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Reinforcement Learning for Orientation Estimation
Using Inertial Sensors with Performance Guarantee

Liang Hu1∗, Yujie Tang2∗, Zhipeng Zhou2 and Wei Pan2

Abstract— This paper presents a deep reinforcement learn-
ing (DRL) algorithm for orientation estimation using inertial
sensors combined with magnetometer. The Lyapunov’s method
in control theory is employed to prove the convergence of
orientation estimation errors. Based on the theoretical results,
the estimator gains and a Lyapunov function are parametrised
by deep neural networks and learned from samples. The
DRL estimator is compared with three well-known orientation
estimation methods on both numerical simulations and real
dataset collected from commercially available sensors. The
results show that the proposed algorithm is superior for
arbitrary estimation initialisation and can adapt to very large
angular velocities for which other algorithms can be hardly
applicable. To the best of our knowledge, this is the first
DRL-based orientation estimation method with estimation error
boundedness guarantee.

I. INTRODUCTION

Orientation estimation is important in robotics, navigation,
control, human motion analysis [1], [2], [3]. Recently, orienta-
tion estimation has been greatly advanced by the development
of accurate sensors. Multiple sensors are usually combined to
estimate the orientation, i.e., sensor fusion. Depending on the
availability of sensors and applications, various sensor fusion
techniques have been proposed, e.g., the inertial measurement
units (IMU) and magnetometer [4], [5], [6], the magnetometer
and camera [7], and the IMU and visual sensor [8], [9], etc.
In this paper, we focus on orientation estimate using the
inertial sensors and magnetometer.

The estimation algorithms can be summarised into three
categories: (1) Bayesian estimation, (2) optimisation and
(3) deep learning. In Bayesian estimation, the well-known
extended Kalman filter (EKF) and the unscented Kalman filter
(UKF), were used to estimate the orientation [4], [5], [10]. The
key idea is to approximate the orientation states by a Gaussian
distribution based on the linearisation technique and the de-
terministic sampling technique, respectively. Furthermore, the
complementary filter was developed based on the EKF, which
exploits the complementary characteristics of gyroscopes
and that of accelerometer and magnetometer at different
time scales [6]. In optimisation, the orientation estimation
is obtained based on gradient-based optimisation algorithms
[11], [12]. Until recently, the deep learning was introduced to
estimate the orientation [13], in which a deep neural network
is trained to mimic the noise distribution of gyroscopes
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such that accurate orientation estimates can be obtained by
open-loop integration of the noise-free gyro measurements.
These algorithms showed superior estimation performance
empirically. However, the performance can not be theoretically
guaranteed, i.e, the orientation estimate error never diverge.
In this paper, we will employ Lyapunov’s method in control
theory to prove the estimation error boundedness guarantee
using samples. Based on the theoretical result, we will develop
a DRL-based algorithm to learn the estimator from samples.

RL was first applied for state estimation in [14]. Motivated
by this work, we plan to develop a RL algorithm to learn the
estimator gain using samples while the orientation estimator
keeps the EKF structure. More specifically, the estimator
gain will be approximated by a deep neural network (DNN)
as a function of the sequence of estimate errors. Different
from other popular RL algorithms [15], [16], [17], the value
function will be treated as a Lyapunov function to guarantee
the estimation performance. Lyapunov’s method has been
widely used as a basic tool for stability analysis in control
theory [18]. To analyse the stability, the key is to find a scalar
“energy-like” Lyapunov function for the considered system
such that the derivative/difference of Lyapunov function along
the state trajectory is semi-negative definite. Nonetheless, the
construction/learning of the Lyapunov function in model-
free reinforcement learning is not trivial. [19] proposes a
straightforward approach to construct the Lyapunov functions
for nonlinear systems using DNNs. Recently, the asymptotic
stability in model-free RL is given for robotic control tasks
in [20]. Inspired by the works [19], [20], we will also
parametrise the Lyapunov function as a DNN and learn the
parameters from samples. Thereafter, a new DRL algorithm
based on soft actor-critic algorithm [17] that incorporates the
Lyapunov boundedness condition in the objective function to
be optimised is proposed. By using the learned estimator gain,
the estimate error of the orientation estimator is guaranteed
to be bounded all the time.

