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Abstract (see the Executive summary for a non-technical description) 

In order to assess their relative merits in the context of the determinalion of Hydraulic Boundary Conditions 
(HBC), the Annual Maxima / Generalized Extreme Value distribution (AM/GEV) and Peaks over Threshold / 
Generalized Pareto Oislribution (POT/GPO) approaches are compared in terms of Iheir accuracy, as 
measured by mean square errors, in estimating exceedance probabiliLies on the basis of time series wrth 
various lengths and with characteristics, that mimic those of real time series, such as non-stationarity and 
serial dependence. 

Two types of simulation studies were carried out. Both studies took into account Ihe characterislics of the 
dala currenlly available on the so-called basic variables. The firsl sludy focused on Ihe lintte-sample 
properties of the estimators of the GEV and GPO models based on independent and identically distributed 
dala, both the Maximum Ukelihood (ML) and Probability Weighted Momenls (PWM) eslimalion methods 
having been considered. The second study focused on Ihe finite-sample properties of the AMlGEV and Ihe 
POT/GPO approaches applied to non-stationary and dependenl dala and using the method of PWM. 

The conclusions of the firsl study were Ihat wilh POT samples having an average of two or more 
observations per year, the GPO estimates are more accurate than the corresponding GEV estimates, and 
thai wilh more than 200 years of data the accuracies of the two approaches are similar and rather good. 
Furthermore, it was concluded that with less than 50 years of dala the method of PWM should, on the basis 
of its error characteristics and robustness, be preferred 10 Ihe ML method, and thai with longer dala sets Ihe 
two estimation methods have comparable accuracies. 

In Ihe second study, based on non-stationary and serially dependent dala, it was concluded that Ihe 
POT/GPO estimates of the shape parameter are more accurate than those of Ihe AMlGEV approach with 
time series less than 100 years long. Wtth 10Q.year long time series the performance of Ihe two approaches 
is comparable, the accuracy of the AMlGEV approach being slighUy greater with lighter tails and that of the 
POT/GPO approach being slightiy greater wtth heavier tails. In terms of return valUe estimates (namely of the 
4,000-yr and 10,000 return values), the POT/GPO approach is significantly more accurate. Only for time 
series of 200 years or more do Ihe two approaches yield comparably small mean square errors. Still, even 
with 200-year long time series the relative root-mean square errors of the POT/GPO approach are about 213 
of those of Ihe AMlGEV approach whenever Ihe underlying tail index exceeds -0.1. A noteworthy aspect of 
this second sludy is that the choice of Ihe threshold in the POT/GPO approach has been chosen 
automatically; if visual inspection or a more sophisticated and theoretically grounded melhod is used to 
choose the threshold, Ihe POT/GPO approach is expected to perform even better. 

Based on Ihe results of this study, we recommend Ihat, irrespective of the variable of interest, Ihe POT/GPO 
approach be used for the extreme value analyses of the data required for the computation of HBC. 
Furthermore. we recommend that the parameters of the GPO be estimated using the method of PWM. 
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Executive summary 
 
General 
 
According to the Dutch Water Defence Act (“Wet op de Waterkering, 1996”) the strength of 
the Dutch primary water defences must be checked every five years (1996, 2001, 2006, 
2011, etc.) for the required level of protection from loads with return periods varying from 250 
to 10,000 years, depending on the area protected by the water defence. These loads are 
determined on the basis of Hydraulic Boundary Conditions (HBC) and must also be derived 
anew and approved by the Dutch Ministry of Transport, Public Works and Water Management 
(VenW) every five years.  
 
With the aim of filling knowledge gaps in the determination of the strengths and loads of the 
water defences, Rijkswaterstaat - Centre for Water Management in The Netherlands is 
funding the long-term research project “Strengths and loads of water defences” (in Dutch: 
“Sterkte en Belastingen Waterkeringen”; in short: SBW).  
 
The SBW program presently comprises nine projects, of which seven are related to the 
strengths and two to the loads of water defences: SBW-Waddenzee and SBW-Belastingen.  
 
The SBW-Belastingen project is divided into a number of sub-projects. One of these sub-
projects is the Statistical Models sub-project. The HBC used to assess the primary water 
defences have return periods that are several orders of magnitude larger than the periods of 
available environmental data used in the determination of the loads. One of the main 
challenges of the statistical modelling used in the determination of HBC is thus to decide how 
the very low probability of extreme (not yet observed) events should be determined from the 
limited information available, which varies from a few decades to a century of data. The main 
goal of the Statistical Models sub-project is therefore to evaluate and possibly improve the 
methods and approaches used in the modelling of the extremes of the relevant basic 
variables. These basic variables are the wind velocities, still water levels (at sea), lake water 
levels, wave parameters at sea, and river discharges. The present study is part of the 
program for 2009 of the sub-project Statistical Models of SBW-Belastingen. 
 
Statement of the problem 
 
Two approaches are usually considered for the estimation of extreme values: 
 

• the Annual Maxima / Generalized Extreme Value distribution, in short the 
AM/GEV approach, and 

• the Peaks over Threshold / Generalized Pareto Distribution, in short the 
POT/GPD approach. 

 
In general, and especially in view of the typically short (covering a few decades) time series 
available on the basic variables, the POT/GPD approach is preferable because it makes use 
of more data, thanks to the possibility of choosing a threshold that is exceeded on average by 
more than one peak per year, than the AM/GEV approach, in which only the yearly maxima 
are considered. The POT/GPD approach is therefore expected to yield more accurate 
estimates of parameters and exceedance probabilities as it is based on more observations 
(namely storm peaks). 
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Although the choice of the threshold in the POT/GPD approach represents an opportunity to 
increase the number of observations used to estimate the parameters and hence to reduce 
the errors of the estimates, it is often seen by some practitioners as a problem and source of 
subjectivity. Consequently, because of its comparative straightforwardness the AM/GEV 
approach often gets the better of the POT/GEV approach and the latter is not even 
considered. 
 
Aim of the study 
 
In order to exhibit the relative merits of the AM/GEV and POT/GPD approaches in the context 
of the determination of HBC, in this study we compare them in terms of their accuracy in 
estimating exceedance probabilities on the basis of time series with various lengths and, most 
importantly, with characteristics that mimic those of real time series. The aim of this study is 
thus to provide a global assessment and comparison of the two approaches on the basis of 
small to large time series of simulated data possessing realistic features such as non-
stationarity and serial dependence. It is hoped that the results of this study will help 
practitioners involved in the determination of HBC to choose between the two methods, for 
instance on the basis of the length of the time series and of the expected underlying shape 
parameter of the data available to them. 
 
Approach 
 
In order to compare the two approaches two types of simulation studies are carried out. Both 
simulation studies take into account the characteristics of the time series of the basic 
variables currently available. The first study focuses on the finite-sample properties of the 
Maximum Likelihood (ML) and Probability Weighted Moments (PWM) estimators of the GEV 
and the GPD models, based on independent and identically distributed observations. The 
second study focuses on the finite-sample properties of the AM/GEV and the POT/GPD 
approaches applied to non-stationary and serially dependent observations. 
 
Conclusions 
 
The conclusions of the first study are that with POT samples having an average of two or 
more observations per year, the GPD estimates are more accurate than the corresponding 
GEV estimates, and that with more than 200 years of data the accuracies of the two 
approaches are similar and rather good. Furthermore, it is concluded that with less than 50 
years of data the method of PWM should, on the basis of its error characteristics and 
robustness, be preferred to the ML method, and that with longer data sets the two estimation 
methods have comparable accuracies. 
 
In the second study, based on non-stationary and serially dependent data, it is concluded that 
the POT/GPD estimates of the shape parameter are more accurate than those of the 
AM/GEV approach with time series less than 100 years long. With 100-year long time series 
the performance of the two approaches is comparable, the accuracy of the AM/GEV 
approach being slightly greater with lighter tails (yielding less extreme data with an upper 
bound) and that of the POT/GPD approach being slightly greater with heavier tails (yielding 
more extreme data). In terms of return value estimates (namely of the 4,000-yr and 10,000 
return values), the POT/GPD approach is significantly more accurate. Only for time series of 
200 years or more do the two approaches yield comparably small mean square errors. Still, 
even with 200-year long time series the relative root-mean square errors of the POT/GPD 
approach are about 2/3 of those of the AM/GEV approach whenever the underlying tail is 
medium light to heavy (more precisely, when the tail index exceeds -0.1). A noteworthy 
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aspect of this second study is that the choice of the threshold in the POT/GPD approach is 
chosen in an automatic way; if visual inspection or a more sophisticated and theoretically 
grounded method is used to choose the threshold, the POT/GPD approach is expected to 
perform even better. 
 
Recommendations 
 
Based on the results of this study, we recommend that, irrespective of the variable of interest, 
the POT/GPD approach be used for the extreme value analyses of the data required for the 
computation of HBC. Furthermore, we recommend that the parameters of the GPD be 
estimated using the method of PWM. 
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1  Introduction 

1.1 Framework 
 
According to the Dutch Water Defence Act (“Wet op de Waterkering, 1996”) the strength of 
the Dutch primary water defences must be assessed every five years (1996, 2001, 2006, 
2011, etc.) for the required level of protection, which, depending on the area protected by the 
water defence, may vary from 250 to 10,000 year loads. These loads are determined on the 
basis of Hydraulic Boundary Conditions (HBC) and must also be derived anew and approved 
by the Dutch Ministry of Transport, Public Works and Water Management (VenW) every five 
years. The project WTI (Wettelijk Toets Instrumentarium, or, in English, Legal Assessment 
Instruments), which is based on the HBC and on the Safety Assessment Regulation (VTV: 
Voorschrift op Toetsen op Veiligheid), plays the crucial role in the assessment of the primary 
water defences.  
 
With the aim of filling knowledge gaps in the determination of the strengths and loads of the 
water defences, Rijkswaterstaat - Centre for Water Management (to be called RWS-CWM in 
the remainder of this report; in Dutch: “Waterdienst”) in The Netherlands is funding the long-
term research project “Strengths and loads of water defences” (in Dutch: “Sterkte en 
Belastingen Waterkeringen”; in short: SBW). The SBW products are considered in each 
assessment round by the WTI project. 
 
The SBW program presently comprises nine projects, of which seven are related to the 
strengths and two to the loads of water defences: SBW-Waddenzee and SBW-Belastingen1. 
They aim at determining the quality of models and methods and at improving them where 
needed, in order that from 2011 onwards more accurate HBC be determined.  
 
The SBW-Belastingen project is divided into a number of sub-projects. One of these sub-
projects is the Statistical Models sub-project. The HBC used to assess the primary water 
defences have return periods that are several orders of magnitude larger than the periods of 
available environmental data used in the determination of the loads. One of the main 
challenges of the statistical modelling used in the determination of HBC is thus to decide how 
the very low probability of extreme (not yet observed) events should be determined from the 
limited information available, which varies from a few decades to a century of data. The main 
goal of the Statistical Models sub-project is therefore to evaluate and possibly improve the 
methods and approaches used in the modelling of the extremes of the relevant basic 
variables. These basic variables are the wind velocities, still water levels (at sea), lake water 
levels, wave parameters at sea, and river discharges. The present study is part of the 
program for 2009 of the sub-project Statistical Models of SBW-Belastingen (De Waal et al., 
2009). 

1.2 Background and motivation 
 
Two approaches are usually considered for the estimation of extreme values: 
 
1 the annual maxima/Generalized Extreme Value distribution (AM/GEV) approach, and 
2 the Peaks over Threshold/Generalized Pareto Distribution (POT/GPD) approach. 

                                                   
1. Dutch for loads. 
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On the grounds of theoretical arguments, the POT/GPD method is expected to generally 
perform better than the AM/GEV method. While the latter typically uses a single observation 
per year (the annual maximum) the former makes use of several observations per year, 
namely of storm peaks which exceed a certain threshold determined by the user, and this 
more intensive use of the data usually proves to be advantageous for the analysis of the 
comparatively short (comprising a couple of decades) time series of measurements available. 
This is so because the more observations are used to estimate the parameters of a 
probability model, the more accurate the estimates of the parameters, and hence the 
estimates of quantities determined by the parameters (such as exceedance probabilities), 
tend to be. As explained by de Haan and Zhou (2009), by “choosing the threshold in an 
intelligent way, either by visual inspection or by using a theoretically justified threshold 
selection procedure, it is possible to improve the tail estimation substantially. The AM/GEV 
approach has no room for this improvement since the year is usually the only realistic time 
period one can consider”. However, although the choice of the threshold should be seen as 
an opportunity, it is often seen by some practitioners as a problem and a source of 
subjectivity, and consequently the comparative straightforwardness of the AM/GEV approach 
often gets the better of the POT/GPD approach in applications. 

