
Secure bus
architecture for
IMDs

Erik Speksnijder
Ismail Bourhaeil

Secure bus

architecture for
IMDs

by

Erik Speksnijder
Ismail Bourhaeil

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be defended on Wednesday June 30, 2021 at 13:30 AM.

Student number: 4905210, 4875400
Project duration: April 19, 2021 – July 2, 2021
Thesis committee: Dr. I. E. Lager, TU Delft

Prof. dr. S. Hamdioui, TU Delft, supervisor
Dr. ing. R. Bishnoi, TU Delft, supervisor
Dr. ir. C. Strydis, Erasmus University, supervisor
M. A. Siddiqi, Erasmus University, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Epilepsy is a system­wide phenomenon which manifests physically across the body in various forms
such as rapid muscle tone, sweating, elevated heart rate and synchronized neuron firing. Many of these
aspects appear ahead of an epileptic incident. If combined together, these aspects are tell­tale signs
of an imminent ictal event. Because of these observations, a wireless medical body area network
(MBAN) has been proposed, which implements multimodal­data integration and closed­loop seizure
suppression.

The design and implementation of the MBAN introduces several challenges, such as data collection,
seizure prediction and suppression, secure pairing and communication and the design of a user friendly
interface. This thesis will focus on the design and implementation of a secure bus architecture that
connects multiple processing cores, a sensor and an actuator within an MBAN node.

The interconnect will provide communication between the masters and slaves via an AMBA AHB­
Lite protocol. Furthermore, a memory protection unit (MPU) will deny accesses from unauthorized
peripherals. Additionally, the prototype will provide a secure communication protocol for updating the
MPU. Finally, the prototype will be able to communicate wirelessly with a smartphone.

The deliverable will be a proof­of­concept implementation on an FGPA, demonstrating the previously
described functionalities. Nevertheless, the design choices will be made with the application in mind.

iii

Preface
This thesis is written in the context of the Bachelor Graduation Project of the bachelors program electri­
cal engineering. The deliverable of this thesis is part of a project, executed by six people, and includes
two other theses. The project is embedded in a larger project by TU Delft, Erasmus Medical Center
and Leiden University Medical Center. We would like to thank our teammates and supervisors for their
support.

Erik Speksnijder
Ismail Bourhaeil
Delft, June 2021

v

Contents

Abstract iii

1 Introduction 1
1.1 Implantable medical devices (IMDs). 1
1.2 Problem definition . 2
1.3 Thesis outline . 2

2 Threat modeling 3
2.1 Common attacks . 3
2.2 Adversary model . 3
2.3 Laws and regulations. 4

3 Program of requirements 5
3.1 Design tools. 5
3.2 Functional requirements . 5
3.3 Security goals. 5
3.4 Performance indicators. 6

4 Design 7
4.1 Overview . 7
4.2 AHB­Lite Bus . 8

4.2.1 AHB­Lite protocol. 8
4.2.2 Overview of the AHB­Lite Bus . 10
4.2.3 Decoder . 11
4.2.4 Arbiter . 11

4.3 Memory protection unit . 15
4.3.1 Input­output behaviour . 15
4.3.2 Design. 15

4.4 Authentication manager . 16
4.4.1 Protocol . 16
4.4.2 Encryption . 16
4.4.3 Nonce generation. 20
4.4.4 Control FSM . 21
4.4.5 Implementation . 22

4.5 Bluetooth communication . 23
4.5.1 Bluetooth module . 24
4.5.2 Bluetooth services . 25
4.5.3 Encryption . 25

5 Verification and implementation 27
5.1 AHB­Lite Bus . 27

5.1.1 Decoder . 27
5.1.2 Arbiter . 27
5.1.3 Top level of the AHB­Bus. 27

5.2 Memory protection unit . 28
5.3 Authentication manager . 29

5.3.1 Encryption module . 29
5.3.2 Control FSM . 30
5.3.3 Top level . 31

vii

viii Contents

5.4 Implementation . 32
5.4.1 Demonstration . 32
5.4.2 Hardware cost . 33

6 Conclusion and discussion 35
6.1 Conclusion . 35
6.2 Future work . 35

1
Introduction

Epilepsy is a central nervous system disorder, characterized by seizures or periods of unusual behavior,
sensations, and sometimes loss of awareness [1]. Seizure episodes are a result of excessive electrical
discharges in a group of brain cells [2]. Symptoms range from strange sensations such as unusual
smells or tastes to uncontrollable jerking or shaking and loss of consciousness [3].

In 2019, more than 60 thousand people in The Netherlands received medical treatment for epilepsy
[4] and around 50 million people worldwide suffer from the disorder [2], making it one of the most
common neurological diseases.

Depending on the duration and severity of the condition, epilepsy can impact the patient’s quality
of life, preventing things such as swimming or driving. Furthermore, people, living with epilepsy, may
face social issues, such as stigma and discrimination.

Fortunately, treatment with appropriate anti­seizure medicines can often prevent or control seizures.
However, 30% of the patients do not respond positively to anti­epileptic drugs prescribed to them [5].

In order for timely seizure prevention to become possible, single­site sensory recordings are not
sufficient in order to permit in­time and robust identification of seizures: Epilepsy is a system­wide
phenomenon which manifests physically across the body in various forms such as rapid muscle tone,
sweating, elevated heart rate and synchronized neuron firing. Many of these aspects appear ahead of
an epileptic incident. If combined together, these aspects are tell­tale signs of an imminent ictal event.
Because of these observations, a wireless medical body area network (MBAN) has been proposed,
which implements multimodal­data integration and closed­loop seizure suppression.

The design and implementation of the MBAN introduces several challenges, such as data collection,
seizure prediction and suppression, secure pairing and communication and the design of a user friendly
interface. This thesis will focus on the design and implementation of a secure bus architecture that
connects multiple processing cores, a sensor and an actuator within an MBAN node, providing isolation
between the modules as well as memory protection.

This chapter is structured as follows: First, Implantable medical devices (IMDs) will be discussed.
Next the problem of the thesis will be defined, including the scope and bounds of the project. Finally,
the structure of the thesis will be outlined.

1.1. Implantable medical devices (IMDs)
An implantable medical device (IMD) is a device which is introduced into the human body by clinical
intervention. The operation of an IMD depends on an energy source other than one generated by
the human body or gravity. Examples are cardiac pacemakers, implantable defibrillators, implantable
neurostimulators, cochlear implants and implantable glucose monitors and infusion pumps.

In 1958, Åke Senning, a thoracic surgeon at the Karolinska Hospital in Stockholm, implanted the first
IMD in the form of myocardial electrodes and a pulse generator with a rechargeable nickel­cadmium
battery [6]. Since then, IMDs have evolved rapidly into reliable cures for chronic diseases, maturing
in lifetime, functionality and effectiveness. This development has allowed for new ways of treatment,
greatly improving patient’s quality of life. The most notable improvement has emerged with the intro­
duction of wireless communication, which allows for continuous monitoring of heart rate, insulin levels

1

2 1. Introduction

etc. Additionally, health­care practitioners may request data or reprogram the IMD, allowing a change
in the patient’s treatment without the need for surgery.

While the wireless technology can greatly improve the delivery of a treatment, it also comes with
potential hazards from a security perspective. The privacy and security concerns raise the need for
a methodology which prevents unauthorized entities to access the IMD and control and access its
components, such as sensors, actuators and memory.

1.2. Problem definition
The goal of this thesis is the design and implementation of a secure bus­architecture that connects
multiple processing cores and other entities within an MBAN node, providing isolation between the
modules as well as memory protection. The organization of the node is given in figure 1.1 and includes
a sensor, actuator and memory as well as two processing cores: a main core (SiMS) and a security
core (SISC). Additionally, the SISC may communicate with an external reader via a transceiver.

The deliverable will be a proof­of­concept implementation on an FPGA, demonstrating the function­
alities and features of the design. Additionally the FPGA will have to be able to communicate wirelessly
with a smartphone, for example via Bluetooth. Fabrication of a customer­oriented product falls outside
the scope of the project. Nonetheless, the design choices will be made with the final application in
mind.

Figure 1.1: Internal architecture of an MBAN node

1.3. Thesis outline
This thesis is structured as follows: chapter 2 gives an analysis and overview of security vulnerabili­
ties and potential cyber attacks. Chapter 3 describes the requirements of the prototype including the
environmental conditions, functional requirements and performance indicators. Chapter 4 elaborates
on the design of the prototype. Chapter 5 discusses the implementation and verification of the design.
Finally, chapter 6 gives a conclusion and recommendations for future work.

2
Threat modeling

Threat modeling is a process occupied with identifying potential threats and vulnerabilities of the sys­
tem. In this chapter we will focus on security threats associated with the communication between the
IMD and an external reader. First, the common attacks, described in [7], will be summarized. Next,
the adversary model will be defined. Finally, laws and regulations regarding data protection will be
discussed.

2.1. Common attacks
• Eavesdropping: Eavesdropping, also known as sniffing or snooping, occurs when an attacker
intercepts data that is transmitted between two devices. The standard defense against eaves­
dropping is the use of cryptography to hide information[8].

• Modification: A modification attack occurs when an attacker alters a portion of the message, by
changing, inserting or deleting data. A modification attack can be prevented with digital signa­
tures, hash functions or message authentication codes.

• Replay: A replay attack is an attack in which a message from an authorized user is intercepted
and repeated. Several countermeasures exist such as tagging the message with a session ID or
using a MAC with a randomly generated nonce.

• Denial of service: A denial of service attack is an attack in which a malicious actor aims to
render a device or network resource unavailable to its intended user by disrupting services. This
is typically achieved by flooding the device with requests.

