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Learning Interaction-Aware Trajectory Predictions
for Decentralized Multi-Robot Motion Planning

in Dynamic Environments
Hai Zhu , Francisco Martinez Claramunt, Bruno Brito , and Javier Alonso-Mora

Abstract—This letter presents a data-driven decentralized tra-
jectory optimization approach for multi-robot motion planning in
dynamic environments. When navigating in a shared space, each
robot needs accurate motion predictions of neighboring robots to
achieve predictive collision avoidance. These motion predictions
can be obtained among robots by sharing their future planned
trajectories with each other via communication. However, such
communication may not be available nor reliable in practice. In
this letter, we introduce a novel trajectory prediction model based
on recurrent neural networks (RNN) that can learn multi-robot
motion behaviors from demonstrated trajectories generated using
a centralized sequential planner. The learned model can run ef-
ficiently online for each robot and provide interaction-aware tra-
jectory predictions of its neighbors based on observations of their
history states. We then incorporate the trajectory prediction model
into a decentralized model predictive control (MPC) framework for
multi-robot collision avoidance. Simulation results show that our
decentralized approach can achieve a comparable level of perfor-
mance to a centralized planner while being communication-free
and scalable to a large number of robots. We also validate our
approach with a team of quadrotors in real-world experiments.

Index Terms—Deep learning methods, motion and path
planning, path planning for multiple mobile robots or agents.

I. INTRODUCTION

AUTONOMOUS navigation of a team of robots in dynamic
environments is important when deploying them in various

applications such as coverage and inspection [1], search and
rescue [2], formation flying [3] and multi-view videography [4].
In these scenarios, the robots navigate in a shared space that
may also have moving obstacles. To achieve predictive collision
avoidance and ensure safety, each robot needs to know the future
motion predictions of other robots in the environment. These
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Fig. 1. The proposed decentralized communication-free motion planner that
relies on a RNN model for interaction-aware trajectory prediction and a MPC
for local motion planning.

motion predictions can be obtained among robots by sharing
their future planned trajectories with each other via communica-
tion [5]. However, such communication may not be available nor
reliable in practice. Alternatively, some approaches [6] employ
a constant velocity model to predict other robots’ trajectories.
Even though communication among robots is not required, the
planned robot motions may not be safe, particularly in crowded
dynamic environments [5].

In this letter, we propose an interaction- and obstacle-aware
trajectory prediction model and combine it with the model
predictive control (MPC) framework to achieve decentralized
multi-robot motion planning in dynamic environments. Fig. 1
gives an overview of the proposed method. In particular, we first
generate a demonstration dataset consisting of robot trajectories
using a multi-robot collision avoidance simulator [5]. It utilizes
a centralized sequential MPC for local motion planning in which
inter-robot communication is employed. Next, we formulate the
robot trajectory prediction problem as a sequence modeling task
and hence design a model based on recurrent neural networks
(RNN). By training the model using the generated dataset, it
learns to imitate the centralized sequential MPC and thus can
predict the planning behaviors of the robots. Finally by combin-
ing the trajectory prediction model with the MPC framework,
multi-robot local motion planning is achieved in a decentralized
manner.
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The main contributions of this work are:
� A RNN-based interaction- and obstacle-aware model that

is able to provide robot trajectory predictions in a multi-
robot scenario.

� Incorporation of the trajectory prediction model with MPC
to achieve decentralized multi-robot local motion planning
in dynamic environments.

We show that our designed model can make accurate tra-
jectory predictions, thanks to which the proposed decentral-
ized multi-robot motion planner can achieve a comparable
level of performance to the centralized planner while being
communication-free. We also validate our approach with a team
of quadrotors in real-world experiments.

