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Abstract
Feature extraction techniques for content-based im-
age retrieval are explored, focusing on black-and-
white images in the context of historical water-
marks. Orthogonal moments and texture features
are found to be most applicable. Seven methods
are evaluated: four different orthogonal moments,
Gabor features, and two novel combinations of or-
thogonal moments with Gabor features. Retrieval
effectiveness is judged based on the precision-
recall curve and mean average precision, and wa-
termarks are considered when unchanged, rotated,
sheared and both rotated and sheared. The results
demonstrate that research into improving efficient
grayscale image representation does not translate
over to improvements with black-and-white im-
ages. As it stands, the basic Zernike moments and
novel Gabor-Zernike features are most effective.

1 Introduction
In this work, the term watermarks refers to images embedded
in paper, created when drying the paper during manufacturing
and used to identify the manufacturer. This information can
help historians relate the time and place different works were
produced, which could be invaluable for finding out more in-
formation about a historical document. Unfortunately, this re-
quires someone to search through archives of up to thousands
of watermarks due to a general lack of digitized datasets and
a lack of generalized tools. One system that does exist for
organizing watermarks is the Bernstein Project1, which pro-
vides tools to manually improve the clarity of, and organize
watermarks. This system does not, however, automatically
organize the images.

In previous work a prototype system has been created to
automate the organization of watermarks [1]. It works on
both images of the watermark traced out by a person using
pencil (as in Figure 1a), and on images of the original wa-
termark in the paper (as in Figure 1b). These are referred to
as traced and untraced, respectively, and an example of each
can be seen below in Figure 1. The system in [1] first clari-
fies the watermarks by increasing the contrast through various
techniques, before applying a threshold to decide which pix-
els are, and are not, part of the watermark. The result is a
black and white image containing only the watermark, as in
Figure 1c. This maximizes the effectiveness of the final step:
extracting features from the image to make fast, automatic
comparison easy. The chosen features in [1] were effective,
but not necessarily optimal as they were chosen through trial
and error. It is therefore necessary to find image features that
are quantitatively best at retrieving binarized watermarks.

The main question to be answered is as follows: “What
image features are the most effective for retrieving simi-
lar, binarized watermarks from a set of historical docu-
ments?”. This is further divided into four sub-questions:

1. What types of features are relevant for recognition of
binarized watermarks?

1https://memoryofpaper.eu/

(a) (b) (c)

Figure 1: (a) A traced watermark, (b) An untraced watermark, (c) A
binarized watermark

2. Which specific image features may perform well, and
how do they actually perform at watermark retrieval?

3. What impact do the parameters of the techniques have,
and how can they be optimized?

4. How can different techniques be combined to further im-
prove performance of the system?

For the first question, several categories of feature extrac-
tion are identified and considered based on a survey by Qi
et al. [2] and another by Mikolajczyk et al. [3]. Based on
this, multiple specific techniques are chosen and evaluated to
answer the second question. As a part of the evaluation, pa-
rameters are optimized for the best performance on binarized
watermarks. Finally, an attempt is made at combining the
most effective features to further improve performance.

2 Related Works
In 1962, Hu introduced the concept of moment invariants,
which are one of the first widely used image features that
can be used to represent and compare images, even if they
are different in scale, rotation or translation [4]. Since then,
many other techniques for representing images for effective
comparison have been developed: orthogonal moments ef-
ficiently store information with no redundancy while being
easily comparable [2]. local descriptors such as the Scale In-
variant Feature Transform (SIFT) stores highly invariant de-
scriptions of interest points in an image [5], and the Generic
Fourier Descriptor (GFD) represents the images in the fre-
quency domain to be robust to noise [6]. What they all have
in common is that they were developed for color or grayscale
images, rarely considering binarized images as its own cate-
gory. Therefore, there is a need to evaluate these image fea-
tures specifically for binarized images.

Feature extraction techniques can broadly be divided into
five categories [2; 3]. In the following subsections, each one
is described and their applicability to binarized watermarks is
considered.

