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Abstract 

The traditional Eulerian view of biomass in bioprocess modelling results in 

issues when modelling large-scale bioreactors in which heterogeneous 

conditions are common. As the field increasingly moves from “scale-up” to 

“scale-down” philosophy, in which such heterogeneities are included from 

the start of process design, accurate modelling of the biomass response 

to these varying conditions is essential. Euler-Lagrange (EL) simulations 

provide a means of modelling the microbial lifelines of cells traversing 

heterogenous conditions of a bioreactor. 

Lapin et al. were the pioneers of EL simulation in their 2004 paper where 

a metabolic model of glycolysis is coupled to a Lagrangian biomass phase.  

This BSc thesis focusses on reproducing their model using modern 

computational fluid dynamics (CFD) techniques. Specifically, by using a 

dynamic Lattice Boltzmann Method using Large Eddy Simulation model for 

CFD as opposed to a frozen-flow Finite Volume Reynolds Averaged Navier-

Stokes model. The resulting differences in the overall behaviour of the cell 

metabolism through the lens of glycolytic oscillations are discussed. In 

addition, possible pitfalls in model validity such as grid dependence, the 

effects of heterogeneous particle distributions and the effects of particle 

numbers were explored. The synchronisation and desynchronisation of 

glycolytic oscillations as observed in Lapin et al. 2004 were able to be 

reproduced. 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: CFD, Computational Fluid Dynamics; DRW, Discrete Random Walk; EL, Euler-Lagrange; FV, 

Finite Volume method; PRNG, Pseudorandom Number Generator; RANS, Reynolds Averaged Navier Stokes; 

LBM, Lattice Boltzmann Method; LES, Large Eddy Simulation  
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Introduction 
As the design philosophy behind industrial fermenters has increasingly 

shifted from a “scale-up” to a “scale-down” approach over the last 25 

years, the usage of computational fluid mechanics (CFD) for modelling 

large-scale reactor conditions has gained increasing attention. The 

seminal papers by Lapin et al. (2004, 2006) introduced an essential tool 

in these kind of large-scale bioprocess simulations by successfully 

implementing Euler-Lagrange (EL) methods for modelling the 

heterogeneous conditions experienced by micro-organisms and the 

resulting metabolic effects. Since the introduction of EL simulations, many 

optimisations for exploring the lifelines of cells through different metabolic 

regimes have been explored, such as arc-time and Fourier analysis 

(Haringa et al., 2016). However, a notable absence is literature concerns 

models like Lapin’s model, implementing metabolic network modelling and 

two-way coupling between a metabolic network and scalar concentrations 

in the Eulerian phase. Most models in literature rely on an implementation 

where the metabolic rates are purely dependent on the instantaneous 

scalar concentration using Monod kinetics, instead of the state of 

metabolic network as a result of the cell’s history (Haringa, Mudde, et al., 

2018), (Monod, 1949). 

The Finite Volume method using Reynolds Averaged Navier Stokes (FV 

RANS) are most often used to model the static flow fields for EL 

simulations. The advantage of using these steady state, frozen fluid 

models is the ability to keep computation times low. However, this comes 

at the cost of the absence of relevant dynamic phenomena such as 

macro-instability vortices which are relevant for computing accurate 

mixing times (Haringa, Vandewijer, et al., 2018a), (Haringa, Vandewijer, 

et al., 2018b). Dynamic FV RANS simulations which do include these 

phenomena are extremely computationally demanding with computation 

times on the order of weeks. 

An alternative to FV RANS is the Lattice Boltzmann Method (LBM). LBM 

can produce dynamic flow fields Large Eddy Simulations (LES) at similar 

computation times as static FV RANS simulations due to developments in 

parallel computing on Graphical Processing Units. Combined with the 

recent releases of both commercial and open-source software for LBM 

simulations, this has improved the ease of application in research 

significantly. Thus far, most research using LBM has focused on the study 

of transport phenomena due to the superior performance in modelling 

relevant dynamic phenomena in mixing and mass transfer. Studies 

applying 2-way coupled kinetic models in an LBM simulation have yet to 

emerge. 
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This bachelor thesis seeks to reproduce the results of Lapin et al. 2004 

using LBM simulation and to show that two-way coupled EL simulations 

with metabolic network simulation are feasible using this method. Lapin’s 

model explored reactor heterogeneity via glycolytic oscillations in yeast, 

which we shall attempt to replicate. We will compare the differences 

between the original model and LBM model in terms of both setup and 

results. We will also explore the pitfalls in model validity influencing the 

results, such as grid dependence, the effects of heterogeneous particle 

distributions and the effects of particle numbers.  
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Nomenclature 

Latin 

𝑎  PRNG multiplication parameter 

𝑎𝑟𝑔  Argument of complex number 

𝑐  Concentration, M 

𝐶𝑠  Smagorinsky coefficient 

𝑑  Diameter, m 

𝐷  Diffusion coefficient, m2 s-1 

𝐷𝑡  Eddy diffusivity, m2 s-1 

𝑒  Euler’s number 

𝑓  Particle distribution function 

�⃑�  External forces on fluid, N 

𝐻  Hilbert transform 

𝑖  Imaginary unit number 

𝑚  PRNG modulus parameter 

𝑀  Chemical amount, mol 

𝑁𝑝  Total number of particles 

𝑁𝑖𝑚𝑝  Impeller revolutions, RPM 

𝑁𝑠  No sampled particles 

𝑃  Impeller power, W 

𝑃𝐷𝐹  Probabilty density function 

𝑃𝑜  Power number 

𝑟  Distance between particles 

𝑟̅  Mean Nearest Neighbour distance 

𝑅  Kuramoto order parameter 

𝑅𝑒𝑖𝑚𝑝  Impeller Reynolds number 

𝑆̅  Filtered rate of strain 

𝑆𝑐𝑡  Turbulent Schmidt number 

𝑆𝑡𝑘  Stokes number 

𝑡  Time, s 

�⃑�  Phase space velocity 

𝑉  Volume, m3 

�⃑⃑�𝑡𝑖𝑝  Impeller tip velocity, m s-1 

𝑥  NADH signal, M 

𝑥  Hilbert transform of signal 

𝑥𝑎  Analytical signal 

𝑋𝑛  Pseudorandom number 

𝑋𝑠  PRNG seed 

 

Greek 

𝛿  Dirac delta function 

∆𝑥  Spatial resolution, m 

∆𝑡  Temporal resolution, s 

𝜈𝑡  Eddy viscosity, m2 s-1 

𝜌  Density, kg m-3 

𝜑  Phase 

Ω  Collision operator 

𝜔𝑖𝑚𝑝  Angular velocity impeller, s-1 

 

Other 

∇  Gradient 

∇ ∙  Divergence 

𝑑

𝑑𝑡
  Derivative in time 

𝜕

𝜕𝑡
  Partial derivative in time 

 

Subscripts 

ex  Extracellular 

f  Fluid 

imp  Impeller 

m  Intracellular 

p  Particle 

t  Turbulent 

x  Spatial 

ϵ  Energy dissipation 
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Literature & Methods 
 

