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Abstract
The oceans, which cover nearly 70% of the earth’s surface, can be considered as an inex-
haustible energy source for renewable electricity due to its size and predictability. One way
to capture ocean energy is by harnessing the energy produced by waves at sea, by means of
devices called wave energy converters (WECs).

Delft University of Technology is developing a new floatingWEC concept called the ”gyroscopic-
pendulum”. This concept is a modification of the so called ”classical vertical axis pendulum”,
which is capable of producing mechanical power harvested from the rotations of the pendu-
lum around the vertical axis.

The new concept is proposed by adding a flywheel with the aim to enhance the rotations of
the pendulum about the vertical axis. The enhancement comes from gyroscopic precession
which is created due to a change in the angular moment of the spinning flywheel caused by
the torque originating from the weight of the pendulum.

This thesis starts with a general introduction about wave power followed by the mathematical
and numerical model of the gyroscopic-pendulum. Numerical simulations are performed
in which the gyroscopic-pendulum and the classical pendulum are both imposed with the
same harmonic roll motion, while the gyroscopic-pendulum system also receives some power
input to rotate the disk. The main objective is to find out in which ranges of amplitude and
frequency of imposed motions, the gyroscopic-pendulum results in an improvement of the
power efficiency compared to the classical vertical axis pendulum.

The results obtained from tests performed in the simulated conditions, shows us that the
gyroscopic-pendulum has a significantly higher efficiency compared to the classical vertical
axis pendulum when the frequency of the imposed roll motion is in the range of 1.4 to 1.75
፫ፚ፝
፬ and the amplitude is in the range of 0.6 to 0.95 𝑚.
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1
Introduction

1.1. Global Energy Outlook
We have come to an era in which we no longer can deny the importance of the climate change
and the accompanied challenges. Due to compelling scientific researches around the world
and political shifts focusing more on the well-being of our planet, more attention is given to
this phenomenon. The general public, institutions and companies are now also joining the
scientist and governments in acknowledging the environmental issues and the importance
of a change in the current energy systems. The energy systems of the future must be able
to provide for the increasing global energy demand and at the same time tackle the environ-
mental stresses by significantly decreasing the carbon dioxide emissions. In my view this is
a very challenging requirement due to the complexity of the global inter-governmental rela-
tionships between countries, the complex relationship between governments and the energy
industry and for sure due to the complexity of the required technical innovations. These
required technical innovations can partially be accounted by the emerging renewable energy
systems.

An historical event that really mirrored the acknowledgement of global climate change by the
governments was the United Nations Climate Change Conference held in Paris in December of
2015. An universal and legally binding global climate deal was agreed upon by 195 countries,
which is now known as the Paris Agreement. The agreement sets out a global action plan
to limit the global warming well below 2∘C and to limit it to 1.5∘C [1]. This would mean
that emissions need to be limited between 250 and 450 GtCO2 (gigatonnes CO2) [2] and the
energy-related CO2 emission should be around 17.5 GtCO2 [3]. With the energy-related CO2
emission in 2018 being already close to twice of this number (33,1 GtCO2), see Figure 1.1,
it will be extremely difficult to achieve the objective(s) of the Paris Agreement.

Figure 1.1: Global energy-related carbon dioxide emissions by source, 1990-2018 [3]
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The International Energy Agency (IEA), an authoritative and autonomous intergovernmental
organization, has come up with three different possible scenarios for the global energy trends:
the Current Policies Scenario, the New Policies Scenario and the Sustainable Development
Scenario.

The Current Policies Scenario, if there are no changes in policies from today, expects in-
creasing strain on energy security and major rise in energy-related CO2 emissions. The New
Policies Scenario, including policies and targets announced by the governments, still does
not predict a peak in the energy-related CO2 emissions. The Sustainable Development Sce-
nario, in which accelerated clean energy transition is the key, could put the world on track
to meet the climate change goals[3].

It is expected that the economic middle class of the world is likely to expand from 3 billion
to more than 5 billion people by 2030, resulting in vastly improved living standards. The
improved living standards cause a rise in energy use in many developing countries leading
to a 25% rise in the global energy demand in 2030 [4]. This forecast is in line with the New
Policies Scenario and thus will not lead to achieving the goals set by the Paris Agreement.
Figure1.2 shows us the forecasted energy demand by source.

Figure 1.2: Global energy demand by source according the New Policies Scenario,
2000-2040 [3]

The graph predicts the energy demand from the oil and coal to be relatively constant, while
a growing demand of energy originating from natural gas and renewables is predicted.

To end this subsection, we can conclude that the world population is expected to grow re-
sulting in an increase of the global energy demand. Taking the global climate challenge in
account, the growing energy must not be only supplied by the conventional fossil energy
sources. Renewable energy systems will have to play a vital role in solving this problem
which requires significant investment in these systems.
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1.2. Renewable Energy Transition
As we have tried to show the importance of renewable energy systems in the previous subsec-
tion, let us take a look at the current and expected state of the renewable energy transition.

As stated before, in order to solve the global warming problem, governments are promoting
the renewable energy transition process. The European Union, for example, has established
the Renewable Energy Direction, which is responsible for overall policy for the production
and promotion of renewable energy sources in EU. It requires the EU countries to produce
at least 20% of its total energy needs and 10 % of its transport fuels from renewable sources
by 2020 . A revised Renewable Energy Directive, proposed in 2016, sets a new target of 27%
renewable sources for the total energy needs in 2030 [5].

However, the Renewable Energy Policy Network for the 21st Century (REN21), an interna-
tional non-profit association, considers in its Renewables Global Status Report (GSR) the
current transition to be more of an electricity transition than an energy transition [6]. This
statement is supported by data provided by the International Renewable Energy Agency
(IRENA), an intergovernmental organisation that supports countries in their transition to
a sustainable energy future, and the International Energy Agency [7][8].

The International Energy Agency expects the fastest growth of renewables to be in the elec-
tricity sector, providing almost 30% of power demand in 2023 [8]. Currently, the renewable
power sector is characterised by reducing costs, increased investment, record-setting in-
stallations and new, innovative business models that are creating rapid changes. In many
parts of the world, renewable electricity is now less expensive than newly installed fossil and
nuclear energy generation [6].

According to the IRENA, the total amount of electricity generated from renewables in 2016
was around 5886 TWh. The biggest portion of this number, 4049 TWh is generated by hydro-
power followed by 958 Twh accounted by the wind. Bio-energy, solar energy, geothermal
energy and marine energy accounted respectively for 467 TWh, 329 TWh, 83 TWh and 1
TWh [7]. The pie-chart depicted in Figure 1.3 shows the corresponding percentages.

Figure 1.3: Renewable electricity production by energy source in 2016 [7]
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The statement that the current transition is more of an electricity transition than an energy
transition is also supported by the growth in the renewable electricity generation from 2015
tot 2016. The total renewable electricity generation in 2016 was increased by 6.7% compared
to 2015 due rapid growth in solar and wind generation [7]. The numbers can be found in
Figure 1.4.

Figure 1.4: Growth in the renewable electricity generation [7]

The data from the IRENA provides us with two important insights regarding themarine energy
in 2016: marine energy was a very small percentage of the total renewable electricity and the
growth from 2015 to 2016 is even too small to be shown in the graph.
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1.3. Ocean Energy
The offshore energy market is going through some significant changes due to several disrup-
tive events, with the onshore shale oil revolution in the United States as the most impacting
one [9]. The mentioned cost reduction of the renewable energy technologies, the up rise of
electricity consumption by the energy end-users and the Chinese shift to cleaner energy mix,
are also among the impacting disruptions regarding the offshore industry. Despite a rela-
tively stable total production since 2000, the offshore natural gas production is increased by
more than 50% and offshore electricity generation is increasing rapidly [9]. These events go
together with the uprising of the offshore renewable technologies, harvesting electrical power
from offshore wind and the ocean.

The ocean can be considered as an inexhaustible energy source and a significant resource
for renewable electricity due to its size and predictability. However, ocean energy is currently
one of the most unexploited energy source, contributing only 1.1 TWh (terawatt hour) to the
total global energy production of 25,518 TWh in 2017 [10].

Ocean energy can be captured from tidal streams, ocean currents, ocean thermal energy
conversion (OTEC), salinity gradients and wave power. The various technologies are at dif-
ferent stages of technical and commercial development, but it is expected that tidal and wave
energy will provide the most significant contribution in the short term [11]. Recent stud-
ies and industry scenarios indicate that 337 GW of wave and tidal energy capacity could be
harvested around the world by 2050. A third of this number, 100 GW, can be produced in
Europe, providing 10 percent of Europe’s electricity.[12].

The current status of the ocean energy industry can be illuminated by discussing the promis-
ing 398 MW MeyGen tidal stream project, located at an offshore site between the coast of
Scotland and the island Of Stroma. Phase 1A of the project was completed in 2018, resulting
in the largest tidal stream array in the world consisting of four 1.5MW turbines (6 MW rated
capacity). The array has generated more than 12 GWh of energy up to date and the current
6 MW rated capacity is clearly a small portion of the 398 MW [13]. This tells us that the in-
dustry is making some significant steps, but still needs some time to really make an impact
on the global energy mix.

Figure 1.5: Artistic impression of a tidal turbine deployed in the MeyGen project [14]
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1.4. Wave Energy Converters
1.4.1. History
Wave power is the power obtained by harnessing the energy produced by the sea waves. Wave
Energy Converters (WECs) are devices that are able to convert this wave energy into electrical
power. First, wave energy is transformed into some form of mechanical energy which is then
used to produce electricity and supply it to the grid by means of a generator. The global
power potential of wave energy is estimated to be in the order of 10 TW [15].