II. RELATED WORK

A. Multi-Robot Collision Avoidance

We focus our work on online local motion planning for multi-
robot systems (also referred as multi-robot collision avoidance),
which has been actively studied over the past years. Traditional
reactive controller-level approaches include the optimal recip-
rocal collision avoidance (ORCA) method [7] that builds on
the concept of reciprocal velocity obstacles (RVO) [8], artifi-
cial potential field (APF) based method [9], buffered Voronoi
cell (BVC) approach [10], [11], and control barrier functions
(CBF) [12]. While these reactive methods are computationally
efficient, the robot dynamics are not fully modeled and the robot
motion is typically limited by only planning one time step ahead.
Recently, there have emerged new learning-based methods for
multi-robot collision avoidance, such as deep imitation learn-
ing [13], [14] and those that are reinforcement learning (RL)
based [15], [16]. RL-based methods can learn policies that have
a long-term cumulative reward for the robots and thus are con-
sidered to be non-myopic [15]. However, they are generally not
able to handle hard state constraints, such as collision avoidance
constraints. These issues can be overcome by using the model
predictive control (MPC) framework for collision-free trajectory
generation in which an optimization problem is solved for each
robot in a receding horizon manner. In this letter, we study the
multi-robot MPC-based collision avoidance problem.

For each robot to solve a local trajectory optimization prob-
lem, it needs to know the future trajectories of other robots. One
approach is to let each robot communicate its planned trajectory
with every other robot in the team. Hence, robots can then update
their own trajectories to be collision free with other robots’
trajectory plans, as in these distributed MPC works [5], [17].
While these methods can achieve safe collision avoidance, the
communication burden across the team is large and may not be
available nor reliable in practice [18]. Another approach is to
let each robot predict other robots’ future motions based on its
own observations. For instance, [6] employs a constant velocity
model when predicting other robots’ future trajectories. In that
case, communication among robots is not required. However,
such a prediction can be inaccurate and may lead to unsafe tra-
jectory planning [5]. In this letter, we will develop an interaction-
and obstacle-aware model for the trajectory prediction taking
into account surrounding information of the robot to model
the interaction and environment constraints. By incorporating
the model with the MPC framework, we can achieve safe and

communication-free decentralized collision avoidance for mul-
tiple robots in dynamic environments.

B. Motion Prediction

Our proposed approach decouples motion prediction and
trajectory planning to achieve decentralized and communica-
tion-free collision avoidance. Such a decoupling is also seen
in [19], [20], where the motion prediction of humans are used
to plan a safe trajectory for the ego robot. Motion prediction
for decision-making agents has drawn significant research ef-
forts over the past years, with most works focusing on human
trajectory prediction [21]. Early works on motion prediction are
typically model-based such as the renowned social force-based
method [22] which models pedestrian behaviors through the use
of attractive and repulsive potentials. The model is later gener-
alized and adapted to modeling traffic car behaviors [23]. While
these methods are computationally efficient, the prediction accu-
racy is quite low. There have also been several notable attempts to
utilize game theory to model interacting decision-making agents
and predict their future trajectories [24], [25], in which the agents
are assumed to play a non-cooperative game and their trajectory
predictions can be obtained from computing the Nash equilibria
of the game. While interaction-aware trajectory predictions can
be obtained, these methods are limited to specific road scenarios
and cannot be directly applied to general multi-robot systems.

The class of approaches that have achieved state-of-the-art
performance in trajectory prediction problems are the learning-
based methods. Some of these include inverse reinforcement
learning (IRL) [26], recurrent neural networks (RNN) [27],
[28], variational autoencoders [29], generative adversarial net-
works (GAN) [30] that provide predicted human trajectories in
two-dimensional (2D) environments, Gaussian mixture regres-
sion (GMR) [31] and Gaussian process regression (GPR) [32]
that can predict human actions in three-dimensional (3D)
workspaces. Our approach of predicting the trajectories of other
robots is based on previous works on human motion prediction
since both can be formulated as a sequence modelling problem.
In particular, our prediction model is based on RNN, inspired by
the works in [33] for interaction-aware pedestrian motion pre-
diction in which static obstacles are considered and represented
using a grid map. We adapt the model to predict robots trajec-
tories in multi-robot scenarios with moving obstacles described
by their positions and velocities, and further apply the model to
decentralized multi-robot motion planning by incorporating it
within MPC.