1.3 Objective 
 
In order to exhibit the relative merits of the AM/GEV and POT/GPD approaches in the context 
of the determination of HBC it is therefore of interest to compare them in terms of their 
accuracy in estimating exceedance probabilities on the basis of time series with various 
lengths and, most importantly, with characteristics that mimic those of real time series. The 
objective of this study is to provide a global assessment and comparison of the two 
approaches on the basis of small to large time series of simulated data possessing realistic 
features such as non-stationarity and serial dependence. It is hoped that the results of this 
study will help practitioners involved in the determination of HBC to choose between the two 
methods, for instance on the basis of the length of the time series available to them. 

1.4 Approach 
 
In order to compare the two approaches two types of simulation studies were carried out. 
Both simulation studies took into account the characteristics of the basic variable data 
currently available. The first studied focused on the finite-sample properties of the GEV and 
the GPD estimators. The second study on the finite-sample properties of the AM/GEV and the 
POT/GPD approaches. 
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2 Extreme value analysis 

2.1 Introduction 
 
This section introduces briefly the principles of extreme value theory and describes the 
methods used in extreme value analysis (EVA) as well as other statistical methods.  

2.2 Extreme value theory 

2.2.1 Block maxima 
 
In order to explain the basic ideas of extreme value theory, let us write 1max , ,n nM X X , 
where 1 2,X X  is a sequence of independent and identically distributed (i.i.d) random 
variables with distribution function F. In its simplest form, the extremal types theorem states 
the following: If there exist sequences of constants 0n  and n  such that 

P ( )n n nM z G z  as n , where G is a non-degenerate distribution function2, 
then G must be a Generalized Extreme Value (GEV) distribution, which is given by 
 

1

exp 1 , for 0
( )

exp exp ,    for 0,

z

G z
z

 (2.1) 

 
where z  takes values in three different sets according to the sign of the shape parameter : 
z  if 0  (the domain of z  has a lower bound), z  if 0  (the domain of 
z  has an upper bound), and z  if 0 . 
 
In other words, if the distribution function of (a normalization of) the maximum value in a 
random sample of size n converges to a distribution function as n tends to infinity, then that 
distribution function must be a GEV distribution. Moreover, this and other results of extreme 
value theory hold true even under general dependence and non-stationary conditions (see 
Chapter 5 of Coles, 2001), i.e., even when the variables 1 2,X X  are not independent or/nor 
identically distributed. 
 
In Eq. (2.1) the parameters ,  and  are called the location, scale and shape parameters, 
and they satisfy , 0  and . For 0  the GEV is the Gumbel 
distribution; for 0  it  is  the  Fréchet distribution; and for 0  it  is  the  (reverse) Weibull 
distribution. For 0  the tail of the GEV is “heavier” (i.e., decreases more slowly) than the 
tail of the Gumbel distribution, and for 0  it is “lighter” (decreases more quickly and 
actually reaches 0) than that of the Gumbel distribution. The GEV is said to have a type II tail 
when the shape parameter is positive ( 0 ) and a type III tail when the shape parameter is 

                                                   
2. A distribution function is said to be degenerate if it allocates probability 1 to a single point. 
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negative ( 0 , the domain of z  has an upper bound)3. The tail of the Gumbel distribution 
( 0 ) is called a type I or exponential tail. 
 
Since the distribution function F  of the variables 1 2,X X  in the extremal types theorem is 
associated with a unique (i.e. independent of the particular sequences 0n  and n ) 
value of , the parameter  is called the tail index of F . 
 
The extremal types theorem gives rise to the annual maxima (AM) method of modelling 
extremes, in which the GEV distribution is fitted to a sample of block maxima (e.g. to annual 
maxima, though biannual, monthly or even daily maxima can of course be used as well). 
 
One of the main applications of extreme value theory is the estimation of the once per m year 
(m-yr) return value, the value which is exceeded on average once every m years. The m-yr 
return value (for m>1) based on the AM method/GEV distribution, mz , is given by4 
 

-
11 ln 1 , for 0
m

1ln ln 1 , for 0.
m

mz  (2.2) 

 
Since the time series available typically cover only a few decades, the sample sizes of annual 
maxima data are usually small. Consequently, the estimates of the parameters of the GEV 
distribution, and hence the estimates of the return values, have large variances 
(uncertainties). This has motivated the development of a more sophisticated method based 
on exceedances of a threshold described next. 

2.2.2 Peaks-over-threshold method 
 
The approach based on the exceedances of a high threshold, hereafter referred to as the 
Peaks-over-Threshold (POT) method, consists of fitting the generalized Pareto distribution 
(GPD) to the peaks of clustered excesses over a threshold, the excesses being the 
observations in a cluster minus the threshold, and calculating return values by taking into 
account the rate of occurrence of clusters (see Pickands, 1971 and 1975, and Davidson and 
Smith, 1990). Under very general conditions this procedure ensures that the data can have 
only three possible, albeit asymptotic, distributions (the three forms of the GPD given below) 
and, moreover, that observations belonging to different peak clusters are (approximately) 
independent. In the POT method, the peak excesses over a high threshold u of a time series 
are assumed to occur in time according to a Poisson process with rate u  and to be 
independently distributed with a GPD, whose distribution function is given by 
 

                                                   
3. Note that some articles (e.g. Hosking and Wallis, 1987) use another convention for the sign of 

the shape parameter: a negative shape parameter in those references corresponds to a type II 
distribution. 

4. In this report the natural logarithm of x is written as ln(x). 
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1

1 1 , for 0
( )

1 exp ,     for 0,
u

y

F y
y

 (2.3) 

 
where, y>0, 0  and (1 ( )) 0y . The two parameters of the GPD are called the scale 
( ) and shape ( ) parameters. When 0  the GPD is said to have a type I tail and amounts 
to the exponential distribution with mean ; when 0  it has a type II tail and it is the Pareto 
distribution; and when 0  it has a type III tail and it is a special case of the beta distribution. 
If 0 , just as with the GEV distribution, the support of the GPD has an upper bound, 

, which is called the upper end-point of the GPD and is to be thought of as the upper-
limit of the excesses, the upper limit of the variable of interest being then u . 
 
The m-yr return value based on a POT/GPD analysis, mz , is given by 
 

u

u

{ ( m) 1}, for 0

ln( m), for 0.
m

u
z

u
 (2.4) 

Note that this expression is obtained from Eq. (2.3) by solving 1(1 ( ))u
u

F y
m

 for y and 

then adding the threshold u to the result. 
 
Just as block maxima have the GEV as their approximate distribution, the threshold excesses 
have a corresponding approximate distribution in the GPD. Moreover, the parameters of the 
GPD corresponding to the threshold excesses of a given time series are uniquely determined 
by those of the associated GEV distribution of block maxima. In particular, the shape 
parameter is the same, and the scale parameters of the two distributions are related by 
 

u . (2.5) 
 
The choice of the threshold in the POT method (which is analogous to the choice of block 
size in the block maxima approach) represents a trade-off between bias and variance: too low 
a threshold is likely to violate the asymptotic basis of the model, leading to bias; too high a 
threshold will generate fewer excesses with which to estimate the model, leading to high 
variance. 
 
An important property of the POT/GPD approach is the threshold stability property. Suppose 
that the GPD is a correct (or approximately correct) model for describing the excesses over a 
threshold 0u , i.e. that 
 

1/0
0 0 0

0

( )( | ) (1 / )
( )

P X x uP X u x X u x
P X u

, (2.6) 

 
for some scale parameter 0 , where the left-hand side is to be read as the “probability that an 
excess 0X u  above 0u  exceeds x”. Then it follows that if 1 0u u   
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which means that the excesses over a higher threshold 1u  also follow a GPD with the same 
shape parameter and with a scale parameter 1 0 1 0u u . Since this last relation 
between the two scale parameters can be written as 1 1 0 0u u , we conclude that if 
the GPD is a correct model for the excesses above a given threshold then the GPD is also a 
correct model for the excesses above any threshold u above that threshold and that the scale 
parameter u  corresponding to u is such that 
 

*
u u  (2.8) 

 
does not depend on u (it is constant in u). 
 
This stability property of the GPD can be used to find the minimum threshold at which a GPD 
model applies to the data, since in the range of threshold values for which the GPD provides 
a good approximation to the excesses the estimates of u u  should remain approximately 
constant. 
 
In this report we have used the threshold stability property to choose the threshold on the 
basis of which the sample of peak excesses is selected and used to estimate the GPD. More 
precisely, we have looked for threshold values around which the estimate of the shape 
parameter shows the least variation. We have automatized such a choice of the threshold 
using the following procedure: 
 
1 POT samples with at least 10 and at most 300 peaks are collected by systematically 

decreasing the threshold, and for each of these samples GPD fits are obtained. Note 
that if there is a POT sample with, say, 20 peaks, then it does not follow that there is 
also a POT sample with 19 peaks, since different peaks may have the same value and 
even a small increase of the threshold can eliminate more than one of the peaks 
collected at a lower threshold. 

2 For each sample size n, a set of parameter estimates based on sample sizes ranging 
from n-l to n+l peaks, where l is some fixed value (see below), are obtained, and the 
standard deviation (v) and the linear slope (b) of such a set of estimates is computed. In 
the case of the shape parameter, for example, this procedure yields one standard 
deviation for each value of n, and each standard deviation quantifies the variability of 
the parameter estimates around a ‘window’ of 2l+1 sample sizes (2l+1=(n+l)-(n-l)+1). 

3 The threshold, or sample size n, that is then used for making inferences is the one 
yielding the smallest (v+b) value computed in bullet 2. 
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In previous analyses of wave and wind speed data (Caires, 2007 and 2009) several tests 
were carried out to determine the best choice of the window size on which the standard 
deviations of the second bullet are computed. l=10 turned out to be a good choice: using 
about 21 (2l+1 for l=10) estimates, the automatically determined threshold coincides often 
with the one that we would have chosen by visual inspection of plots. In most cases the 
results are insensitive to changes in l for l between 10 and 15. With larger values of l the 
threshold chosen is often too low. 

2.2.3 Domains of attraction 
 
It is worth emphasizing that although the AM and POT methods are based on fitting limit 
distributions (the GEV and the GPD) to certain samples (samples of block maxima and 
samples of peak excesses), the distribution functions governing the behaviour of those 
samples can be quite arbitrary; in particular, it is not necessary at all that those distributions 
be the GEV or GPD. What is necessary for the inferences resulting from the AM and POT 
methods to be valid is that the distributions governing the data belong to the domain of 
attraction of extremes. A distribution function F is said to belong to the domain of attraction of 
the extreme value distributions if there is a positive function f such that 
 

1/1 ( ( )) (1 )
1 ( )

F u x f u x
F u

 (2.9) 

 
as Fu x , where Fx  is the right endpoint of F, i.e. the number Fx  such that ( ) 1FF x  
and ( ) 1FF x  for all 0  (see Section 1.2 of de Haan and Ferreira, 2006). 
 
The function on the right in this limiting relation can be recognized as 1 minus a GPD with 
scale parameter equal to 1, and the function on the left should be interpreted as the 
probability that the excess over the threshold u of an observation governed by F is greater 
that ( )x f u  conditionally on it being greater than u. 
 
In sections 3.3, 5.3 and in Appendix A we will meet three distributions that are neither the 
GEV nor the GPD but which belong to the domain of attraction of the extreme value 
distributions, and hence to which the results of extreme value theory apply. In order to verify 
that such distributions are indeed in the domain of attraction of the extreme value distributions 
it suffices to exhibit a function f with which the above limiting relation (as Fu x ) holds; see 
Appendix A. 

2.3 Estimation 
 
There are several numerical methods available for the estimation of the parameters of 
extreme value distributions. Some of them, for instance the method of moments and the 
method of probability weighted moments (PWM), give explicit expressions for the parameter 
estimates, but others, such as the maximum likelihood (ML) method, require numerically 
solving non-linear systems of equations in order to determine the parameter estimates. The 
ML method tends to be the preferred estimation method because it is quite general and more 
flexible than other methods, for instance when extending the extreme value approach to 
account for non-stationarity. In the case of the GEV and GPD distributions, the ML estimators 
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are consistent5 for 0.5  and the PWM estimators for 0.5 . On the basis of the work of 
Hosking et al. (1985) and Hosking and Wallis (1987), for the range of tails typical of the basic 
variables, whose distributions are not too heavy-tailed, and for small to moderate sample 
sizes, the method of PWM is expected to perform better than the ML method in the estimation 
of the GEV and the GPD parameters. The performance of both ML and PWM methods will be 
investigated in Chapter 4 under a variety of scenarios that are relevant to the determination of 
HBC and which have not been considered by the above mentioned authors. 

