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Abstract
This article proposes a systematic approach for optimal reset law design of a
class of nonlinear systems. By using the guaranteed cost control method, suffi-
cient conditions for the design of optimal reset law are derived in terms of linear
matrix inequalities. In an offline design procedure, the reset law is computed
that minimizes the upper bound of a quadratic cost function. The proposed
method can be implemented for real-time applications even with small sampling
time. The simulation results verify the efficacy and effectiveness of the proposed
theoretical results.
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1 INTRODUCTION

Reset control is a class of hybrid control which is able to overcome the inherent limitations of linear control systems. The
basic idea of reset control is to reset all or part of the controller states whenever the reset condition is met. If the reset
condition is not met, it is referred to as the base system so that the system response has no jumps. The reset controller has
one more degree of freedom than the base system, which can improve the transient response of the system. It was initially
introduced by Clegg.1 A Clegg integrator (CI) consists of an integrator and a reset mechanism which resets its state to
zero when its input signal crosses zero. This controller was generalized to first order reset element (FORE) in Reference 2.
In the last three decades, various stability results for reset control systems are reported in the literature.3-10 For instance,
H𝛽 stability conditions,11 reset times-dependent stability,12 delay-independent and delay-dependent stability,13,14 and
passivity-based approach.15,16 The L2 exponential stability problem of the reset control systems with time-varying delay
was investigated in Reference 17. In Reference 18, a periodic triggering reset control was presented, where the reset-
ting actions are only occurred at periodically sampling instants. In Reference 19, a broadband phase compensation
element named CgLp was presented, which provides a broadband phase lead while maintaining constant gain. In
Reference 20, to overcome the overshoot performance limitation, a generalized first order reset element (GFORE)
was proposed.

Recently, the design of reset law based on model predictive strategy (MPS) has drawn the attention of researchers,21-29

whose main idea is to determine the reset law by minimizing a cost function at each sampling time. Based on robust MPS,
a reset law for linear systems under Lipschitz uncertainty was designed for the first time in Reference 21. In Reference
22, a model prediction-based framework was provided to determine an appropriate reset law for linear systems with
norm-bounded uncertainty. In Reference 23, by using an MPS, an observer-based reset law design for a class of uncertain
systems was presented. The problem of discrete-time triggered reset law design based on MPS for linear systems was
addressed in Reference 24. A systematic approach to design a reset controller for polytopic linear parameter varying
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T A B L E 1 List of variables and definitions

Symbol Definition

Lp Lipschitz matrix

Λ,Ξ Reset map matrices

Mr ,M Reset surfaces

𝜌
(

xp, xc
)

After-reset value

 Cost function

Q Weight matrix

t𝜌 Temporal regularization parameter

tk Reset times

systems was proposed in Reference 25. In Reference 26, the reset law design procedure of Reference 21 was extended
to nonlinear time-delay systems. An MPS was presented to design a reset dynamic output feedback control (DOFC) for
linear systems in Reference 27. By employing MPS and genetic algorithm, a robust reset DOFC was designed for a class
of uncertain linear systems in Reference 28. The application of Reference 21 to head-positioning systems was provided in
Reference 29.

In the articles above, an optimization problem should be solved to determine the reset law. These approaches demand
large computational time and may not be useful for real-time applications with small sampling time. This challenge is
addressed in this article via an offline design procedure.

The main contribution of this study is to introduce a systematic approach to design an optimal reset law for a class of
nonlinear systems, where this design is done in a full offline procedure. To this end, first, the sufficient conditions for the
asymptotic stability of the reset control system are derived based on the Lyapunov theorem. Then, the upper bound of
the predefined performance index is minimized by the guaranteed cost control (GCC) method. The problem of optimal
rest law design is transformed into an linear matrix inequalitie (LMI) optimization problem. By solving the optimization
problem offline, the reset law is designed. Therefore, the proposed reset law can be easily implemented on systems with
small sampling time. Finally, the proposed method is compared with the existing methods in the literature. The simulation
results illustrate the superiority and advantages of our method.

This article is structured as follows: The problem formulation is presented in Section 2. The reset law design is given
in Section 3. The simulation results are provided in Section 4. Finally, Section 5 draws the conclusions.

The definitions and symbols of the variables used in this article are summarized in Table 1.