III. PRELIMINARIES

Throughout this letter vectors are denoted in bold lower-
case letters, x, matrices in plain uppercase, M , and sets in
calligraphic, S . ‖x‖ denotes the Euclidean norm of x and
‖x‖2Q = xTQx denotes the weighted squared norm.

A. Robot and Obstacle Model

Following [5], we consider a team of n robots moving
in a shared workspace W ⊆ R3, where each robot i ∈ I =
{1, 2, . . . , n} ⊂ N is modeled as an enclosing sphere with radius
r. The robots follow the same dynamical model that is described
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by a discrete-time equation as follows,

xk+1
i = f(xk

i ,u
k
i ), x0

i = xi(0), (1)

where xk
i ∈ X ⊂ Rnx denotes the state of the robot, typically

including its position pk
i and velocity vk

i , and uk
i ∈ U ⊂ Rnu

the control inputs at time k. Without loss of generality, k = 0
indicates the current time. X and U are the admissible state
space and control space, respectively. xi(0) is the current state
of robot i. In addition, moving obstacles for example pedes-
trians in the environment are considered. For each obstacle
o ∈ Io = {1, 2, . . . , no} ⊂ N at position po ∈ R3, we model
it as an upright non-rotating enclosing ellipsoid centered at po

with semi-principal axes (a, b, c).
In this letter, we assume that each robot can observe the

states (positions and velocities) of all other robots and moving
obstacles and keep their history information.

B. Multi-Robot Collision Avoidance

Multi-robot local motion planning is considered in this letter,
in which the goal is to achieve real-time collision-free navigation
for multiple robots. Each robot has a given goal location gi,
which generally comes from some high-level path planner [34]
or is specified by the user. Any pair of robots i and j from the
group are mutually collision-free if ‖pk

i − pk
j ‖ ≥ 2r,∀i �= j ∈

I, k = 0, 1, . . . . Regarding robot-obstacle collision avoidance,
we approximate the obstacle with an enlarged ellipsoid and
check if the robot’s position is inside it. Hence, the robot i is
collision-free with the obstacle o at time step k if ‖pk

i − pk
o‖Ω ≥

1, where Ω = diag(1/(a+ r)2, 1/(b+ r)2, 1/(c+ r)2).
The objective is to compute a local motionuk

i for each robot in
the group, that respects its dynamic constraints, makes progress
towards its goal locationgi and is collision-free with other robots
in the group as well as moving obstacles within a planning time
horizon.

C. Model Predictive Control

The multi-robot collision avoidance problem can be solved
using model predictive control by formulating a receding hori-
zon constrained optimization problem. For each robot i ∈ I, a
discrete-time constrained optimization formulation with N time
steps and planning horizonNΔt, whereΔt is the sampling time,
is derived as follows,

min
x0:N
i ,u0:N−1

i

N−1∑

k=0

Jk
i (x

k
i ,u

k
i ) + JN

i (xN
i ,gi) (2a)

s.t. x0
i = xi(0), (2b)

xk
i = f(xk−1

i ,uk−1
i ), (2c)

∥∥pk
i − pk

j

∥∥ ≥ 2r, (2d)
∥∥pk

i − pk
o

∥∥
Ω
≥ 1, (2e)

uk−1
i ∈ U , xk

i ∈ X, (2f)

∀j �= i ∈ I; ∀o ∈ Io; ∀k ∈ {1, . . . , N}, (2g)

where Jk
i (x

k
i ,u

k
i ) and JN

i (xN
i ,gi) are the stage and terminal

costs, respectively [5]. At each time step, each robot in the

team solves online the constrained optimization problem (2) and
then executes the first step control inputs, in a receding horizon
fashion.