2.4 Serial dependence 
 
The data on the basic variables—wave, water level, wind speed, etc.—which have to be 
analysed in order to determine HBC are typically available every hour to every 6 hours, 
depending on whether they consist of measurements or of model results. These data have to 
be regarded as statistically dependent, in the sense that the value of, say, the significant 
wave height at a given time is to a certain extent predictable from its value 6 hours earlier. 
However, in order to carry out an extreme value analysis it is required that the data used to fit 
the distribution be approximately independent. Consequently, the samples used in the AM 
and POT methods have to be extracted from the original time series in such a way as to 
make this assumption realistic. In the case of the AM method this is achieved by ensuring that 
if the annual maximum of a given year belongs to a storm that straddles that year and the 
next, then the annual maximum of the following year is not to be picked within that storm. In 
the case of the POT method this is done by a process of declustering in which only the peak 
(highest) observations in clusters of successive exceedances of a specified threshold are 
retained and, of these, only those which in some sense are sufficiently apart (so that they 
belong to more or less ‘independent storms’) are included in the POT sample. Based on 
storm duration studies, it has been concluded that the hypothesis of independence of the 
POT data is tenable by treating cluster maxima at a distance of less than 2-4 days apart as 
belonging to the same cluster (storm); see e.g. Dillingh et al., 1993.  

                                                   
5. Converge in probability to the true value of the parameter being estimated. 
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3  Setup of the study 

The objective of this study is to provide advice on the choice between the POT/GPD and 
AM/GEV approaches to estimate univariate distributions of extreme values of basic variables 
on the basis of Monte Carlo simulation. For most of the Dutch coast, the return periods 
required for the determination of HBC are either of 4,000 or 10,000 year. It is therefore natural 
to assess the performance of the two methods regarding the estimation of the 4,000-yr and 
10,000-yr return values across a range of scenarios specifying the tail of the data and the 
amount of available data.  
 

3.1 Characteristics of the real data 
 
A number of points need to be made about the set of quality-checked measurements of the 
basic variables available for the determination of the HBC, as these are relevant to the choice 
of scenarios chosen in our simulations: 
 

• About 30 years of wave data are available; these include measurements of 
significant wave height and wave period. 

• Depending on the measuring station, there are time series with 5 to 50 years of 
wind data available. 

• Water levels have been observed since the end of the 19th century and, 
depending on the tidal gauge location, time series with 70 to 120 years of still 
water level (SWL) are available. 

• There are about 100 years of discharge levels of the Rhine and Meuse rivers. 
• Finally, there are 30 years of water level measurements of the IJssel lake. 

 
The wave, SWL and wind speed data have already been the subject of AM/GEV and 
POT/GPD analyses, and these analyses suggest realistic specifications of the length of the 
time series to be simulated and of the shape parameter  of the GEV and GPD distributions: 
 

• Dillingh et al. (1993) analysed the SWL data up to 1985. The length of the time 
series considered varied from 50 to 100 years. The estimates of  of the GPD 
varied between -0.17 and 0.01 and those of the GEV distribution between -0.24 
and 0.04.  

• Caires (2007) analysed the North Sea significant wave height data from 1979 to 
2002, obtaining estimates of  between -0.32 and -0.07 with the GPD and 
between -0.38 and 0.18 with the GEV distribution. 

• Caires (2009) analysed the wind velocity data from 1970 to 2008, obtaining 
estimates of  between -0.05 and 0.02 with the GPD and between -0.24 and 
0.17 with the GEV distribution. 

 
Unfortunately, no POT/GPD nor AM/GEV analyses have been carried out with the water level 
data from lake IJssel and with the Rhine and Meuse river discharges. It seems, however, 
reasonable to assume that the shape parameters of these data are within the ranges found in 
the wave, wind and SWL data. 
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In summary, it can be concluded that the length of the available time series varies from 5 to 
120 years and that the shape parameters underlying the data are likely to vary from -0.3 to 
0.1. 

3.2 Previous simulation studies 
 
The finite-sample properties of the ML and PWM estimators of the GEV and GPD in the case 
of independent and identically distributed observations following exactly these distributions 
have been studied via simulation by Hosking et al. (1985) and Hosking and Wallis (1987), 
respectively. These authors considered five values of the shape parameter (-0.4, -0.2, 0, 0.2 
and 0.4). In the case of the GEV, the performance of the PWM estimators is found to be 
generally better than that of the ML estimators for sample sizes of up to 50; for larger sample 
sizes the performance of the methods was found to be comparable. In the case of the GPD, 
and for sample sizes of up to 100, the performance of the PWM estimators is superior to that 
of the ML estimators for shape parameters 0, 0.2 and 0.4 in terms of the root mean square 
error, and superior in the whole range of shape parameters considered in terms of bias. For 
sample sizes bigger than 100 the behaviour of the two methods is similar. When the sample 
sizes are less than 50 the ML estimators of both distributions sometimes do not exist 
especially when the shape parameter negative. 
 
There are a number of simulation studies (Cunnane, 1973, Yevjvick and Taesombut, 1978, 
and Tavares da Silva, 1983) on the performance of the ML estimators of the Gumbel and 
Exponential distributions (the case 0  in the GEV and GPD) under the assumption that 

, the expected number of clusters per year (recall the beginning of Subsection 2.2.1), is 
bigger than 1. These studies say that for c , with c varying between 1.65 and 2 
depending on the study, the variance (uncertainty) in the estimates of the exponential 
distribution is lower than that of the Gumbel distribution. On the other hand, all studies 
conclude that the opposite is true when 1  and the AM and POT are based on time series 
of the same length. 
 
A different type of study is that of van den Brink et al. (2005). These authors used ‘ensemble 
simulations’ with a total length of 7540 years from a certain climate model to compute storm 
surges at a North Sea location, from which 65 records of 116 years were constructed and 
analyzed using the AM/GEV and POT/GPD methods, the parameters of the distributions 
being estimated by the ML method. The methods were compared in terms of the uncertainties 
in the estimates of the 10,000-year return value, the ‘true’ 10,000-year return value being 
estimated from the entire 7540-year dataset. The conclusions of this study were that in the 
POT/GPD approach a threshold could not be determined objectively from the 116-year long 
time series, that if a threshold was to be chosen then such a threshold should be associated 
with a value of  not larger than 4, and that given the difficulties and uncertainties associated 
with the choice of the threshold the AM/GEV approach is preferable. 
 
Finally, de Valk (1993) simulated wave data with a type I tail and sample sizes of 10, 25 and 
100 years and studied the performance of the POT/GPD method based on three fixed 
thresholds of 4, 5 and 6 metres. His conclusion was that unless the sample size is 100 years 
the return value estimates based on the fitted GPD underestimate the true return value. He 
also considered Bayesian estimates of the parameters of the GPD and concluded that for 
each of the sample sizes considered one can choose a threshold for which the bias and 
standard deviation of the estimates are acceptable. 
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3.3 The present simulation study 
 
The available simulation studies assessing the performances of the POT/GPD and/or 
AM/GEV methods, and in particular those mentioned in the preceding subsection, do not 
cover all the scenarios that are relevant for the determination of HBC. Thus, they do not cover 
the whole range of shape parameters that are likely to underlie the basic variables, do not 
cover the whole range of data available on those variables, do not consider non-stationarity 
and serial dependence in the simulated time series, or do not make use of the threshold 
stability property in the POT/GPD analyses as a means of choosing the threshold. In this 
study we carry out two simulation studies with the purpose of quantifying the performance of 
the POT/GPD and the AM/GEV approaches with time series of dependent, non-stationary 
data whose length can vary from 5 to 120 years and whose underlying shape parameters 
vary from -0.3 to 0.1.  
 
The first study concerns the finite-sample properties of the ML and PWM estimators of the 
GEV and GPD. It is based on simulated series of independent and identically distributed 
measurements with durations varying from 10 to 200 years, and it is similar to the studies of 
Hosking et al. (1985) and Hosking and Wallis (1987), except that more shape parameter 
values in the range of -0.3 to 0.1 are considered. 
 
The second study concerns the finite-sample properties of the AM/GEV and POT/GPD 
approaches with time series of dependent measurements subject to seasonal variations and 
with a fixed tail index (the underlying shape parameter of the associated extreme value 
distribution; recall Subsection 2.2), the duration of the simulated time series also ranging from 
10 to 200 years. 
 
In both studies, the two methods are assessed in terms of their accuracy in the estimation of 
the underlying shape parameter and of two high percentiles, namely the 4,000- and 10,000-yr 
return values. 
 
The serial dependence incorporated into the time series of the second study is based on 
normal (or Gaussian) autoregressive (AR) models. Guedes Soares et al. (1996) used 
autoregressive moving average (ARMA) processes to model time series of significant wave 
height measurements offshore Portugal and found that AR models (which constitute a special 
case of the ARMA models) could be used to satisfactorily describe ‘de-seasonalized’ time 
series (i.e. the series with the seasonal and average components removed) of three-hourly 
significant wave height measurements. One of the models fitted by them was used here as a 
means of specifying a dependence structure for the simulated series of three-hourly 
measurements. This is an AR(19) model, which is to say that the value of an observation at a 
given time can be expressed as a linear combination of observations at lags 1 to 19, i.e. as a 
subset of the previous 19 observations, plus a random error; the non-zero coefficients of this 
linear combination are given in Table 3.1. 
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Lag Coefficient 
1 1.045 
2 -0.259 
3 0.043 
7 0.157 
10 -0.080 
16 0.044 
18 -0.074 
19 0.072 

Table 3.1 Non-zero coefficients of the AR(19) model obtained by Guedes Soares et al. (1996) from three-
hourly significant wave height data from the North Atlantic. 

 
AR time series such as these are stationary and have a normal marginal distribution with 
mean 0 and a certain variance. In order to create a time series possessing realistic features, 
the time series of the AR(19) have to undergo a couple of transformations. In the first place, 
the simulated AR(19) series of three hourly measurements, denoted by tX , are standardized, 
i.e. divided by their standard deviation, which in the case of the AR model of Guedes Soares 
et al. (1996) equals 1.48. This transformation yields a stationary time series, given by 

1.48t tY X , possessing a standard normal marginal distribution, i.e. a normal distribution 
with mean 0 and variance 1. Next, to this standardized series one applies the standard 
normal distribution function , obtaining a uniform time series ( )t tU Y  possessing a 
standard uniform marginal distribution (i.e. a uniform distribution on the interval [0,1] ). 
 
Now if U  is a standard uniform random variable one may obtain a random variable V  with an 
arbitrary continuous and strictly increasing distribution function F  by means of the 
transformation 1( )V F U , where as usual 1F  denotes the inverse function of F . 
Consequently, if one wants to transform the uniform time series in such a way as to obtain a 
time series that follows a particular distribution function tF  at time t, one simply has to set 

1( )t t tV F U , where 1
tF  is the inverse of tF . Thus the third and final transformation consists 

of applying the inverse of a certain distribution function tF  to tU , the uniform time series at 
time t. This tF , however, is not arbitrary: it is chosen so as to have a specified tail index, and 
a certain mean and a certain standard deviation determined by the month in which the 
measurement is taken. In this way, the time series of tV  measurements that result from the 
three transformations possess a dependence structure, a unique tail index, and marginal 
means and variances that follow a seasonal pattern. 
 
In order to specify realistic monthly means and standard deviations we have based ourselves 
on the three-hourly time series of significant wave height measurements from 1979 to 2002 
from the Schiermonnikoog Noord (SON) buoy located in the North Sea. Using these 24 years 
of data, we have computed the monthly sample averages and standard deviations for each 
year and then averaged the 24 sets of monthly averages and standard deviations to obtain a 
single set of monthly averages and monthly standard deviations, given in Table 3.2. It is this 
set of monthly averages and monthly standard deviations that is used to specify the tF  just 
mentioned for a given t. 
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 M S 
Jan 1.39 0.80 
Feb 1.34 0.78 
Mar 1.22 0.71 
Apr 1.02 0.66 
May 0.90 0.52 
Jun 0.98 0.58 
Jul 0.95 0.55 
Aug 0.96 0.59 
Sep 1.17 0.71 
Oct 1.30 0.76 
Nov 1.38 0.77 
Dec 1.44 0.80 

Table 3.2 Average monthly means (M) and standard deviations (S) of the SON data from 1970 to 2002. 
 
Note that if tF  is a distribution function with the desired tail index and two free parameters 
(i.e. two parameters that are unrestricted by the tail index, which is fixed beforehand), and 
possessing mean and variance, then one can use the method of moments to determine 
values of the two free parameters that yield a mean and a variance equal to the targeted 
monthly mean and monthly variance. Of course, there are many families of distributions 
satisfying these requirements, so in spite of having fixed the dependence structure, the tail 
index, and the monthly means and variances, we are still left with an infinite number of 
degrees of freedom to fully specify our time series model. In order to complete the 
specification of the time series model we have considered two families of distributions as 
candidates for the tF s. 
 
In the first place we have considered the GEV distribution with the tail index fixed at -0.3, -0.2, 
-0.1, 0 or 0.1 and the location and scale parameters t  and t  determined by the method of 

moments so as to force tF  to have the mean and variance appropriate to the month in which 
the measurement at time t falls.  
 
