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Chapter 1

Introduction

Colorectal cancer is the second leading cause of mortality due to cancer in the
Western world [1]. 85% of all diagnosed colorectal cancers arise from adeno-
matous polyps [1]. Adenomatous polyps are uncontrolled growths in the colon
wall consisting of cells with abnormal DNA. At first they are benign, but they
can turn into carcinoma over the course of years. Fortunately, screening for
colorectal polyps can significantly decrease the incidence of colorectal cancer by
facilitating early detection of such polyps [2]. Moreover, any cancers residing in
the colon or rectum may also be detected in an early stage, so that they can be
treated before metastasizing [3]. Approximately half of the number of polyps
encountered in the colon are non-adenomatous polyps and the vast majority of
the non-adenomatous polyps are hyperplastic. This means they have normal
DNA and it is assumed they have almost no potential to turn malignant [4].

Morphologically, polyps can be divided into flat, sessile and pedunculated
polyps which are illustrated in Figure 1.1. When a polyp evolves into a malig-
nant tumor, it grows into the glandular cells of the colon wall and it is called
an adenocarcinoma.

Figure 1.1: A pedunculated polyp (left), a sessile polyp (middle) and a flat
polyp without elevation (right). (Images are obtained from Ref. [5].)
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2 CHAPTER 1. INTRODUCTION

1.1 CT Colonography
Various methods are available to screen for colorectal polyps [2]. The most im-
portant methods are the fecal occult blood test (FOBT), sigmoidoscopy, optical
colonoscopy (endoscopy), double contrast barium enema (DCBE) examination
and computed tomography colonography (CTC). However, none of these meth-
ods is ideal. Optical colonoscopy and sigmoidoscopy, for example, are very
invasive, FOBT and DCBE have a rather low sensitivity, and CTC has the dis-
advantage of exposing the patient to ionizing radiation. Still, CTC receives a lot
of interest as a candidate for screening low-risk patients, because CTC is min-
imally invasive and promises to be highly sensitive [6, 7]. Furthermore, CTC
offers the possibility of virtual colonography [8], automated polyp detection
(CAD) [9, 10], and electronic cleansing [11] to ease the task of the radiologist.
In fact, CTC is preferred by patients over colonoscopy [3, 12], which is im-
portant when screening of low-risk patients is considered. Figure 1.2 shows a
polyp as it can be seen on various imaging modalities. An example of virtual
colonography and electronic cleansing is shown in Figure 1.3.

In comparison with optical colonoscopy, CTC has the drawback that it only
serves as a diagnostic tool. This means that patients have to undergo optical
colonoscopy if CTC leads to a positive diagnosis. Common practice nowadays
is to refer a patient to colonoscopy when at least one polyp larger than 10mm
is found [6]. Patients who have polyps with a size between 6 and 10mm are
monitored closely. The subsequent treatment of these patients depends largely
on the number of polyps found. Polyps smaller than 6mm are often neglected
because they are believed not to evolve in malignant growths and they might
even disappear [14, 4].

1.1.1 Automated Polyp Detection
Screening for colorectal polyps by a radiologist without CAD support is time
consuming. However, in comparison with a CAD system, a radiologist is more
accurate in deciding whether a candidate object is a polyp or not. This is
because a CAD system only uses information from the direct vicinity of the
candidate and disregards any further ’contextual’ information. Conversely, this
information is available and important to a radiologist. The impact of using
local and global information on the accuracy of screening was investigated by
Sluimer et al. [15]. They studied the application of a CAD system for the
detection of abnormal tissues in lungs. It was shown that the sensitivity of 1 of
the 2 observers decreased by 10% when only local information was presented to
the observers. Still, it is known that radiologists do overlook polyps. Therefore,
the main motivations for the development of a CAD system is to reduce the
time it takes for a radiologist to examine a patient, to improve sensitivity and
to limit perceptual errors [9].

From a clinical point of view, the first requirement of a CAD system is to
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Figure 1.2: Two sessile polyps (a, b) and a pedunculated polyp (c) as can
be seen in CT colonography (left), virtual colonography (middle) and optical
colonoscopy (right). (Images are obtained from Ref. [13].)
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Figure 1.3: Virtual colonography without electronic cleansing (left) and with
electronic cleansing (right).

detect polyps with a high sensitivity. Typically, percentages around 80–90% are
considered acceptable, since this is about the sensitivity of radiologists as well
as colonoscopists [6]. The second demand on a CAD-system is that it should
produce as few false positive detections as possible, to limit the number of cases
that a radiologist has to review. The acceptance of the number of false positive
detections by radiologists depends on several aspects such as the interface used
to review the presented candidates and the difficulty of the decisions whether a
candidate is a polyp or not [9].

Even though the CAD system may reduce the examination time of the radi-
ologist, it currently operates as a second reader in clinical practice. In this way
the CAD system aims only at increasing the sensitivity of the radiologist. The
CAD system will not become a first reader until it is proven to be reliable and
trusted by radiologists. Besides this, all medical devices and software applica-
tions are subject to a thorough validation process in order to get approval for
the use of these devices and application in hospitals. In Europe, this is super-
vised by the EMA, the European Medicines Agency, and in the United States
by the FDA, the United States Food and Drug Administration. Therefore, the
third demand of a CAD system for use in a medical device is that the system
is as transparent and as simple as possible.

1.1.2 Electronic Cleansing
As was the case for colonoscopy, examination by CTC still required the patients
to undergo cathartic bowel preparation before the examination. Although such
a cathartic bowel preparation ensures optimal image quality, it also leads to
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excessive diarrhea and discomfort. It was found that this preparation was one
of the most burdensome aspects of CT colonography with a cathartic bowel
preparation [12]. Tagging of the bowel content with oral iodine or barium
contrast facilitates CTC with non-cathartic bowel preparation.

Evaluating data from CTC in a 3D reading mode with non-cathartic bowel
preparation requires that the data is electronically cleansed before evaluation
by the radiologist. An electronic cleansing algorithm aims at replacing the
tagged materials inside the colon by air, such that 3D visualization of the whole
bowel becomes possible [16]. Recently, several studies have shown that the diag-
nostic accuracy for polyps ≥ 6mm remains high while using a 24-hour limited
bowel preparation (i.e., the least burdensome type of non-cathartic prepara-
tions) [17, 18]. In fact, a limited bowel preparation significantly improves the
acceptance and therefore likely the screening adherence [19, 17, 20]. Moreover,
Liedenbaum et al. showed that a 24-hour limited iodine-based bowel prepara-
tion yields a significantly better subject’s acceptance and less burden compared
with a 48-hour preparation [21].

Unfortunately, such preparations can adversely affect the 3D image quality.
Particularly, untagged stool can cause artefacts like incomplete cleansing or
pseudo-soft tissue structures [22, 23]. These artefacts limit a primary 3D reading
and hinder 3D problem solving after a primary 2D reading. Still, accurate
electronic cleansing can result in shorter reading times in a primary 3D reading
strategy and to a higher confidence and less reader effort in a primary 2D reading
strategy [24].

1.1.3 Dose Reduction
Apart from the burden associated with the bowel preparation, the acceptance
of CT colonography as a screening technique is also influenced by the radiation
exposure. Clearly, the radiation burden should be as low as possible to ensure a
high benefit-risk ratio. However, a lower-dose scanning protocol will inevitably
lead to increased image noise which in turn compromises polyp detection. For
ethical reasons it is a general, complex problem to study the performance of
both human and computerized observers at increasingly lower CT doses: one
cannot simply scan the patient using various doses, nor is it possible to scan a
patient at a low-dose for which the diagnostic value is not guaranteed.

1.2 Objectives
The work presented in this thesis aims at improving CT colonography to make
large-scale screening feasible. Specifically, computerized techniques from the
fields of image processing and pattern recognition will be explored to support
this. Section 1.1 described the topics that will be addressed: computer aided
polyp detection, electronic cleansing for limited bowel preparations, and dose
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reduction. Ultimately, our focus will be on low-dose, 24-hour limited bowel
preparation CTC.

To increase the sensitivity and to reduce the working time of the radiolo-
gists, automated polyp detection systems are proposed. In Section 1.1.1, three
demands for such a system were posed to enable its use in clinical practice. This
leads to the next question:

• Can we design a computer aided polyp detection system that has a sen-
sitivity that is at least comparable to the sensitivity of human observers,
and has a low complexity, such that it generalizes well, i.e. it has similar
performance for comparable data from different medical centers ?

As the subject’s preparation is one the most burdensome aspects of CTC, recent
clinical research aimed at reducing the subject’s preparation. At the moment,
the state-of-the-art bowel preparation is 24-hour limited iodine-based [21]. Al-
though this increases the subject’s acceptance of CTC, it comes with severely
degradated image quality. Especially 3D evaluation of the data is currently
impossible for the radiologist. To still be able to employ CTC and virtual
colonoscopy, the electronic cleansing algorithms need to be able to cope with
this kind of data. Thus:

• Can we design an electronic cleansing algorithm that is able to process
data from CTC with a 24-hour limited bowel preparation in such a way
that allows effective 3D evaluation of the colon without compromising the
observers’ sensitivity ?

Lowering the radiation dose reduces the risk of cancer induction, which is par-
ticularly relevant in a screening setting. However, the effect of a low radiation
dose on the polyp sensitivity of screening, c.q. the CAD system can not be easily
assessed. To facilitate exploration of the relation between radiation dose and
diagnostic accuracy, we will investigate:

• Can we use computer simulated low-dose CTC to assess the performance
of CTC with lower radiation doses ?

1.3 Thesis Outline
The first question of designing a robust, low-complex CAD system will be ad-
dressed in Chapters 2–5. Here, an automated polyp detection system is pre-
sented which is based on a minimal principal curvature flow algorithm. It is
shown that the algorithm combines the detection and segmentation of polyp
candidates, thereby making it very robust. The algorithm presented in Chap-
ter 2 still requires a segmentation of the colon surface as a first step, whereas
Chapter 3 shows that the algorithm can work directly on the grey value image
and thereby also relaxing the need for such an explicit segmentation step. The
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robustness of the system is signified by the fact that both types of algorithm
perform well in combination with a low-complex pattern recognition step. This
is further illustrated in Chapter 4 and 5. The latter considers the algorithm in
the context of dissimilarity classification, where the algorithm is presented as
a deformation defining the polyp class and shows that the algorithm comprises
not only a detection and segmentation step, but a classification step as well.

The second part of this thesis focuses on how the patient’s burden can be
reduced. Different patient preparation schemes have been proposed and each
one poses a different challenge for electronic cleansing. Chapter 6 focuses on
how the cleansing algorithm can be adapted to describe thin layers that often
occur when the preparation involves a barium solution as a fecal tagging agent.
Alternatively, an iodine based type of preparation leads to heterogeneities in the
appearance of tagged materials. By using the knowledge obtained in the first
part of the thesis, Chapter 7 introduces a principal curvature flow algorithm to
resolve such heterogeneities while retaining the colon anatomy.

Finally, Chapter 8 investigates whether the radiation burden can be further
reduced in the future. As it is ethically not acceptable to perform experiments
with varying doses on subjects, the effect of low-dose CTC is simulated. In the
appendix, the performance of a CAD system in low-dose CTC is assessed for a
number of radiation dose levels.
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Chapter 2

Computer Aided Polyp
Detection Using Logistic
Regression

We present a computer aided detection (CAD) system for computed tomog-
raphy colonography that orders the polyps according to clinical relevance.
The CAD system consists of two steps: candidate detection and supervised
classification. The characteristics of the detection step lead to specific
choices for the classification system. The candidates are ordered by a lin-
ear logistic classifier (logistic regression) based on only three features: the
protrusion of the colon wall, the mean internal intensity and a feature to
discard detections on the rectal enema tube. This classifier can cope with
a small number of polyps available for training, a large imbalance between
polyps and non-polyp candidates, a truncated feature space, unbalanced and
unknown misclassification costs, and an exponential distribution with re-
spect to candidate size in feature space. Our CAD system was evaluated
with data sets from four different medical centers. For polyps larger than
or equal to 6 mm we achieve sensitivities of respectively 95%, 85%, 85%,
and 100% with 5, 4, 5, and 6 false positives per scan over 86, 48, 141, and
32 patients. A cross-center evaluation in which the system is trained and
tested with data from different sources showed that the trained CAD system
generalizes to data from different medical centers and with different patient
preparations. This is essential to application in large-scale screening for
colorectal polyps.

9
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2.1 Introduction
Colorectal cancer is the second leading cause of mortality due to cancer in the
western world [1]. Paradoxically, perhaps, is that it is preventable for a large
part or at least curable if detected early. Adenomatous colorectal polyps are
considered important precursors to colon cancer [25, 26, 27]. It has been shown
that screening for such polyps can significantly reduce the incidence of colon
cancer [2, 28]. Computed tomography (CT) colonography (CTC) is a rapidly
evolving technique for screening, but the interpretation of the data sets is still
time-consuming. Computer aided detection (CAD) of polyps may enhance the
efficiency and also increase the sensitivity. This is specifically important for
large-scale screening. Recent studies show that the sensitivity of CAD systems
is already comparable to the sensitivity of optical colonoscopy [9, 29, 30] and
radiologists using CTC [31].

The best indicator of the risk that a polyp is malignant or turns malignant
over time is size [32]. The consensus [33] is that patients with a polyp of at least
10 mm must be referred to optical colonoscopy for polypectomy and it is advised
that diminutive polyps (≤ 5 mm) should not even be reported [34, 35]. There
is still debate over the need for polypectomy for 6–9 mm polyps. Surveillance
for growth with CT colonography has also been suggested.

2.1.1 Related Work
CAD algorithms for polyp detection in CT colonography usually consist of can-
didate detection followed by supervised classification. Candidate detection aims
at 100% sensitivity for polyps larger than 6 mm which goes at the expense of
hundreds of false positives (FPs) per scan. The task of supervised classification
is to reduce the number of detections to about a handful without sacrificing the
sensitivity too much.

For the detection of polyp candidates, Summers et al. [36, 37] proposed to
use methods from differential geometry in which the principal curvatures were
computed by fitting a fourth order B-spline to local neighborhoods with a 5 mm
radius. Candidates were generated by selecting regions of elliptic curvature with
a positive mean curvature [36]. Yoshida et al. [38, 39] used the shape index and
curvedness to find candidate objects on the colon wall. The shape index and
curvedness are functions of the principal curvatures of the surface, which were
computed in a Gaussian-shaped window (aperture). Alternatively, Kiss et al.
[40] generated candidates by searching for convex regions on the colon wall.
Their method fitted a sphere to the surface normal field. The type of material
in which the center of the fitted sphere was found (in tissue or in air) determined
the classification of the surface as either convex or concave. As a result, roughly
90% of the colon wall was labeled as concave, that is ’normal’. Subsequently,
a generalized Hough transformation using a spherical model was applied to
the convex surface regions. Candidate objects were generated by searching for
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local maxima in the parameter space of the Hough transformation. Kiss et al.
characterized the candidate’s shape by comparing the spherical harmonics with
those of the polypoid models in a database [41].

Apart from the different candidate detection algorithms, there is a wide va-
riety in the design of the pattern recognition system, ranging from low-complex
systems like linear discriminant classifiers to classification systems using multi-
ple neural networks. Yoshida and Näppi used linear and quadratic discriminant
classifiers [38, 39, 42] as well as Jerebko et al. [43]. Wang et al. [44] uses a
two-level classifier with a further unspecified linear discriminant classifier in the
second level. The first level of this classifier consisted of a normalization pro-
cedure, which was specially designed and had four parameters. Sundaram et
al. [45] classified the candidates based on a single heuristically designed score
using curvature information of the candidate patches. Göktürk et al. [46] em-
ployed a support vector machine for classification, in which it was assumed that
after a transformation by the kernel function, the data were linearly separable.
This implicitly required minimal mixing between polyps and false detections.
Jerebko et al. [47] and Zheng et al. [48] used a committee of support vector
machines. Neural networks were also used by Jerebko et al. [47] and Näppi et
al. [29, 49] for classification, and by Suzuki et al. [50] for the reduction of false
detections on the rectal enema tube.

To conclude, many different proposals for a classification system for com-
puter aided detection of polyps have been presented. However, the motivation
for a specific design of the classification system is often unclear. Moreover,
proper comparison between classification systems is difficult due to the different
candidate detection systems and feature extraction methods. One may reason
that the optimization of complex classification systems (with large number of
parameters or features) may be complicated by the limited availability of train-
ing examples. This could lead to overtraining to a specific patient population
or patient preparation.

A steadily growing number of papers (e.g., [46, 38, 51, 40, 9, 44, 43, 41,
10, 52, 53, 42]) reported on the performance of polyp detection algorithms (see
Yoshida and Näppi [31] for a review on CAD systems for CTC). However, the
results can not easily be compared due to large differences in the data sets used
for evaluation (see also Section 2.2.1).

2.1.2 Objective
Candidate detection typically renders a lot of candidates to sustain maximum
sensitivity. Hence, the number of objects from the target class (polyps) is
relatively low. This large imbalance of the prevailing classes typically hampers
classifier design and training. A further complication is that the misclassification
costs for objects from the two classes are unknown and certainly very different.
This paper discusses the consequences of these characteristics for the design of
the classification system.
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We aim to design a novel, low-complex, classification system that orders
the polyps according to clinical relevance. It implicitly takes into account that
the misclassification costs of polyps increase with lesion size. In other words,
larger polyps are more important than smaller ones and the problem is not
considered as a mere two-class classification task, but rather as a regression
problem. With this in mind, we distinguish two types of features in the design
of the classification system. First, there are features that facilitate an ordering
of the candidates. These are the features that directly relate to the lesion
size. Second, there are features which will be shown to render a Gaussian
distribution. In order to keep the classifier simple and to prevent the use of
complex combination strategies, these features are mapped into features of the
first type by a Mahalanobis distance (MD) mapping. This strategy is used to
discard outliers and mimics the use of a Gaussian one-class classifier [54]. It
will be shown that this two-level classification system is effective over data from
various sources.

2.2 Data Description and Feature Design
A CAD system for CTC starts with the acquisition of CT colonography data.
In these data, candidate objects are detected and segmented. The segmented
candidates are typically characterized by features describing, for instance, the
candidate’s shape and its internal intensity distribution. Such data serve as
input for the classification system. All preprocessing steps will be addressed in
this section.

2.2.1 CT Colonography Data
Data sets from four different medical centers were used to evaluate the perfor-
mance of our system. Data sets from different sources differ in polyp prevalence,
the patient preparation, the scanning protocol, the protocol for determining the
ground truth, and the type of rectal tube used for colon distension during CT
examination. An arbitrary number of patients were randomly selected from
each source, irrespective of the number of polyps and their shape. The most
important characteristics of the data sets are shown in Table 2.1. More details
may be retrieved from the references included in the table. All patients adhered
to an extensive laxative regime. The reference standard (ground truth) for data
sets ‘A’, ‘B’ and ‘C’ was optical colonoscopy. An expert radiologist served as
the reference for data set ‘D’. Radiologists retrospectively indicated the location
of polyps by annotating a point in the 3D data set based on the reference stan-
dard. The candidate segmentations (see below) were labeled by comparison to
these annotations. Data sets ‘A’, ‘B’ and ‘C’ consisted of scans in both prone
and supine positions. A polyp was counted as a true positive CAD detection if
it was found in at least one of the two scanned positions. Only data set ‘A’ has
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Table 2.1: Properties of the data sets

Data
set

Medical Center Slice
Thick-
ness

(mm)

Fecal
Tagging

Scans
per

Patient

Number
of

Patients

Number
of

Polyps
≥ 6 mm

Ref.

‘A’ AMC / Amsterdam 3.2 No 2 86 59 [6]

‘B’ WRAMC / Wash., DC 1.2 Yes 2 48 28 [3]

‘C’ UW / Madison, WI 1.2 Yes 2 141 176 [55]1

‘D’ Charité / Berlin 1.0 Yes 1 32 8 [56]1

been used during development of the system.

2.2.2 Candidate Detection

Polyps are often described as objects that protrude from the colon wall. For
that reason, the candidate detection method is designed to detect all objects
that protrude from the colon wall, irrespective of their shape. Suppose that
the points on the convex parts of a protruding object are iteratively moved
inwards. Effectively, this will ‘remove’ the object. After a certain amount of
deformation, the protrusion is completely removed and the colon wall appears
‘normal’. The amount of deformation as a result of the operation is a measure
of ‘protrudedness’. Fig. 2.1 illustrates this process by showing images before
and after application of the non-linear ‘flattening’ operation.

Practically, the colon wall was represented by a triangle mesh, which was
obtained by thresholding the CT colonography data at -750 Hounsfield units
(HU). A non-linear PDE [10, 57] was solved to remove all protruding structures
from the mesh that displayed a positive second principal curvature. In this pro-
cedure, the global shape of the colon including the folds was retained, since these
structures display a second principal curvature that is smaller than or equal to
zero. The protrusion field was computed by the position difference of the mesh
vertices before and after processing. Subsequently, hysteresis thresholding was
applied to this field to detect and segment the candidates. The high threshold
on the protrusion was 0.4 mm and determines the sensitivity. The value of
0.4 mm was selected since it yields 100% sensitivity per polyp annotation in
our training set. All retained regions of the colon surface were augmented by
adding the adjacent mesh points with a protrusion of at least 0.2 mm (the low
threshold). The regions thus obtained form the segmented candidates.

1Information about the patient preparation can be retrieved from the reference. However,
the specific data set we used is not described.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: The candidate detection method applies a non-linear ‘flattening’
operation to the colon wall. The protrusion field is defined as the difference
in position of the colon wall before (a–b, e–f) and after (c–d, g–h) application
of the operation. The coloring (b,d,f,h) indicates the protrusion of the mesh
vertices of detected candidates (blue denotes a large protrusion and red denotes
a protrusion of 0.2 mm, i.e. the low hysteresis threshold). Notice that the folds
are hardly affected by the operation.
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2.2.3 Features
Radiologists that evaluate CTC data primarily use two properties of a candi-
date for classification: the shape and the voxel intensities inside the candidate.
There is still debate about the optimal way to analyse CTC data. Radiologists
using the 3D rendering of the colon (virtual colonography) detect polyps based
on shape, but they will often fall back to the 2D representation (grey values)
before a final decision is made. Using the 2D representation, both the internal
intensities and the shape are assessed, although shape is often hard to extract
from the grey-value images. The features used in the presented CAD system
are based on the same two properties that are primarily used by radiologists.

Shape was previously described by the shape index and curvedness [39],
mean curvature, average principal curvatures and sphericity ratio [36, 37] and
spherical harmonics [41]. An alternative method to measure shape, which is
based on the protrusion field, will be introduced (see Section 2.2.3, below).

The internal intensity of the candidates has been found before to be a dis-
criminative feature to discard a large number of false detections [42, 51, 44, 43].
It may be expected that due to the partial volume effect false detections arise
that have low internal intensity. False detections that are stool often have air
inside, which also lowers the intensity. Such information about the candidates
will be included through statistics on the object’s internal voxel intensities (see
Section 2.2.3, below).

At last, it was experimentally found that many false positives turned out
to be detections on the rectal enema tube (RET) (previously also reported
in [58, 50]). Therefore, a third feature will be proposed to discard such false
detections (see Section 2.2.3, below).

Shape Feature from Protrusion Field

Polyps are conventionally characterized by the single largest diameter, exclud-
ing the stalk [32, 59]. However, Fig. 2.2(a) shows that this measure does not
distinguish polyps from false detections well. It appears that especially among
the less protruding candidates (≤ 2 mm), the candidates with the larger diam-
eters are predominantly false detections. Alternatively, it might be natural to
select the maximum protrusion of a candidate as a feature, but it appears that
a lot of polyps have only modest protrusion. As an illustration, Figs. 2.2(c)
and (d) show two candidates that have approximately the same maximum pro-
trusion but a completely different appearance. The first candidate (candidate
‘c’) has a large diameter, but does not resemble a polyp at all, whereas the
second candidate (candidate ‘d’) with a small diameter does so. To conclude, a
large diameter relative to the maximum protrusion indicates a non-polypoidal
shape (candidate ‘c’) and a small diameter or a relative low protrusion points
to a small clinically unrelevant candidate. A feature that is derived from the
thresholded protrusion field should therefore include the size of a candidate as
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well as the ratio between the largest diameter and the maximum protrusion.
Moreover, the feature should characterize the whole segmented area instead of
the extrema (like the largest diameter or the maximum protrusion).

We designed a feature that takes into account both the protrusion as well
as the lateral size of the object. Effectively, it measures the percentage of the
area of the candidate that has a protrusion larger than a certain threshold T .
This feature is further denoted as ΦT . A large circumference as well as shallow
edges lead to relatively large areas with protrusion below T and result in a low
response. Thus, this feature favors compact objects with steep edges. Fig. 2.2(b)
shows that according to ΦT (T=0.6 mm) candidate ‘d’ is indeed favored over
candidate ‘c’. Ordering the candidates based on ΦT is thus expected to improve
the performance of the CAD system over simply using the maximum diameter
alone.

Intensity Features

Consider all mesh vertices that are part of the segmentation mask of a candi-
date object (see Section 2.2.2). For each vertex, a weighted average of colon
wall intensities was calculated along the line segment from the vertex under
consideration to the center of mass of the candidate’s vertices. The weight of
the intensity of each voxel depends on the Gaussian scaled squared-distance
between the intensity and the maximum intensity along the line segment. The
tonal scale σt used for weighting was set to 140 HU. This value is substantially
larger than two times the image noise (previously measured to be 43.4 HU for
data acquired with 50 mAs [60]). Consequently, σt facilitated that the edges of
the candidate contributed less to the weighted average than the internal voxels
of the candidate. In other words, the candidate’s true internal intensity was
emphasized.

Subsequently, the mean (fI,mean), median (fI,median), maximum (fI,max),
minimum (fI,min), and standard deviation (fI,std) were determined from the
weighted averages of all vertices. The latter four were only used in the classifier
selection stage (see Section 2.5.1).

Feature for Suppressing Candidates on the Rectal Enema Tube

The rectal enema tube is a prominent source of false positive classifications
[58, 50]. This is because the tube’s attenuation in CT is similar to that of tissue.
Moreover, the size and shape (25 mm in diameter) resembles a large polyp.
Cross-sectional examples of a rectal enema tube are shown in Fig. 2.3(a). To
suppress the false detections on the rectal tubes, a feature has been developed to
distinguish these false detections from the other candidates. For each candidate
it was measured how much ‘field-of-view’ (FOV) the candidate ‘blocks’ as seen
from the rectal enema tube (Fig. 2.3(b)):
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Figure 2.2: (a)–(b) Scatter plots of features calculated for data set ‘A’. Grey
dots denote false detections and black dots indicate polyps ≥ 6 mm. Note that
each polyp may appear as two separate dots in the scatter plot, since each
patient is scanned twice. (a) The maximum protrusion versus the single largest
diameter of a candidate. The threshold of the candidate detection can be seen
at a maximum protrusion of 0.4 mm. (b) ΦT (T=0.6 mm) versus the largest
diameter. (c–d) Two candidates with the same maximum protrusion that are
ordered differently according to ΦT .
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fFOV = 1
4π

∑
points∈candidate

A1−ring
(~qi · ~ni)
||~qi||3

(2.1)

in which ~qi is the vector from a mesh point i of the candidate to an arbitrary
point on the rectal tube, ~ni is the vertex normal and A1−ring is the surface area
of the one-ring neighborhood. A positive value means that the candidate is
bended away from the tube and a negative value indicates that the candidate
is bended towards the tube.

Fig. 2.3(c) shows a scatter plot of false detections (grey) and true polyps
(black) with fFOV on the horizontal axis and with the mean radius of the
candidates on the vertical axis. The mean radius is calculated as a weighted
sum of the distances of all mesh points i to the center of gravity of the candidate,
||~ri||, weighted by the area of the one-ring neighborhood A1−ring,i. Apparently,
four clusters are identifiable in this feature space: candidates at the end of
the tube have negative values for fFOV and a rather small mean radius (dotted
line); candidates on the balloon also yield negative fFOV , but come with a large
mean radius (dashed line); candidates inside the tube have positive response
for fFOV (dash-dotted); and candidates that are not related to the tube have
negligible blocking and form an elongated cluster centered at fFOV =0 (solid
line). To conclude, non-zero values of this feature tend to indicate detections
on the rectal enema tube.

2.3 Characteristics of the Feature Space
A first prerequisite for clinical application is that the system has high sensi-
tivity for the detection of polyps. To limit the risk of missing a polyp in the
candidate detection step, this step unavoidably yields a large number of de-
tections. Consequently, the number of objects from the two classes is severely
unbalanced. For instance, only 0.3% of the candidates detected in data set ‘A’
were polyps ≥ 6 mm. Any classifier relies heavily on the few polyp examples.
Complex classifiers may not be expected to generalize well to other data sets,
because they are typically sensitive to small changes in training data. Further-
more, the misclassification costs for objects from the two classes are unbalanced
and unknown: a missed polyp is far more troublesome than a false positive
classification. Finally, it has to be realized that the size of a polyp indicates the
risk of it becoming malignant.