WECs could play an essential role in fulfilling the electricity demand in remote islands as the
access for electricity in such areas might be limited. This type of energy is environmentally
friendly, available around the clock and can be installed in nearly every coastal area.

Figure 1.6: Working principle of the Pelamis [16]

The earliest patent to use energy from ocean waves was filed by Girard and his son in 1799
in Paris [17]. The first wave energy device studied in Europe was called ’the duck’ and it
was proposed in 1974 by Salter, who is considered as the founding father of wave energy
[18]. The first wave energy converter that generated electricity into the grid was in 2004
by a device called the Pelamis [19], see Figure 1.6 . It is a device that consists of multiple
interconnected floating devices operating parallel to the wave direction and basically riding
the waves. Energy is harvested from the relative motion of the bodies with respect to the
passing waves. The Pelamis has become one of the most studied WECs, but failed eventually
because it was not capable to achieve the same levelized cost of energy as wind or solar energy
[20].

After the Pelamis several other prototypes of Wave Energy Converters (WECs) have been
shown to successfully produce electricity, but the efficiency of WECs compared to other en-
ergy converting devices is relatively low [18].

Delft University of Technology is developing a new wave energy converter concept called the
Gyroscopic-Pendulum, which is the subject matter of this report.

1.4.2. WEC Types
Since there are many WEC concepts, the European Marine Energy Centre (EMEC) has iden-
tified eighth main types of WECs [21]:

(A) Attenuators
An attenuator is device that consists of multiple interconnected floating devices. It operates
parallel to the wave direction and basically rides the waves. Energy is harvested from the
relative motion of the bodies with respect to the passing waves. An example of an attenuator
is the Pelamis.
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(B) Point Absorbers
A point absorber is a floating device which is able to absorb wave energy from all directions
due to its movement at or near the water surface. The device has small dimensions compared
to the incident wave length and the motion of the top part relative to the base is converted
into electrical power. Figure 1.7 gives an impression of a point absorber WEC.

Figure 1.7: An illustration of a point absorber [22]

(C) Oscillating Wave Surge
Oscillating wave surge converters extract energy from wave surges and the movement of
water particles within them. The arm oscillates as a pendulum mounted on a pivoted joint
in response to the movement of water in the waves [19]. These devices are often designed
in shallow waters due to the wave motions. AW-Energy is a company that has designed an
OWS WEC called WaveRoller. AW-Energy has several WaveRoller projects currently under
development or in the delivery phase.[23] Figure 1.8 gives an impression of the WaveRoller
concept.

Figure 1.8: WaveRoller concept impression [23]
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(D) Oscillating Water Column
An oscillating water column is an hollow structure that is partially submerged. The principle
is based on enclosing a column of air on top of a column of water. Due to the motions of
the waves, the water column will rise and fall causing compression or decompression of the
air column. This air will flow through a turbine, causing it to rotate (in both directions) and
generate electricity. The Università Mediterranea di Reggio Calabria has been developing an
OWC concept called the REsonant Wave Energy Converter (REWEC3), which is incorporated
into a vertical breakwater.[24] The REWEC concept can be seen in Figure 1.9

Figure 1.9: Scheme of REsonant Wave Energy Converter (REWEC) [24]

(E) Overtopping Devices
Overtopping devices capture sea water of incident waves in a storage resorvoir above the
sea level. The captured water will be released back to the sea, passing through turbines to
generate power. An example of an overtopping device is the Wave Dragon, which is shown in
Figure 1.10

Figure 1.10: Working principle of the Wave Dragon [25]
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(F) Submerged Pressure Differential
Submerged pressure differential WECs are submerged devices attached to the seabed. The
sea level will rise and fall due to the motion of the waves. The change in sea level above
the submerged device will induce a pressure differential resulting in vertical up and down
motion of the device. These devices are often located near shore to take advantage of the
wave phenomena, like shoaling and wave breaking, near to the shore. A well known example
of this concept is the Archimedes Wave Swing, which is shown in Figure 1.11.

Figure 1.11: Working principle of the Archimedes Swing [26]

(G) Bulge Wave
Bulge wave technology consists of a moored rubber tube which is filled with water. The tube
is heading into the waves. The water enters through the stern and the passing wave causes
pressure variations along the length of the tube, creating a ‘bulge’.[19] As the bulge travels
through the tube it grows, gathering energy which can be used to drive a standard low-head
turbine located at the bow, where the water then returns to the sea.[19] An example of bulge
wave is the Anaconda wave energy converter, see Figure 1.12

Figure 1.12: principle of bulge wave generation with direction of internal oscillatory flow and
PTO [27]

(H) Rotating Mass
Rotatingmass devices are concepts that make use of eccentric masses rotating about multiple
axis or gyroscopes that cause precession. The devices consist of a surface floating buoy, with
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the eccentric masses or gyroscopes inside it. The movement of the floater will cause for
rotation of the masses, which can be converted into electrical power. Politecnico di Torino
developed the Inertial Sea Wave Converter (ISWEC), a device that makes use of the gyroscopic
effect to convert electricity from the pitch motion of the floater.[28] Figure 1.13 shows a
concept drawing of the ISWEC.

Figure 1.13: Concept drawing ISWEC [29]

Another interesting device is the PeWEC (Pendulum Wave Energy Converter), a device that
allows to extract power by using the forces produced by a swinging pendulum enclosed into
a sealed hull.[15]
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1.4.3. Gyroscopic-Pendulum
Let us now introduce the new WEC concept called the gyroscopic-pendulum. This concept
is a modification of the so called classical vertical axis pendulum, a type of point absorber
device which is capable of producing mechanical power that is harvested from the rotation
of the pendulum inside the floating module.

The new concept is proposed by adding a flywheel to create a gyroscopic effect with the aim
to enhance the motions of the pendulum. The spinning disk and the torque originating
from the weight of the pendulum, together create the gyroscopic effect, which drives the
pendulum to rotate. This phenomenon is called precession. A preliminary concept drawing
of the gyroscopic-pendulum is provided in Figure 1.14.

Figure 1.14: Concept drawing of the gyroscopic-pendulum WEC

The rotational motion of the pendulum, driven by the wave actions and the gyroscopic effect,
will be converted in electrical power by using a Power-Take-Off (PTO) generator, which is
placed in the same axis as the pendulum rotation.

In general, the main advantage of WEC concepts with no moving parts exposed to the sea
environment is the intrinsic reliability of the device [15]. In case of the gyroscopic-pendulum,
we can also consider the advantage of combining the controllable spinning disk with the
rotating pendulum. This advantage comes from the ability to tune the pendulum rotation in
order to reduce the losses associated to start-up and stopping as well as to provide control
of its motions in different sea states [18].

1.4.4. Gyroscopic Precession
The gyroscopic effect used in our dynamical system has it’s origins in the studies of Isaac
Newton about the motions of the earth, which rotates around the sun while at the same
time it also rotates around it’s own axis [30]. However, it was Leonard Euler who proposed a
mathematical model for this phenomenon and is also credited for [30].

The gyroscopic effect depends on the relationship between the angular momentum and exter-
nal torque of a rotating system. Angular momentum 𝐿⃗ is a vector quantity that is proportional
to the angular velocity of an rotating object. The definition is provided in Equation 1.1, in
which I is the mass moment of inertia of the rotating body in 𝑘𝑔𝑚ኼ and 𝜔 is rotational velocity
of the object in 𝑟𝑎𝑑/𝑠.

𝐿⃗ = 𝐼𝜔⃗ (1.1)
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The law of conservation of angular momentum states that any change of angular momentum
𝐿⃗ in time can only occur if an external torque 𝐺⃗ is acting on the object.

𝐺⃗ = 𝑑𝐿⃗
𝑑𝑡 (1.2)

From Equation 1.2 we can conclude that for rotating bodies a torque increases the angular
momentum of the body in the direction of that torque. This is an analogy with the translating
bodies, where an applied force 𝐹⃗ on the body increases the linear momentum 𝑃⃗ of the body
in the direction of the applied force, see Equation 1.3.

𝐹⃗ = 𝑑𝑃⃗
𝑑𝑡 (1.3)

Let us consider the following exemplary gyroscope modeled as the rigid body system shown
in Figure 1.15.a. This particular gyroscope, often referred to as a gyro, is basically a rotor
which is able to spin at a very high rate about its own axis. The mass of the rotor and it’s
mass moment of inertia are respectively denoted by 𝑚፫ and 𝐼፫,፱.

Figure 1.15: (a) Gyroscope system (b) Gyroscopic effect

The gyro is designed as such that the whole system is also able to rotate about the y and z
axes. The rotation of the system about the z-axis is called ”precession” and is denoted by Ω.
The rate of spin of the rotor is much greater than the precessional velocity around the z-axis.

Without spinning the rotor about it’s own axis, the system will rotate about the y-axis (fall
downwards) due to gravity. However, if the rotor does spin, the gyroscopic effect will result
in an angular velocity Ω of the system about the z-axis. This counter intuitive effect can be
explained by the relationship between the angular momentum of rotor and the torque due to
the mass of the rotor in distance 𝑙፫ from the rotation point O of the system . The directions of
the above mentioned angular momentum and torque are obtained by applying the so-called
”right-hand rule”.
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We are interested in finding an expression for Ω in terms angular velocity of the rotor. Let us
call a small rotation around the z-axis 𝛿𝜃 and the small difference in angular momentum 𝛿𝐿
in the y-direction. The rate of spin of the rotor will be denoted by 𝜔፫,፱. From Figure 1.15.b
and our assumption that Ω << 𝜔፫ we can see that the angular velocity about the z-axis is
equal to the rate of change of the small rotation 𝛿𝜃.

