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Tim de Bruin1 Jens Kober1 Karl Tuyls2,1 Robert Babuška1

Abstract— Recent years have seen a growing interest in the
use of deep neural networks as function approximators in
reinforcement learning. In this paper, an experience replay
method is proposed that ensures that the distribution of the
experiences used for training is between that of the policy and
a uniform distribution. Through experiments on a magnetic
manipulation task it is shown that the method reduces the
need for sustained exhaustive exploration during learning. This
makes it attractive in scenarios where sustained exploration
is in-feasible or undesirable, such as for physical systems like
robots and for life long learning. The method is also shown to
improve the generalization performance of the trained policy,
which can make it attractive for transfer learning. Finally,
for small experience databases the method performs favorably
when compared to the recently proposed alternative of using the
temporal difference error to determine the experience sample
distribution, which makes it an attractive option for robots with
limited memory capacity.

I. INTRODUCTION

Modern day robots are increasingly required to adapt to
changing circumstances and to learn how to behave in new
and complex environments. Reinforcement Learning (RL)
provides a powerful framework that enables them to do this
with minimal prior knowledge about their environment or
their own dynamics [1]. When applying RL to problems
with medium to large state and action dimensions, function
approximators are needed to keep the process tractable. Deep
neural networks have recently had great successes as function
approximators in RL both for robotics [2] and beyond [3],
[4].

When RL is used to learn directly from trial and error,
the amount of interaction required for the robot to learn
good behavior policies can be prohibitively large. Experience
Replay (ER) [5] is a technique that can help to overcome this
problem by allowing interaction experiences to be re-used.
This can make RL more sample efficient, and has proven
to be important to make RL with deep neural networks as
function approximators work in practice [6], [7].

As reported previously [8], RL with deep neural network
function approximators can fail when the experiences that
are used to train the neural networks are not diverse enough.
When learning online, or when using experience replay in
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Fig. 1: Magnetic manipulation setup. The horizontal position
of the ball needs to be controlled via the four coils. The
results in this paper are from a simulation model of this
setup.

the standard manner, in which experiences are added in a
First In First Out (FIFO) manner and sampled uniformly,
this effectively translates to a requirement to always keep
on exploring. This can be problematic when using RL on
physical systems such as robots, where continued thorough
exploration leads to increased wear or even damage of the
system. Additionally, this can lead to bad task-performance
of the robot while learning.

In this paper a method is proposed in which two ex-
perience replay databases are deployed. One is filled with
experiences in the standard FIFO manner, while in the other
one the experiences are overwritten with new experiences
in order to get an approximately uniform distribution over
the state-action space. By sampling experiences from both
databases when training the deep neural networks, the detri-
mental effects of reduced exploration can be limited. This
method is tested on a simulated magnetic manipulation task
(Figure 1).

This work is closely related to [9] where an experience
replay strategy is proposed in which all experiences are
saved, but the sampling procedure is based on the temporal
difference error. We show that when a small database is used,
the temporal difference error does not yield good results.
In [3] a model free RL method with deep neural network
function approximation was proposed in which no experience
replay was used. However, this method requires several
different exploration policies to be followed simultaneously,
which seems implausible outside of simulation.

The remainder of this paper1 is organized as follows:
Section II explains the used deep reinforcement learning

1Also see accompanying video.
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method, some preliminaries about experience replay and our
proposed extension. In Section III the magnetic manipulator
problem on which our method is tested is discussed. Then in
Section IV we examine the properties and the performance
of our method on the magnetic manipulator problem. We
also compare the method to alternatives.

II. METHOD

The experience replay method proposed in this paper is
used in combination with the Deep Deterministic Policy
Gradient (DDPG) algorithm presented in [6]. The results are
however expected to apply similarly to other deep reinforce-
ment learning methods that make use of experience replay.

A. Deep Deterministic Policy Gradient (DDPG)

The DDPG method is an off-policy actor-critic reinforce-
ment learning algorithm. Actor-critic algorithms are inter-
esting for robot control, as they allow for continuous action
spaces. This means that smooth actuator control signals can
be learned.