Glycolytic oscillations 

The Embden–Meyerhof–Parnas glycolytic pathway is responsible for the 

conversion of glucose into pyruvate in many organisms. Glycolysis is 

common among many different species, having been conserved from 

bacteria all the way to humans. Certain conditions can induce oscillations 

in the glycolytic metabolic pathways (Bier et al., 2000). One particularly 

useful feature of these oscillations is that under certain conditions, groups 

of cells will synchronise their oscillations. This has been observed in 

everything from bacteria to the human pancreas (Schaefer et al., 1999), 

(Bertram et al., 2010). Glycolytic synchronisation is thought to be 

mediated via by-products of glycolysis such as acetaldehyde and pyruvate 

(Madsen et al., 2005). Yeast cells will tend to synchronise at high volume 

fractions with adequate mixing. Conversely, heterogeneity in the 

acetaldehyde / pyruvate concentration due to poor mixing and low 

volume fractions can lead to the desynchronisation of cell populations 

(Weber et al., 2012). Therefore, the glycolytic oscillations of yeast provide 

a good model for exploring reactor heterogenicity and therefore used as 

such in Lapin’s 2004 paper on the implementation of EL simulation. 

 

Lapin 2004 model 

The Lapin 2004 model uses a FV RANS model with a modified Chen-Kim 

k-ε turbulence model in the commercial CFD software PHOENICS to model 

the frozen flow field. The convective movement of the particles of the 

Lagrangian phase is modelled assuming that they are fully flow-following. 

On top of the convective movement in accordance with the frozen flow 

field, a discrete random walk (DRW) model is implemented to model 

effect of turbulent dispersion on the Lagrangian phase. It should be noted 

that the DRW model tends to produce unrealistically long residence times 

at the model boundaries. This resulted in a heterogeneous particle 

distribution of the Lagrangian phase as noted by Lapin et al. in a later 

paper (Lapin et al., 2006). 

In terms of scalar transport, the Reynolds assumption is used, meaning 

the turbulent Schmidt number 𝑆𝑐𝑡 is assumed to be at unity (equation 1). 

The Reynolds assumption tends to be an overestimation of Schmidt 

number which is generally between 0.1 and 1 in water-based systems 

(Gualtieri et al., 2017). Subsequently, the eddy diffusivity 𝐷𝑡 is 

underestimated resulting in slower turbulent diffusion.  
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(1)  𝑆𝑐𝑡 =  
𝜈𝑡

𝐷𝑡
= 1 

Lapin does not use a quantitative method to describe the degree of 

synchronisation, instead graphing the NADH concentrations over time and 

determining the degree of synchronisation and desynchronisation 

qualitatively. The desynchronised oscillations are not uniformly distributed 

judging by the NADH graph in figure 1. This indicates that only partial 

desynchronisation occurs in Lapin’s model. 

 

 

Figure 1. Synchronisation of the glycolytic oscillations with nonideal mixing. The intracellular NADH concentration is shown 
for 100 of the 105 simulated cells. (a) Disorganised oscillations 5 minutes after the start of the simulation with a 
desynchronised population at a stirring speed of Nimp = 165 RPM. (b) Synchronised oscillations after 70 min for the same 
settings. (c) Same simulation as in b, but after switching to a stirring speed of Nimp = 55 RPM at t = 80 min; a partial 
desynchronisation of oscillations is observed after 600 minutes. [Reprinted with permission from Lapin et al. Ind. Eng. Chem. 
Res. 2004, 43, 16, 4647–4656, Copyright © 2004 American Chemical Society.] 
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Current Model Implementation 

All simulations were performed in M-Star CFD version 3.7.64 (M-Star 

Simulations LLC) on a XEON-W2265 windows desktop using a NVIDIA 

RTX3090 24GB GPU and a TOSHIBA DT01ACA200 2TB HDD for storage. 

The baffled tank / stirrer geometry and fluid parameters (table 1) are 

based on Lapin et al. 2004 paper which are in turn based on experimental 

papers by Costes and Couderc (1982, pp. 25–34), (1988). A Rushton 

impeller was used to stir the tank. The fluid used is waterlike, thus the 

density and viscosity are set close to those of water and a Newtonian 

viscosity model was used. The initial fluid pressure is set to standard 

atmospheric pressure.  

Table 1. Tank geometry and fluid parameters used in simulations. The tank geometry was given by Costes and Couderc 
(1988). 

Parameter Value  Parameter Value 

Tank height 0.44 m  4 x baffles width 0.044 m 

Tank diameter 0.44 m  Fluid density 1000 kg m3 

Height of 

impeller above 

tank floor 

0.22 m  Fluid kinematic 

viscosity 

10-6 m2 s-1 

Impeller 

diameter 

0.147 m  Initial fluid 

pressure 

101325 Pa 

 

Lattice Boltzmann Method & Large Eddy Simulation 

The basis of the LBM is the Boltzmann transport equation. This equation 

ties a molecular probability density function 𝑓 of the fluid to the phase 

space velocity 𝑣, external forces �⃑� and the collision parameter Ω according 

to equation 2. This statistical fluid description contrasts with the 

traditional Navier-Stokes equations describing fluid motion. 

(2)  
𝜕𝑓

𝜕𝑡
+ 𝑣∇𝑥𝑓 +  �⃑�∇�⃑⃑�𝑓 = Ω(𝑓, 𝑓) 

Discretising the control volume into a discrete phase space lattice and 

finding a suitable collision operator (D3Q19 discretisation and BGK 

operator in this case) allows the formula to be solved numerically. For 

further details regarding the LBM, refer to M-Star’s documentation (M-

Star Simulations LLC, 2022) or Krüger et al.’s book on the subject (2006). 

The local fluid density is calculated from the molecular PDF 𝑓. Inadequate 

simulation settings can result in non-physical fluctuations in local fluid 

density, whereas a constant density is expected due to the incompressible 

nature of water-like fluids. To restrict local density fluctuation to a 

maximum of 1% a Courant number (equation 3) of 0.05 is chosen 

(Thomas et al., 2021), (Haringa, 2022). 
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(3)  𝐶𝑜 =  �⃑⃑�𝑡𝑖𝑝
∆𝑡

∆𝑥
= 0.05 

A Large Eddy Simulation (LES) turbulence model is applied to the 

simulation according to equation 4 with a Smagorinsky coefficient 𝐶𝑠 of 

0.1 (Gillissen & Van den Akker, 2012). LES adds the unresolved 

turbulence effects through modelling the sub-grid local eddy viscosity 𝜈𝑡 

as a function of the filtered rate of strain 𝑆̅. 

(4)  𝜈𝑡 = (𝐶𝑠∆𝑥)2𝑆̅ 

The sub-grid local eddy viscosity is added to the molecular viscosity to 

account for the effects of unresolved eddies with length scales smaller 

than the simulation resolution on the flow dynamics (Pope, 2000). Though 

these unresolved eddies also affect mass transfer via a sub-grid local 

turbulent diffusion coefficient 𝐷𝑡, this effect is not modelled in M-Star’s 

implementation of LES according to communications with M-Star 

Simulations LLC. 