Ω = 𝛿𝜃
𝑑𝑡 =

1
𝑑𝑡
𝑑𝐿⃗
𝐿⃗
= 1
𝐿⃗
𝑑𝐿⃗
𝑑𝑡 (1.4)

Combining Equations 1.2 and 1.4 gives us the following relation:

Ω = 1
𝐿⃗
𝐺⃗ = 𝑚፫𝑔𝑙፫

𝐼፫,፱𝜔፫
(1.5)

Equation 1.5 tells us that the angular velocity of the precessional motion equals the ratio
of the torque divided by the angular momentum of the rotor. We can see that increasing
the torque by increasing the mass and or the distance of the mass from the pivot point,
will increase the precessional angular velocity. Also decreasing the angular momentum of
the disk, by decreasing its mass moment of inertia and or angular velocity, will result in an
higher precessional angular velocity.

1.5. Thesis Objectives
1.5.1. Research Question
This master of science thesis is centered about developing a mathematical model for a new
type of wave energy converter, the gyroscopic-pendulum, and showing that this concept can
improve the power efficiency compared to a classical vertical axis pendulum. The research
can be divided into the following three parts:

• Create a mathematical model for the new concept

• Show the existence of the desired phenomenon, namely the increase of the average
power efficiency due to the gyroscopic effect

• Explain the phenomenon

The final goal of the thesis is to provide an answer to the following research question:

In which ranges of amplitude and frequency of an imposed motion to the floater does
the gyroscopic-pendulum result in an improved average power efficiency compared to
a classical vertical axis pendulum?

In which the power efficiency is defined as the ratio between the average Power output of the
system and the average power input to the system:

𝜂 = 𝑃፨
𝑃።

(1.6)

1.5.2. Approach
In order to achieve a successful closure of this research requires us to follow an approach
that leads to a validated answer to the above research question, following tasks will have to
be performed in the given order:

• Perform a literature study about the subject.

• Understand the necessary theories and assumptions that is required to model the sys-
tem and derive the equations of motion.

• Validate the model by testing its response to certain inputs in the simulated conditions.
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• Investigate different types of imposed motions to show within the reasonable movement
of the vessel that the disk increases the power efficiency.

• Provide some kind of indication for what type of motions of the vessel, the presence of
the disk improves the efficiency the most.

• Provide some explanation about the power efficiency resulting from the gyroscopic effect.

1.5.3. Thesis Outline
This thesis report is structured around five chapters in a certain way and order to make it
relatively understandable despite the complexity of its subject.

• Chapter 1: Introduction starts with a global energy outlook followed by general infor-
mation about the ocean energy and wave energy converters and the introduction of the
Gyroscopic-Pendulum.

• In Chapter 2: Mathematical Model, the equations of motion are derived after introducing
the model of the dynamical system along with the assumptions.

• In Chapter 3: Validation of the Model, the equations of the motion and the numerical
model are validated by performing test under constant imposed motions of the floater.

• In Chapter 4: Hydrostatics, a preliminary shape of the floater will be introduced and
the stability of the floating systems will be presented.

• In Chapter 5: Power Efficiency, the tests are explained and the results obtained from
numerical simulations are presented.

• In Chapter 6: Conclusion and Recommendations, the conclusions and recommenda-
tions based on the results obtained from the numerical simulations are presented.



2
Mathematical Model

2.1. Introduction
In order to understand, explain and predict the behaviour of our device, we need to first
formulate a mathematical model of it. This will be the subject matter of this chapter.

We will start with describing our model accompanied by assumptions regarding the device
and interactions between its components in order to formulate the model. Some necessary
theoretical concepts will be reviewed and at the end of the chapter we will display the deriva-
tion of the equations of motion for our dynamical system.

2.2. Gyroscopic-Pendulum Model
The gyroscopic-pendulum consists of a rotating disk connected to a rotating vertical axis
pendulum which is attached to a floater. The motions of the floater impose certain motions
to the pendulum, which can be enhanced by the rotating disk due to the gyroscopic effect. The
gyroscopic-pendulum is an 8-DOF system, of which 6-DOF are accounted by the floater, 1-
DOF is accounted by the rotating pendulum around the vertical axis and 1-DOF is accounted
by the rotation of the disk around the pendulum axis. A preliminary concept drawing of the
system is provided in Figure 2.1.

Figure 2.1: Concept drawing of the gyroscopic-pendulum WEC

In this study we will simplify the dynamical system by excluding the surge, sway and heave
motions of the floater. The yaw motion of the floater is decoupled from the pendulum motion,
because the generator will be installed in the pendulum axis of rotation, hence we also neglect
the yaw motion of the floater. The motions of the pendulum are coupled with the remaining
roll and pitch motions of the floater. These assumptions result in the dynamical system
consisting of the following four degrees of freedom:

15
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• Disk rotation 𝜙፝(𝑡), rotation about the pendulum axis

• Floater pitch motion 𝜃፟(𝑡), rotation about the earth-fixed Y-axis

• Floater roll motion 𝜙፟(𝑡), rotation about the earth-fixed X-axis

• Pendulum yaw motion 𝜓፩(𝑡), rotation about the body-fixed z-axis attached to the floater

Two right-handed Cartesian coordinate systems will be used to describe the motions of this
system: an earth-fixed inertial coordinate system denoted by XYZ and a body-fixed coordi-
nate system attached to the floater denoted by 𝑥𝑦𝑧. The motions in the body-fixed coordinate
system are relative to earth-fixed coordinate system. Figure 2.2.a shows the coordinate sys-
tems.

Figure 2.2: a). GP configuration and coordinate system b). Rotation example

Let us assume that the pendulum is a point mass located at 𝑙፩ from the center of rotation
O which is at the origin of the body-fixed coordinate system. The rotation of the pendulum
around the body-fixed coordinate 𝑧ኺ-axis is denoted by 𝜓፩ and the rotation of the disk around
the pendulum axis is denoted by 𝜙፝. The floater is assumed to have its COG and rotation
point at the same point and is also rotating around point O. The roll (𝜙፟(𝑡)) and pitch (𝜃፟(𝑡))
motions of the floater are respectively rotation around the earth-fixed X-axis and Y-axis.

All the components are described as a rigid body, which means the distance between two
points in a body remains unchanged as it moves. Figure 2.2.b shows a exemplary positive
pitch motion of the floater to provide some understanding of the pendulum rotation.

2.3. Lagrangian Formalism
There are two well known methods that can be used to derive the equations of motion of
mechanical systems; the Newton-Euler method and the Euler-Lagrange method.

Newton-Euler method is based on Newtonian mechanics, which deals with vector quantities
such as force and momentum, while the Euler-Lagrange method is based on Lagrangian me-
chanics, which deals with scalar energy components. Use of Newtonian mechanics becomes
complex compared to the Lagrangian mechanics when we have to deal with multi-body sys-
tems with constraints [31], because ”Newton’s equations treats each rigid body separately
and explicitly model the constraints through the forces required to enforce them, while La-
grange and d’Alembert provided systematic procedures for eliminating the constraints from
the dynamic equations, typically yielding a simpler system of equations” [18].

Since we are considering a 4-DOF multi-body system with rigid body constraint, we will use
the Euler-Lagrange method to derive the equations of motion of our system. The Euler-
Lagrange method is based on a systematic approach which is known as the ”Lagrangian
Formalism”. The equations of motions are derived by solving the differential equation that is
called the ”Euler-Lagrange Equation”, which can be found in Equation 2.1.
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𝑑
𝑑𝑡
𝜕ℒ
𝜕 ̇𝑞።

− 𝜕ℒ
𝜕𝑞።

= 𝑄። (2.1)

This equation is applicable to any N-DOF system in which 𝑞። are the generalized coordinates,
𝑄። are the generalized forces and ℒ(𝑞። , ̇𝑞። , 𝑡) is the so called ”Lagrangian”. The Euler-Lagrange
equations states that the time derivative of the derivative of the Lagrangian with respect to the
velocity of the systemminus the derivative of the Lagrangian with respect to the displacement
is equal to the generalized force.

ℒ = 𝒯 − 𝒱 (2.2)

Since 𝒯 and 𝒱 are representations of the kinetic and potential energy respectively, hence the
Euler-Lagrange equation contains scalar quantities. The kinetic energy is proportional to the
square of the translational or angular velocities of the components and the potential energy
can be obtained from the position of the components in a gravitational field (gravitational
potential energy).

𝒯፭,። =
1
2𝑚።𝑣

ኼ
። (2.3)

𝒯፫,። =
1
2𝐼።𝜔

ኼ
። (2.4)

𝒱። = 𝑚።𝑔ℎ። (2.5)

𝒯፭,። and 𝒯፫,። are respectively the translational kinetic energy and rotational kinetic energy
of component i. 𝑚። is the mass of component i in [kg], 𝑣። is the velocity of component i in
[m/s], 𝐼። is the moment of inertia of component i in [𝑘𝑔𝑚ኼ] and 𝜔። is the angular velocity of
component i in [rad/s]. The gravitational acceleration in [𝑚/𝑠ኼ] is denoted by g and ℎ። is the
position of component i in the Z-axis.
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2.4. Derivation of Equations of Motion
2.4.1. Mass Moment of Inertia
Since all motions of the system are rotational motions, we need to introduce an important
quantity that dominate these type of motions. While translational motions are governed by
the equation of the form F = m a, the rotational motions are governed by the equation of the
form 𝑇 = 𝐼𝛼, in which I (𝑘𝑔/𝑚ኼ) is called the ”mass moment of inertia”. It is a measure of
resistance to an angular acceleration due to an applied torque, while the mass is a measure
of resistance to an linear acceleration due to an applied force. The mass moment of inertia
depends on the distribution of mass of a body and the axis of rotation.

Let us derive the general equation form of the mass moment of inertia for an arbitrary object
by considering a general shape of body with total mass M shown in Figure 2.3.