The algorithm uses an actor and a critic. The actor π
attempts to determine the real-valued control action aπ ∈ Rn
that will maximize the expected sum of future rewards r
based on the current state of the system s ∈ Rm ; aπ = π(s).
The critic Q predicts the expected discounted sum of future
rewards when taking action a(k) in state s(k) at time k and
the policy π is followed for all future time steps:

Qπ(s, a) = E
[(
r
(
s(k), a, s(k + 1)

)
+

∞∑
j=k+1

γj−kr
(
s(j), π(s(j)), s(j + 1)

)∣∣∣s(k) = s

] (1)

with 0 ≤ γ < 1 the discount factor, which is used to ensure
this sum is finite.

The actor and critic functions are approximated by neural
networks with parameter vectors ζ and ξ respectively. The
critic network weights ξ are updated to minimize the squared
temporal difference error:

L(ξ) =
([
r + γQ

(
s′, π(s′|ζ−)

∣∣ ξ−)]−Q(s, a|ξ)
)2

(2)

Where s = s(k), s′ = s(k+1) and r = r(s, a, s′) for brevity.
The parameter vectors ζ− and ξ− are copies of ζ and ξ that
are updated with a low-pass filter to slowly track ζ and ξ:

ξ− ← τξ + (1− τ)ξ− (3)
ζ− ← τζ + (1− τ)ζ−. (4)

This improves the stability of the learning algorithm [6]. The
parameter τ determines how quickly the ζ− and ξ− track ζ
and ξ. Values of τ close to one result in fast yet unstable
learning, whereas small values of τ result in slow yet stable
learning. Here τ = 10−2 is used.

The actor network is updated in the direction that will
maximize the expected reward according to the critic:

∆ζ ∼ OaQ(s, a|ξ)|s=s(k),a=π(s(k)|ζ)Oζπ(s|ζ)|s=s(k) (5)

B. Experience Replay

The use of an off-policy algorithm is very relevant
for robotics as it allows for experience replay [5] to be
used. When using experience replay, the experience tuples
〈s, a, s′, r〉 from the interaction with the system are stored
in a database. During the training of the neural networks,
the experiences are sampled from this database, allowing
them to be used multiple times. The addition of experience
replay aids the learning in several ways. The first benefit
is the increased sample efficiency by allowing samples to be
reused. Additionally, in the context of neural networks, expe-
rience replay allows for mini-batch updates which improves
the computational efficiency, especially when the training is
performed on a GPU.

On top of the efficiency gains that experience replay
brings, it also improves the stability of RL algorithms that
make use of neural network function approximators such as
DQN [7] and DDPG [6]. One way in which the database
helps stabilize the learning process is that it is used to break
the temporal correlations of the neural network learning
updates. Without an experience database, the updates of
(2), (5) would be based on subsequent experience samples
from the system. These samples are highly correlated since
the state of the system does not change much between
consecutive time-steps. For real-time control, this effect is
even more pronounced with high sampling frequencies. The
problem this poses to the learning process is that most mini-
batch optimization algorithms are based on the assumption
of independent and identically distributed (i.i.d.) data [6].
Learning from subsequent samples would violate this i.i.d.
assumption and cause the updates to the network parameters
to have a high variance, leading to slower and potentially
less stable learning [10]. By saving the experiences over a
period of time and updating the neural networks with mini-
batches of experiences that are sampled uniformly random
from the database this problem is alleviated.

1) Effects of the Experience Sample Distributions: In this
paper we use a deterministic policy in combination with
an actor-critic algorithm that uses Q-learning updates. This
means that in theory, no importance sampling is needed to
compensate for the fact that we are sampling our experiences
off-policy [11].

However, we are using deep neural networks as global
function approximators for the actor and the critic. After
every episode E the critic network is updated to minimize
an estimate of the loss function (2), the empirical loss:

E(ξ) =
1

|D|
∑
i∈D

(
ri + γQ

(
s′i, π(s′i|ζ−)

∣∣ ξ−)−Q(si, ai|ξ)
)2

(6)
Here i are the samples in the experience replay database D
after episode E. The distribution of the samples over the
state-action space clearly determines the contribution of the
approximation accuracy in these regions to the empirical loss.
An approximation of Q that is very precise in a part of the
state-action space that has many samples but imprecise in a
region with few experience samples might result in a low



empirical loss. Meanwhile, an approximation that is more or
less correct everywhere might result in a higher empirical
loss. From (5) it can be seen that when the critic is not
accurate for a certain region of the state action space, the
updates to the actor will also likely be wrong.