A part of the feature space is presented in Figs. 2.4(a–b) by two scatter plots.
It can be seen that the distribution of the polyps is rather uniform with respect
to ΦT , though it appears truncated at a certain level (ΦT ≈ 55%). This occurs
because polyps < 6 mm are not clinically relevant and were therefore excluded
a priori (i.e. not annotated in the data). The false detections display a different
behavior. As our focus is on irregularities on the colon surface (protruding
objects), it may be expected that far more candidates with small protrusion are
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Figure 2.3: (a) Example of a rectal enema tube in data set ‘A’ as seen in
different slices of a CT image. (b) A schematical explanation of the responses
of fFOV . (c) A scatter plot of the mean radius versus fFOV . The grey dots are
false detections and the black dots are polyps. In the text we identify the four
clusters.
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detected than candidates with large protrusion, e.g. due to natural fluctuations
of the colon wall and noise. This can also be seen in the distribution of the
candidates with respect to the maximum protrusion in Fig. 2.5(a) and with
respect to ΦT in Fig. 2.5(b) (dotted curves). An exponential decaying function
fitted to the distribution is also shown (solid curves). Thus, one must not
only reckon with many false detections, the false detections are also unevenly
distributed in the feature space. Finally, it can be observed that the classes
largely overlap and that the way the candidates were generated imposes abrupt
cluster boundaries, which may hamper density based classifiers. The abrupt
cluster boundaries can be seen at ΦT = 0% and ΦT = 100% in Fig. 2.4(a).

We approach the classification problem not just as a two-class classifica-
tion task, but rather as a regression problem. In other words, the classification
system should be designed to facilitate a clinically relevant ordering of the can-
didates. Ideally, this means that the polyps should be ranked above the false
detections and that the larger polyps are ranked above the smaller polyps. The
classifier that is used in the regression analysis should be robust to the large
class imbalance, the uneven distribution of candidates in the feature space, and
the abrupt boundaries in the feature space. Moreover, the classification system
as a whole must be low-complex in order to be robust to variations in the data
sets from different sources.

2.4 The Classification System
This section describes a classification system that fulfills the demands derived
in the previous section. It is schematically depicted in Fig. 2.6. The input
feature vector consists of two types of features, namely those suitable for order-
ing the candidates (fO) and those allowing for density estimation and outlier
rejection (fD). The features of the first type are directly used in the regres-
sion analysis, whereas the other features are mapped first by a Mahalanobis
distance mapping. Subsequently, regression analysis leads to an ordering. The
ordering can then be used to compute FROC curves to estimate the perfor-
mance. Three discriminant classifiers will be applied in the regression problem
(see Section 2.5): the normal-based linear discriminant classifier (LDC) [61],
the normal-based quadratic discriminant classifier (QDC) [61] and the logistic
discriminant classifier [61].

2.4.1 Mahalanobis Distance Mapping
Let us assume that, for a certain subset of features, a Gaussian properly de-
scribes the distribution of the objects from the target class, i.e. the polyps. One
might say that the mean of this distribution corresponds to a typical represen-
tation of a polyp (“the most polyp-like polyp”). Moreover, the Mahalanobis
distance to the mean of the polyp class may act as an efficient feature to reject
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Figure 2.4: Scatter plots demonstrating the distribution of the candidates for
data set ‘A’. The grey dots are false detections and the black dots are polyps.
(a) Mean intensity vs. ΦT . (b) Mean intensity vs. maximum intensity. (c) The
same feature space as (a) with the output of the negated Mahalanobis distance
mapping on the vertical axis. This mapping is introduced in Section 2.4.1. (d)
The influence of the mapping on fI,mean. Note that candidates with a high and
low mean intensity have a lower mapped feature than the polyps.
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Figure 2.5: Distribution of (a) the maximum protrusion and (b) ΦT of the false
detections in data set ‘A’ (dotted curves). Exponential decaying functions were
fitted to the distributions (solid curves).
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Figure 2.6: Schematic representation of the classification system. The classifica-
tion starts with a feature vector consisting of features suitable for ordering (fO)
and features suitable for density estimation (fD). The feature sets fD,1 and
fD,2 are processed through two mappings. An ordering of the candidates is de-
termined by regression that incorporates both the features fO and the outputs
of the mappings,m1 andm2. The ordering may be thresholded for classification
in order to construct FROC curves.
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outliers, i.e. objects not belonging to the target class. This procedure compares
to the operation of a Gaussian one-class classifier [54].

Instead of comparing this distance to a preset threshold, the (negated) Ma-
halanobis distance is used as a feature. The mean of the polyp class was derived
from the train data set. Consequently, this acts as a mapping transforming one
or more features into a single feature. The output feature is suitable for order-
ing the candidates, since zero Mahalanobis distance (the mean of the Gaussian)
is considered most polyp-like. The feature can thus be used in the regression
analysis. In practice, the mapping was applied to fFOV and fI,mean. Effectively,
candidates on the rectal tubes as well as candidates with an abnormal intensity
are rejected. Fig. 2.4 illustrates the influence of the mapping on fI,mean.

In comparison to Wang et al. [44], our mapping replaces the normalization
procedure of their two-level classifier. This allows us to use a standard technique
from statistical pattern recognition to determine the parameters of the mapping.

2.4.2 Normal-Based Discriminant Classifiers
Let us consider the linear normal-based discriminant classifier (LDC) to rep-
resent a common, low-complexity type of classifier. Such an LDC includes a
weighted sum of the covariance matrices of both classes, in which the weights
are the prior probabilities. In the case of a large class imbalance, however, as
in the polyp detection problem, the prior of the minority class is extremely
small. As a consequence, the weighted sum is almost identical to the covariance
matrix of the majority class and the covariance matrix of the minority class
is neglected. In other words, contrary to common preference, the detection of
objects from the minority (target) class is largely based on information of the
objects from the majority (outlier) class. One might conceive this as the oppo-
site of a one-class classifier, which typically uses information about the target
class only.

One might consider a quadratic normal-based discriminant classifier (QDC)
instead, since it does not weight the covariance matrices by the prior prob-
abilities. One underlying problem here is that the classes have non-Gaussian
distributions. In order to capture a polyp inside the tip of the quadratic decision
boundary, simultaneously an exponentially increasing number of false positives
are included (see Fig. 2.5). The more conservative linear decision boundary will
make a different error to detect such a polyp, but this error is less pronounced.
What is more, the quadratic classifier depends strongly on the covariance ma-
trix of the polyp class. This covariance matrix might be somewhat unstable,
however, due to the limited number of polyps.

2.4.3 Logistic Discriminant Classifier
It was previously demonstrated that the false detections are distributed in an
exponential fashion with respect to size and ΦT (see Fig. 2.5). Fig. 2.4 illustrated



2.5. RESULTS 25

that the polyps are somewhat uniformly distributed. This implies that the ratio
of the posterior probabilities must also follow an exponential function, which is
represented in the next relation:

log
(
p(x|ωp)
p(x|ωf )

)
= d(x) (2.2)

in which d(x) is the linear discriminant function of the feature vector and ωp
and ωf denote the polyp class and the false detection class, respectively. One
can recognize in Eq. 2.2 the assumption made by a logistic classifier, which
corresponds to sigmoidal posterior probability density functions:

p(ωf ,x) = 1
1 + exp (d(x)) , p(ωp,x) = 1− p(ωf ,x). (2.3)

The weights of the discriminant function can be determined by a maximum
likelihood estimator [61].

2.5 Results
Classifier selection aims at choosing the best method for the regression analysis
in our classification system (see Fig. 2.6). Three classifiers will be analyzed: the
LDC, the QDC and the logistic classifier (see Section 2.4). The specific choice
will be based on two types of analysis: FROC analysis using a variety of sets
of features in order to select the best classifier for the problem (instead of the
best classifier for a specific feature set), and stability analysis by bootstrapping
the training set.

The feature vector F in Fig. 2.6 consists of three features: ΦT , fI,mean and
fFOV . ΦT is related to the size of the candidates and is therefore directly used
in the regression analysis, thus fO = {ΦT }. The Mahalanobis distance mapping
is applied to the other two features prior to the regression analysis. It is applied
to fD,1 = {fI,mean} to sort all candidates based on the mean intensity in order of
increasing distance to the normal tissue values of polyps; and to fD,2 = {fFOV }
to aid discarding the candidates on the rectal tube. The added value of these
features and the influence of the mappings will be analyzed in Section 2.5.2.

In practice, the usefulness of a CAD system depends on whether it will
generalize to data sets from different sources. The robustness of the complete
system will be tested in Section 2.5.3 by means of an evaluation using data sets
from four different medical centers (see Section 2.2.1).

2.5.1 Classifier Selection: Performance and Stability
The performance of the classifiers was analyzed by means of FROC analysis.
The FROC curves were calculated for a large pool of different feature sets to
secure that the classifier selection step is not dependent on a certain choice of
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Figure 2.7: FROC curves averaged over all feature sets for the LDC, QDC and
logistic classifiers.

features. The FROC curves were calculated from a repeated ten-fold cross-
validation. Only data set ‘A’ was used in this learning phase to remain com-
pletely independent of the other data sets.

The aggregate of the different sets of features employed in the experiment
will be called the feature pool. This pool was not created in order to select
the best features, but merely to study the performance of the classifiers with-
out choosing a specific feature set first. If some feature set were chosen first
(before the classifier selection step), one might select the best classifier for the
specific set of features and not necessarily the classifier which is best for the
problem at hand. The feature pool consisted of 29 sets of features chosen from
a total of nine different features: three protrusion-based features ΦT with var-
ious thresholds T : 0.5, 0.6 and 0.7 mm; the features related to the intensity
(i.e. the mean, maximum, minimum and median intensity and the standard
deviation of the intensity) and fFOV to discard candidates on the rectal tubes.
Each set contained at most five features of which one was chosen from the set
of protrusion-based features.

An FROC curve was computed for each classifier and for each set of features
from the pool. The average FROC curve for a classifier is shown in Fig. 2.7.
The standard deviation that was derived from the variation between the FROC
curves for different feature sets was less than 0.03 FPs per scan for sensitivities
below 95%. The FROC curves reveal that the logistic classifier and the QDC do
not differ in their performance as their FROC curves almost completely overlap.
The performance of LDC was significantly worse by approximately 15 times the
standard deviation.
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Table 2.2: Instability of various classifiers

Classifier Instability Percentage (%)
Logistic 33.7 0.11
QDC 220.0 0.76
LDC 15.6 0.05

The second criterion used for classifier selection was the stability of the
classifiers. This stability was assessed by means of bootstrapping the training
set. This results in a perturbed orientation of the classifiers, which consequently
leads to a number of differently classified candidates. The average number of
different decisions is then used as a measure of instability [62]. Table 2.2 lists
the instability measures. The table clearly shows that the logistic classifier and
the LDC are the most stable classifiers.

More specifically, it is noticeable that the LDC is much more stable than the
QDC. This is explained by the covariance matrix estimated by the LDC being
nearly identical to the covariance matrix of the majority class, which barely
changes due to bootstrapping. On the other hand, the QDC also estimates a
covariance matrix for the polyp class. Because of the low number of polyps,
bootstrapping leads to a different covariance matrix for the polyp class. This is
reflected by the poor instability of the QDC.

To conclude, it is shown that the logistic classifier combines a good perfor-
mance in terms of FROC analysis with a good stability value. Therefore, the
logistic classifier will be used as the regressor in the classification system.

2.5.2 Outlier Rejection by Mahalanobis Distance Map-
ping

Let us now look into the performance of outlier rejection by the Mahalanobis
distance mapping. The starting point of our analysis is the FROC curve gen-
erated by the logistic classifier using ΦT with a threshold T of 0.6 mm, and
fI,mean (prior to mapping). FROC curves are computed for data sets ‘A’ and
‘C’. Among other differences, these data sets differ in the type of rectal tubes
used and the administration of a fecal tagging agent (see also Table 2.1).

Fig. 2.8a shows the FROC curves for data set ‘A’. In this data set, no fecal
tagging agent was administered to the patients. As a consequence, only false
detections with low mean intensities were present. This means that this feature
is already suitable for ordering the candidates. Mapping fI,mean did not result
in a significantly different FROC curve; for this reason and for the purpose
of clarity the curves with the ‘unmapped’ fI,mean are not shown. The solid
curve is the FROC curve of a system with only the MD(fI,mean) and ΦT . The
dotted line is obtained when the feature fFOV is added directly, without prior
Mahalanobis distance mapping; the dash-dotted FROC curve is the outcome
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when a mapped version of this feature is used instead. The improvement by
adding this feature may be a reduction up to 25–50% of the number of false
positives depending on the required sensitivity (see arrows). The error bars
denote two times the standard deviation of the number of false positives over
all scans.

The results for data set ‘C’ are shown in Fig. 2.8b. In contrast to data set
‘A’, patients from this data set were administered a fecal tagging agent. As
a consequence, it may be expected that the Mahalanobis distance mapping of
fI,mean has a larger influence due to the presence of both candidates with a low
mean intensity as candidates with a high mean intensity. Here again, the solid
curve corresponds to classification using ΦT and fI,mean. Similar to the analysis
of data set ‘A’, the feature fFOV is added and the MD-mapping is applied to
this feature and to fI,mean. In contrast to the rectal tubes in data set ‘A’, the
tubes in this data set did not have a balloon attached, but included a marker of
high attenuation material. Because of this, less candidates on the rectal tubes
were found and those which were found could often be easily discarded by means
of their intensity. As a consequence, adding the feature fFOV may be expected
not to improve the performance. This is confirmed by the dotted line, indicating
no significant improvement. Again, for the purpose of clarity, the FROC curves
with the ‘unmapped’ fFOV are not shown in this figure, as they do not differ
significantly. Observe that adding fFOV does not lead to worse results.

The second step was to compute the same FROC curves with the mapped
mean intensity feature. A striking improvement can be seen. This result can
be explained by the fact that in this case there are both false detections with
lower mean intensity as there are false detections with higher mean intensity.
According to these results, only the mapped features will be used in further
FROC analyses.

2.5.3 Multi Center Evaluation
An important aspect of a CAD system for CT colonography is its ability to
generalize to data sets differing in a variety of aspects. The generalization
power of the presented system will be investigated by FROC analysis and a
cross-center evaluation.

The patients from data sets ‘A’, ‘B’ and ‘C’ were scanned in both prone
and supine positions. At the basis of this (conventional) approach is that a
polyp is not always visible in both CT scans, e.g. due to suboptimal distension
or remaining fluid rests. Consequently, a polyp may not be annotated in both
scans. Let us initially focus on the annotated polyp ‘findings’ to assess the
performance of the candidate detection step.

The candidate detection returned 88.8% (436/491) of the annotated findings
≥ 6 mm in total (see Table 2.3(a)). The preparation of the patients is at the
basis of the differences in the number of missed findings. The patients of data
set ‘A’ had undergone an extensive preparation. This might explain the fact
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Figure 2.8: FROC curves that indicate the added value of the feature fFOV and
the use of the Mahalanobis distance mapping. (a) Data set ‘A’ with and without
fFOV . Using the Mahalanobis distance mapping leads to a small increase in
performance. (b) Data set ‘C’ with and without fFOV and with the unmapped
and mapped mean intensity feature. The graph reveals that it is an absolute
necessity to apply the mapping in the case of fecal-tagged data.
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that the system detected almost all annotations in this data set (93/94). On
the other hand, data set ‘B’ appeared to contain a large amount of residual
fluid (confirmed by [24]). Consequently, many polyps were obscured by fecal
remains, reducing the detection rate to 77.6% (38/49). Data set ‘C’ had less
contrast-enhanced fluid in the colon, which resulted in a higher detection rate
of 87.4% (297/340). The percentage of polyps detected in either scan was
99.0% (269/271) (sensitivity is conventionally measured in this way [63]; see
Table 2.3(b)) .

Fig. 2.9 shows the results of the cross-center evaluation. It is generally
known that a large amount of features decreases the generalization power of
a classifier, especially when the data sets differ as much as the four data sets
of our study. Therefore, we consciously limited the number of features in this
evaluation to the three features described before: ΦT with a threshold 0.6 mm,
MD(fI,mean), and MD(fFOV ). Each graph in Fig. 2.9 corresponds to one test
set; the line styles in the figures indicate the specific data set on which the
classifier was trained. In the case of testing and training on the data from
the same medical center, a ten-fold, repeated cross-validation was performed.
The standard deviation indicated in the graphs is estimated as the standard
deviation of a binomial distribution [64] and depends on the number of polyps
and the sensitivity. This standard deviation characterizes the variation in the
FROC curves when a new subset is drawn from the same distribution.

It can be seen that in all graphs, the FROC curves for classifiers trained on
the different data sets are generally within one standard deviation from each
other. In other words, the same performance is attained no matter on which
data set the classifier is trained. Concurrently, there are small differences in
the performance of the CAD system for the four data sets. Despite this, all
yield a sensitivity larger than 85% at the cost of five false positive detections
per scan. Four polyps in data set ‘B’ remained undetected at 86% (25/29)
sensitivity. The missed polyps were all reviewed by a fellow researcher with
a background in CAD of polyps in CTC. All missed polyps were covered by
contrast-enhanced material in at least one of the two scans and were annotated
in only one position. Consequently (no electronic cleansing was used), the CAD
system did not get a second chance of finding these polyps. In data set ‘C’,
fourteen polyps remained undetected by the CAD system at 90% sensitivity.
The false negatives consisted of tumors with lobulated shapes, polyps covered
by fecal remains, ‘non-protruding’ polyps annotated as a flat polyp by the radi-
ologists and polyps that were located between haustral folds. Even though data
set ‘D’ contained only one scan per patient, the FROC curves for this data set
compete with the FROC curves for the other data sets.

In conclusion, the FROC curves for the different data sets show that the
CAD system is independent on the specific data set used for training. The dif-
ferences between the curves are a result of the administration of a fecal tagging
agent, the preparation of the patients and natural fluctuations in the appearance
of the polyps in the data sets.
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Table 2.3: Results of the candidate detection system: (a) polyp findings ≥ 6
mm, (b) polyps ≥ 6 mm, and (c) the number of false detections

Data
set

Number of
annotations

Number of
detections

Detection rate (%)

‘A’ 94 93 99
‘B’ 49 38 78
‘C’ 340 297 87
‘D’ 8 8 100
Total 491 436 89

(a) Polyp findings (≥ 6 mm)

Data
set

Number of
annotations

Number of
detections

Detection rate (%)

‘A’ 59 59 100
‘B’ 28 28 100
‘C’ 176 174 99
‘D’ 8 8 100
Total 271 269 99

(b) Polyps (≥ 6 mm)

Data set Number of
false

detections
‘A’ 28 678
‘B’ 12 334
‘C’ 53 698
‘D’ 8026
Total 102 736

(c) False detections
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Figure 2.9: Each graph shows the results of classifying a certain data set, using
four different classifiers that are each trained on one of the four data sets. The
line style indicates the data set on which is trained. When the same data set is
used for training and classifying, a ten-fold, repeated cross-validation was used.
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2.6 Discussion / Conclusion
We developed a classification system based on logistic regression for computer
aided detection of polyps in CT colonography data. Typically, there are un-
balanced and unknown misclassification costs and a huge class imbalance. The
latter occurs because there are only a few examples of the abnormality class
in a shear endless sea of normal ‘healthy’ samples. Our classification system
can cope with the aforementioned characteristics by carrying out a regression
analysis instead of classifying the candidates into one of the two classes. The
ordering correlates with the clinical relevance of the candidates. The exponen-
tial distribution of the candidates and the small number of polyps available
for training led to the use of the logistic classifier for regression. The logistic
classifier is low-complex and proved to be stable.

Candidates were detected based on their protrudedness from the colon wall.
A feature derived from the protrusion field was sensitive for candidates that
had steep edges and large protrusion. Other features used were the internal
intensity distribution, and a feature to discard detections on the rectal tubes.

The features were divided into two types of features, namely features that
allowed directly an ordering of the candidates and features that were well de-
scribed by a Gaussian density distribution. The features of the second type
were mapped by a Mahalanobis distance mapping to impose an ordering. This
mapping was chosen because it emulates a Gaussian one-class classifier. In this
way, outlier rejection was incorporated into the classification system.

After discarding the candidates on the rectal tubes, polyps and non-polyps
could be distinguished using only information about the protrusion and the
internal intensity of the candidates. The observed sensitivity was comparable
to the sensitivity of radiologists using CTC [6, 3, 9] and competed with other
CAD systems [9, 43, 29, 30]. It was also shown that the CAD system generalizes
well to data sets from different medical centers.

To conclude, we introduced a low-complex CAD system that took into ac-
count all the characteristics of the classification problem. These characteristics
will frequently occur in medical image processing problems. The Mahalanobis
distance mapping in conjunction with logistic regression is generally applica-
ble to obtain a clinically relevant ordering of the candidates. For automatic
polyp detection, the generalization to data sets from different medical centers
and with different patient preparations is essential to application in large-scale
screening.
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Chapter 3

Detection and
Segmentation of Colonic
Polyps on Implicit
Isosurfaces by Second
Principal Curvature Flow

Today’s computer aided detection (CAD) systems for CT colonography
(CTC) enable automated detection and segmentation of colorectal polyps.
We present a paradigm shift by proposing a method that measures the
amount of protrudedness of a candidate object in a scale adaptive fashion.
One of the main results is that the performance of the candidate detection
depends only on one parameter, the amount of protrusion. Additionally
the method yields correct polyp segmentation without the need of an ad-
ditional segmentation step. The supervised pattern recognition involves a
clear distinction between size related features and features related to shape
or intensity. A Mahalanobis transformation of the latter facilitates ranking
of the objects using a logistic classifier. We evaluate two implementations
of the method on 84 patients with a total of 57 polyps larger than or equal
to 6 mm. We obtained a performance of 95% sensitivity at 4 false positives
per scan for polyps larger than or equal to 6 mm.

35
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3.1 Introduction

Protrusions of a surface embedded in a 3D image are difficult to detect. The
challenge increases even further if the surface itself is highly structured and
interacts with the protruding elements. Such a problem is the detection of
polyps in CT colonography (CTC), a minimal invasive technique for examining
the colon surface (cf. Fig. 3.1). There is an increasing interest in computer
aided detection (CAD) systems for polyp detection in CTC data to assist the
radiologist [53, 40, 65, 66, 9, 29, 67]. Such a CAD system typically consists of
three consecutive steps: colon segmentation; detection of polyp candidates; and
supervised classification of candidates as polyps or non-polyps [68, 69].

Adenomatous polyps are important precursors to colon cancer and develop
due to genetic mutations in the mucosa cells [70]. This process of oncogenesis
leads to enhanced cell proliferation causing the polyp to grow and to evolve
from a small adenoma into a large adenoma into a carcinoma. This induces
a morphological change to the colon surface1, that manifests itself as tissue
protruding into the lumen. The deformation is an important property which is
used in the detection by radiologists as well as gastroenterologists.

Practically all CAD systems for polyp detection analyse the local curvature
of the colon surface, which is subsequently used to compute shape descriptors
such as shape index or curvedness [37, 38]. Computation of the curvature values
is typically done in ’one shot’ on a single predetermined scale, which is defined
as the effective size of the area over which the image features are calculated.
We will maintain this definition throughout the paper.

We propose a new paradigm for the detection and segmentation of polyps
that effectively copes with the highly structured environment. The novelty of
the approach is in computing an intensity change field, which removes protrud-
ing elements from the underlying data, while leaving the highly structured folds
intact. The deformation algorithm is described by a partial differential equation
(PDE) that is steered by the second principal curvature.

In order to demonstrate the method’s efficiency, we make use of a pattern
recognition system introduced by us in Ref. [73]. The paper involved polyp
detection based on the explicit representation of the colon surface. The method
proved to generalize well and lead to satisfying results. It encouraged us to
further investigate the candidate detection system. Presently, we propose a
technique based on an implicit representation of the colon surface, which enables
a number of improvements over the explicit model. A concise description of the
classifier is contained, since it is only indirectly related to the paper’s main
objective. This allows us to fully go into all facets associated with second
principal curvature flow.

1Not all colonic lesions grow into protruding polyps. It is estimated that approximately
10% of the lesions are so-called flat adenomas [71, 72].
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(a) (b)

Figure 3.1: Isosurface renderings (at -650 HU) of the colon surface showing
typical polyps in their structured surroundings.

3.1.1 Previous Work
For the detection of candidate regions, Summers et al. [37] proposed to use the
mean and Gaussian curvature. They were computed by methods from differen-
tial geometry, by fitting a 4th order b-spline to local 5 mm radius neighbour-
hoods of a triangulated isosurface [36]. Candidates were generated by selecting
a range of mean and Gaussian curvature values. Additionaly, a large number
of other shape criteria were used ([74]: Table 2), to limit the number of false
positive detections. Similarly, Yoshida et al. [38] used the shape index and
curvedness to find candidate objects on the colon surface. The shape index SI
and curvedness CV are functions of the principal curvatures of the surface:

SI = 1
2 −

1
π

arctan(κ1 + κ2
κ1 − κ2

),

CV =
√
κ2

1 + κ2
2

2 , (3.1)

with κ1 and κ2 the maximum and minimum principal curvature respectively.
A Gaussian-shaped window (aperture) of fixed size was used to compute the
curvatures from the 3D CT data.

Alternatively, Kiss et al. [40] proposed to use a sphere fitting method to
generate candidates. The colon surface was classified as convex depending on
the side on which the center of the fitted sphere was found (in tissue or in
air). This method classifies roughly 90% of the colon surface as concave, that
is as ’normal’. To the remaining part of the colon surface a generalized Hough
transformation was applied using a spherical model. Candidate objects were
generated by finding local maxima in the parameter space created by the Hough
transformation.
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Konukoglu et al. [53, 75] proposed a method that is in some sense the in-
verse of the approach that is proposed in the current paper. Effectively, a wall
evolution algorithm is described based on a level-set formulation that regular-
izes and enhances polyps as a preprocessing step to CTC CAD algorithms.
The underlying idea is to evolve the polyps towards spherical protrusions on
the colon wall while keeping other structures, such as haustral folds, relatively
unchanged. Thereby, the performance of CTC CAD algorithms is potentially
improved, especially for smaller polyps.

Conventionally, the shape-based candidate detection methods [37, 76, 29, 53,
38, 77] apply several conservative thresholds to the mean curvature, principal
curvatures, sphericity ratio and/or shape index to generate candidate regions.

3.1.2 Problem Definition
We identify a number of challenges that are associated with the detection of
polyp candidates. First, optimization of the parameters is always complicated
by the limited availability of training examples. This may lead to overtraining
for a specific patient population, patient preparation, scanning hardware or
scanning protocol. Thus, it is preferred to keep the number of restrictive criteria
to a minimum.

Second, to achieve good discrimination power and accurate measurement
[59] of lesion size, precise ’delineation’ (or segmentation) of the candidate is
needed. Although a number of methods are available for segmentation purposes
[74, 78, 79], adding such a separate step would introduce more parameters to
the CAD pipeline and should be avoided. Fuzzy segmentation methods using
sophisticated pattern recognition techniques might preclude this problem.

A third challenge is associated with the computation of the first and second
order derivatives, which are needed to compute the principal curvatures and to
characterize local shape. The derivative operators must act on a range of sizes
and should not have optimal performance for a specific size only. Ideally, the
scale should adapt to the underlying image structure. To our knowledge no
research has been performed to either analyse the effect of scale or to determine
the optimal scale for polyp detection. It is partly addressed in [45] by performing
the curvature computation on a high resolution triangulated isosurface mesh
thereby limiting the low pass filtering across the isosurface. Furthermore, some
research on scale selection for CTC in general has been performed in [80, 81].

Last, detecting large polyps is (clinically) more important than detecting
smaller ones. One would like to have this built into the CAD system. In other
words, the detection method must perform optimal for large polyps.

A steadily growing number of papers ([9, 82, 83, 38, 84, 85, 30]) report on
the performance of specific polyp detection algorithms. Unfortunately, a proper
comparison of algorithms is complex due to differences in prevalence, patient
preparation, scanning protocol, and determination of the ground truth.

We aim to convey some general requirements for polyp detection systems:
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1. it should not involve many parameters which need to be tuned in the
presence of a limited number of polyps,

2. a separate segmentation step should be avoided as it might add more
parameters,

3. it must be able to cope with the whole polyp size range encountered in
practice, and

4. it should take into account the increased clinical relevance of larger polyps.

3.1.3 Objective
We aim to introduce a new paradigm for the detection of protruding regions
on highly structured surfaces embedded in a 3D image. Polyps are assumed to
have introduced a deformation to the original (healthy) colon surface. We will
describe a novel method to reconstruct the data without these protrusions.
Effectively, the technique aims to ‘undo’ the deformation by modifying the
underlying intensities so that the protruding shape is no longer there.

The proposed method does not require any assumptions on the lesion shape
such as axial-symmetry, sphericity or lesion size, other than that it protrudes.
It works well for highly irregular protruding objects. Lesion candidates are
generated using only a single threshold. Small variations of the threshold affect
the detection sensitivity of the smaller polyps first. Additionally, the resulting
segmentations include the complete object (both head and neck).