Secondly, we have considered a trio of models comprising the Gamma distribution, whose tail 
index is 0 (i.e. its tail is of type I or exponential), the Beta distribution function, whose tail 
index is negative (it has a type III tail), and the Beta distribution function of the second kind 
with a scale parameter, whose tail index is positive (it has a type II tail). Each of these models 
has two free parameters which can be determined so as to yield time series with the required 
tail index and the required monthly means and standard deviations. In contrast with our 
simulations based on the GEV distribution, however, our simulations with this second set of 
distributions only cover tail indices of -0.1, 0 and 0.1, due to the high costs of the 
computations involving the Beta distributions. 
 
Appendix A provides the definitions of this trio of distributions and a summary of their 
properties which are relevant to the carrying out of the simulations. Parallel results on the 
GEV distribution are also included in Appendix A. 
 
The purpose of considering the Gamma and the two types of Beta distribution in our 
simulation study is to introduce an extra dimension in the estimation of extreme values based 
on the limiting distributions provided by probability theory. More precisely, when applying the 
methods of extreme value theory to the simulated time series with GEV marginal distributions 
the quality of the approximation provided by the limiting GEV distribution is affected by the 
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dependence and non-stationarity of the data, but not by the choice of the marginal 
distributions, which are “already in the limit“. In contrast, with the simulated time series based 
on the Gamma and on the two types of Beta distributions one may expect the approximation 
provided by the limiting distributions to be worse, as none of those distributions is “already in 
the limit“. 
 
Given the complex form of the dependent and non-stationary simulated time series, their high 
percentiles cannot be computed analytically. Moreover, since those percentiles concern very 
small probabilities of exceedance, huge numbers of simulations would be required to estimate 
them non-parametrically with any decent degree of accuracy. Therefore, we have estimated 
the true percentiles of each time series model by simulating 100,000 years of data and 
computing AM/GEV estimates from them; it is these AM/GEV estimates that are taken to be 
the true parameter values and subsequently used to assess the performance of our two 
approaches. 
 
Finally, notice that although we have used real data to create time series with realistic 
features, the time series themselves are not realistic, in the sense that they do not mimic a 
particular type of data from a particular geographical region. Ideally, it would be more 
satisfactory to create and analyze different time series mimicking the behaviour of all the 
basic variables in various geographical regions, but that would represent a huge 
computational effort well beyond the scope of the present work; furthermore, our approach, 
by incorporating the main features of environmental time series and plausible values of the 
tail index, should yield rather general conclusions. 
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4  Finite-sample properties of the ML and PWM estimators of 
the GEV and GPD models 

4.1 Introduction 
 
In this chapter we present the results of the simulations illustrating the finite sample properties 
of the ML and PWL estimators of the GEV and GPD models. The simulations were carried 
out for five values of the shape parameter, namely -0.3, -0.2, -0.1, 0 and 0.1, and five 
sample sizes representing five different durations in years, namely yn 10, 20, 50, 100 and 
200 years.  
 
In each case we carry out 100,000k  simulations of a sample of size yn  from the GPD 

with 1  and of a sample of size yn  from the GEV with 1  and 0 . A single value of 
 is considered in the simulations, namely 5 . On the basis of analyses of real time series 

of the basic variables, it is expected that at least five storm peaks can be picked per year in a 
POT/GPD analysis, so in particular it does not make much sense to compare the two 
distributions using equal sample sizes (i.e. taking 1). Since different numbers of years of 
data are considered in the simulations, results for other values of  can also be deduced 
from the results for 5 .  
 
In each simulation, the parameters of the distributions and the associated  4,000- and 10,000-
yr return values are estimated using the ML and PWM methods.  
 
The differences between the ML and PWM estimates and the true values of the parameters 
were quantified in terms of the bias, defined by 1

îk , and the root-mean-square error, 

defined by 
2

1
îRMSE k , where  is the true parameter value and the î s are the 

estimates of . Unless  under consideration is the shape parameter, the results are 
presented in terms of percentual relative bias and RMSE, which are the bias and RMSE 
normalized (divided) by the true parameter values and multiplied by 100. 
 
In all simulations the scale parameter is set to 1, which involves no loss of generality since 
both the ML and the PWM methods are invariant under scale transformations of the data. The 
relative RMSE and bias of the estimates of the percentiles, however, are not invariant under 
scale transformations, but this is not a problem because our main interest lies in comparing 
the values of the error statistics in the two methods and in how those values vary with the 
sample size and not in their magnitudes. 
 
Since in our notation of Eqs. (2.2), (2.4) and (2.5) the parameters of the GEV and GPD 
models used in the simulations satisfy 1 , 1  and 0 , the m -year return value of the 
GEV corresponds approximately (for large m ) to the m -year return value of the GPD model 
when 1 . 
 
The results of the simulations are presented and analysed in the next section. In Section 4.3 
we illustrate the effect of choosing other scale and location parameters on the magnitude of 
the bias and RMSE statistics of the GEV distribution. 
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4.2 Analysis of the results 
 
Table 4.1 to Table 4.4 present the error statistics of the ML and PWM estimators of the scale 
and shape parameters and of the 4,000- and 10,000-yr return values of the GEV and GPD 
models. 
 
In the case of the GEV the sample size is yn  and in the case of the GPD the sample size is 

yy nn 5 . Since 1 , the 4,000- and 10,000-yr return values of the GEV and GPD models 
differ; cf. Table 4.1, Table 4.2, and Eq. (2.4). 
 
The ML estimates cannot always be obtained because the likelihood function has a maximum 
value with probability less than 1 (though the probability approaches 1 as the sample size 
increases). Table 4.5 gives the ‘failure rate’ of the ML estimation of the GPD and GEV. It can 
be seen that the failure rates increase with decreasing shape parameter (lighter tails) and 
decreasing sample size. Given that the sample sizes of the GEV are smaller, there are more 
failures in the estimation of the GEV than in that of the GPD. 
 
Looking at the performance of the PWM and ML methods per parameter, we can draw the 
following conclusions: 
 

• Return values: In the case of the GEV, for yn  below 50 years PWM generally 
behaves better than ML, especially for 2.0 ; for larger sample sizes the 
behaviour of the PWM and ML estimators is similar. In the case of the GPD, for 

yn  below 50 years ML generally behaves better for 1.0 , while PWM 
behaves better for 1.0 ; for larger sample sizes the behaviour of the two 
methods is similar. 

• Shape and scale parameter estimates: In  the  case  of  the  GEV,  PWM  is  
generally better in terms of bias and RMSE. In the case of the GPD, the 
differences in the error statistics of the two methods are small for sample sizes 
of more than 20 years; for smaller sample sizes PWM does slightly better in 
terms of RMSE for 1.0  and always better in terms of bias. 

 
Comparing the errors of the GEV and GPD estimators, the relative RMSEs and the absolute 
values of the relative bias of the GPD estimates are lower, as expected. However, for sample 
sizes of 200 the differences are quite small. 
 
In order to have an idea of how the GPD error statistics vary with  we analyse the results 
further. When 1, if we compare the performance of the GPD estimates with yn  equal to 
10 and 20 (which correspond to a number of peaks of 50 and 100, respectively) with those of 
the GEV estimates with yn  equal to 50 and 100, we have the following conclusions: 
 

• In the case of the GEV, the RMSEs of the estimate of  range from 0.11 to 0.12 
for 50yn  (from 0.07 to 0.08 for 100yn ); in the case of the GPD, the RMSEs 

of the estimate of  range from 0.17 to 0.20 for 10yn  (from 0.12 to 0.14 for 

20yn ). 
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• In the case of the GEV, the relative RMSEs of the estimate of  range from 
11% to 14% for 50yn  (from 7% to 9% for 100yn ); in the case of the GPD, 

the RMSEs of the estimate of  range from 22% to 25% for 10yn  (from 14% 

to 16% for 20yn ). 
 
Thus, whenever the sample size (number of peaks) of the POT method is equal to that of the 
AM method (the annual maxima) the uncertainty of the GEV estimates is lower. 
 
In the situation where 2 , the comparison of the GPD estimates for 20yn  (a sample 

size of 100) with the GEV estimates for 50yn  yields the following conclusions: 
 

• In the case of the GEV, the RMSEs of the estimate of  range from 0.11 to 0.12, 
and in the case of the GPD the RMSEs of the estimate of  range from 0.12 to 
0.14. 

• The relative RMSEs of the GEV estimate of  range from 11% to 14%, and 
those of the GPD estimate of  from 14% to 16%  

 
The errors of the two methods are thus comparable, as had been noted by Tavares and da 
Silva (1983) when =0; when 2 , however, the uncertainty in the GEV estimates is greater 
than that of the GPD estimates. 
 
In conclusion, we can say that for 2  the uncertainties of the GPD estimates are lower 
than the corresponding GEV estimates, and that for data sets of more than 200 years the 
uncertainties of the GEV estimates are low.  
 
Furthermore, with data sets of less than 50 years, the PWM method is preferable to the ML 
method, both because of its better error characteristics and robustness against ‘non 
existence’ problems. With the longer datasets considered here, the two methods provide 
comparably accurate estimates. Asymptotically, however, the ML method provides better 
estimates than the PWM method for 0.05 ; this was pointed out to us by the Reviewer 
(see Section B.2). 
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GEV GPD 

4,000-yr rv 3.06 4.05 5.64 8.29 12.92 4,000-yr rv 3.16 4.31 6.29 9.90 16.92 
 -0.30 -0.20 -0.10 0.00 0.10  -0.30 -0.20 -0.10 0.00 16.92 

yn   Relative bias (%) 
yn   Relative bias (%) 

10 PWM 34.47 40.68 48.81 55.53 62.92 10 PWM 10.68 13.12 15.89 18.98 23.10 
10 ML * * * * * 10 ML -6.15 -4.41 0.22 10.00 26.20 
20 PWM 11.77 14.47 17.86 22.62 28.27 20 PWM 5.15 6.43 7.78 9.47 11.75 
20 ML 371.56 94.32 * * * 20 ML -4.12 -3.47 -1.56 2.37 9.42 
50 PWM 3.82 4.53 5.97 7.72 10.50 50 PWM 2.04 2.44 3.11 3.83 4.71 
50 ML -5.31 -1.68 2.83 8.86 17.90 50 ML -2.17 -2.01 -1.14 0.44 2.96 

100 PWM 1.70 2.12 2.82 3.96 5.37 100 PWM 0.98 1.30 1.56 1.92 2.33 
100 ML -3.88 -1.76 0.37 3.19 6.75 100 ML -1.28 -1.14 -0.72 0.12 1.33 
200 PWM 0.70 0.92 1.26 1.81 2.79 200 PWM 0.47 0.65 0.73 0.91 1.17 
200 ML -2.64 -1.33 -0.18 1.15 3.05 200 ML -0.76 -0.64 -0.45 0.01 0.65 

yn   Relative RMSE (%) 
yn   Relative RMSE (%) 

10 PWM 113.69 135.10 167.08 202.31 254.95 10 PWM 48.09 58.92 73.36 91.38 118.17 
10 ML * * * * * 10 ML 25.95 39.99 67.83 123.38 183.67 
20 PWM 48.56 60.27 75.68 99.60 135.25 20 PWM 29.11 36.36 44.85 55.69 70.25 
20 ML * * * * * 20 ML 15.39 22.90 34.50 52.63 78.86 
50 PWM 23.80 29.64 37.41 48.56 65.70 50 PWM 16.77 20.85 25.85 31.74 39.26 
50 ML 24.35 29.88 45.79 61.11 97.86 50 ML 8.88 13.31 19.53 27.97 39.08 

100 PWM 15.72 19.40 24.67 31.83 42.06 100 PWM 11.45 14.27 17.63 21.64 26.41 
100 ML 15.86 17.96 24.15 32.97 43.85 100 ML 6.01 9.07 13.35 18.97 25.69 
200 PWM 10.64 13.27 16.71 21.46 27.99 200 PWM 7.94 9.92 12.24 15.04 18.42 
200 ML 10.70 11.97 15.73 21.08 27.43 200 ML 4.08 6.29 9.25 13.18 17.77 

Table 4.1 Relative RMSE and bias of the ML and PWM estimators of the 4,000-yr return values. *Values in 
excess of 1,000. 
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GEV GPD 

10,000-yr rv 3.12 4.21 6.02 9.21 15.12 10,000-yr rv 3.20 4.43 6.61 10.82 19.50 
 -0.30 -0.20 -0.10 0.00 0.10  -0.30 -0.20 -0.10 0.00 0.10 

yn   Relative bias (%) 
yn   Relative bias (%) 

10 PWM 45.32 55.68 69.69 82.26 97.19 10 PWM 12.88 16.51 20.89 25.96 32.58 
10 ML * * * * * 10 ML -5.86 -3.48 2.91 16.72 39.82 
20 PWM 14.53 18.62 24.00 31.73 41.60 20 PWM 6.08 7.94 10.05 12.69 16.22 
20 ML * 323.96 * * * 20 ML -4.09 -3.23 -0.74 4.49 13.96 
50 PWM 4.58 5.70 7.80 10.52 14.89 50 PWM 2.37 2.99 3.96 5.06 6.40 
50 ML -4.99 -0.84 4.76 12.68 25.04 50 ML -2.20 -1.98 -0.91 1.10 4.39 

