
overhead increases when the input data size of the co-run-
ning workload increases. The overhead of the Sort workload
is larger because this workload incurs larger fluctuations in
resource usages.

4.5 Discussions

EdgeGossip provides the notion of trade-off between training
time and model accuracy in decentralized DL training. In this
section, we take the LeNet-5 workload as an example and
design experiments to discuss other practical factors that influ-
ence such a trade-off. The following experiments are conducted
under the same evaluation settings as previous sections.

Discussion of Unbalanced Platform Resources. In this evalua-
tion, we test two larger unbalanced situations: the resource
capacity of fast CPU platforms are 3 and 5 times larger than
that of slow platforms. This increased unbalance has twofold
effects, as shown in Fig. 12. First of all, the GoSGD algorithm
needs longer time to complete the training process, because
slow platforms cause a longer delay in each epoch’s

synchronization. Second, GossipEdge can still maintain simi-
larmodel training times but also incurs slightly larger accuracy
losses, because less input data is processed in slowplatforms.

Fig. 8. Percentage training time breakdown under three aggregation
ratios.

Fig. 9. Prediction errors of the performance predictor with different co-
running jobs.

Fig. 10. Utilizations of three shared resources under different workloads.

Fig. 11. Overheads of the performance predictor under different
workloads.

Fig. 12. Comparison of training time and model accuracy under different
unbalanced resources.

1600 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

Discussion of Aggregation Ratios. In the accuracy-aware
trainer, the aggregation ratio is a key parameter that deter-
mines aggregated data points’ granularity of approximating
the input data. In addition to the previous ratio (10), we test
two new aggregation ratios (5 and 20) in this experiment.
The results in Fig. 13 show that selecting a larger ratio (20)
results in a smaller number of aggregated data points, thus
requiring shorter processing time on aggregated data points
but also cause slightly lower model accuracies. Note that
the reduced processing time has a very small influence on
the total model training time, because this time takes less
than 3 percent of training time at each epoch.

Results. When considering different model and deployment set-
tings, EdgeGossip accelerates the standard Gossip training process
by an average of 2.70 times with small accuracy losses of 0.78 percent.

5 CONCLUSION

In this paper, we presented EdgeGossip to accelerate the
training process of decentralized DL in heterogeneous EC
platforms, and demonstrated its effectiveness using popular
DL algorithms. EdgeGossip is based on two key ideas: (1) it
balances the training times among different EC platforms
according to their predicted performances; (2) using aggre-
gated data points, it quickly identifies the most accuracy-
related parts of input data and first process them to improve
model accuracy. Evaluation results using real workloads
demonstrate the effectiveness of EdgeGossip in bringing
considerable reductions in model training times while only
causing small accuracy losses.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
careful review of their article. This work was supported in
part by the National Key Research and Development Plan of
China (Grant No. 2018YFB1003701 and 2018YFB1003700), in
part by the National Natural Science Foundation of China
(Grant No. 61872337), and in part by the Swiss National
Science FoundationNRP75 project 407540_167266.

REFERENCES

[1] M. Satyanarayanan, “The emergence of edge computing,” IEEE
Comput., vol. 50, no. 1, pp. 30–39, Jan. 2017.

[2] D. Balouekthomert, E. G. Renart, A. R. Zamani, A. Simonet, and
M. Parashar, “Towards a computing continuum: Enabling edge-
to-cloud integration for data-driven workflows,” Int. J. High Per-
form. Comput. Appl., vol. 33, no. 6, pp. 1159–1174, 2019.

[3] M. Ali et al., “Edge enhanced deep learning system for large-scale
video stream analytics,” in Proc. IEEE 2nd Int. Conf. Fog Edge
Comput., 2018, pp. 1–10.

[4] C. Wu et al., “Machine learning at facebook: Understanding infer-
ence at the edge,” in Proc. IEEE Int. Symp. High Perform. Comput.
Archit., 2019, pp. 331–344.

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[6] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith,M. J. Franklin, andM.
I. Jordan, “MLbase: A distributedmachine-learning system,” in Proc.
6th Biennial Conf. InnovativeData Syst. Res., vol. 1, 2013, pp. 2–8.

[7] J. J. Dai et al., “BigDL: A distributed deep learning framework
for big data,” in Proc. ACM Symp. Cloud Comput., 2019,
pp. 50–60.

[8] R. Han et al., “SlimML: Removing non-critical input data in large-
scale iterative machine learning,” in IEEE Trans. Knowl. Data Eng.,
to be published, doi: 10.1109/TKDE.2019.2951388.

[9] M. Li et al., “Scaling distributed machine learning with the param-
eter server,” in Proc. 11th USENIX Conf. Operating Syst. Des. Imple-
mentation, vol. 14, 2014, pp. 583–598.