In summary, we combine Lyapunov’s method and DRL to
design a state estimator with estimation error boundedness
guarantee for orientation estimation. The main contribution
of this paper is threefold:

1) To the best of our knowledge, this is the first DRL-based
orientation estimation method using inertial sensors
combined with magnetometer;

2) Estimation error boundedness guarantee is proved using
Lyapunov’s method in control theory;

3) The proposed algorithm is superior for arbitrary estima-
tion initialisation and can adapt to very large angular
velocities for which other algorithms, such as the EKF,
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UKF and complementary filter algorithms, can be hardly
applicable.

The rest of the paper is organised as follows. In Section
II, the orientation estimation problem is formulated followed
by the preliminaries of Markov decision process. In Section
III, the theoretical result on estimation error boundedness
guarantee is proved. In Section IV, a DRL algorithm based
on SAC combined with theoretical results is proposed to learn
the estimator gain. In Section V, our method is compared
with the EKF, UKF and complementary filter algorithms in
simulations and experiments. Conclusion is given in Section
VI.

II. PROBLEM FORMULATION

In this paper, we use the inertial sensors (3D accelerometers
and 3D gyroscopes) combined with the magnetometer to
estimate the orientation. As in [3], the system dynamics is
standard and our goal is to design the estimator gain. Different
from the classic nonlinear filtering techniques based on
linearisation, we will show that the estimator gain computation
can be formulated as a RL problem.

A. System dynamics and state estimator

The orientation dynamics is typically given as:

qnb
t+1 = qnb

t � expq

(
T

2
(yω,t − eω,t)

)
, (1)

where qnb
t ∈ R4 is the unit quaternion for the orientation of

the body frame with respect to the navigation frame at time
instant t, T is the sampling time, and yω,t is the gyroscope
measurement. The noise of the gyroscope is a zero-mean
Gaussian noise eω,t ∼ N (0,Σω) where Σω is the covariance
of the noise.

Assuming that the linear acceleration is approximately zero,
the measurement equations are given as follows:

ya,t = −Rbn
t g

n + ea,t, (2a)

ym,t = Rbn
t m

n + em,t, (2b)

where ya,t, ym,t ∈ R3 are accelerometer and magnetometer
measurements at time instant t, respectively, Rbn

t is the
rotation matrix from the navigation frame to the body frame at
time instant t, gn,mn denote the local earth gravity vector and
the local earth magnetic field vector, respectively. The noises
ea,t ∼ N (0,Σa), and em,t ∼ N (0,Σm) with Σm = σ2

m I3
and Σa = σ2

a I3.
To estimate qnb

t+1, the following estimator in terms of the
orientation deviation is often proposed [3], [21]:

q̂nb
t+1|t = q̂nb

t|t � expq
(
T
2 yω,t

)
, (3a)

η̂t+1 = Kt+1(yt+1 − ŷt+1|t), (3b)

q̂nb
t+1|t+1 = expq (η̂t+1)� q̂nb

t+1|t (3c)

with

yt =

(
ya,t
ym,t

)
, ŷt+1|t =

−R{ q̂nb
t|t � expq(

T
2
yω,t)

}>
gn

R
{
q̂nb
t|t � expq(

T
2
yω,t)

}>
mn

 ,
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Fig. 1. Offline RL training process of orientation state estimator

where q̂nb
t+1|t is the linearisation point parametrised in terms

of quaternions, η̂n
t+1 is the state estimate of the orientation

deviation, and R{} denotes the matrix formula of translation
from quaternion to rotation. The goal is to obtain Kt+1,
i.e., the estimator gain at time instant t+ 1, which will be
described in detail in the next subsection.

Define the orientation error

q̃t , qnb
t �

(
q̂nb
t|t

)c
, (4)

or equivalently qnb
t = q̃t � q̂nb

t|t. From (1), (2) and (3), we
have

q̃t+1 = qnb
t+1 �

(
q̂nb
t+1|t+1

)c

=
((
q̃t � q̂nb

t|t
)
� expq

(
T
2 (yω,t − eω,t)

))
� (5)((

expq
(
1
2Kt+1

(
yt+1 − ŷt+1|t

))
� q̂nb

t|t � expq(
T
2 yω,t)

))c

Furthermore, to escape the unit determinant condition of
the quaternion representation of rotation, the logarithm map
of the quaternion is used [22]:

[ηt+1]× = log(q̃t+1) (6)

where ηt+1 is the orientation deviation and the skew operator
[·]× produces the cross-product matrix.