 

M-Star CFD configuration 

The LBM uses a Cartesian grid; thus, any curved geometries lead to stair-

stepping. This can lead to artificial flows near the geometry. Boundary 

interpolation schemes improve model accuracy especially at lower 

resolutions by mitigating the stair stepping of the lattice grid (Osaki et al., 

2021). Therefore, the baffled tank geometry employs M-Star’s 

interpolation scheme as opposed to being aligned to the Cartesian lattice. 

The vessel walls are no-slip surfaces except the top surface which is a 

free-slip surface. The top being a free-surface simulates the negligible 

friction of the air-water interface. Not resolving the free surface reduces 

the computational costs, while having little effect on model accuracy 

(Nagaosa, 1999). Moving bodies are accounted for using the immersed 

boundary method with a no-slip boundary condition. 

The biomass phase is modelled using a Lagrangian approach as is the 

basis of EL simulations. Therefore, the cells are modelled as virtual 

particles representing a collection of cells which are referred to as parcels. 

In this text, parcel and particle will be used interchangeably. The biomass 

phase was implemented using the Solids object in M-Star. A Tracer object 

is preferred; however, M-Star does not support on particle reactions on 

massless tracers at this time. To approach massless behaviour with the 

inertial particle approach, the particle density 𝜌𝑝 was set at 1000 kg m-3, 

equivalent to the surrounding fluid, and buoyancy / gravity forces were 

disabled. 
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The metabolic network is implemented with the OnParticleReaction object 

containing the metabolic equations which compute the metabolic rates, 

with each intracellular species being ReactionSpecies objects contain the 

concentrations. Since this study focuses on the synchronisation of 

metabolic oscillations, the parcel population must initialise in 

heterogeneous metabolic state. In accordance with Lapin 2004, the 

metabolic species concentrations of the parcels are set to a uniform 

distribution between zero and twice the mean concentration found on the 

oscillatory solution. The mean initial values are shown in table 2. 

Table 2. Initial values for the intracellular reaction species for a point on the oscillatory solution corresponding to Table 3 as 
given by Lapin et al. 

Variable Value  Variable Value 

Glucose 1.023 mM  Acetaldehyde 
/ Pyruvate 

1.094 × 10-1 mM 

G3P/DHP 6.696 × 10-1 mM  NADH 1.624 × 10-1 mM 

1,3-BPG 7.194 × 10-2 mM  ATP 1.250 mM 

 

However, since the ReactionSpecies are initialised at the same value for 

all parcels, a User Defined Function and pseudorandom number generator 

(PRNG) were required to set the random individual initial values. A PRNG 

is not a native feature in the M-Star User Defined Function API. The 

position of the particles at initialisation is random, therefore the position 

of the particle is used as a source of entropy for the PRNG. 

First, the particle position in the x dimension is converted bitwise from a 

floating-point number to a 32-bit unsigned integer 𝑋𝑠. Subsequently, this 

integer is used as a seed for a cubic congruential generator (equation 5) 

which is normalised to produce a pseudorandom number 𝑋𝑛 ∈ [0, 1) 

(Eichenauer-Herrmann & Herrmann, 1997). This is repeated for the 

particle position in every dimension.  

(5)  𝑋𝑛 =
(𝑎𝑋𝑠)3 𝑚𝑜𝑑 𝑚

𝑚
 

  𝑎 = 15,485,863; 

𝑚 = 214,748,368 

The modulus variable 𝑚 was chosen for being close to 
1

20
 of the maximum 

value of the 32-bit unsinged integer datatype and for being able to be 

stored in a single float. In hindsight, needing a modulus operator is 

unnecessary due to the overflow of the 32-bit unsigned integer having the 

same effect as a modulus operator. In fact, 𝑚 needing to be close to an 

integer fraction of the maximum datatype value was a result of the 

modulus effects of overflow. Besides, due to limitations in float precision, 
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this approximate fraction leads to rounding errors as seen by increased 

probability densities around 0 and 1. 

It should be noted that the cubic congruential generator was chosen for 

ease of implementation and low computational burden, not quality of 

randomness. However, poor quality randomness affecting the results is 

unlikely, owing to the chaotic movement of particles through the turbulent 

flow. The uniformity of the PRNG is depicted in figure 2. The distribution is 

statistically uniform as shown by a Kolmogorov-Smirnov test with 0.0505 

as the p-value. 

 

Figure 2. Output of the pseudo-random number generator compared to a uniform distribution. The Kolmogorov-Smirnov 
test results in a p-value of 0.0505. 

The metabolic network is based on the Yeast-Cell-Ensemble model by Wolf 

and Heinrich (2000) and Henson et al. (2002). The model has a constant 

glucose flux 𝐽0 into the cell and a variable acetaldehyde / pyruvate flux 𝐽𝑚 

based on concentrations either side of the cell membrane. The metabolic 

equations used in the model are labelled equations 6 and 7. The kinetic 

parameter values are shown in table 3. Notably, the model is based on a 

simplified glycolysis metabolic network. The kinetic parameters were 

chosen with the express purpose to produce glycolytic oscillation and are 

not based on experimental measurement of yeast glycolytic metabolism. 

The code of the metabolic network can be found in appendix 1. Due to the 
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non-linear nature of the metabolic equations, the RK4 integration method 

is used. 

(6.1)  𝑟1,𝑚 = 𝑘1𝑐𝐺𝑙𝑢,𝑚𝑐𝐴𝑇𝑃,𝑚 [1 + (
𝑐𝐴𝑇𝑃,𝑚

𝐾𝐼
)

𝑄

]
−1

 

(6.2)  𝑟2,𝑚 = 𝑘2𝑐𝐺3𝑃,𝑚(𝑐𝑁𝐴𝐷𝐻,𝑡𝑜𝑡𝑚 − 𝑐𝑁𝐴𝐷𝐻,𝑚) 

(6.3)  𝑟3,𝑚 = 𝑘3𝑐𝐵𝑃𝐺,𝑚(𝑐𝐴𝑇𝑃,𝑡𝑜𝑡𝑚 − 𝑐𝐴𝑇𝑃,𝑚) 

(6.4)  𝑟4,𝑚 = 𝑘4𝑐𝐴𝑃,𝑚𝑐𝑁𝐴𝐷𝐻,𝑚 

(6.5)  𝑟5,𝑚 = 𝑘5𝑐𝐴𝑇𝑃,𝑚 

(6.6)  𝑟6,𝑚 = 𝑘6𝑐𝐺3𝑃,𝑚𝑐𝑁𝐴𝐷𝐻,𝑚 

 