2 PROBLEM FORMULATION

Consider a class of nonlinear systems described by{
ẋp = Axp + Bu + Hf (xp),
y = Cxp,

(1)

where xp ∈ R
np ,u ∈ Rnu , and y ∈ R

ny represent the state, the control input, and the output vectors, respectively, f (xp)
denotes the nonlinear dynamics associated with the state vector.

Assumption 1. The nonlinear function f (xp) satisfies the following Lipschitz condition locally on a set D ⊂ R
np :

||f (xp) − f (x̃p)|| ≤ ||Lp(xp − x̃p)||, ∀xp, x̃p ∈ D, (2)

where f (0) = 0, and Lp is a Lipschitz constant matrix.
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SHAHBAZZADEH et al. 4741

The following reset controller is proposed to control the given plant (1):

⎧⎪⎨⎪⎩
ẋc = Acxc + Bce xc ∉ Mr

x+c = 𝜌
(

xp, xc
)

xc ∈ Mr

u = Ccxc

, (3)

where xc ∈ Rnc is the state of the reset controller, x+c is the reset value of the controller state, e = r − y with r being the
reference signal, and 𝜌

(
xp, xc

)
is a continuous function of the controller and the plant states. The jump set (or reset

surface) Mr determines when the reset occurs.

Remark 1. In the reset controller (3), the controller states are reset to the after-reset value 𝜌
(

xp, xc
)

when the reset
condition is met. In this article, in order to handle the determination of this function, the reset law is proposed as

𝜌
(

xp, xc
)
= Λxp (tk) + Ξxc (tk) , (4)

where tk are reset times for k = 1, 2, … , and Λ ∈ R
nc×np and Ξ ∈ Rnc×nc are reset map matrices.

Substituting the controller (3) into (1) gives the following closed-loop system:

⎧⎪⎨⎪⎩
ẋ = Āx + Br + Hf (xp) x ∉ M
x+ = ARx x ∈ M
y = Cx

, (5)

where x = [xT
p xT

c ]T and

Ā =

[
A BCc

− BcC Ac

]
, AR =

[
I 0
Λ Ξ

]
, B =

[
0
B

]
, H =

[
H
0

]
, C =

[
C 0

]
.

The reset surface M is defined as the following:11

M =
{

x ∈ R
np+nc |e = 0 ς x+ ≠ x

}
. (6)

Remark 2. In presence of noise, the reset surface M can be modified as21

M =
{

x ∈ R
np+nc ||e| < 𝜂 ς x+ ≠ x

}
, (7)

where 𝜂 a small positive number.

Remark 3. In real-time applications, the reset condition can be determined based on a discrete-time zero-crossing method.
That is:

M =
{

x ∈ R
np+nc ,K ∈ N|e ((K − 1)Ts) e (KTs) ≤ 0 ς x+ ≠ x

}
, (8)

where Ts is the sampling time.

Assumption 2. In this article, the reference signal r is set to zero, and the regulation problem is addressed.

Remark 4. In order to ensure well-posedness and improve the system performance, the reset actions and reset conditions
must be chosen properly; otherwise, beating and deadlock phenomena may occur, which can destroy the well-posedness
property of solutions.30

Assumption 3. To avoid deadlock and beating phenomena, it is supposed that the after-reset values do not belong to the
reset surface M. That is:

If x(tk) ∈ M then x(t+k ) ∉ M. (9)

The condition (9) ensures the existence and uniqueness of the solutions.
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4742 SHAHBAZZADEH et al.

Remark 5. Zenoness is a phenomenon where there are infinite number of resetting actions within a compact time interval.
In practice, a common method to avoid this phenomenon is to use temporal regulation. By using this method, a reset
action can occur only at least after t𝜌 second. The closed-loop reset system (5) with r = 0 and temporal regulation is
expressed as {

𝜏̇ = 1, ẋ = Āx + Hf (xp) x ∉ M or 𝜏 < t𝜌
𝜏+ = 0, x+ = ARx x ∈ M and 𝜏 ≥ t𝜌

, (10)

where t𝜌 is the minimum time between two consecutive reset actions (i.e., tk+1 − tk > t𝜌).

3 RESET CONTROLLER DESIGN

In general, the design of reset controllers consists of two main steps. In the first step, a suitable linear controller (Ac,Bc,Cc)
is designed. In this article, we design it using pole-placement method such that the base system is asymptotically stable.
The second step is to design the reset law. The aim of the present study is to design the reset law which guarantees the
closed-loop system stability and improves transient performance of the response.