Additionally, even if a neural network has previously
learned to do a task well, it can forget this knowledge
completely when learning a new task, even when the new
task is related to the old one [12]. In the case of the
DDPG algorithm, even if the critic can accurately predict
the expected future sum of rewards for parts of the state-
action space, this ability can disappear when it is no longer
trained on data from this part of the state-action space, as the
same parameters apply to the other parts of the state-action
space as well and might be changed to reduce the temporal
difference error there.

We earlier observed [8] that when the experiences are
sampled by exclusively following a deterministic policy
without exploration, even a good one, the DDPG method
fails. Since sufficient exploration prevents this problem, this
seems to imply that having a value function and policy
that generalize to the whole state-action space to at least
some extent is important. Therefore, we would like to have
at least some sample density over the whole state-action
space. We are however mostly interested in those areas of
the state-action space that would actually be encountered
when performing the task. We therefore want most of our
experiences to be in this region. For optimal performance
we therefore need to find a trade-off between both criteria.
Furthermore, these properties of the database distribution
should ideally hold after all episodes E.

In Section IV experiments are shown that investigate the
influence of the experience sample distribution over the state-
action space. These experiments indeed show that the ideal
distribution is likely to be somewhere between the distribu-
tion that results from simply following the most recent policy
with some exploration and a uniform distribution over the
state-action space.

2) Distribution Based Experience Retention: The most
common experience replay method, which is used in the
DQN [7] and DDPG [6] papers, is to use a database D that
is overwritten in a First In First Out (FIFO) fashion. The
experiences are then sampled from this database uniformly
random. This will however in general not yield a desirable
distribution of the experiences in the sampled batches over
the state-action space. In fact, as will be shown in Section IV,
when at some point during the training the amount of explo-
ration is reduced too far, the performance of the controller
policy will decrease.

Maintaining high levels of exploration might place in-
feasible demands on physical systems such as robots. On
these systems, continued extensive exploration might cause
increased wear or damage or be simply impossible because
the robot is required to perform a task adequately while
learning is under way.

In this paper, a method is proposed to maintain a desirable
distribution over the state-action space of the experiences in
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Fig. 2: Experimental setup schematic.

the batches used to update the neural networks.
The proposed method is based on having two experience

databases of limited size. The first database Dπ is overwrit-
ten in the standard FIFO manner. The distribution of the
experience samples in this database will therefore correspond
approximately to the current policy.

For the second database DU , the experiences in the
database are overwritten by the new experiences in such
a way that we approximate a uniform distribution over
the state-action space. To do this, after this experience
database has been filled to capacity, each new experience
will overwrite the experience i already in this database that is
most likely under the distribution induced by the experiences
j already contained in DU . The following distance metric,
employing kernel density estimation [13] on the experiences
in the database DU , is used to determine which experience
will be overwritten:

ioverwrite = argmax
i∈D

1

|D|
∑
j∈D

e−
∑DN

d=1 (id−jd)2/Cd (7)

where d are the dimensions in the state-action space, DN is
the total dimensionality of the state-action space and Cd is
a dimension dependent scaling constant. Here, Cd is chosen
as |d|/C with d the size of the considered part of that state-
action dimension. C is a constant that is dependent on the
size of the database and the properties of the distribution. It
is chosen manually based on the approximation quality of
the sample distribution.

When training the neural networks, experiences are drawn
uniformly random from DU with probability β and uniformly
random from Dπ with probability (1 − β). The constant β
represents a trade-off between generalization performance
and task performance. Additionally, the value of β could
be increased when the amount of exploration is reduced to
prevent loss of performance.

III. EXPERIMENTS

To test the proposed method, control policies are learned
for a simulated magnetic manipulation task.

A. MAGMAN

Magnetic manipulation is contactless, which opens up
new possibilities for actuation on a micro scale and in



environments where it is not possible to use traditional
actuators. An example of this type of application are medical
micro and nano robots [14].