Figure 2.3: General shape with total mas M

For the mass of an infinitesimal small part of the body dm with a distance r from the axis of
rotation, the mass moment of inertia is given by the following equation:

𝑑𝐼 = 𝑟ኼ𝑑𝑚 (2.6)
If we take the sum over all of the mass elements, we end up with the general formula for the
mass moment of inertia.

𝐼 = ∫𝑑𝐼 = ∫
ፌ

ኺ
𝑟ኼ𝑑𝑚 (2.7)

Figure 2.4 gives an overview of the mass moment of inertia of a few common shapes.

Figure 2.4: (a) Point mass around axis perpendicular to the paper, (b) Two point masses
around axis perpendicular to the paper, (c) Disk around z-axis, (d) Disk around x and y-axis
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2.4.2. Linear Velocity of the Pendulum
Coordinate Transformation
In order to compute the kinetic and potential energy of the pendulum, it is convenient to
find its position and linear velocity relative to the earth-fixed coordinate system. This can be
found by using the so called Euler angles to decompose the body-fixed position vector in the
earth-fixed coordinate system. The Euler angles are the three principal angles, roll (𝜙), pitch
(𝜃) and yaw (𝜓), introduced by Leonard Euler to describe the orientation of a rigid body or a
reference frame with respect to a fixed coordinate system.[32]

We can apply rotations of the Euler angles by means of rotation matrices.

RᎫ፱ = |
1 0 0
0 𝑐𝜙፟ 𝑠𝜙፟
0 −𝑠𝜙፟ 𝑐𝜙፟

| ,R᎕፲ = |
𝑐𝜃፟ 0 𝑠𝜃፟
0 1 0

−𝑠𝜃፟ 0 𝑐𝜃፟
| ,RᎥᑫ = |

𝑐𝜓፟ 𝑠𝜓፟ 0
−𝑠𝜓፟ 𝑐𝜓፟ 0
0 0 1

| (2.8)

The rotation matrix Rij is describing a rotation angle i about the j-axis (according to our
positive axis directions), in which the s∙=sin(∙), and c ∙=cos(.).

A coordinate transformation matrix can be used to describe an object in a rotated coordinate
system, while keeping the object itself fixed. It is closely related to the rotation matrices and
has the following important property.[32]

Rb
e(𝜙, 𝜃, 𝜓) = Re

b(𝜙, 𝜃, 𝜓)ፓ (2.9)

In which Rb
e is the orthogonal coordinate transformation matrix and the subscript e and

superscript b respectively stand for ’from’ and ’to’ a coordinate system. In this case Rb
e is

representing a transformation matrix which can transform a vector from the earth-fixed co-
ordinate system to the body-fixed coordinate system.

An important concept in rotational motions is the notion of order of rotation, since it affects
the position and orientation of an object. In general there are many rotation orders pos-
sible and once again we make a simplification by choosing one for our computation of the
pendulum position and its velocity:

Pendulum Rotation (𝜓፩) - Floater Pitch(𝜃፟) - Floater Roll (𝜙፟)

The rotation matrices given in Equation 2.8 also correspond to our defined system angles
(𝜙፟ , 𝜃፟ , 𝜓፩) and with the chosen rotation order we can compute our desired transformation
matrix.

Re
b(𝜙፟ , 𝜃፟ , 𝜓፩) = Rb

e(𝜙፟ , 𝜃፟ , 𝜓፩)ፓ = (RᎥ፳ .R᎕፲ .RᎫ፱)ፓ (2.10)

Position and Velocity Vectors
The pendulum is assumed to be a point mass with a distance 𝑙፩ from the origin of the earth-
fixed coordinate system and its initial position in the proposed configuration is given by the
following vector in the body-fixed coordinate system:

𝑝⃗፛(ኺ) = |
𝑙፩
0
0
| (2.11)

The position of the pendulum in time, in the earth-fixed coordinate system, can be now found
by the following transformation.

𝑝⃗፞(𝑡) = Re
b(𝜓፩, 𝜃፟ , 𝜙፟)𝑝⃗፛(ኺ) (2.12)

Taking the time derivative of the 𝑝⃗፞(𝑡) vector results in the linear velocity vector 𝑣⃗፞(𝑡).
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2.4.3. Angular Velocities of the Disk
Finding the angular velocities of the disk is necessary for the computation of the kinetic
energy of it. The disk is free to rotate around the pendulum axis in its own COG. Moreover,
the disk is also subjected to the rotational motions imposed by the pitch and roll motions
of the floater and the pendulum rotation. However, in contrary to the pendulum, we cannot
model the disk as a point mass, since we are interested in the rotations of the disk in its own
COG. Instead we try to express its angular velocities relative to the earth-fixed coordinate
system directly by means of transformations.

Let us start by stating that rotation matrices are in fact orthogonal matrices, which have the
property stated in Equation 2.13.

RፓR = I
RRፓ = I

(2.13)

If we take the derivatives of both expressions in time we end up with the following two equa-
tions.

ṘፓR+RፓṘ = 0

RṘፓ + ṘRፓ = 0
(2.14)

In which RፓṘ and ṘRፓ are skew matrices, implying that the off-diagonal elements satisfy
𝑖𝑗 = −𝑗 for i ≠j, while the diagonal elements are zero.[32]

Let us now try to derive the angular velocities of a general system in the earth-fixed and
body-fixed coordinate systems by starting off with the Equation 2.12 for a general vector q
and its derivative in time.

𝑞⃗(𝑡) = Re
b𝑝⃗

̇⃗𝑞(𝑡) = Ṙe
b𝑝⃗

(2.15)

In which q(t) is the changing coordinate of p while p is the constant coordinate in the body-
fixed frame and 𝑞̇(𝑡) is the linear velocity 𝑣፞ of p in the earth-fixed coordinate frame.

A pre-multiplication of both sides of the expression for 𝑞̇(𝑡) with Rፓ results in the following
equation.

Re
b
ፓ ̇⃗𝑞(𝑡) = Re

b
ፓṘe

b𝑝⃗ (2.16)

The left hand side of Equation 2.16 is representing the linear velocity 𝑣፛ in the body-fixed
frame, while Re

b
ፓṘe

b encodes the angular velocity in the body-fixed frame 𝜔፛. This can be
expected to be true, since it is known that 𝑣 = 𝜔𝑟.

Let us also combine the two expressions in Equation 2.15 resulting into a new expression
for the linear velocity in the earth-fixed coordinate system ̇⃗𝑞(𝑡).

̇⃗𝑞(𝑡) = Ṙe
bRe

b
ፓ𝑞⃗(𝑡) (2.17)

The Ṙe
bRe

b
ፓ encodes the angular velocity in the earth-fixed coordinate system 𝜔፞.

Let us compute the above matrix multiplication (Ṙe
bRe

b
ፓ) to find the angular velocities of the

disk in the earth-fixed coordinate system. This can be computed by substituting the rotation
matrices of our system according to our chosen order of rotation, taking the orthogonality
property of the rotation matrices in consideration and correctly using the product rule.
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Ṙe
bRe

b
ᑋ ዆ ፝

፝፭ (RᒣᑕᑩRᒝᑫRᒍᑪRᒣᑩ)(RᒣᑕᑩRᒝᑫRᒍᑪRᒣᑩ)ᑋ

዆ (Ṙᒣᑕᑩ(RᒝᑫRᒍᑪRᒣᑩ) ዄRᒣᑕᑩ(ṘᒝᑫRᒍᑪRᒣᑩ ዄRᒝᑫ(ṘᒍᑪRᒣᑩ ዄRᒍᑪṘᒣᑩ)))R
ᑋ
ᒣᑩRᑋ

ᒍᑪRᑋ
ᒝᑫR

ᑋ
ᒣᑕᑩ

዆ ṘᒣᑕᑩR
ᑋ
ᒣᑕᑩ ዄRᒣᑕᑩṘᒝᑫR

ᑋ
ᒝᑫR

ᑋ
ᒣᑕᑩ ዄRᒣᑕᑩRᒝᑫṘᒍᑪR

ᑋ
ᒍᑪR

ᑋ
ᒝᑫR

ᑋ
ᒣᑕᑩ ዄRᒣᑕᑩRᒝᑫRᒍᑪṘᒣᑩR

ᑋ
ᒣᑩR

ᑋ
ᒍᑪR

ᑋ
ᒝᑫR

ᑋ
ᒣᑕᑩ

(2.18)

Equation 2.18 results in a skew 3x3 matrix of the following form:

C = |
0 −𝜔፳ 𝜔፲
𝜔፳ 0 −𝜔፱
−𝜔፲ 𝜔፱ 0

| (2.19)

It turns out that the non-zero entries in matrix C are the angular velocities of the system,
and in our case that of the disk in the earth-fixed coordinate system.[32]

We are now able to construct the vector 𝜔፝ = [𝜔፱; 𝜔፲; 𝜔፳]ፓ resulting in the following:

𝜔፝ = |
̇𝜙፝ + 𝑠𝑖𝑛(𝜓፩) ̇𝜃፟ + 𝑐𝑜𝑠(𝜓፩)𝑐𝑜𝑠(𝜃፟) ̇𝜙፟

𝑠𝑖𝑛(𝜙፝) ̇𝜓፩ + 𝑐𝑜𝑠(𝜙፝)𝑐𝑜𝑠(𝜓፩) ̇𝜃፟ − 𝑐𝑜𝑠(𝜙፝)𝑠𝑖𝑛(𝜓፩)𝑐𝑜𝑠(𝜃፟) ̇𝜙፟ + 𝑠𝑖𝑛(𝜙፝)𝑠𝑖𝑛(𝜃፟) ̇𝜙፟
𝑐𝑜𝑠(𝜙፝) ̇𝜓፩ − 𝑠𝑖𝑛(𝜙፝)𝑐𝑜𝑠(𝜓፩) ̇𝜃፟ + 𝑠𝑖𝑛(𝜙፝)𝑠𝑖𝑛(𝜓፩)𝑐𝑜𝑠(𝜃፟) ̇𝜙፟ + 𝑐𝑜𝑠(𝜙፝)𝑠𝑖𝑛(𝜃፟) ̇𝜙፟

| (2.20)

This vector is then used to compute the kinetic energy of the disk. The expression for the
kinetic energy of the disk can be verified by considering the position of a point with a distance
d from the COG of the disk and finding it’s linear velocity. The kinetic energy of the whole
disk can be found by taking the following integral:

𝐾፝ =
1
2
𝑚፝
𝜋𝑟፝ኼ

∫
ኼ᎝

ኺ
∫
፫ᑕ

ኺ
( ̇𝑥፝ኼ + ̇𝑦 ኼ + ̇𝑧፝ኼ).𝑟.𝑑𝑟.𝑑𝜙፝ (2.21)

2.4.4. Energy of the System
Kinetic Energy
The motions of the pendulum and of the disk result in the kinetic energy in our system. Let
us first consider the kinetic energy of the pendulum (assumed to be a point mass). It can
simply be found by using the known equation for kinetic energy of a translating body.