(7.1)  
𝑑𝑐𝐺𝑙𝑢,𝑚

𝑑𝑡
= 𝐽0 − 𝑟1,𝑚 

(7.2)  
𝑑𝑐𝐺3𝑃,𝑚

𝑑𝑡
= 2𝑟1,𝑚 − 𝑟2,𝑚 − 𝑟6,𝑚 

(7.3)  
𝑑𝑐𝐵𝑃𝐺,𝑚

𝑑𝑡
= 𝑟2,𝑚 − 𝑟3,𝑚 

(7.4)  
𝑑𝑀𝐴𝑃,𝑚

𝑑𝑡
= 𝑉𝑝

𝑑𝑐𝐴𝑃

𝑑𝑡
= 𝑉𝑝(𝑟3,𝑚 − 𝑟4,𝑚 − 𝐽𝑚) 

(7.5)  
𝑑𝑐𝑁𝐴𝐷𝐻,𝑚

𝑑𝑡
= 𝑟2,𝑚 − 𝑟4,𝑚 − 𝑟6,𝑚 

(7.6)  
𝑑𝑐𝐴𝑇𝑃,𝑚

𝑑𝑡
= −2𝑟1,𝑚 + 2𝑟3,𝑚 − 𝑟5,𝑚 

 

Table 3. Kinetic parameter values as given by Lapin et al. after the Yeast-Cell-Ensemble model by Wolf and Heinrich and 
Henson et al. An error in the units of k4 has been corrected. 

Parameter Value  Parameter Value 

𝐽0 2.30 mM min-1  𝑘 1.30 min-1 

𝑘1 100 mM-1 min-1  𝜅 50.0 min-1 

𝑘2 6.00 mM-1 min-1  𝑄 4.00 
𝑘3 16.0 mM-1 min-1  𝐾𝐼 0.520 mM 
𝑘4

 100 mM-1 min-1  𝑐𝑁𝐴𝐷𝐻,𝑚𝑡𝑜𝑡 1.00 mM 

𝑘5 1.28 min-1  𝑐𝐴𝑇𝑃,𝑚𝑡𝑜𝑡 4.00 mM 

𝑘6 12.0 mM-1 min-1  
 

The extracellular concentration of acetaldehyde and pyruvate 𝑐𝐴𝑃,𝑒𝑥 is 

represented using a Scalar object and set at 8.419 × 10-2 mM. The 

molecular diffusion coefficient 𝐷 is left at the default 10-9 m2 s-1 as this is 

within the general order of magnitude for dilute solutes and the exact 

value is irrelevant under turbulent conditions. The degradation of 
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acetaldehyde / pyruvate is implemented using a Reaction object with the 

Euler integration method since this is adequate for the first-order 

reaction. The scalar transport through the cell membrane and the 

extracellular breakdown at any location in the control volume �⃑� occur 

according to equations 8 and 9. The transport of the scaler due to fluid 

motion is governed by the convection-diffusion equation (equation 10) 

with a Van Leer flux limiter to prevent numerical dispersion. The sink term 

𝑆 represents the reaction term at that location in the control volume. 

(8)  𝐽𝑚 = 𝜅(𝑐𝐴𝑃,𝑚 − 𝑐𝐴𝑃,𝑒𝑥) 

(9)  
𝑑𝑐𝐴𝑃,𝑒𝑥

𝑑𝑡
= −𝑘𝑐𝐴𝑃,𝑒𝑥 + ∑ 𝑉𝑝,𝑚𝐽𝑚𝛿(�⃑� − �⃑�𝑗)

𝑁𝑝

𝑚 = 𝑆(�⃑�) 

(10)  
𝜕𝑐

𝜕𝑡
= ∇ ∙ (𝐷∇𝑐) − ∇ ∙ (𝑣𝑐) + 𝑆 

 

Kuramoto model 

The Kuramoto model, first introduced by Shinomoto and Kuramoto, can 

be used to quantitatively describe the synchronisation of oscillators via 

the order parameter 𝑅 described by equation 11 (1986). The order 

parameter approaches 1 as the oscillations increasingly synchronise and 

is close to 0 when the oscillators have uniformly distributed random 

phases.  

(11)  𝑅(𝑡) =
1

𝑁𝑠
|∑ 𝑒𝑖𝜑𝑗(𝑡)𝑁𝑠

𝑗 | 

Research by A. Weber et al. has applied this model to glycolytic 

oscillations in yeast before to study glycolytic synchronization and 

desynchronization by looking at NADH fluorescence (2012), (2020). 

The instantaneous phase is required to compute the order parameter. 

Hence, the intracellular NADH concentration over time was exported from 

the simulations. A representative sample of 250 parcels is taken. The 

mean is subtracted from the signal to remove the zero-frequency 

component. A Fourier band pass filter is used to extract the fundamental 

frequency of the NADH signal and eliminate higher frequency harmonics 

which can influence the instantaneous phase of the signal. The signal is 

padded on both sides with zeros for one signal length due to the discrete 

nature of the transform. 

The instantaneous phase 𝜑(𝑡) of the glycolytic oscillations is found by 

taking the argument of analytical signal 𝑥𝑎(𝑡) computed using the SciPy 

Hilbert transform function from the filtered signal 𝑥(𝑡) (equations 12). The 

full data analysis code can be found in appendix 4. 
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(12.1)  𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑖�̃�(𝑡) 

(12.2)  �̃�(𝑡) =  𝐻[𝑥(𝑡)] 

(12.3)  𝑥𝑎(𝑡) = 𝑥𝑚(𝑡)𝑒𝑖𝜑(𝑡) 

(12.4)  𝜑(𝑡) = 𝑎𝑟𝑔 [𝑥𝑎(𝑡)]  

The cell population will be defined as synchronised when the rank order 

parameter 𝑅 exceeds 0.8, below this value the population is either 

partially (𝑅 >  0.4) or totally desynchronised (𝑅 ≤  0.4) (Weber et al., 

2020). 

 

Experimental overview and parameters 

The research aim of this thesis is to reproduce the results of Lapin et al. 

2004 using LBM simulation and to show that two-way coupled EL 

simulations with metabolic network simulation are feasible using this 

method. 

First, the physical validity of the LBM LES simulation will be established by 

comparing the power number to literature results at various resolutions. 

It should be noted that while the resolution-independent power number is 

useful for establishing the physical validity of the model, simulations do 

not have to be run at such high resolutions. Lower resolutions can be 

used so long as flow-behaviour is good.  

Furthermore, the variables affecting particle distribution will be 

investigated. Due to software limitations in M-Star, inertial particles must 

be used. Particle accumulation due to their inertia must be avoided, since 

inertial particles are not necessarily flow-following like the particles used 

in Lapin’s model (Henríquez Lira et al., 2021). Though a follow-up paper 

by Lapin et al. in 2006 showed that some amount of accumulation does 

occur due to flaws in the DRW turbulence model. 

Finally, the factors affecting synchronisation and desynchronisation of the 

simulated glycolytic oscillations will be determined and compared to 

Lapin’s original model. 

The tables below are used as reference for the various simulations with 

the adjusted parameters. Each table-based grouping of cases has an 

associated base case description. Simulation resolution is defined as the 

number of spatial subdivisions. 
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Table 4. Simulation parameter for power number determination. 

