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A B S T R A C T

The hairpin eddy model is used to explain the self-sustaining mechanisms in the outer
layer of wall bounded turbulent flows. In this model, hairpin vortices auto-generate pro-
ducing additional (hairpin) vortices, which form so called vortex packets. These packets
are observed to populate the outer layer. Zhou et al. (1999) reported that only hairpins
above a certain threshold strength can auto-generate. In this report, we explore how such
a hairpin of threshold strength may come into existence. This is done by studying the
interactions between two non auto-generating eddies in different scenarios. These scenar-
ios are created based on different initial strengths, initial sizes and initial stream-wise
spacing between the aligned eddies. The velocity field of the initial eddies is extracted
from a direct numerical simulation database of fully turbulent channel flow at Reτ = 360
by means of linear stochastic estimation.

The two non auto-generating eddies were found to merge into a single stronger eddy
when a larger upstream and a smaller downstream eddy are placed within a certain
initial stream-wise distance. Subsequently, the resulting stronger eddy was observed to
auto-generate new eddies. In some cases, new structures were generated even though
there was no merging and stream-wise spacing was large. So there has to be another kind
of interaction which results in auto-generation, as vortex-vortex interaction weakens with
increasing spacing. This interaction may be between low speed streak and vortex, as both
the eddies share the same low speed streak. The vortex-streak interaction happens when
fluid ejected by downstream eddy is absorbed by upstream eddy. This can also occur
when the stream-wise separation between two eddies is small.

Merging of eddies, thus is the viable explanation for the creation of threshold strength
eddies. Moreover, it extends the auto-generation process towards a possible self-sustaining
mechanism: two initial hairpins merge producing a strong hairpin, which further creates
a new hairpin structure by auto-generation resulting again in two hairpins. From vortex-
streak interaction, it may be concluded that low-speed streak does play a role in the
generation of new structures. Hence the criterion and the mechanisms to determine the
auto-generation become more complex, when two hairpins are aligned behind each other
than the one mentioned (threshold strength) for a single eddy case in Zhou et al. (1999).
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1
I N T R O D U C T I O N

In most of the engineering applications, we come across turbulent flows over solid sur-
faces like flow over car or wings of an aircraft. Due to the no slip condition at the surface,
shear stress is produced which retards the fluid motion adjacent to the surface. The region
associated with this is called a boundary layer (BL). The drag from the wall is responsi-
ble for a loss in energy/momentum. If the BL becomes turbulent then there is increased
mixing of fluid which causes an increase in drag and hence additional loss of momentum.
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Hence reduction of the turbulent contribution
to the drag will help in making energy efficient
designs and save large amount of resources. In
order to do this, it is important to understand
the internal structure and dynamics of turbulent
flows over surfaces. From the literature, it is ob-
served that there are events which occur contin-
uously and repeat in time in turbulent boundary
layers. To generate these events there are mech-
anisms which occur repeatedly and are called
self-sustaining mechanisms.

1.1 self-sustaining mechanism

One of the main features of wall bounded tur-
bulent flows is continuous extraction and transfer
of momentum from the high-velocity core/outer re-
gion to low-velocity near-wall/inner region and fur-
ther dissipation into internal energy by action of vis-
cous forces. This mechanism of energizing the
near wall region is continuous and a self sus-
taining process. Statistically this process is quan-
tified with the help of turbulent fluctuations (u ′i )
or Reynolds shear stresses (ρ〈u ′i u ′j 〉). In channel
flows, the Reynolds shear stress (−〈u ′v ′〉)1 con-
tribution to the total shear stress can be seen
in figure 1.1. The force per unit volume on the
mean flow due to −〈u ′v ′〉 is given by d(−ρ〈u ′v ′〉)/dy. This force is positive below point
O (figure 1.1) which means the fluid is accelerated in this region. Above that point the
force becomes negative leading to deceleration of fluid flow. In other words, this means

1 u ′, v ′ and w ′ are perturbation velocity components in stream-wise (x), wall normal (y) and span-wise (z)
directions respectively

1



2 introduction

(a) Small section of turbulent channel flow. Black region corresponds to low speed streaks (regions with u ′ < 0) and
canes/vortices are given by gray contours in instantaneous field of DNS.

(b) Ideal hairpin vortices (gray contours) obtained from Linear stochastic estimate along with low speed streaks u ′ < 0
(black contours) and quasi-stream-wise vortex.

Figure 1.3: 2-d projection of different 3-d structures onto xz-plane in wall bounded turbulent flows. The vortices are
visualized using swirling strength criterion(refer section 3.3). Above figures are not on same scale.
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transfer of momentum from outer region to inner region. Figure 1.2 shows the contribu-
tion to −〈u ′v ′〉 by different combination of u ′ and v ′. The product −u ′v ′ is positive in
second(Q2) and fourth(Q4) quadrants leading to positive Reynolds shear stress shown in
figure 1.1. Second quadrant events (u ′ < 0, v ′ > 0) or Q2 events are referred as ejections
as they correspond to lift up of low-speed fluid away from wall. Fourth quadrant events
(u ′ > 0, v ′ < 0) or Q4 events are called sweeps as they move high-speed fluid towards
the wall. It is important to understand the mechanisms that are responsible for creating
these Reynolds shear stresses and anti-correlated velocity fluctuations.

Figure 1.4: Different coherent structures present
in different regions of TBL. (taken
from Robinson, 1991).

In the process of understanding these mech-
anisms, investigations (see Robinson, 1991;
Adrian, 2007) revealed that these ejection/Q2

events are closely associated with coherent struc-
tures like hairpins and stream-wise vortices as
shown in figure 1.3 and 1.4. Figure 1.4 (from
Robinson, 1991) shows the distribution of struc-
tures in different regions of wall bounded tur-
bulent boundary layer. From here the wall
bounded turbulent boundary layer will be re-
ferred as the turbulent boundary layer (TBL) for
easiness. Wake region is the outer part of outer
region and is mainly populated by hairpin vortices. Quasi-stream-wise vortices domi-
nate the buffer layer where turbulent energy production rate reaches maximum and both
viscous stresses and Reynolds shear stresses are important. Logarithmic or overlap re-



1.2 hairpin eddy model 3

gion where Reynolds shear stress is approximately constant, contains both stream-wise
(lifted) and hairpin vortices. These structures are largely considered similar in turbulent
pipe and channel flows and zero pressure gradient turbulent boundary layer flow (see
Adrian, 2007). Hence terms TBL and channel flow are interchangeable in this report un-
less mentioned.

Perry and Marusic (1995) came up with a wall-wake model using eddy structures to
explain the turbulent structure of boundary layer flows. Along the same lines, the above
mentioned coherent structures can be used to create a model to explain the turbulent
boundary layer flows. And one of the existing models to explain the presence of self-
sustaining mechanisms in outer layer is the hairpin eddy model (see Adrian, 2007). This
will be discussed in detail in the next section.

1.2 hairpin eddy model

The hairpin/horseshoe vortex in the TBL was first proposed by Theodorsen in 1952.
In this model there was an Ω shaped vortex head which was connected to legs ex-
tending in span-wise directions as shown in figure 1.5. The Secondary and tertiary
horseshoes are curled up on the primary hairpin. From the figure 1.5, it can be ob-
served that fluid flows around the vortex head which leads to ejection of fluid up-
stream in front of the head creating Reynolds shear stresses. But this hairpin structure

Figure 1.5: Horseshoe concept of Theodorsen (taken from
Theodorsen, 1952). ’q’ stands for velocity, ’L’ &
’D’ for Lift and Drag forces.
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was not completely accurate, further
investigation of direct numerical simu-
lation (DNS) data by Robinson (1991)
indicated that hairpins are made of
an Ω shaped vortex head, neck and
two counter-rotating stream-wise legs
as shown in figure 1.3b. But in most
cases hairpins do not possess span-
wise symmetry and appear to be asym-
metric as shown in figure 1.3a in which
case they are called one sided hairpins
or canes. In this one/two sided hairpin
structure, Reynolds shear stress is not
only generated by the head but also by
the stream-wise vortex legs. In figure
1.3b, fluid between the hairpin legs is
pumped away from the wall by stream-
wise vortex legs.

Experimental studies by Bandyopad-
hyay (1980); Head and Bandyopadhyay
(1981) renewed the interest in hairpin vortices as building blocks of TBL. From experi-
ments, they suggested that:

• The TBL was filled with hairpin vortices over a range of Reynolds numbers.