3.1 Reset law design

In this part, sufficient conditions for reset law design are derived in terms of LMIs.
In order to conclude our results, the following proposition is borrowed from the literature.

Proposition 1. Let V ∶ Rn → R be a positive-definite, continuously differentiable, radially unbounded function such that{
V̇(x̄) < 0 x̄ ∉ M, (11)
ΔV(x̄)∶=V(x̄+) − V(x̄) ≤ 0 x̄ ∈ M. (12)

Then, the closed-loop reset system (5) is asymptotically stable.11

Now, the problem of finding a reset law for system (5) is transformed into an equivalent LMI problem. Then, by solving
the problem, the reset map matrices Λ and Ξ are designed.

Theorem 1. Consider the reset control system (5). If there exist symmetric matrices X11 ∈ R
np×np , X22 ∈ Rnc×nc , matrices

X12 ∈ R
np×nc , 1 ∈ R

np×nc ,2 ∈ Rnc×nc , and a positive scalar 𝜇 such that the following LMIs hold:

⎡⎢⎢⎢⎢⎢⎣

Φ11 Φ12 𝜇H X11LT
p

∗ Φ22 0 XT
12LT

p

∗ ∗ −𝜇I 0
∗ ∗ ∗ −𝜇I

⎤⎥⎥⎥⎥⎥⎦
< 0,

Φ11 = AX11 + BCcXT
12 + X11AT + X12CT

c BT,

Φ12 = AX12 + BCcX22 − X11CTBT
c + X12AT

c ,

Φ22 = −BcCX12 + AcX22 − XT
12CTBT

c + X22AT
c , (13)

⎡⎢⎢⎢⎢⎢⎣

− X11 −X12 X11 1

∗ −X22 XT
12 2

∗ ∗ −X11 −X12

∗ ∗ ∗ −X22

⎤⎥⎥⎥⎥⎥⎦
≤ 0, (14)
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SHAHBAZZADEH et al. 4743

the reset map matrices Λ and Ξ are given by [
Λ Ξ

]
=
[
T

1 T
2

]
X−1. (15)

Then, the reset law is obtained as

xc(t+k ) = Λxp(tk) + Ξxc(tk). (16)

Proof. Consider a Lyapunov function candidate

V(x) = x(t)TPx(t). (17)

The time-derivative of V(x) along the trajectories of (5) yields

V̇(x) = xT(t)(PĀ + ĀTP)x(t) + xT(t)(PH)f (xp) + f T(xp)(H
T

P)x(t). (18)

The Lipschitz condition predefined in Assumption 1 gives the following inequality:

0 ≤ 𝜇−1xT
p (t)LT

p Lpxp(t) − 𝜇−1f T(xp)f (xp), (19)

where 𝜇 is an arbitrary positive scalar.
The above inequality can be rewritten as below:

0 ≤ 𝜇−1xT(t)L
T
p Lpx(t) − 𝜇−1f T(xp)f (xp), (20)

where

Lp =

[
Lp 0
0 0

]
.

Incorporating (18) and (20) results in

V̇(x) ≤ xT(t)(PĀ + ĀTP)x(t) + xT(t)(PH)f (xp) + f T(xp)(H
T

P)x(t)

+ 𝜇−1xT(t)L
T
p Lpx(t) − 𝜇−1f T(xp)f (xp). (21)

The inequality (21) further implies that V̇(x) ≤ 𝜈T(t)Ψ𝜈(t), where 𝜈(t) =
[

xT(t) f T(xp)
]T

and

Ψ =

[
PĀ + ĀTP + 𝜇−1L

T
p Lp PH

∗ −𝜇−1I

]
. (22)

Note that Ψ < 0 ensures V̇(x) < 0.
By applying the Schur complement to Ψ < 0, we have

⎡⎢⎢⎢⎣
PĀ + ĀTP PH L

T
p

∗ −𝜇−1I 0
∗ ∗ −𝜇I

⎤⎥⎥⎥⎦ < 0. (23)
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4744 SHAHBAZZADEH et al.