In earlier work [10] we proposed a scheme that operated on an explicit rep-
resentation of the colon surface, which was obtained by a triangulation of the
isosurface at -650 HU. Only information of this particular isophote was used to
estimate the structured surface without the protrusions. Any (beneficial) infor-
mation from isophotes with higher or lower intensities was ignored. The scheme
proposed in this paper differs fundamentally by acting on an implicit represen-
tation of the colon surface. That is, it uses information from other isophotes as
well. Consequently, there is no need for tuning (optimizing) the intensity level
of the isosurface. Another advantage of this method is that topological com-
plexities and complex mesh processing tasks, such as mesh generation and mesh
smoothing, are avoided. We will compare both methods and demonstrate that
the two techniques are to some extent complementary. Moreover, exploiting the
complementary aspects will be shown to lead to improved sensitivity.

3.2 Methodology
3.2.1 Materials
A total of 84 patients with an increased risk for colorectal cancer were consecu-
tively included in a previous study [86]. All data were acquired using a Mx8000
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Figure 3.2: Distribution of sizes obtained during colonoscopy of 57 polyps larger
than or equal to 6 mm in 84 patients from a previous study [86]. One polyp of
45 mm is not visible in the histogram.

multislice CT scanner (Philips Healthcare, Best, The Netherlands) using the
same scanning protocol for all scans (120 kV, 100 mAs, 4x2.5 mm collimation,
pitch 1.25, standard reconstruction filter). Slice thickness was 3.2 mm. All pa-
tients adhered to an extensive laxative regime without taking a tagging agent
with their diet. All patients underwent CT colonography before colonoscopy.
The patients were scanned in both prone and supine position; thus, a total of
168 scans were used in our study. The findings of colonoscopy served as the
golden standard. Polyp size was also measured during colonoscopy by compar-
ison with an open biopsy forceps of known size. A research fellow annotated
the location of polyps in all CT scans. For the 84 patients, 108 polyps were
annotated. The number of polyps with a size larger than or equal to 6 mm was
57 and the number of polyps larger than or equal to 10 mm was 32. Fig. 3.2
shows a histogram of the optical colonoscopy size-measurements. Convention-
ally, polyps which are smaller than 6 mm are considered clinically unimportant.
Therefore, they were not used in the performance analysis. The peak at 10 mm
polyp size is caused by the fact that in clinical practice only a few bins are used:
smaller than 6 mm, between 6 and 10 mm and larger than or equal to 10 mm.

Experts labelled the polyps in CT data based on the optical colonoscopy
findings without using CAD. A candidate generated by the CAD system was
labelled as a true positive if an annotation was within 5 mm from any of the
voxels in the candidate and was not closer to any other candidate. A mar-
gin of 5 mm was used to accommodate inaccurate localization by the expert.
Especially for the explicit method, such a margin is needed to accommodate
annotation inside the polyp. To be able to make a proper comparison between
the two methods, the same margin is used for both techniques.
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Figure 3.3: Schematic illustration of the deformation process. (a) Three regions
(head, neck and periphery) are distinguished. (b) The second principal curva-
ture κ2 is zero at the border between the head and neck region. (c) The head
region expands during the deformation process.

3.2.2 Method
A typical polypoid shape is shown in Fig. 3.3(a). Suppose that the points on
the convex region of the polyp (the polyp head) are iteratively moved inwards.
In effect this process will ‘flatten’ the object (Fig. 3.3(c)). Note that the convex
region expands during the process and will ultimately include the polyp neck as
well. After a certain amount of deformation, the surface flattening is such that
the protrusion is completely removed. That is, the surface looks like as if the
object was never there. This is the key concept on which the method is based.

Before formalizing on the operator we first have a closer look at the sec-
ond order differential properties of the implicit surface embedded in a three-
dimensional voxel space. The colon can be considered as a long elongated struc-
tured tube. For a perfect cylinder shape the principal curvatures are smaller
than or equal to zero everywhere. However, the colon contains many folds, i.e.
structures which are bended only in one direction: the first principal curvature
is larger than zero, whereas, the second principal curvature is close to zero.
Protruding objects, such as polyps, have positive values for the first and second
principal curvature. Therefore, an operator is designed to affect only on points
with a positive second principal curvature and in such a way that the second
principal curvature decreases. Repeated application of the operator will even-
tually yield an image where the second principal curvature is smaller than or
equal to zero everywhere.

Consider once more the schematic representation of a polyp in Fig. 3.3(a).
The distinction between the head (κ1 > 0, κ2 > 0) and neck (κ1 > 0, κ2 ≤ 0)
regions of the object is made by the sign of the second principal curvature. On
the line connecting the inflection points A and B in the figure (separating the
regions ’head’ and ’neck’) the Gaussian curvature is zero. The proposed method
initially adapts the head region only. It will now be demonstrated that such
adaptation leads to an expansion of this region.

To that end, Fig. 3.3(b) shows a planar cross section through A, spanned by
the local gradient vector and the direction of the second principal curvature. Let
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us merely consider the curve emanating from this cross section. The steepness
of this curve corresponds to its first derivative; the curvature corresponds to its
second derivative and is given by:

κ = − ∆y
|∇y| , (3.2)

in which ∆y represents the second derivative of the curve. By convention κ has
a sign opposite to that of the second derivative. Observe that this curvature is
positive on the ’head’ side from A and negative on the ’neck’ side from A; the
curvature equals zero in A. At the position of A the second derivative is:

∆y = d2f

dx2 = lim
dx→0

f(x+dx)−f(x)
dx − f(x)−f(x−dx)

dx

dx
= 0. (3.3)

A reduction of the protrusion in the head region implies that the value of
f(x + dx) in (3.3) is lowered. Consequently, the second derivative in A (∆y)
becomes negative, and the curvature (κ) positive. Thus, the zero crossing of
the second derivative will shift outwards in Fig. 3.3(b) and the head region will
expand into the neck region.

The effect of repeatedly reducing the protrusion is illustrated in Fig. 3.3(c).
The points with zero second principal curvature shift from A1 to A4 and B1 to
B4. Eventually, the protrusion is flattened over the complete shape, i.e. both
the head and neck regions. Although the initial delineation of the head region
of the structure (in which the deformation is started) may be affected by noise,
the area of operation eventually spreads to the entire polyp area. It is this
property that makes the procedure robust. The results section contains some
examples to illustrate the method’s efficacy.

3.2.3 Second Principal Curvature Flow
A scheme to remove protruding elements from a curve in 2D is the Euclidean
shortening flow [87]. A similar approach can be taken in 3D, for which the flow
is governed by:

∂I

∂t
= −g(κ1, κ2) |∇I| , (3.4)

with κ1 and κ2 the first and second principal curvatures, |∇I| the gradient
magnitude of the input image I, and g(·) a curvature dependent function char-
acterizing the flow. The principal curvatures can be derived from the trace of
the Hessian matrix H:

H =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 , (3.5)
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with x, y and z the image coordinates and Iij the second derivative Iij =
∂2I/∂i∂j. In gauge coordinates the Hessian is a diagonal matrix with terms [88]:
Igg, Iuu and Ivv. The first term is the second derivative in gradient direction;
the second and third terms are the second derivatives in the directions of the
principal curvatures of the isosurface perpendicular to the gradient vector. The
latter two relate to the principal curvatures of the isosurface:

Iuu = −κ1 |∇I| ,
Ivv = −κ2 |∇I| . (3.6)

With the definition of inward normals, the second principal curvature in the
colon is everywhere smaller than or equal to zero, except on protruding re-
gions. Here, both the first and second principal curvatures are positive and the
corresponding second derivatives are negative.

g(κ1, κ2) may be defined in various ways [89], e.g. by the mean curvature
[90, 91] or the Gaussian curvature. We require that g(κ1, κ2) is continuous,
especially at locations where the sign of κ2 changes, to avoid a discontinuous
deformation. Moreover, it must be small on folds with a small positive value of
κ2 so that the deformation on such locations is small. Reversely, the response
to polyps with two large principal curvatures should be large. Accordingly, we
solve the following nonlinear PDE:

∂I

∂t
=

{
Ivv (κ2 > 0)
0 (κ2 ≤ 0) . (3.7)

Thus, only at protruding regions the image intensity is reduced by an amount
proportional to the local second derivative in the direction of κ2.

3.2.4 Implementation
The proposed method is applied to voxels on and around the colon surface.
This region of interest (ROI) is defined by a mask. First, a binary image is
obtained by thresholding the CT image at -650 HU. Subsequently the mask is
generated by applying the exclusive or (XOR) operation to an eroded and a
dilated version of the binary image. The number of iterations for the dilation
and erosion should be such that the full air-colon transition is included in the
resulting mask image. We used a conservative value of 10 mm for the radius of
the erosion and dilation kernels.

The partial differential equation (3.7) is solved for the voxels in the ROI
defined previously. The intensities of voxels outside the ROI are not altered and
serve as Dirichlet boundary conditions. The left hand side of (3.7) is discretized
by a forward difference scheme:

∂I

∂t
= It+1 − It

dt
+O(dt). (3.8)
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The right hand side of (3.7) requires computation of first and second order
derivatives. The first order derivative is determined by the local orientation
of the normal field. An accurate estimate is required to prevent diffusion of
information across isophotes, leading to blurry effects. Unfortunately, simple
central difference derivative operators are known to have rather poor rotation
invariance [92]. Therefore, the first and second order derivatives are computed
after a (second order) Taylor expansion in a 3x3x3 neighbourhood [93]. They
are used to compute Ivv.

The image values are modified in a semi-implicit manner comparable to a
Gauss-Seidel scheme, meaning that some of the underlying intensity values are
at time t+ 1, while others are at time t:

It+1 =
{

It + ∆t
(∆x)2 I

t+1/2
vv (κ2 > 0)

It (κ2 ≤ 0)
, (3.9)

in which It+1/2
vv indicates that it is computed with information from time steps

t and t+1. For Laplace’s equation, numerical stability is guaranteed if the term
∆t/(∆x)2 is smaller than 1

6 [94]. Therefore, the maximum time step for which
stability is attained depends on the direction in which the voxel size is smallest
(typically in-plane): (∆t)max = 1

6 · (∆x)2. Note that this is a conservative
value since we only use the principal second derivative, Ivv, instead of the full
Laplacian: Igg+Iuu+Ivv. The aspects of stability, convergence and correctness
for similar problems have been elaborately discussed in [87]. For a more formal
discussion, see [95] and also [94]. In practice, we have never encountered a
problem concerning the stability and convergence of the solution.

Summarizing, the algorithm acts only on the head regions in which κ2 >
0. A new intensity is assigned by (3.9) to each voxel within such a region.
Subsequently, the principal curvatures are recomputed. Some of the voxels
which initially had zero or negative second principal curvature will now be in
the head region and will be added to the area of operation. In this way, during
iteration, the area of operation will expand from the head into the neck region.

An obvious stopping criterion would be to track the amount of intensity
change during iterations and stop when the amount of intensity change at a
particular iteration is lower than some predefined value. Unfortunately, this
leads to an underestimate of the protrusion of large objects, with a low value
for the second derivative even when the protrusion may be quite large. In our
implementation, we have taken a heuristic approach. After each iteration, the
number of voxels that are added to the convex region is counted. The algorithm
stops when this number is zero.

A crucial property of the method is that the effective kernel scale increases
with each iteration. Such adaptation occurs since the curvature calculation con-
tinuously uses the result from the previous step. In effect, the scale ’adapts’
to the underlying image structure, because a small protrusion will require less
iterations to be flattened into the background than a large one. In other words,
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the effective scale varies locally as the number of iterations needed to reach
a ‘steady state’ differs from location to location. Simultaneously, the area of
operation, which is delimited by zero second principal curvature, also changes
during iterations. By definition, the head region of a structure is adapted first,
but subsequently the area of operation extends to the neck region (see Fig. 3.3).
Existing methods typically estimate curvature values in ’one shot’ by selecting
one scale of derivative operators a priori. A limitation of the current method
may be associated with protruding objects with small κ2. Such structures de-
form slowly due to small curvature. It will be demonstrated that the detection
of large polyps is not hampered by this limitation (see Section 3.3.2).

Fig. 3.4 demonstrates that the method works well also for highly irregular
shapes. The first row shows the isosurface (rendered at -650 HU) at different
stadia of the deformation process. During the first iterations only the two
protruding regions on the left and right side of the polyp are affected. In later
stages these two regions merge and also the middle part is deformed. The
steady state solution and the resulting segmentation by thresholding is shown
in the last two pictures of the first row. The second row shows the shape
index (SI) computed from Gaussian derivatives obtained using different scales
(σ = 2, 4, 8, 12 mm), red corresponds to SI = 1, magenta to SI = 0.75 (e.g. on
folds). The third row shows the regions with SI larger than 0.8. The example
demonstrates that scale has a profound effect on the resulting SI values. All
polyps in our dataset that are larger than 10 mm have multiple separated head
regions when ’observed’ at a small scale (see Fig. 3.11b for the performance of
our algorithm on large objects).

3.2.5 Candidate Segmentation
The steady state yields new intensities for voxels, particularly in protruding
regions. We will now demonstrate that the intensity change is a measure for
the amount of displacement of the isosurface.

Let ~x represent a position in which the intensity It=t0(~x) is halfway the
intensities of the colon lumen and the tissue. Furthermore, the algorithm is
asserted to displace the isosurface through ~x by a small amount δ (smaller than
the width of the point spread function (PSF)) after some iterations at t = ti.
Then, the intensity It=ti(~x) can be computed via a first order Taylor series
expansion:

It=ti(~x) = It=t0(~x) + δ · ∇It=t0(~x) + ε. (3.10)

Notice that δ refers to a hypothetical step size corresponding to a small displace-
ment of the isosurface. Reversely, a small change in intensity relates linearly
to the amount of displacement. However, large displacements of the isosurface
cannot be described as such. The intensity change levels off for displacements
larger than the PSF width:
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Figure 3.4: Demonstration of polyp detection by the curvature flow (first row).
The second and third row show results as obtained by thresholding the Shape
Index, computed at different scales. See text for details.
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Figure 3.5: Sketch of the relation between colon surface displacement and the
observed intensity change for positions halfway the step edge. The relation
depends on the apparent local scale of the PSF, i.e. the scale in the direction
of the surface normal. Often, the scanner resolution is not isotropic: the in-
plane resolution is larger than the out-of-plane resolution. As a consequence,
the relation depends also on the direction of surface displacement.

It=t∞(~x) = It=t0(~x)− C

2 , (3.11)

in which C denotes the total contrast over the transition from lumen to tissue
(typically around 1000 HU).

The sketch in Fig. 3.5 illustrates the relation between the intensity change
(before and after deformation) and the colon surface displacement, halfway the
air-tissue transition. Clearly, the intensity change is monotonically increasing
with increasing displacement of the isosurface. This would permit a segmenta-
tion by a simple threshold on the intensity change if the data were isotropic,
but unfortunately CT data often are not. The in-plane resolution is frequently
higher than the resolution in scanning direction (z). In other words, the ap-
parent scale of the PSF σapparent depends on the direction of the colon surface
normal. Consequently, the relation between intensity change and colon sur-
face displacement (cf. Fig. 3.5) depends on the orientation of the protruding
structure. To solve this problem, the derivative kernels are made anisotropic
such that the apparent scale will be isotropic and equal to a certain target
scale σtarget. The kernel scale σi, in the direction i ∈ {x, y, z}, is computed
by σi =

√
σ2

target − σ2
apparent,i, in which σapparent,i is the apparent (anisotropic)

scale of the PSF. Polyp candidate regions are segmented by thresholding the
intensity change field, followed by a labelling operation. The threshold value is
100 HU corresponding to the threshold of 0.4 mm surface displacement as used
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in [10] for data with an assumed Gaussian PSF [60] with σ = 1.6 mm2.

3.2.6 Features for Classification
For each candidate object, five features are computed. These features relate to
the two properties that are primarily used by a radiologist: shape of a candidate
and intensity distribution inside a candidate. We explicitly make this distinc-
tion since only size descriptors permit a ranking of the candidate objects in a
way that relates to clinical relevancy. Accordingly, size related features will be
treated differently than the other features in the pattern recognition step. Con-
ventionally, polyp size is defined as the single largest diameter, excluding the
stalk. We compute it automatically using the method described in [79], which
not only returns the largest diameter (LongAxis), but also the shortest diam-
eter (ShortAxis). These are the first two size related features that are used in
the classification. Notice that their ratio incorporates shape information. The
third feature is the maximum intensity change (MaxIntChange) within each
segmented region (candidate). It directly relates to the isosurface displacement
(cf. Fig. 3.5). For larger polyps the values of this feature will be large and
vice versa. The fourth and fifth features used for classification are the 5 and
95 percentile intensities inside the candidate. We employ these percentile val-
ues and not the minimum and maximum intensities to increase the robustness
against noise. For simplicity, we will refer to these two features as the minimum
(MinHU) and maximum (MaxHU) intensity values inside the objects. Notice
that all features depend on the intensity change field since all are computed
over the segmented volume of a candidate. Only the MaxIntChange feature is
directly derived from the intensity change field in the segmented volume, the
others are computed from the original CT data.

3.2.7 Classifier Training
It was mentioned previously that the intensity features do not (directly) allow
for an ordering of the candidates. As an example, consider the feature space
of MinHU and MaxHU shown in Fig. 3.6. The black dots denote true positive
candidates and the grey dots denote false positive candidates.

The distribution of polyps is somewhat Gaussian, and there is a large overlap
with the non-polyps. The latter do not show a simple distribution in this
space. For these reasons, these two features are not used directly for classifier
training. Instead, we compute the Mahalanobis distance to the polyp class
center. Such a mapping orders the candidates by the distance to the center of
the Gaussian, i.e. the center of the polyp class yield zero Mahalanobis distance.
Notice that the center and width of the Gaussian are to be determined on

2Halfway the air-tissue transition:∇It=t0 = C

σ
√

2π
= 1000

1.6
√

2π
≈ 250 HU/mm, thus

100 HU , 0.4 mm, i.e. equal to the threshold used in [10].
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Figure 3.6: Feature space of the maximum and minimum intensities for each
candidate region. Annotated polyps are depicted by black dots and have maxi-
mum intensities around 0 HU (tissue) and minimum intensities around -650 HU.
Only one in every 20 false positives is shown as a grey dot.

independent training data. This strategy mimics the use of a Gaussian one-
class classifier [54]. Complementary, the remaining features (MaxIntChange,
LongAxis, ShortAxis) relate to size and are directly used to order the candidates.
The ranking of the candidates imposes that changes in the decision boundary
affects the classification in an ordered fashion.

It may be expected that far more small candidates are detected than large
ones due to noise and the small ‘effective’ scale on small objects. Consider a
connected number of pixels affected by positively signed noise. Such coherent
regions may mimic small objects with positive principal curvature. The deriva-
tives computed from the 3x3x3 Taylor’s expansion experience a small amount of
regularization. Consequently, the little blurring may leave small noise protru-
sions on an otherwise smooth surface. This is confirmed by the distribution of
the false positive candidates with respect to the MaxIntChange feature, which
resembles an exponential distribution. Concurrently, we have observed that the
polyps denoted by black dots in 3.6 are approximately uniformly distributed.
Therefore, the ratio of the posterior probabilities must follow an exponential
decay as a function of MaxIntChange. This is a situation in which a logistic
classifier [61] is optimal.

The linear logistic classifier involves estimating the posterior probabilities
p (ωi|x) instead of the class distributions p (x|ωi). These posterior distributions
are assumed to be the sigmoidal functions. This is a valid assumption when the
classes are Gaussian distributed, or, as in our case, one of the class distributions
is exponentially decreasing, while the other is more or less uniformly distributed.
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Figure 3.7: Polyp (10 mm) at different stages of the intensity deformation (after
0, 10, 40, 80 and 160 iterations of (3.9)) . First row: original data; second row:
overlay showing the intensity changes larger than 100 HU (the color scale was
truncated at 650 HU; third row: isosurface renderings (at -650 HU).

A maximum likelihood estimation is performed to find the linear direction in
the data that best fits these assumed sigmoidal distribution functions. Using
the posterior probabilities instead of the class-dependent distribution functions
makes this classifier less sensitive to the large class imbalance.

As such, the problem is treated as a regression problem rather than a tra-
ditional two-class pattern recognition task. In other words, one searches for a
linear direction in which the sigmoidal pdfs best describe the data. The per-
formance of the classifier will be assessed by a 5-fold, 10 times repeated cross
validation (see below).

3.3 Experiments and Results
The proposed method is applied to the detection of colonic polyps in CT
colonography data of 84 patients (see above). We will first show qualitative
results. The sensitivity and specificity of the candidate detection step of the
CAD system will be given for varying thresholds on the MaxIntChange fea-
ture. The results of the complete CAD system after classifier training will be
given at the end of this section. We will include the results obtained by the
method that involves an explicit (mesh) representation of the colon surface [10]
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Figure 3.8: Typical results for four polyps. Each column shows the results for
a different polyp. The first two rows show grey value cross sections before and
after intensity deformation. The third row shows the segmentation masks which
are obtained by thresholding the intensity change at a level of 100 HU. The last
two rows show isosurface renderings (at -650 HU) of the polyps before and after
intensity deformation.
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for comparison. The FROC curves were calculated from a leave-one-patient out
cross-validation. A polyp was counted as a true positive CAD detection if it
was found in at least one of the two scanned positions (prone or supine).

The mean computation time per patient on a PC with a Pentium 4 processor
(3.0 GHz) and 2 GB memory was 4 minutes.

3.3.1 Qualitative Analysis
Fig. 3.7 illustrates how the intensities are modified during the deformation pro-
cess and how this affects the position of the isosurface. The first row of grey
valued images show cross sections through the polyp after 0, 10, 40, 80 and
160 iterations of (3.9). The second row shows images with an overlay of a color
map of the intensity change for voxels with a change of more than 100 HU. The
color bar gives an indication of the amount of change in the polyp compared
to its surroundings (< 100 HU; the scale of the color bar was truncated at 650
HU). To appreciate the three dimensional structure, the last row shows isosur-
face renderings (at -650 HU.) that clearly show the gradual deformation of the
polyp, while its surroundings stay almost unaltered.

Fig. 3.8 shows the final outcome for a number of other polyps. The first two
rows show grey-valued cross sections, respectively before and after the intensity
deformation. The third row shows an overlay of the segmentation as obtained
by thresholding the intensity change between the images in the first two rows at
a level of 100 HU. The bottom two rows show isosurface renderings (at -650 HU)
of the polyps before and after the deformation. The images demonstrate that
the intensity deformation method yields probable estimates of the colon surface.
This even applies to objects situated in highly structured surroundings, such as
the polyp in the first column. The second column shows the result for a 6 mm
polyp. It is situated on an almost flat background. The isosurface rendering
containing the colon surface after deformation shows hardly any residual pro-
trusion. The third column displays an elongated polyp on a strongly folded part
of the colon. After deformation some residual protrusion can still be observed,
albeit small compared to the original protrusion. The same holds for the polyp
in the fourth column. This is a classical pedunculated polyp on a narrow stem.
The head region is removed, while the stem remains.

Approximately 60% of the false positives are stool and 30% of the false
positives are on folds. Among the remaining false positives are detections on
the illeocecal valve. All these objects had a shape and structure that closely
resemble a polyp (two examples are contained in Fig. 3.9).

3.3.2 Performance of the Candidate Detection
Fig. 3.10 serves to show that our choice of thresholds is not affecting the detec-
tion sensitivity. Both figures (a and b) contain a free-response receiver operating
characteristic (FROC) curve for the candidate detection step. Fig. 3.10(a) was
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Figure 3.9: Each row shows a false positive. First row: example of stool. Air
inside object is clearly visible on first image. Second row: stool on a fold. The
original data is shown in the first and third column. The data after deformation
by curvature flow is shown in columns two and four.

obtained using the method that involves an explicit (mesh) representation of
the colon surface [10] and Fig. 3.10(b) was based on the method presented in the
current paper. The independent variable along the curves is the threshold on
the displacement of the mesh, respectively the intensity change. In either case
a lower threshold returns more candidate objects. Reversely, as the threshold is
increased, fewer candidates are found, but also some polyps may be missed. For
the full CAD system (see below) we have chosen a threshold for which at least
100% sensitivity is achieved on an independent training set. For the mesh based
method this resulted in a threshold of 0.4 mm displacement. For the intensity
deformation method we use a threshold of 100 HU on the intensity change. The
smaller number of false positives of the mesh representation is due its descrip-
tion by fewer points (about 500000) than the implicit representation (about 10
million points). Notice that the large number of false positives at this stage is
irrelevant: the system’s performance is really determined after classifying the
candidates (see below).

3.3.3 Results after Classification
Fig. 3.11 shows the overall performance of both the proposed and the mesh based
method [10]. The figure shows the performance for the detection of polyps for
two size ranges: larger than or equal to 6 mm (including those larger than
10 mm), and larger than or equal to 10 mm. Apparently, the performance of
the two methods is comparable. Both techniques perform better on the larger
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Figure 3.10: FROC curves showing the candidate detection sensitivity versus
the number of false positives for (a) the mesh based and (b) the currently pro-
posed technique. The numbers in (a) denote the threshold on the deformation
field in mm and in (b) the threshold on the intensity change field in HU.

polyps. A sensitivity of 95% for polyps ≥ 6 mm is achieved at an average false
positive rate of 4-6 per scan. For polyps ≥ 10 mm, a sensitivity of 95% is
obtained at about 4 false positives per scan.

For our data, approximately 50% of the false positives are stool and 40% are
on folds. Among the remaining false positives are detections on the illeocecal
valve. All these objects have a shape and internal structure that closely resemble
a polyp (two examples are contained in Fig. 3.9).

3.3.4 A Combined Approach
In practice we found that particularly the false detections of both methods were
to some extent uncorrelated. For instance, the mesh based method typically had
false detections emanating from the partial volume effect (PVE) as it operates
on a single isophote, whereas the current method was more robust because it
took the full transition (air-tissue) into account. Reversely, the current method
is inherently sensitive to intensity variations within tissue, especially in thin
folds, whereas such problems are excluded in the mesh based method in which
feature measurement is confined to the isosurface.

The two methods were combined as follows. The location of the candidates of
both methods were compared. A consensus voting was used to accept candidates
only if an overlapping candidate was found by the other method, in which case
they were linked. Candidates with a vote from only one method were discarded.
Fig. 3.12 confirms that there is complementary information in the two methods.
It contains a scatter plot of the MaxIntChange feature versus the maximum
displacement of the mesh as obtained by the mesh based method. It can be
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(b) Polyps ≥ 10 mm

Figure 3.11: FROC curves depicting the performance of classification for the
mesh based (explicit) and the currently proposed (implicit) technique. The
FROC curves were computed by a five times repeated ten-fold cross-validation.

seen that these correlate well for polyps (black dots). Two regions with false
detections (grey dots) can also be observed in which the depicted features are
uncorrelated (top-left and bottom-right in both graphs). One region has rather
low MaxIntChange, but concurrently quite large maximum displacement of the
mesh; another region is characterized by a large MaxIntChange, but a low
maximum mesh displacement.

Fig. 3.11 also contains an FROC curve of the combined approach. It demon-
strates improved performance by exploiting the complementary aspects of the
two approaches particularly on polyps ≥ 6 mm.

3.4 Discussion / Conclusion
A novel method was presented which detects polyps based on their protruding
character irrespective of the actual shape. The method modifies image inten-
sities at locations of protruding objects. This is achieved by finding a steady
state solution of a nonlinear PDE with the recorded image as input. We showed
that the intensity change relates to the displacement of iso-contours. We also
demonstrated how this relation is made invariant to the anisotropic resolution
and sampling of the scanner. This allows for a simple segmentation of polyp
candidates by applying a single threshold on the intensity change field. We pro-
posed a measure for the detection of polyp candidates, which directly relates
to polyp size, and not to polyp shape. This measure orders detected struc-
tures according to size which, in effect, keeps increasingly larger objects further
away from the decision boundary. In other words, this limits the risk of missing
large polyps. Also, our method does not make a specific choice for the scale
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Figure 3.12: Feature space of the maximum displacement (explicit method) vs.
the maximum intensity change (implicit method). The black dots correspond
to polyps and the grey dots to false detections. Two regions (encircled by dash-
dotted lines top-left and bottom-right) with false detections (grey dots) can be
observed in which the depicted features are uncorrelated and complementary.

for the computation of the 1st and 2nd order derivative operators. The itera-
tive character of the method changes the intrinsic scale of the image (local and
anisotropic): the aperture of observation (window size of the operation times
the number of iterations) inherently increases.

We have chosen to adapt the convergence criteria of the posed PDE to the
local data. Effectively, the deformation of a region stops when it does not
expand anymore. This yields a stopping criterion which is data dependent
and does not need user interaction. However, the criterion is rather strict as
can be seen from Fig. 3.8 (third column), in which case the protrusion was
not completely removed. A high noise level might prevent the algorithm from
segmenting the entire polyp area. The (second order) Taylor expansion in a
3x3x3 neighborhood will effectively deal with the noise practically encountered
in low-dose (20 mAs) scans.

The method’s performance on so-called flat polyps requires further research.