2.1 Local Descriptors
Features based on local descriptors are perhaps the most in-
tuitive. Regions of interest are identified and descriptors are



generated for each. This mimics how a human may remem-
ber specific interesting parts in an image. Specific techniques
vary in how regions of interest are found and what the actual
descriptors look like. For example, SIFT uses the Laplacian-
of-Gaussians to find regions of interest, and describes them
using a histogram of gradient orientations [7].

Local descriptors vary in the time needed to compute them
depending on how complex the image is. For images con-
taining few objects, such as watermarks, they are quite fast to
compute. They are also very flexible, as individual descrip-
tors can be anywhere in the image. This makes them highly
invariant, including to perspective changes.

The main disadvantage comes from the need to compare
images. Not only must every image be compared to every
other image, but for each descriptor, an attempt must be made
to match it to another descriptor. This process can be made
somewhat faster using various approximate nearest neighbor
algorithms, such as the hierarchical k-means algorithm [8], or
the randomized kd-tree algorithm [9], but this does not avoid
the need to match many keypoints, rather than comparing a
single vector for each image. Additionally, there are issues
with polysemy, where the same object may be represented
by many different descriptors, and synonymy, where one de-
scriptor can be applied to many (semantically different) ob-
jects [10]. This leads to both over- and under-representation
of visual patterns. Local descriptors may not be too effective
for representing watermarks specifically, given that many wa-
termarks have common components. For example, many wa-
termarks contain shields, but they are not necessarily related.
An example of this is in Figure 2.

Figure 2: Examples of various decorated shields from the training
set (explained in Section 4.2), which should not be matched to each
other.”

2.2 Texture Features
Texture features do not search for specific regions of interest,
but instead quantify the texture of the image in its entirety.
For example, Gabor filters can be used to isolate frequency
and orientation information from the image, which can be
used as a feature vector. In the case of [11], the mean and
standard deviation of each filtered image is used. Another
method is the local binary pattern. This considers a neigh-
borhood around each pixel, and counts the number of occur-
rences of particular patterns. The resulting histogram can be
used as a feature vector.

These features process the entire image and use measures
that are relatively simple. While it’s possible to make them
invariant to rotation, this results in simplistic features that are
even less discriminative. For example, it was already possible

for two images to result in the same local binary pattern his-
togram by having the same patterns but in different locations
in the image. If different orientations of the same pattern are
considered identical, this would allow for even more images
that result in the same histogram. In practice, the input wa-
termarks are mostly normalized with regard to rotation, so
texture features may still be fairly effective.

2.3 Image Moments and Moment Invariants
Image moments are statistical measures of the shape of an ob-
ject in an image. Moments can be used to derive features that
are invariant to affine transformations, as with the Hu moment
invariants [4]. One commonly used type of image moment
and one of the first proposed, are the Zernike moments. They
are based on the Zernike polynomials, which are a set of or-
thogonal moments. The image moments are then calculated
by projecting the image onto different polynomials. [12]

The Zernike moments are rotation invariant, robust to noise
and have been shown to be very effective for content-based
image retrieval [13]. The main disadvantage to using them is
that higher order moments quickly become very intensive to
compute. This can be mitigated by using the recurrence rela-
tion between moments, but this introduces another problem.
Computers introduce small numerical imprecisions, which
compound because higher order moments are dependent on
lower order ones. On the other hand, very high order mo-
ments are rarely needed, as good image reconstruction can be
done with as low as 16th order moments [12]. This would
suggest most information about an image can be captured in
relatively few moments.

2.4 Frequency Transforms
Frequency transforms can be used to analyze the image in the
frequency domain, rather than the spatial domain. The main
benefit is that this is highly resistant to noise. One example is
the Generic Fourier Descriptor (GFD) [6], which first manip-
ulates the image to be rotation invariant after the transform.
Then the polar Fourier transform is used to obtain magnitudes
for each frequency, up to a high enough frequency to perform
well.