 Resolution 

Case [-] 

PO50 50 

PO100 100 

PO150 150 

PO200 200 

PO250 250 

PO300 300 

PO350 350 

 

For the power number determination, the simulation was run for 90 

seconds with a stirring speed of 55 RPM. The first 45 seconds allowed for 

the fluid to attain steady state in terms of kinetic energy. No parcels were 

included in these simulations to reduce computations times. The averages 

of the dissipation rate and impeller power are taken over the final 45 

seconds to establish the average power consumption in steady state. 

The Stokes number simulations were run for 90 seconds at a resolution of 

100 subdivisions with varying stirring speeds, particle diameters and 

particle densities. The fit of the particle distribution at 90 seconds is 

taken. The metabolic model is disabled to reduce computation times of 

these simulations. Due to the large number of simulations, the tabular 

data can be found in appendix 2. 

Table 5. Simulation parameters for synchronisation and desynchronisation. Blue indicates injection number scaling. 

 Run 

time 

Resolution Stirring 

speed 

Particle 

diameter 

Parcel number 

Case [s] [-] [RPM] [mm] [-] 

D 1 - 4 1500 50 - 200 18.333 5 105 

D 5 - 8 1500 50 - 200 55 5 105 

INS 1-4 1500 100 1.833 - 55 0.5 105 (× 1000) 

PN 1 1500 100 18.333 2.5 1.25 × 104 (× 64) 

PN 2 1500 100 18.333 2.5 105 (× 8) 

PN 3 1500 100 18.333 2.5 8 × 105 

LONG18 3600 100 18.333 0.5 105 

LONG55 3600 100 55 0.5 105 

 

The synchronisation and desynchronisation of the parcels were studied 

under a range of conditions as described by table 5. These simulations 

generally have a computation time of about an hour to a day depending 

on resolution and the number of resolved particles. For higher resolutions, 

storage speeds quickly become the limiting factor. 
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One requirement to be able to compare the various results is a constant 

volume fraction of parcels. In all simulations with the metabolic model 

enabled, the volume fraction is set at 0.1. Reducing the particle diameter 

would result in a reduction in the volume fraction. Either increasing the 

number of particles or using the injection number scaling functionality in 

M-Star can be utilised to counteract this issue. Injection number scaling 

like the parcel approach described earlier, where one virtual particle 

represents several real particles represented by the scaling number. All 

metabolic rates can subsequently be multiplied by this scaling factor when 

coupling to the extracellular scalar. 

When injection number scaling is used, it is necessary to decrease the 

time step size to maintain the numerical stability of the metabolic 

network, especially at slower stirring speeds. This contrasts with a 

previous hypothesis as to the cause of this numerical instability. It was 

thought that the metabolic and coupling rates would become sufficiently 

small for the single-precision floating point numbers used in GPUs to start 

causing floating point errors. However, the expectation would be that 

smaller time step sizes would worsen the numerical instability, since 

reducing the time step size results in smaller rates. Thus, further research 

as to the cause of this instability is required. The associated lowered 

Courant numbers for the injection number scaled simulation are shown in 

table 6. 

Table 6. Courant numbers used for simulations using injection number scaling. 

 Stirring speed Courant number 
Case [RPM] [-] 

INS 1 1.833 0.0005 

INS 2 5.5 0.005 

INS 3 18.333 0.01 

INS 4 55 0.05 
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Results & Discussion 
 

Model validation 

Numerical testing of CFD models is essential to verify whether the 

applicable physics are valid. The magnitude of the heterogeneities in the 

bioreactor are dependent on the mixing and thus the impeller action. 

Verifying the physical validity of the impeller is done via comparing the 

convergent / grid-independent impeller power number to literature 

values. The dimensionless power number 𝑃𝑜 of the impeller is known to 

be 5.7 for turbulent conditions for 𝑅𝑒𝑖𝑚𝑝 > 20,000 (Costes & Couderc, 1982, 

pp. 25–34). Turbulent conditions are defined according to the impeller 

Reynolds number 𝑅𝑒𝑖𝑚𝑝 (equation 13). The power numbers can be 

computed either from the torque on the impeller 𝑃𝑖𝑚𝑝 or the total power 

dissipation 𝑃𝜖 using equation 14. The power values themselves are 

obtained from M-Star, which computes the force balance on the impeller 

and integrates the local power dissipation rates over the entire control 

volume. The power values are the average impeller torque power and 

total power dissipation over 45 seconds after the fluid’s kinetic energy is 

allowed to achieve steady state. 

(13)  𝑅𝑒𝑖𝑚𝑝 =
𝑁𝑖𝑚𝑝𝑑𝑖𝑚𝑝

2 𝜌𝑓

𝜇𝑓
 

(14)  𝑃𝑜𝑖𝑚𝑝 =  
𝑃𝑖𝑚𝑝

𝜌𝑓𝑁𝑖𝑚𝑝
3 𝑑𝑖𝑚𝑝

5    or   𝑃𝑜𝜖 =
𝑃𝜖

𝜌𝑓𝑁𝑖𝑚𝑝
3 𝑑𝑖𝑚𝑝

5  

As shown in figure 3, the power number based on the energy dissipation 

𝑃𝑜𝜖 converges to the literature value, being within 5% for resolutions 

above 200. Notably, for higher resolutions the power number based on 

the impeller torque power input 𝑃𝑜𝑖𝑚𝑝 increasingly underestimates the 

power number resulting in a deviation from the dissipation-based power 

number. This is contrary to what is observed using FV LES simulation, 

which instead show 𝑃𝑜𝜖 underestimating experimentally derived power 

number by a significant amount (Sommerfeld & Decker, 2004), (Yapici et 

al., 2008). Tabular data is available in appendix 2. 
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Figure 3. The power number based on the impeller power input (blue cirlces) and the energy dissipation (orange triangles) 
over the resolution derived from simulations PO1-7. The gray dashed line indicates the reported literature value (5.7) for 
this reactor by Costes and Couderc. Stirring speed at 55 RPM, resulting in Reimp ≈ 20,000. 

Due to time limitations, a resolution of 100 was chosen for most 

simulations. While less accurate in terms of the simulated turbulence, the 

overall flow field is deemed sufficiently high resolution to simulate particle 

movement. 

 

Particle distribution 

Microbial cells can be considered massless flow-following particles due to 

their small size, low mass, and neutral buoyancy. This assumption was 

also used by Lapin et al. However, due to software limitations within M-

Star, particles with mass are required to be able to implement the 

metabolic network model. Consequently, the resulting inertial particles 

are not per definition flow following as opposed to tracer particles. 

The degree of flow following can be quantified via the Stokes number 𝑆𝑡𝑘, 

which is defined as the ratio between the characteristic relaxation time of 

the particle as governed by inertia and the characteristic time scale of 

fluid flow. Particles with a Stokes number above unity show inertial 

behaviour and hence do not conform to local flow field. 