• Cryptanalysis: Cryptanalysis is occupied with exploring weaknesses or leaks of information in
a cryptographic system. Cryptanalysis typically aims to take advantage of mathematical weak­
nesses, but also includes side­channel attacks, which depends on extracting information from the
physical system, used for encryption.

• Birthday attacks: The birthday attack is a brute­force method and relies on the higher probability
of collision between random attack attempts and a fixed degree of permutations. Typically, a
message 𝑚 is accompanied with a digital signature 𝑓(𝑚). Mathematically, the objective of a
birthday attack is to find a fraudulent input 𝑚′ such that 𝑓(𝑚) = 𝑓(𝑚′). If such a pair is found, the
attacker presents the fair contract to the victim. After the victim has signed the fair contract, the
attacker attaches the signature to the fraudulent version. Birthday attacks can be prevented by
making the digital signature long enough such that the attack becomes computationally infeasible.

2.2. Adversary model
An adversary model is a formalization of an attack on a device, network or protocol [9]. The adversary
can be classified into two categories: a passive adversary and an active adversary.

3

4 2. Threat modeling

• Passive adversary: A passive adversary refers to an attacker that is able to execute any mali­
cious operation that does not involve generation or modification of a message. These operations
typically involve eavesdropping.

• Active adversary: An active adversary refers to an attacker that has full control over the com­
munication channel allowing them to eavesdrop, modify, drop and replay messages.

During the design of the communication protocols in section 4 we will assume an active attacker.
This assumption is justified considering the security requirements of the IMD [10].

2.3. Laws and regulations
The European parliament and council published The General Data Protection Regulation (GDPR) [11]
in the official journal of the European Union, providing regulations on the processing and freemovement
of personal data. The regulation entered into force on the 24th of May in 2016 for all Member States
of the European Union and applied from the 25th of May in 2018. Of particular relevance are articles
25, 32 and 35.

Article 25, paragraph 1 and 2 state the following.

1. ”The controller shall, both at the time of the determination of the means for processing and at the
time of the processing itself, implement appropriate technical and organisational measures, which
are designed to implement data­protection principles in an effective manner and to integrate the
necessary safeguards into the processing.”

2. ”The controller shall implement appropriate technical and organisational measures for ensuring
that, only personal data which are necessary for each specific purpose of the processing are
processed.”

Article 32, paragraph 1 describes in more detail the regulations regarding the security of processing
and states that, among others, the controller shall implement the following measures to ensure a level
of security, as appropriate.

1. ”the pseudonymisation and encryption of personal data”

2. ”the ability to ensure the ongoing confidentiality, integrity, availability and resilience of processing
systems and services”

3. ”the ability to restore the availability and access to personal data in a timely manner in the event
of a physical or technical incident”

4. ”a process for regularly testing, assessing and evaluating the effectiveness of technical and or­
ganisational measures for ensuring the security of the processing”

Article 35, paragraph 1 describes regulations on data protection impact assessment and states that,
prior to the processing, ”the controller shall carry out an assessment of the impact of the envisaged
processing operations on the protection of personal data”.

The US Food and Drug Administration (FDA) issued nonbinding recommendations on management
of cybersecurity in medical devices on the 28th of December in 2016 [12]. Among others, the FDA rec­
ommends using a cybersecurity vulnerability assessment tool for rating vulnerabilities and determining
the need for and urgency of the response as well as having a process for assessing the severity of
patient harm, if the cybersecurity vulnerability were to be exploited.

3
Program of requirements

As stated in section 1.2, the goal of this thesis is the design and implementation of a secure bus­
architecture that connects the entities within an MBAN node. This chapter describes the functional
requirements and performance indicators of the prototype as well as the software and hardware tools
used during the design process.

3.1. Design tools
For the design and implementation, we will rely on dedicated software and hardware tools, produced
to ease the design process. These design tools are listed below.

• The prototype will be implemented on an Altera DE1 development board.

• A Pmod BLE Bluetooth low energy interface will be used to communicate wirelessly between the
FPGA and the smartphone.

• The Questasim software will be used to simulate the VHDL code.

• The Quartus II 13.0sp1 software will be used to program the FPGA.

3.2. Functional requirements
The deliverable described in section 1.2 should be able to perform certain functions or exhibit specific
input­output behaviour. These requirements are given below.

• The prototype should connect 2 masters and 3 slaves.

• The masters and slaves should be able to communicate via an AMBA AHB­lite protocol.

• A memory protection unit (MPU) should deny accesses from unauthorized masters.

• The prototype should provide a secure protocol for updating the firmware of the MPU. This pro­
tocol should satisfy the security goals defined in section 3.3.

• The prototype should be able to communicate wirelessly with a smartphone.

3.3. Security goals
As stated in section 3.2, the prototype will provide a secure protocol for updating the firmware of the
mpu. The corresponding security goals are described below.

• Confidentiality: Confidentiality is the ability to prevent unauthenticated parties from extracting
information from exchanged data. This prevents unauthorized parties from obtaining sensitive
patient data. Attacks aimed to impact the confidentiality are eavesdropping and cryptanalysis.

5

6 3. Program of requirements

• Authentication: Authentication is occupied with proving the identity of the involved parties. This
prevents an unauthorized party from updating the IMD with malicious firmware.

• Integrity: Integrity of a message is the ability to prevent malicious parties from changing the
message without the trusted parties noticing. Similar to authentication, this prevents an attacker
from injecting malicious firmware. Attacks aimed to impact integrity are modification and birthday
attacks.

• Availability: Availability is the probability that the system performs its intended functionality sat­
isfactorily at a given point in time. Considering the life­critical functionality of an IMD, a high
availability is required during its lifetime. Attacks targeting availability are denial of service at­
tacks.

3.4. Performance indicators
As described in section 1.2, the design choices and performance will be evaluated with the final product
in mind. In this case, the performance indicators should adhere to requirements of implantable medical
devices. These performance indicators are described below.

• Area: Area indicates the occupied physical space. IMDs typically operate under a constrained.
environment. Therefore, the available area is limited. The area of IMDs are typically in the order
of a few 𝑚𝑚2 [13].

• Power consumption: Power consumption indicates the amount of energy consumed in a cer­
tain time frame. IMDs typically operate under a constrained environment. In addition, the IMD
should operate throughout a relatively long lifespan. This explains the need for low­power de­
vices. These systems typically operate off of currents between 10 − 20𝜇𝐴 at voltages between
1 − 2𝑉 [14], resulting in a power consumption between 10 − 40𝜇𝑊.

4
Design

4.1. Overview
In order to meet the functional requirements described in section 3.2, the design of the interconnect
is split into three modules, as shown in figure 4.1. The function of the AHB­Lite Bus is to regulate the
data flow between the masters and the slaves according to the AMBA AHB­Lite protocol. The memory
protection unit (MPU) indicates whether an access is allowed or denied. Finally, the function of the
authentication manager is to execute the authentication protocol, used to provide authentication and
message integrity when updating the MPU.

Themodularity of the design allows separate design of the threemodules, easing the design process
as well as future changes or improvements. Because the authentication protocol, the implementation
of the MPU and the bus interface are three important design choices that can be made independently,
we believe these advantages outweigh the slight area overhead that may occur.

In addition to the design of the interconnect, the deliverable provides wireless communication with
a smartphone.

The subsequent sections will elaborate on the design of the AHB­Lite Bus, the memory protection
unit, the authentication manager and the wireless communication with the smartphone, respectively.

Figure 4.1: Structural overview of the interconnect, consisting of an AHB­Lite Bus, a memory protection unit and an authentication
manager

7

8 4. Design

4.2. AHB­Lite Bus
As described in section 3.2, the interconnect should connect 2 masters and 3 slaves. First, section
4.2.1 discusses the AHB­Lite protocol. Next, section 4.2.2 describes the design of the AHB­Lite Bus.
After that, section 4.2.3 explains the decoder of the AHB­Lite Bus. Finally, section 4.2.4 describes the
arbiter of the AHB­Lite Bus.

4.2.1. AHB­Lite protocol
AMBA AHB­Lite is a protocol designed by ARM for high performance synthesizable designs. The
important signals included in the protocol are shown in table 4.1. A detailed description of the protocol
is given below.

Signal Bits Description
Hwrite 1 Indicates operation (e.g. read or write)
Htrans 2 Determines the transfer type
Hready 1 Indicates a completed transfer
Hresponse 1 Indicates an error
Hsel 1 Selects slave

Table 4.1: Signals provided by the AHB­Lite protocol

The signal HWRITE, which is given by the master, controls the direction of the data flow:

• If HWRITE is HIGH, the operation is a write operation, and data flows from the master to the slave

• If HWRITE is LOW, the operation is a read operation, and data flows from the slave to the master

The signal HTRANS is used to classify the transfer. HTRANS has the following encoding:

HTRANS[1:0] Type Description
00 Idle The master does not request a transfer
01 Busy Used to insert wait states by the master during bursts
10 Nonseq Indicates a single transfer or the first transfer of a bust
11 Seq Indicates the remaining transfers of a burst

Since Bursts are not supported in this implementation because of area constraints, HTRANS will only
take on the values 00 and 10. In this case HTRANS can be viewed equivalent to a VALID signal used
in other protocols.
The two types of transfers supported are a single read and a single write.
An AHB­Lite transfer includes two phases:

• The address phase

• The data phase

This imposes a pipelined nature on the design of the bus, due to the overlapping nature of data and
address phases between successive transfers. This is illustrated in figure 4.2.