• The span-wise distance between the legs of hairpin was around 100 viscous wall
units even at higher Reynolds numbers.

• As the hairpin legs grow in length and height, the head extends to the outer layer
from buffer layer keeping same span-wise distance between legs.
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If this mentioned growth of the hairpins is considered then at very high Reynolds num-
bers the height (wall normal) to width (span-wise) ratio becomes very high. Such thin
eddies cannot possibly survive among other strong turbulent structures. And also in the
outer region they have to interact with the other eddies as their size grows. So the expla-
nation of how these hairpins come into existence, grow and organize themselves in the
TBL in this model was not completely clear.

Head and Bandyopadhyay (1981); Smith (1984) reported that these hairpins are orga-
nized and occur in groups in the stream-wise direction (i.e, the direction of flow). High
resolution velocity field data by particle image velocimetry of the TBL by Adrian, Mein-
hart, and Tomkins (2000) shows a strong experimental evidence for the organization of
hairpins. Their main observations were:

• Hairpin vortices are aligned behind each other in series in the stream-wise direction
as shown in figure 1.6.

• Below the head of the hairpins, fluid from downstream is pushed towards upstream
hairpin. This leads to a long region of low speed fluid or low speed streak (u ′ < 0)
below the hairpin head as shown in figure 1.6. This also causes the ejection of low
speed fluid from the inner layers to the outer layers.

• They suggested that the Reynolds shear stress is enhanced by this vortex organiza-
tion mainly due to the stronger low speed flow below the packet of hairpin vortices.
Ganapathisubramani et al. (2003) further supported this by showing that the vortex
packets in zero pressure gradient boundary layer flow contribute more than 25% to
−〈u ′v ′〉 and occupy only 4% of total area.

Figure 1.6: Conceptual scenario of hairpins/canes organization in wall bounded turbulent layers (taken from Adrian et al.,
2000).

This explains that hairpins are coupled with the low speed streaks in TBL. Papers by
Adrian (2007); Elsinga et al. (2010) strengthen the evidence of the organization of hairpin
like structures in the outer region. To summarize, the spatial organization of hairpin
vortices in a hairpin packet is closely related to −〈u ′v ′〉. Therefore the way in which
these structures are organized dynamically and are self-sustaining is deemed relevant in
understanding the TBL.



1.2 hairpin eddy model 5

Smith et al. in 1991 proposed an inviscid model to explain the organization of hairpins.
They explained how new hairpin vortices are generated from a single hairpin vortex
under proper conditions. Furthermore in 1994, Haidari and Smith experimentally proved
the generation of new hairpins from a single hairpin vortex in the laminar boundary layer
for the first time. This mechanism is also know as auto-generation or parent-offspring
concept. Then Zhou et al. (1999) came out with a simple model to explain the mechanisms
responsible for auto-generation by numerical simulations of a turbulent boundary layer
(channel flow). They investigated these mechanisms by studying the development of an
initial condition containing a single, three-dimensional vortex structure called conditional
eddy. The conditional eddy was extracted by conditional averaging of velocity fields in
DNS database of fully turbulent channel flow based on Q2 events. They found that, if
the strength (discussed in detail in section 3.2) of an initial condition is above a certain
threshold then it auto-generates new hairpin vortices upstream. The robustness of the
auto-generation mechanism was demonstrated by Kim, Sung, and Adrian (2008). They
followed the same procedure as Zhou et al. (1999) in the calculation of the conditional
eddy. They studied the development of this conditional eddy in the presence of added
noise or an instantaneous field of turbulent flow. They found auto-generation was robust
and that the background noise resulted in reduction of the threshold strength required
to trigger auto-generation mainly in the buffer layers.

To summarize in present hairpin model, it has been suggested that the hairpins above
certain threshold strength grow from buffer region to outer regions, auto-generate and
populate the TBL. But this model still does not completely explain the self sustaining
characteristic of flow. Open questions like:

• How does a hairpin vortex of certain threshold strength come into existence?

• Do low speed streaks play any role in auto-generation and if yes, how?

remain unanswered. In this report, question of how a hairpin of certain threshold strength
come into existence is addressed. Following possibilities are tested:

• Merging of two hairpin vortices resulting in the formation of a stronger hairpin.

• Interactions between two hairpin vortices leading to auto-generation.

The report is outlined as follows. Chapter 2 defines the aim and approach of the project
followed by methodology in chapter 3 where details of numerical methods and extraction
of initial condition is described. Validation of the direct numerical simulation code and
linear stochastic estimation is covered in chapter 4. Chapter 5 describes observations and
results. Finally the conclusions and recommendations are given in chapter 6.





2
P R O J E C T A I M & A P P R O A C H

The aim of this thesis is to increase the understanding of hairpin eddy model by studying:

• The interaction between two conditional eddies which are aligned perfectly behind each other
in stream-wise direction in a TBL.

• The role this interaction plays in the auto-generation cycle in a TBL.

The interaction between two eddies is investigated in different scenarios. These sce-
narios are created based on initial size and height of the eddy and stream-wise distance
between two eddies (∆x). The initial size is determined by initial maximum swirling
strength and is discussed in section 3.3. The height of the eddy is defined by the ejection
event vector location (y+e ) which is explained in section 3.2.1. The different scenarios that
are investigated are as follows:

1. A small eddy upstream and a large eddy downstream and vice versa with different
strength as shown in figure 2.1. Vortices are aligned perfectly behind each other in
stream-wise direction.

2. Effect of the stream-wise spacing between vortices. Stream-wise spacing is shown
in figure 2.1c. Spacing was constrained due to size of the computational domain
and the effect of periodic boundary conditions.

(a) Top view of two vortices aligned
in stream-wise direction.

(b) Side view of vortex with
higher strength & y+e up-
stream and lower strength &
y+e downstream.

(c) Side view of vortex with higher
strength & lower y+e upstream
and lower strength & higher
y+e downstream with ∆x stream-
wise spacing.

Figure 2.1: Different scenarios.
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Before performing the simulations with two aligned hairpins, the case of a single hair-
pin vortex was studied. This was done to establish the baseline for analyzing two hairpin
cases. In the baseline studies, the initial swirling strength and the height of the hairpin
was varied. This variation was studied in terms of maximum swirling strength, mean
and maximum ejection events.
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8 project aim & approach

approach

All the simulations are performed at low Reynolds number fully turbulent channel flow.
A brief summary of the investigation procedure is as follows:

1. Simulation of the fully developed turbulent channel flow is performed using direct
numerical simulation at friction Reynolds number (Reτ)= 360. DNS is discussed in
detail in section 3.1. The DNS code is validated by comparing the flow statistics to
the paper of Kim et al. (1987) in section 4.1.

2. Paper by Zhou et al. (1999) will be reproduced for single hairpin case to establish
the baseline and to validate the procedure and code. Steps followed are:

a) Initial velocity field containing a single conditional eddy is calculated. It is
sum of mean turbulent profile and perturbation velocity field corresponding
to conditional eddy extracted from the DNS database. This is explained in
section 3.2.

b) Perturbation velocity field is extracted by conditional averaging (Linear stochas-
tic estimate (LSE)) based on ejection (or Q2) events from the velocity fields
obtained in DNS database.

c) Initial pressure field is calculated by solving the Poisson equation for the pres-
sure.

d) DNS with the above initial condition to study the evolution and dynamics of
the conditional eddy.

e) Hairpins are visualized by vortex identification method called swirling strength
criterion which is discussed in detail in section 3.3.

3. After validating the code and procedure, initial condition with two conditional
eddies is calculated (see section 3.2).

4. Above mentioned procedure from (c) to (e) will be followed to analyze the evolution
of the initial condition containing two eddies.



3
M E T H O D O L O G Y

3.1 direct numerical simulation of fully developed channel flow

Direct numerical simulation (DNS) of fully developed channel flow was carried out at
friction Reynolds number (Reτ) = 360 (based on full channel height (H)). DNS was done
using non-dimensional in-compressible Navier-Stokes equations shown below:

∂ui

∂xi
= 0 (3.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1
Reτ

∂2ui

∂x2
i

(3.2)

where Reτ is given by uτ H/ν. Non-dimensional scales used in above equations are:

• full channel height (H) for length.

• friction velocity uτ(=
√

τw/ρ) for velocity.

• ρu2
τ for pressure.

• H/uτ for time.