The GFD has been shown to be a very effective way to
compare images. However, for the application to binarized
images the Fourier transform has to represent very strong
edges, which may require high frequency information. This
makes it inefficient at storing the images.

2.5 Dimensionality Reduction
Dimensionality reduction is the process of reducing the num-
ber of dimensions in high-dimensional data, while keeping
relations intact. Many such techniques exist, like Princi-
pal Component Analysis (PCA), Singular Value Decompo-
sition (SVD) and Locally Linear Embedding (LLE) [14; 15;
16]. These can be directly applied by treating the images
themselves as vectors, or used together with a different tech-
nique to reduce the amount of space it takes up.

Applying dimensionality reduction directly to the images
themselves would require either considering the entire dataset
at once, or some subset for training. This is because PCA



and LLE both calculate some transformation from the origi-
nal feature space to a lower-dimensional sub-space by using
the relationships between all input vectors. It’s possible to use
less data to decide on a transformation, but then an optimal
outcome is not guaranteed. More logical would be to use di-
mensionality reduction on high-dimensional data from other
techniques, but other techniques for image feature extraction
don’t typically result in very high-dimensional data. Addi-
tionally, there is no control over what exactly the reduction
in dimensionality preserves: a rotated image may result in a
completely different low-dimensional representation from its
original counterpart. Overall, dimensionality reduction is not
very applicable to the use case of feature extraction for bina-
rized watermarks.

2.6 Summary of Relevant Works
Image moments seem to be the best approach for represent-
ing binarized watermarks, as they provide highly compact, in-
variant representations. Texture features are also promising,
especially given that the watermarks are easy to normalize in
terms of scaling and translation. While frequency transforms
show potential, they do not fit well with binarized images,
as very high frequency information is needed to represent
the strong edges. Local descriptors are flexible, but make
quick comparison between watermarks challenging, and di-
mensionality reduction techniques do not align well with the
requirements of watermark representation.

Therefore, this paper will focus on investigating specific
different image moments and texture features, focusing on
their effectiveness for the retrieval of binarized historical wa-
termarks.

3 Overview of Image Moments
Content-based image retrieval (CBIR) is a technique that al-
lows one to search and retrieve images from large databases
based on the content they contain rather than textual meta-
data. This approach is particularly valuable for historical
documents, where textual metadata may be limited or non-
existent.

3.1 Image Moments
Image moments are a set of numbers calculated from the im-
age itself, and they can describe various properties of the
image such as area, centroid, and orientation. The concept
of moments in image analysis is analogous to moments in
physics, where they describe the distribution of mass in a
physical object. In the context of images, moments provide
features that can be invariant to translation, rotation, and scal-
ing.

Moments can be computed in different coordinate systems,
with Cartesian and polar coordinates being the most common.
Cartesian moments are based on the traditional x and y coor-
dinates of the image, while polar moments are computed in
terms of radial distance and angle, which can isolate the rota-
tion of the image to obtain rotation invariance.

Mathematically, the image moment is the projection of the
image function f onto a subspace made up of a set of basis
functions {Vnm : (n,m) ∈ Z} [2]:

⟨f, Vnm⟩ =
∫∫

D

V ∗
nmf(x, y)dxdy

Where ∗ is the complex conjugate and D is the domain.
The choice in Vnm is what differentiates image moments.

3.2 Orthogonality in Moments
Orthogonality is a key property in the context of moments, re-
ferring to the mathematical independence of basis functions
used to compute the moments. When moments are orthogo-
nal, each moment captures unique information about the im-
age, minimizing redundancy and increasing efficiency. For
instance, Zernike moments are orthogonal and thus provide
a more compact and discriminative representation of image
features compared to non-orthogonal moments. A set of ba-
sis functions is considered orthogonal when for all basis func-
tions Vnm, Vn′m′ :

⟨Vnm, Vn′m′⟩ = δnn′δmm′

where δij is the Kronecker delta function, defined as:

δij =

{
1 i = j

0 i ̸= j

This means the inner product between any two different
basis functions is zero, and the inner product between a basis
function and itself is one.