Chapter 4

Combining Mesh, Volume,
and Streamlines
Representations for Polyp
Detection

CT colonography is a screening technique for adenomatous colorectal
polyps, which are important precursors to colon cancer. Computer aided
detection (CAD) systems are developed to assist radiologists. We present
a CAD system that orders the polyps according to clinical relevance (size)
and substantially reduces false positives while keeping the sensitivity high.
Hereto, we combine protrusion measures derived after a nonlinear partial
derivative equation (PDE) is applied to both an explicit mesh and an im-
plicit volumetric representation of the colon wall. Hence, surface as well
as intensity characteristics are exploited. The shape of the protruding ele-
ments is efficiently described via a technique from data visualization based
on curvature streamlines. A low-complex pattern recognition system based
on an intuitive feature from the aforementioned representations improves
performance to less than 1.6 false positive per scan at 92% sensitivity per
polyp.

57
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4.1 Introduction
Colorectal cancer is the second leading cause of death due to cancer in the
Western world [1]. It has been shown that screening for adenomatous colorectal
polyps, which are important precursors to cancer, and subsequent removal of
identified lesions significantly reduces the incidence of colon carcinoma [2, 28].
Computed tomography colonography (CTC) is a rapidly evolving technique
that is advocated for screening. To assist the radiologists, effort is put in the
development of computer aided detection (CAD) systems [43, 41, 29, 9, 57, 73].

Traditionally, polyps are tentatively detected by curvature derived features.
Subsequently, the candidates thus obtained are classified by curvature as well
as material structure features. The latter are typically involved to reject falsely
detected stool rests (frequently having a granulated grey-value structure due to
air bubbles) and false detections emanating from partial volume effects. It was
demonstrated that no other features but the aforementioned ones are required
for a performance that is comparable to optical colonoscopy [73].

In previous work, it is shown that polyps can be detected equally well
as protrusions on an explicit (mesh-surface) representation as on an implicit
(grey-level) representation of the colon wall [57]. In this paper, we present a
low-complex, unambiguous pattern recognition step, which combines the two
approaches. It will be shown why the two techniques are to some extent com-
plementary and it will be demonstrated how techniques from data visualization
are efficiently incorporated in our framework.

4.2 Materials
For evaluation, a subset of 28 patients from a larger study [6] is used. All
patients adhered to an extensive laxative regime and no fecal tagging agent
was administered. The data sets consist of scans in both prone and supine
positions; the slice thickness was 3.2 mm. The reference standard is optical
colonoscopy. Expert radiologists retrospectively indicated the location of polyps
by annotating a point in the 3D data set using the reference standard. 65 polyp
annotations were made in the 56 scans, corresponding to 40 polyps larger than
or equal to 6 mm. The candidate segmentations were labeled by comparison to
these annotations. A polyp was counted as a true positive CAD detection if it
was found in at least one of the two scanned positions.

4.3 Protrusion-Based Detection of Polyps
Polyps may be characterized by the condition that the smallest principal cur-
vature is larger than zero. In other words, they are caplike structures, whereas
colonic folds are elongated with typically one positive curvature and the other
close to zero or (slightly) negative. Because of the cylindrical global nature of
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the colon, regions with two positive curvatures are relatively scarce. The prin-
cipal curvatures of the colon wall can either be computed by differentiation of
a mesh representation or directly from the underlying image data [88].

Previously, we introduced two distinct, iterative schemes for the detection
of polypoid objects by the amount of protrusion compared to the background.
The updating function in both schemes is abstractly defined as:

Xt+1 = Xt + dt · f(−κ2) (4.1)
in which f (−κ2) is a function that is designed to operate on an object only if
the smallest curvature is positive and dt is a time step [10, 57]. In the explicit
method f (·) is related to the force applied to the mesh vertices, whereas in the
implicit method this function modifies the intensity of voxels in such a way that
’protruding’ intensities are smoothed into the background. Both approaches
involve a repeated application of (4.1) until κ2 is smaller than or equal to zero
everywhere or until some convergence criterium is satisfied.

4.3.1 Complementary Protrusion Analysis
It may be concluded from the previous section that polyps are protrusions in
both the explicit (mesh) and in the implicit (grey-value) representation of the
colon wall. In practice we have found that particularly the false detections
of both methods are to some extent uncorrelated. For instance, the explicit
method typically had some false detections emanating from partial volume ef-
fects (PVE), whereas the implicit method was more robust because it took
the internal intensities into account. Reversely, the implicit method, using
neighbourhood information, is inherently sensitive to neighbouring structures,
whereas such problems are excluded in the explicit method in which feature
measurement is confined along the (infinitesimal thin) mesh. Because of the
thinness of some folds, the intensities inside folds are influenced by the PVE.
As a consequence, the implicit method also detects candidates inside a fold.
The mesh method has only limited response at these locations.

The explicit approach directly acts on a representation of the colon wall,
whereas the implicit method interacts with the underlying data. These two
representations also reflect the features to distinguish true polyps from false
detections. Note that the protruding aspect is predominantly represented in the
mesh representing the colon wall, whereas the material structure is captured in
the underlying data. We conceive a combined approach in which the protrusion
extent is better represented in the explicit method, whereas the volumetric and
intensity properties are delivered by the implicit method.

4.3.2 Shape Analysis
It may be observed that so far information about the shape of the objects re-
mains limited. Effectively, lesions are detected by the amount of protrusion only,
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(a) (b)

Figure 4.1: (a) A polyp with its surrounding environment. (b) Example of the
curvature streamlines generated in the vicinity of the polyp.

irrespective of shape. An effective representation of shape was recently described
in the literature on data visualization, deriving from curvature streamline anal-
ysis.

Curvature streamlines (or lines of curvature) are defined as lines that are
tangent everywhere to one of the two principal curvature direction vector fields
on the surface. Techniques for deriving curvature streamlines on the surface
were presented in [96]. In order to capture the essential surface shape informa-
tion, streamlines were adaptively spaced over the whole surface with spacing
dependent on the local principal curvature magnitudes. On less curved surface
regions, fewer streamlines were generated than on highly curved surface regions.

Curvature streamlines that are constrained to the colonic wall have the useful
characteristic that they tend to encircle polyp necks. The ’winding angle’ feature
was derived to utilize this characteristic. It is defined as the cumulative signed
change of direction along a streamline. At each sample point, the differential
change of direction is determined based on the surface normal at that point.
Closed streamlines, such as those around polyp necks, have a winding angle of at
least 2π. A candidate was assigned the maximum winding angle of a streamline
in its vicinity. Initial experimentation showed that this winding angle feature
correlated highly with true polyp detections and could thus be useful to reduce
the number of false positives (FPs) found by CAD systems [96]. Special care
should be taken to ensure that streamlines are sufficiently long in order to fully
capture polyp surface geometry [97].
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Figure 4.2: Scatter plots of a larger (equivalent) data set (86 patients) showing
(a) the maximum mesh displacement of a candidate, and (b) ΦT vs. the
maximum intensity difference derived from the implicit method. The black
dots correspond to polyps and the grey dots to false detections.

4.4 Experiments and Results
The detections on the explicit representation (Section 4.4.1) are at the basis
to analyse how protrusions are detected with the implicit method and how the
streamline analysis may contribute (Section 4.4.2). In the last section, FROC
analysis shows the improvement of each newly added feature.

4.4.1 Combined CAD System Based on Protrusion
The explicit method actually involves two features. First, we use a feature
derived from the displacement field of the mesh. This feature measures the
percentage of the candidate with a displacement larger than a certain threshold
T , further denoted as ΦT . We use a threshold of 0.6 mm as in [73]. This design
favors candidates with steep edges and compact forms. The second feature we
use is the mean intensity of the candidate [73]. This feature is calculated by a
tonal weighted sum of all voxels included in a segmentation mask. The latter
consists of the area included between the original and the displaced mesh.

To analyse the performance of a combined system, the correspondences be-
tween candidates found by both methods should be established. The implicit
method acts only on these regions in the image where a candidate was found
by the explicit method. These regions are obtained by ten times dilation of the
binary segmentation mask of the candidate. A corresponding segmentation area
for the implicit method is derived from the deformed image by thresholding the
intensity difference at a value of 100 Hounsfield unit (HU) (as in [57]). Thus,
each candidate from the implicit method is inherently linked to a corresponding
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Figure 4.3: Scatter plots showing ΦT versus (a) |Ψ| and (b) Ψc. The black dots
correspond to polyps and the grey dots to false detections.

detection on the mesh.
Fig. 4.2 contains two scatter plots of the maximum intensity difference de-

rived from the implicit method versus the maximum displacement of the mesh
(Fig. 4.2(a)) and versus ΦT derived from the displacement field (Fig. 4.2(b)).
It can be seen that the maximum mesh displacement and the maximum in-
tensity difference correlate well for polyps (black dots). In both scatter plots
two clusters of false detections (grey dots) can also be observed in which the
depicted features are uncorrelated (top-left and bottom right in both graphs).
One cluster has rather low maximum intensity change, but concurrently quite
large maximum displacement of the mesh or ΦT ; another cluster is characterized
by a large maximum intensity difference, but a low maximum mesh displace-
ment or ΦT . The indicated boundaries of the feature space (dashed lines) in
Fig. 4.2(a) represent the two thresholds used in the candidate generation.

4.4.2 Streamline Analysis
For all detections on the mesh, a center line through the center of gravity and the
center of curvature of the segmentation mask is computed [79]. The intersection
of this line and the mesh defines the initial seed point for the streamline anal-
ysis. For each detection curvature streamlines are generated within a spherical
ROI with 16 mm radius around the seed point. As explained in Section 4.3.2,
the winding angle is calculated on these streamlines as the cumulative signed
change of direction along the streamline. At each sample point, the differential
curvature is derived relative to the surface normal at that point. In other words,
when a streamline forms a circle, its absolute winding angle is 2π or more (for
polyp characterization the sign of the winding angle is not important). Im-
portantly, an absolute winding angle of more than 2π is not necessarily more
‘polyp-like’ than a winding angle equal to 2π. Therefore, we clip this feature
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Figure 4.4: FROC curves for polyp detection systems consisting of a combina-
tion of the explicit method (Ex), the implicit method (Im), and the streamline
analysis (Ψ/Ψc).

to a maximum of 2π, i.e. Ψc = min (|Ψ|, 2π). This hypothesis is confirmed by
FROC analysis as shown in Fig. 4.4(b).

Fig. 4.3 shows scatter plots of (a) the absolute winding angle |Ψ| and (b)
the clipped winding angle |Ψc| vs. ΦT (derived from the mesh displacement
field). Again, the black dots denote the polyps and the grey dots denote the
false detections. Observe that almost all polyps have a winding angle close to
or larger than 2π, whereas many false detections have lower winding angles. In
other words, the winding angle might indeed help to distinguish between polyps
and false detections.

4.4.3 FROC Analysis
Fig. 4.4 shows FROC curves describing the performance of the CAD system.
The FROC curves are computed by a ten times repeated ten-fold cross-validation.
In all cases, we used a logistic classifier and detections on the rectal tube were
discarded.

Initially, the system was based on two features: ΦT and the mean intensity.
The performance of this system (Ex) is shown in Fig. 4.4(a) by the dash-dotted
line. Then, the implicit method (Im) was added by means of the maximum in-
tensity difference feature; the resulting performance is given by the large dashed
line. Finally, the clipped winding angle feature Ψc was included to both previ-
ous configurations, represented by the small dashed respectively the solid line.
We conclude that 92% of the polyps were detected with less than 1.6 false pos-
itives per scan when all four features are included. The error bars denote two
times the standard deviation in the number of false positives over all scans at
85% sensitivity. Actually, the standard deviation of the FROC curves is over
seven times smaller due to averaging over all scans.
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4.5 Conclusions
We present a polyp CAD system that detects polyps based on four intuitive
features. The detection consists of solving Equation 4.1 by means of two differ-
ent approaches, which characterize different aspects of the candidates. In effect,
protruding objects are detected by means of deforming an explicit representa-
tion of the colon surface or by means of modifying the intensity data containing
an implicit representation. We also added a shape-descriptor derived from cur-
vature streamline analysis. It was shown that the feature based on the mesh
displacement field, the mean intensity, the maximum intensity difference and
the streamline’s winding angle are sufficient for optimal performance. We ana-
lyzed 56 scans from 28 patients and it was found that over 92% of the polyps
were detected with less than 1.6 false positives per scan.



Chapter 5

Recognition of Protruding
Objects in Highly
Structured Surroundings by
Structural Inference

Object recognition in highly structured surroundings is a challenging task,
because the appearance of target objects changes due to fluctuations in their
surroundings. This makes the problem highly context dependent. Due to
the lack of knowledge about the target class, we also encounter a difficulty
delimiting the non-target class. Hence, objects can neither be recognized by
their similarity to prototypes of the target class, nor by their similarity to
the non-target class. We solve this problem by introducing a transformation
that will eliminate the objects from the structured surroundings. Now,
the dissimilarity between an object and its surrounding (non-target class)
is inferred from the difference between the local image before and after
transformation. This forms the basis of the detection and classification
of polyps in computed tomography colonography. 95% of the polyps are
detected at the expense of four false positives per scan.
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5.1 Introduction
For classification tasks that can be solved by an expert, there exists a set of
features for which the classes are separable. If we encounter class overlap, not
enough features are obtained or the features are not chosen well enough. This
conveys the viewpoint that a feature vector representation directly reduces the
object representation [98]. In the field of imaging, the objects are represented
by their grey (or color) values in the image. This sampling is already a reduced
representation of the real world object and one has to ascertain that the acquired
digital image still holds sufficient information to complete the classification task
successfully. If so, all information is still retained and the problem reduces to a
search for an object representation that will reveal the class separability.

Using all pixels (or voxels) as features would give a feature set for which
there is no class overlap. However, this feature set usually forms a very high
dimensional feature space and the problem would be sensitive to the curse of
dimensionality. Considering a classification problem in which the objects are
regions of interest V with size N from an image with dimensionality D, the
dimensionality of the feature space Ω would then be ND, i.e. the number of
pixels in V. This high dimensionality poses problems for statistical pattern
recognition approaches. To avoid these problems, principal component analysis
(PCA) could for example be used to reduce the dimensionality of the data
without having the user to design a feature vector representation of the object
(see for example [99]). Although PCA is designed to reduce the dimensionality
while keeping as most information as possible, the mapping unavoidably reduces
the object representation.

The use of statistical approaches completely neglects that images often con-
tain structured data. One can think of images that are very similar (images that
are close in the feature space spanned by all pixel values), but might contain
significantly different structures. Classification of such structured data receives
a lot of attention and is motivated by the idea that humans interpret images
by perception of structure rather than by perception of all individual pixel val-
ues. An approach for the representation of structure of objects is to represent
the objects by their dissimilarities to other objects [100]. When a dissimilarity
measure is defined (for example the ’cost’ of deforming an object into another
object), the object can be classified based on the dissimilarities of the object to
a set (or sets) of prototypes representing the classes.

Classification based on dissimilarities demands prototypes of both classes,
but this demand can not always be fulfilled. For example, the detection of
target objects in highly structured surroundings poses two problems. First,
there is a fundamental problem describing the class of non-targets. Even if
there is detailed knowledge about the target objects, the class of non-targets
(or outliers) is merely defined as all other objects. Second, if the surroundings
of the target objects is highly structured, the number of non-target prototypes
is very large and they all differ each in their own way, i.e. they are scattered all
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over the feature space. The selection of a finite set of prototypes that sufficiently
represents the non-target class is almost impossible and one might have to rely
on one-class classification.

In this paper we link image processing to dissimilarity based pattern recog-
nition. The solution is based on structural inference. Featureless pattern recog-
nition is extended to classification in the absence of prototypes. The role of
prototypes is replaced by a single context-dependent prototype that is derived
from the image itself by a specific transformation for the application at hand.
The approach will be applied in the context of automated polyp detection.

5.2 Automated Polyp Detection
The application that we present in this paper is automated polyp detection
in computed tomography (CT) colonography (CTC). Adenomatous polyps are
important precursors to cancer and early removal of such polyps can reduce
the incidence of colorectal cancer significantly [2, 28]. Polyps manifest them-
selves as protrusions from the colon wall and are therefore visible in CT. CTC
is a minimal-invasive technique for the detection of polyps and, therefore, CTC
is considered a promising candidate for large-scale screening for adenomatous
polyps. Computer aided detection (CAD) of polyps is being investigated to
assist the radiologists. A typical CAD system consists of two consecutive steps:
candidate detection to detect suspicious locations on the colon wall, and classi-
fication to classify the candidates as either a polyp or a false detection.

By nature the colon is highly structured; it is curved, bended and folded.
This makes that the appearance of a polyp is highly dependent on its surround-
ing. Moreover, a polyp can even be (partly) occluded by fecal remains in the
colon.

5.2.1 Candidate Detection
Candidate detection is based on a curvature-driven surface evolution [10, 57].
Due to the tube-like shape of the colon, the second principal curvature κ2 of
the colon surface is smaller than or close to zero everywhere (the normal vector
points into the colon), except on protruding locations. Polyps can thus be
characterized by a positive second principal curvature. The surface evolution
reduces the protrusion iteratively by solving a non-linear partial differential
equation (PDE):

∂I

∂t
=
{
−κ2|∇I| (κ2 > 0)
0 (κ2 ≤ 0)

(5.1)

where I is the three-dimensional image and |∇I| the gradient magnitude of the
image.
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(a) Original (b) Solution (c) Intensity change (d) Segmentation

Figure 5.1: (a) The original CT image (grey is tissue, black is air inside the
colon). (b) The result after deformation. The polyp is smoothed away and only
the surrounding is retained. (c) The difference image between (a) and (b). (d)
The segmentation of the polyp obtained by thresholding the intensity change
image.

(a) Original (b) 20 Iterations (c) 50 Iterations (d) Result

Figure 5.2: Isosurface renderings (-750 HU) of a polyp and its surrounding. (a)
Before deformation. (b–c) After 20 and 50 iterations. (d) The estimated colon
surface without the polyp.

Iterative application of (5.1) will remove all protruding elements (i.e. lo-
cations where κ2 > 0) from the image and estimates the appearance of the
colon surface as if the protrusion (polyp) was never there. This is visualized in
Fig. 5.1 and Fig. 5.2. Fig. 5.1(a) shows the original image with a polyp situated
on a fold. The grey values are iteratively adjusted by (5.1) . The deformed
image (or the solution of the PDE) is shown in Fig. 5.1(b). The surrounding is
almost unchanged, whereas the polyp has completely disappeared. The change
in intensity between the two images is shown in Fig. 5.1(c). Locations where
the intensity change is larger than 100 HU yield the polyp candidates and their
segmentation (Fig. 5.1(d)). Fig. 5.2 also shows isosurface renderings at different
time-steps.



5.3. STRUCTURAL INFERENCE FOR OBJECT RECOGNITION 69

5.2.2 Related work
Konukoglu et al. [75] have proposed a related, but different approach. Their
method is also based on a curvature-based surface evolution, but instead of
removing protruding structures, they proposed to enhance polyp-like structures
and to deform them into spherical objects. The deformation is guided by

∂I

∂t
=
(

1− H

H0

)
|∇I| (5.2)

with H the mean curvature and H0 the curvature of the sphere towards the
candidate is deformed.

5.3 Structural Inference for Object Recognition
After the candidate detection step, the feature space Ω can be thought to consist
of two separate parts. One part consists of all images showing a protruding
element and the other part consists of images without any protruding element.
It is assumed that the latter part does not contain any images with polyps. On
the other hand, not all images with a protruding element do contain polyps as
there might be other causes of protrusions, like fecal remains, the ileocecal valve
(between the large and small intestine) and small fluctuations of the colon wall.
To summarize, the feature space now consists of three different parts:

1. a set Ω◦ ⊂ Ω containing all images without a polyp (the surrounding
class),

2. a set Ωf ⊂ (Ω\Ωs), spanned by all volumes containing a protrusion which
is not a polyp (false detection class), and

3. a set Ωt = Ω\(Ωs ∪Ωf ), spanned by all volumes containing a polyp (true
detection class).

Section 5.3.1 will describe how the dissimilarities are defined with respect to
objects of which the appearance is highly context-dependent. Section 5.3.2 will
discuss how the classes are represented.

5.3.1 Dissimilarity Measure
A simple example of dissimilarities between objects is illustrated in Fig. 5.3(a).
Two objects xi and xj both have a certain dissimilarity with a certain prototype
p◦, respectively di◦ and dj◦ . If the Euclidean distance is used as the measure,
the triangle inequality holds in this case. An example of such a situation can be
seen in Fig. 5.4(a). For each object on the table the dissimilarity between the
image with the object (Fig. 5.4(a)) and without the object (Fig. 5.4(c)) can be
defined as the image of the object itself (Fig. 5.4(b)). Considering each object



70 CHAPTER 5. RECOGNITION BY STRUCTURAL INFERENCE

xi

xj

p◦

di◦ > 0, dj◦ > 0
dij ≤ di◦ + dj◦

(a)

asdf

xi

xj

Ω◦

di◦ = 0, dj◦ = 0
dij � di◦ + dj◦ = 0

(b)

xi

xj

p̂i

p̂j

Ω◦

di◦ > 0, dj◦ > 0
dij � di◦ + dj◦

(c)

Figure 5.3: (a) Feature space of two objects having the same surrounding, which
means that the surrounding (the table in Fig. 5.4(a)) reduces to a single point
p◦. (b) When considering spatial distances between the objects, the surrounding
p◦ transforms into a blob and all distances between objects within the blob are
zero. (c) If the surroundings of each object are different and we are considering
the dissimilarity in appearance, the feature space is a combination of (a) and
(b).

separately, the surrounding of all objects is exactly the same (i.e. the table is
the same). Now the table can thus be defined as the prototype p◦ and different
objects all have a different dissimilarity to the table.

If the dissimilarity between two objects is defined as the spatial distance be-
tween the objects, the dissimilarity measure violates the triangle inequality and
the measure becomes non-metric [101]. For example, all objects in Fig. 5.4(a)
have zero distance to the table, but the distance between two objects might
be larger than zero. This is illustrated in Fig. 5.3(b). The prototype p◦ is no
longer a single point, but is transformed into a blob Ω◦ representing all objects
with zero distance to the table.

Let us now consider the problem of object detection in structured surround-
ings. First, as in the first example given above, the dissimilarity of an object
to its surrounding is defined by the object itself. Second, although the sur-
roundings may differ significantly from each other, it is known that none of the
surroundings contain an object of interest. Thus, as in the second example,
the distances between all surroundings can be made zero and we obtain the
same blob representation of Ω◦. The distance of an object to the surrounding
class can now be defined as a minimization over all prototypes from the set of
surroundings Ω◦

di◦ , d(xi,Ω◦) = min
k

d(xi,pk) with pk ∈ Ω◦.

This problem is thus a combination of the two examples and this leads to the
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feature space shown in Fig. 5.3(c). Both objects xi and xj have a related
prototype, respectively p̂i and p̂j , to which the dissimilarity is the smallest.
Again, the triangle inequality does no longer hold: two images that look very
different may both be very close to the surrounding class. On the other hand,
two objects that are very similar do have similar dissimilarity to the surrounding
class and the compactness hypothesis still holds in the space spanned by the
dissimilarities. Moreover, the dissimilarity of an object to its surrounding still
contains all information for successful classification of the object, which is easily
seen by looking at Fig. 5.4(b).

(a) (b) (c)

Figure 5.4: (a) Objects in their surroundings. (b) Objects without their sur-
roundings. All information about the objects is retained, so the objects can still
be classified correctly. (c) The estimated surrounding without the objects.

5.3.2 Class Representation
The prototypes p̂i and p̂j thus represent the surrounding class, but these proto-
types are not available a priori. We know that they must be part of the boundary
of Ω◦ and that the boundary of Ω◦ is the set of objects that divide the feature
space of images with protrusions and those without protrusions. Consequently,
for each object we can derive its related prototype of the surrounding class by
iteratively solving the PDE in (5.1). That is, Ωs , δΩ◦ ∩ (δΩt ∪ δΩf ) are all
solutions of (5.1) and the dissimilarity of an object to its surroundings is the
’cost’ of the deformation guided by (5.1). Furthermore, the prototypes of the
surroundings class can now be sampled almost infinitely, i.e. a prototype can
be derived if it is needed.

A few characteristics of our approach to object detection are illustrated in
Fig. 5.5. At the first glance, objects x1 and x2, respectively shown in Figs. 5.5(a)
and (b), seem to be similar (i.e. close together in the feature space spanned by
all pixel values), but the structures present in these images differ significantly.
This difference in structure is revealed when the images are being transformed
by the PDE (5.1). Object x1 does not have any protruding elements and can
thus be considered as an element of Ω◦, whereas object x2 exhibits two large
protrusions: one pointing down from the top, the other pointing up from the
bottom. Fig. 5.5(c) shows several intermediate steps in the deformation of this
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(a) x1 ∈ Ω◦ (b) x2 (c) Deformation (d) p̂2 ∈ Ωs

Figure 5.5: (a–b) Two similar images having different structure lead to different
responses to deformation by the PDE in (5.1). The object x1 is a solution itself,
whereas x2 will be deformed into p̂2. A number of structures that might occur
during the deformation process are shown in (c).

object and Fig. 5.5(d) shows the final solution. This illustrates that by defining
a suitable deformation, a specific structure can be measured in an image. Using
the deformation defined by the PDE in (5.1), all intermediate images are also
valid images with protrusions with decreasing protrudedness. Furthermore, all
intermediate objects shown in Fig. 5.5(c) have the same solution. Thus, different
objects can have the same solution and relate to the same prototype.

Let us propose to use a morphological closing operation as the deformation,
then one might conclude that images x1 and x2 are very similar. In that case
we might conclude that image x2 does not really have the structure of two
large polyps, as we concluded before, but might have the same structure as
in x1, but altered by an imaging artifact. Using different deformations can
thus lead to a better understanding of the local structure. In that case, one
could represent each class by a deformation instead of a set of prototypes [98].
Especially for problems involving objects in highly structured surroundings, it
might be advantageous to define different deformations in order to infer from
structure.

An example of an alternative deformation was already given by the PDE
in (5.2). This deformation creates a new prototype of the polyp class given
an image and the ’cost’ of deformation could thus be used in classification.
Combining both methods thus gives for each object a dissimilarity to both
classes. However, this deformation was proposed as a preprocessing step for
current CAD systems. By doing so, the dissimilarity was not explicitly used in
the candidate detection or classification step.
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Figure 5.6: FROC curve for the detection of polyps ≥ 6 mm.

5.4 Classification
Now we have a very well sampled class of the healthy (normal) images, which do
not contain any protrusions. Any deviations from this class indicates unhealthy
protrusions. This can be considered as a typical one-class classification problem
in which the dissimilarity between the object x and the prototype p indicates
the probability of belonging to the polyp class. The last step in the design of the
polyp detection system is to define a dissimilarity measure that quantifies the
introduced deformation, such that it can be used to successfully distinguish the
non-polyps from the polyps. As said before, the difference image still contains
all information, and thus there is still no class overlap.

Until now, features are computed from this difference image to quantify the
’cost’ of deformation. Three features are used for classification: the length of
the two principal axes (perpendicular to the polyp axis) [79] of the segmentation
of the candidate, and the maximum intensity change. A linear logistic classifier
is used for classification. Classification based on the three features obtained
from the difference image leads to results comparable to other studies [9, 30,
29]. Fig. 5.6 shows an FROC curve of the CAD system for 59 polyps larger
than 6 mm (smaller polyps are clinically irrelevant) annotated in 86 patients
(172 scans). Results of the current polyp detection systems are also presented
elsewhere [10, 57, 73].

5.5 Conclusion
We have presented an automated polyp detection system based on structural
inference. By transforming the image using a structure-driven partial differen-
tial equation, knowledge is inferred from the structure in the data. Although no
prototypes are available a priori, a prototype of the ’healthy’ surrounding class
can be obtained for each candidate object. The dissimilarity with the healthy
class is obtained by means of a difference image between the image before and
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after the transformation. This dissimilarity is used for classification of the ob-
ject as either a polyp or as healthy tissue. Subsequent classification is based on
three features derived from the difference image. The current implementation
basically acts like a one-class classification system: the system measures the
dissimilarity to a well sampled class of volumes showing only normal (healthy)
tissue. The class is well sampled in the sense that for each candidate object, we
can derive a healthy counterpart, which acts as a prototype.

Images that are very similar might not always have the same structure.
In the case of structured data, it is this structure that is most important. It
was shown that the transformation guided by the PDE in (5.1) is capable of
retrieving structure from data. Furthermore, if two objects are very similar,
but situated in a different surrounding, the images might look very different.
However, after iteratively solving the PDE, the resulting difference images of
the two objects are also similar. The feature space spanned by the dissimilarities
thus complies with the compactness hypothesis.

Until now, only information is used about the dissimilarity to the ’healthy’
class. The work of Konukoglu et al. [75] offers the possibility of deriving a pro-
totype for the polyp class given a candidate object just as we derived prototypes
for the non-polyp class. A promising solution might be a combination of both
techniques; each candidate object is then characterized by its dissimilarity to a
non-polyp prototype and by its dissimilarity to a polyp prototype. Both pro-
totypes are created on-the-fly and are situated in the same surrounding as the
candidate. In fact, two classes have been defined and each class is characterized
by its own deformation.