Note that for each robot to solve the optimization problem
(2), it has to know the future trajectories of other robots and
moving obstacles, as shown in Eq. (2d) and Eq. (2e). For moving
obstacles (pedestrians), we assume their motions follow a con-
stant velocity model (CVM) in the short planning horizon and
predict their future trajectories accordingly. This assumption is
reasonable since CVM can achieve state-of-the-art performance
when used for pedestrian motion prediction [35]. For robots’
future trajectories, denote by T 0

i = {p1:N
i } the robot i’s cur-

rent planned trajectory. Further denote by T̂ 0
i,j = {p1:N

j } the
trajectory of robot j ∈ I, j �= i that robot i assumes and uses in
solving the problem (2), where the hat ·̂ indicates that it is robot
i’s estimation of the other robot’s trajectory.

Typically, there are two ways for robot i to obtain the future
trajectory of the other robot j. The first way is via communica-
tion: all robots in the team communicate their planned trajecto-
ries to each other at each time step. It can be implemented using
a centralized sequential planning framework as in [5], that is,
T̂ 0
i,j = T 0

j . Although this method guarantees collision avoidance
by construction, it does not scale well with a large number of
robots. Moreover, communication is not always available and
reliable in practice.

The other way is without communication. Hence, robot i
has to predict another robot j’s future trajectory based on its
observation of the environment:

T̂ 0
i,j = prediction(H0

i ), (3)

whereH0
i is the information that robot i can acquire until current

time from its observation. Previous works [5], [6] use a constant
velocity model to perform the prediction only based on the
other robot’s current state, that is, H0

i = x0
j . However, such a

prediction can be inaccurate and may lead to unsafe trajectory
planning [5]. In this letter, we will develop an interaction- and
obstacle-aware model for the trajectory prediction taking into
account surrounding environment information of the robot to
model the interaction and environment constraints.

IV. APPROACH

In this section, we present our interaction and obstacle-aware
trajectory prediction method and incorporate it with the MPC
framework to achieve decentralized multi-robot collision avoid-
ance in dynamic environments.

A. Trajectory Prediction Problem Formulation

As shown in Eq. (3), robot i ∈ I needs to predict the future
trajectories of other robots j �= i ∈ I to plan its safe motion.
Hereafter, we refer to the robot i as the ego robot and the robot
j as the query robot that is indicated by the sub-script ·q . In
addition, we use the sub-script ·−q to indicate the collection of
all the other robots except for the query robot.

We aim to address the problem of finding a trajectory pre-
diction model for the query robot q that gives a sequence of its
future positions p1:TH

q in a multi-robot scenario. Here TH ≥ N
is the prediction horizon that should not be smaller than the
local motion planning horizon. As has been shown in previous
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Fig. 2. Network architecture of the interaction- and obstacle-aware model. Three channels of information are taken as inputs: the query robot’s past velocities
v
−TO :0
q , past relative states of other robots (p−TO :0

−q,r ,v
−TO :0
−q,r ) and current relative states of obstacles (p0

Io,r ,v
0
Io,r). A joint representation of the inputs is created

through a query robot encoder and an environment encoder. A decoder is adopted to output a sequence of velocities v1:TH
q predicted for the query robot’s future

trajectory.

trajectory prediction works [28], [33], we will instead work with
sequences of velocities v1:TH

q for prediction to avoid overfitting
when based on position sequences, and numerically integrate
them afterwards starting from the query robot’s current position
p0
q .
Denote by v−TO:0

q the past sequence of velocities of the query

robot within an observation timeTO ≥ 1. Denote byp−TO:0
−q,r and

v−TO:0
−q,r the past relative positions and velocities of other robots

with respect to the query robot. Further denote by p0
Io,r and

v0
Io,r the current relative positions and velocities of the moving

obstacles o ∈ Io with respect to the query robot. By observing
history states of the query robot and its surrounding other robots
as well as moving obstacles, we want to find an interaction- and
obstacle-aware model hθ with parameters θ:

v1:TH
q = hθ(v

−TO:0
q ,p−TO :0

−q,r ,v−TO:0
−q,r ,p0

Io,r,v
0
Io,r), (4)

that outputs a prediction of the query robot’s future states.