Pre- and post-multiplying (23) by diag(P−1, 𝜇I, I) yields

⎡⎢⎢⎢⎣
ĀP−1 + P−1ĀT 𝜇H P−1L

T
p

∗ −𝜇I 0
∗ ∗ −𝜇I

⎤⎥⎥⎥⎦ < 0. (24)

By letting X = P−1 and partitioning X as

X =

[
X11(np×np)

X12(np×nc)

∗ X22(nc×nc)

]
, (25)

the inequality (24) is equivalent to (13).
Now, consider the change of value of V(x) at reset times. From (12), it yields that

ΔV(x) = xT(t)
(

AT
RPAR − P

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Ω

x(t) ≤ 0. (26)

Note that Ω < 0 implies ΔV(x) < 0.
Multiplying both sides of Ω < 0 by P−1, gives

P−1AT
RPARP−1 − P−1 ≤ 0. (27)

By applying the Schur complement to (27) and substituting X = P−1, one can have[
− X XAT

R

∗ −X

]
≤ 0. (28)

The matrix XAT
R is computed as

XAT
R =

[
X11 X11ΛT + X12ΞT

XT
12 XT

12Λ
T + X22ΞT

]
. (29)

Now, to avoid any nonlinearities, the change-of-variable technique is used. Therefore, we define the following new
variables: {1 = X11ΛT + X12ΞT, (30)

2 = XT
12Λ

T + X22ΞT. (31)

By substituting (29)–(31) into (28), one can get LMI (14).
After solving LMIs (13) and (14), the reset map matrices Λ and Ξ are found by solving (30) and (31).
Equations (30) and (31) can rewritten as follows:[1

2

]
= X

[
ΛT

ΞT

]
. (32)

By simple calculation, we can get (15).
When the reset condition is met, the after-reset values are obtained from (16). ▪

Remark 6. Since X > 0, therefore it is nonsingular. This ensures that Equation (32) has a unique non-trivial
solution.
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SHAHBAZZADEH et al. 4745

Remark 7. To implement the proposed control scheme, the base controller needs to have internal dynamics such that the
base system is stable. That is:

{
ẋc = Acxc + Bce,
u = Ccxc + Dce.

(33)

In the next theorem, we design the optimal reset law (i.e., the reset map matrices Λ and Ξ) to minimize a cost function
by using the GCC. This optimization problem is expressed by a set of LMIs.

Theorem 2. Consider the reset control system (5). If there exist symmetric matrices X11 ∈ R
np×np , X22 ∈ Rnc×nc , matrices

X12 ∈ R
np×nc , 1 ∈ R

np×nc ,2 ∈ Rnc×nc , and positive scalars 𝜇 and 𝛿 such that the following LMIs hold:

min 𝛿

subject to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 𝜇H X11LT
p X11 X12

∗ Φ22 0 XT
12LT

p XT
12 X22

∗ ∗ −𝜇I 0 0 0
∗ ∗ ∗ −𝜇I 0 0
∗ ∗ ∗ ∗ −Q̂11 −Q̂12

∗ ∗ ∗ ∗ ∗ −Q̂22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (34)

⎡⎢⎢⎢⎢⎢⎣

− X11 −X12 X11 1

∗ −X22 XT
12 2

∗ ∗ −X11 −X12

∗ ∗ ∗ −X22

⎤⎥⎥⎥⎥⎥⎦
≤ 0, (35)

⎡⎢⎢⎢⎣
− 𝛿 xT

p (0) xT
c (0)

∗ −X11 −X12

∗ ∗ −X22

⎤⎥⎥⎥⎦ ≤ 0. (36)

Then, the reset map matrices and reset law are obtained from (15) and (16), respectively.

Proof. The reset law is designed by minimizing the following cost function:

 = ∫
∞

0
xT (t)Qx (t) dt, (37)

where the weight matrix Q ∈ R
(np+nc)×(np+nc) is a positive definite symmetric matrix. Q−1 can be partitioned as

Q−1 =

[
Q̂11 Q̂12

∗ Q̂22

]
. (38)

Consider the following upper bound to ensure the negativity of the derivative of the Lyapunov function:

V̇(x) < −xT(t)Qx(t). (39)

From (18) and (39), we can get

xT(t)(PĀ + ĀTP + Q)x(t) + xT(t)(PH)f (xp) + f T(xp)(H
T

P)x(t) < 0. (40)
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4746 SHAHBAZZADEH et al.