Our magnetic manipulation setup (Figures 1 and 2) has
four electromagnets in a line. The current through the
electromagnet coils is controlled to dynamically shape the
magnetic field above the electromagnets and so to position a
steel ball accurately and quickly to a desired set point. The
ball position is measured by a laser sensor.

The horizontal acceleration of the ball is given by:

ÿ = − b

m
ẏ +

1

m

4∑
i=1

g(y, i)ui (8)

with
g(y, i) =

−c1 (y − 0.025i)(
(y − 0.025i)

2
+ c2

)3 . (9)

Here, y denotes the position of the ball, ẏ its velocity
and ÿ the acceleration. With ui the current through coil
i = 1, 2, 3, 4, g(y, i) is the nonlinear magnetic force equation,
m [kg] the ball mass, and b [Nsm ] the viscous friction of the
ball on the rail. The model parameters are listed in Table I.

TABLE I: Magnetic manipulation system parameters

Model parameter Symbol Value Unit
Ball mass m 3.200 · 10−2 kg
Viscous damping b 1.613 · 10−2 Nms
Empirical parameter c1 5.520 · 10−10 Nm5A−1

Empirical parameter c2 1.750 · 10−4 m2

Sampling period Ts 0.02 s

The reinforcement learning state s is given by the the
position and velocity of the ball. The action a is defined
as the vector of currents u1 . . . un ∈ [0, 0.6] to the coils. The
reward function is defined as:

r(s) = − (100 |y − yr|+ 5 |ẏ|) (10)

where the reference position yr is set to yr = 0.035m.
For the theoretical experiments, simulations have been

performed with 3 coils. In these experiments the ball always
starts with the position and velocity equal to zero. We
measure the performance of the controller in two ways:
• The task performance: the average reward for an episode

when using the same initial conditions as were used
during training.

• The generalization performance: the average reward for
an episode when starting from several different initial
positions and velocities.

On physical systems such as robots, continued thorough
exploration is not always desirable or even feasible. To reflect
this fact, the amount of exploration in the experiments is
decayed exponentially per episode for all experiments.

IV. RESULTS

To investigate the merits of the method proposed in Sec-
tion II, several experiments are conducted on the magnetic
manipulation problem described in Section III.

(a) Performance on the training task

(b) Performance on the generalization task

Fig. 3: Influence of the database distribution on the learning
performance. Means and 90% confidence bounds shown for
30 trials.

A. Distribution Effects

In Section II-B.1 we theorized that the ideal distribution
of the experiences in the mini-batches over the state-action
space would be somewhere between a uniform distribution
and the distribution resulting from the policy. We now test
this hypothesis experimentally.

Trials are conducted with an experience replay database
that is overwritten in the standard FIFO manner. However,
with a probability α the experience that results from inter-
acting with the system is replaced with a hypothetical expe-
rience before being written to the database. The hypothetical
experience is synthesized by choosing the state and action
uniformly random from the state and action spaces. The next
state and the reward are known since a simulation is used.
In general this is not the case, but here it serves to test the
desirability of the theoretical database distribution.

The average results of 30 repetitions of this experiment
are shown in Figure 3, for different values of α. For α = 0
we get the standard FIFO method. Here, training is based
on the experiences from the 10 most recent episodes. The
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(c) Distribution overwriting

Fig. 4: Experience distributions over the state-space after 2000 episodes for different database overwrite policies. The
reinforcement learning performance when training with databases like these can be seen in Figure 5.

policy being followed is the current trained policy plus
exploration. It can be seen that from episode 1500 the
decaying exploration causes the diversity of the experiences
in the database to drop to a point where the performance of
the method, even on the training task, starts to decrease.

For α = 1 the method uses only hypothetical experiences
that are sampled uniformly from the state-action space. It can
be seen from Figure 3b that this results in a somewhat better
performance on the generalization task, but in a significantly
worse performance on the training task. This makes sense
as for the training task we would like the accuracy of the Q
function approximation and the policy to be greatest in those
regions of the state action space that are actually visited by
the policy.

For α = 0.5 the distribution of the experiences that the
networks are trained with is an even mix of those from the
policy with exploration and the uniform distribution. It can
be seen from Figure 3b that this improves the generalization
performance, while Figure 3a shows that it does not com-
promise the performance on the training task. In fact, when
the exploration decays, the uniform samples help prevent
the loss of performance observed for α = 0. The eventual
performance on both the training and the generalization task
is significantly better when training on the mixed distribution
than when training on either the policy distribution or the
uniform distribution.