4.2. AHB­Lite Bus 9

c
lk

h
a

d
d

r
a

d
re

s
s
 A

a
d

d
re

s
s
 B

h
tr

a
n

s
N

o
n

-S
e

q
(b

1
0

)
N

o
n

-s
e

q
(b

1
0

)
id

le
(b

0
0

)
id

le
(b

0
0

)

h
w

ri
te

b
0

 (
re

a
d

)
b

1
 (

w
ri
te

)

h
rd

a
ta

D
a
ta

A

h
w

d
a
ta

D
a
ta

 B

h
re

a
d

y

h
re

s
p

A
O

K
 (

b
0

)
A

O
K

 (
b

0
)

A
O

K
 (

b
0

)

Figure 4.2: Interface between an interconnect and a master performing a read transfer followed by write transfer

10 4. Design

Figure 4.2 shows the interface between an interconnect and a master performing a read transfer from
address A, followed by a write transfer to address B.

1. During the first clock cycle, the signal HREADY is high, indicating to the master that it should
execute the address phase of the first transfer by sending its desired address value via HADDR
and giving HWRITE a value of 0 and HTRANS a value of 10 to indicate a valid transfer.

2. During the second clock cycle, the master immediately starts the address cycle of its desired write
transfer. However, the interconnect inserts a wait state by giving HREADY a value of 0, indicating
that the master should wait.

3. During the third clock cycle, the interconnect sends the master the data from address A, and sets
HREADY high. HREADY having a high value means that the data in HRDATA is valid, and that
the interconnect accepts the address phase of the write operation. This exemplifies the pipelined
nature of the process.

4. During the fourth clock cycle, the interconnect pulls ready high, indicating that it is ready to accept
the data phase of the write transfer and the address phase of any possible new transfer. The
master then sends the data to be written into address B.

5. During the fifth clock­cycle, the interconnect inserts a wait state.

6. During the sixth clock­cycle, the interconnect sets HREADY high, indicating that the write transfer
has been completed successfully.

The interface between the master and the interconnect is similar to the interface between the in­
terconnect and the slave. The only difference is that the interconnect provides a signal HSEL to each
slave, which is pulled high when a slave is selected.

4.2.2. Overview of the AHB­Lite Bus
Arm proposes the topology shown in figure 4.3 for designing an AHB­Lite Bus with multiple masters
[15].

Figure 4.3: Proposed design of a multi­master AHB­Lite interconnect by Arm [15]

In figure 4.3:

• The decoder determines which slave is requested by each master

• The arbiter decides which master should get access to a slave.

After slightly modifying the topology, shown in figure 4.3, by removing the demultiplexers below the
decoders, and going in detail into the data path and control signals inside of the bus, the design in
figure 4.4 was reached.

4.2. AHB­Lite Bus 11

Decoder

Decoder

Arbiter

Arbiter

Arbiter

select_obh0[0]

select_obh1[0]

select_obh1[2]

pending0[0]
pending1[0]
pending2[0]

access_allowed0

Address0 + Data0 + Write0 + HTrans0

Address1 + Data1 + Write1 + HTrans1

access_allowed1

hresp1

Rdata1

hready1

hready0

Rdata0

hresp0

hsel0

Address0 + Data0 + Write0 + HTrans0

Rdata0, hready0, hresp0

hsel1

Address1 + Data1 + Write1 + HTrans1

Rdata1, hready1, hresp1

hsel2

Address2 + Data2 + Write2 + HTrans2

Rdata2, hready2, hresp2

Address0[31:29] + htrans0

select_obh0[2:0]

pending0[1:0]

hold1[1:0]

pending1[1:0]

pending2[1:0]

hold2[1:0]

pending0[1]
pending1[1]
pending2[1]

hold0[1]
hold1[1]
hold2[1]

hold0[0]
hold1[0]
hold2[0]

Address1[31:29] + htrans1

select_obh1[2:0]

hwrite0

hwrite0

hwrite0

hwrite1

hwrite1

select_obh1[1]

select_obh0[1]

b'10

b'10

htrans

htrans

hresp

hready

select_obh0[2]
select1

hold0[1:0]

hwrite1
select0

Figure 4.4: Schematic of the designed AHB­Lite Bus

4.2.3. Decoder
Each of the two decoders in figure 4.4 decode the accesses of one of the masters, determining which
slave is requested. An important remark is that the decoders are designed to drive all their outputs low
if the signal access allowed coming from the MPU is low.

The input and output signals of the decoder are shown in table 4.2 The signal address_3msb con­
tains the three most significant bits of the address, which are used to determine which slave is ac­
cessed. The signal valid comes from the MPU and indicates whether the access is allowed. The signal
select controls the multiplexer that is connected to the master. Finally, the signal select_obh selects
the requested slave by pulling the respective bit of the arbiter high.

The decoder is implemented as a simple combinatorial circuit.

Signals Input/Output Bits Description
Address_3_msb Input 3 Three most significant bits of the address that determine which slave

is accessed
Valid Input 1 Signal from the mpu that indicates whether the access is allowed
Select Output 2 Controls multiplexer that is connected to the master
Select_obh Output 3 Selects the requested slave by pulling the respective bit of the arbiter

high (one bit hot)

Table 4.2: Input and output signals of the decoder

4.2.4. Arbiter
Each of the three arbiters regulate accesses to a specific slave by providing the relevant control signals
of the AHB­Lite Bus. The arbiter should be able to regulate collisions such as two masters targeting

12 4. Design

the same slave and starting the address phase of a request during the same clock cycle, or one master
starting its address phase during the data phase of the other. To account for different scenario’s, the
arbiters are implemented as an FSM.

The arbiters are designed to always prioritize requests from master 0, the main implant core. This
is done to ensure availability of the life­critical functions performed by the main core, even in case of
DoS attack performed through master 1, which is connected to the outside world via a transceiver.
Input­output behaviour

The inputs and outputs of the arbiter are shown in table 4.3. The signals master0_select and mas­
ter1_select indicate a request from master 0 or master 1, respectively, while the signals write_0 and
write_1 indicate the corresponding operation (e.g. read or write). The signal select_mux controls the
multiplexer connected to the slave. The signals pending0 and pending1 drive the hready signal of
master 0 and master 1, respectively, while the signals hold0 and hold1 stall the respective transfers.
Finally, the signal hsel indicates the corresponding slave is being selected.

Signal Input/Output bits Description
master0_select Input 1 Indicates a request from master 0
master1_select Input 1 Indicates a request from master 1
write_0 Input 1 Indicates operation of master 0 (e.g. read or write)
write_1 Input 1 Indicates operation of master 1 (e.g. read or write)
select_mux Output 2 Controls multiplexer connected to the slave: 00 ­> select master 0,

01 ­> select master 1, 10 ­> drive output low
pending0 Output 1 Drives the hready signal of master 0
pending1 Output 1 Drives the hready signal of master 1
hold0 Output 1 Stalls the transfer of master 0
hold1 Output 1 Stalls the transfer of master 1
hsel Output 1 Select signal of the slave

Table 4.3: Input and output signals of the arbiter

4.2. AHB­Lite Bus 13

Figure 4.5: State diagram of the arbiter of the AHB­Lite Bus

14 4. Design

Implementation
The state­diagram of the arbiter is shown in figure 4.5. In the diagram, blue states indicate a pending

information transfer with no congestion (e.g. two masters accessing the same slave). Red states
indicate a congestion and force one master to wait. Finally, green states are states with no pending
transfer. Transitions starting from these green states are all similar to those from the idle state. To
provide improved readability, the transitions starting from the states ”data cycle 0” and ”data cycle 1”
were omitted from the diagram.

Furthermore, in figure 4.5, each state has two buffers drawn inside it, which symbolize the input
stage buffers in figure 4.4. A buffer, coloured red, holds an address phase of its corresponding master,
while a buffer, coloured white, does not.

Starting from the idle state, three scenario’s are possible: a request from either master 0 or master
1 or a request from both masters at the same time. The flow of control, following these three scenario’s,
is described below.

1. An address phase is received from master 0, but no address phase is received from master 1:

• The arbiter transitions into the ”address cycle 0” state in which it transfers the AHB­Lite
address and control signal from master 0 to the selected slave

• If no address phase is received from master 1, the arbiter goes to the green state ”data cycle
0” in which the data cycle is transferred from master 0 to the slave.

• If an address phase is received from master 1 in the ”address cycle 0” state, the arbiter
transitions into the state ”data cycle 0 congestion”, in which the data cycle of master 0 is
transferred to the slave and the address phase of master 1 is saved.
From this state, if an address phase from master 0 is received, the arbiter prioritizes it over
the saved address phase of master 1, and transitions to the ”address cycle congestion”
state. Otherwise, the arbiter simply transitions to the ”address cycle 1” to handle the saved
address phase of master 1.

2. An address phase is received from master 1, but no address phase is received from master 0

• The arbiter transitions into the ”address cycle 1” state in which it transfer the AHB­Lite ad­
dress and control signal from master 1 to the selected slave

• If no address phase is received from Master 0, the arbiter goes to the green state ”data cycle
1” in which the data phase is transferred from master 1 to the slave.

• If an address phase is received from master 0 in the ”address cycle 0” state, the arbiter
transitions into the state ”data cycle 1 congestion”, in which the data phase of master 1 is
transferred to the slave and the address phase of master 0 is saved .
From this state, if an address phase from master 1 is not received, the arbiter transitions
to the ”address cycle 0” state to process the saved address phase of master 0. Otherwise,
if an address cycle is received from master 1, the arbiter transitions to the ”address cycle
congestion” to handle the saved address cycle of master 0 first, and save the address cycle
received from master 1.