𝒯፩ =
1
2𝑚፩

⃗𝑣፩(𝑡)
ኼ

(2.22)

In which 𝑚፩ is the mass of the pendulum and 𝑣፩(𝑡) is its velocity in time. The velocity of the
pendulum can be found by taking the derivative of its position in time.

⃗𝑣፩(𝑡) =
𝑑 ⃗𝑝፩(𝑡)
𝑑𝑡 (2.23)

The kinetic energy of the disk cannot be computed in the simple manner used for the pendu-
lum due to the coupled angular velocity terms of the disk. The rotational form of the kinetic
energy of the disk in direction i can be computed according to the following equation:

𝒯፝,። =
1
2𝐼፝,።𝜔

ኼ
፝,። (2.24)

The total kinetic energy of the system is computed by simply adding up the kinetic energy of
the pendulum and of the disk.

𝒯፭፨፭ፚ፥ = 𝒯፩ + 𝒯፝,፭፨፭ፚ፥ (2.25)
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Potential Energy
The pendulum and the disk contain gravitational potential energy that is proportional to the
position of the pendulum and the disk in the Z-axis. It can be computed by first finding the
position vector of the center of mass of the pendulum-disk combination. let us first find the
position of the center of mass of the pendulum+disk:

𝑙፭፨፭ =
𝑚፩𝑙፩

𝑚፩ +𝑚፝
(2.26)

The position of the combined mass in the z-direction can be now found by multiplying the
third element (z-direction) of the position vector of the pendulum with the 𝑙፭፨፭:

ℎ(𝑡) = 𝑙፭፨፭𝑝⃗፞(1, 3) (2.27)

The potential energy of the system can be computed according to the following equation:

𝒱፭፨፭ፚ፥ = (𝑚፩ +𝑚፝)𝑔ℎ(𝑡) (2.28)

2.4.5. Euler-Lagrange Equation
Since we have found the kinetic and potential energies of the system, we can perform the
necessary substitutions to compute the Lagrangian and eventually solve the Euler-Lagrange
Function.

Let us start with computing the Lagrangian ℒ for our dynamical system.

ℒ = 𝒯 − 𝒱 = 𝒯፭፨፭ፚ፥ − 𝒱፭፨፭ፚ፥ (2.29)

In our model we do not consider any external forces, meaning we have to solve the following
form of the Euler-Lagrange Function:

𝑑
𝑑𝑡
𝜕ℒ
𝜕 ̇𝑞።

− 𝜕ℒ
𝜕𝑞።

= 0 (2.30)

We substitute each degree of freedom (𝜓፩, 𝜙፟ , 𝜃፟ , 𝜙፝) in the generalized coordinate 𝑞። and solve
the above differential equation. This will result in four equations of motion (one equation for
each degree of freedom), which can be found in the appendix.



3
Validation of the Model

3.1. Introduction
In Chapter 2: Mathematical Model, we have presented the derivation of the equations of
motion for our dynamical system. The focus of this chapter is the validation of the equations
of motions by means of a numerical model.

We will start with introducing our numerical model followed by the validation of the equations
of motions. The validation focuses on the correctness of the order of rotation and the rotations
of the components with respect to the correct coordinate systems. very simple, yet powerful,
tests are performed under constant imposed motions of the floater.

3.2. Numerical Model
3.2.1. System Dimensions
The numerical model consists of two systems, the 4-DOF gyroscopic-pendulum (gp) and the
3-DOF classical pendulum (cp). The equations of motion for the cp can be derived from the
equations of motion of the gp by getting rid of the disk (in terms of mass, mass moment
of inertia and degree of freedom). Since we are imposing both pitch and roll motions, we
do not need to consider the shape, dimensions and thus hydrodynamics of the floater for
both systems. We will also neglect the damping terms for the disk and the pendulum, since
we are only interested in their rotations in the correct coordinate system. Let us start with
presenting the constants and system dimensions that are used in our numerical model:

• Mass of the pendulum 𝑚፩ = 30 kg
• Length of the pendulum 𝑙፩ = 1 m
• Mass of the disk 𝑚፝ = 20 kg
• Radius of the disk 𝑟 = 0.25 m
• Gravity of earth g = 9.81 𝑚/𝑠ኼ

Performing a dimension analysis is not part of this thesis, hence dimensions for our model
are just some chosen numbers that are thought to be realistic.

3.2.2. ODE Solver
Dynamic systems are represented by ordinary differential equations due to their property
that how a system is changing in time is a function of its current state. Our equations of
motions are second order non-linear ordinary differential equations, making it very difficult
(impossible) to find analytical solutions for them. Therefore, the numerical model is designed
to find numerical solutions to these differential equations.

The most important function used in the numerical model is the so called Ordinary Differ-
ential Equation solver. The term ’ordinary’ refers to a differential equation which contains
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functions of only one independent variable, for example time. Its counterpart is the term
’partial’ which refers to differential equations which can be with respect to more than one
independent variables e.g. time and space.

We will make use of the ODEINT function in python. Numerical ODE solvers can only work
with first order differential equations, so we need to transforms the high order, in our case
second order, differential equations into a set of first order differential equations. This trans-
formation can be constructed by use of a concept called the ’state space representation’.
We can explain the method by considering the example of a damped mass-spring system of
which the linearized equation of motion is given in Equation 3.1.

𝑚 ̈𝑥(𝑡) = −𝑏 ̇𝑥(𝑡) − 𝑘𝑥(𝑡) + 𝑓(𝑡) (3.1)

The set space representation requires us to introduce new variables in the following manner:

𝑥(𝑡) = 𝑥ኻ
̇𝑥(𝑡) = 𝑥ኼ

𝑓(𝑡) = 𝑓ኻ
(3.2)

Substituting the new variables in Equation 3.1 gives us the the following two first order
differential equations:

̇𝑥ኻ = 𝑥ኼ

̇𝑥ኼ = −
𝑏
𝑚𝑥ኼ −

𝑘
𝑚𝑥ኻ +

1
𝑚𝑓ኻ

(3.3)

We can rewrite these equations in a matrix form of 𝑋̇ = A𝑋 + B𝐹.

| ̇𝑥ኻ̇𝑥ኼ| = |
0 1
ዅ፤
፦

ዅ፛
፦
| . |𝑥ኻ𝑥ኼ| + |

0
ኻ
፦
| . |𝑓ኻ| (3.4)

These matrices will be the inputs for the ode solver which will gives us the outputs in terms
of rotations and angular velocities of the systems.

3.3. Validation
3.3.1. Imposed Positive Pitch Motion
Let us now perform our first test in which we give a positive rotation to the pendulum of
𝜓፩ = ᎝

ኼ rad and then impose a constant pitch motion of 𝜃፟ = ᎝
ኼ rad and a constant roll motion

of 𝜙፟ = 0 rad, see Figure 3.1.a. The rotations of the floater are around the earth-fixed axis
and according to our chosen rotation order (first pitch and then roll).

Figure 3.1.b shows an (unit) circle with the position of the pendulum in the body-fixed coor-
dinate system after the imposed motions. The i in 𝑥። , 𝑦። , 𝑧። stands for the number of rotation,
e.g. 𝑥ኻ, 𝑦ኻ, 𝑧ኻ correspond to the body-fixed coordinates of the first imposed motion (roll). The
body-fixed 𝑧። − 𝑎𝑥𝑖𝑠 always points outward of the paper and the positive rotation of the pen-
dulum is depicted according to the right-hand rule. This also tells us where the zero rotation
should be depicted in the circle. The expected rotation of the pendulum is shown in red.
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Figure 3.1: a). Orientation of the system after performing the imposed motions b). Expected
rotation of the pendulum

In this case, the pendulum is positioned at ᎝
ኼ , hence we expect it to perform an undamped

rotation about the 𝑧ኼ−𝑎𝑥𝑖𝑠 starting from ᎝
ኼ to -

᎝
ኼ , see Figure 3.1.b. Since we do not introduce

damping in our system, the energy must be conserved.

From Figure 3.2, we can see that the results obtained form the numerical model is in agree-
ment with our expectation.

Figure 3.2: Results obtained from the numerical model
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3.3.2. Imposed Positive Roll Motion
The second test consists of imposing a constant pitch motion of 𝜃፟ = 0 rad and a positive roll
motion of 𝜙፟ = ᎝

ኼ rad to the floater. The pendulum starts at 𝜓፩ = 0. The orientation of our
system resulting from these imposed motions can be found in Figure 3.3.a.