In the future, the patient preparation is further reduced to improve patient
compliance [102]. This will lead to data with increased amount of fecal remains
in the colon and this will complicate both the task of automated polyp detection
as well as electronic cleansing of the colon [16, 24]. The presented approach to
infer from structure can also contribute to the image processing of such data,
especially if the structure within the colon becomes increasingly complicated.



Chapter 6

Thin Layer Tissue
Classification for Electronic
Cleansing

CT colonography (CTC) is a rapidly evolving technique to screen for col-
orectal polyps. Fecal residue may occlude or, reversely, mimic polyps. Elec-
tronic cleansing aims at removing contrast-enhanced fecal residue from the
image. However, thin layers of soft tissue (the colon wall or a fold) or
residue are easily misclassified by current electronic cleansing methods,
thereby causing holes in the colon wall or other artefacts that hamper vi-
sualization and automated detection. We present a thin layer model to
detect and characterize such layers to support electronic cleansing. It is
demonstrated that the model sustains robust estimation of the location and
thickness of such a layer. Such thicknesses of thin layers were measured
in real data sets. A lower bound on the thickness of such layers exists and
was found to be 1.0 mm for our data.

75
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6.1 Introduction
Adenomatous colorectal polyps are important precursors to colorectal carci-
noma. Computed tomography colonography (CTC) is a rapidly evolving tech-
nique that is advocated to screen for such polyps. The preparation of patients
who undergo CTC often consists of cathartic cleansing and the oral administra-
tion of a contrast agent for fecal tagging. Subsequently, the patient undergoes
CT scanning prior to which the colon is distended by insufflation with room air.
Several ’electronic cleansing’ algorithms were introduced to automatically seg-
ment the colon surface from this data and to facilitate a 3D endoluminal view
into the colon [16, 103, 33]. All these methods focused on data from patients
who had undergone extensive cathartic cleansing.

Current research aims at increasing the patient’s compliance by minimizing
the patient preparation. However, omitting the cathartic cleansing complicates
the segmentation procedure. Due to the partial volume effect, thin layers of
soft tissue surrounded by residue on the one side and air on the other are hard
to segment. Likewise, thin layers of contrast-enhanced fecal residue adhering
to the colon surface cause a similar problem. The problem of the detection of
soft tissue in the presence of fecal residue was studied before in [104], but none
of the electronic cleansing algorithms have addressed the problem of thin layers
explicitly. Nevertheless, thin layer characterization was studied in other CT
applications [105, 106, 107, 108]. All these approaches involved a model-fitting
procedure to find the thickness and position of the layer.

This paper describes a novel segmentation method that estimates these fea-
tures directly from the observed data. Moreover, the potential benefit for CTC
will be shown.

6.2 Cleansing of CTC Data
The data may be asserted to comprise three types of materials: air (A), soft
tissue (T ) and tagged residue (R). The mean intensities of these materials will be
denoted by IA, IT and IR respectively. Effectively, electronic cleansing estimates
the volume fractions of these materials in each voxel [16]. Subsequently, the
colon surface may be segmented by the isosurface of 50% soft tissue.

A previously proposed approach to cleansing of CTC data was based on tis-
sue classification using the measured intensity I and the gradient magnitude Iw
in the gradient direction [16]. These features form a rotation and scale-invariant
feature space as shown in Fig. 6.1a (in which σw represents the effective scale of
measurement and the scale of the point spread function (PSF) in the gradient
direction). Each type of edge (material transition) is represented as a different
arch-shaped cloud in this feature space [109]. These arches are described by the
arch-model [16]. For instance, the A-R transitions appear as a large arch from
IA to IR and can be modelled by:
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Figure 6.1: (a) Scatter plot of the intensity and scale-invariant gradient magni-
tude of voxels. The arches represent the three types of edges. (b) The material
fractions are determined from the projection of a voxel onto the arch.

Iw
IR − IA

= σ−1
w√
2π

exp
(
− erf−1

(
I − IM
IR − IM

)2
)

(6.1)

in which IM = (IA + IR) /2.
To estimate the material constituency of a voxel, a number of voxels up and

down the gradient direction are sampled. The intensity and gradient magnitude
of all these voxels form a trace in 〈I, |∇I|〉-space. Fitting the arch model to this
measured trace yields the low L and high H material intensities, which are used
to classify the transition as one of the three types. Projecting the intensity and
the gradient magnitude onto the corresponding arch-model yields the material
fractions fL and fH as indicated in Fig. 6.1b.

It has been shown that this algorithm produces good results for all ’pure’
two-material (2M) mixture transitions [16]. However, specifically a layer of soft
tissue between air and residue (an A-T-R transition) is easily misclassified as an
A-R transition if the layer of soft tissue is thin. We seek a model that describes
such a thin layer geometry for segmentation with improved accuracy.

6.2.1 Thin Layer Model
The novelty of this paper is in the derivation of a mathematical description of a
thin layer of soft tissue between air and contrast-enhanced fecal residue. Such
a layer in real CTC data is shown in Fig. 6.2a. The gradient magnitude |∇I|
and the intensity I in the phantom model (Fig. 6.2b) are computed assuming
a Gaussian PSF (as done in [16]) with an effective scale σw=1 (notice that
consequently σwIw can simply be written as |∇I|). The traces in 〈I, |∇I|〉-space
for different thicknesses D=σ . . . 4σ of the thin layer are shown in Fig. 6.2c. If
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Figure 6.2: (a–b) A thin layer of soft tissue (gray) in CTC data and the phantom
model. (c) Profiles for different thicknesses of the layer (dashed) and (d) the
model for the middle of a thin layer with varying thickness (dash-dotted).

the thickness D < σ the profile resembles the profile of an A-R transition,
whereas if the thickness D > 4σ the profile approximates that of two separate
transitions. Several features for these types of profiles will now be derived to
distinguish a thin layer A-T-R transition from an A-R transition.

6.2.2 Description at y = 0
Using the assumption of a Gaussian PSF, the intensity at the middle of the
layer (y=0) is given by

I(y=0;D,σ) = IA

ˆ −D/2
−∞

g(y′;σ)dy′

+ IT

ˆ D/2

−D/2
g(y′;σ)dy′ + IR

ˆ ∞
D/2

g(y′;σ)dy′
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with g(·;σ) the Gaussian kernel. Rewriting this leads to an expression for the
intensity given a thickness D:

I(y=0;D,σ)− IM
IT − IM

= erf
(
D/σ

2
√

2

)
. (6.2)

The gradient of the intensity at y=0 is given by

∇I(y=0;D,σ)=g(D2 ;σ) [(IR − IT ) + (IT − IA)]

= 1
σ
√

2π
exp

(
− (D/2)2

2σ2

)
(IR − IA) . (6.3)

The relation between I and ∇I at y= 0 is obtained from eqs. 6.2 and 6.3 by
eliminating D:

∇I(y=0;D,σ)
IR − IA

=

σ−1
√

2π
exp

(
− erf−1

(
I(y=0;D,σ)− IM

IT − IM

)2
)
. (6.4)

Eq. 6.4 has the same form as eq. 6.1, which describes the arches of 2M-transitions.
The only difference is that the argument of the erf−1(·) function is scaled by
(IT −IM ) rather than (IR−IM ). In other words, the model delivered by eq. 6.4
is essentially obtained by scaling the intensity of the arch of a two-material
A-R transition by (IT − IM ) / (IR − IM ). Fig. 6.2d visualizes this relation be-
tween the gradient and intensity (dash-dotted curve). The dots along the curve
indicate the feature values at y=0 for the thicknesses D=0, 2σ and ∞.

6.3 Geometric Construction
The model for the middle of the layer of soft tissue can also be obtained by
adding parts of the arches of the A-T and T-R transitions. Fig. 6.3 illustrates
this construction which consists solely of combining curves that were already
presented in Figs. 6.2(c–d).

First, one may realize that the difference between the model of an A-R
transition and the model of an A-T transition is the model of a T-R transition.
This can be seen in Fig. 6.3(a). Starting from IA and traversing the large
arch ends in the same point as traversing the two smaller arches one after the
other. Moreover, traversing from IA to halfway an A-R transition is the same
as traversing to halfway an A-T transition and subsequently traversing half of
the T-R transition. This is shown geometrically by shifting half of the T-R
arch onto the A-T arch (arrow 1). The same can be done for half of the A-T
transition, which can be shifted onto the T-R transition (arrow 2).
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Figure 6.3: (a) Shifting parts of the arches describing two-material transitions.
(b) Additive behavior of the arch representation. The model delivered by eq. 6.4
is constructed by adding parts of the T–R transition model (a–b and d–c) and
the A–T transition model (b–c and a–d).

The two arches that were shifted previously touch each other halfway an A-
R transition. Traversing from this point along the shifted arches is equivalent
to replacing either air or residue by soft tissue starting from the middle (i.e. a
layer of soft tissue is grown either extending into the air or into the residue).
This is shown in Fig. 6.3(b). Let us start halfway the A-R transition. After
replacing 1σ of residue with soft tissue (curve a-b) and subsequently replacing
1σ of air with soft tissue (curve b-c), we will end up in point c. This point is
now in the middle of a 2σ A-T-R transition. This is confirmed in Fig. 6.3(b)
as point c is on the intersection of the model of a 2σ A-T-R transition and the
model describing the middle of the layer as derived in the previous section.

To conclude, the profile of the middle of the layer of soft tissue can not only
be constructed by scaling half of an A-R transition, but also by adding parts of
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the two other two-material transitions.

6.4 Feature Retrieval
The objective now is to derive an expression for the thickness and the location of
the thin layer. This is achieved by determining the intersection of a measured
profile with the curve described by eq. 6.4. Let us represent the crossing by
〈I×, |∇I×|〉 (see Fig. 6.2d). Backprojecting this point into the image renders the
location where y=0. The thickness of the layer may be obtained by substituting
I× into eq. 6.2. Solving for D gives

D = σ2
√

2
{

erf−1
(
I× − IM
IT − IM

)}
. (6.5)

Alternatively, D may be obtained as a function of |∇I×| by inverting eq. 6.3:

D = σ2
√

2
√

log
(

IR − IA
σ
√

2π|∇I×|

)
. (6.6)

The two approaches will give exactly the same solution since 〈I×, |∇I×|〉 lies on
the curve given by eq. 6.4. It may be noticed that the relation between |∇I|
and I at y=0 will lead to the best resolution in determining D, because the
maximal separation of the thickness profiles is obtained at y=0 (see Fig. 6.2).

6.5 Experiments
The electronic cleansing method described previously [16] was applied to four
CT colonography data sets. All A-R transitions detected (as described in Sec-
tion 6.2) were examined in more detail. While doing so, only those transitions
were retained that were at least 5 voxels away from another type of edge. This
was done to reject potential three-material ’junctions’ [24, 11] not complying
to the thin layer model. Furthermore, only objects were included consisting of
more than 10 voxels.

From each object-voxel a trace was generated in the positive and negative
direction of the gradient vector until the gradient magnitude was smaller than
some threshold. The intensities at the lower side (L) and the upper side (H)
were at the basis to scale the encountered intensities into the [0, 1] range. More-
over, all traces were made invariant to the effective scale of the measurement
by multiplying the sampled gradient magnitude with σw. Finally, a third-order
polynomial was fitted to the transformed samples to represent the profile around
’y=0’. The crossing point of this polynomial with the function of eq. 6.4 was
determined, which, in turn, yielded the location and thickness of the thin layer
under consideration (see Section 6.2.1).
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Figure 6.4: Mean and stdev of estimated thicknesses of the candidate objects.

6.6 Results

In total 411 candidate objects were generated of which 80 had a finite measured
thickness. From these, 53 candidates resided in the large intestine, whereas
the other 27 were associated with the small intestine. The latter fall outside
the scope of CTC. 17 candidates from the 53 were found to be heterogeneously
composed (by visual inspection), i.e. they comprised either a mixture of differ-
ent geometries, like a fold separating air and residue and a pure 2M transition
(see below for further treatment of these objects), or they consisted of an in-
compatible geometry like a thin layer of contrast. Thus, 36 candidate objects
remained.

The mean measured thickness and corresponding standard deviation for the
36 candidate objects are shown in Fig. 6.4. The standard deviation emanates
from averaging over the traces generated from all the object-voxels. From the
same data sets, the seven largest objects consisting of traces of ’pure’ A-R
material transitions were analyzed. These transitions yielded a measurement
of only 0.03 mm and a standard deviation ranging from 0.8–1.1 mm. The 95%
percentile-level of the thickness distribution was at 1.27 mm. Accordingly, an
object is considered an A-T-R transition if the mean estimated thickness of the
soft tissue layer is significantly larger than 1.27 mm. Applying this procedure
to the data in Fig. 6.4 yields a detection sensitivity of 93% (27/29), and no
false positive detections. No previously discarded candidates were considered
to contain a thin layer of soft tissue (by visual inspection).

The 19 objects consisting of a mixture of geometries yielded large standard
deviations with respect to thickness measurement. These geometries were sepa-
rated by an EM-clustering algorithm based on the measured thickness for each
profile and the spatial relation between the voxels. Fig. 6.5 shows the results
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for such an object (a fold surrounded by air and residue, both are not shown).
Fig. 6.5a shows a cross-section of the object. For each voxel, represented by
a dot, a trace is measured and all measurements constituting the traces are
shown in Fig. 6.5b. The result of clustering the traces is indicated by the color.
Notice that the grouped voxels indeed form clusters in x-y space and that the
traces are well separated: one cluster of traces showing normal two-material
A-R transitions (gray) and another cluster showing thin layers of soft tissue
with varying thickness (black). The calculated thickness was close to zero for
the A-R transition and 1.8 mm for the A-T-R transition. The latter value may
be negatively biased, though, due to the profiles near the transition area.

6.7 Conclusions
We introduced a novel method for detection and characterization of thin lay-
ers and applied it to CT colonography data. The technique may preclude
erroneously removing thin layers of soft tissue (sandwiched between air and
contrast-enhanced residue) and disturbing the topology of an object. A math-
ematical function was derived relating the intensity to the gradient magnitude
in the middle of a thin layer as a function of the thickness. Practically, a layer’s
thickness was obtained by intersecting a measured curve in 〈I, σwIw〉-space with
a function describing the middle of the layer. We demonstrated the usefulness
of the method by first detection of thin layers of soft tissue and subsequent
estimation of the thickness of these layers surrounded by residual matter and
air. Observe that the method could equally well be applied to thin layers of
contrast material stuck to the colon surface and surrounded by air. In future
research, we will include the algorithm in an electronic cleansing algorithm for
CT colonography.
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Figure 6.5: Heterogeneous candidate object. (a) Clustering shows two distinct
regions. (b) Points on traces for both clusters.



Chapter 7

Electronic Cleansing for
24-H Limited Bowel
Preparation CT
Colonography Using
Principal Curvature Flow

CT colonography (CTC) is one of the recommended methods for colorectal
cancer screening. The subject’s preparation is one of the most burden-
some aspects of CTC with a cathartic bowel preparation. Tagging of the
bowel content with an oral contrast medium facilitates CTC with limited
bowel preparation. Unfortunately, such preparations adversely affect the
3D image quality. Thus far, data acquired after very limited bowel prepa-
ration were evaluated with a 2D reading strategy only. Existing cleansing
algorithms do not work sufficiently well to allow a primary 3D reading
strategy. We developed an electronic cleansing algorithm, aimed to real-
ize optimal 3D image quality for low-dose CTC with 24-h limited bowel
preparation. The method employs a principal curvature flow algorithm to
remove heterogeneities within poorly tagged fecal residue. In addition, a
pattern recognition based approach is used to prevent polyp-like protrusions
on the colon surface from being removed by the method. Two experts in-
dependently evaluated 40 CT colonography cases by means of a primary
2D approach without involvement of electronic cleansing as well as by a
primary 3D method after electronic cleansing.

85
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The data contained four variations of 24-hr limited bowel preparation and
was based on a low radiation dose scanning protocol. The sensitivity for
lesions ≥ 6mm was significantly higher for the primary 3D reading strat-
egy (84%) than for the primary 2D reading strategy (68%) (p=0.031).
The reading time was increased from 5:39min (2D) to 7:09min (3D)
(p=0.005); the readers’ confidence was reduced from 2.3 (2D) to 2.1 (3D)
(p=0.013) on a 3-point Likert scale. Polyp conspicuity for cleansed sub-
merged lesions was similar to not submerged lesions (p= 0.06). To our
knowledge this study is the first to describe and clinically validate an elec-
tronic cleansing algorithm that facilitates low-dose CTC with 24-h limited
bowel preparation.

7.1 Introduction
Computed tomography colonography (CTC) is a structural radiological exam-
ination of the colorectum and is widely studied for use in colorectal cancer
screening [110]. An important issue for large scale application is the adherence,
which is closely related to the perceived burden of the employed screening tech-
nique [111]. The subject’s preparation is one of the most burdensome aspects
of CT colonography with a cathartic bowel preparation [12]. Although such
a cathartic bowel preparation ensures optimal image quality, it also leads to
excessive diarrhea and discomfort. Tagging of the bowel content with oral io-
dine or barium contrast facilitates CTC with non-cathartic bowel preparation.
Recently, several studies have shown that the diagnostic accuracy for polyps
≥ 6mm remains high while using a 24-h limited bowel preparation (i.e., least
burdensome type of non-cathartic preparations) [17, 18]. In fact, a limited
bowel preparation significantly improves the acceptance and therefore likely the
screening adherence [19, 17, 20]. Liedenbaum et al. showed that a 24-h limited
iodine-based bowel preparation yields a significantly better subject’s acceptance
and less burden compared with a 48-h preparation [21].

Unfortunately, such preparations can adversely affect the 3D image quality.
Particularly, untagged stool can cause artifacts like incomplete cleansing or
pseudo-soft tissue structures [22, 23]. These artifacts limit a primary 3D reading
and hinder 3D problem solving after a primary 2D reading. Still, accurate
electronic cleansing can result in shorter reading times in a primary 3D reading
strategy and to a higher confidence and less reader effort in a primary 2D reading
strategy [24]. Juchems et al. [112] studied reader performance with the use of
electronic cleansing and found a significant improvement in polyp sensitivity
using 3D reading with electronic cleansing versus 3D reading without electronic
cleansing. Importantly, less experienced readers achieve a higher sensitivity
with a 3D reading strategy as compared to a 2D reading strategy [113]. Recent
guidelines, summarizing the evidence by experts in the field, emphasize the need
for both 2D and 3D visualization [114, 115].
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Apart from the burden associated with the bowel preparation, the accep-
tance of CT colonography as a screening technique is also influenced by the
radiation exposure. The radiation burden should be as low as possible to en-
sure a high benefit-risk ratio. At the same time, a low-dose scanning protocol
leads to increased image noise which complicates electronic cleansing and sig-
nificantly affects polyp detection [116].

We developed a new electronic cleansing algorithm, aimed to realize optimal
3D image quality for low-dose CTC with 24-h limited bowel preparation. We
hypothesize that electronic cleansing does not lead to a degradation of a polyp’s
conspicuity in a 3D viewing mode and, even stronger, that it enables a primary
3D reading strategy. To our knowledge, no earlier study described an electronic
cleansing algorithm for low-dose CTC with 24-h limited bowel preparation.

7.1.1 Related Work
Much of the previous technical work on electronic cleansing has been validated
on data obtained with extensive patient preparation. The following summary
was largely adapted from [117].

Initially, Lakare et al. [118] addressed the cleansing problem by exploiting
the unique local signature caused by partial volume voxels bordering on the
fluid mask. The intensity profile is considered a unique property of each type
of material transition. Typical edge profiles that are present between materials,
e.g., air and tagged material, are identified by rigorously “exploring” some 3D
CT data sets in a separate learning phase prior to the actual cleansing. During
cleansing, for each edge voxel, the profile is selected from the learning set that
fits best to the encountered intensity profiles. A transfer function is defined
for each such profile in order to remove the partial volume problem during
rendering. In later work, Lakare et al. [119] created 23-D feature vectors of
local data values that are reduced to five dimensions by principal component
analysis. Clustering takes place in this low-dimensional space using a vector
similarity measure. A threshold on the average intensity of each class is used
to classify voxels to be tagged residue.

Zalis et al. [120, 121] constructed a binary subtraction mask to segment the
bowel content and addressed the partial volume problem using a colon-surface
reconstruction routine. Data values represent a distance measure to the subtrac-
tion mask. Wang et al. [103] presented an improved electronic colon cleansing
method based on a partial volume image segmentation framework, which is
based on the well established statistical expectation-maximization algorithm.

Franaszek et al. [122] developed a segmentation procedure which represents
individual air- and fluid-filled regions by a graph that enables identification
and prevention of undesired leakage through the colon wall. The proposed
hybrid algorithm uses modified region growing, fuzzy connectedness, and level
set segmentation. Wang et al. [123] also investigated a maximum a posteriori
expectation–maximization image segmentation algorithm which simultaneously
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estimates tissue mixture percentages within each image voxel and statistical
model parameters for the tissue distribution.

Cai et al. [22, 23] developed an electronic cleansing method, called structure
analysis cleansing. A structure enhancement function and a local roughness
measure are integrated into the speed function of a level set method for delin-
eating the tagged fecal material.

To our opinion, the variety of presently proposed algorithms reflect that a
perfect solution has not been found yet. Accordingly, incomplete processing is
still reported to leave artifacts [24]. A specifically noticeable problem is posed
by the distracting bumps emanating from locations where air, soft tissue and
tagged material meet. Lately, an electronic cleansing algorithm was proposed
aiming to improve the accuracy at such three material junctions [16, 24, 117].
The method is automated and adapts to patient specific conditions, such as
the local variation of the tagged material density. The algorithm assumes that
the measured CT value arises due to a combination of three materials: air,
tagged material and soft tissue. It estimates the percentages of these materials
in each voxel. Subsequently, the tagged material fraction is simply ‘replaced’
by air, to arrive at a new, cleansed CT value. Unfortunately, this method still
assumes that the three materials constituting the junction have a homogeneous
composition which makes the method not adequate to deal with the limited
bowel preparation data.

Recent work by Cai et al. describes an electronic cleansing technique based
on a mosaic decomposition method for use with a limited bowel preparation [22,
23, 124]. This method solved the artifacts often associated with a limited bowel
preparation. It was tested on cases that underwent a 48-h bowel preparation
consisting of a low-fiber, low-residue diet and oral administration of Omnipaque
with a total ingested amount of 75ml of iodine (300mg I/ml concentration). No
clinical evaluation of this cleansing method was performed yet.

Visualization techniques can be found in [125, 126, 8].

7.1.2 Objective
The objective of this work is to enable 3D visualization of CT colonography
data for use with a 24-h limited bowel preparation and a reduced radiation
dose. This is, to the best of our knowledge, currently not feasible. Examples of
typical artifacts prevalent in such data are shown in Fig. 7.1.

The properties that an electronic cleansing algorithms must possess to allow
a limited patient preparation are:

• ability to cope with heterogeneous bowel content;

• reconstruction of a smooth colon surface that does not distract the radi-
ologist;

• preservation of polyps in badly tagged regions.
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Figure 7.1: Examples of typical cases emanating from a limited bowel prepara-
tion and a low radiation dose.

Heterogeneous mixing of materials as well as highly curved and irregular mate-
rial interfaces as depicted in Fig. 7.1 complicates a simple solution to electronic
cleansing. In order to visualize the colon wall such that it accurately represents
the shape of the colon wall and that it does not show distracting artifacts to
the radiologist, a sub-voxel precision is required. Thereby, the main challenge
is to retain all polyps in the data, even when polyps are submerged in a hetero-
geneously tagged fluid. To secure the preservation of polyps, we will make use
of the extensive knowledge about the appearance of colonic polyps that was ac-
quired in developing techniques for computer aided detection of polyps [57, 10].

In this paper we present a plug-in pre-processing method to the electronic
cleansing method by Serlie et al. [16, 24, 117]. The pre-processing acts as a pre-
conditioning step which fills the inhomogeneities in poorly tagged fecal material
to meet the input requirement of Serlie’s electronic cleansing method. Several
novelties are introduced in order to do so. First, the removal of heterogeneities
in poorly tagged fecal matter by a principal curvature flow algorithm. Second,
a robust reconstruction of the colon surface, including all polyp candidates, us-
ing a logistic classifier. This corrects the negative side effects of the first step
such as erroneously removal of polyp-like protrusions on the bowel wall. Third,
we demonstrate the effects of our technique on the sensitivity, reading time,
and lesion conspicuity in a clinical evaluation on data acquired with a reduced
radiation dose after a 24-h limited bowel preparation.



90 CHAPTER 7. CLEANSING USING PRINCIPAL CURVATURE FLOW

7.2 Materials and methods

7.2.1 CT Colonography Data
The new electronic cleansing method will be evaluated on four subject groups,
each with a different variation of limited bowel preparation scheme and a low ra-
diation dose scanning protocol (Table 7.1, groups ‘A’–‘D’). Fifteen CT colonog-
raphy examinations were randomly selected from one former study (group ‘A’) [17],
supplemented by all (three times fifteen) examinations from another recent
study (groups ‘B’–‘D’) [21]. Each subject was scanned in prone and supine
position. CT reconstruction of all data sets were done using standard filtered
back projection. All participants underwent a low-fiber diet starting the day
before the CT colonography examination. The fifteen subjects from the first
study were scanned at a tube current of 40 reference mAs whereas the subjects
from the second study were scanned at a tube current of 25 reference mAs. No-
tice that both radiation levels are lower than in previous studies on electronic
cleansing. The amount of tagging agent (meglumine-ioxithalamate; Telebrix
Gastro 300mg I/ml; Guerbet, Cedex, France) ranged from 4 x 50ml (group ‘A’)
to 3 x 25ml (group ‘D’). This is relevant as it is well known that the tagging
agent has a laxative effect and therefore a low tagging dose is preferred. We
are unaware of any electronic cleansing algorithm that has been developed and
evaluated for CTC with 24-h limited bowel preparation as in the aforementioned
studies [21, 17].

One third of these data, i.e. five subjects per group, was randomly selected
for development and training of the algorithm. The other ten subjects of each
group were reserved to be included in the evaluation study. Colonoscopy served
as the reference standard for all cases. All annotated lesions were reviewed
by a research fellow to determine whether the polyps measuring ≥ 6mm were
(partially) covered by fecal material or surrounded exclusively by air. Consid-
ering prone and supine positions as separate cases yielded three lesions in the
training set that were covered by fecal matter. The test set contained 66 le-
sions; 58 of them were not covered by fecal matter; eight were covered by fecal
matter. The effective radiation dose of the employed protocols for an average
person (hermaphrodite of 70 kg) is: 3mSv for 40 reference mAs and 2mSv for
25 reference mAs [127, 128].

The training set based on data sets ‘A’–‘D’ did not contain sufficient polyps
for reliably training the classifier. For the training of the classifier we also in-
cluded data from another study [3], only to extend the number of samples in the
polyp class, see Table 7.1 (group ‘O’). We showed in earlier work on computer
aided detection of polyps that our classifier is robust against this approach. This
study originally concerned 1233 patients in total that all adhered to an exten-
sive laxative regime, including contrast agents for stool tagging (50 ml barium
[Scan C, Lafayette Pharmaceuticals] and 120ml of diatrizoate meglumine and
diatrizoate sodium [Gastrografin, Bracco Diagnostics]). CT colonography was
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performed in prone and supine position at a tube current of 100 reference mAs.
The reference standard was optical colonoscopy. In total 210 polyps larger than
or equal to 6mm were identified as such. Radiologists had retrospectively indi-
cated the location of polyps based on the reference standard. A research fellow
selected all those patients that were considered to harbor polyps larger than
6mm and that were fully submerged in the contrast medium in either scan po-
sition. In the end, this delivered 15 such patients with 15 polyps. More details
about these data may be retrieved from [3]. Notice that these data were only
used for the development of the classifier and not in evaluating the performance
of the new electronic cleansing method.

7.2.2 Step 1: Filling inhomogeneous tagging
The normal anatomy of the colon surface can be globally considered a cylindrical
structure which is interrupted by indentations, the so-called haustral folds. Col-
orectal polyps/cancer typically appear as spherical protrusions into the bowel
lumen. Analysis of the surface curvature (cylindrical, ridge-like, or cap-like)
facilitates the distinction of those structures, which is common practice in CT
colonography. We exploit the fact that the local shape of all surfaces can be
characterized by the principal curvatures of an isophote surface patch, even the
dark objects formed by inhomogeneous tagging. The principal curvature flow
method described below incorporates this a prior knowledge of the local shape
of the colon surface.