3. An address phase is received from both master 0 and 1 at the same time:

• The arbiter transitions into the ”address cycle congestion” state in which it transfers the AHB­
Lite address and control signal from master 0 to the selected slave and saves the address
phase of master 1.

• After that, the arbiter transitions into the state ”data cycle congestion” in which the data
cycle is transferred from master 0 to the slave and the address cycle of master 1 is saved
for another cycle.

• If an address phase is received frommaster 0 in the ”data cycle congestion” state, the arbiter
prioritizes it over the saved address phase of master 1 and transitions back into the state
”address cycle congestion” to process it. Otherwise, the arbiter transitions into the state
”address cycle 1” to process the saved address cycle of master 1.

4.3. Memory protection unit 15

As shown in figure 4.5, sel_out has a value of 2 in the idle state. This ensures that the signals coming
from a master are only sent to a slave if the corresponding decoder gives the signal ”select[2:0]” a value
other than 0 (as this is the only way to put an arbiter in a state other than idle). Therefore, requests
are sent from a master to a slave if and only if the corresponding ”access_allowed” signal is high. This
means that, by design, there is no way to bypass the MPU in order to access a slave.

The control signal pending is omitted from the state diagram in figure 4.5 to improve readability. As
described above, this control signal is used to drive the hready signals at the interfaces with master 1
and 0, as shown in figure 4.4. The arbiter calculates the value of the signal based on its current state
and the value of hwrite at the output of the input stage, which means the arbiter can be regarded as a
Mealy Machine. Although this creates a direct connection between hwrite and hready at the output, it
shouldn’t lead to glitches in the hready output signal as hwrite is buffered and is not the hwrite signal
coming from the input of the AHB­bus.

4.3. Memory protection unit
As described in section 3.2, the purpose of the memory protection unit is to deny accesses from unau­
thorized masters. This can be achieved through several implementations. The associated design
choices are made on the basis of the performance indicators described in section 3.4. The subsequent
subsections will discuss the input­output behaviour and the design choices, respectively.

4.3.1. Input­output behaviour
The black­box model of the memory protection unit is shown in figure 4.6. Both masters send two input
signals: the address and the operation (e.g. write or read). At the output, the MPU gives the access
rights of both masters (e.g. access permitted or denied). Additionally, the authentication manager
sends the new table and a valid signal which indicates whether the MPU should be updated with the
new table.

Figure 4.6: Block­box model of the memory protection unit including inputs and outputs

4.3.2. Design
The memory protection unit consists of two building blocks: a protection table, indicating the access
rights of both masters and a combinatorial circuit that compares the input signals with the protection
table.

During the design of thememory protection unit, two implementations have been considered. These
implementations are discussed below.

• In the first implementation, every row of the protection table contains an address range, indicated
by a start and end address, as well as the access rights for both writes and reads of both masters.
In this implementation every row of the protection table contains 64 bits of memory for the ad­
dresses as well as 4 bits for the access rights. The combinational circuit includes two comparators
per row for both masters, adding up to four 32­bit comparators per row.

16 4. Design

• In the second implementation, every row of the protection table corresponds to a fixed address
range and only contains the access rights of both masters. The fixed address ranges correspond
to the 𝑙𝑜𝑔2(𝑛) most significant bits of the address, where 𝑛 is the number of rows.

In this implementation, the protection table only contains four bits of memory per row. Additionally,
the combinational circuit only contains some multiplexing logic to select the right protection table
entry, essentially saving four 32­bit comparators per row. However, the increased efficiency in
terms of hardware­cost comes at the expense of limited flexibility: the address ranges are fixed.

According to [10], the second approach saves almost 2000 LUTs for a protection table with 8 rows,
as well as 528 bits of memory. Given the limited area of IMDs, this is significant overhead. Further­
more, the smaller protection table requires a smaller message during a firmware update, reducing the
complexity of the encryption module described in section 4.4.2. On the other hand, the limited flexibility
is not a big problem, since the physical address space of IMDs is typically in the order of hundreds of
kilobytes [10]. Therefore, the second implementation was used for our prototype.

4.4. Authentication manager
The purpose of the authentication manager is to provide a secure protocol for updating the memory
protection unit. The protocol should achieve the security goals defined in section 3.3. First, section 4.4.1
describes the protocol. Next, section 4.4.2 explains the design of the encryption module. After that,
section 4.4.3 discusses the generation of the random nonce, used by the protocol. Next, section 4.4.4
explains the control fsm of the authentication manager. Finally, section 4.4.5 describes the structural
architecture of the authentication manager.

4.4.1. Protocol
During the manufacturing of the implant chip, a key K will be added by the manufacturer and shared in
a secure manner with trusted entities. This key can be used by the trusted entities to securely update
the protection table of the MPU.

The protocol is shown in figure 4.7 and includes the following steps.

1. The reader initiates the authentication protocol by writing into a specific address.

2. The implant generates a fresh nonce 𝑁𝐼 and sends it to the reader. To prevent replay attacks, the
nonce is randomly generated every time the protocol is executed.

3. The reader generates its own random nonce 𝑁𝑅 and encrypts this nonce together with the com­
mand 𝐶𝑚𝑑. Furthermore, to provide authentication, the reader generates a MAC by encrypting
the implant nonce 𝑁𝐼 together with the encrypted command [𝐶𝑚𝑑]𝐾. Next, the encrypted nonce
and command are sent to the implant along with the MAC.

4. Finally, the implant checks the received MAC by decrypting it and comparing it to a local version
of the MAC. If the equality is satisfied, the implant decrypts the command 𝐶𝑚𝑑 and reader nonce
𝑁𝑅, updates the mpu and sends the reader nonce 𝑁𝑅 back to the reader. If the validation fails,
the protocol is aborted and the implant sends an error message.

An important remark is that the authentication manager is not directly connected to the transceiver.
Instead the SISC is placed between the authentication manager and the transceiver and relays the
exchanged data between the receiver and the authentication manager.

4.4.2. Encryption
The purpose of the encryption module is to encrypt plain texts or decrypt cipher texts. This section will
subsequently discuss the design choices, the cipher itself, the input­output behaviour and the imple­
mentation.
Design choices

The encryption module permits several choices, regarding both the encryption methodology as well
as the implementation. These design choices are discussed below.

4.4. Authentication manager 17

Figure 4.7: Protocol used by the authentication manager if the reader wants to update the MPU

• Symmetric vs asymmetric key: Cryptographic systems can be subdivided into two classes:
symmetric and asymmetric key cryptography. Symmetric key cryptography uses the same pre­
shared key for both encryption of the plaintext and decryption of the ciphertext. Asymmetric key
cryptography uses pairs of keys: a public key, which may be known by others, and a private key,
which is known by the owner only. Security of asymmetric key cryptography is based on one­way
functions: functions that are impossible or computationally infeasible to invert. The advantage
of asymmetric key cryptography is the lack of need for a pre­shared key. However asymmetric
ciphers are computationally expensive [16], resulting in larger hardware cost, and have a larger
execution time [17]. As described in section 3.4 area is an important constraint. Furthermore, the
pre­sharing of the key can easily be done by encoding the key in the implant during fabrication.
For these reasons, a symmetric cipher was implemented.

• Lightweight block cipher: To choose an appropriate lightweight block cipher, which falls under
symmetric encryption, some literature research was conducted on papers comparing power con­
sumption and hardware­cost of several lightweight block ciphers. To this end [18], [19], [20], [21]
and [22] have been examined. From these papers [19], [20], [21] and [22] compare area, while
[18] and [22] compare power consumption. The results vary among these papers. In terms of
hardware­cost [19] and [20] indicate Simon as the best cipher, while [18] indicates that Simon
has the lowest power consumption. The other papers indicate a slightly better performance for
other ciphers. Nonetheless, Simon consistently scores among the top choices in terms of both
hardware­cost and power consumption. For this reason, we decided to implement the Simon
block cipher.

• Parallel vs serial implementation: As will be explained, the Simon cipher executes its encryp­
tion algorithm in several rounds. This offers a design choice regarding the parallelism of rounds,
which can be accomplished by loop­unrolling. The degree of parallelism 𝑟𝑝 can range from 1 to
the number of rounds and offers a throughput/area trade­off. According to [23] full loop­unrolling
increases the area by approximately 8000 LUTs when implemented on the FPGA, while the exe­
cution time is decreased by a factor 𝑟𝑝. Given the area constraints of the IMD, this is is significant
overhead. Additionally, the increased execution time is not important, given the limited frequency
of firmware updates. We therefore decided to implement a serial implementation.

• Mode of operation: A block cipher is only suitable for secure encryption of a message of fixed
length. A mode of operation describes a procedure to securely encrypt messages, larger than
a block, by repeated application of a block cipher. In this case, the message length is fixed and
small enough to fit in a single block. Therefore, we can simply encrypt the message, using the
block cipher, without the need for a sophisticated mode of operation.

• Block/key size: During the design two implementations were considered with regards to block
and key size: 32­bit block size/64­bit key size and 64­bit block size/96­bit key size. This design
choice relies on a trade­off between area and security. [22] shows a roughly 20% larger area for

18 4. Design

the 64­bit block size implementation. On the other hand, the 32­bit block size implementation
is more susceptible to brute­force attacks, such as birthday attacks, as well as cryptananalytic
attacks [24]. Given the requirements, described in section 3.4, the area overhead of the 64­bit
block size implementation is acceptable and justified by the security aspects. Furthermore, a
64­bit block cipher allows us to encrypt the 64­bit MAC without the need for a sophisticated mode
of operation. We therefore decided to implement the version with a 64­bit block size and 96­bit
key size.