Non-dimensionalized computational domain w.r.t H is 2π× 1× 2
3 π in stream-wise, wall

normal and span-wise directions. Boundary conditions employed in simulations were
no-slip and no-penetration at wall, periodic in span-wise (z-direction) and stream-wise
directions (x-direction). Uniform staggered grids with resolution of 808× 128× 272 in x,
y and z directions were used.

A pressure-correction method was employed to solve Navier-Stokes equations. In the
first step, intermediate velocity based on the convective, diffusive and pressure terms was
calculated. This velocity is not divergence free, so in the second step, Poisson equation is
solved to obtain correct pressure using intermediate velocity. This corrected pressure is
used to obtain the divergence free velocity field. Equations (3.1) and (3.2) were discretized
in an explicit way. Runge-Kutta third order scheme was employed for integration in time
for advection and diffusion terms. Pressure gradient term was discretized in time using
Crank-Nicolson scheme. Central difference was used for spatial derivatives. Details of
time integration and spatial discretisation can be found in appendix sections A.1 and
A.2.

Initial velocity field to start the DNS was generated from random number function in
FORTRAN. Once the flow became fully turbulent, the velocity and pressure data fields
were saved. There was good agreement of flow statistics of the present data with the data
of Kim et al. (1987). The details of the DNS code validation are discussed in section 4.1.
From saved velocity fields, initial condition containing a conditional eddy was extracted.

9



10 methodology

3.2 initial condition/conditional eddy

The initial condition contains a single conditional eddy or two conditional eddies whose
evolution will be studied in detail by DNS. The conditional eddy is a vortex structure
extracted from DNS database of fully developed turbulent channel flow as shown in
figure 3.1. Velocity field (ũi(x̂)) of an initial condition is the sum of turbulent mean profile
(〈ui(y)〉) and the perturbation velocities (ũ ′i (x̂)) which correspond to different conditional
eddies. It is given by

ũi(x̂) = ũ ′i (x̂, E ′1) + ũ ′i (x̂ + ∆x, E ′2) + 〈ui(y)〉 (3.3)

where perturbation velocity ũ ′i (x̂, E ′1) corresponds to conditional eddy conditioned to
event vector E ′1 and ũ ′i (x̂ + ∆x, E ′2) conditioned to event vector E ′2 with stream-wise shift
(∆x) from the former. Initial pressure field ( p̃) is then calculated using ũi(x̂) by solving
the divergence of Navier-Stokes equation as shown below:

∂

∂xi

(
ũj

∂ũi

∂xj

)
= − ∂

∂xi

(
∂ p̃
∂xi

)
(3.4)

Perturbation velocities (ũ ′i (x̂)) in equation (3.3) is estimated by conditional averaging of
DNS perturbation velocity field (u ′i ) with respect Q2 events and is given by 〈u ′i (x̂)|E ′(xe)〉.
Event E ′ is the velocity event defined at point xe conditioned to occurrence of Q2 events.
Conditional average 〈u ′i (x̂)|E ′(xe)〉 is a non-linear function of events E ′ which makes it
complex and difficult to compute. Hence it is estimated linearly as a function of E ′. And
this procedure is called as Linear stochastic estimate (LSE).

3.2.1 Linear Stochastic Estimate (LSE)

This procedure has been extensively discussed in Adrian (1994, 1996). LSE is linear esti-
mate of conditional averaging and is given by

ũi
′(x̂) = Linear estimate of〈u ′i (x̂)|E ′(xe)〉 (3.5)

= Linear estimate of〈u ′i (xe + rx, y, ze + rz)|E ′(xe, ye, ze)〉 (3.6)

=
3

∑
j=1

Lij(x̂, xe)E ′j (3.7)

where Lij are linear estimate coefficients. Lij is chosen such that the mean square error
between conditional averaging 〈u ′i (x̂)|E ′(xe)〉 and LSE (ũ ′i ) is minimum.〈[

〈u ′i (x̂)|E ′(xe)〉 −∑
j

LijE ′j
]2
〉

= minimum (3.8)

Minimization of the above condition yields to the Yule-Walker equations given by

∑
j
〈E ′j (xe)E ′k(xe)〉Lij = 〈E ′k(xe)u ′i (x̂)〉 k = 1, 2, 3 (3.9)

〈E ′j E ′k〉 and 〈E ′ku ′i 〉 represent the two-point correlations between event vector with event
vector and event vector with velocity field respectively. Events E ′j (xe) and E ′k(xe) in equa-
tion (3.9) are perturbation velocity values at plane ye. The value of event vector E ′j in equa-
tion (3.5) is defined at a point and is based on second quadrant(Q2) events u ′ < 0, v ′ > 0.
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Figure 3.1: Initial condition showing conditional eddy for y+e = 68.4 and α = 2. Conditional eddy is iso-surface of λ2
ci = 33,

which is 5% of maximum λ2
ci . Vector plots correspond to in plane perturbation velocities. Vector plot on plane

aa ′ and bb ′ is translated to plane AA ′ and BB ′ respectively for better visualization.
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Figure 3.2: Second quadrant: Contours of weighted Reynolds shear stress (−u ′v ′ fuv). u ′e and v ′e represent velocity values
which maximize contribution to Reynolds shear stress at y+e = 103 in a turbulent plane channel flow.

It is given by (αu ′e, αv ′e, αw ′e). The multiplicative factor α represents the relative strength
of a conditional eddy. For symmetric Q2 events, w ′e = 0 and w ′e 6= 0 for asymmetric
case. (u ′e, v ′e) corresponds to a value that has maximum contribution to Reynolds shear
stress −〈u ′v ′〉 in quadrant 2 for given ye as shown in figure 3.2. This is obtained from
the product of fuv(u ′, v ′) with u ′v ′ where fuv(u ′, v ′) represents joint probability density
function of occurrence of u ′ and v ′. It is observed (see Zhou et al., 1999) that the relative
amplitude α plays an important role in auto-generation for a given ye.
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3.3 vortex identification

One of the main aspects of the present study is the identification and tracking of vortices.
In present case, vortex identification is based on the local swirling strength suggested by
Zhou et al. (1999). Local swirling strength is defined as imaginary part(λci) of a complex
eigenvalue of a velocity gradient tensor. If the eigenvalues are real then local swirling
strength is zero. Subscripts c and i in λci, represent complex number and imaginary part
respectively. Velocity gradient tensor Dij is given by

Dij =
∂ui

∂xj
(3.10)

and in present case it is calculated as shown in appendix section A.3 on page 35. Vortices
are identified by plotting the iso-surfaces of λ2

ci. Initial condition containing conditional
eddy visualized by local swirling strength criterion is shown in figure 3.1.



4
VA L I D AT I O N

The procedure and code used in the present simulations is validated in three steps. In
section 4.1, the DNS code is validated. The linear stochastic estimate procedure for gen-
erating the initial conditional eddy and vortex identification method are compared and
verified in section 4.2. The periodic boundary effect in the stream-wise direction is stud-
ied in the last section 4.3.

4.1 dns simulations

The employed DNS code was validated by comparing the present turbulent flow statistics
to the data in the paper of Kim et al. (1987) at comparable Reynolds number.
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(c) vrms velocity comparison.
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(d) wrms velocity comparison.
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(e) Mean shear stress comparison.
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(g) Total shear stress comparison.
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Figure 4.1: Comparison and validation of present DNS with data of Kim et al. (1987).
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Comparison of the mean stream-wise velocity, the rms velocities and the shear stress
can be seen in figure 4.1. Reynolds number and friction coefficient based on mean center
line velocity(〈uc〉) and bulk velocity(ub) are shown in table 4.1. The value of the bulk
Reynolds number reported in the present case is slightly higher than the one reported
in Kim et al.. This very small difference is due to the difference in Reτ which is 360

in the present case and 356.24 in Kim et al.. Even though Reτ is slightly higher in the
present case, the bulk velocity is smaller presumably because of the diffusive nature of
the numerical scheme compared to the one used in Kim et al..

Variable Present Kim et al. (1987) Variable Present Kim et al. (1987)

Rec =
〈u〉ch

ν 3276 3300 Reb =
ub H

ν 5612 5600

ub/uτ 15.589 15.63 〈uc〉/uτ 18.165 18.20

c f =
τw

1
2 ρu2

b
8.23× 10−3 8.18× 10−3 c f o =

τw
1
2 ρ〈u〉2c

6.06× 10−3 6.04× 10−3

Table 4.1: Comparison of mean flow variables.

Both in figure 4.1 and table 4.1, it can be observed that there is a very good agreement
between the simulations, which validates present DNS simulations.