The uniformity of particle distribution in isotropic turbulence is highly 

dependent on the Stokes number (Eaton & Fessler, 1994). The particle 

distributions in vortices become highly non-uniform when the Stokes 

number using the characteristic time of vortex is close to unity. This was 

shown in research by R.C. Hogan and J.N. Cuzzi by comparing the 

simulated particle distribution to the expected uniform particle distribution 

at various Stokes numbers (2001). M-Star has inbuilt particle distribution 

data calculations which include a goodness of fit model for the distribution 

of the Nearest-Neighbour distances against the uniform distribution (M-
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Star Simulations LLC, 2022). The uniform distribution has a probability 

density function 𝑃𝐷𝐹(𝑟) based the mean distance 𝑎 as shown in equations 

15. 

 (15.1) �̅� = (
3𝑉𝑓

4π𝑁𝑝
)

1

3
 

(15.2) 𝑃𝐷𝐹(𝑟) =
3

�̅�
(

𝑟

�̅�
)

2

[1 − (
𝑟

�̅�
)

3 1

𝑁𝑝
]

𝑁𝑝−1

 

Furthermore, inertial centrifugal movement of the particles at high Stokes 

numbers in curved pipes has been shown to cause accumulation at the 

tube walls when using the primary centrifugal time scale 𝑡𝜔 (Henríquez 

Lira et al., 2021). Similar accumulation at the tank walls in the stirred 

tank reactor at high Stokes numbers can be shown by looking at the 

volume fraction compared to the expected volume fraction of 0.1 and the 

distribution of nearest neighbour distances in relation to the expected 

distribution. Conversely, such accumulation is absent when smaller 

particle sizes are used resulting in lower Stokes numbers (figure 4). 

 

Figure 4. Volume fraction and nearest-neighbor distribution of the particles in a waterlike fluid. Top: particle diameter 5 
mm, Nimp 18.333 RPM. Bottom: particle diameter 0.5 mm, Nimp 18.333 RPM. The resolution of the simulations was 100. 

The primary centrifugal Stokes number is calculated using equation 16. 

The characteristic fluid time is the inverse of the angular velocity of the 

impeller. 

(16)  𝑆𝑡𝑘𝜔 =
𝑡𝑝

𝑡𝜔
=

𝜌𝑝𝑑𝑝
2 𝜔𝑖𝑚𝑝

18𝜇𝑓
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Assuming both the non-uniformity with a Stokes number close to unity 

and the wall accumulation are effects present in the simulations. The 

expectation is for the particle distribution to be highly non-uniform when 

the Stokes number is at and above unity and increasingly uniform when 

Stokes numbers is below unity. 

First, the M-Star fit value after 90 seconds of simulation is inverted and 

normalised so that 1 is defined as the fit at 𝑆𝑡𝑘𝜔 = 1 and 0 is the fit of a 

uniform particle distribution. The normalised fit is plotted against the 

Stokes number in figure 5. Poor distribution occurs at a Stokes number 

around and above unity and better distribution at Stokes numbers below 

unity which is in line with expectation. Tabular data is available in 

appendix 3. 

 

Figure 5. The primary centrifugal Stokes number against the normalized fit with the ideal particle distribution. Fit is 
normalized by defining the fit as 1 at Stkω = 1. The resolution of the simulations was 100. 

The particle distribution can thus be made more uniform via reducing the 

primary centrifugal Stokes number through lowering the particle density, 

particle diameter or reducing the stirring speed. Care should be taken 

when reducing particle diameter to maintain a constant volume fraction. 

This may be accomplished by applying injection number scaling as stated 

previously. 

One issue faced when comparing our results to those of Lapin 2004, is 

that the particles are not uniformly distributed in the original model as 

addressed in Lapin’s 2006 paper. The DRW model used in the original 

paper results in unrealistically long residence times near the tank walls 

(Lapin et al., 2006). This implies a higher particle concentration near the 

tank walls in the 2004 model, though Lapin did not plot the particle 

distribution. Consequently, the metabolic rates coupled to the scalar are 
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heterogeneously distributed. This may lead to a more heterogenous scaler 

distribution, which would in turn affect parcel synchronisation. 

 

Synchronisation and desynchronisation 

Simulations were run with various simulation parameters as shown in the 

methods section to identify the conditions necessary for synchronisation 

and desynchronisation. 

 

Figure 6. The intracellular NADH concentrations of 250 sampled cells over time. Top subfigure depicting the unsynchronized 
glycolytic of simulation LONG55 during the first 5 minutes. Middle subfigure containing the synchronised oscillations after 
55 minutes of simulation LONG55. Bottom subfigure depicting the desynchronised oscillations after 55 minutes of 
simulation LONG18. 

A stirring speed of 55 RPM appears to be sufficient to cause 

synchronisation of the glycolytic oscillations (figure 6) contrary to the 

original model by Lapin where 55 RPM resulted in desynchronisation, and 

165 RPM was used to attain synchronisation. This is supported by plotting 

the rank order parameter 𝑅 over time (figure 7). Several effects could be 

responsible for the faster synchronisation in the LBM model, including the 

different turbulence models LES and RANS affecting scalar transport and 

the differing particle distributions. Reducing the stirring speed by a third 

to 18.333 RPM results in a varying degree of desynchronisation apart 
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from the model using a resolution of 50. Desynchronisation appears to be 

strongly grid dependent as at higher resolutions the particles 

desynchronise far more readily. 

 

Figure 7. Phase-coherence in the form of the Kuramoto order parameter over time at different resolutions [dx] and stirring 
speeds [RPM]. 

Reducing the particle size using injection number scaling results in a more 

uniform particle distribution as shown previously. This results in requiring 

far slower stirring speeds to attain desynchronisation as shown in figure 

8. This indicates that non-homogeneous particle distribution is essential 

to allowing desynchronisation in the LBM model. This effect can be 

explained by the spatially heterogenous metabolic rates leading to a 

heterogeneous scalar concentration. Parcels will desynchronise more 

readily, due to being exposed to these heterogenous conditions. The 

implication is that the flawed particle distribution because of the DRW 

turbulence model may have been essential to achieving the results 

presented in the original Lapin paper. Moreover, the particle distribution 

being a dominant effect can explain the differences in required stirring 

speed for desynchronisation detailed previously. 
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Figure 8. Phase-coherence in the form of the Kuramoto order parameter over time at different stirring speeds using 
injection number scaling. The resolution of the simulations was 100. 

The strong grid dependence of synchronisation is an interesting 

unexplained effect. The current hypothesis is based on a paper by Haringa 

et al. describing setup guidelines for EL simulations (2017). Specifically, 

deriving a relationship between the resolution of the Eulerian phase 

through grid cell volume and the number of parcels in the Lagrangian 

phase. 

If the overall metabolic rates are kept constant while the number of 

particles is reduced, the instantaneous biomass concentration and 

consequently the local scalar concentration will start to deviate 

significantly from the surrounding medium. This Lagrangian heterogeneity 

is essentially equivalent to running the simulation at too low a 

“Lagrangian resolution”. As a result, from the perspective of the simulated 

parcel, it may experience artificial scalar concentrations leading to 

spurious deviations in the metabolic network state. Running simulations 

at higher Eulerian fluid resolutions results in a smaller volume at any 

specific lattice point or grid cell. Thus, the instantaneous scalar at the 

parcel location will deviate more readily. 
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The hypothesis is that higher fluid resolutions and lower particle numbers 

will result in larger deviations in the local scalar concentration which 

would shield the parcels from the overall bulk fluid scalar concentration. 