The Simon cipher
The Simon encryption procedure consists of two phases: key scheduling and encryption in several

rounds. During key scheduling, all round keys are subsequently generated from the master key. During
encryption, the round function is repeatedly applied using the previously generated round keys. A RAM
is used to store the round keys. The SIMON64/96 implementation uses 42 rounds.

The round function uses the following operations.

• Bitwise XOR:⊕

• Bitwise AND: &

• Left circular shift by i bits: 𝑆𝑖

The round function performs the operation described by equation 4.1, where 𝑙𝑖 and 𝑟𝑖 are the 32
most significant and 32 least significant bits of the block during round i, respectively, and 𝑘𝑖 is the key,
used during round i. The round function is shown in figure 4.8.

(𝑙𝑖+1, 𝑟𝑖+1) = 𝑅(𝑙𝑖 , 𝑟𝑖 , 𝑘𝑖) = (𝑆1(𝑙𝑖)&𝑆8(𝑙𝑖) ⊕ 𝑆2(𝑙𝑖) ⊕ 𝑟𝑖⊕𝑘𝑖 , 𝑙) (4.1)

Figure 4.8: Round function of the Simon block cipher

The key scheduling uses the following operations.

• Bitwise XOR:⊕

• Right circular shift by i bits: 𝑆𝑖

The key scheduling performs the operation described by equation 4.2, where 𝑘𝑖 is the key, generated
during round i, and c and z are predefined constants given by equations 4.3 and 4.4. The key scheduling
is shown in figure 4.9.

4.4. Authentication manager 19

𝑘𝑖+3 = 𝐾(𝑘𝑖+2, 𝑘𝑖+1, 𝑘𝑖 , 𝑐, 𝑧𝑖) = 𝑆−4(𝑘𝑖+2) ⊕ 𝑆−3(𝑘𝑖+2) ⊕ 𝑘𝑖⊕ 𝑐⊕ 𝑧𝑖 (4.2)

𝑐 = 0𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶 (4.3)

𝑧 = 10101111011100000011010010011000101000010001111110010110110011 (4.4)

Figure 4.9: Key scheduling of the Simon64/96 block cipher

Input­output behaviour
The input and output signals of the encryption module are shown in table 4.4. Note that the signal

i_data is 32 bits in contrast to the 64­bit block size. The reason is that the security core sends 32­
bit data. The signal i_command indicates whether this data should be written into the upper or lower
register. Furthermore, this signal is used to start encryption or decryption. In addition to the signal
o_data, the encryption module also includes the signal o_ready, indicating whether the encryption or
decryption has finished.

signal input/output bits description
i_key input 96 Key used by the block cipher
i_data input 32 Data that is loaded into the register of the round function
i_command input 3 000 ­> wait, 001 ­> write lower, 010 ­> write upper,

011 ­> start decryption, 100 ­> start encryption
o_data output 64 Encrypted or decrypted data
o_ready output 1 Indicator of a finished encryption or decryption

Table 4.4: Input and output signals of the encryption module

Implementation
Encryption consists of repeated applications of the round function with the respective round key.

Due to the nature of the key scheduling and round function, they can be run in parallel by simply
bypassing the RAM and connecting the output of the key scheduling to the input of the round function.

Decryption consists of repeated application of the round function with the round keys in reverse
order. The dependency on previous keys during generation of the round keys does not allow for par­
allel application of the key scheduling and round function. This dictates the use of a subsequent key
scheduling and decryption phase, as well as the use of a RAM for key storage.

The state diagram of the corresponding control FSM is shown in figure 4.10. When encryption or
decryption starts, the key is first loaded into the registers of the key scheduling. Next, the parallel or
subsequent application of the key scheduling and round function is executed. When the procedure is
finished, the FSM returns to the idle state. Additionally, the control FSM acts as a decoder for the signal
i_command, during the idle state, to allow the round function to write the input data in either the upper
or lower register.

The structural architecture of the encryption module is shown in figure 4.11. The internal signals of
this module are shown table 4.5. The signal round key contains the key used by the round function
during encryption or decryption. The signal iteration indicates the iteration number during encryption

20 4. Design

Figure 4.10: State diagram of the control FSM used by the encryption module

or decryption. The select signal of the mux determines whether the RAM is connected to the round
function or bypassed by the key scheduling. The select signal of the key scheduling determines whether
the input key or the operation described by equation 4.2 is connected to the registers inside the key
scheduling, while the enable signal enables these registers. The select signal of the round function
determines whether the input data or the operation described by equation 4.1 is connected to the
registers inside the round function, while the signals enable1 and enable2 enable the lower and upper
register, respectively. Finally, the signals enable, reset and ready of the counter enable the counter,
reset the counter to zero and indicate that the final iteration has been reached, respectively.

signal bits description
round key 32 key used by the round function during encryption or decryption
iteration 6 indicates the iteration number during encryption or decryption
select mux 1 selects whether RAM is connected to the round function or bypassed
select key scheduling 1 determines whether the input key or the operation described by

equation 4.2 is connected to the registers inside the key scheduling
enable key scheduling 1 enables the registers inside the key scheduling
select round function 1 determines whether the input data or the operation described by

equation 4.1 is connected to the registers inside the round function
enable1 round function 1 enables the lower register inside the round function
enable2 round function 1 enables the upper register inside the round function
enable counter 1 enables the counter
reset counter 1 resets the counter to zero
ready 1 indicates the final iteration has been reached

Table 4.5: Internal signals of the encryption module

4.4.3. Nonce generation
As described in section 4.4.1, the protocol requires generation of a random fresh nonce. To this end a
pseudo­random number generator has been implemented. Several cryptographically secure pseudo­
random number generators have been designed, such as Microsoft’s Cryptographic Application Pro­
gramming Interface function CryptGenRandom, the Yarrow algorithm and Fortuna. However, we de­
cided to use a block cipher running in counter mode as described in [25]. The advantage of this method
is that it allows reuse of the encryption module, thereby saving area.

The operating principle is shown in figure 4.12. The static nonce, a random number encoded during
fabrication, is concatenated with a counter that increases every time a fresh nonce is requested and
given as an input to the block cipher. The output is used as the fresh nonce.

This procedure uses a simple deterministic function as input of the block cipher. However, ciphers
are specifically designed to hide patterns in the input. The properties of the cipher will therefore en­
sure the randomness of the output and any problems with this procedure are generally considered a

4.4. Authentication manager 21

Figure 4.11: Structural architecture of the encryption module

weakness of the block cipher [26].

Figure 4.12: Nonce generation using a block cipher in counter mode

4.4.4. Control FSM
The state diagram of the control FSM of the authentication manager is shown in figure 4.13. As stated
in section 4.4.2, the SISC sends 32­bit data. This explains why writing the lower and upper register is
done in separate states. Additionally, there is a slight modification in the order of the steps described
in section 4.4.1. Namely, the reader nonce is sent after checking the MAC. This allows us to write the
reader nonce immediately into the lower register of the encryption module, saving one 32­bit register.

The state diagram performs the following procedure. After the protocol is initiated, the static nonce
and counter value are subsequently loaded into the upper and lower register, respectively. Next, the
nonce,𝑁𝐼, is generated by the encryption module. Once the encryption procedure is finished, the nonce
is stored and subsequently sent to the SISC. After that, the encrypted command, 𝐶𝑚𝑑, and MAC are
sent by the reader. Next, the MAC is decrypted and validated. If the equality is not satisfied, an error
message is sent and the protocol is aborted. If the comparison results in a match, an authentication
message is sent to the SISC to which the SISC replies by sending the encrypted reader nonce, 𝑁𝑅.
After that, the command and reader nonce are decrypted. When the decryption procedure is finished,
the MPU is updated and the reader nonce is sent back to the reader.

22 4. Design

Figure 4.13: State diagram of the control fsm used by the authentication manager

4.4.5. Implementation
The input and output signals of the authentication manager are shown in table 4.6. The input signals
are the signal Sisc writedata, which contains the data sent by the SISC, and the four most significant
bits of the address, which are used to initiate the protocol. At the output, the authentication manager
gives the new table of the MPU as well as a valid bit which indicates whether the MPU should be
updated. Furthermore, the output signal Sisc readdata contains the data that is sent to the SISC, while
the signals hresponse and hready are the corresponding signals of the AHB­Lite protocol. Finally, the
output signal select indicates that the AHB­Lite Bus should be stalled and the readdata, hresponse
and hready signals of the SISC should be connected to the corresponding signals of the authentication
manager instead of AHB­Lite Bus.

signal input/output bits description
Sisc writedata input 32 data sent by Sisc
address[31:28] input 4 address bits used to initiate the protocol
Sisc readdata output 32 data sent to Sisc
new table output 32 new table of the mpu
valid output 1 indicates whether the mpu should be updated
select output 1 indicates the AHB­lite Bus should be stalled and the hresponse

and hready signals of the authentication manager should be
connected to the Sisc

hresponse output 1 hresponse signal of the AHB­Lite protocol during authentication
hready output 1 hready signal of the AHB­Lite protocol during authentication

Table 4.6: Input and output signals of the authentication manager

The structural architecture of the authentication manager is shown in figure 4.14. The internal sig­
nals are shown in table 4.7. The static nonce and value of the counter are used by the encryption
module to generate the random fresh nonce as described in section 4.4.3. The signals i_data and
o_data are the input and output data of the encryption module as described in section 4.4.2. Further­
more, the command signal determines the function the encryption module will execute as described
in section 4.4.2, while the ready signal indicates the encryption or decryption has finished. The signal

4.5. Bluetooth communication 23

nonce contains the random fresh nonce, used during authentication. The two select signals determine
the input data of the encryption module and data sent to the SISC. The enable signals enable the
counter and the register files containing the fresh nonce and the encrypted command. Finally, the start
and match signals indicate the initiation of the protocol and the equality of the MAC, respectively.

signal bits description
static nonce 32 static nonce used during nonce generation
value 32 counter value used during nonce generation
i_data 32 input data of the encryption module
o_data 64 output data of the encryption module
nonce 32 fresh nonce used during authentication
command 3 command the encryption module will execute
select mux to simon 2 determines input data of the encryption module
select mux to output 1 determines data sent to the Sisc
enable counter 1 enables the counter
enable fresh nonce 1 enables the register file storing the fresh nonce
enable command encrypted 1 enables the register file storing the encrypted command
start 1 indicates initiation of the protocol
match 1 indicates equality of the MAC
ready 1 indicates the encryption or decryption procedure has finished

Table 4.7: Internal signals of the authentication manager

Figure 4.14: Structural architecture of the authentication manager

4.5. Bluetooth communication
As described in section 3.2, the prototype should provide wireless communication with a smartphone.
Given the constraints on power consumption of the IMD, as described in section 3.4, we decided to
implement Bluetooth Low Energy. To satisfy the security goals described in section 3.3, all data will be
encrypted. Section 4.5.1 describes the Bluetooth module. Section 4.5.2 explains the services provided.
Finally, section 4.5.3 explains describes the encryption of the data.