B. Demonstration Data Generation

We use a simulation dataset to train our designed network
model. The dataset is generated using demonstrations from a
multi-robot collision avoidance simulator [5] which employs a
centralized sequential planner to solve the problem (2). This
involves each robot solving a MPC problem sequentially and
communicates its planned trajectory to other robots to avoid.
Note that the planner differs from the prioritized planning ap-
proach since each robot has to avoid all other robots and hence
it shows cooperation among robots.

Specifically, we create a three-dimensional environment in
which a team of robots and moving obstacles are simulated. In
the simulation, each robot navigates to a randomly generated
goal position, which is changed dynamically to a new location
after being reached. The generated robots’ goal positions are
ensured to be collision-free with each other and the obstacles.
Moving obstacles are simulated in the environment by randomly
specifying an initial position and velocity (with speed between

0.5 m/s and 1.2 m/s) to each of them and then make them
move at a constant velocity. Once any obstacle moves out of
the environment, a new initial position and velocity will be set
to it. Moreover, we add small Gaussian noise to the velocities of
the moving obstacles in simulation. We perform the simulation
for Nsim time steps and record the positions and velocities of
all robots and obstacles at each time step. After running the
simulation, for each time step t and robot q, we retrieve its future
sequence of velocities and observation of the past states of the
system from the recorded data. Hence, our dataset is as follows

D = {(Ht
q,v

t+1:t+TH
q )|∀q ∈ I, ∀t ∈ {1, . . . , Nsim−TH

}},
(5)

where the observation information Ht
q is

Ht
i = {vt−TO:t

q ,pt−TO :t
−q,r ,vt−TO :t

−q,r ,pt
Io,r,v

t
Io,r}. (6)

C. Interaction- and Obstacle-Aware Model

We now present our recurrent neural network (RNN) model
for interaction- and obstacle-aware trajectory prediction, as
shown in Fig. 2. The model first creates a joint representation of
three input channels: the query robot’s history state, information
of other interacting robots and moving obstacles, via a query
robot state encoder and an environment encoder module. Then a
decoder module is adopted to output a predicted trajectory of the
query robot. The recurrent layers in the model are of the LSTM
type [36] that has been shown able to learn time dependencies
over a long period of time. Next, we describe the three main
modules of the model in detail.

1) Query Robot State Encoder: It consists of a recurrent layer
that produces a flat encoding z0q from the history velocities of
the query robot v−TO:0

q . This layer learns a dynamical model
of the query robot, so that the network can leverage it to obtain
better predictions.

2) Environment Encoder Module: It includes n− 1 parallel
recurrent layers with shared weights to encode the sequences of
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past relative positions and velocities of other robots with respect
to the query robot (p−TO :0

−q,r ,v−TO :0
−q,r ) into a set Z0

−q,r, and no

parallel dense layers with shared weights that encode the current
relative positions and velocities of moving obstacles with respect
to the query robot (p0

Io,r,v
0
Io,r) into a set Z0

Io,r. The encodings
from both of these sets, which are made to have the same length,
are then stacked together and followed by a global max pooling
operation executed along the new data axis. Thus, this module
can capture the interaction of the query robot with a variable
number of other robots and obstacles in the environment and
encode it into a single flat vector z0e. This framework also makes
it possible to account for potentially different types of agents
and obstacles by training their own set of encoders and stacking
them with the rest of intermediate encodings.

3) Decoder Module: It takes in the concatenation of z0q with
z0e and passes it through a recurrent decoder followed by a dense
decoder and an output layer that finally generates a sequence of
predicted future velocities v1:TH

q for the query robot over the
prediction horizon.

D. Model Training

Using the generated demonstration data in Section IV-B, the
designed model is trained end-to-end using back-propagation
through time (BTTP) [37] with a fixed truncation depth ttrunc.
We learn the trajectory prediction model by minimizing the
following loss function,

L(v1:TH
q ,θ) =

1

TH

TH∑

k=1

∥∥vk
q − vk

q,true

∥∥2 + λ · l(θ), (7)

where vk
q,true is the ground truth velocity from the demonstration

dataset, l(θ) represents the regularization terms and λ is the
regularization factor. In our model, theL2 regularization method
is adopted.