B. Estimate Error Dynamics as Markov Decision Process

By combining (5) and (6), the dynamics of estimate error
can be viewed as a Markov decision process (MDP) which
is defined as a tuple < S,A,P, C, γ >:

q̃t+1 ∼ P (q̃t+1|q̃t,Kt+1) ,∀t ∈ Z+, (7)

where the estimate error q̃t ∈ S is the state, the estimator
gain Kt+1 ∈ A is the action sampled from a stochastic policy.
Considering that the ground truth qt is known during training
phase, the mapping between q̃t and η̂t is bijective to some
extent according to (3c) and (4). For convenience, in our
implementation of the algorithm, we treat π(Kt+1|η̂t) and
π(Kt+1|q̃t) equivalently.

The state dynamics can be characterised by the transi-
tion probability function P(q̃t+1|q̃t,Kt+1). RL algorithms
can be used to find the policy π, given a cost function1

1We will use cost instead of reward in this paper which is often used in
control literature. Maximisation in RL setup will be minimisation instead.



C(q̃t,Kt+1) ∈ C that measures the goodness of a state-
action pair. In state estimation, it is often desired that the
estimate error q̃t converges exponentially to a finite bound
in mean square. As such, the cost function is selected as
C(q̃t,Kt+1) = EP (·|q̃t,Kt+1)[‖q̃t+1‖2], and the return is the
sum of discounted cost

∑∞
τ=t γ

τ−tC(q̃t,Kt+1) with the
discount factor γ ∈ [0, 1).

Definition 1: [23] The estimate error q̃t in the MDP (7) is
said to be exponentially bounded in mean square if ∃ η > 0
and 0 < ϕ < 1, such that

E[‖q̃t‖2] ≤ ηE[‖q̃0‖2]ϕt + p, (8)

holds at all the time instants t ≥ 0, where p is a positive
constant number.

In this paper, our aim is to learn the estimator gain
Kt+1 = π(η̂n

t ) in (3) as a policy using RL, such that the
mean square of the estimate error of q̃t in (7) is guaranteed
to converge exponentially to a positive bound. Different from
the EKF where Kt+1 is computed using the linearisation
approximation, in this paper Kt+1 is approximated by a deep
neural network π(·).

III. ESTIMATION ERROR BOUNDEDNESS GUARANTEE

In this section, we propose the main theorem on bounded-
ness of the estimate error. Before proceeding further, some
notations are to be defined. ρ(q̃0) denotes the distribution
of the starting state estimate error q̃0. The state distribution
of state estimate error at a certain instant t as P (q̃t|ρ, π, t)
is defined in an iterative way: P (q̃t+1 = s′|ρ, π, t + 1) =∫
S
P (q̃t = s|ρ, π, t)Pπ(s′|s)ds. The following assumption

that will be used in proving the theorem is presented as
follows:

Assumption 1: The Markov chain in (7) induced by a
policy π is ergodic with a unique distribution probability.
That is, ∃ pπ(s), such that

pπ(s) = lim
t→∞

P (q̃t = s|ρ, π, t) (9)

Theorem 1: The error dynamics (7) is exponentially
bounded in mean square if there exists a Lyapunov function
L(q̃t) : S → R+ and positive constants α1, α2 and δ such
that

α1Eπ[‖q̃t‖2]− δ ≤ L(q̃t) ≤ α1Eπ[‖q̃t‖2] (10)

and

lim
N→+∞

[ln(Eq̃t∼µN (Eq̃t+1∼PπL(q̃t+1)))

−Eq̃t∼µN ln(L(q̃t))] ≤ −α2

(11)

where

µN (s) ,
1

N

N−1∑
t=0

P (q̃t = s|ρ, π, t) (12)

Proof: We have

ln(Eq̃t∼µN (Eq̃t+1∼PπL(q̃t+1))

= ln(

∫
S

1

N

N−1∑
t=0

P (q̃t = s|ρ, π, t)
∫
S

Pπ(s′|s)L(s′) ds′ ds)

= ln(

∫
S

(

∫
S

1

N

N−1∑
t=0

P (q̃t = s|ρ, π, t)Pπ(s′|s) ds)L(s′) ds′)

= ln(

∫
S

(
1

N

N−1∑
t=0

P (q̃t+1 = s′|ρ, π, t+ 1))L(s′) ds′)

= ln((
1

N

N−1∑
t=0

∫
S

P (q̃t+1 = s′|ρ, π, t+ 1))L(s′) ds′)

≥ 1

N

N−1∑
t=0

ln((

∫
S

P (q̃t+1 = s′|ρ, π, t+ 1))L(s′) ds′)