24 4. Design

4.5.1. Bluetooth module
The Digilent Pmod BLE is a Bluetooth Low Energy module with a UART interface and is compatible
with the FPGA. The module is shown in figure 4.15 and is used to communicate wirelessly with the
phone. The simplicity of this module comes from its simple UART interface, used to send commands
to the Pmod or receive updates from the Pmod. Furthermore, the Pmod BLE allows the use of Blue­
tooth Low­Energy without having to worry about low­level abstraction layers. This allows setting­up the
demonstration without a steep learning curve.

Figure 4.15: Digilent Pmod BLE [27]

The Pmod BLE is programmed to provide the Bluetooth services and characteristics shown in figure
4.16. There are two services, one for transferring heart sensor values to the phone app and one to
perform the MPU firmware update. Within each service, characteristics can be programmed. Three
types of characteristics are available:

• Read

• Write

• Notify

These types of characteristics are named from the phone perspective, as the phone is the central
device during the demonstration, while the Pmod BLE is the peripheral device. Therefore, a character­
istic of type read indicates a characteristic in which the phone app reads, while the FPGA writes. The
reverse holds for a write type characteristic. A notify characteristic is similar to a read characteristic,
with the exception that the phone receives a notification when it gets updated. The phone app de­
velopment team requested the use of notify characteristics instead of read characteristics to facilitate
programming the app for the demonstration.

Figure 4.16: Bluetooth services and characteristics programmed in the Pmod

4.5. Bluetooth communication 25

4.5.2. Bluetooth services
The firmware update service has two characteristics, as shown in figure 4.16. This allows performing
the authentication protocol shown in figure 4.17.

Figure 4.17: Firmware update authentication protocol between the FPGA and the phone

The authentication protocol for the firmware update, shown in figure 4.17, is derived from the au­
thentication protocol between the SISC and the interconnect, discussed in section 4.4, and performs
the following steps.

1. The smartphone sends a request for a firmware update to the FPGA.

2. The FPGA requests the implant nonce from the interconnect and relays the nonce to the smart­
phone.

3. The smartphone sends the encrypted command and reader nonce to the FPGA.

4. The FPGA sends an acknowledge to the smartphone.

5. The smartphone sends the MAC to the FPGA

6. The FPGA finishes the protocol described in section 4.4.1 and sends an acknowledge to the
smartphone.

The heart­rate service simply allows the FPGA to send heart­rate values to the phone.

4.5.3. Encryption
All characteristics used by the BLE communication are encrypted using a Simon cipher with a 128 bits
key size and a 64 bits block size. It is assumed that the key is shared via NFC with the phone app, as
implemented by subgroup 1.

The heart­sensor service consists of a stream of heart rate values. A naive approach would be
to encrypt each value independently, also known as electronic codebook (ECB). Usage of ECB is not
recommended because it does not hide data patterns well[28]. This is particularly relevant, because
sensitive medical information such as abnormalities can often be derived from patterns or irregularities.
In addition, ECB is more susceptible to replay attacks, because each block is encrypted in the same
way. This is relevant if a man in the middle obtains the cipher­text of the request for a firmware update.
This allows them to perform a replay attack by repeatedly sending this request, keeping the SISC busy
with the authentication, thus preventing heart­rate data transfer.

26 4. Design

To avoid such problems, several more sophisticated modes of operations exist. For the wireless
communication between the smartphone, we chose to implement cipher block chaining (CBC). The
advantage of CBC lies in its simplicity. In general, CBC has two disadvantages. First, encryption
cannot be parallelized. Second, messages must be padded to a multiple of the block size. The first
feature is not necessary as words are sent in a sequential manner and will therefore be encrypted
and decrypted in a sequential manner. The second disadvantage is not relevant as the encrypted
values have the same size as the block cipher. The theoretical disadvantages of CBC are therefore
not relevant in our implementation.

Figure 4.18 shows how successive words written into a characteristic are encrypted and decrypted
using CBC. During encryption, the plaintext is xor­ed with the ciphertext of the previous block. During
decryption, the output of the decryption module is xor­ed with the ciphertext of the previous block. The
first block uses an initialization vector instead. It is assumed that the initialization vector is agreed on
with the phone development team for each characteristic.

Figure 4.18: Overview of encryption and decryption using CBC [29]

5
Verification and implementation

To verify the behaviour of the prototype, the different abstraction layers have been simulated. Further­
more, the complete system has been demonstrated by an implementation on an FPGA. Section 5.1
through 5.3 describe the simulations of the AHB­Lite Bus, the memory protection unit and the authen­
tication manager. Finally, section 5.4 describes the demonstration of the complete system and gives
an overview of the hardware cost of the modules.

5.1. AHB­Lite Bus
5.1.1. Decoder
The behaviour of the decoder has been verified by simulating it with a test­bench. First, the simulation
runs through every address with the valid low. Next, it runs through every address with the valid high.
The resulting waveform is shown in figure 5.1. From the figure it is clear that the select signals remain
zero during the first run and select the correct slave during the second run. Therefore, we conclude
that the decoder exhibits the correct behaviour.

5.1.2. Arbiter
The behaviour of the arbiter has been verified by simulating it with a test­bench that runs through the
state diagram described in section 4.2.4. Table 5.1 shows the states during simulation, including the
corresponding transition times. In addition, the table indicates the required output signal transitions,
corresponding to these state transitions, allowing us to verify the behaviour of the arbiter.

Figure 5.2 shows the waveform, resulting from the simulation. The waveform shows the expected
signal transitions, as described in table 5.1, indicating that the arbiter behaves correctly.

5.1.3. Top level of the AHB­Bus
The functionality of the AHB­Bus has been tested by simulating many scenarios. As an illustration,
figure 5.3 shows one such scenario.

At the beginning of the scenario, address 0XF0000000 holds the value 0x00000050.
Bothmasters then issue a read request to address 0XF0000000. The interconnect prioritizesmaster

0 and sends 0x00000050 as read data back. After that, master 0 immediately sends a write request
to address 0xF0000000 with a value of 0x00000100. The interconnect still prioritizes this write request
over the read request of master 1, received at the beginning. Finally, the read request of master 1 is
processed, and a value of 0x00000100 is sent to master 1.

Figure 5.1: Resulting waveform of the simulation of the decoder with a test­bench

27

28 5. Verification and implementation

State Transition time Output signal transitions
Idle 0 ns
Address_cycle_congestion 30 ns select_mux ­> 01, pending1 ­> 1, pending2 ­> 1, hold2 ­> 1,

hsel ­>1
Data_cycle_congestion 50 ns
Address_cycle1 70 ns select_mux ­> 10, hold2 ­> 0
Data_cycle1 90 ns pending2 ­> 0
Address_cycle1 110 ns pending2 ­> 1
Data_cycle1_congestion 130 ns pending1 ­> 1, pending2 ­> 0, hold1 ­> 1
Address_cycle0 150 ns select_mux ­> 01, hold1 ­> 0
Data_cycle0 170 ns pending1 ­> 0
Idle 190 ns select_mux ­> 00, hsel ­> 0

Table 5.1: Subsequent states of the arbiter during simulation, including the transition times and the output signal transitions
associated with the corresponding state transitions

Figure 5.2: Resulting waveform of the simulation of the arbiter with a test­bench

Figure 5.3: Resulting waveform of one of the scenario’s, simulated to test the AHB bus

5.2. Memory protection unit
The behaviour of the memory protection unit has been verified by simulating it with a test­bench. The
simulation starts by updating the memory protection unit with the protection table shown in table 5.2.
Next, the read and write accesses of all addresses are checked for both masters. The resulting wave­
form is shown in figure 5.4. From this waveform, the access rights of both masters can be deduced.
The access rights of master 1 and 2 are shown in table 5.3 and table 5.4, respectively. As explained in
section 4.3 the first two bits of each entry contain the write and read access rights of the first master,
respectively, while the last two bits contain the access rights of the second master. From the tables it
is clear that the access rights at the output correspond with those of the protection table, indicating that
the MPU shows the correct input­output behaviour.