Now, observe that heterogeneities within poorly tagged matter appear as ir-
regularly shaped dark grey objects on a white background (properly tagged fecal
remains). Although these heterogeneities have an irregular shape – they consist
of locally convex patches (see Fig. 7.2) which are characterized by two negative
principal curvatures, κ2 ≤ κ1 ≤ 0. We present a principal curvature flow algo-
rithm inspired by Van Wijk et al. [57] in which these convex regions shrink by
evolving the structure in such a way that negative first principal curvatures κ1
are raised until they approach zero curvature. During the evolution, the shape
of the dark objects become strictly convex before disappearing completely. This
process is illustrated in Fig. 7.3. Specifically, since the local shape characteris-
tics of the inhomogeneities are determined by the first principal curvature, the
locally convex (dark) regions shrink by raising the intensities in areas where the
first principal curvature was negative according to

∂I

∂t
= g(κ1, κ2) |∇I| , (7.1)

with κ1 and κ2 the first and second principal curvatures, |∇I| the gradient
magnitude of the input image I, and g(·) a curvature dependent function char-
acterizing the flow. g(κ1, κ2) is a continuous function to avoid a discontinuous
deformation, especially at locations where the sign of κ1 changes. Moreover, it
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(a) Unprocessed (b) 5 iterations (c) 10 iterations

(d) 15 iterations (e) 25 iterations (f) 70 iterations

Figure 7.2: The image shows poorly tagged fecal matter. The heterogeneity is
resolved by iteratively applying the principal curvature flow algorithm. Below
the figure is the number of iterations of the algorithm. After 70 iterations, the
image does not change significantly.

must be small on folds with a small negative value of κ1 so that the deforma-
tion on such locations is negligible. Reversely, the response to local inhomo-
geneities with two large negative principal curvatures should be large. In the
end g(κ1, κ2) was chosen such that the following partial differential equation
(PDE) was solved.

∂I

∂t
=

{
Iuu (κ1 < 0)
0 (κ1 ≥ 0) . (7.2)

in which Iuu is the second derivative in the direction of the first principal cur-
vature [88] and Iuu is related to κ1as follows

Iuu = −κ1 |∇I| .
This shows that the intensity will increase until the largest curvature van-

ishes and there only is positive curvature left. This also means that the image
intensities are not conserved, which is different from, for example, a diffusion
process. Fig. 7.2 shows a typical example. Considering the normal shape of the
colon, the effect of this evolution scheme is negligible around the colon surface
bordering air as the first principal curvature is large at polyps and haustral
folds and close to zero in all other parts of the surface. For the submerged colon
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(a) (b)

Figure 7.3: A dumbbell object that simulates an heterogeneity in tagged fecal
matter. The diagram shows the evolution of a cross-section of the object. The
first iterations raise the intensities of the voxels in the local convex parts of the
object. This moves the object’s contour inwards. After that, the whole object
is shrunken until it completely vanishes. Each line represents the shape after a
certain number of iterations.

surface in which the sign of the curvatures are inverted with respect to colon-air
interface things work out differently. A side effect to this evolution is that it
affects the shape of submerged polyps, i.e. these polyps are gradually removed
whereas the remainder of the submerged colon surface remains undisturbed.

The number of iterations is largely determined by the size of an object.
In general, it takes only a few iterations for small objects, but more for large
objects to reach convergence. As such the method adapts to the scale of an
object (see also Ref. [57]). Consequently, there is some variation over a whole
data set. In practice, about 100 iterations appeared to work well.

7.2.3 Step 2: Reconstruction of Colon Surface
The reconstruction phase addresses the issue that submerged polyps should be
retained in the data even though they also display negative κ1. The approach to
do so is to first obtain an accurate estimate of the colon surface without protru-
sions by applying the original electronic cleansing algorithm (see Section 7.2.4)
to the pre-processed data. Subsequently, this estimate can be used to delineate
the polyp candidates and to determine whether a candidate is connected to the
colon wall.
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Previously, a principal curvature flow algorithm served as an initial can-
didate detection step for automated polyp detection [10, 57]. Characteristic
features were derived from the candidates after which polyps were identified by
a sophisticated multi-stage logistic classifier. We adapted this classifier to the
specific nature of the problem at hand. Automatic polyp detection requires that
the sensitivity for polyps is maximal at the expense of as few false positive de-
tections as possible. Here, the aim is to reconstruct the normal bowel wall and
leave as little fecal material as possible. The classification system must recon-
struct all polyps to permit a 100% sensitivity for polyps in subsequent reading
strategies. To achieve this, (non polypoid) protrusions of the normal bowel may
be restored as well, but (preferably) not the fecal residue. Therefore, the classi-
fier does not need to be as strict in separating polyps from other protrusions as
in automated polyp detection. We realize that this requires a different way of
setting the decision boundary of the classification system. The reconstruction
technique was developed using a training set of five subjects from each of the
four patient groups ‘A’–‘D’ in Table 7.1 supplemented by fifteen subjects from
group ‘O’ to raise the number of samples of the polyp class (excluded from the
experiments below). By adding the polyps from group ‘O’ to training set, it
becomes possible to get a sufficiently good description of the polyp class.

Practically, candidates for restoration are defined as regions with an increase
in intensity of more than 200HU. This value is (approximately) the lower bound
for the difference between tagged material and tissue. The limit of 200HU
is comparable to the threshold that was previously used for polyp candidate
selection [57]. The objects not retained after this step typically correspond to
noise and (irrelevant) small protrusions of the bowel wall, i.e. smaller than a
6mm polyp.

Among the candidates detected one finds “floating debris”. In addition,
candidates may (partially or fully) cover areas with a high signal intensity sur-
rounded by material with even higher intensities. Reversely, there may also be
areas with low intensities, e.g. due to presence of air. Therefore, we impose
the requirement that candidate areas must be connected to the colon wall and
contain intensities in the soft tissue range. To do so, the electronic cleansing
algorithm (see below) tentatively identifies the colon’s inner surface after appli-
cation of second order curvature flow. Subsequently, we propagated [129] the
bowel surface into connected candidate voxels with signal values higher than
-200HU. Notice that this may yield smaller candidate objects while air is dis-
carded. The parameters associated with all these heuristic conditions were set
to have 100% sensitivity for polyps in the training set. One might observe that
candidate objects of higher intensity are not considered in this step of the algo-
rithm, because they will be removed by the cleansing step (see below) which is
designed to remove all (tagged) high intensities voxels.

Subsequently, a simple classifier will be applied to discard most of the re-
maining false positives, caused by untagged stool, mixing with air, etc. Con-
ventionally, automated polyp detection relies on the two properties used by
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Figure 7.4: Feature space indicating the objects from the training set; black
circles are lesions from subject group ‘O’, black dots are lesions from the training
data set from subject groups ‘A’–‘D’ and grey dots are non-polypoid structures.
The dashed line indicates the classifier.

radiologists: the shape of a candidate and the intensity distribution inside a
candidate. Unfortunately, the shape of a candidate appeared to be a non-
distinguishing feature for the current problem. We attribute this to the variety
in shapes of poorly tagged material due to which it may closely resemble both
polyps as well as non polypoid structures. Therefore, we rely on intensity fea-
tures of the candidate objects represented by the candidate’s mean intensity
and its minimum intensity. We use a linear logistic classifier that acts on these
features, trained on the objects in our training set. This classifier was used
previously for automated polyp detection and is robust against severe class im-
balances [73]. Again, we require that the sensitivity for polyps is 100% in the
training set. Also, we do not have to be very strict in the classification as
restoring normal (healthy) bowel wall does not affect the goals of this work. To
guarantee high lesion sensitivity while the number of training examples is low,
the resulting decision boundary was shifted to at least three times the standard
deviation away from the mean of the lesion examples composed by subjects
from training data sets ‘A’–‘D’. Fig. 7.4 shows a feature space of the previously
mentioned characteristics measured on the training set as well as the resulting
decision boundary.

Finally, the restoration of detected objects simply boils down to re-substituting
the original intensity values (i.e. prior to principal curvature flow).



7.3. EXPERIMENTS AND RESULTS 97

Table 7.2: Likert scales used for assessment of reading effort (a), confidence (b),
and lesion conspicuity (c).

(a)

Effort

Very difficult 1
Difficult 2
Easy 3

Very easy 4

(b)

Confidence

Not confident 1
Medium confident 2
Very confident 3

(c)

Conspicuity

Inadequate 1
Bad 2

Moderate 3
Sufficient 4
Good 5

7.2.4 Electronic Cleansing
The final step of the method is to perform electronic cleansing, for which we
use the technique described by Serlie et al. [16] (see the Appendix for a more
extensive description of this method). It was found that this method lead to
shorter evaluation time, lower assessment effort, and greater observer confidence
than CT colonography without electronic cleansing on patients that underwent
extensive bowel preparation [24]. This rigorous preparation simplifies electronic
cleansing somewhat because the fecal remains typically have a more homoge-
neous appearance than in a limited bowel preparation. The principal curvature
flow algorithm effectively acts as a pre-processing step that removes hetero-
geneities from tagging. As such the data become suitable for processing by this
electronic cleansing algorithm.

7.2.5 Running Times
The algorithm ran on a Dell Precision T3600 workstation incorporating a quad-
core, 2.33 GHz Intel Xeon processor and 3.25 GB Ram system memory. All
pre-processing as described in this paper took approximately one minute per
data set (thus, per patient position). In addition to that, the (standardly used)
electronic cleansing algorithm also took about one minute per data set.

7.3 Experiments and Results

7.3.1 Experimental Setup
Assessing the performance of an electronic cleansing algorithm is a complex
problem. Effectively, one would like to determine the performance of reading
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Table 7.3: Sensitivity and accuracy for 2D and 3D readings. The sensitivity is
determined on a per-lesion basis. Accuracy represents the diagnostic accuracy
per patient. The results for both observers are combined, hence doubling the
total number of lesions and cases in this table (68 lesions ≥ 6mm, 40 lesions
≥ 10mm, 80 cases).

3D Reading
Sensitivity (lesions%) Accuracy (cases% )
≥ 6mm ≥ 10mm ≥ 6mm ≥ 10mm

Group ‘A’ 80 (24/30) 88 (14/16) 85 (17/20) 90 (18/20)
Group ‘B’ 71 (10/14) 88 (7/8) 100 (20/20) 100 (20/20)
Group ‘C’ 100 (4/4) 100 (2/2) 95 (19/20) 100 (20/20)
Group ‘D’ 95 (19/20) 93 (13/14) 100 (20/20) 100 (20/20)

Overall 84 (57/68) 90 (36/40) 95 (76/80) 98 (78/80)

2D Reading
Sensitivity (lesions%) Accuracy (cases% )
≥ 6mm ≥ 10mm ≥ 6mm ≥ 10mm

Group ‘A’ 70 (21/30) 75 (12/16) 85 (17/20) 90 (18/20)
Group ‘B’ 57 (8/14) 75 (6/8) 100 (20/20) 100 (20/20)
Group ‘C’ 0 (0/4) 0 (0/2) 80 (16/20) 85 (17/20)
Group ‘D’ 85 (17/20) 100 (14/14) 100 (20/20) 100 (20/20)

Overall 68 (46/68) 80 (32/40) 91 (73/80) 94 (75/80)

electronically cleansed data as well as the extent to which the algorithm modi-
fies polyp shape so that it is not detected anymore. The former is accomplished
by a clinical evaluation (part I, below), the latter by a polyp conspicuity study
(part II). After all, if the electronic cleansing algorithm would change polyp
shape in a destructive manner, this might lead to a different conspicuity. This
evaluation of the method was performed much in the same way as by Ser-
lie et al. [24].

Part I

Two observers independently evaluated the 40 cases by means of a primary 2D
approach without involvement of electronic cleansing as well as by a primary
3D method after electronic cleansing (employing the unfolded cube fly-through
technique [8]). As the focus of this study was to evaluate the electronic cleansing
algorithm, the readers were not offered the possibility to observe the uncleansed
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3D data. Both observers had a previous experience of evaluating more than 200
colonoscopy verified CT colonography cases. The cases were evaluated twice, in
two sessions. In the first session, cases were randomly assigned to be evaluated
either by means of the primary 3D or the primary 2D approach. Subsequently,
in the second session, the alternative reading method was used. In both sessions,
the cases were presented in random order. There was a six-week interval before
reading the identical case for the second time to avoid a recall bias. For each
lesion, the size, location, and morphology was annotated. Furthermore, the
observers rated, per case, their assessment effort on a 4-point Likert scale and
their confidence in the reading on a 3-point Likert scale (Table 7.2a and 7.2b).
All evaluation times were recorded.

The performance of the observers in reading the data was evaluated by
assessing the sensitivity of lesion detection as well as the diagnostic accuracy
of case classification. The latter represents the fraction of correctly classified
cases. The sensitivity and diagnostic accuracy of the observers was determined
by an independent research fellow (prior experience: > 200 colonoscopy verified
CT colonography cases) in comparison to the colonoscopy data. For primary
2D and primary 3D reading, the per-lesion (polyps and cancers) sensitivity and
the per-case diagnostic accuracy were compared with a Generalized Estimating
Equation (GEE) analysis [130]. This test corrects for related misses and findings
of the two observers. For submerged lesions we performed McNemar’s test
because there were insufficient lesions to do a GEE analysis. McNemar’s test
was also used to test the differences in polyp sensitivity of the two observers
separately. The reading efforts and reading confidences were assessed by means
of a Wilcoxon signed-rank test. For comparison of the reading times a paired
t-test was performed.

Part II

The conspicuity of the polyps with and without electronic cleansing was exam-
ined by the same two observers more than six weeks after all readings of part I
were completed. Prone and supine acquisitions were considered as separate
cases in this part of the evaluation. The polyps initially covered by tagged ma-
terial were shown after electronic cleansing; all polyps surrounded by air were
presented as is. The lesions were presented in a 3D reading to the same two
observers in random order. The observers indicated the level of conspicuity on
a 5-point Likert scale ranging from “inadequate” to “good” (Table 7.2c). For
the cases classified as “inadequate“ or “moderate”, the observers indicated, if
possible, the cause. The lesion conspicuity of the polyps residing in air were
compared with the polyps partly or fully covered by fecal material using a
Wilcoxon signed-rank test.

The results of the evaluation are presented in Sections 7.3.3 and 7.3.4. For all
calculations a p-value < 0.05 is considered to indicate a statistically significant
difference.
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7.3.2 Pictorial results
Fig. 7.5 displays a typical instance of the 3D unfolded cube fly-through visual-
ization without and with the proposed pre-processing, i.e. principal curvature
flow followed by colon surface reconstruction. It can be observed that the view
of the colon surface is severely hampered in the visualization of the original
data (see Fig. 7.5a). These artifacts emanate from heterogeneously tagged fecal
matter. These artifacts made it impossible to evaluate such limited prepara-
tion data in a primary 3D way and hinder 3D problem solving in primary 2D
reading approaches. The heterogeneity filter removes the non-polyp-like objects
as can be seen in the image resulting after electronic cleansing. Fig. 7.6 shows
examples of the pre-processing, reconstruction and cleansing of typical struc-
tures that are covered by fecal remains. The first two rows show examples of
heterogeneities of which at least one is close to the air-fluid border and at least
one is close to the colon wall. The last row shows a polyp on a fold.

Table 7.4: Overall sensitivities for submerged and not submerged polyps
≥ 6mm.

Submerged?
3D Reading 2D Reading

Sensitivity (lesions%) Sensitivity (lesions%)
Observer I Observer II Observer I Observer II

No 78 (21/27) 85 (23/27) 63 (17/27) 63 (17/27)
Yes 100 (7/7) 86 (6/7) 86 (6/7) 86 (6/7)
All 82 (28/34) 85 (29/34) 68 (23/34) 68 (23/34)

7.3.3 2D and 3D Case Reading Results (part I)
The results are collated in Tables 7.3 and 7.4. The overall sensitivity for le-
sions ≥ 6mm was significantly higher for the primary 3D reading strategy after
electronic cleansing than for the primary 2D approach (p=0.031). The overall
sensitivity for lesions ≥ 10mm was also higher with primary 3D reading, but
the difference was not significant (p=0.160). The per-case accuracies were not
significantly different. In total (for the two readers combined) there were eleven
false positive findings ≥ 6mm for primary 2D reading (94% per-case specificity)
and twelve for primary 3D reading (96% per-case specificity). We also tested
the differences in polyp sensitivity of the two observers separately. For lesions
≥ 6mm, the p values were 0.18 and 0.07 for observer I and II, respectively (i.e.
both not significant).

The sensitivity for primary 3D reading after electronic cleansing was signif-
icantly higher and the reader confidence was significantly lower compared with
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(a) Visualization without pre-processing

(b) Visualization with pre-processing

Figure 7.5: Result of the 3D unfolded-cube fly-through visualization of the
cleansing before (a) and after (b) the electronic cleansing as proposed in this
paper.
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Figure 7.6: Examples of principal curvature flow for objects that are covered
by fecal remains: (top row) floating stool; (middle row) heterogeneities, floating
stool of which some are close to the colon wall; (bottom row) polyp on a fold.
The first column shows the original data, columns 2–4 shows the data after
various number of iterations.
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Figure 7.7: Results after cleansing of the examples shown in Figure 7.6. Note
that the polyp on the last row re-appears in the reconstruction step as described
in Section 7.2.3.
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Table 7.5: Average reading times of the two observers.

Observer 2D 3D Difference

I 7:38 7:32 -0:06
II 3:40 6:47 +3:07

I+ II 5:39 7:09 +1:30

Table 7.6: Conspicuity scoring. Lesions in prone and supine acquisitions are
considered separately. The scores are based upon the Likert scale for conspicuity
in Table 7.2c.

Submerged lesion ? Median score for observer
I II I+ II

No (N = 58) 4 3 3
Yes (N = 8) 2.5 2.5 2.5

primary 2D reading. The effort values were slightly, but not significantly de-
creased for 3D reading compared with primary 2D reading, see Fig. 7.8. The
mean effort value (4-point Likert scale) was reduced from 2.8 (2D) to 2.6 (3D)
(p=0.060). The average confidence value (3-point Likert scale) was reduced
from 2.3 (2D) to 2.1 (3D) (p=0.013).

Also, the overall reading time for both observers combined is significantly
lower for 2D reading compared with 3D reading (p=0.005), see Table 7.5. The
2D reading time is particularly lower for observer II (p=0.0001); for observer I
this difference is not significant.

7.3.4 Conspicuity Scoring Results (part II)
Table 7.6 shows the median values of the conspicuity scores for the two observers.
The combined median conspicuities (for observers I+ II) do not differ more than
half a scale point and are not significantly different between the submerged and
not submerged lesions (p=0.092).

7.4 Discussion
This study shows that our proposed electronic cleansing method enables primary
3D reading of low-dose CT colonography with a 24-h limited bowel preparation.
Even for the most limited patient preparation (group ‘D’) the sensitivity and
accuracy remained high. The sensitivity of the primary 3D reading was signif-
icantly higher compared with the primary 2D reading for lesions ≥ 6mm. The
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Figure 7.8: Comparison of the reading effort and confidence values of the ob-
servers for 2D and 3D reading.

sensitivity of the primary 3D reading was also higher than the sensitivity of the
primary 2D reading for lesions ≥ 10mm, but the difference was not significant.
Reader confidence was significantly lower and reading time was significantly
higher compared with a 2D primary reading; there was no significant difference
in reader effort. There was no significant difference in 3D lesion conspicuity for
submerged lesions after electronic cleansing compared with polyps residing in
air. The higher sensitivity that we found using the primary 3D reading strategy
has been reported previously as well [131, 132]. However, certainly not all stud-
ies point towards an improved detection with a primary 3D reading [133, 134].
We noticed that in our data some lesions, which were surrounded by poorly
tagged stool, were difficult to see in a 2D reading, but conspicuous enough in
3D to initiate a careful 2D characterization.

The decreased reader confidence for primary 3D reading may seem in con-
flict with the improved sensitivity results. We believe that the decreased reader
confidence, and also the higher reading times in a primary 2D reading strat-
egy, relate to the prior experience of observer II. Observer II had scored image
quality in 900 CT colonography cases in a 2D fashion, compared to a smaller
number of 200 CT colonography cases that were read in both primary 2D and
primary 3D manner [20]. Another explanation for reduced reader confidence
may be the result of small holes that were occasionally present in the colon wall
as well as on a few spots a large number of small irregularities that prevented
a 2D verification for all of them. The latter might have required extra reading
time, although primary 3D evaluation was more often found to take longer than
primary 2D evaluation [113, 135, 133]. On the other hand, the holes and irregu-
larities did not seem to have a negative influence on the diagnostic performance.
Furthermore, it should be noted that although the primary 3D reading time was
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longer compared with the 2D primary reading time, these reading times are well
below the average reading times reported in the literature [3, 136]. Hence, our
cleansing algorithm facilitates time-efficient primary 3D reading as well. In
this study we did not evaluate primary 3D reading strategy without electronic
cleansing. Furthermore, a separate study on the effect of the low radiation
dose on the data quality was outside the scope of this study and can be found
elsewhere [137, 116].

This study has a few limitations. As mentioned above, the rendered colon
wall sometimes contained small holes. For these data sets the number of itera-
tions of the principal curvature flow may have been too high. Although these
holes typically appear in areas with very thin soft tissue structures (not likely
to contain polyps or cancers), we would have preferred to avoid this effect. The
small irregularities on the bowel wall are likely the result of poorly tagged bowel
content. Areas inside the colon where the intensity of the tagged material is
below 200HU will remain problematic since such poorly tagged material simply
bears a very close resemblance to soft tissue. Furthermore, data on submerged
lesions as well as the number of readers were limited.

7.5 Conclusion
Thus far, data from CT colonography with a reduced radiation dose and with
very limited bowel preparation were evaluated using a 2D reading strategy only.
Existing cleansing algorithms did not work sufficiently well to allow a primary
3D reading strategy. This study shows that the presented cleansing method
allows a primary 3D reading strategy with high lesion sensitivity for low-dose
CT colonography with 24-h limited bowel preparation. Moreover, the results
indicate that the primary 3D evaluation significantly outperforms the primary
2D evaluation with respect to sensitivity for polyps ≥ 6mm. To our knowledge
this study is the first to describe an electronic cleansing algorithm that has been
verified to be able to handle such very limited prepared data.



Chapter 8

Simulation of Scanner- and
Patient-specific Low-dose
CT Imaging from Existing
CT Images

Purpose: Simulating low-dose Computed Tomography (CT) facilitates in-
silico studies into the required dose for a diagnostic task. Conventionally,
low-dose CT images are created by adding noise to the recorded projection
data. However, this is not always achievable in practice as the raw data
are simply not available. This paper aims to present a new method for
simulating patient-specific, low-dose CT images without the need of the
original projection data.
Methods: The low-dose CT simulation included the following steps: (1)
computation of a virtual sinogram from a high dose CT image by means
of the Radon transform; (2) simulation of an ‘reduced’-dose sinogram with
appropriate amounts of noise; (3) subtraction of the high-dose virtual sino-
gram from the reduced-dose sinogram; (4) reconstruction of a noise volume
via filtered back-projection; (5) addition of the noise image to the original
high-dose image. The required scanner-specific parameters were retrieved
from calibration images of a water cylinder. The apodization window was
obtained from the noise power spectrum (NPS) in a small region of interest
in the center of those images. Furthermore, the bowtie filter attenuation
characteristics were derived from the pixel variance. Finally, the X-ray
tube output parameter (reflecting the photon flux) and the detector read-
out noise were computed from the pixel variance at various exposure levels.
The low-dose simulation was evaluated by comparing the noise distribution
in simulated images with experimentally acquired data.

107
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Results: We found that the models used to recover the scanner specific
parameters fitted accurately to the calibration data. What is more, the re-
trieved apodization window of the reconstruction filter, the bowtie filter, the
X-ray tube output parameter and the detector read-out noise were compara-
ble to values reported in literature. Finally, the simulated low-dose images
accurately reproduced the noise characteristics in experimentally acquired
low-dose-volumes.
Conclusion: The developed methods truthfully simulate low-dose CT
imaging, without requiring projection data. The scanner-specific param-
eters can be estimated from experimentally acquired calibration data. The
new methodology could aid in further optimizing CT protocols by facilitat-
ing in-silico studies on dose dependency of low contrast object detectability.

8.1 Introduction
Since its invention by Sir Geoffrey Hounsfield about 30 years ago, computed
tomography (CT) has established itself as one of the most important medical
imaging modalities [138]. In fact, the number of CT examinations is still in-
creasing [139]. An important disadvantage of CT, however, is the exposure to
ionizing radiation that is inherent to the technique. Accordingly, it is common
practice to keep the radiation dose as low as reasonable achievable (ALARA).
Unfortunately, lowering the dose yields a lower signal-to-noise ratio and thus a
poorer image quality which may hamper subsequent diagnosis. Optimization
of the dose/quality trade-off is a far from trivial problem as one cannot sim-
ply expose subjects to a range of radiation doses for ethical reasons. Imaging
animals or cadavers as such is not a fully acceptable solution due to the sheer
disparity with the clinical case. Therefore, a lower-dose CT image is usually
simulated by adding noise to the underlying projection data, i.e. the sinogram
[140, 141, 142, 143, 144, 145]. Subsequently, the lower-dose image is recon-
structed from these noisy projections using the scanner’s software. However,
this approach is not always achievable in practice as the projection data are
often simply not available. Retrospective, investigation of the influence of low-
dose imaging might be permitted if one could generate such data directly from
existing images. Obviously, this requires that the simulation process complies
with the physics of image formation to produce reliable lower-dose CT volumes.

8.1.1 Related Work
Mayo et al. [144] and Frush et al. [145] were among the first to simulate low-dose
CT images. They added Gaussian noise to the projection data, after which the
images were generated by means of the scanner’s reconstruction software. Any
such approach assumes that the number of photons hitting the detector is large.
However, when only a low number of photons is detected, the properties of the
noise in the sinograms become much more complex. Then, the readout noise
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becomes significant and the detection of photons is best described by compound
Poisson statistics [146, 147, 148].

Extensive research was done to analytically describe the noise power spec-
trum (NPS) of CT images [149, 150, 151]. Particularly, the latter work presented
techniques to estimate the reconstruction kernel. These methods proved very
valuable, since manufacturers are often reluctant to disclose the kernels. Other
scanner-specific parameters, such as the bowtie filter and the readout noise, were
derived from the projection data [143, 148, 146]. To the best of our knowledge
none of the latter parameters were derived from actual image data.

Previous work on low-dose CT simulation also delivered quantitative mea-
sures for validation [145, 144, 143, 142, 152]. Boedeker et al. [153] and Faulkner
et al. [150] proposed to use the NPS and the noise equivalent quanta (NEQ)
to describe the noise properties in CT images, whereas Joemai et al. [142] used
the NPS and variance to validate their low-dose CT model.

Recently, Kim and Kim [154] presented a method to simulate low-dose
CT scans from the reconstructed images themselves. Although their work
gave promising results, it did not incorporate a procedure to calibrate certain
scanner-specific parameters which are neither documented in the literature nor
supplied by the manufacturer. Additionally, the validation only showed agree-
ment in the average noise level, while the noise properties in CT are known to
be highly space-variant. In this paper, we overcome these shortcomings.

8.1.2 Objective
This paper presents a novel method to simulate lower-dose CT images from
existing patient data without the need of having the original projection data.
The method first creates a virtual sinogram from a high-dose CT image, which is
processed to yield one with a lower dose. A lower-dose CT volume is computed
from both the original and lower-dose virtual sinograms. The method assumes
that a virtual X-ray source produces monochromatic photons with energy equal
to the effective energy of the original, polychromatic X-ray tube (as in Refs.
[154, 146]). Furthermore, we use CT images of a water barrel for estimating
several scanner and scanning parameters (if these are not already available):
the X-ray tube’s photon flux, the bowtie filter, the reconstruction filter, and
the readout noise level. By forward modeling the entire acquisition process,
a spatially varying noise distribution is generated. The noise characteristics
depend on the actual object that is being imaged as well as the aforementioned
acquisition parameters. The entire approach is validated by means of the NPS
derived from separate CT images of a water barrel and a pelvic phantom.

The paper is organized as follows. Section 8.2 describes the low-dose simula-
tion method. Subsequently, Section 8.3 goes into how several system parameters
can be estimated from CT images. Section 8.4 lists the experiments that are
done in order to measure the parameters (8.4.2) and to validate the model
(8.4.3). The outcome is discussed in Section 8.5.
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8.2 Lower-dose CT Simulator
The lower-dose CT simulator consists of nine steps (see Fig. 8.1):

1. an attenuation image µhigh is constructed from a high-dose CT image
Jhigh;

2. a virtual sinogram Rhigh is generated from µhigh by means of the Radon
transform [155, 156]. Note that computing the Radon transform requires
interpolation, hence this virtual sinogram is slightly more blurred than
the true sinogram;

3. a virtual noiseless measurement, defined by the number of detected pho-
tons Ndet,high, is generated from Rhigh;

4. a virtual noisy measurement Nred is created with appropriate amounts of
Poisson and Gaussian noise – reflecting the quantum and readout noise
components [138] as well as the noise already present in the original high-
dose image;

5. a virtual ‘reduced’-dose sinogram Rred is computed from Nred. This en-
sures that all smoothing effects that are inherent to the discrete Radon
transform (step 2) and the discrete inverse Radon transform (step 7) do
not impose additional blurring to the object being imaged;

6. a noise sinogram Rnoise is obtained by subtracting the virtual sinogram
Rhigh from the reduced-dose sinogram Rred;

7. a noise attenuation image µnoise is reconstructed by means of the inverse
Radon transform —via filtered back-projection (FBP)— from the noise
sinogram Rnoise;

8. a noise image Jnoise is constructed from µnoise; and

9. a low-dose attenuation image Jlow is formed by adding Jnoise —which
contains noise only— to the original high-dose CT image Jhigh.