4.2 linear stochastic estimate and vortex identification

The validation of the linear stochastic estimate and the vortex identification procedure is
done by comparing the maximum of the square of swirling strength (λ2

ci) and geometric
shape of the resulting conditional eddy structure against Zhou et al. (1999). Perturbation
velocity fields representing the conditional eddy were calculated for different relative
strength of a conditional eddy (α) using the linear estimate coefficients (Lij) evaluated at
three different event vector locations namely y+e = 46.4, 68.9, 102.7 as described in section
3.2.1. Then the swirling strength (λci) was evaluated from the perturbation velocities as
explained in section 3.3.

y+e λ2
ci(α = 3) λci(α = 1) =

√
λ2

ci(α)

α2

102.7 765.22 9.22

68.9 1525.55 13.02

46.4 3151.08 18.71

Table 4.2: Swirling strength at different α and y+e in present
case.
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Figure 4.2: λci non-dimensionalized w.r.t uτ/H
at α = 1 vs y+e .

Table 4.2 shows the values of swirling strength λci (non-dimensionalized by uτ/H) in
the present case. Zhou et al. (1999) reported the value of λ2

ci (λci non-dimensionalized by
uτ/h) at (y+e , α) = (49.6, 3) to be 715. This is equivalent to λci = 8.913 at relative strength
α= 1. In the present case swirling strength (λci) is twice the value reported by Zhou
et al. as the non-dimensional length scale used in present case is full channel height(H)
compared to half channel height(h) in Zhou et al.. The value of λci reported by Zhou et al.
shows a good agreement with the present data as it fits into the trend of increasing λci
with decreasing y+e as shown in figure 4.2.
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(a) Side view. From left to right y+e = 46.4, 68.9, 102.7.

(b) Top view. From left to right y+e = 46.4, 68.9, 102.7.

Figure 4.3: Initial conditional eddies with same(approx) maximum λ2
ci = 350 but with different ejection event location

(y+e ). Iso-surfaces correspond to 10% of max λ2
ci .

The geometric shape of the initial conditional eddies is shown in figure 4.3. Some
notable features are:

• The inclination angle of the eddy decreases as the event vector location y+e is de-
creased.

• The span-wise separation of legs at upstream end of the eddy is about 100 wall
units irrespective of the y+e at this low Reynolds number.

These observations are consistent with the ones reported in the papers of Zhou et al.
(1999) and Kim et al. (2008).

4.3 periodic boundary effects on the generation of hairpins

Figure 4.4: Selection of boundary in original domain for creating
the initial condition for large domain. Black contour in-
dicates eddy and gray indicates low speed streak con-
tour u ′ < 0.1. Top view and side view of the channel
are top and bottom pictures respectively.
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The effect on the simulations due
to periodic boundary condition
in the stream-wise direction was
studied based on the evolution of
the conditional eddy (y+e , α) =

(68.9, 2). The simulation was car-
ried out on the original and a
larger computational domain with
the stream-wise length thrice the
original stream-wise length. The
perturbation velocity field corre-
sponding to the conditional eddy
was calculated for the original do-
main by LSE. In the original do-
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main, a yz-plane with lowest perturbation velocities values (plane AA ′ and aa ′ in figure
4.4) was located and shifted to the boundary in original domain. This shifted perturba-
tion velocity field was used as the initial condition in the large domain as shown in figure
4.5.

Figure 4.5: Initial condition in the large-domain. yz-planes (aa’, AA’) are same as the ones in the original domain shown
in figure 4.4. Black contour indicates eddy and gray indicates low speed streak contour u ′ < 0.1. Side view
and top view of the channel are top and bottom pictures respectively.
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Simulations were carried out to analyze the evolution of the initial structure. Figures
4.6a and 4.6b represents the variation of the normalized maximum λ2

ci and normalized
maximum −u ′v ′ where u ′ < 0, v ′ > 0 (ejection event). It can be noticed that the values
in both the domains agree perfectly. The geometric shapes of the evolution of conditional
eddy with time also looked similar in both the cases. From these observations it is con-
cluded that there is no significant effect of the periodic boundary on the original domain.
Hence it is considered sufficient by long for the present simulations.
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Figure 4.6: Comparison of the original and large computational domain.

To summarize, comparison of statistical data obtained from DNS, LSE and vortex iden-
tification codes shows a very good agreement with the data given in literature. Hence the
codes are considered sufficiently robust for simulating and analysis of initial condition
with two eddies.



5
R E S U LT S

Simulations of the initial condition with a single eddy case will be discussed before con-
sidering the cases in which the initial flow contains two eddies. This is done in-order to
establish the base-line for later comparison. In this report, the observations and mecha-
nisms of evolution of the initial conditions with single eddy are validated by comparing
results with the papers of Zhou et al. (1999) and Kim et al. (2008). The dynamics of evo-
lution of the single eddy is briefly explained in the appendix B and more details can be
found in the papers of Zhou et al. (1999) and Kim et al. (2008).

For the initial condition with two eddies, it is studied:

• if merging is possible or not.

• if interaction between two eddies leads to stronger eddies and or the generation of
new structures (auto-generation).

The development of the 3-dimensional eddy is quantified in terms of its peak swirling
strength (λci), maximum of −u ′v ′ where u ′ < 0, v ′ > 0 (ejection event) and volume
average of −u ′v ′ where u ′ < 0, v ′ > 0.

5.1 simulations with single conditional eddy

y+e α Max λ2
ci Auto-generation

46.4 1.0 350.12 No

46.4 3.0 3151.08 Yes

68.9 1.0 169.51 No

68.9 1.2 244.09 No

68.9 1.4 332.23 No

68.9 1.6 433.94 No

68.9 1.8 549.20 No

68.9 2.0 678.02 Yes

102.7 1.0 85.02 No

102.7 2.0 340.1 No

102.7 3.0 765.2 Yes

Table 5.1: Characteristics of the individual hairpin simulations.

The simulation of the different initial conditions containing only a single conditional
eddy are listed in table 5.1. The conditional eddy in the initial condition is a pair of

17
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lifted, counter-rotating stream-wise vortices. It evolves into a hairpin vortex which is
referred as primary hairpin (Zhou et al., 1999). The dynamics of the evolution of an eddy
into a primary hairpin is discussed in appendix section B.1. It was observed that the
individual conditional eddies shown in table 5.1, evolve into a primary hairpin vortex.
The mechanisms responsible for the evolution of the conditional eddy into a primary
hairpin is same in all the cases. From this it may be inferred that these mechanisms must
be similar for the evolution of any lifted, counter-rotating stream-wise vortices. From
Zhou et al. (1999) and present observations, few of the important points connected with
the evolution of an eddy into a hairpin and its further development are as follows:

• A conditional eddy based on lower y+e , evolves slower into a hairpin as the shear
layer roll up into a span-wise vortex is delayed due to the lower mean flow velocity.
Shear layer is formed when ejected fluid between stream-wise legs encounters the
mean flow.

• Increasing α results in higher initial swirling strength, which leads to faster devel-
opment of stream-wise vortices into a hairpin. This is due to intense shear layer
formation in between the legs and top of the stream-wise vortices.

Few additional observations were made in the present simulations. They are:

• A conditional eddy with higher swirling strength (or higher relative strength α)
travels at the same speed or slightly slower than a weaker eddy at the same event
location (y+e ) as shown in figure B.4 and figure B.5 on page 41.

• A conditional eddy based on an event specified at higher event vector location (y+e )
travels faster for the same swirling strength as shown in figure B.6 on page 41.

In the following section, the 4-dimensional (x, y, z, t) observations are quantified in
2-dimensional form (λci, t), or (−u ′v ′, t) as shown in figure 5.1 for the ease of analysis.

5.1.1 2-dimensional signature of 4-dimensional data

Figure 5.1a shows the normalized maximum of the square of swirling strength (max λ2
ci)

for event vector location y+e = 102.7. The value of the max λ2
ci increases with the initial

strength α. This is also observed in the case of y+e = 68.9 as shown in figure B.7 on
page 42.