(13)

where the last inequality follows from the fact that ln(x) is
a concave function on R+. Similarly, noting that − ln(x) is
a convex function we have

− Eq̃t∼µN lnL(q̃t)

=−
∫
S

1

N

N−1∑
t=0

P (q̃t = s|ρ, π, t) ln(L(s)) ds

=
1

N

N−1∑
t=0

∫
S

P (q̃t = s|ρ, π, t)(− lnL(s)) ds

≥ 1

N

N−1∑
t=0

− ln(

∫
S

P (q̃t = s|ρ, π, t)L(s) ds)

(14)

It follows from the above two inequalities that

ln(Eq̃t∼µN (Eq̃t+1∼PπL(q̃t+1))− Eq̃t∼µN lnL(q̃t))

≥ 1

N

N−1∑
t=0

ln

∫
S
P (q̃t+1 = s′|ρ, π, t+ 1)L(s′) ds′∫
S
P (q̃t = s|ρ, π, t)L(s) ds

≥ 1

N

N−1∑
t=0

ln
Eq̃t+1L(q̃t+1)

Eq̃tL(q̃t)

(15)

Substituting the above into (11), we obtain

lim
N→+∞

1

N

N−1∑
t=0

ln
Eq̃t+1

L(q̃t+1)

Eq̃tL(q̃t)
≤ −α2 (16)

then

lim
N→+∞

1

N
ln

Eq̃NL(q̃N )

Eq̃0L(q̃0)
≤ −α2 (17)

It means that ∀ε > 0,∃Nε, 1
N ln

Eq̃NL(q̃N )

Eq̃0L(q̃0)
< −α2 + ε < 0

holds when N > Nε, namely

Eq̃NL(q̃N )

Eq̃0L(q̃0)
≤ eN(−α2+ε),∀N > Nε (18)

So we get for sufficiently large N > Nε,

Eq̃N∼P (q̃N |ρ,π,N)L(q̃N ) ≤ eN(−α2+ε)Eq̃0∼ρ(q̃0)L(q̃0) (19)



By Equation (10) we have the following result

Eq̃N∼P (q̃N |ρ,π,N)Eπ‖q̃N‖2

≤eN(−α2+ε)Eq̃0∼ρ(q̃0)Eπ‖q̃0‖
2 +

δ

α1

(20)

So far, it has been proved that the estimate error q̃t in (7)
is exponentially bounded according to Definition 1.

IV. LYAPUNOV-BASED REINFORCEMENT LEARNING
ORIENTATION ESTIMATION ALGORITHM

In this section, we will combine Soft Actor-Critic (SAC)
algorithm [17], one of the state-of-the-art RL algorithms, with
the theoretical result in Section III to learn the gain policy
Kt+1 for the state estimator (3).

Considering MDP in (7), the orientation estimation problem
can be viewed as a RL problem in which the policy is sought
after by minimising the expected accumulated cost, i.e., the
value function of the MDP. Here a stochastic policy is chosen
as π(Kt+1 | q̃t) ∼ N (Kt+1(q̃t), σ) from which the gain
Kt+1 for a given state q̃t is sampled [24]. The corresponding
Q-function (a.k.a, state-action value function) is given as:

Qπ(q̃t,Kt+1) = Ct(q̃t,Kt+1) + γE[Vπ(q̃t+1)] (21)

To this end, Kt+1 can be learned by many existing RL
algorithms.

Motivated by the works in [20] and [25], we propose to
incorporate the theoretical result in Theorem 1 to formulate a
constrained optimisation problem, based on SAC [17]. First
of all, a Lyapunov candidate needs to be selected at the first
instance. In the context of RL, a Lyapunov candidate will
be parametrised/selected as the Q-function [19], [26]. In this
paper, we choose L(q̃t) in (10) as:

L(q̃t) = EKt+1∼π[Lc(q̃t,Kt+1)] (22)

where Lc(q̃t,Kt+1) = Q(q̃t,Kt+1). Then the constrained
optimisation problem is:

min
π

Qπ(q̃t,Kt+1)

s.t. (10) and (11)
− ln(π(Kt+1 | q̃t)) ≥ Ht

(23)

where Qπ(q̃t,Kt+1) is defined in (21), the second constraint
is the minimum entropy constraint used in the SAC to improve
the exploration in the action space [27] where Ht is the
desired bound.