3.3 Orthogonal Moments in Polar Coordinates
Polar moments are computed using a set of orthogonal basis
functions defined in polar coordinates. This involves param-
eterizing the moments in terms of radial distance r and angu-
lar aspect θ, such that the basis set can be decomposed into a
set of radial basis functions Rn(r) and a set of angular basis
functions Am(θ).

Vnm(rcos(θ), rsin(θ)) ≡ Vnm(r, θ)

= Rn(r)Am(θ)

Where Am(θ) = eimθ and Rn(r) is some orthogonal func-
tion. This isolates any rotation to the phase of the image mo-
ment, leaving the magnitude unchanged and therefore pro-
viding rotation invariance. At the same time, this means the
Cartesian coordinates typically used in digital images have to
be converted to polar coordinates, leading to small rounding
errors.

3.4 Orthogonal Moments in Cartesian
Coordinates

In Cartesian coordinates, the moments are either calculated
by mapping the range of pixels to a smaller range such as
[0, 1] or [−1, 1] depending on the exact basis set used. The
general form is as follows:

Vnm = Pn(x)Pm(y)

where Pn(x) and Pm(y) are chosen polynomials of order
n and m respectively. For example, the Legendre moments
use the Legendre polynomials [12]. Important to note is that
these are not rotation invariant.



4 Methodology
The goal is to develop a CBIR system for binarized images
and evaluate the effectiveness of various feature extraction
techniques. Specifically focusing on orthogonal image mo-
ments and Gabor features. These will be compared in terms
of precision, recall and mean average precision.

4.1 Considered Features
An outline is given of why each feature was chosen. For the
polar moments, the image is inscribed with a circle, and only
the pixels in this circle are considered.

For the Gabor features, the OpenCV function
cv2.getGaborKernel() was used. The implemen-
tation of the Zernike moments from the Python pack-
age mahotas version 1.4.14 was used, specifically
mahotas.features.zernike moments(). For the
Bessel-Fourier moments, scipy version 1.13.0 was used.
The specific functions are scipy.special.jn zeros()
and scipy.special.jv(). The Bessel-Fourier, Legendre
and Tchebichef moments were implemented by the author,
and tested by comparing the generated polynomials to their
definitions, as well as reconstructing the original image from
the moments.

Zernike Moments
Zernike moments were chosen because they are commonly
used polar moments. They are one of the first suggested or-
thogonal moments by Teague [12].

Bessel-Fourier Moments
Bessel-Fourier moments are a more recent set of polar mo-
ments. They are intended to be an improvement on the
Zernike moments, as well as other polar moments that came
after, such as the Fourier-Mellin moments [17].

Legendre Moments
Legendre moments were chosen because they are well known
discrete Cartesian moments. They were first suggested in
1980 along with the Zernike moments in [12].

Tchebichef Moments
Tchebichef moments are another set of discrete Cartesian mo-
ments. They were developed after the Legendre moments and
are supposed to be an improvement on them [18].

Gabor Features
As a baseline, simple Gabor features based on the mean and
standard deviation of Gabor filtered images are included. To
be noted is that this is not the same algorithm as [11], as it
does not include correlation information. The reason for this
is that it will make it easier to compare the more complex
moments with simple statistical measures.

Gabor-Zernike and Gabor-Legendre Features
To improve the Gabor features, two novel techniques are pro-
posed. Rather than taking the global mean and standard de-
viation, more complex moments of the Gabor filtered images
can be taken. This combines the ability to isolate frequency
and rotation information with the very efficient image rep-
resentation that moments provide. The choice was made to
combine Gabor filtering with the two image moments first

suggested by Teague [12] to evaluate how effective the con-
cept is. The new techniques first filter the image at 4 ori-
entations and 4 scales, similar to [11]. Then the Zernike or
Legendre moments of the filtered images are calculated, and
these are appended to form a single feature vector.