As a result, one would expect to observe the parcels desynchronise more 

readily. To test this hypothesis, particle numbers are varied by a factor of 

8, while particle diameter and metabolic rates are kept constant using 

injection number scaling. The expectation is that reducing the number of 

parcels will result in faster desynchronisation. 

 

Figure 9. Phase-coherence in the form of the Kuramoto order parameter over time with different numbers of parcels Np. The 
resolution of the simulations was 100 subdivisions. 

The expected decrease in synchronisation for lower parcel numbers is not 

observed as illustrated by figure 9. The case with a strongly reduced 

parcel number PN 1 produces only slightly lower synchronisation than the 

fully resolved simulation PN 3 and the results for PN 1 are far closer to the 

fully resolved simulation than the intermediate simulation PN 2. One 

possible explanation for the absence of expected particle number effect is 

the non-uniform particle distribution. The shielding effect may be strongly 

diminished due to the accumulation of parcels at the tank walls since the 

average distances between parcels are considerably reduced. Additional 

research into the relationship between the fluid resolution and particle 

number is required. 
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Conclusion 

To conclude, the goal this Bachelor thesis was to reproduce the results of 

Lapin et al. 2004 using LBM simulation and to show that two-way coupled 

EL simulations with metabolic network simulation are feasible using this 

method. Furthermore, we discussed and attempted to explain the 

differences between the original model and LBM model in terms of both 

setup and results. We also explored the pitfalls in model validity 

influencing the results, such as grid dependence, the effects of 

heterogeneous particle distributions and the effects of particle numbers. 

The comparison between literature data on the reactor vessel and the 

simulated vessels using power numbers demonstrates that our model can 

produce sufficiently physically accurate results in terms of fluid 

mechanics. 

A non-homogenous particle distribution appears to be an important factor 

in causing the heterogeneities responsible for desynchronisation. The 

unintentional heterogeneity of particle distribution using the DRW 

turbulence model may have played an important role in the results 

reported by Lapin et al. The particle distribution can be correlated with 

the primary centrifugal Stokes number showing that lower Stokes 

numbers result in less heterogeneity due to less accumulation of particles 

at the vessel walls. 

Slower stirring speeds are required to observe the same 

desynchronisation as seen in Lapin 2004. Once it is observed, it is 

strongly grid dependent. As stated previously, the synchronisation and 

desynchronisation rates of the parcels appear to be strongly influenced by 

the non-uniform particle distribution. This appears to be the factor 

responsible for the differences between the two models. Though the 

differences in turbulence models for scalar transport in the form of the 

Reynold’s assumption may also play a role. 

Further investigations into resolution effects of the Lagrangian phase by 

changing the particle numbers did not yield conclusive results. A possible 

explanation for these results is the non-uniform particle distributions 

within the LBM model. This invites further research into particle number 

requirements for valid EL simulation using LBM, like the research 

performed for FV RANS models (Haringa et al., 2017). 

Overall, we were able to reproduce the synchronisation and 

desynchronisation of glycolytic oscillations based on stirring speed as 

observed in Lapin et al. 2004 using EL methods in an LBM LES model. 
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Recommendations 

Fundamentally, Lapin’s model is difficult to validate. The kinetic 

parameters of the metabolic network are not based on experimental data. 

The properties of the flow field are also not verified via comparisons to 

experimental data. As a result, comparisons of the LBM model to 

experimental data are also limited. Lapin et al. 2006 provides a similar 

model more grounded in experimental data and would therefore serve as 

a better model in terms of validation using experimental data. Such a 

model could be readily implemented by building on top of this study’s 

existing model.  

Furthermore, new research could focus on additional simulations and 

experimental validation of the relation between the Stokes number and 

particle distribution in stirred tank reactors. Other characteristic fluid 

times, such as the circulation time, can be explored to see whether they 

improve the degree of correlation (Henríquez Lira et al., 2021). Likewise, 

researching the effect of a heterogeneously distributed Lagrangian 

microbial phase may provide useful insights in research concerning non-

uniform biomass distribution such as granular sludge reactors. 

As stated previously, the establishment of proper setup guidelines for LBM 

LES simulations to address the issues of grid dependence are essential for 

physically valid results, like the research performed for FV RANS models 

(Haringa et al., 2017). Glycolytic oscillations in yeast do not necessarily 

inspire further research as they do not appear to be relevant in bioprocess 

engineering yet do provide an interesting model for reactor heterogeneity. 

On the other hand, the use of LBM in EL simulations and “scale-down” 

design is very promising as has been demonstrated by this study. The 

ability to run a two-way coupled EL simulation with a dynamic flow field in 

only about a day, even at relatively high resolutions, is extremely useful 

in both research and industrial application. 
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Appendices 
1. Metabolic Network code 

//Ordered the same way as Lapin 2004 

 

//Initilisation constant for Acetaldehyde_Pyruvate 

const float AP_init = 1.094e-4; //[M] 

 

//Kinetic parameters 

const float J0 = 2.3 / 1000 / 60; //[mM min^-1] --> [M s^-1] 

const float k1 = 100 * 1000 / 60; //[mM^-1 min^-1] --> [M^-1 s^-1] 

const float k2 = 6.00 * 1000 / 60; //[mM^-1 min^-1] --> [M^-1 s^-1] 

const float k3 = 16.0 * 1000 / 60; //[mM^-1 min^-1] --> [M^-1 s^-1] 

const float k4 = 100 * 1000 / 60; //The weird one: now in [M^-1 s^-1] 

const float k5 = 1.28 / 60; //[min^-1] --> [s^-1] 

const float k6 = 12.0 * 1000 / 60; //[mM^-1 min^-1] --> [M^-1 s^-1] 

const float Q = 4.00; //[-] 

const float KI = 0.520 / 1000; //[mM] --> [M] 

const float NADHtotm =  1.00 / 1000; //[mM] --> [M] 

const float ATPtotm = 4.00 / 1000; //[mM] --> [M] 

 

//Instantaneous reaction speeds of the different intracellular reactions 

float r1m = k1 * Glucose_p * ATP_p * 1/(1+powf(ATP_p/KI, Q)); 

float r2m = k2 * G3P_DHP_p * (NADHtotm-NADH_p); 

float r3m = k3 * BPG_13_p * (ATPtotm-ATP_p); 

float r4m = k4 * Acetaldehyde_Pyruvate_p * NADH_p; 

float r5m = k5 * ATP_p; 

float r6m = k6 * G3P_DHP_p * NADH_p; 

 

if (t==0){ 

    //Initilisation at t=0 to set the intracellular concentration 

    //pseudorandom number generator using particle location at t=0 as seed 

    union Seed { 

        unsigned long int i; 

        float f; 

    } data; 