Denote the parametrised actor and critic as πθ(Kt+1|q̃t)
and Qφ(q̃t,Kt+1) respectively, where θ and φ are the param-
eters of the DNNs. To ensure the positiveness of a Lyapunov
function, Lφ(q̃t,Kt+1) is selected as the square of a deep neu-
ral network as Lφ(q̃t,Kt+1) = f>φ (q̃t,Kt+1)fφ(q̃t,Kt+1),
where f is the vector output of a DNN with parameters
φ. On the other hand, the stochastic policy πθ(Kt+1|q̃t) is
parametrised by a deep neural network fθ that depends on
the state q̃t and a Gaussian noise ε.

Solving the above constrained optimisation problem is
equivalent to minimising the following objective function:
J(θ) = Eq̃t,at,q̃t+1,ct∼D[α(ln(πθ(fθ(q̃t, ε)|q̃t)) +Ht)

+ λ
(
lnLφ(q̃t+1, fθ(q̃t+1, ε))− lnL(q̃t, at) + α2

)
]

(24)

TABLE I
HYPERPARAMETERS OF THE PROPOSED ESTIMATOR

Hyperparameters Value

Time horizon 1000
SGD batch size 256
Actor learning rate 1e-4
Critic learning rate 3e-4
Lyapunov learning rate 3e-4
Target entropy NAN
Soft replacement (τ ) 5e-3
Discount (γ) 0.999
α3 0.2
Structure of aφ (128,64,32)
Structure of Lθ (128,64,32)

where D is the replay memory of the training samples, α
and λ are Lagrange multipliers which control the relative
importance of constraints in (23).

In the actor-critic framework, the parameters of policy
network are updated through stochastic gradient descent
of (24). It can be proved that the policy can converge to
an optimal one that ensures the orientation estimate error
E[‖q̃t‖2] converges to a constant as t → ∞,∀q̃t ∈ S.
The proof is standard and omitted due to page limits. The
readers can refer to Section IV-D in [25] for more details.
Pseudo code of the proposed Lyapunov-based reinforcement
learning orientation estimation (LRLOE) algorithm is shown
in Algorithm 1.

Algorithm 1 LRLOE algorithm
1: Set the initial parameters φ for the Lyapunov function
Lφ, θ for the estimator gain policy πθ(K1|q̃0), λ for the
Lagrangian multiplier, α for the temperature parameter,
and the replay memory D

2: Set the target parameter θ̄ as θ̄ ← θ
3: while Training do
4: for each data collection step do
5: Choose estimator gain Kk+1 using πθ(Kk+1|q̃k)
6: Simulate (1) and (2) with the orientation estimator

(3) to collect samples q̃k
7: D ← D ∪ q̃k
8: end for
9: update Lφ, πθ, λ by optimising (24)

10: end while
11: Output θ∗, φ∗, λ∗, and α∗

V. EXPERIMENTAL RESULTS

In this section, we train and inference on both simulated
and real datasets. The estimation results has exhibited good
performance, compared with three well-known oirentation es-
timation algorithms: EKF [5], UKF [10], and complementary
filter [6].

A. Results for simulated dataset

The RL policy is trained on a relatively trivial profile (see
figure. 2(a)), then tested on three other independent profiles
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(b) Inference profile (simple)
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(d) Inference profile (complicated)

Fig. 2. The angular velocity profiles used for training and inference.

(see figure. 2(b), 2(c) and 2(d)). The sampling rate is set to
100 Hz (consistent with real data in Section V-B). The sensor
noise are sampled with the following distribution [3]:

eω,t ∼ N (0,Σω), Σω = 0.0003,

ea,t ∼ N (0,Σa), Σa = 0.0005,

em,t ∼ N (0,Σm), Σm = 0.0003

(25)

During inference, the covariance of the measurement noise is
increased as Σω to 0.03. The hyperparameters of Algorithm
1 is showed in Table I. The last 20% of training data is used
for validation. We independently train 20 policies and select
the one with the lowest validation error for inference. The
initial state estimate is sampled from a normal distribution
around the true initial orientation with standard deviation of
0.1. The inference results of our proposed method are shown
in Fig. 3, showing accurate estimation for all three different
angular velocity profiles.

Furthermore, We compare our proposed DRL-based es-
timation method with the EKF [5], the UKF [10], and the
complementary filter [6]. The root of mean square errors
(RMSE) of the decoupled Euler parameters for pitch, φ,
roll, θ and heading, ψ angles, corresponding to rotations
around x, y, z axis respectively is chosen as the estimation
performance and 200 Monte Carlo simulations are run for
each algorithm. As shown in Fig. 4, the DRL-based estimation
method achieves good performance as the EKF and exceeds
the UKF and complementary filter under the inference profiles
in Fig. 2(c).