E. Decentralized Multi-Robot Motion Planning

Having the trained trajectory prediction model, we can incor-
porate it with the MPC framework and solve the problem (2)
in a decentralized manner. As shown in Fig. 1, in a multi-robot
navigation scenario, each robot first performs inference with
the trained neutral network to predict the future trajectories of
its neighboring robots and then plans a collision-free trajectory
accordingly. Hence, decentralized multi-robot motion planning
in dynamic environments is achieved. To be able to perform the
inference, each robot needs to measure its own state as well as
its neighbors,’ and keep a history memory of the information for
a time horizon TO. In addition, the robot also needs to measure
the current states of moving obstacles in the environment.

V. RESULTS

We now present results of simulation comparing the proposed
approach with other methods and real-world experiments with
quadrotors. A video accompanying this letter includes additional
simulation and experimental results.

A. Implementation Details

To generate the dataset, we use an existing MATLAB
multi-robot collision avoidance simulator1 [5] and simulate
Nsim = 105 time steps in a 10× 10× 3 m environment with 10
robots and 10 moving obstacles. The robot we simulate is the Par-
rot Bebop 2 quadrotor with a radius set as 0.4 m. Ellipsoids rep-
resenting the moving obstacles have semi-axes (0.4, 0.4, 0.9)m.
The sampling time and MPC planning horizon length are Δt =
0.05 s and N = 20, respectively. We employ the same dynamics
model and cost functions in the MPC problem (2) of our previous
work [5]. The Forces Pro solver [38] is used to solve the MPC
problem. We set TO = 20 and TH = 20 the horizon length for
robot past states observation and trajectory prediction. We fur-
ther generate another test dataset by running the simulator in six
different scenarios for 2× 104 time steps for each one of them.
All computations are performed in a commodity computer with
an Intel i7 CPU@2.60 GHz and an NVIDIA GTX 1060 GPU.

The designed learning network is implemented in Python
using TensorFlow 2. All layers in the network have 64 neurons
except for the recurrent decoder that has 128 neurons and the
output layer that has 3 neurons. While the activation function
of the output layer is linear, all other layers in the network use
a hyperbolic activation function. The regularization factor used
during model training is λ = 0.01.

B. Trajectory Prediction Evaluation

We first evaluate our trajectory prediction model on a test
dataset that has not been used for training nor validation. The
dataset includes different test scenarios: an open environment
with 4, 10, and 20 quadrotors, and with 10 moving obstacles.
We compare our interaction-aware RNN-based model to three
alternative methods: a) the constant velocity model (CVM) that
is widely used in decentralized multi-robot motion planning; b)
a simple RNN model that only considers the query robot’s past
states for trajectory prediction while ignoring its surrounding
environment (this allows us to highlight the interaction aware-
ness of our designed model); and c) an open-loop MPC planner
assuming that the goal, robot model and constraints are known.

In Fig. 3 we present quantitative results of the prediction
error with respect to ground truth in the test dataset. Recall
that ground truths are the recorded robot traveled trajectories
computed with the centralized sequential MPC (closed-loop).
As expected, the prediction error of the open-loop MPC has the
smallest prediction error among the methods since it was used
for data generation and has perfect knowledge about the goal
locations of all robots, which are not available for prediction
in our proposed RNN-based model. Our proposed model can
still achieve accurate trajectory predictions and significantly
outperforms the CVM method across all scenarios. Moreover,
compared to the simple RNN model, our interaction-aware
approach achieves more accurate trajectory predictions, partic-
ularly in cluttered scenarios where interactions among robots
are more frequent, as shown in Fig. 3(b)–(e). Furthermore, to
evaluate the generalization capability of the learned network,
we perform simulations in the scenarios (d) and (e) with 20
quadrotors which are beyond our training dataset. The results