[10] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: Agile ML elasticity through tiered reliability in dynamic
resource markets,” in Proc. 12th Eur. Conf. Comput. Syst., 2017,
pp. 589–604.

[11] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentral-
ized parallel stochastic gradient descent,” 2017, arXiv: 1710.06952.

[12] C. Yu, H. Tang, C. Renggli, S. Kassing, A. Singla, D. Alistarh,
C. Zhang, and J. Liu, “Distributed learning over unreliable
networks,” 2018, arXiv: 1810.07766. 826.

[13] J. Konecny, H. B. McMahan, D. Ramage, and P. Richtarik,
“Federated optimization: Distributed machine learning for on-
device intelligence,” 2016, arXiv:1610.02527.

[14] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Trans. Intell. Syst. Technol.,
vol. 10, no. 2, 12, pp. 1–19, 2019.

[15] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 14, no. 6, pp. 2508–2530, Jun.
2006.

[16] H. B. Mcmahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist.,
2017, pp. 1273–1282.

[17] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Amatya,
“GossipGraD: Scalable deep learning using gossip communication
based asynchronous gradient descent,” 2018, arXiv: 1803.05880.

[18] M. Blot, D. Picard, N. Thome, and M. Cord, “Distributed optimi-
zation for deep learning with gossip exchange,” Neurocomputing,
vol. 330, pp. 287–296, 2019.

[19] “Pytorch,” 2020. [Online]. Available: https://pytorch.org/
[20] S. Ghadimi, G. Lan, and H. Zhang, “Mini-batch stochastic approxi-

mation methods for nonconvex stochastic composite optimization,”
Math. Program., vol. 155, pp. 267–305, 2016.

[21] Q.Ho, J. Cipar, H. Cui, J. K. Kim, and E. P. Xing, “More effective dis-
tributed ML via a stale synchronous parallel parameter server,”
Proc. 26th Int. Conf. Neural Inf. Process. Syst., 2013, pp. 1223–1231.

[22] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson, “An
asynchronous mini-batch algorithm for regularized stochastic
optimization,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp.
3740–3754, Dec. 2016.

[23] H. Wang, D. Niu, and B. Li, “Turbo: Dynamic and decentralized
global analytics via machine learning,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 6, pp. 1372–1386, Jun. 2020.

[24] Q. Luo, J. Lin, Y. Zhuo, and X. Qian, “Hop: Heterogeneity-aware
decentralized training,” in Proc. 24th Int. Conf. Archit. Support Pro-
gram. Lang. Operating Syst., 2019, pp. 893–907.

[25] Q. Luo, J. He, Y. Zhuo, and X. Qian, “Prague: High-performance
heterogeneity-aware asynchronous decentralized training,” in
Proc. 25th Int. Conf. Archit. Support Program. Lang. Operating Syst.,
2020, pp. 401–416.

[26] M. Blot, D. Picard, M. Cord, and N. Thome, “Gossip training for
deep learning,” 2016, arXiv:1611.09726.

[27] I. Colin, A. Bellet, J. Salmon, and S. Clemencon, “Gossip dual
averaging for decentralized optimization of pairwise functions,”
in Proc. 33rd Int. Conf. Int. Conf. Mach. Learn., 2016, pp. 1388–1396.

[28] A. Harlap et al., “Addressing the straggler problem for iterative
convergent parallel ML,” in Proc. 7th ACM Symp. Cloud Comput.,
2016, pp. 98–111.

[29] S. Pumma, M. Si, W. Feng, and P. A. Balaji, “Scalable deep learn-
ing via I/O analysis and optimization,” ACM Trans. Parallel Com-
put., vol. 6, no. 2, pp. 1–34, 2019.

Fig. 13. Comparison of training time and model accuracy under different
aggregation ratios.

HAN ETAL.: ACCELERATING GOSSIP-BASED DEEP LEARNING IN HETEROGENEOUS EDGE COMPUTING PLATFORMS 1601

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TKDE.2019.2951388
https://pytorch.org/

[30] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265–278.

[31] M. Boehm et al., “Hybrid parallelization strategies for large-scale
machine learning in systemML,” in Proc. VLDB Endowment, vol. 7,
no. 7, pp. 553–564, 2014.

[32] M. Abadi et al., “Tensorflow: A system for large-scale machine
learning,” in Proc. 12th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2016, pp. 265–283.

[33] A. Kumar, J. Naughton, and J. M. Patel, “Learning generalized lin-
ear models over normalized data,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2015, pp. 1969–1984.

[34] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald,
“Compressed linear algebra for large-scale machine learning,”
Proc. VLDB Endowment, vol. 9, no. 12, pp. 960–971, 2016.

[35] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and
A. Aboulnaga, “Arabesque: A system for distributed graph min-
ing,” inProc. 25th Symp. Operating Syst. Princ., 2015, pp. 425–440.