In figure 5.1a, for the relative strength α = 3, the value of the max λ2
ci increases to a

maximum and then decreases to a local minimum at t+ = 111.6. At the same time, the
wall normal location of the max λ2

ci increases from y+ = 97 at t+ = 0 to y+ = 215 at
t+ = 83 and then decreases to y+ = 190 at t+ = 111.6. This can be observed in the figure
5.1b. The stream-wise location of the max λ2

ci travels in downstream direction linearly
with time till t+ = 111.6 as shown in figure 5.1c. Initially the location of the max λ2

ci
corresponds to the region of the downstream part of the quasi-stream-wise vortices of
the conditional eddy at t+ = 0, which evolves into a head of the hairpin till t+ = 111.6.
After t+ = 111.6, the location of the max λ2

ci decreases to y+ = 60 at t+ = 116 (see
figure 5.1b) and also the stream-wise location of the max λ2

ci shifts upstream relative to
the hairpin head (see figure 5.1c). This new location corresponds to the region of the
stream-wise vortex legs. The swirling strength of these vortex legs keeps increasing from
t+ = 0 and at t+ = 116, it becomes more than the swirling strength (λci) present in the
head. After t+ = 116, for α = 3, it can be seen that the max λ2

ci continues to increase,
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goes to a maximum and then decreases. Around the same time, new structures begin to
evolve.

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300 350 400

M
ax

λ
2 ci
(t

+
)

M
ax

λ
2 ci
(0
)

t+

α = 1.0
α = 2.0
α = 3.0

(a) Normalized maximum of λ2
ci .

0

50

100

150

200

0 50 100 150 200 250 300 350 400

y+

t+

α = 1.0
α = 2.0
α = 3.0

(b) y-location of normalized maximum of λ2
ci .

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300 350 400

x+

t+

α = 1.0
α = 2.0
α = 3.0

(c) x-location of normalized maximum of λ2
ci .

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

M
ax
−

u
′ v
′ (

t+
)
|

u
′ <

0,
v′
>

0
M

ax
−

u
′ v
′ (

0)
|

u
′ <

0,
v′
>

0

t+

α = 1.0
α = 2.0
α = 3.0

(d) Normalized maximum of −u ′v ′ | u ′ < 0, v ′ > 0.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 50 100 150 200 250 300 350 400

〈−
u
′ v
′ 〉
(t

+
)
|

u
′ <

0,
v′
>

0
〈−

u
′ v
′ 〉
(0
)
|

u
′ <

0,
v′
>

0

t+

α = 1.0
α = 2.0
α = 3.0

(e) Normalized volume average −u ′v ′ | u ′ < 0, v ′ > 0.

Figure 5.1: Temporal evolution of (a) Normalized maximum of the square of swirling strength (λ2
ci). (b) wall-normal

location (y+) of the normalized maximum λ2
ci . (c) Stream-wise location (x+) of the normalized maximum

λ2
ci . (d) Normalized maximum of Reynolds shear stress −u ′v ′ where u ′ < 0, v ′ > 0 (ejection event). (e)

Normalized volume average of Reynolds shear stress (−〈u ′v ′〉 where u ′ < 0, v ′ > 0). for single initial eddy
at y+e = 102.7. All values are normalized with their initial value at t+ = 0.

For α = 2, till t+ = 165.6, the location of the max λ2
ci corresponds to the head and then

shifts to the stream-wise vortex legs. After t+ = 165.6, the max λ2
ci increases a little and

then decreases. But no new structures are formed. For α = 1, the location of the max λ2
ci
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corresponds to the head. These observations can be correlated with the 3-d evolution of
an eddy as follows:

• Initially the maximum of the square of swirling strength (λ2
ci) increases faster for

the case of relative strength α = 3 compared to α = 2 and is present in the region
which evolves into the head. This also can be explained as the initial growth rate
(variation of max λ2

ci with respect to time) is higher in the case of α = 3 than α = 2.
This is associated with the evolution of an initial eddy into a primary hairpin which
is mainly the formation of the head. The evolution of the primary hairpin is faster
in case of α = 3 compared to α = 2. For α = 1, primary hairpin evolves slower than
in α = 2 which can also be observed in figure 5.1a.

• The growth rate of max λ2
ci in the stream-wise vortex legs after t+ = 111.6 for α = 3,

is much higher then the case of α = 2 after t+ = 165.6. New structures evolve in the
case of α = 3 and no new structures for α = 2 case. So the higher growth rate in the
stream-wise vortex legs may be associated with the generation of new structures
because the new structures are resulting from an instability in the legs (Zhou et al.,
1999).

In case of the initial condition with y+e = 68.9 (see figure B.7a on page 42), the max λ2
ci

for α = 2 does not have the same trend as explained above for y+e = 102.7. The location
of max λ2

ci stays in the head for longer time (t+ = 256) and it auto-generation occurs
around t+ = 220. So by the time, the location of the max λ2

ci shifts to the stream-wise
vortex legs the auto-generation has already occurred and the max λ2

ci is decreasing in the
vortex legs. So it is important to have the plots of the max λ2

ci and its location for proper
interpretation.

The volume average1 of −u ′v ′ where u ′ < 0, v ′ > 0 normalized with the initial volume
average at t+ = 0 is shown in figure 5.1e. In the figure, for α = 3, it can be observed
that the volume average slightly decreases in the beginning and then increases. After
reaching maximum it decreases continuously and for α = 1, 2 it always decreases. For
the case of y+e = 68.9 shown in figure B.7c on page 42, the normalized volume average
of −u ′v ′ where u ′ < 0, v ′ > 0 increases with α. So in general, these figures show that the
amount of volume averaged Reynolds shear stress due to the ejection events increases
with α.

The maximum of −u ′v ′ where u ′ < 0, v ′ > 0 normalized with the initial maximum at
t+ = 0 is shown in figure 5.1d for y+e = 102.7 and figure B.7b on page 42 for y+e = 68.9.
The maximum −u ′v ′ for α = 3 decreases at first then slightly increases and reaches a
maximum at t+ = 72. After that it again decreases. The normalized maximum −u ′v ′ for
event vector location y+e = 68.9 shows the same trend as y+e = 102.7 and is shown in
B.7b.

The time of occurrence of peaks in the max λ2
ci, maximum −u ′v ′ and volume averaged

−u ′v ′ (or −〈u ′v ′〉) is shown in table 5.2. It can be seen that the max λ2
ci and the maximum

−u ′v ′ occur at approximately the same time. There is difference in time of about 3.6 units
which happens to be the time step at which these values are calculated. From the table
5.2, it is observed that the −〈u ′v ′〉 lags the max λ2

ci and the maximum −u ′v ′ for all cases
except (y+e , α) = (68.9, 2). These trends can be clearly observed in the figures.

1 Sum of −u ′v ′ when u ′ < 0, v ′ > 0 at all the points in the computational domain divided by total number of
points in the computational domain
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y+e α t+ of peak max λ2
ci t+ of peak max −u ′v ′ t+ of peak −〈u ′v ′〉

102.7 3 68.4 72 57.6

68.9 2 104.4 104.4 108

68.9 1.8 126 122.4 118.8

68.9 1.6 147.6 144 126

Table 5.2: Time of occurrence of peaks in maximum λ2
ci , maximum −u ′v ′ and −〈u ′v ′〉 from figure 5.1 and B.7.

5.2 simulations of initial condition with two eddies

Table 5.3 briefly summarizes all the two eddy cases that were studied in this thesis project.
In table 5.3, Ref Plane refers to event vector location where y+e1 refers to the upstream
eddy and y+e2 to the downstream eddy. In all the simulations, event vector locations
y+e = 102.7, 68.9 were used. Strength (α1, α2) is the initial strength of an eddy where
α1 corresponds to the upstream eddy and α2 to the downstream eddy. Only α = 2 for
y+e = 68.9 can auto-generate new structures when simulated as a single eddy case. All
others do not auto-generate when simulated as single eddies. The stream-wise separation
distance (∆x+) is the distance between two eddies in stream-wise direction in wall units.
Position (y/H) is the wall-normal location of maximum λ2

ci. It can be noticed that almost all
the cases auto-generate except two. Criteria for deciding if merging occurs or not is done
by visual inspection. Merging of eddies for ∆x+ = 70.3 is not applicable. This is because
the initial eddies have almost merged, which can be seen in figure 5.2 for different λ2

ci.
Whether merging is possible or not in the other cases and how it happens is explained in
the next section.