100 PWM 2.04 2.65 3.66 5.30 7.47 100 PWM 1.14 1.58 1.97 2.52 3.15 
100 ML -3.83 -1.52 1.01 4.57 9.17 100 ML -1.31 -1.14 -0.63 0.42 1.99 
200 PWM 0.85 1.16 1.65 2.44 3.80 200 PWM 0.54 0.79 0.93 1.20 1.58 
200 ML -2.67 -1.27 0.07 1.72 4.10 200 ML -0.79 -0.65 -0.42 0.16 0.97 

yn   Relative RMSE (%) 
yn   Relative RMSE (%) 

10 PWM 150.35 183.72 234.82 292.03 381.82 10 PWM 54.71 68.98 88.64 113.73 152.66 
10 ML * * * * * 10 ML 28.69 46.82 86.76 178.68 265.63 
20 PWM 56.27 72.25 93.26 128.17 183.30 20 PWM 31.79 40.81 51.72 65.81 85.08 
20 ML * * * * * 20 ML 16.23 24.92 39.16 62.75 98.29 
50 PWM 25.98 33.17 42.94 57.37 81.00 50 PWM 17.88 22.77 28.89 36.19 45.49 
50 ML 25.88 33.56 60.57 76.48 139.00 50 ML 9.32 14.29 21.51 31.65 45.33 

100 PWM 16.90 21.29 27.69 36.59 49.68 100 PWM 12.11 15.43 19.48 24.37 30.12 
100 ML 16.58 19.53 27.05 38.10 51.97 100 ML 6.30 9.71 14.63 21.23 29.26 
200 PWM 11.36 14.44 18.55 24.29 32.31 200 PWM 8.37 10.68 13.45 16.82 20.84 
200 ML 11.17 12.91 17.39 23.82 31.56 200 ML 4.28 6.73 10.11 14.68 20.08 

Table 4.2 Relative RMSE and bias of the ML and PWM estimators of the 10,000-yr return values. *Values 
in excess of 1,000. 
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GEV GPD 
 -0.30 -0.20 -0.10 0.00 0.10  -0.30 -0.20 -0.10 0.00 0.10 

yn   Bias  yn   Relative bias (%) 
10 PWM -0.02 -0.03 -0.04 -0.05 -0.07 10 PWM -0.02 -0.02 -0.03 -0.03 -0.04 
10 ML -0.13 -0.09 -0.06 -0.04 -0.01 10 ML -0.08 -0.07 -0.07 -0.06 -0.06 
20 PWM -0.01 -0.01 -0.02 -0.02 -0.03 20 PWM -0.01 -0.01 -0.01 -0.01 -0.02 
20 ML -0.08 -0.06 -0.04 -0.02 -0.01 20 ML -0.04 -0.03 -0.03 -0.03 -0.03 
50 PWM 0.00 0.00 -0.01 -0.01 -0.01 50 PWM 0.00 0.00 -0.01 -0.01 -0.01 
50 ML -0.04 -0.03 -0.02 -0.01 0.00 50 ML -0.02 -0.02 -0.01 -0.01 -0.01 

100 PWM 0.00 0.00 0.00 0.00 -0.01 100 PWM 0.00 0.00 0.00 0.00 0.00 
100 ML -0.03 -0.01 -0.01 0.00 0.00 100 ML -0.01 -0.01 -0.01 -0.01 -0.01 
200 PWM 0.00 0.00 0.00 0.00 0.00 200 PWM 0.00 0.00 0.00 0.00 0.00 
200 ML -0.02 -0.01 0.00 0.00 0.00 200 ML -0.01 0.00 0.00 0.00 0.00 

yn   RMSE yn   RMSE 
10 PWM 0.30 0.29 0.29 0.29 0.30 10 PWM 0.20 0.18 0.18 0.17 0.17 
10 ML 0.50 0.50 0.51 0.51 0.53 10 ML 0.17 0.17 0.18 0.18 0.19 
20 PWM 0.18 0.18 0.18 0.19 0.19 20 PWM 0.14 0.13 0.12 0.12 0.12 
20 ML 0.27 0.25 0.24 0.24 0.25 20 ML 0.10 0.11 0.11 0.12 0.12 
50 PWM 0.11 0.11 0.11 0.11 0.12 50 PWM 0.08 0.08 0.08 0.07 0.07 
50 ML 0.15 0.13 0.12 0.12 0.12 50 ML 0.06 0.06 0.06 0.07 0.07 

100 PWM 0.07 0.07 0.07 0.08 0.08 100 PWM 0.06 0.06 0.05 0.05 0.05 
100 ML 0.10 0.08 0.07 0.08 0.08 100 ML 0.04 0.04 0.04 0.05 0.05 
200 PWM 0.05 0.05 0.05 0.05 0.06 200 PWM 0.04 0.04 0.04 0.04 0.04 
200 ML 0.07 0.05 0.05 0.05 0.06 200 ML 0.03 0.03 0.03 0.03 0.04 

Table 4.3 RMSE and bias of the ML and PWM estimators of . 
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GEV GPD 

 1 1 1 1 1  1 1 1 1 1 
 -0.30 -0.20 -0.10 0.00 0.10  -0.30 -0.20 -0.10 0.00 0.10 

yn   Relative bias (%) yn   Relative bias (%) 
10 PWM -2.84 -2.47 -2.10 -1.58 -1.07 10 PWM 2.43 2.48 2.78 2.91 3.50 
10 ML -17.08 -14.26 -12.78 -11.89 -11.61 10 ML 7.49 7.03 6.84 6.37 6.27 
20 PWM -1.14 -0.94 -0.83 -0.65 -0.39 20 PWM 1.13 1.20 1.39 1.46 1.67 
20 ML -7.44 -5.73 -5.23 -5.15 -5.23 20 ML 3.69 3.42 3.27 3.06 2.90 
50 PWM -0.35 -0.29 -0.27 -0.20 -0.19 50 PWM 0.46 0.48 0.52 0.57 0.68 
50 ML -2.84 -1.98 -1.96 -2.06 -2.18 50 ML 1.60 1.43 1.29 1.17 1.12 

100 PWM -0.17 -0.12 -0.07 -0.13 -0.15 100 PWM 0.24 0.22 0.24 0.29 0.31 
100 ML -1.16 -0.86 -0.92 -1.05 -1.13 100 ML 0.88 0.74 0.64 0.59 0.53 
200 PWM -0.03 -0.04 -0.03 -0.05 -0.03 200 PWM 0.14 0.10 0.15 0.16 0.17 
200 ML -0.37 -0.39 -0.47 -0.52 -0.50 200 ML 0.50 0.39 0.36 0.31 0.27 

yn   Relative RMSE (%) yn   Relative RMSE (%) 
10 PWM 27.24 27.60 28.47 29.82 31.93 10 PWM 22.46 22.45 22.52 22.48 22.87 
10 ML 36.24 35.18 34.79 34.58 35.04 10 ML 22.43 22.95 23.55 24.00 24.68 
20 PWM 18.39 18.61 19.18 20.14 21.42 20 PWM 15.55 15.54 15.62 15.55 15.77 
20 ML 23.61 21.36 20.42 20.38 20.96 20 ML 14.27 14.63 15.13 15.55 16.13 
50 PWM 11.33 11.43 11.76 12.36 13.19 50 PWM 9.74 9.71 9.71 9.70 9.86 
50 ML 13.97 11.87 11.54 11.90 12.43 50 ML 8.31 8.65 8.98 9.29 9.75 

100 PWM 7.97 8.04 8.26 8.68 9.28 100 PWM 6.83 6.85 6.85 6.85 6.89 
100 ML 9.32 7.97 7.95 8.24 8.66 100 ML 5.69 5.93 6.21 6.47 6.72 
200 PWM 5.60 5.67 5.83 6.13 6.52 200 PWM 4.84 4.82 4.81 4.83 4.90 
200 ML 6.31 5.56 5.58 5.79 6.05 200 ML 3.94 4.11 4.31 4.51 4.75 

Table 4.4 Relative RMSE and bias of the ML and PWM estimators of and . 
 

yn  GEV GPD 
10 4.63 3.51 2.72 2.14 1.63 0.22 0.05 0.02 0.01 0.00 
20 1.64 0.78 0.39 0.17 0.10 0.00 0.00 0.00 0.00 0.00 
50 0.98 0.41 0.10 0.02 0.01 0.00 0.00 0.00 0.00 0.00 

100 1.24 0.44 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
200 1.38 0.38 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Table 4.5 Failure rate (%) of the ML method. 
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4.3 Effect of the scale and location parameters on the relative errors in the case of the 
GEV 

 
To illustrate how the magnitudes of the errors in the estimation of percentiles vary with the 
choice of the scale and location parameters, we consider the case of yearly maxima of 
independent and identically (i.i.d.) three-hourly variables with a GEV distribution with scale 
parameter 1 and location parameter 0 (the parameters used in the previous section). Since 
the variables are i.i.d., the distribution of the yearly maxima is given by the product of the 
distribution of each three-hourly value in a year: 
 

1( , , ) ( )n
nP X x X x F x . (4.1) 

 
where n  is the number of observations in a year. From (4.1) and (2.1), one can conclude that 
the yearly maxima of i.i.d. GEV variables is GEV distributed with the following parameters: 
 

n , 
,    for 0

, for 0

n

n
n n

 and 
ln( ),        for 0

,.    for 0

n

n
n

n

n
. (4.2) 

 
In the case of three-hourly time series, 2920n  and the parameters of the model governing 
the yearly maxima are as given in Table 4.6. 
 

 -0.30 -0.20 -0.10 0.00 0.10 
 0.09 0.20 0.45 1.00 2.22 
 3.02 3.99 5.50 7.98 12.21 

Table 4.6 Parameters of the GEV distribution of the yearly maxima of three-hourly i.i.d. GEV distributed 
variables with scale parameter 1, location parameter 0, and  as given in the first row of the 
table. 

  
Without loss of generality, and for the sake of simplicity, only the GEV distribution is 
considered in this section. As in the simulation study presented in the previous section, for 
each GEV model given in Table 4.6 we carry out 100,000k  simulations and compute the 
error statistics of the GEV estimates. The results on the 4,000-yr and 10,000-yr return values, 
on the scale parameter and on the shape parameter are presented in Table 4.7 to Table 4.10. 
 
Comparing the GEV error statistics given in Table 4.1 to Table 4.4 with those in Table 4.7 to 
Table 4.10, one can conclude that the errors in the shape and scale parameter estimates are 
comparable. In both cases the RMSE of the estimate of  decreases from about 0.5 to about 
0.05 with increasing sample size, and the relative RMSE of the estimate of  decreases from 
about 35% to about 6% with increasing sample size. Furthermore, in terms of variations with 
increasing sample sizes the error statistics allow the same conclusions that were drawn in the 
previous section. 
 
On the other hand, the choice of different scale and location parameters influences the 
magnitude of the errors in the estimates of the percentiles. Thus, whereas in the previous 
section the relative RMSE of the 10,000-yr return value estimate based on a sample size of 
50 years ranged from 26% to 140% depending on , here it ranges from 2% to 97%; cf. Table 
4.2 and Table 4.8. 
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As shown in Table 4.11, this combination of model parameters, especially the low values of 
the scale parameter, also yields more failures of the ML method; cf. Table 4.5 and Table 4.11. 
 
 

4,000-yr rv 3.31 4.81 8.04 16.27 40.9 
 -0.30 -0.20 -0.10 0.00 0.10 

yn   Relative bias (%) 
10 PWM 2.91 6.94 15.42 28.30 44.14 
10 ML * * * * * 
20 PWM 0.99 2.47 5.64 11.53 19.83 
20 ML 39.28 16.79 73.71 * * 
50 PWM 0.32 0.77 1.88 3.93 7.37 
50 ML -0.21 -0.08 0.89 4.52 12.55 

100 PWM 0.14 0.36 0.89 2.02 3.77 
100 ML -0.44 -0.25 0.11 1.63 4.76 
200 PWM 0.06 0.16 0.40 0.92 1.96 
200 ML -0.66 -0.29 -0.06 0.59 2.14 

yn   Relative RMSE (%) 
10 PWM 9.59 23.06 52.77 103.11 178.85 
10 ML * * * * * 
20 PWM 4.10 10.29 23.90 50.76 94.88 
20 ML * * * * * 
50 PWM 2.01 5.06 11.82 24.75 46.09 
50 ML 2.01 4.94 14.46 31.15 67.04 

100 PWM 1.33 3.31 7.79 16.22 29.50 
100 ML 1.60 3.04 7.63 16.80 31.54 
200 PWM 0.90 2.27 5.28 10.94 19.64 
200 ML 1.48 2.14 4.97 10.74 19.24 

Table 4.7 Relative RMSE and bias of the ML and PWM estimators of the 4,000-yr return value of the GEV. 
*Values in excess of 1,000. 