[36] M. Owaida, H. Zhang, C. Zhang, and G. Alonso, “Scalable infer-
ence of decision tree ensembles: Flexible design for CPU-FPGA
platforms,” in Proc. IEEE 27th Int. Conf. Field Programmable Logic
Appl., 2017, pp. 1–8.

[37] P. Watcharapichat, V. L. Morales, R. Fernandez, and P. R. Piet-
zuch, “Ako: Decentralised deep learning with partial gradient
exchange,” in Proc. 7th ACM Symp. Cloud Comput., 2016, pp. 84–97.

[38] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen,
“Approxhadoop: Bringing approximations to mapreduce frame-
works,” in Proc. Int. Conf. Archit. Support Program. Lang. Operating
Syst., 2015, pp. 383–397.

[39] I. Hubara, M. Courbariaux, D. Soudry, R. Elyaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” J. Mach. Learn. Res., vol. 18,
no. 187, pp. 1–30, 2016.

[40] G. Gorrell, “Generalized hebbian algorithm for incremental singu-
lar value decomposition in natural language processing,” in Proc.
EACL, 2006, vol. 6, pp. 97–104.

[41] “Cifar-10 database,” 2009. [Online]. Available: http://yann.lecun.
com/exdb/mnist/

[42] A. Katharopoulos and F. Fleuret, “Not all samples are created
equal: Deep learning with importance sampling,” Proc. Int. Conf.
Mach. Learn., pp. 2525–2534, 2018.

[43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” Proc. Int. Conf.
Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[45] “Mnist handwritten digit database,” 1998. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[46] “Downsampled imageNet datasets,” 2016. [Online]. Available:
http://image-net.org/download-images

[47] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and < 0.5MBmodel size,” 2016, arXiv: 1602.07360.

[48] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” in Proc. Comput. Vis.
Pattern Recognit., 2017, pp. 1–9.

[49] Y. Bengio, “Practical recommendations for gradient-based train-
ing of deep architectures,” in Neural Networks: Tricks of the Trade.
Berlin, Germany: Springer, 2012, pp. 437–478.

Rui Han received the MSc degree with honor
from Tsinghua University, China in 2010, and the
PhD degree from the Department of Computing,
Imperial College London, UK, in 2014. He is cur-
rently an associate professor with the School of
Computer Science and Technology, Beijing Insti-
tute of Technology, China. His research interests
are system optimization for deep learning work-
loads. He has more than 40 publications in these
areas, including papers at IEEE Transactions on
Parallel and Distributed Systems, IEEE Transac-

tions on Knowledge and Data Engineering, IEEE Transactions on Com-
puters, INFOCOM, and ICDCS.

Shilin Li is currently working toward the graduate
degree with the School of Computer Science and
Technology, Beijing Institute of Technology. His
work focuses on federated learning, optimization
of big data system for machine learning, and
deep learning workloads.

Xiangwei Wang is currently working toward the
graduate degree with the School of Computer Sci-
ence and Technology, Beijing Institute of Technol-
ogy. His work focuses on decentralized training of
deep learningmodels in edge computing platforms.

Chi Harold Liu (Senior Member, IEEE) received
the BEng degree from Tsinghua University,
Beijing, China, and the PhDdegree from the Impe-
rial College London, London, UK. He is currently a
full professor and the vice dean with the School of
Computer Science and Technology, Beijing Insti-
tute of Technology, Beijing. Before that, he worked
for IBM Research - China and Deutsche Telekom
Laboratories, Berlin, Germany, and IBM T. J. Wat-
son Research Center, USA. He is currently an
associate editor for IEEE Trans. Network Science

and Engineering. His current research interests include the big data ana-
lytics, mobile computing, and deep learning. He is a fellow of IETand a fel-
low of Royal Society of the Arts.

Gaofeng Xin is currently working toward the grad-
uate degree with the School of Computer Science
and Technology, Beijing Institute of Technology. His
work focuses on decentralized machine learning
and deep learning workloads in edge computing
platforms.

Lydia Y. Chen received the BA degree from
National Taiwan University, and the PhD degree
from the Pennsylvania State University. She is cur-
rently an associate professor with the Department
of Computer Science at the Technology University
Delft. Prior to joining TU Delft, she was a research
staff member at IBM Zurich Research Lab from
2007 to 2018. Her research interests center around
dependability management, resource allocation
and privacyenhancement for large scale data proc-
essing systems and services. She has published

more than 80 papers in journals, e.g., IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Services Computing, and con-
ference proceedings, e.g., INFOCOM, Sigmetrics, DSN, and Eurosys.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1602 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: TU Delft Library. Downloaded on March 12,2021 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://image-net.org/download-images

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