By adding the inequality (20) to (40), we have

V̇(x) < xT(t)(PĀ + ĀTP + Q)x(t) + xT(t)(PH)f (xp) + f T(xp)(H
T

P)x(t)

+ 𝜇−1xT(t)L
T
p Lpx(t) − 𝜇−1f T(xp)f (xp). (41)

The inequality (41) can be rewritten as

V̇(x) < 𝜈T(t)Π𝜈(t), (42)

where

Π =

[
PĀ + ĀTP + 𝜇−1L

T
p Lp + Q PH

∗ −𝜇−1I

]
. (43)

We deduce that V̇(x) < 0 holds if Π < 0 is fulfilled.
Applying the Schur complement to Π < 0 yields

⎡⎢⎢⎢⎢⎢⎣

PĀ + ĀTP PH L
T
p I

∗ −𝜇−1I 0 0
∗ ∗ −𝜇I 0
∗ ∗ ∗ −Q−1

⎤⎥⎥⎥⎥⎥⎦
< 0. (44)

By performing a congruence transformation with diag(P−1, 𝜇I, I, I) on the inequality (44), where X = P−1, one can get
LMI (34).

Integrating (39) from 0 to ∞ can result in

V
(

x(∞)
)
− V

(
x(0)

)
< −∫

∞

0
xT(t)Qx(t)dt = − . (45)

The asymptotic stability of the closed-loop system implies that V(X(∞)) = 0, therefore

 < xT(0)Px(0) ≤ 𝛿. (46)

By minimization of 𝛿, the upper bound of the quadratic performance index is found. By applying the Schur complement
to (46), we obtain LMI (36), which completes the proof. ▪

Remark 8. The weight matrix can be tuned based on the designer’s experience. For the sake of simplicity, Q can be selected
in the diagonal form (i.e., when Q̂12 = 0).

Remark 9. The quadratic performance index  in (37) can be substituted by a performance index in terms
of error e(t) or control input u(t), which does not change the framework of the reset law design of this
study.

Remark 10. The overall design procedures of the proposed reset controller and the reset controller introduced in Refer-
ence 21 are demonstrated in Figure 1A,B, respectively. The red dashed line and the blue dashed line show the online and
offline calculations, respectively. As shown in Figure 1, unlike conventional methods like in Reference 21 which need
to solve optimization problem at every reset time, the LMI optimization method is solved offline and only once in our
proposed method.
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optimization problem 
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+ = 0

(A) (B)

Plant 

+ ,
+ = 0

If  and 

Initialization 

Solve Theorem 2, and obtain 
the reset map matrices Λ,Ξ

Plant 

, ,

Initialization 

If  and 

F I G U R E 1 The flowchart of the design procedure: (A) Our proposed method (B) the method of Reference 21

4 SIMULATION RESULTS

In this section, two examples are given to demonstrate the validity of the proposed reset law design. Also, the results are
compared with the method introduced in Reference 21.

Example 1. Consider the following nonlinear system:21

ẋp(t) =

[
− 8 1
0 0

]
xp(t) +

[
1
2

]
u(t) +

[
0.5
− 1.5

]
xp2(t)

1 + x2
p1
(t)

,

y(t) =
[
64 0

]
xp(t).

A first-order base controller is selected as21

Ac = −2, Bc = 1, Cc = 1.

The weight matrix Q is chosen as diag(100,100, 50).
By solving the optimization problem of Theorem 2, the reset map matrices are obtained as

Λ =
[
4.2935 −1.4893

]
, Ξ = 0.0337.

Let the initial conditions be xp(0) = [0.5 − 0.5]T and xc(0) = −1. The temporal regularization parameter t𝜌 is set
to 0.1 s.

The system responses and control effort for Example 1 are presented in Figure 2. The reset action occurs when y(t) =
0 (i.e., xp1 (t) = 0). As can be seen from the red dash-dotted line in Figure 2, the controller state is reset at times 0.108 and
0.796 s. It is evident from this figure, the transient performance is improved compared with the base system. In Table 2,
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0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

x p 1(t
)

Base system
Method in [21]
Proposed method

0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

2

x p
(t

)

0 0.5 1 1.5 2 2.5 3
time(sec)

-2

0

-1

1

u(
t)

F I G U R E 2 The simulation results of Example 1

T A B L E 2 Comparison of the cost function  in Example 1

Base system Method in Reference 21 Proposed method

 96.8332 43.2081 42.3957

T A B L E 3 Elapsed time to solve the online optimization problem of Reference 21 in Example 1

First reset Second reset Third reset

Elapsed time 0.6069 s 0.1376 s 0.1164 s

the values of the cost function  are compared with the method in Reference 21. This table shows that the performance
of the system is slightly improved by using the proposed method.