 

 
14 December 2009, final 
 

 
A comparative simulation study of the annual maxima and the peaks-over-threshold methods 
 

24

 
10,000-yr rv 3.31 4.84 8.21 17.19 45.79 

 -0.30 -0.20 -0.10 0.00 0.10 

yn   Relative bias (%) 
10 PWM 3.90 9.81 23.01 44.07 71.28 
10 ML * * * * * 
20 PWM 1.25 3.28 7.92 17.00 30.51 
20 ML 201.43 58.60 317.14 * * 
50 PWM 0.39 1.01 2.58 5.64 10.92 
50 ML -0.15 0.08 1.57 6.79 18.34 

100 PWM 0.18 0.47 1.21 2.84 5.48 
100 ML -0.42 -0.21 0.33 2.45 6.76 
200 PWM 0.07 0.20 0.54 1.31 2.79 
200 ML -0.65 -0.29 0.02 0.92 3.00 

yn   Relative RMSE (%) 
10 PWM 12.93 32.38 77.54 156.47 280.01 
10 ML * * * * * 
20 PWM 4.84 12.73 30.79 68.68 134.42 
20 ML * * * * * 
50 PWM 2.23 5.85 14.18 30.74 59.40 
50 ML 2.20 5.78 20.00 40.98 96.89 

100 PWM 1.45 3.75 9.14 19.61 36.43 
100 ML 1.67 3.42 8.93 20.41 40.09 
200 PWM 0.98 2.55 6.13 13.01 23.69 
200 ML 1.52 2.37 5.74 12.76 23.14 

Table 4.8 Relative RMSE and bias of the ML and PWM estimators of the 10,000-yr return value of the 
GEV. *Values in excess of 1,000. 
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 -0.30 -0.20 -0.10 0.00 0.10 

yn   Bias  
10 PWM -0.02 -0.03 -0.04 -0.05 -0.07 
10 ML 0.05 0.02 -0.05 -0.02 0.00 
20 PWM -0.01 -0.01 -0.02 -0.02 -0.03 
20 ML -0.01 -0.04 -0.04 -0.02 -0.01 
50 PWM 0.00 0.00 -0.01 -0.01 -0.01 
50 ML 0.00 -0.02 -0.02 -0.01 0.00 

100 PWM 0.00 0.00 0.00 0.00 -0.01 
100 ML 0.00 -0.01 -0.01 0.00 0.00 
200 PWM 0.00 0.00 0.00 0.00 0.00 
200 ML 0.00 -0.01 0.00 0.00 0.00 

yn   RMSE 
10 PWM 0.30 0.29 0.29 0.29 0.30 
10 ML 0.37 0.39 0.49 0.50 0.51 
20 PWM 0.18 0.18 0.18 0.19 0.19 
20 ML 0.21 0.22 0.25 0.24 0.25 
50 PWM 0.11 0.11 0.11 0.11 0.12 
50 ML 0.10 0.11 0.12 0.12 0.12 

100 PWM 0.07 0.07 0.07 0.08 0.08 
100 ML 0.06 0.07 0.07 0.08 0.08 
200 PWM 0.05 0.05 0.05 0.05 0.06 
200 ML 0.04 0.05 0.05 0.05 0.06 

Table 4.9 RMSE and bias of the ML and PWM estimators of   in the GEV model. 
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 0.09 0.2 0.45 1 2.22 
 -0.30 -0.20 -0.10 0.00 0.10 

yn   Relative bias (%) 
10 PWM -2.84 -2.47 -2.10 -1.58 -1.07 
10 ML -12.87 -11.57 -9.98 -11.06 -11.05 
20 PWM -1.14 -0.94 -0.83 -0.65 -0.39 
20 ML -5.11 -4.38 -4.96 -5.16 -5.20 
50 PWM -0.35 -0.29 -0.27 -0.20 -0.19 
50 ML -2.05 -1.67 -1.93 -2.06 -2.17 

100 PWM -0.17 -0.12 -0.07 -0.13 -0.15 
100 ML -0.71 -0.77 -0.92 -1.05 -1.13 
200 PWM -0.03 -0.04 -0.03 -0.05 -0.03 
200 ML 0.24 -0.28 -0.47 -0.52 -0.50 

yn   Relative RMSE (%) 
10 PWM 27.24 27.60 28.47 29.82 31.93 
10 ML 30.00 30.19 32.09 33.43 35.38 
20 PWM 18.39 18.61 19.18 20.14 21.42 
20 ML 19.47 19.13 19.77 20.40 21.09 
50 PWM 11.33 11.43 11.76 12.36 13.19 
50 ML 11.59 11.37 11.51 11.90 12.43 

100 PWM 7.97 8.04 8.26 8.68 9.28 
100 ML 8.13 7.90 7.95 8.24 8.66 
200 PWM 5.60 5.67 5.83 6.13 6.52 
200 ML 5.75 5.55 5.58 5.79 6.05 

Table 4.10 Relative RMSE and bias of the ML and PWM estimators of  in the GEV model. 
 

yn  GEV 
10 26.18 14.95 4.47 3.55 2.70 
20 19.92 2.67 0.60 0.32 0.16 
50 23.46 2.56 0.07 0.02 0.01 

100 24.52 2.28 0.05 0.01 0.00 
200 27.18 1.41 0.04 0.00 0.00 

Table 4.11 Failure rate (%) of the ML estimation in the GEV model. 
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5  Finite-sample properties of the two methods with non-
stationary and dependent data 

5.1 Introduction 
 
In this chapter we present the results comparing the finite sample properties of the AM/GEV 
and of the POT/GPD approaches when applied to simulated time series of dependent and 
non-stationary observations. As explained in Section 3.3, dependence is introduced by an 
AR(19) model (cf. Table 3.1) and non-stationarity is imposed by choosing the parameters, 
other than the tail index , so as to force the marginal distribution functions tF  to have mean 
and variance appropriate to the month in which the measurement at time t falls (cf. Table 3.2). 
The simulations were, as in the study presented in the previous chapter, carried out for five 
sample sizes with different durations in years, namely yn 10, 20, 50, 100 and 200 years. 
The PWM method was used in all simulations to estimate the model parameters. Given that 
the POT/GPD approach simulations are rather expensive, in each case we carry out only 

100k  simulations. 
 
In the next section we present the results of the AM/GEV approach applied to times series 
possessing tail indices of -0.3, -0.2, -0.1, 0 and 0.1. We also compare, in the case =0, the 
results based on 100 simulations with those based on 1,000 simulations. Furthermore, we 
compare the finite-sample properties of the estimators of the GEV distribution based on i.i.d. 
data obtained in the preceding section with those of the AM/GEV approach with dependent 
data. 
 
In Section 5.3 we present the results of the trio of models comprising the Gamma distribution, 
whose tail index is 0, the Beta distribution function with a tail index of -0.1, and the Beta 
distribution function of the second kind with a tail index of 0.1. Because these simulations are 
much more expensive than those of the AM/GEV approach, the shape parameters of -0.2 and 
-0.3 are not considered. 

5.2 Analysis of the results based on time series with marginal GEV distributions 
 
Five simulation scenarios were considered, each with a given shape parameter. Given the 
complex form of the joint distributions of the non-stationary and dependent processes 
generated, their high percentiles cannot be obtained analytically. In order to accurately 
estimate them, 100,000-year long time series were simulated and estimates of the return 
values of interest obtained by the AM/GEV method. These estimates are given in Table 5.1. 
together with the empirical return values, i.e., the quantiles of probabilities 1-1/4,000 and 1-
1/10,000 of the empirical distribution of the simulated sample. Note that for low tail indices the 
parameter estimates differ from the parameter values imposed in the simulations, the larger 
deviation occurring when  -0.3 , for which an estimate of -0.25 is obtained. The error 
statistics reported next were all computed assuming that the parameters given in Table 5.1 
and the associated percentiles are the true ones. 
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 -0.25 -0.18 -0.10 0.00 0.10 
 0.11 0.19 0.33 0.60 1.09 
 3.45 3.90 4.54 5.46 6.75 

4,000-yr rv 3.82 4.71 6.44 10.44 20.79 
empirical 4,000-yr rv 3.82 4.71 6.44 10.57 21.26 

10,000-yr rv 3.83 4.74 6.57 10.99 23.18 
empirical 10,000-yr rv 3.83 4.75 6.56 11.04 23.69 

Table 5.1 Estimates of the parameters of the GEV model fitted to 100,000 year maxima. 
 
Table 5.2 presents the error statistics of the POT/GPD and AM/GEV estimators of the    
4,000-yr return value, of the 10,000-yr return value and of the tail index. In the case of the 
POT/GPD approach there is no such thing as a true scale parameter, since this depends on 
the threshold used; thus Table 5.2 also presents no error statistics on the scale parameter of 
the GEV.  
 
The following conclusions can be drawn from the tables: 
 

• The error statistics show that, as expected, the errors decrease with increasing 
sample size. 

• Regarding the tail index, the POT/GPD approach yields more accurate 
estimates than the AM/GEV approach for series of less than 100 years. For 
series of 100 years the performance of the two approaches is comparable, 
AM/GEV being slightly better for lighter tails ( <0) and POT/GPD slightly better 
for heavier tails. 

• In terms of the percentiles, only for time series of 200 years do both approaches 
provide comparably low error statistics, the relative RMSEs of the POT/GPD 
approach being about 2/3 of those of the AM/GEV approach for >-0.1. 

• For time series of less than 200 years the POT/GPD approach is always 
preferable. 

 
We note that the threshold in the POT/GPD approach is chosen automatically. Figure 5.1 
illustrates the choice of the threshold in a simulation with yn =200 and =0. The figure shows 
the estimates of , * and of the 10,000-yr return value as functions of the threshold. The 
automatically chosen threshold is indicated by the vertical lines. Although the automatic 
choice of the threshold seems to be appropriate, the POT/GPD approach is expected to 
perform even better if visual inspection and/or a formal method (e.g. Einmahl et al., 2009) is 
used to determine the threshold. 
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Figure 5.1 Illustration of the variation of the estimates of the shape parameter, of * and of the 10,000 

return value with the threshold in the POT/GPD approach. The vertical line indicates the 
threshold chosen. The example shown is from a simulation with yn =200 and =0. 
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  4,000-yr rv 10,000-yr rv  
 rv 3.82 4.71 6.44 10.44 20.79 3.83 4.74 6.57 10.99 23.18      
  -0.25 -0.18 -0.10 0.00 0.10 -0.25 -0.18 -0.10 0.00 0.10 -0.25 -0.18 -0.10 0.00 0.10 

yn   Relative bias (%) Relative bias (%) Bias 
10 POT -0.65 2.85 -0.20 1.13 11.06 -0.61 3.78 0.41 2.41 15.74 -0.11 -0.06 -0.08 -0.04 -0.02 
10 AM 5.91 6.75 13.90 28.05 43.70 8.39 9.63 20.14 40.98 66.25 0.02 -0.03 -0.02 0.00 -0.02 
20 POT -1.27 -1.01 -1.48 2.42 4.04 -1.35 -1.00 -1.40 3.12 5.61 -0.10 -0.07 -0.05 -0.03 -0.03 
20 AM 1.02 1.31 4.59 18.83 34.98 1.38 1.79 6.55 27.22 52.30 -0.01 -0.03 -0.03 0.01 -0.01 
50 POT -1.55 -2.80 -5.51 -2.68 -1.38 -1.65 -3.05 -6.08 -3.09 -1.43 -0.10 -0.09 -0.08 -0.04 -0.03 
50 AM 0.19 0.01 -0.69 5.67 9.31 0.27 0.15 -0.39 7.58 13.19 -0.02 -0.02 -0.02 -0.01 -0.02 

100 POT -1.76 -2.35 -3.93 -5.89 -5.75 -1.89 -2.60 -4.43 -6.86 -6.74 -0.10 -0.07 -0.06 -0.05 -0.03 
100 AM 0.19 0.99 1.69 2.86 3.77 0.24 1.20 2.14 3.83 5.34 0.00 0.00 0.01 0.00 -0.01 
200 POT -1.58 -2.43 -3.58 -5.52 -6.56 -1.69 -2.67 -4.09 -6.43 -7.77 -0.09 -0.07 -0.05 -0.04 -0.03 
200 AM 0.10 -0.02 1.11 3.31 6.06 0.13 0.01 1.35 4.14 7.76 0.00 -0.01 0.00 0.01 0.01 

yn   Relative RMSE (%) Relative RMSE (%) RMSE 
10 POT 5.43 18.67 21.73 35.21 69.70 5.89 22.80 25.06 44.33 91.30 0.20 0.19 0.17 0.12 0.11 
10 AM 19.60 22.23 39.58 73.66 127.36 30.87 30.53 53.15 104.50 182.86 0.28 0.28 0.29 0.25 0.25 
20 POT 3.71 7.82 13.54 24.02 40.72 3.97 8.77 15.39 28.14 48.50 0.15 0.13 0.11 0.09 0.10 
20 AM 5.14 8.15 20.74 66.11 123.47 6.19 9.50 25.73 94.68 180.78 0.19 0.18 0.21 0.17 0.20 
50 POT 2.76 5.43 9.55 14.90 26.20 2.95 5.90 10.57 16.95 31.27 0.13 0.12 0.11 0.08 0.06 
50 AM 2.68 5.06 10.11 25.59 51.57 3.01 5.84 11.97 31.98 67.64 0.12 0.11 0.11 0.11 0.12 

100 POT 2.61 3.99 7.27 11.39 18.01 2.79 4.35 8.08 12.93 20.57 0.13 0.10 0.08 0.06 0.06 
100 AM 1.69 4.24 7.79 16.28 27.78 1.89 4.95 9.28 19.68 33.80 0.08 0.08 0.07 0.08 0.08 
200 POT 2.10 3.68 5.66 9.95 14.15 2.25 4.04 6.35 11.35 16.16 0.11 0.09 0.07 0.06 0.05 
200 AM 1.21 2.26 5.43 11.03 21.10 1.35 2.54 6.34 13.23 25.77 0.05 0.05 0.05 0.05 0.06 

Table 5.2 RMSE and bias of the PWM parameter estimates in the AM/GEV and POT/GPD approaches, 
computed from 100 simulations 
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5.2.1 Effect of the number of simulations on the error statistics 
 
In order to get an idea of how the number of simulations affects the error statistics we have 
also carried out 1,000 simulation in the case =0. Table 5.3 compares the error statistics 
obtained with 100 and 1,000 simulations. As the table shows, for short time series, of less 
than 50 years, the error statistics can vary significantly. However, the conclusions regarding 
the relative performance of the two approaches remain the same. 
 