The orientation estimation of the EKF, UKF and the
complementary filter for a lage angular velocity are shown
in Fig. 5. It can be found that the UKF yields a large
estimate error under high noise level, and both the EKF
and complementary filter perform poor as the estimate
error accumulates in the long period of rapid rotation. In
comparison, our proposed DRL-based estimation method has
learnt error compensation from a large training dataset, thus
showing more robust to different movement profiles.

(a) Quaternion for Fig.2(b)

(b) Quaternion for Fig.2(c)

(c) Quaternion for Fig.2(d)

Fig. 3. Quaternion for different angular velocities in Fig. 2(b), 2(c) and 2(d).
The solid , dashed and dotted lines correspond to ground truth, measured
and estimated quaternion respectively. The shaded areas correspond to the
standard deviation over 20 independent runs. For the complicated profile,
a zoomed estimation profile for high angular velocity is also showed in
Fig. 3(c).
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Fig. 4. The RMSE of the proposed filter, Extended Kalman filter (EKF),
Unscented Kalman filter (UKF) and Complementary filter (CF) for the
inference profiles in Fig. 2(c), 3(b) and 2(d).

B. Results for real dataset

We apply our algorithm for real dataset from [3] (see Fig. 6).
The data is collected from the Trivisio Colibri Wireless IMU
[28] with a logging rate of 100Hz. The reference measurement
of the orientation is provided as ground truth from a motion
capture equipment [29] by tracking the optimal markers fixed
to the sensor platform. The optical and IMU data has been
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(a) EKF based quaternion estimation for Fig.2(d)
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(b) UKF based quaternion estimation for Fig.2(d)
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(c) CF based quaternion estimation in Fig.2(d)

Fig. 5. Comparison with other classic estimation algorithms for large
angular velocities in Fig. 2(d).

time-synchronised and aligned beforehand.
The dataset is 100 seconds long and splited into training and

inference dataset separately. The first half of the collected data
is used for training and the rest for inference. In the training
dataset, we randomly selected with a consecutive sequence
of a length of 1000 samples as a training episode. We test
in two scenarios (see Fig. 6): (1) inference including the
training dataset from t = 0 where the initial estimation q̂nb

t=0s

is simply the measurement; (2) inference without training
dataset from t = 50s where q̂nb

t=50s is normally distributed
around the true initial orientation with a standard deviation
of 0.01. 50 independent trials are performed. The estimation
results are showed in Fig. 7.

TABLE II
RMSE OF THE ORIENTATION ESTIMATES

RMSE Yaw[◦] Pitch[◦] Roll[◦]

Proposed algorithm 1.9423 2.1048 0.8353
Extended Kalman Filter 2.0411 1.5272 1.2488
Unscented Kalman Filter 20.1370 20.3494 38.6775
Complementary Filter 1.2015 1.3892 0.8972

Optical marker IMU
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Fig. 6. Real dataset (adapted from Fig. 4.2 and 4.3 in [3]). Left: A snapshot
of the platform for collecting real dataset Right: Measurements from an
accelerometer (ya,t, top), a gyroscope (yω,t, middle) and a magnetometer
(ym,t, bottom) for 100 seconds of data collected with the IMU shown in
the left figure.).

Training Inference

Fig. 7. Quaternion for real data. The solid, dashed and dotted lines
correspond to ground truth, measured and estimated quaternion respectively.
The left and right figures are corresponding for scenarios 1 and 2 respectively.
In the right figure, the dashed line is obtained by averaging over 50
independent trails.

In the second scenario, the second half of the dataset is also
tested on the EKF, UKF and complementary filter methods.
The estimation results are quantified and summarised in
Table II. Since the initial estimations and the gyroscope
measurements are relatively accurate, results indicate that our
proposed algorithm has achieved similar performance with
the three state-of-art algorithms.

VI. CONCLUSION

Orientation estimation using inertial sensors combined with
magnetometer is well studied and many algorithms have
been proposed. However, There hardly exist any algorithms
with theoretical guarantees of estimation convergence. In this
paper, we propose a reinforcement learning based orientation
estimation method and prove that its estimate error converges
to a positive scalar in mean square with a guarantee. The
proposed method shows superior estimation performance
compared with some well-known ones in terms of arbitrary
estimation initialisation and adaptation to very large angular
velocities.
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