4.2 Dataset

(a) (b) (c)

Figure 3: (a) Original image, (b) Image after pipeline (black borders
cropped out), (c) Image after manual editing and normalization

A dataset was provided by the German Museum of Books
and Writing2. This consisted of many pictures taken of water-
marks, both traced and untraced. An example of a traced wa-
termark can be seen in Figure 3a. The dataset was organized
into folders containing related watermarks, so four of these
folders were arbitrarily chosen to be processed. To make it
easier to process the images, and to ensure the images re-
sulted in a meaningful evaluation, they were chosen based on
four criteria:

1. There must be at least three representations of the same
watermark.

2. The watermark cannot be deteriorated too much. Specif-
ically: at most one fourth of the watermark may be miss-
ing.

3. The image must contain exactly one watermark
4. The watermark must be traced

At least three copies should be present so that when a ranking
is created, there are at least two images that are expected to be
high up. Similarly, criterion (2) was not only chosen to make
processing easier, but a watermark that is too deteriorated is
not expected to be matched to its complete counterparts. Cri-
teria (3) and (4) were only to ease the process of binarizing
the watermarks.

After obtaining the images to process, they were binarized
using the (automatic) harmonization algorithm for traced im-
ages from [1], resulting in images like Figure 3b. This al-
gorithm is not perfect, so watermarks were edited manually
by the author to add missing parts or to remove parts that
were included by mistake. Care was taken to only follow the
tracings present on paper, and not to complete watermarks
with missing parts. To further normalize the images, empty
borders were cropped, and the images were resized such that
the largest dimension of the watermark was 512 pixels wide.
Then the image was padded in the other dimension to make
the image 512x512 pixels. Although resizing the original im-
ages does result in some loss of information, this was not a

2www.dnb.de



concern because the goal is to find similar images. The small
changes are unlikely to change the results in any major way,
ensuring similar images stay comparable. Additionally, hav-
ing every image be the same size was important for a consis-
tent evaluation. An example of the final result can be seen in
Figure 3c.

In total, this resulted in 311 images which were split 80/20
into training and evaluation, however it was later found that
the training set had particularly large groups of one type of
image. There were two large groups of thirty eagle water-
marks, as well as some smaller ones, making up 80 of the
246 images. Some examples of these are in Figure 4. To re-
duce the over-representation of the eagle watermarks, only 3
images of each group were included. In the end, 65 images
were used for evaluation, and 81 images were used for train-
ing. This means the actual split was 55/45.

(a) (b) (c)

Figure 4: Eagles in different groups, having: (a) 31 representations,
(b) 29 representations, (c) 10 representations

It’s possible that input images may be distorted. A water-
mark could be rotated, or the image may not be taken from
directly above the watermark. To evaluate both cases, three
variations of the dataset were synthetically created. The first
is rotated randomly, the second is sheared in random direc-
tions by random amounts such that the shear angle is at most
30 degrees, and the final set has both operations done to it.

4.3 Evaluation

Features are extracted from all images. For each image, a
ranking is produced by using the Euclidean distance between
the dataset images and the input image. The rankings are
evaluated using the precision and recall when retrieving k im-
ages, P (k) and R(k) respectively. They are commonly used
when evaluating information retrieval tasks. These are de-
fined to be [19]:

P (k) =
Relevant retrieved images

k

R(k) =
Relevant retrieved images

All relevant images

These metrics are used to produce the precision-recall curve,
which shows how the proportion of images that are relevant
changes as more relevant images are retrieved. It illustrates
the trade-off between maximizing the number of relevant im-
ages retrieved and ensuring that most of the retrieved images
are indeed relevant. Additionally, the mean Average Preci-

sion (mAP) is used to give an idea of the overall performance:

AP =

n∑
k=1

P (k)∆R(k)

mAP =
1

I

I∑
i=1

AP (i)

Where n is the total number of images retrieved, ∆R(k) is
the change in recall from retrieving k − 1 to k images and
I is the number of images in the dataset. AP is the average
precision, defined to be the area under the precision-recall
curve [19]. The mAP is then defined to be the mean average
precision over all rankings that are done. This provides a way
to characterize the overall retrieval performance.