Figure 3.3: a). Orientation of the system after performing the imposed motions b). Expected
rotation of the pendulum

In this particular case we expect the pendulum to perform an undamped negative rotation
around the 𝑧ኼ−𝑎𝑥𝑖𝑠 starting from 0 and ending to -𝜋. Figure 3.4 shows us the results obtained
from the numerical model, which are in accordance to our expectations.

Figure 3.4: Results obtained from the numerical model
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3.3.3. Imposed Positive Pitch and Positive Roll Motions
What happens if we perform two non-zero, but constant imposed motions? let us first impose
a pitch rotation of 𝜃፟ = ᎝

ኼ rad and then a roll rotation of also 𝜙፟ = ᎝
ኼ rad. The pendulum starts

at 𝜓፩ = 0 rad.

Figure 3.5: a).b). Orientation of the system after performing the imposed motions in order c)
Expected rotation of the pendulum

Figure 3.5 gives us an overview of imposed rotations in correct order and our expected pen-
dulum rotation. Our expectations are correct if we take a look at the results of the numerical
model in Figure 3.6.

Figure 3.6: Results obtained from the numerical model

Based on the presented results, we can conclude that our mathematical model and numerical
model are correct when we impose constant pitch and roll motions.





4
Hydrostatics

4.1. Introduction
In Chapter 3: Validation of the Model, we have shown that our mathematical and numerical
models are correct for constant non-zero imposed motions. Since we imposed both pitch
and roll motions, we did not have to introduce the inertia properties of our floater into the
equations of motion.

In this chapter we will start with presenting a shape for the floater and introduce preliminary
design values of our system. These preliminary design values will be used to compute the
inertia properties of our systems, which are necessary to perform an initial stability check.
After that we will present the stable position of both systems, which is basically a validation
of the model without any imposed motions.

4.2. Floater Shape
Let us introduce a simple shape for the floater and compute the hydrodynamics. In Figure
4.1 a preliminary shape of the gyroscopic-pendulum is shown. The classical pendulum will
have the same shape and dimensions as the gyroscopic-pendulum, but without the flywheel.

Figure 4.1: Preliminary design gyroscopic-pendulum device

We start off with introducing some values for the dimensions of the disk and pendulum, which
are depicted in Figure 4.1. The numerical values we have chosen can be found in Table 4.1.
From these dimensions we will compute all the necessary properties of our systems.
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Parameter Quantity [Unit]
Pendulum length, 𝑙፩ 1 [𝑚]
Pendulum mass, 𝑚፩ 30 [𝑘𝑔]
radius disk, 𝑟 0.25 [𝑚]
Thickness disk, 𝑡፝ 0.10 [𝑚]

Table 4.1: Initial dimensions pendulum and disk

Parameter Quantity [Unit]
Density water, 𝜌፰ 1050 [𝑘𝑔/𝑚ኽ]
Density steel, 𝜌፬ 7850 [𝑘𝑔/𝑚ኽ]
Density acrylic glass, 𝜌ፚ፜፫ 1180 [𝑘𝑔/𝑚ኽ]
Damping pendulum, 𝑐፩ 0.106 [𝑘𝑔/𝑠]
Damping disk, 𝑐፝ 0.005 [𝑘𝑔/𝑠]

Table 4.2: Constants

Table 4.2 shows the constants we will be using in our computations. Since the gravity of
the earth and the presented densities don’t need any explanation, let us discuss the damp-
ing coefficients for the pendulum and the disk. We assume the damping coefficient of the
pendulum to be equal to the damping coefficient of the PTO. The damping of the disk will be
assumed to be equal to air drag losses and bearing losses. For both coefficients, we will use
the Doctoral thesis of Giovanni Bracco as our reference.[29].

4.3. Inertia Properties of the Systems
Inertia Properties of the Pendulum
Since we know the mass and length of the pendulum, we can compute its mass moment of
inertia (assuming it to be a point mass).

𝐼፩ = 𝑚፩𝑙ኼ፩ (4.1)

Inertia Properties of the Disk
The disk will be made of steel, which has a density of 𝜌፬ equal to 7850 ፤፠

፦Ꮅ . We can find the
mass of the disk according the following equation:

𝑚፝ = 𝜌፬𝑉
= 𝜌፬𝜋𝑟ኼ፝ 𝑡፝

(4.2)

We can now compute the mass moment of inertia of the disk in all three directions.

𝐼𝑑 = 1
2𝑚፝𝑟

ኼ
፝

𝐼𝑑, 𝑥 = 𝐼𝑑, 𝑦 = 1
4𝑚፝𝑟

ኼ
፝

(4.3)

Inertia Properties of the Floater
We have already introduced the shape of our floater, let us now state some practical require-
ments in order to find the its dimensions.

The floater will be made of acrylic glass, which is a light but strong plastic polymer with a
density of 𝜌ፚ፜፫ equal to 1180 ፤፠

፦Ꮅ . Known industry can provide it with a maximum of thickness
of 10 cm. This will be our preliminary design value for the thickness 𝑡፟ of the floater. The
pendulum and the disk should not be hindered when rotating inside the floater. We can state
this requirement in form of two inequalities.

ℎ፟ > 2𝑟
𝑟 > 𝑙፩

(4.4)

We can easily satisfy both requirements by introducing a clearance 𝑐፟ equal to 10 cm for
both. Since the pendulum and the disk cannot translate in the x,y and z direction relative to
the floater, we can write the following two expressions for ℎ፟ and 𝑟 .

ℎ፟ = 2𝑟 + 2𝑐፟
𝑟 > 𝑙፩ + 𝑐፟

(4.5)
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We are now able to compute the mass and afterwards the mass moment of inertia of the
floater, respectively in Equation 4.6 and Equation 4.7.

𝑚፟ = 𝜌ፚ፜፫(ℎ፟(𝜋𝑟ኼ፟ − 𝜋(𝑟 − 𝑡፟)ኼ) + 𝜋𝑟ኼ፟ 𝑡፟) (4.6)

𝐼፟ =
1
12𝑚፟(3(𝑟

ኼ
፟ + (𝑟 − 𝑐፟)ኼ) + ℎኼ፟) (4.7)

Properties of the System
The total mass of our system is an important property for the calculations of the hydro-
static stability. We have already presented the equations containing the computations of the
masses of the pendulum, disk and floater , which enables us to compute the total mass of our
system. The total mass of our system will also govern the draft of the floater. The expression
of the total mass of our system can be found in Equation 4.8 and the expression for the draft
can be found in Equation 4.9.

𝑚፭፨፭ = 𝑚፩ +𝑚፝ +𝑚፟
𝑚፩ + 𝜌፬𝜋𝑟ኼ፝ 𝑡፝ + 𝜌ፚ፜፫(ℎ፟(𝜋𝑟ኼ፟ − 𝜋(𝑟 − 𝑡፟)ኼ) + 𝜋𝑟ኼ፟ 𝑡፟)

(4.8)

𝐷፟ =
𝑚፭፨፭
𝜌፰𝜋𝑟ኼ፟

(4.9)

Since all unknown properties depend only on the known variables, we can compute them by
using the above equations. An overview of the numerical values of the gyroscopic-pendulum
and the classical pendulum are shown in the table below.

Parameter Gyroscopic-pendulum Classical pendulum [Unit]
Mass Moment of inertia pendulum, 𝐼፩ 30 30 [𝑘𝑔𝑚ኼ]
Mass of the disk, 𝑚፝ 154.0 0.0 [𝑘𝑔]
Mass Moment of inertia Disk 𝐼፝ 5.0 0.0 [𝑘𝑔𝑚ኼ]
Floater clearance, 𝑐፟ 0.10 0.10 [𝑚]
Floater height, ℎ፟ 0.70 0.70 [𝑚]
Radius floater, 𝑟 1.10 1.10 [𝑚]
Thickness of the floater, 𝑡፟ 0.10 0.10 [𝑚]
Mass floater, 𝑚፟ 994 994 [𝑘𝑔]
Mass moment of inertia floater, 𝐼፟ 590 590 [𝑘𝑔𝑚ኼ]
Total mass of the system, 𝑚፭፨፭ 1178 1023 [𝑘𝑔]
Draft floater, 𝐷፟ 0.30 0.26 [𝑚]

Table 4.3: Dimensions and properties of both systems

4.4. Stability of the Floaters
4.4.1. Initial stability
Our floating systems must be stable, which requires a metacentric height GM which is larger
than zero for initial stability.

𝐺𝑀 = 𝐾𝐵 + 𝐵𝑀 − 𝐾𝐺 > 0 (4.10)

In which KG is the height of the floaters center of gravity above the keel, BM is the metacentric
radius and KB is the distance between the center of buoyancy and the keel . Due to the shape
of our system, computing GM is quite straightforward, see the expressions in Equation 4.11
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𝐺𝑀 =
𝐷፟
2 + 𝐼፭∇ −

ℎ፟
2

=
𝐷፟
2 +

᎝
ኾ 𝑟ኾ፟
𝜋𝑟ኼ፟ 𝐷፟

−
ℎ፟
2

=
𝐷፟
2 +

𝑟ኼ፟
4𝐷፟

−
ℎ፟
2

(4.11)

In which 𝐼፭ is the moment of inertia of water plan area in 𝑚ኾ and ∇ is the volume of dis-
placement in 𝑚ኽ. Substituting numerical values provided in Table 4.3, we can compute the
numerical values for GM for both systems.

• 𝐺𝑀፠፩ = 0.82𝑚

• 𝐺𝑀፜፩ = 0.96𝑚

Clearly the GM values for both systems are larger that zero, so we can assume to have two
stable floating systems.

4.4.2. Hydrostatic Coefficients
Since we now know the the shape and dimensions of our system and its GM we can compute
the hydrostatic stiffness and the damping term for the floater. Due to the symmetric shape of
the floater, the hydrostatic stiffness and damping for both pitch and roll motions are assumed
to be equal.