B. Overwriting Policy Effects
In general, the transition and reward functions are not

available. Therefore simply adding the uniform hypothetical
experiences to an existing database is not an option. To
still get an approximation of a uniform distribution the
database overwrite method of Section II-B.2 was proposed.
This method takes the stream of experiences that result from
interacting with the system and overwrites the database such
that its contents are maximally spread out over the state-
action space.

To test the effectiveness of this method, an experiment is
performed in which the stream of experiences resulting from
interacting with the system is fed to three separate databases.
The first database simply overwrites the experiences in a
FIFO manner. The second uses the temporal difference errors

of (2) to decide which experiences to replace in the database.
As suggested by [9] the experiences with the lowest temporal
difference error are considered the least informative. There-
fore these are replaced by new ones. The last database uses
our overwrite policy based on the locations in the state-action
space of the experiences already in the database.

In Figure 4 the distributions of the experiences in the three
databases over the state space are shown after 2000 episodes.
Note that the visualizations are only based on the state space
and not on the action space as the full state-action space is
too high dimensional to visualize. The density estimations
are computed in a similar fashion to (7).

Figure 4a shows the danger of only remembering recent
episodes. At this stage the exploration had decayed and the
policy failed to reach the reference position. This meant that
the FIFO database only contained samples very close to the
initial position even though at an earlier stage much of the
state space had been explored.

Figure 4b shows that by basing the retention on the tem-
poral difference error, more diverse experiences are retained.
However, also here much of the state space is not represented
in the database. This is likely because at some point the
temporal difference error at those locations was low, which
results in the experiences being forgotten. When later the
approximation of the Q function becomes worse in this
region, the experiences can not be recovered. This issue is
prevented in [9] by remembering all experiences and using
the temporal difference error to decide how to sample from
the database. This might however not be possible when high
dimensional observations are used in combination with the
lower dimensional states and actions, such as in [2], as it
would require too much memory.

Our method is shown in Figure 4c. Although the distribu-
tion of the experiences over the state space is not uniform, the
experiences cover a much larger fraction of the state space
than either of the other methods.

C. Multiple Databases
In Section IV-A it was shown that mixing in experiences

that are sampled uniformly from the state-action space with
those resulting from interacting with the system was bene-
ficial to the learning process. In Section IV-B we showed
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Fig. 5: Performance of the proposed method compared to
FIFO and TDE overwrite policies. Means and 90% confi-
dence bounds shown for 30 trials.

that our proposed database overwrite policy resulted in a
reasonable coverage of the state-space. Here it will be
investigated if the beneficial effects of Section IV-A still hold
when the experiences from the database DU are used as an
approximation of uniform experiences.

The method proposed in Section II-B.2 is compared to
using the standard FIFO method and the TDE method in
Figure 5. In these tests, the size of the FIFO and TDE
databases is equal to the sum of the sizes of the two databases
used in our method. It can be seen that for a reasonably
chosen value of the mixing rate β, the method indeed works.
Experiments were conducted for β = 0.25, β = 0.5 and
β = 0.75. The best task and generalization performance was
observed for β = 0.25. For this value of β, the performance
on both the training and the generalization tasks is improved
with respect to the FIFO method. When the amount of
exploration decays, mixing in the older experiences from the
rest of the state-action space helps limit the performance loss
of the method. Interestingly the temporal difference based
method performed worse than even the FIFO method in these

experiments. This is likely due to the fact that only a limited
number of experiences is kept in memory.

V. CONCLUSIONS

In this paper a method was introduced that uses two
experience replay databases with different overwrite policies.
One databases overwrites the experiences in its memory in
a First In First Out manner. The second database overwrites
the experiences in such a way as to ensure that the resulting
distribution of the experiences over the state-action space
is as close as possible to uniform. By sampling experiences
from both databases, deep neural networks can be used more
safely as function approximators for reinforcement learning.
This is especially true for reinforcement learning on physical
systems such as robots, as the method reduces the need
for continued thorough exploration, allows for improved
generalization performance, and allows the use of smaller
experience replay databases.
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