1Code: https://github.com/tud-amr/mrca-mav

https://github.com/tud-amr/mrca-mav
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Fig. 3. Performance results of our proposed interaction-aware RNN model for trajectory prediction compared to the baselines. The solid lines represent the
average errors along the prediction horizon and the filled patches around them are 30% of the standard deviation. The sampling period is 50 ms and the prediction
horizon has 20 timesteps.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT MULTI-ROBOT MOTION PLANNERS (CENTRALIZED WITH COMMUNICATION [5], DECENTRALIZED BUFFERED

VORONOI CELL (BVC) METHOD [10], DECENTRALIZED WITH CONSTANT VELOCITY MODEL (CVM) [6] AND DECENTRALIZED WITH OUR RNN-BASED MODEL)
ACROSS THE FOUR DIFFERENT TYPES OF SCENARIOS (SYMMETRIC SWAP, ASYMMETRIC SWAP, PAIR-WISE SWAP AND RANDOM MOVING). EACH SCENARIO

INCLUDES 50 RUNNING INSTANCES

show that the proposed model still performs well on trajectory
prediction in the two scenarios.

C. Decentralized Motion Planning

We then evaluate performance of the proposed decentral-
ized planner that incorporates the learned trajectory prediction
model.

1) Comparisons to Other Methods: We compare our method
to the centralized sequential planning method [5] with full
communication among robots and the decentralized planning
method [6] that uses the constant velocity model (CVM) for
trajectory prediction to analyze whether more accurate trajectory
forecasts of our RNN-based model lead to better planning per-
formance. Besides, another decentralized method, the buffered
Voronoi cell (BVC) [10], which guarantees collision avoidance
is also implemented for comparison.

Six quadrotors flying in four types of scenarios that represents
different levels of difficulty [18] are considered. Moreover, in
order to avoid potential bias results, each scenario includes
50 instances where the robots have different starting and goal
locations. The four scenarios are: 1) symmetric swap, in which
the robots initially located at the vertices of a virtual horizontal
regular hexagon are required to exchange their positions; 2)
asymmetric swap, which differs from the previous scenario in
that the hexagons are irregular, thus leading to more challenging

Fig. 4. Simulation results of six quadrotors exchanging positions in the asym-
metric swap scenario. Solid lines represent the trajectories. The upper and lower
plots show the top view (X-Y) and side view(X-Z), respectively.

collision-avoidance problems; 3) pair-wise swap, in which the
robots are placed at random starting positions and assigned to
three pairs within which the two robots need to swap their posi-
tions; and 4) random moving, in which each robot moves from
a random starting position to a random goal in the environment.

Qualitatively, Fig. 4 shows the sample trajectory trails of
the six quadrotors for one instance from the asymmetric swap
scenario. It can be seen that our RNN-based decentralized plan-
ner achieves results that are closer to the centralized sequential
planner than the CVM-based planner. To quantitatively evaluate
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TABLE II
SIMULATION RESULTS OF SIX QUADROTORS IN THE SYMMETRIC SWAP

SCENARIO WHERE A VARYING NUMBER OF BVC-BASED ROBOTS ARE IN THE

TEAM. 50 RUNNING INSTANCES ARE SIMULATED

the performance of different motion planners, we consider a
wide range of metrics: the number of instances that lead to
collisions within the entire 50 runs, the average trajectory length
and trajectory duration of the team of robots, and the overall
robot average speed during the whole simulation. The last three
metrics are only computed for those successful runs. Table I
summaries the simulation results. It can be seen that our RNN-
based planner significantly outperforms the planner using the
CVM for trajectory prediction in terms of safety, in particular
in the challenging asymmetric swap scenario. In addition, our
planner also achieves consistently smaller trajectory lengths and
durations compared to the CVM-based planner in all scenar-
ios. Compared to the BVC method, our proposed approach
achieves significantly shorter trajectory durations, particularly
in the (a)symmetric swapping scenarios, which shows superi-
ority of the MPC framework over the reactive BVC method.
Finally, compared to the centralized sequential planner with full
communication, our planner can achieve a comparable level of
performance in terms of safety and trajectory efficiency while
being decentralized and communication-free. However, three
instances out of 50 in the challenging asymmetric swap scenario
is still observed with collisions using the RNN-based method, in-
dicating that in few rare cases, highly-accurate trajectory predic-
tions of other robots, for example obtained via communication,
are necessary to ensure safety. In the simulation, on average the
computation time of the proposed decentralized MPC planner
with the learned predictor is 36.3 ms, which is smaller than that
of the centralized sequential planner which plans trajectories for
all six robots (43.9 ms). Besides, our decentralized approach is
communication-free.