𝑘፰ = 𝜌፰𝑔∇𝐺𝑀 = 𝜌፰𝑔𝜋𝑟ኼ፟ 𝐷፟𝐺𝑀 (4.12)

We can now find the rotational damping coefficient by assuming it to be equal to 1 percent
of the critical damping coefficient.

𝑐፰ = 0.001√𝐼፟𝑘፰ (4.13)

Parameter Gyroscopic-pendulum Classical Pendulum [Unit]
Hydrostatic stiffness, 𝑘፰ 9505 9618 [𝑘𝑔𝑚ኼ/𝑠ኼ]
hydrostatic damping, 𝑐፰ 2.37 2.38 [𝑘𝑔𝑚ኼ/𝑠]

Table 4.4: Stiffness and damping coefficients of the systems

4.4.3. Stable Positions
Without imposing anymotion to both systems and setting the initial conditions to zero, means
that the pendulum is positioned in the x-direction with a distance of 𝑙፩ from O. We can now
imagine the floater to pitch a little amount in the positive direction as a result to the gravity
force due to the mass of the pendulum. Since we have introduced a damping in our system,
this motion must be a decaying oscillation and since we also have introduced a hydrostatic
stiffness coefficient it must also approach a stable pitch angle.

Let us now try to find this stable positions of our systems by considering the static equilibrium
of our systems. This requires us to set all the velocity and acceleration terms in the equation
of motion of the pitch equal to zero, resulting in Equation 2.5.

𝑘፰𝜃፟ − 𝑐𝑜𝑠(𝜓፩)𝑐𝑜𝑠(𝜃፟)𝑐𝑜𝑠(𝜙፟)𝑚፩𝑔𝑙፩ = 0 (4.14)

We know that at the initial conditions 𝜓፩ = 𝜙፟ = 0, so we end up with the following equation
for both systems:
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𝜃፟ −
𝑚፩𝑔𝑙፩
𝑘፰

𝑐𝑜𝑠(𝜃፟) = 0 (4.15)

This equation is true for 𝜃፟ = 0.031 rad for both systems.

Let us now find the stable positions of our systems from the numerical model. We can do
this by just running our scripts without any imposed motion, without an applied torque and
all initial values equal to zero. The results are shown in Figure 4.2.

Figure 4.2: Stable positions of both systems

The two graphs depict the roll and pitch motions of both floaters and indeed, as expected,
the floaters starts pitching in the positive direction and approaches a stable position of ap-
proximately 𝜃፟ = 0.03 rad.





5
Power Efficiency

5.1. Introduction
In Chapter 4: Hydrostatics, we have introduced the shape of our systems and their dimen-
sions. In this chapter we perform numerical tests on our systems to provide an answer to
our research question.

We start with discussing the manner we impose motions to our system and continue with
explaining the applied torque on the disk. We then explain the way we approximate the
average power inputs and outputs of the systems. Eventually the results in terms of ratios
between the power efficiency of both systems are shown at the end of this chapter.

5.2. Numerical Simulation
5.2.1. Imposed Motion
Our device will be operating nearshore and generate electricity from the motions of the waves.
We are clearly interested in the net electricity output of this system and should perform
simulations to get an overview of the power output.

The most accurate manner to find the power output of our system would be by simulating
waves based on a wave spectrum from the location of interest and find the response of our
dynamical system on these waves in terms of RAO’s. However this is a quite complex opera-
tion that requires us to have the correct (and final) shape of our device which is beyond the
scope of this report.

Instead we directly impose certain motion in the incoming wave direction and observe the
floater response in the other direction. Since we are in a very preliminary phase of the
research, we will be only imposing a simple harmonic roll motion to the floater in this report.
The amplitude and frequency range of this motion is directly taken from the met-ocean data
in North East Java sea, which can be found in Table 5.1

Parameter Quantity Range [Unit]
Water Depth, h 5.39 - 62.10 [m]
Period, 𝑇፩. 3.60 - 6.54 [m]
Frequency, 𝑓፩ 0.95 - 1.75 [rad/s]
Wave Height, 𝐻፬ 0.54 - 1.91 [m]
Wave length, 𝐿 15.95 - 54.09 [m]

Table 5.1: Wave Data (for 1 Year Return Period), location in North East Java, Indonesia [33]

An example of an imposed motion can be found Figure 5.1.

35



36 5. Power Efficiency

Figure 5.1: Imposed motion, H =1.75 m and Ꭶ = 0.75 rad/s

5.2.2. Applied Torque to the Disk
Besides the imposed motion, we also provide a certain torque to the flywheel. The torque
can be found by multiplying the mass moment of inertia of the disk 𝐼፝ with the angular
acceleration of the disk 𝛼፝. In our numerical model, the torque will only be applied in a certain
period of time 𝑡፭፫፪ to achieve a certain target velocity 𝑤፝ in that period of time. Equation 5.1
provides us the expression we use to define the torque in our numerical system.

𝑇 = 𝐼፝
𝜔፝
𝑡፭፫፪

𝑓𝑜𝑟 𝑡 < 𝑡፭፫፪ (5.1)

In which T is the applied torque in Nm, 𝐼፝ is the mass moment of inertia of the disk around
it’s own COG in 𝑘𝑔𝑚ኼ , 𝜔፝ is the targeted angular velocity of the disk in ፫ፚ፝

፬ and 𝑡፭፫፪ is the
duration of the applied torque in 𝑠𝑒𝑐𝑜𝑛𝑑𝑠.

We will apply different torques to the flywheel and see how it will affect the average power
output of the pendulum. An overview of the applied torques can be found in Table 5.2.

𝜔፝ [rad/s] 𝑡፭፫፪ [s] 𝑇 [Nm]
10 20 2.5
20 20 5
30 20 7.5
40 20 10

Table 5.2: Overview applied torque cases

5.2.3. Power of the System
Energy Input
We impose harmonic motions to our system, which means we put power in the system. Since
we have kind of assumed an RAO of 1, the average power of the imposed motion is equal to
the average power contained in the waves which have the same properties as the imposed
motions. Assuming deep water condition, we can find the time-averaged power per meter
wave crest in linear waves as follows[34].

𝑃፰ =
1
32𝜋𝜌

ኼ
፰𝑔𝑇𝐻ኼ (5.2)

In which 𝑃፰ is the power per meter width in ፖ
፦ , T is the wave period in 𝑠 and H is the wave

height in 𝑚. However, we are interested in finding the power of the imposed motions based
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on the dimensions of our system, so we need to multiply this expression with the width of
our structure. This results in the following equation, which we will use in our computation.

𝑃፰ =
1
32𝜋𝜌፰𝑔

ኼ𝑇𝐻ኼ2𝑟 ፥ (5.3)

The gyroscopic-pendulum is the only model that has energy input in form of the applied
torque. We approximate the energy input to the disk as the applied torque times the total
amount of rotation of the disk when this torque is applied.

𝐸፝ = 𝑇𝜙፝ (5.4)
In which 𝜙፝ is disk position in radian evaluated at the last time step when the torque is
applied.

We can now find the average input power to the disk by dividing the Energy input by the total
amount of simulation time.

𝑃 = 𝐸፝
𝑡፬

(5.5)

In which 𝑃 is the average power input to the disk in 𝑊 and 𝑡፬ is the simulation time in
seconds.

Power Output
We have introduced an damping term in the equations of motion of the pendulum to represent
the PTO for both gyroscopic-pendulum and classical pendulum systems. The amount of
power we can obtain from our systems, depends on this damping term and the velocity of
the pendulums.

𝑃 = 𝐶፩ ̇𝜓፩
ኼ (5.6)

In our numerical model, the angular velocity of the pendulums ̇𝜓፩ is an array, so if we use
the mean function in Python, we will get the average power output of both systems.

5.2.4. Simulation Conditions and Output
To make sure we have fair comparison between different inputs and outputs, we have to
perform the numerical simulations in the same conditions. All tests will have the following
properties:

• Simulation time = 3600 s

• Number of time steps 36000

The resolution used for the amplitude range is 0.075 m per step, while the resolution of the
frequency range is equal to 0.05 𝑟𝑎𝑑/𝑠 per step. So the amplitude range is covered by 19 steps
and the frequency range is covered by 17 steps. This results in 19 ∗ 17 = 323 measurement
points for our graphs.

We are interested in the power efficiency of the gyroscopic pendulum relative to the power
efficiency of the classical pendulum and consider this as the output of our numerical model.
The efficiency for the gyroscopic-pendulum and the classical pendulum can be computed as
according to Equation 1.7 and Equation 1.8.

𝜂፠፩ =
𝑃፠፩ − 𝑃 ,።፧
𝑃፦,።፧

(5.7)

𝜂፜፩ =
𝑃፜፩
𝑃፦,።፧

(5.8)

In which, 𝑃፠፩, 𝑃 ,።፧ and 𝑃፦,።፧ are respectively the average power output of the gyroscopic-
pendulum, the average power input to the disk and the average power input of the imposing
motions in 𝑊𝑎𝑡𝑡.
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5.3. Results
5.3.1. Gp Without Applied Torque vs Cp
Let us first of all compare the gyroscopic-pendulum and the classical pendulum without any
applied torque to the first one. Both systems will have the same imposed motions and the
aim is to see whether the gyroscopic-pendulum out performs the classical pendulum already
based on the existence of the disk. Figure 5.2 shows an contour plot of the power efficiency
ratio of the gyroscopic-pendulum and the classical pendulum. The horizontal axis consists
of the frequency range of the imposed motions in ፫ፚ፝

፬ and the vertical axis consists of the
amplitude range of the imposed motions in 𝑚.