4.4 Choice of Parameters

Maximum moment order

6 8 10 12 14

Zernike 0.630 0.641 0.697 0.679 0.672
Bessel-Fourier 0.646 0.659 0.641 0.620 0.592
Legendre 0.670 0.764 0.745 0.708 0.684
Tchebichef 0.630 0.706 0.742 0.764 0.756
Gabor-Zernike 0.762 0.772 0.754 0.766 0.765
Gabor-Legendre 0.766 0.818 0.803 0.770 0.765

Table 1: An overview of the mean average precision for each
moment-based technique where the maximum order ranges from 6
to 14. In bold are the highest values for each technique, correspond-
ing to the maximum moment order used.

To decide the number of moments for each technique, a pre-
liminary experiment was done on the training data. This
consisted of 27 groups of 3 images each, with 81 images in
total. This is to ensure no particular watermark was over-
represented. For each technique, the evaluation was run with
moments of order 2 up to 16. Whichever moment order re-
sulted in the highest mAP was chosen. The maximum mo-
ments order represents the highest amount of detail each par-
ticular feature can capture. With too few moments, the image
won’t be described sufficiently to discriminate between them.
With too many, unnecessary detail may be captured which
would effectively be noise. The results are in Table 1. Scores
not included were all lower.

5 Results
Based on the mAP, each technique performs best when the
highest order moments are of order eight to twelve. For
higher order moments, performance starts to fall. This could
be because they are not being calculated accurately. Another
possibility is that higher order moments simply capture such
high detail that they are effectively capturing noise.

The different precision-recall curves for unchanged, ro-
tated, sheared and both rotated and sheared images are in Fig-
ure 5. The mAP for each technique under different conditions
is in Table 2.



(a) Precision-recall for unchanged images

(c) Precision-recall for rotated images

(b) Precision-recall for sheared images

(d) Average precision-recall for sheared and rotated im-
ages

Figure 5: Precision-recall curves for each technique when the images are unchanged, sheared, rotated, and both sheared and rotated. Precision
and recall both range from 0 to 1 and are dimensionless.

With the basic, unchanged images the precision changes
very similarly with recall for all techniques. When about one
third of the images are correctly recalled, the precision is very
high. Then the precision falls to about 50% at 90% recall.
For the final 10% the precision drops quickly as each tech-
nique has trouble finding the more difficult images. Zernike
moments and Gabor-Zernike features both seem to have gen-
erally higher precision than the others, which is supported by
their mAP being the largest too.

For rotated images the results are very similar for the rota-
tion invariant moments. The other techniques perform gener-
ally badly, though this is expected. Notably, Gabor-Zernike
features now have a lower mAP than Zernike moments. Ga-
bor manages to not do much worse, likely because the overall
texture of the image remains similar.

Shearing also has very similar results to the unchanged im-
ages, with the mAP of most techniques being the same or
slightly lower. The only exception to this are the Gabor-
Legendre features, which have a slightly higher mAP. Both
the Gabor-Zernike features and Gabor-Legendre features now
have a higher mAP than the Zernike moments. When both
shearing and rotation is applied, the rotation invariant mo-
ments once again come out on top, with Zernike having the

highest mAP. Simple Gabor features perform the best, likely
because they are the most invariant, making use of only the
mean and standard deviation of the image.