Case Ref Plane
(y+e1, y+e2)

Strength
(α1, α2)

∆x+ Max λ2
ci Position

(y/H)
Auto-
generation

Merging

I 102.7_68.9 2_1 70.3 331.36 0.2617 Yes NA

I 102.7_68.9 2_1 101 328.08 0.2695 Yes Yes

I 102.7_68.9 2_1 140.6 333.75 0.2695 Yes Yes

I 102.7_68.9 2_1 281.2 336.12 0.2695 Yes No

I 102.7_68.9 2_1 421.9 343.06 0.2695 No No

II 102.7_68.9 1_2 70.3 690.37 0.1758 Yes NA

II 102.7_68.9 1_2 140.6 688.10 0.1758 Yes Yes

III 68.9_102.7 2_1 140.6 738.52 0.1758 Yes No

III 68.9_102.7 2_1 281.2 691.15 0.1758 Yes No

IV 68.9_102.7 1_2 140.6 371.37 0.2617 Yes No

IV 68.9_102.7 1_2 281.2 348.14 0.2695 No No

Table 5.3: Overview of simulations of the cases with two eddies.

5.3 merging of hairpins

From table 5.3, it can be seen that merging is observed for the cases with a large upstream
and a smaller downstream eddy (Case I and II). Large eddy is calculated at the higher
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Figure 5.2: Initial flow structure of Case I ∆x = 70.3 showing λ2
ci = 30, 60, 90 surfaces.

(a) Case I, ∆x+ = 101. At time (from left to right) t+ = 0, 14.4, 28.8, 43.2.

(b) Case I, ∆x+ = 140.6 At time (from left to right) t+ = 0, 14.4, 28.8, 43.2, 50.4, 57.6, 64.8.

(c) Case I, ∆x+ = 281.2 At time (from left to right) t+ = 0, 57.6, 129.6, 158.4, 194.4.

(d) Case II, ∆x+ = 140.6 At time (from left to right) t+ = 0, 14.4, 28.8, 36.0, 50.4.

Figure 5.3: Merging of eddies with different initial spacing (fig a− c) and strength (fig d). Side view of 3-d vortices in xy
plane. All vortices are visualized by iso-contours of λ2

ci = 30.

ejection event location. The small eddy is calculated at lower ejection event location rela-
tive to location of the large eddy. Cases III and IV with a small eddy upstream and a large
downstream, do not show any signs of merging. In case III and IV, the large downstream
eddy moves faster than the small upstream eddy, because an eddy with the higher y+e
travels faster then the lower y+e due to higher mean flow velocity as explained in sec-
tion 5.1. The reverse also happens, the larger eddy upstream travels faster and catches
up with the smaller eddy downstream till it merges. Such a scenario has been observed
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experimentally in a turbulent boundary layer by Elsinga et al. (2012). Merging is studied
further as a function of the stream-wise spacing and the strength.

5.3.1 Merging as function of spacing

Merging as function of spacing is studied for case I, where the strength of the large
eddy upstream was higher than the smaller eddy downstream. From table 5.3 and fig-
ures 5.3a, 5.3b and 5.3c, it can be observed that merging occurs when the two eddies are
separated by stream-wise distance ∆x+ < 140.6. For the cases with stream-wise spacing
∆x+ = 281.2 & 421.9, there is no merging. For the stream-wise separation ∆x+ = 140.6
(see figure 5.3b), merging is happening, and at the same time the strength of the down-
stream eddy is reducing (nearly vanishing). This maybe due to the influence of the
stronger upstream eddy. The stronger upstream eddy pulls the downstream eddy to-
wards itself. This leads to thinning and stretching of downstream eddy which can be
observed in the movie attached.

5.3.2 Merging as function of strength

Stream-wise spacing was fixed and the strength of the eddies was varied. Case I and case
II with same stream-wise spacing ∆x+ = 140.6 between eddies was considered. In case II,
there was a quicker and clearer merging of the two eddies. Unlike the case I, the strength
of the downstream eddy does not strongly reduce in case II. Based on this observation
and that of the case I with ∆x+ = 140.6, it can be inferred that the distance between the
eddies may be more then ∆x+ = 140.6 for merging to occur in case II. In case II, the
downstream eddy is stronger (compared to case I), hence it takes more time before its
strength diminishes allowing merger over a longer period (i.e, larger separation distance).
The eddies are pulled closer to each other much faster in case II where the downstream
eddy is stronger. The amount of fluid pumped between the legs of an eddy increases
with strength. So the faster approach of the eddies is due to the absorption of fluid by
the upstream eddy from the downstream eddy.

To summarize the above two sections:

• There is certain distance between the eddies within which a merger can occur like
∆x+ < 140 in case I.

• Merging is also dependent on the strength of eddies. It is faster when the strength
of the smaller downstream eddy is higher.

• After merging the geometric shape of the structure remains broadly similar (i.e,
hairpin-like see figure 5.3a at t+ = 43.2).

5.4 is auto-generation possible when two eddies align?

In this section, we study if auto-generation can occur or not when two eddies are aligned
in the stream-wise direction. Auto-generation described in Zhou et al. (1999) means gen-
eration of new hairpin vortices from a parent hairpin vortex. In the present case, auto-
generation is loosely referred to as the creation of new structures whether hairpins or
pair of counter-rotating quasi-stream-wise vortices.
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(a) Case I with ∆x+ = 70.3.

(b) Case I with ∆x+ = 101.

(c) Case I with ∆x+ = 140.6.

(d) Case I with ∆x+ = 281.2.

(e) Case I with ∆x+ = 421.9.

(f) Simulation of single eddy (y+e , α) = (102.7, 2).

Figure 5.4: Side view of different auto-generation cases (Case I) when eddies are aligned behind each other compared to
the case of single eddy (y+e = 102.7). The effect on auto-generation due to spacing between them is studied. All
eddies are visualized by iso-surface of λ2

ci = 30. Left column is at t+ = 248.4 and right column is at t+ = 349.2.
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(a) Case II with ∆x+ = 70.3.

(b) Case II with ∆x+ = 140.6.

(c) Case III with ∆x+ = 140.6.

(d) Case III with ∆x+ = 281.2.

(e) Simulation of single eddy (y+e , α) = (68.9, 2).

Figure 5.5: Side view of different auto-generation cases (Case II & III) when eddies are aligned behind each other com-
pared to the case of single eddy (y+e = 68.9). All eddies are visualized by iso-surface of λ2

ci = 30. Left column
is at t+ = 248.4 and right column is at t+ = 349.2.
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The initial condition of case I contains two eddies which do not auto-generate individ-
ually. But when they are put together, new structures are generated which can be seen in
figures 5.4a, 5.4b, 5.4c and 5.4d. In case II and III, one of the two eddies (y+e , α = 68.9, 2)
auto-generates individually and is shown in figure 5.5e. Figures 5.5a, 5.5b 5.5c and 5.5d
show the cases with two eddies where one eddy auto-generates individually. In these
cases, formation of the tertiary vortex upstream can be observed in figures 5.5a and 5.5c.
So compared to single eddy case (figure 5.5e), there is an enhancement in terms of gener-
ation of new structures. From this it can be inferred that there is an interaction between



26 results

two eddies when aligned behind each other which leads to the generation of new struc-
tures. And also, the auto-generation can take place when two eddies which individually
does not possess sufficient strength to auto-generate are aligned behind each other.

Figures 5.4a, 5.4b, 5.4c, 5.4d and 5.4e show the effect of spacing on generation of new
structures. As the stream-wise distance (∆x+) is increased from 70.3 to 421.9, the newly
generated stream-wise vortices upstream are weaker. So with increasing ∆x+, the inter-
action which causes auto-generation weakens. This also suggests that the two eddies be-
come independent of each other as spacing between the two grows. Merging takes place
for the stream-wise spacing ∆x+ = 70.3, 101 and 140.6 (70.3 is an initial merged case)
and also auto-generation occurs. Hence merging results in formation of stronger eddies
of threshold strength. It can also be noted that the auto-generation occurs after merging,
so there is no vortex-vortex interaction in these cases. Also there is no remarkable change
in generation of new structures due to merging. So merging do not influence the trend of
decreasing size of new structures with increasing stream-wise spacing. The vortex-vortex
interaction decreases with increasing stream-wise spacing but still there is an interaction
which can be seen in case of larger separation distance. This may be because both the
eddies share the same low speed streak, due to which fluid ejected by downstream eddy
is absorbed by upstream eddy. This is vortex-streak interaction.