Figure 5.2: Gyroscopic-pendulum vs classical pendulum without power input to the disk

It can be seen that for most parts of the frequency and amplitude ranges, the power efficiency
ratio is either well below 1 (dark blue color) or a little bit bigger than 1 (light blue color).
An ratio below 1, implies that the cp is outperforming the gp, a ratio of 1 means that the
performance is the same and a ratio above 1 means that the gp is outperforming the cp.

The contour plot shows us that the performance of both systems is quite close to each other.
Only at a few spots, the gp is significantly outperforming the cp. These spots are around
(𝜔፦ = 1.05, 𝐴፦ = 0.9) and (𝜔፦ = 1.45 − 𝜔፦ = 1.6, 𝐴፦ = 0.75).

5.3.2. Gp With Applied Torque vs Gp Without Applied Torque
Before we go to comparing the gyroscopic-pendulum with applied torque to the classical
pendulum, we will compare the gyroscopic-pendulum with applied torque to the itself without
applied torque. If we can observe significant increases efficiency ratios, we can be sure that
it comes from the gyroscopic effect.

The results can be found in Figure 5.3. We can see clearly significant decreases and increases
of the efficiency ratios. The decreases can be found in the lower ranges of frequency and
amplitude, while the increases can be seen in the higher ranges of frequency and amplitudes.
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Figure 5.3: Gyroscopic-pendulum with four cases of applied torque vs the
gyroscopic-pendulum without applied torque

5.3.3. Gp With Applied Torque vs Cp
Let us now compare the gyroscopic-pendulum to the classical pendulum while we apply the
distinct torque cases, shown in Table 5.2, to the flywheel. The aim is to see the effect of the
flywheel on the power output compared to the classical pendulum. Figure 5.4 shows us four
contour plots of the efficiency ratio between the test cases.

The top left plot shows the ratio of the case where the applied torque is equal to 2.5 Nm. We
can see that due to the power input to the torque, the efficiency ratio is a bit below 1 for the
largest part of the amplitude and frequency ranges. We can also see some scatter, where the
ratio is equal to 1.0. In the frequency range of 1.4 to 1.7 ፫ፚ፝

፬ combined with the amplitude
ranges of 0.65 to 0.95 m, we can see ratios significantly above 1.0.

The top right plot shows the efficiency ratio when the applied torque is increased to 5 Nm.
Now we can clearly see that in the lower ranges of amplitude and frequency of the imposed
motions, the ratio is well below 1.0. If take a look at the higher ranges of amplitude and
frequency, we start to see some scatter of increasing efficiency ratio. However the areas of
these points, in terms of frequency times the amplitude, are smaller than the previous case.

The bottom left plot shows the results of the third case. In this case we can see kind of linear
contours between emerging zones. In the bottom we can see a zone in which the ratio is
approximately equal to 0.4, followed by another zone which consists of a ratio around 0.6.
The third zone has a ratio of 0.8 and the fourth zone has a ratio of 1.0. The last zone, we can
see significant ratio increases from 1.2 up to 2.2.

The bottom right plot depicts the results of the fourth case. We can see the pattern become
more visible. In this case we can see negative values for the efficiency, which implies that
there are combinations of imposed motions and applied torque in which the average power
input to the disk is larger than the average power output of the pendulum. We can also see
that areas in which the efficiency ratio is larger than 1.0, are now smaller than the previous
case. However, the maximum of the ratio has increased to 3.0 compared to 2.2 of the third
case.
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Figure 5.4: Gyroscopic-pendulum with four cases of applied torque vs the classical pendulum
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5.3.4. Detailed Analysis
In the previous subsections, we have discussed the power efficiency ratios, let us now analyse
the dynamics of our system for two points in an interesting area in our contour plots shown
in Figure 5.4. The interesting area is the top right area of the contour plots, since we can see
significant ratio increases in that region. That area becomes even more interesting because
very close to these high ratios, we can also see a small area of quite low ratios. This small area
can be found in all four cases and consists of the lowest ratio around 0.25 at the coordinate
(1.7, 0.8375). To dive a bit deeper, we will compare the motions of our systems for this point
and the point which gives us the maximum ratio in that region. Let us make the comparison
from the contour plot of the fourth case, in which the applied torque is equal to 10 𝑁𝑚. Figure
5.5 shows the motions of our systems when the efficiency ratio is maximum in the fourth test
case, while Figure 5.6 depicts the motions of our system for the low ratio discussed above.

Figure 5.5: Response of the systems for imposed motion with Ꭶᑞ ዆ ኻ.ዀ ፫ፚ፝/፬, ፚᑞ ዆ ኺ.ዂኾ ፦
and ፓ ዆ ኻኺ ፍ፦

The figure consists of six subplots of which the titles tell us what motion is depicted. The
difference between the pendulum rotation and velocity of the cp and the pendulum rotation
and velocity of the gp stands out immediately. The relatively constant and relatively high
velocity of the pendulum of the gp system causes very small floater pitch rotations to the gp
systems compared to the cp system.

Furthermore, the decay of the flywheel velocity from the target velocity is quite fast, which
implies that the flywheel properties are not optimized yet.

In short, we can see that the high average power output of the gyroscopic-pendulum is caused
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by the high and constant velocity of the pendulum, which in turn is the result of high average
power input to the disk.

Let us now discuss the responses of the systems which result in a very low efficiency ratio,
see Figure 5.6. We can now see the opposite phenomena occur. In this case the pendulum
rotation of the cp system is much higher and has and steep constant increase in time, while
the pendulum rotation of the gp system is very low and almost no increase after a certain
amount of time. The velocity of the pendulum of the cp system is now relatively high and
constant relative to the pendulum velocity of the gp system. The pitch motion of the cp
system is much smoother and more constant than the one of the gp system. The flywheel
shows somewhat the same behaviour, except the fact that it has more irregular oscillation in
its velocity in the case of high efficiency ratio.

Figure 5.6: Response of the systems for imposed motion with Ꭶᑞ ዆ ኻ.዁ ፫ፚ፝/፬, ፚᑞ ዆ ኺ.ዂኾ ፦
and ፓ ዆ ኻኺ ፍ፦



6
Conclusion and Recommendations

6.1. Introduction
In this chapter we will try to formulate our conclusions based on the results we have obtained
in chapter 5: Power Efficiency. Eventually we want to provide a validated answer to our
research question.

We will start with our conclusions based on the presented tests and results. After that we will
give an direct answer to our research question. We will end this chapter and this report with
some recommendations for further research and development of the gyroscopic-pendulum.

6.2. Conclusion
Let us now present the conclusions we can make based on the numerical results.

Gp Without Applied Torque vs Cp
Our first test was to show whether the comparison between gp and the cp is fair to make.
We can see that the gyroscopic-pendulum (gp) without a power input has a quite similar
performance, in terms of average power output, as the classical vertical axis pendulum (cp).
So, we can conclude that we are making a fair comparison between the two systems.

Gp With Applied Torque vs Gp Without Applied Torque
We have also performed a comparison between the gyroscopic-pendulum with the applied
torques and the gyroscopic-pendulum without the applied torques. The aim was to show
that any efficiency increase in this test must originate from the gyroscopic-effect. Based on
the obtained results, we can conclude that at certain zones, the gyroscopic effect is the only
reason for the increased average power output and thus increased efficiency.

Gp With Applied Torque vs Cp
Our final test and the most important one is meant to see whether the gp system results in an
improved average power output relative to the cp. Based on the results, we can conclude that
at certain zones in terms of frequency and amplitude ranges, the gp is indeed outperforming
the cp.

Furthermore, based on the detailed analysis, we can conclude that regular harmonic re-
sponse of the floater pitch motion results in more and linearly increasing rotations of the
pendulum. This implies that the velocity of the pendulum is characterized by simple har-
monic oscillation around a relatively high velocity. Eventually it results in higher average
power output and thus higher efficiency ratio compared to the classical pendulum.

43
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Answer to the Research Question
We have now come to a very important part of this report. Let us once again present the
research question of this report:

in which ranges of amplitude and frequency of an imposed motion to the floater does
the gyroscopic-pendulum result in an improved average power efficiency compared to
a classical vertical-axis pendulum?

The answer to this question based on our results obtained from the numerical simulations
is as follows:

The gyroscopic-pendulum has a higher efficiency compared to the classical VAP pen-
dulum when the frequency of the imposed motion is in the range of 1.4 to 1.75 rad

s and
the amplitude is in the range of 0.6 to 0.95 m.

6.3. Recommendations
Based on the obtained results and encountered issues, several recommendations will be
formulated.

• The mathematical models for the cp and gp are consisting of 3 and 4 DOF respectively,
while in reality this should be 7 and 8 DOFs. So it is recommended to derive the equa-
tions of motions including the surge, sway and heave motions to obtain a more realistic
model for both systems.

• The precessional motion is very sensitive to the mass moment of inertia of the disk.
We can see from the results that velocity of the flywheel, even though it has a very low
damping coefficient, decays quite fast. Hence it is sensible to search for the optimum
mass moment of inertia of the disk to make sure the decaying characteristic of the
velocity is improved.

• The decaying characteristic of he flywheel can be counteracted by introducing a con-
trol mechanism to the disk. The control mechanism should be capable of providing
the minimum amount of power to counteract the decay of the disk velocity due to the
damping.

• The results we have obtained are based on a simulation time of 1 hour (3600 seconds).
The systemsmight needmore time to achieve steady state. It is recommended to perform
tests under a much longer simulation time.

• The starting dimensions of the disk and pendulum are chosen to be some realistic num-
bers, but a thorough dimension analysis could result in optimal dimensions.

• We have imposed simple harmonic motions to our system, while in reality non-linear
incoming waves result in the response of our system. It is recommended to perform
hydrodynamic analysis of the systems and impose waves in form of force, instead of
imposing motions.
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