5.3. Authentication manager 29

entry value
1 0011
2 1100
3 0010
4 1101
5 0001
6 1110
7 0000
8 1111

Table 5.2: Protection table loaded into the memory protection unit during simulation

Figure 5.4: Resulting waveform of the simulation of the memory protection unit with a testbench

Address Read Write
000 0 0
001 1 1
010 0 0
011 1 1
100 0 0
101 1 1
110 0 0
111 1 1

Table 5.3: Access rights of master 1 deduced from the wave­
form during simulation

Address Read Write
000 1 1
001 0 1
010 0 1
011 1 0
100 1 0
101 0 1
110 0 0
111 1 1

Table 5.4: Access rights of master 2 deduced from the wave­
form during simulation

5.3. Authentication manager
5.3.1. Encryption module
The behaviour of the encryptionmodule has been verified by simulating it with two test­benches: one for
encryption and one for decryption. Both test­benches start by loading the data in the lower and upper
register, respectively, followed by initiating either encryption or decryption. The resulting waveforms
are shown in figure 5.5 and 5.6.

To validate the encrypted or decrypted data, a matlab script has been written, which is able to
perform both encryption and decryption. The results are shown in table 5.5 and coincide with the
results of the test­benches, indicating that the encryption module behaves correctly.

Operation Key Input Output
Encryption 0xFC6CC71FFC6CC71FFC6CC71F 0xFC6CC71FFECED2FF 0x66AE922B064DA7BF
Decryption 0xFC6CC71FFC6CC71FFC6CC71F 0x66AE922B064DA7BF 0xFC6CC71FFECED2FF

Table 5.5: Results of the matlab script of the simon block cipher including the key as well as the input and output data

30 5. Verification and implementation

Figure 5.5: Resulting waveform of the simulation of the encryption of data by the encryption module using a test­bench

Figure 5.6: Resulting waveform of the simulation of the decryption of data by the encryption module using a test­bench

5.3.2. Control FSM
The behaviour of the control FSM of the authentication manager has been verified by simulating it
with a test­bench that runs through the state diagram described in section 4.4.4. Table 5.6 shows the
states during simulation, including the corresponding transition times. In addition, the table indicates
the required output signal transitions, corresponding to these state transitions, allowing us to verify the
behaviour of the control FSM.

Figure 5.7 shows the waveform, resulting from the simulation. The waveform shows the expected
signal transitions, as described in table 5.6, indicating that the control FSM behaves correctly.

State Transition time Output signal transitions
Idle 0 ns
Load static nonce, count + 1 50 ns Count_enable ­> 1, Mux_select ­> 1,

Command ­> 1, auth_select
Load counter value 70 ns Count_enable ­> 0, Mux_select ­> 2,

Command ­> 2
Start nonce generation 90 ns Command ­> 4
Wait nonce generation 110 ns Command ­> 0
Store nonce 150 ns Nonce_enable ­> 1
Send nonce 170 ns Nonce_enable ­> 1, hready ­> 1
Write command 190 ns Command_enable ­> 1, Nonce_enable ­> 0

hready ­> 0
Write MAC lower register 230 ns Command_enable ­> 0, Command ­> 1
Write MAC upper register 270 ns Command ­> 2
Start decryption MAC 310 ns Command ­> 3
Wait decryption MAC 330 ns Command ­> 0
Compare MAC 370 ns No transition
Send authentication message 390 ns Hready ­> 1
Write reader nonce lower register 410 ns Hready ­> 0, Command ­> 1
Start decryption command + reader nonce 450 ns Command ­> 3
Wait decryption command + reader nonce 470 ns Command ­> 0
Update mpu + send reader nonce 510 ns Nonce_select ­> 1, mpu_valid ­> 1, hready ­> 1
Idle 530 ns Nonce_select ­> 1, mpu_valid ­> 1, hready ­> 1

auth_select ­> 1

Table 5.6: Subsequent states of the control FSM of the authentication manager during simulation, including the transition times
and the output signal transitions associated with the corresponding state transitions

5.3. Authentication manager 31

Figure 5.7: Resulting waveform of the simulation of the control FSM of the authentication manager with a test­bench

5.3.3. Top level
In order to verify the behaviour of the authentication manager, a test FSM has been written which
simulates the behaviour of the SISC during authentication. The state diagram of this FSM is shown
in figure 5.8. When the authentication protocol starts, the FSM first requests the nonce by writing
in a specific address. After the nonce has been received, the FSM subsequently sends the encrypted
command andMAC, after which it waits for the authentication message. If an error message is received
the FSM returns to the idle state. If the authentication is successful, the SISC sends the encrypted
reader nonce. Finally, once the reader nonce is sent back, the FSM returns to the idle state. The data
used during simulation is shown in table 5.7.

Cmd 0xAAAAAAAA
𝑁𝐼 0x7E66507D
𝑁𝑅 0xFECED2FF
[𝐶𝑚𝑑,𝑁𝑅]𝐾 0xE8BE0B0B22A39DE3
[[𝐶𝑚𝑑]𝐾 , 𝑁𝐼]𝐾 0x27F51ED09ECE42C6

Table 5.7: Data used during the simulation of the authentication manager

Figure 5.8: State diagram of the test fsm used to verify the behaviour of the authentication manager

The resulting waveform is shown in figure 5.9. As can be seen from the figure, the signal nonce_out
and new_table correspond to the respective data from table 5.7. Additionally, the signals hready, which

32 5. Verification and implementation

indicates that data is sent to the SISC, behaves correctly as well as the signal valid, which indicates that
the MPU should be updated. From these observations we conclude that the authentication manager
behaves properly.

Figure 5.9: Resulting waveform of the simulation of the authentication with the aid of the test FSM shown in figure 5.8

5.4. Implementation
For the demonstration, a Cyclone II DE1 board is used. Section 5.4.1 describes the demonstration on
the FPGA. Next, section 5.4.2 gives an overview of the hardware cost of the modules as well as the
complete interconnect.

Figure 5.10: Cycle II DE1 FPGA board used for the demonstration [30]

5.4.1. Demonstration
Figure 5.11 shows the diagram of the implant SoC as well as the diagram of the system used during
the demonstration.

The memory is emulated by an array of registers, the actuator by a single register, and the sensor
by a register of which the input value comes from a random number added to an average value (80 in
this demonstration, as this is the average heart­rate).

The main implant core and the SISC have been simulated by an FSM. Figure 5.12 shows the
corresponding state diagrams as well as the physical address space.

The main implant core reads the sensor values every 2 seconds, and subsequently writes them into
memory range 1, setting the MSB of the written value to 1 to indicate that it is a valid value.

The SISC reads to sensor values written in address range 1 and sends them to the Pmod BLE,
which in turn sends them to the smartphone via Bluetooth.

5.4. Implementation 33

Figure 5.11: Diagram of the ”real” implant SoC (left) and diagram of the system used for the demo (right)

Figure 5.12: Diagram of the emulated main implant core and SISC, and the physical address space

Initially, the SISC does not have access to memory range 1. The demonstration starts with per­
forming a firmware update to allow the SISC access to this memory range. After that, the SISC starts
sending data to the phone app.

The demonstration has shown that the complete system is operating correctly.

5.4.2. Hardware cost
The designed interconnect was synthesized for the DE1 FPGA. Table 5.8 shows the resulting hardware
cost. The table shows that the authentication manager occupies the largest area.

34 5. Verification and implementation

Module Number of combinatorial functions Number of logic registers
AHB bus 539 169
Authentication manager 1420 1595
MPU 59 32
Interconnect (total) 2018 1796

Table 5.8: Hardware cost of the different modules and the complete interconnect, implemented on the FPGA

6
Conclusion and discussion

6.1. Conclusion
The goal of this thesis was the design and implementation of a secure bus­architecture that connects
multiple processing cores and other entities within an MBAN node, providing isolation between the
modules as well as memory protection. These requirements have been achieved by dividing the design
into three modules: an AHB­Lite Bus, a memory protection unit and an authentication manager. The
purpose of the AHB­Lite Bus is to regulate the data flow between the masters and slaves according
to the AMBA AHB­Lite protocol. The purpose of the memory protection unit is to deny accesses from
unauthorized masters. Finally, the authentication manager provides a secure protocol for updating
the firmware of the mpu. Additionally, the prototype provides secure wireless communication with a
smartphone.

The AHB­Lite Bus regulates the data flow using 2 decoders and 3 arbiters. Each of the decoders
decode the accesses of one of the masters, while each arbiter regulates the accesses to a specific
slave. To account for different scenario’s, the arbiter has been implemented as an FSM. The arbiters
are designed to prioritize master 0 to ensure the availability of the main core.

The memory protection unit was implemented with a protection table with fixed address ranges.
This limits the flexibility, but decreases the hardware cost, an important performance indicator, given
the limited resources of the IMD.

The goal of the authentication manager was to provide confidentiality, authentication and message
integrity. This has been achieved through the use of encryption as well as a message authentication
code, including a randomly generated nonce. The limited power and area constraints of the IMD pro­
vided the main argument for choosing the symmetric lightweight block cipher SIMON64/96 with a serial
implementation. Generation of the pseudo­random nonce has been done using a block cipher running
in counter mode, which allowed for reuse of the encryption module.

The wireless communication was provided by a Pmod BLE module. A Simon block cipher was used
for encryption of the data. Additionally, CBC has been used to hide patterns in the stream of heart­rate
values.

All functional requirements have been verified through simulation as well as a demonstration of the
proof­of­concept implementation on the FPGA.

6.2. Future work
The proof­of­concept implementation of the bus­architecture meets all functional requirements de­
scribed in section 3.2. Nevertheless, future work may explore modification or improvements in the
design. Such modifications have been eased by the modularity of our design as explained in section
4.1. Some recommendation on future work are listed below.

• AHB­Lite Bus: The current design of the AHB­Lite Bus does not support all transfer types pro­
vided by the AHB­Lite protocol. The AHB­Lite Bus may therefore be extended to support types
of transfers that are currently not included, such as burst transfers.