In the next subsections, we will detail steps 1–9.

8.2.1 The Virtual Sinogram (Steps 1–2)
The attenuation of X-ray radiation on a path from source to detector is described
in a discretized form of Lambert-Beer’s law by:

Ndet = N0e
−
∑qend

q=0
µ(q∆s)∆s

, (8.1)

in which Ndet denotes the number of photons that hit the detector, N0 the
number of photons that would hit the detector in case no object is present, ∆s



8.2. LOWER-DOSE CT SIMULATOR 111

Compute

sinogram

Add

noise

FBP-
+

high dose 

CT image,
virtual sinogram, lower dose

virtual sinogram,
zero-mean

noise sinogram,

zero-mean 

noise image,

low dose

CT image,

INPUT

OUTPUT

Steps 1-2

Steps 3-5

Step 6
Steps 7-8

PSfrag replaements

Jhigh
Rhigh

Radd Rnoise Jnoise

Jlow

1

Figure 8.1: Schematic overview of the low-dose CT simulator.

the step size, q the position on the path, qend∆s the end-position of the path and
µ(q∆s) represents the (position dependent) attenuation coefficient, also called
attenuation image. Henceforth, the summation in the exponent of this equation
will be called an attenuation projection, p.

The attenuation image µhigh is calculated from the input, high-dose image
Jhigh in step 1 via:

µhigh = µwaterJhigh
1000 + µwater, (8.2)

in which we use for µwater the attenuation coefficient of water at the effective
energy of an X-ray tube of 80 keV [157, 158].

The aggregate of such attenuation projections in a parallel-beam scanner
geometry can be approximated from the high-dose attenuation image using the
Radon transform:

Phigh(k, l) =
Npix∑
n=1

Npix∑
m=1

µhigh(n,m)·

· δ(n cos(k∆θ) +m sin(k∆θ)− l∆t)∆x∆y, (8.3)

where δ(·) is the delta function, k∆θ the gantry angle, l∆t the position of a
point on a straight line intersecting the isocenter, (n,m) the pixel coordinates,
Npix the image size, and ∆x and ∆y the pixel sizes.

For a fan-beam geometry, however, Eq. 8.3 is not valid. Therefore, the
projections Phigh(k, l) need to be reordered in such a way that they correspond to
the projections in fan-beam geometry. In the latter geometry, let i∆γ represent
the angular position on the detector ring (fan angle) and j∆β the offset angle
from the line through the source and isocenter(gantry angle). The relation
between a parallel projection Phigh(k, l) and a fan-beam projection Rhigh(i, j)
can be derived to be [155]:

Rhigh

(
1

∆β

[
k∆θ − arcsin

(
l∆t
Dsi

)]
,

1
∆γ arcsin

(
l∆t
Dsi

))
= Phigh(k, l), (8.4)
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Figure 8.2: A low dose CT image Jlow (right) is simulated by adding a patient-
specific (zero-mean) noise image Jnoise (middle) to the original high-dose image
Jhigh (left).

where Dsi is the (X-ray) source to isocenter distance. Rhigh(i, j) should be
considered an approximate, virtual sinogram, particularly since the noise is
strongly reduced due to all the interpolations and averaging involved in its
calculation. Eqs. 8.3 and 8.4 together form step 2. The associated, virtual
transmission Thigh(i, j) is calculated by:

Thigh(i, j) = e−Rhigh(i,j). (8.5)

8.2.2 Adding Noise to the Virtual Sinogram (Step 3)
Above, we introduced the idea to create a low-dose attenuation image by adding
a space-variant object-dependent noise image to the high-dose attenuation im-
age (see Fig. 8.2). As such, the pixel variance of the low-dose image var[µlow(n,m)]
is given by

var[µlow(n,m)] = var[µhigh(n,m)] + var[µnoise(n,m)], (8.6)

where var[µhigh(n,m)] and var[µnoise(n,m)] are the pixel variances of the high-
dose image and the noise image, respectively.

As a result of filtered back-projection, any attenuation image µ(n,m) is a
weighted sum of attenuation projections R(i, j):

µ(n,m) =
(
π∆t
M

) M∑
j=1

N−1∑
i=−N

ctot(n,m, i, j)R(i, j), (8.7)

in which ctot(n,m, i, j) represents the coefficients of the reconstruction filter
(including all the interpolation steps), 2N is the number of detector elements,
and M is the number of gantry angles composing a full revolution.

Since the noise in the projections is assumed to be independent, the pixel
variance equals

var[µ(n,m)] =
(
π∆t
M

)2 M∑
j=1

N−1∑
i=−N

ctot(n,m, i, j)2var[R(i, j)]. (8.8)
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According to Eq. 8.8, the correct noise characteristics are created when each
attenuation projection contains an appropriate amount of noise. Thus, the
following condition should be satisfied:

var[Rlow(i, j)] = var[Rhigh(i, j)] + var[Rnoise(i, j)], (8.9)

in which var[Rhigh(i, j)] is the variance in the high-dose sinogram, var[Rlow(i, j)]
the variance in a sinogram acquired at the specified dose and var[Rnoise(i, j)]
the variance in the noise sinogram.

In general, the variance of an attenuation projection var [R(i, j)] can be
approximated by a first order Taylor series approximation [159, 148, 160] as:

var[R(i, j)] ≈ 1
Ndet(i, j)

+ σ2
e

N2
det(i, j)

. (8.10)

Eq. 8.10 consists of two terms. The first reflects the quantum (photon) noise,
which obeys a Poisson distribution. The second term represents the readout
noise, which is modeled by zero-mean Gaussian noise N

(
0, σ2

e

)
with variance

σ2
e . The number of detected photons Ndet(i, j) is given by

Ndet(i, j) = N0(i)T (i, j), (8.11)

where T (i, j) is the transmission at fan angle i∆γ and gantry angle j∆β. N0(i)
is a function of the fan angle i∆γ due to the bowtie filter. The bowtie filter
is incorporated by means of its transmission coefficients as a function of fan
angle. Furthermore, N0 can be defined as a function of protocol- and scanner-
dependent variables:

N0(i) = KwdfanIτ

M
TB(i), (8.12)

in which w is the collimation (width of the fan beam), dfan the detector size in
the fan angle direction at the isocenter, τ the rotation time, I the tube current,
TB(i) the transmission of the bowtie filter at fan angle i∆γ, and K a constant
reflecting the X-ray tube output in photons/(mAs.mm2). The parameters K
and TB(i) are scanner-specific and need to be estimated using calibration scans
(if not known a-priori), for which a procedure is detailed in Section 8.4.2. The
other parameters in Eq. 8.12 can be typically retrieved from the literature [161,
138] or are included in the DICOM-header. Note that the radiation dose is
steered via the exposure Iτ . Essentially, step 3 consists of calculating Ndet
using Eqs. 8.5, 8.11 and 8.12.

8.2.3 Model Implementation (Steps 4–6)
This section describes how Rred(i, j) is created in such a way that Eq. 8.9 is
fulfilled. Note that the noise sinogram Rnoise(i, j) is obtained via Rnoise(i, j)
= Rred(i, j) - Rhigh(i, j). Here, Rhigh(i, j) is the virtual sinogram (obtained
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via Eq. 8.4) and not the real sinogram associated with µhigh(i, j). Due to the
interpolations and averaging in the calculation of the discrete Radon transform,
the noise of Rhigh(i, j) is assumed to be negligible, so that

var[Rnoise(i, j)]≈var[Rred(i, j)].

Eq. 8.10 indicates that the quantum noise and the readout noise can be added
to yield the total noise. Accordingly, Rred(i, j) is calculated in two steps.

First, only the quantum noise inherent to the detected number of photons is
simulated. Essentially, this is implemented by drawing samples from a Poisson
distributions with with expectation value Nred,q(i, j). Nred,q(i, j) is calculated
from Eq. 8.11.

Substituting Eqs. 8.10, 8.11 and 8.12 into Eq. 8.9 yields an explicit relation
between Ilow, chosen a-priori, Ihigh, given by the high-dose image, and Ired,
which is the tube current that yields the correct amount of noise to be used for
creating the sinogram:

Ired = IhighIlow
Ihigh − Ilow

(8.13)

in which Ihigh and Ilow are the tube currents of the high-dose and the low-dose
image to be simulated. Note that this equation essentially compensates for
quantum noise already present in the high-dose image.

Second, readout noise is simulated by repeatedly drawing samplesNred,r(i, j)
from a Gaussian distribution with zero mean and variance σ2

red. Given that
Nred,r is calculated as described previously, σ2

red is computed by:

σ2
red

N2
red,q

= σ2
e

N2
det,low

− σ2
e

N2
det,high

. (8.14)

This equation is simplified by substituting Eqs. 8.11, 8.12 and 8.13 into Eq. 8.14
and dropping all redundant terms to yield:

σ2
red = σ2

e

I2
high − I2

low

(Ihigh − Ilow)2 . (8.15)

As before, this equation compensates for Gaussian noise already present in the
high-dose data. The virtual noisy measurement (step 4) is found by adding the
read-out noise to the Poisson process

Nred(i, j) = Nred,q(i, j) +Nred,r(i, j). (8.16)

Hence, the virtual ‘reduced’ dose sinogram (step 5) becomes

Rred(i, j) = − ln (Nred(i, j)/N0(i)) , (8.17)

which yields the noise sinogram (step 6)

Rnoise(i, j) = Rred(i, j)−Rhigh(i, j). (8.18)
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8.2.4 Reconstructing the Image from the Noisy Sinogram
(Steps 7–9)

In step 7, we opt to reconstruct µ(i, j) in a parallel-beam geometry which is
conventionally done by manufacturers [155], because it is computationally much
less expensive and the image is not blurred space-variantly. Therefore, the fan-
beam projections Rnoise(i, j) need to be reordered into parallel-beam projections
Pnoise(k, l) by inverting Eq. 8.4:

Pnoise

(
1

∆θ (j∆β + i∆γ) , 1
∆tDsi sin(i∆γ)

)
= Rnoise(i, j). (8.19)

Just as before, uniformly sampled parallel projections P (k, l) are obtained by
linear interpolation of R(i, j). Subsequently, filtered back-projection is used to
construct a noise image via:

µnoise(n,m) =
(
π∆t
M

)Mpar∑
k=1

Npar−1∑
l=−Npar

Pnoise(k, l)·

· c(n∆x cos(k∆θ) +m∆y sin(k∆θ)− l∆t), (8.20)

in which c are the reconstruction filter coefficients, and Mpar and Npar the
number of gantry angles and detector elements in the parallel beam geome-
try. Note that c only contains the coefficients of the apodized ramp filter while
ctot(i, j, n,m) also incorporates the necessary interpolation steps. Clearly, the
reconstruction filter coefficients are scanner- and protocol-specific. A calibra-
tion procedure for obtaining the filter coefficients is described below. Next,
µnoise(n,m) was scaled to Hounsfield units in step 8 by:

Jnoise(n,m) = 1000
(
µnoise(n,m)− µwater

µwater

)
. (8.21)

Finally, the low-dose image can be obtained in step 9 as:

Jlow(n,m) = Jhigh(n,m) + Jnoise(n,m).

8.3 Parameter Estimation
This section describes how the required patient- and scanner-specific parameters
may be computed from calibration scans:

1. The reconstruction filter coefficients in c(l) as well as ctot(n,m, i, j),

2. the bowtie filter transmission TB(i),

3. the X-ray tube output parameter K, and

4. the readout noise variance σ2
e .
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8.3.1 The reconstruction filter coefficients
Eq. 8.7 can be rewritten in matrix notation in which a system matrix Ctot
contains the filter coefficients ctot(n,m, i, j):

µ = CtotR, (8.22)
where µ is a Npix vector (the reconstructed image), Ctot is Npix×M2N matrix,
and R is aM2N vector holding the attenuation projections. Npix is the number
of pixels in the image to be reconstructed.

In our implementation Ctot actually consists of a series of matrix multipli-
cations, each representing a different processing step:

Ctot = CbackCfiltCfan2par. (8.23)
Here, Cfan2par is a Mpar2Npar×M2N matrix that implements the fan-beam to
parallel-beam transformation; Cfilt is aMpar2Npar×Mpar2Npar Toeplitz matrix
performing the high-pass filtering and Cback is a Npix×Mpar2Npar matrix that
incorporates the back-projection step. Observe that Cfan2par and Cback can be
derived from the beam geometry of the simulation. The matrix Cfilt has the
filter coefficients c(l) in its rows. Essentially, c(l) is the Mpar2Npar ‘core’ back-
projection filter that needs to be estimated in order to compute ctot(n,m, i, j).

Conventionally, the reconstruction filter ctot(n,m, i, j) is derived from the
NPS in a region of interest (ROI) [154, 153, 150, 149]. If all fan-beam projec-
tions R(i, j) used to reconstruct the ROI contain white noise (and aliasing is
negligible), the NPS becomes radially symmetric [149]. This is approximately
the case in the center of a water cylinder that is placed in the center of the
scanner. The pixels inside such a ROI are reconstructed by the projections
located at the center of the detector array. The expected number of detected
photons is constant, since the water cylinder is locally approximately flat, hence
the noise level in each of these projections is the same. Therefore, the noise is
approximately white as the amount of cross-talk is negligible [138].

Here, the NPS, which is the Fourier transform of the auto-correlation func-
tion, is radially symmetric and given by:

NPS(ωr) = H2
tot(ωr)S(ωr) (8.24)

where ωr =
√
ω2
x + ω2

y, ωx and ωy are the frequencies in Cartesian coordinates,
Htot(ωr) the modulation transfer function of the scanner (see below), and S(ωr)
the NPS of the projections. The assumption that R(i, j) contains white noise
makes that the NPS becomes [151, 149]

S(ωr) ≈
1
ωr
, (8.25)

and which is valid when the sampling of the gantry angles of R(i, j) is uniform
and sufficiently dense.
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Htot is modeled to consist of three elements, namely one apodized ramp filter
and two interpolation filters. The apodized ramp filter Hfilter ensures a mathe-
matically correct reconstruction up to the cut-off frequency of the apodization
filter. Furthermore, one interpolation filter Hfan2par represents the transforma-
tion of the fan-beam rays to uniformly sampled parallel-beam rays, and the other
one Hback reflects the interpolation along the path during the back-projection.
Consequently, when aliasing is ignored, Htot is given by:

Htot(ωr) = Hfilter(ωr)Hback (ωr)Hfan2par (ωr) , (8.26)

where Hfilter is the Fourier transform of c(l), the ‘core’ back-projection filter,
which can be further decomposed into

Hfilter(ωr) = ωrHapo (ωr) , (8.27)

with Hapo a cut-off window designed to avoid ringing artifacts near large tissue
transitions and to suppress noise in the image. The goal is to determine the
shape of Hapo, which we approximate by:

Hapo(ωr) =

(
a+ b cos

(
πωr

fpar

))
a+ b

, (8.28)

where a and b are two filter parameters. For some values of a and b, Hapo(ωr)
is equal to cut-off windows found in literature [151].

The NPS is estimated in a ROI using the periodogram, which is an estimate
of the NPS and is defined by,

NPS(ωx, ωy) =
N∑
i=1

|F{Jnoise(x, y)}|2
N

(8.29)

in which N is the number of images used to estimate the NPS, Jnoise is a zero-
mean noise image (e.g. obtained by subtracting repeated images of the same
slice) and F{} symbolizes the Fourier transform. We assume that only linear
interpolation is used and therefore Eq. 8.24 becomes (after filling in the previous
equations):

NPS(ωr) = ωr

a+ b cos
(
πωr

fpar

)
a+ b

2

sinc4
(
ωr
ffan

)
sinc4

(
ωr
fpar

)
(8.30)

in which ffan is the Nyquist frequency of the detector array with detectors of
size dfan at the isocenter and fpar is the Nyquist frequency of the re-binned
detectors of size dpar.

Essentially, the parameters a and b are estimated by fitting the model de-
scribed in Eq. 8.30 to the NPS measured in a ROI in the center of a water
cylinder placed in the center of the scanner. For that we use the Levenberg-
Maquardt optimization algorithm.

Thereafter, c(l) = F−1{Hapo(ωr)} and ctot(n,m, i, j) is obtained via Eq. 8.23.
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8.3.2 The bowtie filter
We will now demonstrate how the bowtie filter transmission can be estimated
in a least-squares sense from the pixel variance measurements in a phantom.
This is an additional novelty of our work, which is required if projection data
cannot be obtained.

Assuming that phantom images are acquired at a dose that is high enough to
ignore the electronic noise, then the pixel variance var[µ(n,m)] can be rewritten
by substituting Eqs. 8.10, 8.11 and 8.12 into Eq. 8.8:

var[µ(n,m)] =
(
M2π2∆t2
IwdfanKτ

) M∑
j=1

N−1∑
i=−N

ctot(n,m, i, j)2

TB(i)T (i, j) . (8.31)

Apart from K and TB(i), the other parameters in this equation are known (ctot
may be estimated following the procedure from the previous section and T can
be obtained via Eq. 8.5). Writing this equation in matrix notation yields:

var[µ] = AC2
tot

1
TB ·T

, (8.32)

where var[µ] is an Npix vector (with Npix again the number of pixels); A =(
M2π2∆t2

)
/ (IwdfanKτ) is a scalar; (·)2 reflects element-wise square (of the

NI ×M2N matrix Ctot, see above); 1
(·) corresponds to an element-wise divi-

sion; () · () corresponds to an element-wise multiplication;TB is an M2N vector
representing the bowtie filter transmission, and T is an M2N vector containing
the transmission values.

Eq. 8.32 can be rewritten by putting the elements of T into a M2N ×M2N
diagonal matrix DT and by using the property that TB does not depend on the
gantry angle into:

var[µ] = C2
tot

A

DTDMTB
, (8.33)

in which DM is a M2N × 2N matrix that replicates the bowtie filter for all
gantry angles and TB is now a 2N vector representing the transmission of the
bowtie filter. In fact DM consists of M ‘stacked’ (2N × 2N) unit matrices.

Clearly, Eq. 8.33 is a linear equation that might be solved analytically. Un-
fortunately, the system matrix and the number of parameters are very large,
and therefore such a purely analytic approach is computationally very expen-
sive. Therefore, we opt to model the bowtie filter’s transmission by:

TB(i) = olow + (1− olow)
( 4∑
q=0

aqcos
(
πqi

N

))2

, (8.34)

with aq and olow parameters of the model. The summation in the equation
represents a truncated fourth order Fourier series. Only cosines are used as the
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bowtie filter is a symmetric function and the sum is squared to ensure that the
transmission is not negative. Furthermore, we assume that the transmission
in the center of the bowtie filter is one (TB(0) = 1), which is imposed by
constraining a0 = 1 −∑4

q=1 aq. Thereby, we assume that the transmission
also has a lower limit (as the bowtie filter itself has a finite thickness). To that
end, olow is a constant representing the minimal transmission. Furthermore, the
weighted-sum construction ensures that the transmission can indeed converge
to 1.

We assert that TB is a monotonically decreasing function to both sides of
the filter. Therefore, we devised the following simple penalty term:

P (a) =
N−1∑
i=0

∂TB(i,a)
∂i

u

(
∂TB(i,a)

∂i

)
, (8.35)

with u(·) the Heaviside function and a the 4 parameter vector of the model (c.f.
Eq. 8.34). Essentially, Eq. 8.35 sums all positive derivative values over half the
filter (which is symmetric by definition).

Finally, the filter parameters are estimated by solving:

a, A = argmin
a,A


Npix∑
k=1

χk(a, A, k) + βP (a)

 , (8.36)

with
χk(a, A, k) = (var[µk]experimental − var[µk,a, A]model)2

, (8.37)

where A is the scaling constant from Eq. 8.32 which is essentially a gain factor
that needs to be simultaneously estimated and β the weight of the penalty term

The required pixel variances to solve this equation will be obtained from
a central region in images of a water cylinder that is repeatedly scanned (see
below).

8.3.3 The X-ray tube output parameter and the readout
noise level

Finally, we will demonstrate how the X-ray tube output parameter K and the
variance of the readout noise σ2

e can be estimated from the pixel variance
var[µ(n,m)] measured at different tube currents. Therefore, Eq. 8.8 will be
simplified in such a way that K and σ2

e can be derived from a linear fit.
First, substituting Eq. 8.10 into Eq. 8.8 yields:

var[µ(n,m)] =
(
π∆t
M

)2 M∑
j=1

N−1∑
i=−N

ctot(n,m, i, j)2
(

1
Ndet(i, j)

+ σ2
e

Ndet(i, j)2

)
.

(8.38)
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Subsequently, substituting Eqs. 8.11 and 8.12 into 8.38 and reshuffling the vari-
ables yields

var[µ(n,m)] =
(

π2∆t2
IM2wKτ

) M∑
j=1

N−1∑
i=−N

ctot(n,m, i, j)2

TB(i)T (i, j) +

+
(

πσe∆t
IKMwτ

)2 M∑
j=1

N−1∑
i=−N

ctot(n,m, i, j)2

TB(i)2T (i, j)2 . (8.39)

Consequently, the next relation emerges when the exposure Iτ , the X-ray tube
output K, and the variance of the readout noise σ2

e are separated from all other
variables of Eq. 8.39:

var[µ(n,m)] = Cp(n,m)
KIτ

+ Ce(n,m)
K2I2τ2 σ

2
e , (8.40)

in which Cp(n,m) and Ce(n,m) are given by

Cp(n,m) =
(
π2∆t2
M2w

) M∑
j=1

N−1∑
i=−N

ctot(n,m, i, j)2

TB(i)T (i, j) , (8.41)

and

Ce(n,m) =
(
π2∆t2
w2M2

) M∑
j=1

N−1∑
i=−N

ctot(n,m, i, j)2

TB(i)2T (i, j)2 . (8.42)

Cp(n,m) and Ce(n,m) can be calculated using the reconstruction filter weights
ctot (from Section 8.3.1), the bowtie filter (from Section 8.3.2), and the trans-
mission (calculated via Eq. 8.5). Eq. 8.40 is ill-posed whenever the variance is
measured at a single exposure. Therefore, acquisitions are obtained at multiple
exposures. Next, the model is fitted in a least-squares sense using the following
non-linear model,

{K,σ2
e} = arg min

K,σ2
e


Npix∑
k=1

NI∑
i=1

χk,i(K,σ2
e)

 , (8.43)

with

χk,i(K,σ2
e) =

(
var[µk,i]measured − var

[
µk,i|K,σ2

e

]
model

)2
, (8.44)

in which the model is expressed by Eq. 8.40, Npix and NI define the number
of pixels and exposures respectively. The initial parameters are obtained by
first solving a simpler problem that emerges when Eq. 8.40 is approximated by
two linear equations. If the tube current is very high, the contribution of the
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read-out noise to the pixel variance is often neglected. In this case, the second
term in the right hand side of Eq. 8.40 is ignored, hence K can be approximated
from:

var[µ(n,m)] ≈ Cp(n,m)
IτK

. (8.45)

With K known, σ2
e can be estimated using new images that are acquired at a

lower dose level. Reshuffling Eq. 8.40 gives:

σ2
e = K2τ2I2

Ce(n,m)

(
var[µ(n, .m)]− Cp(n,m)

KIτ

)
. (8.46)

These estimates for K and σ2
e are the initial parameters for minimizing Eq. 8.43.

8.4 Results

8.4.1 Measurement Data

CT images of a water cylinder 34 cm in diameter and a pelvic phantom were
acquired on a Philips Brilliance 64 CT scanner at the Academical Medical Cen-
ter in Amsterdam, The Netherlands. A modified CT colon protocol was used,
since the intended application is CT colonography. The modifications only con-
cerned the tube current, which was adjusted to control the dose level and the
acquisition mode, which was sequential for the water cylinder (i.e. imaging the
exact same plane) and the pelvic phantom. Tables 8.1 and 8.2 list the parame-
ter settings. Note that the scan protocol parameters are controlled by the user
whereas the geometry parameters are scanner dependent.
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Table 8.2: Scanner’s geometry parameters.

Scanner’s geometry parameters

Number of detector rings 64
Source to isocenter distance, Dsi (mm) 570
Source to detector distance, Dsd (mm) 1040
Field of measurement:DFOM (mm) 500

Number of detectors, Ndet 672
Detector size, ddet (mm) 1.41

Detector size at iso-center, dfan (mm) ∼0.77
Sampling after rebinning, dpar (mm) dfan

2
Number of gantry angles per revolution, M 1160

Table 8.1: Scan protocol parameters.

Scan protocol parameters
Phantom type water cylinder pelvic phantom
Acquisition mode sequential sequential
Kernel B B
X-ray tube Voltage (kV) 120 120
Slice Thickness:w (mm) 0.68 0.68
Collimation 40 x 0.625 64 x 0.625
Matrix 512 X 512 512 X 512
Field of measurement:
DFOM (mm)

500 500

Set type Calibration/
Training

Test Test

Field of view 350 350 350
Pixel sizes: dpix(mm) 0.68 0.68 0.68
Exposure: Iτ (mAs) 250, 120, 60, 30 210, 170,

120, 85, 60,
30, 20, 15

80, 40,15

Number of rotations 25 (except for
250mAs: 100)

13 128

Copies per rotations 40 40 1
Number of slices 1000 (except for

250mAs: 4000)
520 128

CT images of the water cylinder were used to estimate the unknown, scanner-
specific parameters: Hapo, TB(i), K and σ2

e . Here, the settings listed under
‘Calibration/Training’ (Table 8.1) were used. Subsequently, separate images
of the water cylinder and images of the pelvic phantom were used to validate
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Figure 8.3: The NPS calculated from a 64x64 ROI in the center of a 34cm water
cylinder. The NPS was normalized such that it ranged from 0 to 1.

the low-dose simulation model (settings listed under ‘Test’). Therefore, simu-
lated and measured noise characteristics were compared by means of the pixel
variances and the NPS.

8.4.2 Parameter Estimation
The Reconstruction Filter Coefficients

The volumes emanating from successive X-ray tube rotations at 250mAs were
pairwise subtracted to yield 2000 zero-mean noise images (i.e. corresponding
slices from successive rotations). The NPS was computed in a small rectangular
ROI consisting of 64x64 pixels in the center of the images. Fig. 8.3 shows the
result.

Subsequently, the parameters of the apodization window Hapo were esti-
mated by fitting our model (Eq. 8.30) to the NPS. The left plot of Fig. 8.4
demonstrates how well the model fits the data, while the right plot shows
in blue the apodization window which is used in the remainder of the paper
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Figure 8.4: Left: the (angular averaged) radial NPS calculated from the images
of a water cylinder (pink) and the fitted model, i.e. Eq. 8.30 (blue). Right: the
ensuing apodization window Hapo (blue, Eq. 8.28) and the algorithmic transfer
function, Halg.

(Eq. 8.28). In the same plot, the algorithmic transfer function, Halg, which
is defined by Halg(ω) = (Hapo(ωr)Hback (ωr)Hfan2par (ωr))2 and represents the
total apodization, is depicted in pink.

The Bowtie Filter

The 2000 zero-mean noise images from the previous step were used to calculate
pixel variances (see Fig. 8.5). Subsequently, only those variances were retained
up to 154 mm from the center, i.e. inside the water cylinder. As such, artifacts
at the boundary of the cylinder and problems due to signal clipping outside
the cylinder are avoided. Furthermore, samples up to 10 pixels ( 7 mm) from
the center were discarded, since the variance of the central pixels cannot be
estimated with sufficient precision. Samples were collected from within the re-
maining region along 80 evenly distributed radial lines drawn outward from the
center (see Fig. 8.5). The bowtie filter parameters a were estimated for each
of the 80 radial segments separately (via Eq. 8.36), after which the associated
bowtie filter transmissions were averaged. We took this approach for compu-
tational reasons since the matrices in Eq. 8.32 are extremely large. The initial
parameter setting for every estimation was ainit = [0.5, 0, 0, 0], which corre-
sponds to a single cosine (see below). olow was set to 0.15, which is comparable
to the minimum found in other scanners [146, 143].

Fig. 8.6 shows the estimated bowtie transmission. The left plot gives the
profile of the mean bowtie transmission, its 95% confidence interval (all in blue)
as well as the initialization (pink). Notice that the bowtie transmission was
estimated more precisely for the central detectors than for the ones at the pe-
riphery (reflected in the smaller confidence interval). Particularly, the variance
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Figure 8.5: Variance image and all of the radial segments. The bowtie filter
was calculated for each such segment, i.e. for each separate line on either side
of the center.

is large for the range of 200 < |DetectorID|, which corresponds to the edges of
the water cylinder.

The right plot displays the variance (blue) measured along one of the radial
segments depicted in Fig. 8.5. Additionally, the variance as a function of position
was computed by means of Eq. 8.33 with (pink) and without the bowtie filter
(green). This shows that adding the bowtie filter to the model enabled it to
describe the measured variance more accurately.

The shape of the transmission profile was similar to previously estimated
bowtie filters of CT-scanners [143, 146].

The X-ray Tube Output Parameter and the Readout Noise Level

The variance per pixel was estimated from the water cylinder images for each
exposure level in the training set. As specified in Section 8.4.2, the analysis was
restricted to pixels positioned within the 7mm (10 pixels)–154mm distance
interval from the center.