The combined techniques were effective and got similar
results to their counterparts in all categories. Their expected
benefit was to capture the texture more effectively than the
basic Gabor features. This does seem to be the case, as When
the image is sheared or rotated, Gabor-Zernike features have

Mean Average Precision

Base Rot. Shear Both
Zernike 0.881 0.876 0.819 0.693
Bessel-Fourier 0.797 0.792 0.738 0.531
Legendre 0.802 0.393 0.802 0.352
Tchebichef 0.821 0.335 0.804 0.333
Gabor 0.819 0.759 0.798 0.739
Gabor-Zernike 0.881 0.856 0.855 0.663
Gabor-Legendre 0.821 0.407 0.834 0.344

Table 2: Mean average precision for each technique when the images
are unchanged, rotated, sheared and both rotated and sheared.



higher mAP than the Gabor features. Only once the image
is both sheared and rotated, does Gabor do better. Gabor-
Legendre moments mostly seem to be dragged down by their
lack of rotation invariance, mostly having lower mAP than
the Gabor features and being almost the same as the Legendre
moments.

Tchebichef and Bessel-Fourier don’t seem to improve on
Legendre and Zernike respectively when applied to binarized
images. The newer moments’ curves and mAP are very sim-
ilar to their counterparts, and generally worse. It’s likely
these new moments take advantage of the additional detail
that grayscale provide, but is unavailable for binarized im-
ages.

Overall, both Zernike moments and Gabor-Zernike fea-
tures seem reasonable choices. On the unchanged images
they perform the same. Gabor-Zernike features are slightly
worse with rotated images, but better with sheared images.
When images are expected to vary in both rotation and shear-
ing, simple Gabor features are actually best, presumably due
to their generally high invariance.

6 Responsible Research
The dataset used for this paper was provided by the German
Museum of Books and Writing, containing many historical
watermarks. These images do not contain any personal or
sensitive information. Unfortunately, the dataset itself is not
publicly available. Those who are interested in accessing
the dataset can request access directly from the museum, but
there is no guarantee it will be provided.

To address potential bias, specifically the overrepresenta-
tion of eagle watermarks, a subset of the training images was
used. The first three images were included from each group.
The resulting dataset better represents the variability of water-
marks more broadly, making the results more generalizable.

Throughout the research process, every step was docu-
mented and included in this paper. The code for automatically
binarizing images is publicly available [1], as well as the code
to generate the variations on the dataset (rotated, sheared, and
both), each feature extraction technique and the evaluation.
All of these are available at the TU Delft Repositories3. Un-
fortunately, fixing the binarized images was a manual pro-
cess, so this can not be replicated perfectly.

In the writing of this paper, ChatGPT4 was used. It was
used only to help structure the text, and no content was di-
rectly taken from it. It assisted in outlining some sections in
the form of bullet points, as well as brainstorming informa-
tion to include. An example prompt (assuming the model has
been provided context) would be: “Give an outline in bullet
points for the methodology section. It should at least include
which image features were considered, how the dataset was
generated and how the evaluation was done.”

7 Conclusions and Future Work
In this paper, multiple image features were considered, im-
plemented and tested for the purpose of retrieving binarized

3https://repository.tudelft.nl
4https://chatgpt.com

watermarks. It was found that image moments and texture
features were the most applicable for this use case. Older and
newer orthogonal moments were tested, showing that newer
image moments do not result in improvement for binarized
images. Gabor texture features, which mimic the way cells in
the mammalian visual cortex function, were tested and com-
bined with image moments, which improved their recall and
invariance to shearing and rotation. After testing and evaluat-
ing their precision and recall, it was found that both Zernike
moments and Gabor-Zernike features perform similarly, and
are both good choices for watermark retrieval. Gabor-Zernike
features are slightly better under shearing, while Zernike mo-
ments are better under rotation and when shearing and rota-
tion are combined.

First, the parameters for the Gabor filters were based on
[11]. It’s possible other parameters could still have improved
performance. Improvements in image moments for grayscale
images do not seem to correspond to improvements for bi-
narized images. More research is needed into moments that
capture binarized images more effectively. It was also found
that the maximum order of moments to most effectively re-
trieve watermarks was around eight to twelve. It was unclear
if this was because of numerical imprecision, because higher
moments capture unnecessary detail, or possibly something
else.
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