35

36 6. Conclusion and discussion

• Authentication protocol: Future work may explore ways to provide authentication other than
message authentication codes, such as cryptographic hash functions or digital signatures.

• Encryption module: The encryption module has been chosen for optimization of power con­
sumption and hardware cost. Nonetheless, cryptography is a constantly evolving field. As a con­
sequence, more efficient block ciphers may be designed in the future. Additionally, new security
threats or attacks may be discovered, rendering current cryptographic techniques insufficiently
secure. For these reasons the encryption module may need to be replaced in the future.

Furthermore, as stated in section 1.2, the deliverable of this thesis is a proof­of­concept implemen­
tation on an FPGA. Future work may move towards a more customer­oriented product.

Bibliography
[1] Mayo Clinic, “Epilepsy, symptoms causes, mayo clinic.” https://www.mayoclinic.org/

diseases­conditions/epilepsy/symptoms­causes/syc­20350093. Published on
31/03/2021, Accessed on 01/06/2021.

[2] World Health Organization, “Epilepsy.” https://www.who.int/news­room/fact­sheets/
detail/epilepsy. Published on 20/06/2019, Accessed on 01/06/2021.

[3] National Health Service, “Epilepsy, nhs.” https://www.nhs.uk/conditions/epilepsy/.
Published on 18/09/2020, Accessed on 01/06/2021.

[4] M. Nielen, M. Poos, A. Gommer, and M. Rodriguez, “Epilepsie, ci­
jfers context, huidige situatie.” https://www.volksgezondheidenzorg.
info/onderwerp/epilepsie/cijfers­context/huidige­situatie#
node­nieuwe­gevallen­epilepsie­huisartsenpraktijk.

[5] L. Xia, S. Ou, and S. Pan, “Initial response to antiepileptic drugs in patients with newly diagnosed
epilepsy as a predictor of long­term outcome,” Frontiers in Neurology, vol. 8, p. 658, 2017.

[6] K. Jeffrey and V. Parsonnet, “Cardiac pacing, 1960–;1985,” Circulation, vol. 97, no. 19,
pp. 1978–1991, 1998.

[7] C. Boyd, A. Mathuria, and D. Stebila, Protocols for authentication and key establishment, vol. 1.
Springer, 2003.

[8] J. Teng, W. Gu, and D. Xuan, “Chapter 10 ­ defending against physical attacks in wireless sensor
networks,” in Handbook on Securing Cyber­Physical Critical Infrastructure (S. K. Das, K. Kant,
and N. Zhang, eds.), pp. 251–279, Boston: Morgan Kaufmann, 2012.

[9] Q. Do, B. Martini, and K.­K. R. Choo, “The role of the adversarymodel in applied security research,”
Computers Security, vol. 81, pp. 156–181, 2019.

[10] “Final implementation of the sharcs hardware techniques,” Secure Hardware­Software Architec­
tures for Robust Computing Systems, 2017.

[11] European Union, “Regulation 2016/676 of the european parliament and of the coun­
cil.” https://eur­lex.europa.eu/legal­content/EN/TXT/?uri=CELEX%
3A02016R0679­20160504. Published on 27/04/2016, Accessed on 02/06/2021,.

[12] Food and Drug Administration, “Postmarket management of cybersecurity in medical devices.”
https://www.fda.gov/media/95862/download. Published on 28/12/2016, Accessed on
02/06/2021.

[13] J. Charthad, M. J. Weber, T. C. Chang, and A. Arbabian, “A mm­sized implantable medical device
(imd) with ultrasonic power transfer and a hybrid bi­directional data link,” IEEE Journal of Solid­
State Circuits, vol. 50, no. 8, pp. 1741–1753, 2015.

[14] P. Gerrish, E. Herrmann, L. Tyler, and K. Walsh, “Challenges and constraints in designing im­
plantable medical ics,” IEEE Transactions on Device and Materials Reliability, vol. 5, no. 3,
pp. 435–444, 2005.

[15] Arm, “Multi­layer ahb technical overview v.” https://developer.arm.com/
documentation/dvi0045/b, 2004.

37

https://www.mayoclinic.org/diseases-conditions/epilepsy/symptoms-causes/syc-20350093
https://www.mayoclinic.org/diseases-conditions/epilepsy/symptoms-causes/syc-20350093
https://www.who.int/news-room/fact-sheets/detail/epilepsy
https://www.who.int/news-room/fact-sheets/detail/epilepsy
https://www.nhs.uk/conditions/epilepsy/
https://www.volksgezondheidenzorg.info/onderwerp/epilepsie/cijfers-context/huidige-situatie#node-nieuwe-gevallen-epilepsie-huisartsenpraktijk
https://www.volksgezondheidenzorg.info/onderwerp/epilepsie/cijfers-context/huidige-situatie#node-nieuwe-gevallen-epilepsie-huisartsenpraktijk
https://www.volksgezondheidenzorg.info/onderwerp/epilepsie/cijfers-context/huidige-situatie#node-nieuwe-gevallen-epilepsie-huisartsenpraktijk
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://www.fda.gov/media/95862/download
https://developer.arm.com/documentation/dvi0045/b
https://developer.arm.com/documentation/dvi0045/b

38 Bibliography

[16] L. Batina, A. Das, B. Ege, E. B. Kavun, N. Mentens, C. Paar, I. Verbauwhede, and T. Yalçın, “Di­
etary recommendations for lightweight block ciphers: Power, energy and area analysis of recently
developed architectures,” in Radio Frequency Identification (M. Hutter and J.­M. Schmidt, eds.),
(Berlin, Heidelberg), pp. 103–112, Springer Berlin Heidelberg, 2013.

[17] M. Ågren, On Some Symmetric Lightweight Cryptographic Designs. PhD thesis, Department of
Electrical and Information Technology, 2012. Defence details Date: 2012­11­28 Time: 13:15
Place: Lecture hall E:1406, E­building, Ole Römers väg 3, Lund University Faculty of Engineer­
ing External reviewer(s) Name: Rijmen, Vincent Title: Prof. Affiliation: KU Leuven, ESAT/SCD
(COSIC), Heverlee, Belgium. —.

[18] S. Banik, A. Bogdanov, and F. Regazzoni, “Exploring the energy consumption of lightweight block­
ciphers in fpga,” in 2015 International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pp. 1–6, 2015.

[19] A. Bossert, S. Cooper, and A.Wiesmaier, “A comparison of block ciphers simon, speck, and katan,”
September 2016.

[20] J. Hosseinzadeh and A. G. Bafghi, “Evaluation of lightweight block ciphers in hardware implemen­
tation: A comprehensive survey,” 2017.

[21] W. Diehl, F. Farahmand, P. Yalla, J.­P. Kaps, and K. Gaj, “Comparison of hardware and software
implementations of selected lightweight block ciphers,” in 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), pp. 1–4, 2017.

[22] Nayancy, S. Dutta, and S. Chakraborty, “A survey on implementation of lightweight block ciphers
for resource constraints devices,” Journal of Discrete Mathematical Sciences and Cryptography,
vol. 0, no. 0, pp. 1–22, 2020.

[23] J. Wetzels and W. Bokslag, “Simple simon: Fpga implementations of the simon 64/128 block
cipher,” 2015.

[24] L. Qin, H. Chen, and X. Wang, “Linear hull attack on round­reduced simeck with dynamic key­
guessing techniques,” in Information Security and Privacy (J. K. Liu and R. Steinfeld, eds.),
(Cham), pp. 409–424, Springer International Publishing, 2016.

[25] N. Ferguson, B. Schneier, and T. Kohno, Generating Randomness, ch. 9, pp. 135–161. John
Wiley Sons, Ltd, 2015.

[26] H. Lipmaa, P. Rogaway, and D. Wagner, “Comments to nist concerning aes modes of operations:
Ctr­mode encryption,” in National Institute of Standards and Technologies, 2000.

[27] Digilent, “Pmod ble: Bluetooth low energy interface.” https://store.digilentinc.com/
pmod­ble­bluetooth­low­energy­interface/.

[28] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. Discrete
Mathematics and Its Applications, CRC Press, 2018.

[29] Wikipedia, “Block cipher mode of operation.” https://en.wikipedia.org/wiki/Block_
cipher_mode_of_operation.

[30] Terasic, “Altera de1 board.” https://www.terasic.com.tw/cgi­bin/page/archive.pl?
No=83.

https://store.digilentinc.com/pmod-ble-bluetooth-low-energy-interface/
https://store.digilentinc.com/pmod-ble-bluetooth-low-energy-interface/
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=83
https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=83

	Abstract
	Introduction
	Implantable medical devices (IMDs)
	Problem definition
	Thesis outline

	Threat modeling
	Common attacks
	Adversary model
	Laws and regulations

	Program of requirements
	Design tools
	Functional requirements
	Security goals
	Performance indicators

	Design
	Overview
	AHB-Lite Bus
	AHB-Lite protocol
	Overview of the AHB-Lite Bus
	Decoder
	Arbiter

	Memory protection unit
	Input-output behaviour
	Design

	Authentication manager
	Protocol
	Encryption
	Nonce generation
	Control FSM
	Implementation

	Bluetooth communication
	Bluetooth module
	Bluetooth services
	Encryption

	Verification and implementation
	AHB-Lite Bus
	Decoder
	Arbiter
	Top level of the AHB-Bus

	Memory protection unit
	Authentication manager
	Encryption module
	Control FSM
	Top level

	Implementation
	Demonstration
	Hardware cost

	Conclusion and discussion
	Conclusion
	Future work