2) Effect of non-MPC Robots on Performance: Our proposed
decentralized approach assumes that all robots interact and adopt
the same motion planning strategy, namely MPC-based trajec-
tory optimization with the learned motion prediction model. We
now evaluate the performance of our approach in a mixture
scenario where some robots employ the BVC method [10] for
collision avoidance. We simulate 50 instances with six quadro-
tors in the symmetric swap scenario of Section V-C-1. Table II
presents the simulation results. When there is only one BVC
robot, no collisions are observed. However, when more BVC
robots are in the team, particularly when half of the robots (3)
are BVC-based, collisions will happen due to incorrect motion
predictions of them by other MPC robots. This indicates that
the assumption that the robots interact with the same planning
strategy is necessary to ensure safety.

D. Experimental Validation

1) Setup: We validate our proposed approach with a team
of Parrot Bebop 2 quadrotors flying in a shared space with
walking human obstacles. The pose of each quadrotor and

Fig. 5. Experimental results with three quadrotors flying in a shared space
with two walking humans. (a) A snapshot of the experiment. (b) Schematic
of quadrotors, humans, and planned trajectories. (c) Distance between the
quadrotors over time. The shaded grey area indicates the two walking humans
join the space. (d) Histogram of the quadrotor-obstacle distance during the
experiments.

obstacle (human) is obtained using an external motion capture
system (OptiTrack) and their velocities obtained via a standard
Kalman filter running at a high rate. Control commands are sent
to the quadrotor via ROS. During the experiment, the humans
walked at a speed with mean 0.8 m/s and the maximum 1.2 m/s.
They could change their speeds and make small turns in the
workspace.

2) Results: Experiments in two representative scenarios are
conducted: with and without obstacles. In the first scenario, three
quadrotors, initially distributed in a virtual horizontal circle, are
required to swap their positions multiple times. Then in the sec-
ond scenario, two moving obstacles (walking humans) join the
space while the three quadrotors keeps changing their positions
while avoiding the humans at the same time. Fig. 5(a) presents a
snapshot from the experiment. Fig. 5(c) shows distance between
each pair of the three quadrotors over time during the experi-
ment. It can be seen that they maintained a safe distance of 0.8 m
over the entire run even after the two walking humans joined the
space which makes it more confined. In Fig. 5(d) we cumulate
the distance between each quadrotor and human obstacle that is
computed as the closest distance from the quadrotor center to the
obstacle ellipsoid’s surface. The results show that a minimum
safe separation of 0.4 m to the obstacles is achieved. In sum, the
demonstration shows that our proposed approach works well for
multi-robot motion planning in dynamic environments which is
decentralized and communication-free.

VI. CONCLUSION

In this letter, we presented a decentralized multi-robot MPC-
based motion planning approach that accounts for the robot’s
interactions with obstacles and other robots through the use of
a RNN-based trajectory prediction model. We showed that our
proposed interaction-aware RNN model generalizes well with
different number of robots and obstacles, and is able to provide
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more accurate trajectory predictions than the constant velocity
model in a variety of scenarios. In simulation with six quadro-
tors, we showed that our decentralized planner outperforms the
planner using a constant velocity model for trajectory prediction
and can achieve a comparable level of performance to the
centralized sequential planner while being communication-free.
We also validated our approach in real-world experiments with
three quadrotors flying in a shared space with walking humans.
Future work shall take into account sensing uncertainties and
consider more complex unstructured environments with static
obstacles.
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