For case III, where there is no merging for ∆x+ = 140, tertiary hairpin formation
occurs (see figure 5.5c at t+ = 349.2). The second eddy y+e = 102.7 (eddy 2) remains as
a downstream vortex and becomes stronger which can be seen by its increased size in
figure 5.5c. For ∆x+ = 281, a new downstream eddy (located in between the two initial
eddies) is created by the initial upstream eddy y+e = 68.9 (eddy 1) as shown in figure
5.5d at t+ = 248.4. This newly generated structure interacts with the second initial eddy
downstream y+e = 102.7 and becomes a hairpin as shown in figure 5.5d at t+ = 349.2
which otherwise was just a pair of counter-rotating stream-wise vortex (see figure 5.5e).

From all these observations, it may be inferred that, vortex-vortex and vortex-streak in-
teractions happen when the stream-wise spacing smaller. And vortex-streak interaction
occurs when the separation distance is larger. Also merging or no merging, the interac-
tions which lead to auto-generation will happen.

5.5 interpretation of 2-dimensional data

In this section, 2-d plots are analyzed and understood based on interpretation given in
section 5.1.1 for the single eddy case. Figure 5.6 represents the 2-d data for the case I
(y+e1, y+e2) = (102.7, 68.9) with different stream-wise spacing (∆x+). It also contains data
of a single eddy case corresponding to (y+e , α) = (102.7, 2) for comparison.

In figure 5.6a, it can be observed that the growth rate (variation of the normalized
maximum square of swirling strength (λ2

ci) with respect time) and the amount of increase
in the normalized maximum λ2

ci, decrease as stream-wise spacing ∆x+ increases. The
initial growth rate before the dot ’•’ is connected with the evolution of the pair of counter-
rotating stream-wise vortices into primary hairpin similar to the observation in figure
5.1a. The maximum λ2

ci has a peak value of 5.09 for stream-wise spacing ∆x+ = 70 which
is twice the value 2.7 in single eddy case. For ∆x+ = 101, 140.6, 281.2 and 481.9 the
peak value of maximum λ2

ci is 3.61, 2.93, 2.83 and 2.78 respectively. As inferred in section
5.1.1, the higher the initial growth rate the faster is the development of initial eddy into
a primary hairpin. So it can be implied that the primary hairpin formation takes longer
as the spacing between eddies is increased, as growth rate decreases with increasing
spacing. This is consistent with the 3-d observations.
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Figure 5.6: Effect of initial stream-wise spacing (∆x+) between eddies in Case I.

After the point ’•’, the location of normalized maximum square of swirling strength
(λ2

ci), shifts to the legs of stream-wise vortex. The maximum λ2
ci in the legs for the case

of ∆x+ = 70.3, 101 and 140.6, increases and reaches peak values of 5.67, 5.09 and 4.27 re-
spectively. The increase in max λ2

ci is much higher in case of the legs than in the head. For
other stream-wise spacings, after point ’•’ maximum λ2

ci continues to decrease. From the
interpretation made in section 5.1.1, new structures arise from higher swirling strength
(λ2

ci) in the legs which may lead to an instability in the legs resulting in creation of new
structures. Hence it is expected that the new structures are produced for the case of
∆x+ = 70.3, 101 and 140.6. This is true and can be seen in figures 5.4a, 5.4b 5.4c.

From figure 5.6c, the amount of volume averaged Reynolds shear stress generated
by ejections decreases with increasing stream-wise spacing (∆x+). The cases of ∆x+ =

70.3, 101 and 140.6, show −〈u ′v ′〉 increasing between t+ = 50− 105, t+ = 65− 125 and
t+ = 110 − 140 respectively compared to continuously decreasing trend for the other
cases. Similar trend is seen for −〈u ′v ′〉 in figure 5.1e for auto-generation of single eddy
case (α = 3) compared to non-auto-generating cases (α = 1, 2). So from the figure 5.6c, it
can be deduced that the case of ∆x+ = 70.3, 101 and 140.6 auto-generate.

The peaks of normalized maximum λ2
ci, normalized−〈u ′v ′〉 and normalized maximum

−u ′v ′ happen approximately at the same time as shown table 5.2 for single eddy case in
section 5.1.1. This trend is not observed in figures 5.6a, 5.6c and 5.6b.
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C O N C L U S I O N S A N D R E C O M M E N D AT I O N S

6.1 summary and conclusions

In this report, how a hairpin of certain threshold strength to auto-generate come into
existence is investigated. To this end, the possibilities of vortex merger or interactions
between two weak conditional eddies resulting in generation of stronger vortex has been
studied by means of Direct Numerical Simulation (DNS). The weak conditional eddies
cannot auto-generate individually. The initial conditional eddies were obtained from the
linear stochastic estimation (LSE) procedure applied to a DNS database of fully devel-
oped turbulent plane channel flow at Reτ= 360. The DNS code was validated by compar-
ing the turbulent flow statistics to the results of Kim et al. (1987) and the LSE procedure to
the results of Zhou et al. (1999). Before studying the interaction between two conditional
eddies, the single eddy case was studied to establish the base-line for comparison. The
interactions and vortex merging between two non auto-generating eddies is investigated
in different scenarios. These scenarios are created based on different initial strengths, ini-
tial sizes and initial spacing between the eddies. In all the cases, the two eddies were
perfectly aligned behind each other in the stream-wise direction.

Merging of two eddies only occurred in the cases of the larger (higher y+e ) eddy up-
stream followed by smaller (lower y+e ) eddy downstream. This happens because the larger
eddy upstream travels faster then the smaller eddy downstream. The larger eddy trav-
els faster due to higher mean flow velocity at larger distance from wall. There was no
merging in the reverse case where smaller eddy upstream was followed by a larger eddy
downstream. After merging, the geometric shape of the new structure broadly remained
similar to the hairpin structure. The merging is consistent with experimental observations
described in Elsinga et al. (2012).

For the case of a large eddy upstream followed by a small eddy downstream, merging
was found to be a function of the initial spacing and the initial strength of eddies. If the
eddies are within a certain initial stream-wise distance like ∆x+ = 140 for case I, merg-
ing occurred but above that there was no merging. As the stream-wise spacing (∆x+)
increased, the interaction between the eddies reduced. For the same spacing ∆x+ = 140
and different strength of two eddies (see figures 5.3b and 5.3d), it was observed that
the merging happens quicker and is clearer when the smaller downstream eddy has
higher strength. The two eddies are pulled closer to each other much faster in case of the
stronger, smaller eddy downstream. The amount of fluid pumped upstream between the
legs of the downstream eddy increases with its strength. Hence the faster approach of
the two eddies may be due to the absorption of the fluid by the upstream eddy from the
downstream eddy.

In the current study, auto-generation is loosely referred to creation of new structures
whether hairpins or pairs of quasi-stream-wise vortices. The presence of interaction be-

29
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tween two eddies was identified by looking at auto-generation. New structures are cre-
ated, when two eddies, which individually do not auto-generate are aligned behind each
other. This is seen in figures 5.4a, 5.4b, 5.4c, 5.4d and 5.4e. Even in the case of two eddies
with one auto-generating individually and the other one not, there is an enhancement
in the creation of new structures like tertiary hairpins (see figures 5.5a and 5.5c). From
this it can be concluded that when two eddies are aligned behind each other, there is an
interactions between two eddies which leads to auto-generation.

In case I, it is observed that the size of the new structures decreases for increasing initial
stream-wise spacing (see figures 5.4a, 5.4b, 5.4c, 5.4d and 5.4e). The new structures de-
velop much faster in time when the separation distance between the eddies decreases as
can be observed in the movies attached. Merging takes place for cases with stream-wise
spacing ∆x+ = 70.3, 101 and 140.6 before auto-generation occurs. So the auto-generation
is not caused by vortex-vortex interaction as the eddies have already been merged. But
it is caused by the merging of two weak eddies into a single stronger eddy. From the
figures, it can also be noted that there is no remarkable in generation of new structures
due to merging. So merging do not influence the trend of decreasing size of new struc-
tures with increasing stream-wise spacing. The vortex-vortex interaction weakens with
increasing stream-wise spacing but still there is an interaction in case of higher spacing.
This may be because both the eddies share the same low speed streak, due to which fluid
ejected by downstream eddy is absorbed by upstream eddy. This leads to vortex-streak
interactions. The non-merging cases like case III and case IV, with smaller upstream and
larger eddy downstream, show enhancement in auto-generation. In case III, where one
is auto-generating individually and other do not, tertiary hairpin formation can be seen
in figure 5.5c.

From all these observations, it may be concluded that, vortex-vortex and vortex-streak
interactions happen when the stream-wise spacing smaller. And vortex-streak interaction
occurs when the separation distance is larger. Also merging or no merging, the interac-
tions which lead to auto-generation will happen.