  4,000-yr rv 10,000-yr rv  
  100 1000 100 1000 100 1000 
 rv 10.44 10.99  
  0.00 0.00 0.00 
  Relative bias (%) Relative bias (%) Bias 

10 POT 1.13 7.23 2.41 9.94 -0.04 -0.03 
10 AM 28.05 29.31 40.98 46.13 0.00 -0.04 
20 POT 2.42 1.35 3.12 2.15 -0.03 -0.03 
20 AM 18.83 12.54 27.22 18.47 0.01 -0.02 
50 POT -2.68 -4.03 -3.09 -4.59 -0.04 -0.04 
50 AM 5.67 4.45 7.58 6.09 -0.01 -0.01 

100 POT -5.89 -6.26 -6.86 -7.25 -0.05 -0.05 
100 AM 2.86 2.19 3.83 3.02 0.00 -0.01 
200 POT -5.52 -5.90 -6.43 -6.88 -0.04 -0.04 
200 AM 3.31 0.80 4.14 1.14 0.01 0.00 

  Relative RMSE (%) Relative RMSE (%) RMSE 
10 POT 35.21 44.18 44.33 55.22 0.12 0.14 
10 AM 73.66 103.55 104.50 161.97 0.25 0.29 
20 POT 24.02 26.62 28.14 31.69 0.09 0.11 
20 AM 66.11 54.32 94.68 76.10 0.17 0.18 
50 POT 14.90 14.47 16.95 16.59 0.08 0.07 
50 AM 25.59 22.44 31.98 27.65 0.11 0.11 

100 POT 11.39 11.43 12.93 13.00 0.06 0.06 
100 AM 16.28 16.04 19.68 19.42 0.08 0.08 
200 POT 9.95 9.76 11.35 11.18 0.06 0.06 
200 AM 11.03 10.33 13.23 12.34 0.05 0.05 

Table 5.3 RMSE and bias of the PWM parameter estimators of the AM/GEV and POT/GPD approaches 
computed from 100 and 1,000 simulations. Results only for the type I tail. 
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5.2.2 Comparison between the performance of the estimators with i.i.d. and non-i.i.d. data 
 
Table 5.4 shows error statistics of the 4,000- and 10,000 -yr return value estimates and of the 
tail index estimate of the GEV distribution based on 100,000 simulations of i.i.d. time series of 
varying lengths. These simulations are analogous to those of Section 4.3, except that the 
parameters are as given in Table 5.1 and only PWM estimators are considered. The results 
are to be compared with the results obtained with the AM/GEV approach based on the same 
parameters but with non-i.i.d. time series (Table 5.2). 
 
Taking into account the variation of the error statistics with the number of simulations, it can 
be concluded that the accuracies of the parameter estimates of the GEV model with i.i.d. and 
non-i.i.d. data are comparable with each other (cf. Table 5.2 and Table 5.4) and in line with 
the error statistics presented in the previous chapter (cf. Table 4.3, Table 4.9, Table 5.2 and 
Table 5.4). This is in contrast with the performance of the POT/GPD approach, which is 
worse with non-i.i.d. data than with i.i.d. data (cf. Table 4.3 and Table 5.2); this is to be 
expected given the influence of the threshold (which must be chosen here, but not in the 
simulations of Chapter 4) on the accuracy of the estimates.  
 

 4,000-yr rv 10,000-yr rv  
rv 3.82 4.71 6.44 10.44 20.79 3.83 4.74 6.57 10.99 23.18

-0.25 -0.18 -0.10 0.00 0.10 -0.25 -0.18 -0.10 0.00 0.10-0.25-0.18-0.10 0.00 0.10
yn  Relative bias (%) Relative bias (%) Bias 

10 3.63 7.1814.44 26.51 42.50 5.0110.28 21.62 41.42 68.90-0.02-0.03-0.04-0.05-0.07
20 1.26 2.58 5.30 10.80 19.10 1.63 3.48 7.46 15.98 29.49-0.01-0.01-0.02-0.02-0.03
50 0.41 0.81 1.77 3.69 7.09 0.52 1.07 2.43 5.30 10.55 0.00-0.01-0.01-0.01-0.01

100 0.18 0.38 0.84 1.89 3.63 0.23 0.50 1.14 2.67 5.29 0.00 0.00 0.00 0.00-0.01
200 0.08 0.17 0.38 0.86 1.88 0.10 0.22 0.51 1.23 2.70 0.00 0.00 0.00 0.00 0.00

yn  Relative RMSE (%) Relative RMSE (%) RMSE 
1012.0823.9849.50 96.58172.1916.6434.01 72.95147.06270.66 0.29 0.29 0.29 0.29 0.30
20 5.2610.7922.45 47.55 91.35 6.3413.50 29.02 64.54129.93 0.18 0.18 0.18 0.19 0.19
50 2.59 5.3211.10 23.18 44.37 2.94 6.20 13.35 28.89 57.42 0.11 0.11 0.11 0.11 0.12

100 1.71 3.48 7.32 15.20 28.40 1.91 3.98 8.61 18.43 35.21 0.07 0.07 0.07 0.08 0.08
200 1.16 2.38 4.96 10.24 18.91 1.28 2.70 5.77 12.23 22.90 0.05 0.05 0.05 0.05 0.06

Table 5.4 Error statistics of the PWM estimators of the GEV distribution with i.i.d. data when the 
parameters correspond to those of the non-i.i.d. data given in Table 5.1. Based on 100,000 
simulations. 

5.3 Analysis of the results based on time series with marginal Gamma or Beta 
distributions 

 
In this simulation three scenarios are considered, each with a given tail index. Again, given 
the complex form of the simulated processes, their high percentiles cannot be obtained 
analytically and are estimated by applying the AM/GEV approach to a 100,000-year long 
simulated time series. The estimates are given in Table 5.5. 
 
Figure 5.2 illustrates the automatic choice of the threshold in one of the simulations with 

yn =100 and =-0.1 (marginal Beta distribution functions). The figure shows the estimates of 
, * and of the 10,000-yr return value as functions of the threshold, and indicates the chosen 

threshold by vertical lines. 
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 -0.11 -0.02 0.10 
 0.30 0.53 1.01 
 4.52 5.27 6.53 

4,000-yr rv 6.14 9.38 19.27 
empirical 4,000-yr rv 6.18 9.52 18.68 

10,000-yr rv 6.25 9.81 21.40 
empirical 10,000-yr rv 6.29 10.02 21.47 

Table 5.5 Estimates of the parameters of the GEV distribution fitted to 100,000 yearly maxima of time 
series with Gamma ( =0) Beta ( =-0.1)and Beta of the second kind ( =0.1) marginal 
distributions. 

 

 
Figure 5.2 Illustration of the variation of the tail index, * and 10,000 return value estimates with the 

threshold in the POT/GPD approach. The vertical line indicates the automatically chosen 
threshold. The example shown is from a simulation with yn =100 and =-0.1.  
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Table 5.6 presents the error statistics of the POT/GPD and AM/GEV estimates of the 4,000- 
and 10,000-year return values and of the tail index. The conclusions of the preceding section 
concerning the time series with GEV marginal distributions also apply here. However, in this 
case the GEV/AM approach compares slightly worse with the POT/GPD approach. This is not 
surprising in view of the fact that the annual maxima from a process with marginal GEV 
distributions with the same tail index are closer to a limiting GEV distribution of extremes than 
the annual maxima from a process with Gamma or Beta marginal distributions—and, in fact, it 
was with the purpose of illustrating this phenomenon that we have chosen marginal 
distributions other than the GEV. 
 

  4,000-yr rv 10,000-yr rv  
 rv 6.14 9.38 19.27 6.25 9.81 21.40    
  -0.11 -0.02 0.10 -0.11 -0.02 0.10 -0.11 -0.02 0.10 

yn   Relative bias (%) Relative bias (%) Bias 
10 POT -0.02 2.72 7.74 0.37 4.29 11.43 -0.06 -0.05 -0.05 
10 AM 17.72 18.73 63.57 25.53 30.16 101.44 0.01 -0.08 -0.06 
20 POT -1.56 -5.25 -2.67 -1.68 -5.69 -2.36 -0.06 -0.06 -0.04 
20 AM 5.91 5.31 20.78 8.13 8.89 31.22 0.00 -0.03 -0.03 
50 POT -2.88 -8.09 -7.30 -3.20 -9.14 -8.34 -0.06 -0.07 -0.04 
50 AM 2.80 -0.11 1.80 3.46 0.45 4.11 0.01 -0.02 -0.04 

100 POT -3.97 -6.74 -7.77 -4.47 -7.75 -9.07 -0.06 -0.05 -0.04 
100 AM 0.80 0.29 6.11 1.08 0.69 8.24 0.00 -0.01 0.00 
200 POT -3.61 -4.81 -9.94 -4.09 -5.66 -11.68 -0.06 -0.04 -0.04 
200 AM 0.59 1.81 3.19 0.74 2.25 4.28 0.00 0.00 0.00 

yn   Relative RMSE (%) Relative RMSE (%) RMSE 
10 POT 14.18 33.13 61.61 16.58 41.06 75.59 0.15 0.15 0.15 
10 AM 47.26 72.91 195.11 68.24 107.78 303.64 0.26 0.31 0.34 
20 POT 11.16 17.44 31.75 12.48 19.83 37.02 0.11 0.11 0.10 
20 AM 20.56 37.09 83.76 26.44 49.54 114.19 0.17 0.17 0.19 
50 POT 8.08 13.78 22.22 9.05 15.45 25.40 0.10 0.09 0.07 
50 AM 8.90 15.11 42.03 10.64 18.38 53.35 0.09 0.09 0.13 

100 POT 6.28 10.05 15.85 7.02 11.38 18.10 0.08 0.07 0.06 
100 AM 6.94 11.48 28.02 8.13 13.79 34.45 0.07 0.07 0.08 
200 POT 5.34 7.81 13.63 5.95 8.95 15.69 0.07 0.05 0.05 
200 AM 4.27 10.33 18.57 4.92 12.33 22.59 0.05 0.06 0.06 

Table 5.6 RMSE and bias of the PWM estimates of the 4,000- and 10,000-yr return value and of  in the 
AM/GEV and POT/GPD approaches applied to non-stationary and dependent time series with 
Gamma, Beta and Beta of the second kind marginal distributions. Computed from 100 
simulations. 