Fig. 8.7 shows the ratio (ρ) of measured variances at 250 and 120mAs as a
function of the distance to the image center. Neglecting the read-out noise, it
follows from Eq. 8.45 that

ρ = var[µ(r)]Ilow

var[µ(r)]Ihigh

= Ihigh
Ilow

= 250
120 = 2.08.

Fig. 8.7 essentially shows that this assumption was only approximately valid at
these dose levels as a paired t-test showed that the pink line varied significantly
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Figure 8.6: left: The mean estimated bowtie filter (blue solid), the 95% confi-
dence intervals(blue dashed) and the bowtie used as initialization (pink). right:
the values of the pixels measured (blue) on the diagonal of the variance image
depicted in Fig. 8.5, the analytically computed variance with (pink) and with-
out (green) bowtie filter. The variance was scaled by dividing the original by
the mean.

from the blue one (p < 0.05). Nonetheless, the difference was only 2%.
Next, Fig. 8.8 (left) depicts estimates of K obtained at different exposure

levels. K was estimated using Eq. 8.45 by fitting a line through all data points,
after which the slope of the line corresponds to 1/(IτK). Clearly, the estimation
of K appears to stabilize for higher exposure levels and increasingly deviates
from stability as the exposure level decreases. We attribute this to the increasing
importance of the read-out noise due to which Eq. 8.45 is not valid anymore.
Henceforth, the estimated value for K at 250mAs is used as an initialization to
compute the initial value of σ2

e .
The read-out noise σ2

e was computed using Eq. 8.46, again based on the 7mm
(10 pixels)–154mm distance interval from the center. Fig. 8.9 shows histograms
of estimated σ2

e values at 120mAs and 30mAs. Clearly, the distribution is
wider at 120mAs (reflecting less precise estimation), because the total noise
is dominated by the Poisson component. Note that the variance can take on
negative values due to the subtraction involved in Eq. 8.46. Simultaneously,
observe that the mean is larger than zero in each case.

Figure 8.8 displays the read-out noise and uncertainty as a function of ex-
posure in the training data. Table 8.3 lists the estimated values of K and σ2

e

at each exposure level. The weighted average of estimates of σ2
e over all expo-

sure levels is used to initialize the minimization procedure described by Eq. 8.43.
Here, the weights were inversely proportional to the variances in the estimations
of σ2

e .
Finally, Fig. 8.10 displays a contour plot depicting the density distribution as

a function of the pixel-variances and Cp within the 7mm (10 pixels) –154mm
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Figure 8.8: left:K as a function of the exposure. right:σ2
e as a function of the

exposure. The error-bars indicate 97.5 percentile of the estimation K and the
±1 times the standard deviation of the estimationσ2

e .

Table 8.3: Estimates for K and σ2
e at each exposure level. σ2

e is com-
puted using K estimated at 250 mAs. K is expressed in the number of
photons/(mm2.mAs.revolution).

Exposure (mAs) 250 120 60 30
K
(
×106) 2.08 2.03 1.98 1.84
σ2
e -0.6 10.9 11.8 14.9
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Figure 8.9: Histograms of σ2
e estimated in the pixels of the water cylinder at

120 mAs (left) and 30 mAs (right).

ROI of the 250mAs images. Notice how the pink line (solid), described by
Eq. 8.45, is nicely in the center and its 95% confidence interval (dashed) delin-
eates the point cloud. The density of points is much higher in the lower left
than the upper right of the figure because more measurement points originate
from the periphery of the water cylinder, which have a lower variance. The final
values of K and σ2

e were estimated to be 2.17 ∗ 106 photons/(mm2.mAs) and
23.2. These values will be used in the remaining experiments.

8.4.3 Validation of the Low-dose CT Model
The noise characteristics from simulated low-dose CT images were compared
with those produced by experimental low-dose CT-scans to validate our method.
The scan parameters to do so are collated in Table 8.1 (The ‘Test’ column
under ‘water cylinder’ and under ‘pelvic phantom’). The highest exposure level
given in the table served as input to simulate low-dose images. The noise
characteristics of all generated low-dose CT images were assessed by means
of the pixel variance describing the noise ‘strength’, and the NPS quantifying
the noise structure. Both were computed in a number of ROIs.

34cm Water Cylinder

Fig. 8.11 shows a CT image indicating the positions of the ROIs that were used
to compute the NPS. Each ROI had a size of 64x64 pixels.

Fig. 8.12 shows the standard deviation as a function of the distance to the
center at different exposure levels: 60mAs (lower) and 21mAs (upper), respec-
tively. The pink and blue lines correspond to the angular averaged experimental
and the simulated data. Additionally, Table 8.4 gives the relative root-mean-
squared difference εσ between the simulated and experimental noise levels as a
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Figure 8.11: Image depicting four ROIs that were used to validate the low-dose
CT simulation.
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Table 8.4: The relative RMS difference between simulated and experimentally
acquired noise levels εσ as a function of the exposure.

Exposure (mAs) 210 170 120 85 60 42 30 21 15
εσ(10−2) 1.9 1.4 1.5 1.5 1.4 2.1 2.3 2.3 2.5

Table 8.5: Relative RMS difference between measured and simulated NPS εNPS
for the ROIs depicted in Fig. 8.11.

ROI number 1 2 3 4
εNPS 0.16 0.16 0.12 0.14

function of the exposure:

εσ =

√√√√ 1
NM

M∑
n=1

M∑
m=1

(σsimu(n,m)− σexp(n,m))2

σ2
simu(n,m) , (8.47)

in which σsimu(n,m) and σexp(n,m) are the simulated and experimentally ac-
quired standard deviations at pixels (n,m) and N and M indicate the number
of pixels on both axes.

Fig. 8.12 and Table 8.4 demonstrate that the simulated noise level closely
approximates the experimental noise level in the water cylinder.

Fig. 8.13 shows contour plots of the NPS calculated from ROIs depicted
in Fig. 8.11. The blue and pink lines correspond to the experimental and the
simulated NPS, respectively. Table 8.5 gives the relative root-mean-squared dif-
ference εNPS between the experimental (NPSexp) and simulated NPS (NPSsimu)
for each ROI, i.e.:

εNPS =

√√√√∑M
n=1

∑M
m=1(NPSsimu(ωn, ωm)−NPSexp(ωn, ωm))2∑M

n=1
∑M
m=1 NPS2

simu(ωn, ωm)
. (8.48)

Fig. 8.13 and Table 8.5 signify the close resemblance in shape between the noise
of the experiment and the simulation.

Pelvic Phantom

Fifteen ROIs were selected in which the noise properties were analyzed, see
Fig. 8.14. Each ROI was composed of 41 x 41 pixels. The standard deviation
in each ROI was determined for both the experimental scans and the simulated
scans at 80, 40 and 15mAs. For the simulations at 40 and 15mAs, the scans at
80mAs were used as the high-dose image. A validation at 80mAs was possible
by computing the noise properties directly from the zero-mean noise image µnoise



8.4. RESULTS 131

0 50 100 150 200 250
0

50

100

150

200

Distance to the center of the water cylinder (mm)

S
ta

nd
ar

d 
de

vi
at

io
n 

   
   

  
 o

f t
he

 p
ix

el
 v

ar
ia

nc
e 

(H
U

)

 

 

Experimental
Simulated

Figure 8.12: The standard deviation of the noise in a 34 cm water cylinder as a
function of the distance to the center. A comparison between simulations (pink)
and experiments (blue) at 60mAs (lower lines) and 21mAs (upper lines). The
simulations were based on original images acquired at 250mAs



132 CHAPTER 8. SIMULATION OF LOW-DOSE CT IMAGING

frequency ω
x
 (lines/cm)

fr
eq

ue
nc

y 
ω

y (
lin

es
/c

m
)

 

 

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6
Experimental
Simulated

frequency ω
x
 (lines/cm)

fr
eq

ue
nc

y 
ω

y (
lin

es
/c

m
)

 

 

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6
Experimental
Simulated

frequency ω
x
 (lines/cm)

fr
eq

ue
nc

y 
ω

y (
lin

es
/c

m
)

 

 

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6
Experimental
Simulated

frequency ω
x
 (lines/cm)

fr
eq

ue
nc

y 
ω

y (
lin

es
/c

m
)

 

 

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6
Experimental
Simulated

Figure 8.13: Contour plots of the experimental (blue) and the simulated (pink)
NPS at 15mAs in ROI 1 (top left), ROI 2 (top right), ROI 3 (left) and ROI 4
(right) of Fig. 8.11.
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Figure 8.14: Three slices of the pelvic phantom imaged at 80 mAs in which
ROIs were selected for the assessment of the low-dose simulation method.

Table 8.6: The parameters and the correlation of the linear fit illustrated in
Fig. 8.15.

Exposure (mAs) slope offset correlation
80 0.995 1.71 0.994
40 1.006 0.94 0.998
15 1.018 1.75 0.994

that was simulated assuming the original image was acquired at infinite dose.
For each slice and exposure level, 64 simulations were created to take variations
in noise realizations into account. On average, the standard deviation of the
simulated images deviated 5.3%, 2.4% and 4.3% from the standard deviation
of the experimental images for the experimental acquired scans at 80, 40 and
15mAs, which was within the 95% confidence interval of the estimated standard
deviation.

Fig. 8.15 and Table 8.6 show that the simulated scans closely resembled the
noise strength in the experimental scans. Nonetheless, the difference between
the simulations and experimental scans was larger for the measurements based
on the pelvic phantom than the ones based on the water cylinder. We attributed
this to the presence of bone-like structures, that cause beam hardening, which
was not taken into account in our method.

Furthermore, the NPS was computed in four arbitrarily selected ROIs from
experimental and simulated scans at 15mAs, see Fig. 8.16. Once more, the
figures show how well the simulation technique approximates the experimental
acquired low-dose images.
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Figure 8.15: Standard deviations obtained from the simulated images as a func-
tion of the ones obtained from the experimentally acquired data at 80mAs (top
left), 40mAs (top right) and 15mAs (bottom). Each point indicates the average
standard deviation in one of the ROIs depicted in Fig. 8.14. The bars depict the
95% confidence interval of the estimation. The pink line represents the linear
fit, the parameters of the fit are listed in Table 8.6.
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Figure 8.16: Contour plots of the experimental (blue) and the simulated (pink)
NPS from ROIs 3, 7, 12, 14 of the pelvic phantom (depicted in Fig. 8.14) at
15mAs.
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8.5 Discussion
We presented a novel method to simulate patient-specific, low-dose CT images
from existing high-dose images. Scanner-specific parameters i.e. the apodiza-
tion window of the reconstruction filter, the bowtie filter, the X-ray tube output
parameter and the read-out noise were estimated by means of calibration im-
ages of a water cylinder. Therefore, new estimators were developed that used
reconstructed images and did not require projection data. The low-dose simula-
tion was evaluated by comparing the noise characteristics in simulated low-dose
images with experimentally acquired data.

We demonstrated that the models used to recover the scanner-specific pa-
rameters accurately described the calibration data. The estimated reconstruc-
tion filter corresponded well to the smooth kernels found earlier [153, 154]. We
recognize that a more general model such as an higher order cosine series is
necessary to describe the very sharp kernels. The shape of the bowtie filter
estimated by us closely resembles the bowtie filter used in a Siemens scanner
[146, 143, 162]. Furthermore, we estimated the X-ray tube output parameter at
K = 2.17∗106 photons/mm2.mAs and the read-out noise variance at σ2

e = 23.2.
These estimated values were of the same order of magnitude as reported previ-
ously: Massoumzadeh et al. [143] estimated 2.7 ∗ 106 photons/mm2.mAs for K
and values from 40 through 200 for σ2

e ; Faulkner et al. [150] estimated 4.15∗106

and 6.46∗106 photons/mm2.mAs forK. Ma et al. [148] found 10 for σ2
e . Finally,

we showed that the simulated low-dose images accurately reproduced the noise
in experimental low-dose volumes.

A limitation of our approach is in the assumption that monochromatic pho-
tons are produced by a virtual X-ray source. As such, our method does not take
beam hardening effects into account, which likely cause the encountered devia-
tions in the noise characteristics between simulated and experimental scans of
the pelvic phantom. At the same time, the differences between the simulated
and experimental data were relatively small even in the presence of bony struc-
tures and at relatively low exposures of 15mAs. Essentially, a polychromatic
approach would require a spectral dependency in our framework, particularly
concerning the x-ray tube output N0 and the calculation of attenuation projec-
tions. We consider this an important topic for further research.

Another limitation is that our method does not take tube current modulation
into account. The tube current modulation essentially adjusts the tube current
to the part of the body being imaged and the size of the patient. A variation per
slice can be simply incorporated in our method by adjusting N0 to the actually
used tube current Ihigh which may be stored in the DICOM-header. However,
it might not be easy to recover complexer variations of N0, e.g. as a function of
the gantry angle. We did not take this into account as the effect on the noise
characteristics was proven to be relatively small [160, 156].

Another limitation is that we did not model the correlation of noise due to
z-interpolation that is inherent to helical data acquisition. Finally, if iterative
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reconstruction algorithms are introduced into commercial CT-scanners in the
future, then the low dose CT simulator needs to be updated accordingly.

In summary, the developed methods truthfully simulated low-dose CT imag-
ing without requiring projection data. This new technology might facilitate
large-scale studies into the diagnostic accuracy for lower CT dose. In turn, it
could aid in further reducing the radiation risks of CT-examinations.
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8.A Appendix: CAD for Low-Dose CT Colonog-
raphy

8.A.1 Goal
This Appendix presents the results of an in silico study to the performance of
our computer aided polyp detection system for lower dose CTC data.

8.A.2 Experiments
We used a data set that was used previously by us to validate the automated
polyp detection algorithm (data set ’C’ in Ref. [73]). The data from 61 out of
141 randomly selected patients were used. Notice that these scans were acquired
at relatively high radiation dose levels of around 75 mAs [55]. In this data set,
71 polyps ≥ 6mm were found; 15 of which were ≥ 10mm..

Lower dose CT scans of these patients were simulated at three dose levels:
20mAs, 10mAs, and 5mAs. The data was interpreted by the CAD system
presented previously [73, 57].

8.A.3 Results
Fig. 8.17 shows FROC curves for the original data set and the three simulated
dose data sets. Apparently, the 5mAs data set has a sensitivity reduced by
approximately just 10% compared to the original data. The 15 lesions that
remained undetected even in the original data concerned tumors with lobulated
shapes, polyps covered by fecal remains, ‘non-protruding’ polyps annotated as
flat lesions by the radiologists and polyps that were located between haustral
folds (see also Chapter 2).

8.A.4 Discussion/Conclusion
Comparing the individual FROC curves shows that the sensitivity is reduced
by 10% as a consequence of reducing the radiation dose by a factor of around
fifteen. Based on this gradual decline in performance, we conclude that the CAD
system is robust to adding simulated noise. When comparing the results with
previously presented results (see Fig. 2.9(c)), it should be noted that the overall
sensitivity is lower even for the FROC curve without adding simulated noise.
This can be explained by an unfavorable selection of subjects with relatively
more polyps covered by fecal remains, flat polyps and tumors which cannot be
detected by the CAD system.
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Figure 8.17: FROC curves showing the performance of the polyp detection
system for the same data set at varying dose levels.
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Chapter 9

Conclusion

We designed, implemented and evaluated new techniques for computer aided
detection (CAD), electronic cleansing (EC) and low-dose simulation based on
high-dose reconstructed images to be used in CT colonography (CTC). Auto-
mated polyp detection was presented as a technique to assist the radiologist
by indicating suspicious locations. Electronic cleansing allows for 3D reading
of CTC data even if the patients did not undergo an extensive bowel prepara-
tion. Furthermore, we investigated how the techniques are affected by a reduced
radiation dose.

9.1 Automated Polyp Detection
A method based on a minimal principal curvature flow was presented which
sustains polyp detection based on the protruding character irrespective of the
polyp’s size and shape. The method modifies the appearance of the colon surface
at locations of protruding objects only. This was achieved by finding a steady
state solution of a nonlinear partial differential equation with the CTC image
as input. The method allows for a simple segmentation of polyp candidates by
applying a single threshold on an intensity change field and it does not make a
specific choice for the scale that is used in the involved first and second order
derivative operators. The iterative character of the method changes the intrinsic
scale of the image (local and anisotropic): the aperture of observation (window
size of the operation times the number of iterations) inherently increases and
the convergence criteria of the posed partial differential equation adapts to the
local data.

We developed a classification system based on logistic regression that makes
use of a measure for the detection of polyp candidates that directly relates to
polyp size, and not to polyp shape. This measure orders detected structures
according to size which, in effect, keeps increasingly larger objects further away

141
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from the decision boundary, and thereby limits the risk of missing large polyps.
As such, the ordering correlates with the clinical relevance of the candidates.
Typically, there are unbalanced and unknown misclassification costs and a huge
class imbalance. The latter occurs because there are only a few examples of
the ’abnormality’ class in a shear endless sea of normal ’healthy’ samples. Our
classification system can cope with the aforementioned characteristics by car-
rying out a regression analysis instead of classifying the candidates into one of
the two classes. The exponential distribution of the candidates and the small
number of polyps available for training led to the use of the logistic classifier
for regression.

The logistic classifier is of low-complexity and proved to be stable while only
using a small number of features: the candidate’s protrudedness from the colon
wall, a feature derived from the protrusion field that was sensitive for candidates
that had steep edges and large protrusion, and the internal intensity distribu-
tion. The features were divided into two types, namely features that directly
allowed an ordering of the candidates and features that were well described by
a Gaussian density distribution. The features of the second type were mapped
by a Mahalanobis distance mapping to impose an ordering. This mapping was
chosen because it emulates a Gaussian one-class classifier. In this way, outlier
rejection was incorporated into the classification system. The Mahalanobis dis-
tance mapping in conjunction with logistic regression is generally applicable to
obtain a clinically relevant ordering of the candidates.

The system was evaluated with data sets from four different medical centers.
For polyps larger than or equal to 6 mm we achieved sensitivities of respectively
95%, 85%, 85%, and 100% with 5, 4, 5, and 6 false positives per scan over 86, 48,
141, and 32 patients. The observed sensitivity was comparable to the sensitivity
of radiologists using CTC [6, 3, 9] and competed with other CAD systems
[9, 43, 29, 30]. A cross-center evaluation in which the system is trained and
tested with data from different sources showed that the trained CAD system
generalizes to data from different medical centers and with different patient
preparations. This is an essential prerequisite for application in large-scale
screening for colorectal polyps.

To conclude, we introduced a low-complex CAD system in which the candi-
date detection, segmentation and part of the classification steps were combined
into a single step. The characteristics of the remaining classification problem
led to a low-complex classification system that proved to generalize to data from
different medical centers. This fullfilled the requirement of a robust low-complex
automated polyp detection system.

9.2 Electronic Cleansing
We extended an existing electronic cleansing system to be able to cope with
CTC data with reduced radiation dose and limited bowel preparation. Based
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on knowledge obtained from automated polyp detection, a pre-processing step
was added to transform the data such that heterogeneities in tagged material
were removed while leaving the colon surface unchanged. This is done by it-
eratively removing inhomogeneities using a principal curvature algorithm. As
shown for polyp detection, this algorithm is able to remove inhomogeneities (or
protrusions) while retaining the colon wall. The latter is retained because of
its specific characteristic that one of the principal curvatures (depending on the
application) is smaller than or equal to zero everywhere.

An evaluation study showed that our proposed method enables primary 3D
reading of low-dose CT colonography with a 24-hour limited bowel preparation.
For a variety of subject preparations, the sensitivity and accuracy remained
high. The sensitivity of the primary 3D reading was significantly higher com-
pared with the primary 2D reading for lesions ≥ 6mm. The sensitivity of the
primary 3D reading was also higher than the sensitivity of the primary 2D read-
ing for lesions≥ 10mm, but the difference was not significant. Reader confidence
was significantly lower and reading time was significantly higher compared with
a 2D primary reading; there was no significant difference in reader effort. Also,
there was no significant difference in 3D lesion conspicuity for submerged lesions
after electronic cleansing compared with polyps residing in air. Furthermore, it
should be noted that although the primary 3D reading time (7:09) was longer
compared with the 2D primary reading time (5:39), these reading times are well
below the average reading times reported in the literature. Hence, our cleansing
algorithm facilitates time-efficient primary 3D reading as well.

The study had several limitations. Artefacts might still occur in the visu-
alization but they did not seem to influence the observers’ performance. Areas
inside the colon where the intensity of the tagged material is below 200HU will
(probably) always remain problematic since such poorly tagged material simply
bears a very close resemblance to soft tissue. Another limitation was that the
number of submerged polyps in the evaluation of polyp conspicuity was limited,
especially in the most limited bowel preparation groups. This limitation arose
because the fraction of polyps submerged by tagged material is in general small.

Thus far, CT colonography data acquired after very limited preparation were
evaluated using a 2D reading strategy only. Existing cleansing algorithms did
not work sufficiently well to allow a primary 3D reading strategy. Our study
showed that the presented cleansing method allowed a primary 3D reading
strategy with high lesion sensitivity for low-dose CT colonography with 24-hour
limited bowel preparation. Moreover, the results proved that the primary 3D
evaluation significantly outperformed the primary 2D evaluation with respect
to lesion sensitivity.
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9.3 Dose Reduction
To evaluate the performance of CAD systems for polyp detection for low-dose
CT colonography, we developed a method to add patient and scanner specific
noise to existing CT colonography data sets. Using this method, it was not nec-
essary to have the raw projection data, which often is simply not available. The
method was patient specific because the added noise realizations were based on
the virtual sinograms obtained from the high-dose image. The method was also
scanner specific as all scanner parameters were extracted from calibration im-
ages. As such, the apodization window of the reconstruction filter, the bowtie
filter, the X-ray tube output, and the detector’s read-out noise were estimated
from calibration images without the need to use the raw projection data. The
low-dose simulation was evaluated by comparing the standard deviation of the
noise and the noise power spectrum in simulated low dose images with exper-
imentally acquired data. To conclude, we showed that the developed methods
truthfully simulated low-dose CT imaging.

This new technology facilitated to retrospectively analyze the behaviour of
the CAD system for low dose CTC. In an experiment we analyzed 61 patients
from a data set previously used in the evaluation of the CAD system. It showed
that the CAD system gradually degraded with increasing noise levels and that
it is feasible to investigate the use of the CAD system for lower dose CTC.

9.4 Future Directions
The results confirm the hypothesis that the principal curvature flow algorithm
used for polyp detection and electronic cleansing is quite robust against increas-
ing noise levels. However, studies on polyp detection for lower dose CTC data
are still limited and need to be extended to larger data sets. At the same time,
even while the CAD system is found to be robust against noise, there still is a
debate on how to incorporate the CAD system into clinical practice. Moreover,
no studies are done into the combined usage of electronic cleansing and CAD
for increasing noise levels.

To further improve the electronic cleansing, dual-energy CT colonography is
a promising technique to be able to distinguish between poorly tagged materials
and tissue materials. At the moment no clinical evaluations have taken place
indicating that more development is needed to evaluate whether this technique
can indeed improve the diagnostic value of CTC. As dual-energy CTC records
two images of lower radiation dose, further research is also needed to evalu-
ate whether the trade-off between additional multi-spectral information and
increasing noise levels will be benificial in practice. Our low-dose simulation
might be used to investigate this trade-off before large-scale evaluations take
place.

Although research into CT colonography has overcome some serious limiti-
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ations, there will always be the remaining burden of the radiation dose limiting
the spread of its use. This is the main reason that magnetic resonance (MR)
colonography is an important research topic. Unfortunately, MR colonography
also has serious drawbacks. Due to varying contrast over a single image, the
lower resolution of MRI compared to CT, and motion artefactsdue to the longer
acquisition times, the image processing and visualization techniques developed
for CT colonography data are not directly applicable to MR colonography data.
In that context, segmentation of the colon and automated detection of polyps
remain important subjects of current research.
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Summary

CT colonography (CTC) is a minimally invasive method for detection of col-
orectal polyps and colon cancer. Limitations of CTC related to the efficiency
as well as the sensitivity of radiologists. Additionally, the patient’s prepara-
tion was considered burdensome and the X-ray radiation that is inherent to the
technique increases the risk of cancer induction. In this thesis, computerized
techniques from the fields of image processing and pattern recognition are pro-
posed in order to increase the efficiency and the acceptance of CT colonography.

An automated polyp detection method is introduced to assist the radiologist.
This computer aided detection (CAD) system can be used as a second reader,
since it is highly sensitive and may therefore enhance the observer’s sensitivity.
Additionally, the reading time may be reduced as only a few false positives are
detected. The CAD system finds and classifies polyp candidates based on a
measure indicating the amount of protrusion into the colon. Such protruding
candidates are found by using a second principal curvature flow algorithm, which
makes use of the knowledge about the normal colon shape. For classification
of the candidates, a low-complex pattern recognition system is designed which
is shown to be highly sensitive as well as robust to data from different medical
centers.

Furthermore, an extended electronic cleansing algorithm is proposed that
facilitates 3D reading of data from patients adhering to a limited bowel prepa-
ration. The electronic cleansing algorithm relies on a preprocessing step using
the same principal curvature flow technique that was previously introduced for
automated polyp detection. As such, data from patients with a limited bowel
preparation can be assessed with an unfolded cube fly-through visualization
method, while it does not degradate the radiologist’s detection performance.

Lastly, the effect of reduced radiation dose is investigated. Therefore, a
technique is developed for simulating low-dose Computed Tomography (CT)
scans from reconstructed high-dose images. Essentially, this enables in-silico
studies into the minimal dose for a particular diagnostic task. It is used to
investigate the effectiveness of the automated polyp detection system when the
radiation dose is minimized.

In conclusion, this thesis presents novel techniques and results that open
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the way to large-scale screening of colorectal polyps and colon cancer using CT
colonography.



Samenvatting

CT colonografie (CTC) is een minimaal invasieve techniek om preventief poliepen
en kanker in de darm op te sporen. Het beoordelen van de beelddata dat uit
dit onderzoek komt, was een arbeidsintensieve taak en er werden soms poliepen
gemist. Daarnaast was de voorbereiding van patienten aanvankelijk belastend
en had het onderzoek een hoge stralingsbelasting. In dit proefschrift worden
nieuwe technieken onderzocht in de gebieden van beeldverwerking en patroon-
herkenning met als doel om de efficiëntie en acceptatie van CT colonografie te
verbeteren.

Als eerste is een algoritme ontwikkeld om automatisch poliepen te detecteren.
Dit algoritme detecteert poliepen en de bevindingen kunnen door de radi-
oloog vervolgens nader geinspecteerd worden. Aangezien het algoritme zeer
nauwkeurig is, kan dit de nauwkeurigheid van de radioloog helpen te verbeteren.
Ook zou het de benodigde tijd van de radioloog kunnen reduceren. Dit systeem
wordt een CAD systeem genoemd. CAD is het acronym van de engelse benam-
ing: computer aided detection. Het CAD systeem vindt en classificeert poliepen
op basis van hoeveel ze van de darmwand naar buiten steken. Hierbij wordt ge-
bruik gemaakt van een algoritme dat de tweede principale kromming van het
darmoppervlak iteratief reduceert. Dit wordt gedaan omdat het bekend is dat
de normale vorm van de darm geen delen bevat waarbij deze kromming positief
is. Met andere woorden, de normale darm bevat geen bolvormige uitsteek-
sels. Voor de uiteindelijke classificatie wordt een patroonherkenningssysteem
met lage complexiteit gebruikt, voor welke is aangetoond dat het zowel zeer
nauwkeurig is, als dat het robuust is tegen het feit dat de data uit verschillende
ziekenhuizen kan komen.

Ook wordt een uitbreiding voorgesteld voor het algoritme dat fecale resten
in de beelddata identificeerd en uit het beeld verwijderd. Dit algoritme maakt
het mogelijk om de darm uit de beelddata te extraheren en door middel van
3D visualisatie aan de radioloog te presenteren zonder dat het zicht op de darm
door fecale resten wordt belemmerd. De uitbreiding op dit algoritme maakt
dit nu ook mogelijk voor data afkomstig van patienten die een zeer beperkte
patientvoorbereiding hebben ondergaan zonder dat de nauwkeurigheid van de
radiologen achteruit gaat. Deze uitbreiding is gebaseerd op een soortgelijk al-
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goritme als dat was ontwikkeld voor automatische poliepdetectie.
Tenslotte is er onderzocht wat de invloed van een lagere stralingsdosis is op

de nauwkeurigheid van CT colonografie. Hiervoor is een techniek ontwikkeld die
lage dosis CT simuleert op basis van beschikbare hoge dosis data, waardoor het
mogelijk wordt om in silico studies te doen naar de prestatie van de algoritmes
op lage dosis data, zonder patienten op lage doses te hoeven scannen. Deze
techniek is gebruikt om een schatting te maken van de prestatie van het CAD
systeem wanneer de stralingsdosis wordt verlaagd.

Concluderend, dit proefschrift presenteert nieuwe technieken en resultaten
die ertoe bijdragen dat CT colonografie gebruikt kan gaan worden om op grote
schaal preventief onderzoek te doen om vroegtijdig poliepen in de darm en
darmkanker te ontdekken.
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