It is also concluded that, when two non-auto-generating eddies are separated by a suffi-
ciently small stream-wise spacing then merging takes place. This results in the formation
of a stronger eddy which can auto-generate. Hence merger is a viable explanation for
the creation of threshold strength eddies. It extends the auto-generation process towards
a possible self-sustaining mechanism meaning: two initial hairpins merge producing a
strong hairpin, which creates a new hairpin structure by auto-generation resulting again
in two hairpins.

From vortex-streak interaction, it may be concluded that low-speed streak does play
a role in the generation of new structures. Hence the criterion and the mechanisms to
determine the auto-generation become more complex when two hairpins are aligned
behind each other than the one mentioned (threshold strength) for a single eddy case in
Zhou et al. (1999).

6.2 recommendations

• All the simulations in this study were conducted at a low Reynolds number Reτ=360.
High Reynolds number simulations are recommended to show that this theory is
robust and unambiguous.

• What kinds of merging occur in real turbulent flows needs to be investigated ex-
perimentally and numerically. Possible other merging cases (those not covered by
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the present study) need to be studied in an ideal numerical setup like the present
study to extend this theory further.

• In the present simulations, the two eddies are on the same low speed streak. So
it is important to study if this low speed streaks play a role in merging and auto-
generation and how.

• In Zhou et al. (1999) it was noted that the distance between the primary and the
secondary hairpin is higher in the symmetric case than the non-symmetric hairpin
case. The spacing in the non-symmetric hairpin case is found to be closer to the
spacing found in experiments. Hence simulations of initial condition involving non-
symmetric eddies should be done to study the effect of spacing between vortices
on merging and auto-generation.
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Figure A.1: Staggered Grid.

a.2 spatial discretisation : continuity and momentum equations

Continuity equation is discretized at pressure points as shown in figure A.1 and is given
by
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X-momentum equation is discretized with u velocity point as center of the cell. Simi-
larly y and z momentum is calculated with respective velocity point as center of cell.
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a.3 velocity gradient tensor
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b.1 primary hairpin vortex

Conditional eddy in the initial condition will rapidly develop into a hairpin vortex which
will be referred as primary hairpin. Evolution of primary hairpin is same for all the initial
conditions mentioned in table 5.1. Development of conditional eddy can be seen in figure
B.1. From figures, it can be observed that the initial eddy (t+e = 0) lifts up with time. This
lift up is due to mutual induction of velocity by one leg over another. Downstream end
lifts faster because the span-wise distance between the legs is smaller than the upstream
end. Lifting at the upstream end(legs) near the wall is retarded by vortex stretching which
makes the legs thinner thereby reducing the mutual induction. In figures, at t+ = 72, it
can be noticed that the downstream end lifts up almost vertically and a span-wise vortex
connects both quasi-stream-wise vortices. This process of curling up leading to formation
of head is explained as follows.

The quasi-stream-wise vortices pump fluid up between their legs away from the bound-
ary. This pumped up fluid encounters mean flow and forms a shear layer above the
quasi-stream-wise vortices between the legs. As the swirling strength is higher in the
downstream end of quasi-stream-wise vortices the associated shear layer is intense in
that region. This intense shear layer rolls up into a span-wise vortex which can be seen in
attached vorticity movie. As the legs are lifted in downstream end due to mutual induc-
tion, shear layer intensifies due to higher mean flow increasing the strength of span-wise
vortex. Due to viscosity, this span-wise vortex connects the quasi-stream-wise vortices
and forms head of the hairpin.The development of the initial structure to hairpin vortex
observed in this study is consistent with the one mentioned in Zhou et al. (1999).

b.2 self induced motions in hairpins and their development

Formation and evolution of Ω-shaped hairpin, as shown in figure B.1 (t+ = 144), can be
explained by self and mutual induction mechanisms as shown in figure B.2 from Zhou
et al. (1999). Before explaining the mechanisms associated with development of primary
hairpin, self-induction is described briefly. Velocity(u) of a line vortex with no viscosity
at any point x ′ is given by

u(x) = − κ

4π

∮
(x− x ′)× dl(x ′)
|x− x ′|3 (B.1)

where x ′ represents point on vortex, dl(x ′) is line element along the vortex, κ is vortex
strength. Now hairpin vortex is assumed to be thin, isolated vortex tube. Now effect
of curvature of the vortex on velocity on an adjacent point needs to be investigated. If
velocity has a component apart from circulatory motion component, it contributes to the
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(a) Top view of the development of conditional eddy.

(b) Front view of the development of the conditional eddy.

Figure B.1: Formation of primary hairpin vortex for initial condition (y+e , α) = (102.7, 2).

shifting of line vortex which is caused due to self induction. From Bachelor (1967), self
induced velocity component due to curvature is given by

κc
4π

blog
L
σ

(B.2)

where σ is thickness of vortex tube, L is length of line vortex, c and b are local curvature
and bi-normal vector at a point in the vortex curve.

figure B.2 (a) The hairpin head lifts up almost vertically which leads to strong local
curvature at points as indicated by B, B ′ in figure. From equation B.2, due to the strong
curvature self induced motion pushes the legs apart from each other in the span-wise
direction and the head is pushed up in the direction of downstream flow as shown in
figure.

figure B.2 (b) Vortex-wall interaction tries to bring the legs closer which mitigates
the self induced motion in span-wise direction. This can be explained by image vortex
concept. This effect decreases with increasing distance from the wall. Hence the span-
wise distance between two legs increases with distance from the wall leading to the
formation of Ω shaped hairpin. Self induction by this new curvature near the neck as
indicated by C, C ′ pushes the legs at that point towards the wall as shown in the figure.

figure B.2 (c) As the region near neck moves towards the wall due to self induction
and the whole hairpin lifts up due to mutual induction. This causes a slight negative tilt
near the neck region. This creates a new curvature as indicated in figure by D, D ′. Self
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Figure B.2: Self induced motion of a hairpin vortex. (taken from Zhou et al., 1999).

induced effect due to this curvature results in bringing the legs towards each other near
that curvature as shown in figure.

figure B.2 (d) As points marked D, D ′ move closer to each other in figure B.2c, the
mutual induction increases and thereby lifts up that portion. This lift up results in forma-
tion of a kink as marked E in figure B.2(d).

This kink continues to rise and breaks away from primary hairpin leading to formation
of secondary hairpin vortex (SHV). SHV undergoes above mentioned process leading to
formation of new hairpins as shown in figures B.3a and B.3b.

(a) Side view.

Figure B.3: Formation of secondary and tertiary hairpin vortices. (cont.)

Primary hairpin

Secondary hairpin

Tertiary hairpin

?

?

?
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(b) Top view.

Figure B.3: Formation of secondary and tertiary hairpin vortices.

b.3 base line studies

b.3.1 Different swirling strength at same event location

Figure B.4, B.5 shows two eddies (one black and other gray) which are simulated individ-
ually as single eddy cases. They are overlapped in visualization to study the difference in
evolution. Conditional eddy with higher local swirling strength (λci) travels at the same
speed or slightly slower speed then the lower λci for event specified at same point.

(a) Side view.

(b) Top view.

Figure B.4: Two overlapped hairpins at y+e = 68.9 with α = 1(black) and α = 2(gray). Time is in t+ units.

b.3.2 Different event location and same swirling strength

Figure B.6 shows two eddies (one black and other gray) which are simulated individually
as single eddy cases. They are overlapped in visualization to study the difference in
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(a) Side view.

(b) Top view.

Figure B.5: Two overlapped hairpins at y+e = 102.7 with α = 1(black) and α = 3(gray). Time is in t+ units.

evolution. From figure B.6, it can be concluded that the conditional eddy based on event
specified at higher y+ travels faster for same swirling strength.

(a) Side view.

(b) Top view.

Figure B.6: Two overlapped hairpins at y+e = 68.9(black) and y+e = 102.7(gray) with approximately same swirling strength.
Time is in t+ units.
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b.3.3 2-d plots for y+e = 68.9
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Figure B.7: Temporal evolution of (a) Normalized maximum of the square of swirling strength (λ2
ci). (b) Normalized

maximum of Reynolds shear stress −u ′v ′ where u ′ < 0, v ′ > 0 (ejection event). (c) Normalized volume
average of Reynolds shear stress (−〈u ′v ′〉 where u ′ < 0, v ′ > 0). for single initial eddy at y+e = 68.9. All
values are normalized with their initial value at t+ = 0.
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