In Reference 21, the reset law is determined by solving an online optimization problem at reset times, which leads to
large computational time. As a result, it may not be useful for systems with small sampling time. As shown in Figure 2,
three reset actions occur using method in Reference 21. The computation times to solve the online optimization problem
of Reference 21 are listed in Table 3. The sampling time was selected as 0.005 s in Reference 21. According to this
table, the computation times are longer than the sampling time, so it cannot be implemented in practice. But in the
proposed method, the computational complexity does not affect the real-time control efficiency, because the LMI opti-
mization problem is solved offline. The simulations have been performed on a computer with Intel Core i7 processor
running at 2.2 GHz with 8GB RAM. Also, the optimization problems are solved by using YALMIP interface31 and Mosek
solver.32

Example 2. Consider a well-mixed continuous stirred tank reactor in which the following isothermal, liquid-phase,
multi-component chemical reaction A ⇆ B → C is being carried out.21,33 The system dynamics are described by

ẋp(t) =
⎡⎢⎢⎢⎣
− 4 0.8796 0
3 −3.6388 0
0 1.7592 −1

⎤⎥⎥⎥⎦ xp(t) +
⎡⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎦ u(t) +
⎡⎢⎢⎢⎣

0.5
− 1.5

1

⎤⎥⎥⎥⎦ x2
p2
(t),

y(t) =
[
0 0 1

]
xp(t).

 10991239, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6057 by T

u D
elft, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SHAHBAZZADEH et al. 4749

The first-order base linear controller is selected as follows:

Ac = −1, Bc = 6, Cc = 1.

The weight matrix Q is chosen as diag(0.01, 0.01,100, 0.005), and the time regularization parameter t𝜌 is 0.1 s.
After solving the optimization problem of Theorem 2, the reset map matrices are obtained as follows:

Λ =
[
− 1.0481 −0.8554 1.0318

]
, Ξ = 0.0042.

The initial conditions are set to xp(0) = [1 1 1]T and xc(0) = 1. The simulation results are depicted in Figure 3. As can be
seen from the red dash-dotted line in Figure 3, the reset actions occur at 1.538, 2.658, 3.728, and 4.8 s. It is obvious that
the control signal is suddenly changed at these times. From this figure, we see that the system responses are similar to
the results presented in Reference 21. According to Table 4, the proposed method has more satisfactory performance than
the method in Reference 21.

Similar to the previous example, the computational times to solve the online optimization problem of Reference 21 are
given in Table 5. As can be seen, the computational times are much larger than the sampling time of 0.005 s. Therefore,
the method of Reference 21 cannot be implemented in practice for systems with small sampling time, while the proposed
method does not have this problem because the reset law is designed offline.

0 5 10

0

0.5

1

x p 1(t
)

Base system
Method in [21]
Proposed method

0 5 10

-1

-0.5

0

0.5

1
2

x p
(t

)

0 5 10
time(sec)

-0.5

0

0.5

1

x p 3(t
)

0 5 10
time(sec)

-3

-2

0

-1

1

u(
t)

F I G U R E 3 The simulation results of Example 2

T A B L E 4 Comparison of the cost function  in Example 2

Base system Method in Reference 21 Proposed method

 137.4570 113.2658 112.7995

T A B L E 5 Elapsed time to solve the online optimization problem of Reference 21 in Example 2

First reset Second reset Third reset

Elapsed time 0.6338 s 0.1421 s 0.1209 s
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5 CONCLUSION

In recent years, the method of reset law design based on MPS has been widely reported in the literature.21-29 In order to
design the reset law, this method needs to solve an optimization problem at reset times, which leads to large computational
time and often cannot be solved within a time sample. In this study, a systematic approach is proposed to design a reset law
for Lipschitz nonlinear systems. By utilizing LMI tools, the problem of optimal reset law design is successfully transformed
into a set of LMIs. By solving the LMI optimization problem, the reset law based on GCC is designed. The proposed
method minimizes the upper bound of the predefined quadratic performance index. Although the performance level of
our method is better than the results in Reference 21, the main advantage of the proposed method is that the reset law is
designed offline. Hence, it can be useful for real-time applications with small sampling time.
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