 
Table 5.7 shows the same statistics as Table 5.6 but for the ML estimates instead of PWM 
estimates. Comparing the two tables we can say that the conclusions drawn in Chapter 4 
concerning the relative performance of the two estimation methods apply here as well.  
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  4,000-yr rv 10,000-yr rv  
 rv 6.14 9.38 19.27 6.25 9.81 21.40    
  -0.11 -0.02 0.10 -0.11 -0.02 0.10 -0.11 -0.02 0.10 

yn   Relative bias (%) Relative bias (%) Bias 
10 POT -4.04 -5.78   1.19 -4.25 -5.88   4.02 -0.10 -0.10 -0.08 
10 AM   *   *    *   *   *    *   *   *   * 
20 POT -4.19 -5.93  -4.15 -4.67 -6.50  -3.54 -0.08 -0.07 -0.06 
20 AM 14.58 25.08 290.14 24.53 42.49 674.08 -0.02 -0.03 -0.04 
50 POT -4.11 -6.53  -9.74 -4.65 -7.52 -11.26 -0.07 -0.06 -0.05 
50 AM -1.48 -0.69   4.33 -1.40  0.07   8.17 -0.04 -0.03 -0.03 

100 POT -2.56 -4.55  -8.08 -2.98 -5.38  -9.52 -0.05 -0.04 -0.04 
100 AM  0.62  2.85   6.27  0.87  3.83   8.47 -0.00  0.00  0.00 
200 POT -1.97 -3.62  -7.08 -2.31 -4.32  -8.43 -0.04 -0.03 -0.03 
200 AM  0.17  1.15   2.03  0.26  1.55   2.88 -0.00 -0.00 -0.00 

yn   Relative RMSE (%) Relative RMSE (%) RMSE 
10 POT 13.62  27.82   63.93  15.15  32.04   78.51 0.17 0.17 0.17 
10 AM   *    *     *    *    *     * * * * 
20 POT  8.95  19.95   46.08   9.80  22.75   55.73 0.11 0.12 0.12 
20 AM 94.64 156.53 2444.40 164.12 273.10 5977.56 0.22 0.24 0.29 
50 POT  6.37  12.23   19.92   7.04  13.81   22.53 0.09 0.08 0.07 
50 AM  8.62  21.32   56.48   9.97  26.45   76.44 0.12 0.12 0.13 

100 POT  4.40   8.18   14.91   4.93   9.33   17.07 0.06 0.05 0.05 
100 AM  6.06  14.30   27.23   7.08  17.40   33.60 0.07 0.08 0.08 
200 POT  3.60   6.78   11.79   4.10   7.81   13.64 0.05 0.05 0.04 
200 AM  4.23   9.61   18.72   4.90  11.48   22.72 0.05 0.05 0.06 

Table 5.7 RMSE and bias of the ML estimates of the 4,000- and 10,000-yr return value and of  in the 
AM/GEV and POT/GPD approaches applied to non-stationary and dependent time series with 
Gamma, Beta and Beta of the second kind marginal distributions. Computed from 100 
simulations. * No estimate available due to a high failure rate. 
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6  Conclusions 

The objective of this study was to provide a global assessment and comparison of the 
AM/GEV and POT/GPD approaches on the basis of small to large time series of simulated 
data possessing realistic features such as non-stationarity and serial dependence.  
 
Two types of simulation studies were carried out, both taking into account the characteristics 
of the data on the basic variables currently available. The first study focused on the finite-
sample properties of the estimators of the GEV and the GPD distributions. The second study 
focused on the finite-sample properties of the AM/GEV and the POT/GPD approaches 
applied to non-stationary and dependent data. 
 
The length of the simulated time series ranged from 10 to 200 years, and the tail indices 
ranged from -0.3 to 0.1. These were found to represent the availability of the data used in the 
determination of the HBC as well as their tail characteristics.  
 
In the first study both the ML and PWM methods of estimation were considered. The 
conclusions of the study were that for POT samples with an average of two or more 
observations per year, the estimators of the GPD are more accurate than the corresponding 
estimators of GEV distribution, and that with more than 200 years of data the errors of the 
estimates of the GEV model are low. Furthermore, it was found that with less than 50 years of 
data the PWM method, thanks to its error characteristics and robustness against 
nonexistence of solutions, is preferable to the ML method, and that with bigger data sets the 
two methods provide comparably accurate estimates. 
 
In the second study the simulated data incorporated non-stationarity and serial dependence. 
The results showed that the POT/GPD estimates of the shape parameter are more accurate 
than those of the AM/GEV approach for time series with less than 100 years. With 100-year 
long time series the performance of the two approaches is comparable, AM/GEV being 
slightly better with lighter tails (negative tail index) and POT/GPD being slightly better with the 
heavier tails. In terms of the 4,000- and 10,000-year return value estimates, the POT/GPD 
approach is significantly better. Only for time series of 200 years do the two approaches 
provide comparably low error statistics. Still, even with 200-year long time series with a tail 
index greater than -0.1 the relative RMSEs of the POT/GPD approach are about 2/3 of those 
of the AM/GEV approach. We note that in our simulations the threshold in the POT/GPD 
approach was chosen automatically; if visual inspection or a formal method is used to choose 
the threshold the POT/GPD approach is expected to perform even better. 
 
Based on the results of this study, we recommend that the POT/GPD approach be used for 
the extreme value analyses required for the determination of HBC, irrespective of the basic 
variable being considered. Furthermore, we recommend that the GPD be estimated with the 
method of PWM. 
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A  Further details on the simulation of the time series 

A.1 GEV distribution 
 
The expressions for the mean and variance of a GEV random variable are given for example 
in Embrechts et al. (1997). From these expressions it is seen that the scale and location 
parameters that yield a GEV model with monthly variance 2

iS  and mean iM  are given by  
 

2 2

(1 2 ) 2 (1 )
i

i

S
 (1.1) 

 
and 
 

(1 )i
i iM . (1.2) 

 
The tU  variable falling in month i can then be transformed into a GEV variable with shape 
parameter , monthly variance 2

iS  and mean iM  by 
 

),,;(1
iitt UGV , (1.3) 

 
where ),;(1G  is the inverse of the GEV distribution function defined in Eq. (2.1). 

A.2 Gamma distribution 
 
The Gamma distribution has density function given by  
 

1

1( ; , ) , 0
( )

xx ef x x , (1.4) 

 

where , 0  and 1

0
( ) yy e dy  is the Gamma function. The subscript 1 in 1f  is  a  

reminder that this model has a type I tail. 
 
It can be seen from the expressions of the mean and variance of 1f  that in order that the 
Gamma distribution have variance 2

iS  and mean iM  the scale and shape parameters  and 
 must be set equal to 
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i
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and 
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2

2
i

i
i

M
S

. (1.6) 

 
The tU  data falling in month i can be transformed into a Gamma variable with monthly 
variance 2

iS  and mean iM  by 
 

),;(1
1 iitt UFV , (1.7) 

 
where 1

1 ( ; , )i iF  is the inverse of the Gamma distribution function with parameters i  

and i , given by  
 

1 10
( ; , ) ( ; , ) , 0

x

i i i iF x f y dy x . (1.8) 

A.3 Beta distribution of the first kind 
 
The Beta distribution of the first kind with a scale parameter 0  and shape parameters 

0  and 0  has density function given by 
 

1 1/ 1
1

3 1

( )( ) (1 )( ; , , ) , 0 ( ) ,
( , )
x xf x x

B
 (1.9) 

 

where 
1 1 1

0
( , ) (1 )a bB a b y y dy , , 0a b , is the Beta function. As the subscript in 3f  

indicates, this model has a type III tail. Indeed, the distribution function of the excesses from 
this Beta distribution above a threshold t  and normalized (i.e. divided) by ( ) 1g t t , 
which is given by 
 

3

3

1 ( ( ))1
1 ( )
F t xg t

F t
, (1.10) 

 

where 3 3 30
( ) ( ; , , ) ( ; , , )

x
F x F x f y dy  for 10 ( )x , converges, as 1( )t  

from the left, to 1/1 (1 )x , which is the distribution function of a GPD with shape 
parameter 0 . 
 
Moreover, as 0  from the left 3 ( ; , , )f  approaches the Gamma density 1( ; , )f , 
just as the GPD approaches the exponential distribution and the GEV approaches the 
Gumbel distribution. 
 
From the expressions of the mean and variance of 3f  it is seen that in order that the Beta 
distribution with fixed parameter  have variance 2

iS  and mean iM  its scale and shape 
parameters  and  must be set equal to 



 

 
14 December 2009, final 
 

 
A comparative simulation study of the annual maxima and the peaks-over-threshold methods 
 

A-3

2 2
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i
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i

M . (1.12) 

 
The tU  data falling in month i can thus be transformed into a Beta variable with a negative 
shape parameter , and monthly variance 2

iS  and mean iM  by 
 

),,;(1
3 iitt UFV , (1.13) 

 
where ),,;(1

3 iiF  is the inverse of ),,;(3 iiF , already defined above. 
 
For completeness, let us give an expression for ),,;(1

3F  that is useful in actual 
computations. The incomplete Beta function is a function of x  defined on the interval ]1,0[  by 
 

1 1

0
( , ) (1 )

x a b
xB a b y y dy  (1.14) 

 
for 0a  and 0b . Clearly, ),(),(1 baBbaB , i.e., the incomplete Beta function at 1x  
equals the (‘complete’) Beta function. For convenience, instead of ( , )xB a b  we shall consider 
in what follows its normalized version, namely ( , ) ( , ) / ( , )x xB a b B a b B a b , which is the Beta 
distribution function with parameters a  and b . The numerical computation of ),( baBx  is 
available in most mathematical software packages, including MATLAB. Its inverse function, 
defined for all y  in the interval [0, )  and denoted by 1( , )yB a b , is also available in such 

packages, so it is useful to know that 1
3 ( ; , , )F  can be expressed in terms of it as 

 
1 1 1

3 ( ; , , ) ( ) ( , 1 / )uF u B  for 0 1u . (1.15) 

A.4 Beta distribution function of the second kind with a scale parameter 
 
The Beta distribution of the second kind with a scale parameter 0  and shape parameters 

0  and 0  has density function given by 
 

1

2 1 1/

( )( ; , , ) , 0,
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xf x x
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 (1.16) 

 
The notation indicates that this model has a type II tail: the distribution function of the 
excesses from this distribution above a threshold t  and normalized by ( )g t t , namely 
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where 2 2 20
( ) ( ; , , ) ( ; , , )

x
F x F x f y dy  for 0x , converges, as t  to 

1/1 (1 )x , which is the distribution function of a GPD with shape parameter 0 . 
 
Moreover, as 0  from the right ),,;(2f  approaches the Gamma density 

),;(1f , just as the GPD approaches the exponential distribution and the GEV 
approaches the Gumbel distribution. 
 
From the expressions of the mean and variance of 3f  it is seen that in order that the Beta 

distribution of the second kind with fixed parameter  have variance 2
iS  and mean iM  its 

scale and shape parameters  and  must be set equal to 
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and 
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i
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 (1.19) 

 
The tU  data falling in month i can be transformed into a Beta variable of the second kind with 
a positive shape parameter , monthly variance 2

iS  and mean iM  by 
 

),,;(1
2 iitt UFV , (1.20) 

 
where ),,;(1

2 iiF  is the inverse of ),,;(2 iiF . As in Section A.3 above, it is 
convenient for purposes of numerical computations to know that this last function can be 
expressed in terms of the inverse of the normalized incomplete Beta function ),( baBx  as 
 

1 1
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 for 0 1u . (1.21) 
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B Report review 

B.1 Introduction 
 
Prof. Laurens de Haan was asked to review this report according to the following guidelines: 
 

The reviewer must write an English review covering the following aspects:  
 
• Are the background and objectives given in the report clear and unequivocal? 
• Is the chosen approach suitable to fulfil the objectives? 
• Are the objectives met? 
• Does the report provide the desired insight? 
• Are the results reasonably concrete and applicable? 
 

B.2 Review report 
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B.3 Reply to the review 
 
I am very grateful to Prof. Laurens de Haan for his review of a previous version of this report 
reproduced in the preceding section. His advice and suggestions have led to an improvement 
of the exposition and of the analyses presented in the report. Below a reply is given to his 
comments using the same headings. Adjustments carried out on an earlier version of the 
report motivated by the review are also described. His review also complements the analyses 
given in the report. 
 
§2 
 
Section 2.2.3 was added to address the first point, and the explanation around Eq. (2.6) was 
rewritten and expanded.  
 
§3 
 
Yes, in principle we could have also used ARMA processes with other marginal distributions. 
However, as far as stationarity properties and simulation we are really only familiar with 
Gaussian processes, and it would have taken me some time to find out the relevant 
properties of non-gaussian processes. The processes we have simulated are indeed 
stationary. 
 
Unfortunately, it is impossible to provide the average number of peaks for each month without 
redoing all the simulations, which would take me a considerable amount of time and would go 
beyond the time available for this project. However, as you say, the winter months dominate. 
 
The assumption of a single tail index for all months may not be completely realistic. The 
reason why I took a single tail index is that it facilitates the interpretation of the results; in 
particular, if we know that the tail index is, say, equal to 0.1, then we can compare our 
estimates of  with that number, while if the tail index varied we would only know that the 
estimates of  should be around some average of the different tail indices. However, it 
seems realistic to me that the extremes should be dominated by a single tail index, and the 
simulation is intended to approximate that situation. 
 
§4 
 
Table 5.7, showing the performance of the ML estimates, was added. 
 
§5 
 
The non-parametric estimators of the quantiles have been added to tables 5.1 and 5.5.  
 
FINAL COMMENTS 
 
As indicated in 4. above, the ML method was also considered in the case of the Gamma and 
Beta distributions. 
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APPENDIX 
 
We appreciate the new information provided on this topic. The results you mention are 
asymptotic, but they are of course qualitatively useful (e.g. no method is uniformly better then 
the other). Our conclusions in Chapter 4 have been updated in the light of your comments. 
 