     

    data.f = x_p; 

    data.i = data.i * 15485863; 

    data.i = (data.i * data.i * data.i) % 214748368; 

    float rand_a = (float) data.i / 214748368; 

     

    data.f = y_p; 

    data.i = data.i * 15485863; 

    data.i = (data.i * data.i * data.i) % 214748368; 

    float rand_b = (float) data.i / 214748368; 

     

    data.f = z_p; 

    data.i = data.i * 15485863; 

    data.i = (data.i * data.i * data.i) % 214748368; 

    float rand_c = (float) data.i / 214748368; 

     

    //multiplying the initial intracellular components with a random number in the range [0, 

2). 

    rate_Glucose_p = (Glucose_p * (int(rand_a*1000) % 1000 - 499) / 500) / dt; 

    rate_G3P_DHP_p = (G3P_DHP_p * (int(rand_a*1000000) % 1000 - 499) / 500) / dt; 

    rate_BPG_13_p = (BPG_13_p * (int(rand_b*1000) % 1000 - 499) / 500) / dt; 

    rate_Acetaldehyde_Pyruvate_amount_p = vol_p * 1000 * n_p * (AP_init + AP_init * 

(int(rand_b*1000000) % 1000 - 499) / 500) / dt; //unit conversion required for intra- and 

extracellular components. 

    rate_NADH_p = (NADH_p * (int(rand_c*1000) % 1000 - 499) / 500) / dt; 

    rate_ATP_p = (ATP_p * (int(rand_c*1000000) % 1000 - 499) / 500) / dt; 

} else { 

    //Total rates of intracellular compounds 

    rate_Glucose_p = J0 - r1m; 

    rate_G3P_DHP_p = 2*r1m - r2m - r6m; 

    rate_BPG_13_p = r2m - r3m; 

    rate_Acetaldehyde_Pyruvate_amount_p = vol_p * 1000 * n_p * (r3m-r4m); //unit conversion 

required for intra- and extracellular components. 

    rate_NADH_p = r2m - r4m - r6m; 

    rate_ATP_p = -2*r1m + 2*r3m - r5m; 

}  
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2. Power number tabular data 

 
 

Impeller 
input power 

Power 
dissipation 

Poimp Poϵ 

Resolution [W] [W] [-] [-] 

50 0.331 0.331 6.262 6.266 

100 0.237 0.238 4.482 4.499 

150 0.242 0.261 4.580 4.927 

200 0.260 0.286 4.926 5.407 

250 0.270 0.301 5.101 5.691 

300 0.263 0.297 4.983 5.621 

350 0.270 0.301 5.101 5.693 
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3. Stokes number tabular data 

Varying particle size: 
 

Particle 
size 

Stirring 
Speed 

Density Stkω Normalised 
Fit 

Case [mm] [rpm] [kg m-3] [-] [-] 

1 0.768 18.333 1000 0.0100 0.268 

2 0.966 18.333 1000 0.0158 0.331 

3 1.216 18.333 1000 0.0251 0.399 

4 1.531 18.333 1000 0.0398 0.504 

5 1.928 18.333 1000 0.0631 0.616 

6 2.427 18.333 1000 0.1000 0.760 

7 3.056 18.333 1000 0.1585 0.885 

8 3.847 18.333 1000 0.2512 0.970 

9 4.843 18.333 1000 0.3981 1.011 

10 6.097 18.333 1000 0.6310 1.000 

11 7.675 18.333 1000 1.0000 1.000 

12 9.663 18.333 1000 1.5849 0.955 

13 12.165 18.333 1000 2.5119 0.906 

14 15.314 18.333 1000 3.9811 0.878 

15 19.279 18.333 1000 6.3096 0.838 

 

Varying stirring speed: 
 

Particle 
size 

Stirring 
Speed 

Density Stkω Normalised 
Fit 

Case [mm] [rpm] [kg m-3] [-] [-] 

1 0.75 19.200 1000 0.0100 0.288 

2 0.75 30.430 1000 0.0158 0.322 

3 0.75 48.228 1000 0.0251 0.391 

4 0.75 76.437 1000 0.0398 0.457 

5 0.75 121.144 1000 0.0631 0.533 

6 2.50 17.280 1000 0.1000 0.820 

7 2.50 27.387 1000 0.1585 0.885 

8 2.50 43.405 1000 0.2512 0.940 

9 2.50 68.793 1000 0.3981 0.977 

10 2.50 109.029 1000 0.6310 0.993 

11 2.50 172.800 1000 1.0000 1.000 

12 5.00 68.467 1000 1.5849 0.996 

13 5.00 108.513 1000 2.5119 0.980 

14 5.00 171.982 1000 3.9811 0.983 

15 10.00 68.143 1000 6.3096 0.940 

 

 



 

33 
 

Varying density: 
 

Particle 
size 

Stirring 
Speed 

Density Stkω Normalised 
Fit 

Case [mm] [rpm] [kg m-3] [-] [-] 

1 1 18.333 589 0.0100 0.278 

2 1 18.333 934 0.0158 0.322 

3 1 18.333 1480 0.0251 0.418 

4 1 18.333 2345 0.0398 0.527 

5 5 18.333 149 0.0631 0.567 

6 5 18.333 236 0.1000 0.703 

7 5 18.333 373 0.1585 0.846 

8 5 18.333 592 0.2512 0.971 

9 5 18.333 938 0.3981 1.053 

10 5 18.333 1487 0.6310 1.018 

11 5 18.333 2356 1.0000 1.000 

12 25 18.333 149 1.5849 1.022 

13 25 18.333 237 2.5119 1.001 

14 25 18.333 375 3.9811 0.940 

15 25 18.333 595 6.3096 0.880 
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4. Data analysis code 

import numpy as np 

from scipy import signal 

import matplotlib.pyplot as plt 

from scipy.fft import fft, ifft, fftfreq 

 

sample_num = 250 

 

def get_phase(data, s_num): 

    phases = None 

    time = data[np.where(data[:, 1]==0), 0][0, 1:] 

 

    for i in range(s_num): 

        print(i) 

        s_data = data[np.where(data[:, 1]==i), 2][0, 1:] 

        s_data = signal.detrend(s_data, type="constant") 

        f_data = fft(np.pad(s_data, len(s_data))) 

        freq_bin = fftfreq(len(s_data)*3, 1) 

        f_data = np.where(np.abs(freq_bin)<=1.5/60, f_data, 0) 

        f_data = np.where(np.abs(freq_bin)>=0.5/60, f_data, 0) 

        s_data_filtered = np.real(ifft(f_data)) 

        h_data = signal.hilbert(s_data_filtered)[len(s_data):2*len(s_data)] 

        if phases is None: 

                phases = np.empty((s_num, len(s_data)), dtype="cfloat") 

        phases[i, :] = h_data/np.abs(h_data) 

    return phases, time 

 

print("processing data...") 

data1 = np.load("ParticleData.npy") 

phase1, time1 = get_phase(data1, sample_num) 

del data1 

print("data processed!") 

 

print("plotting...") 

plt.plot(time1, np.abs(np.sum(phase1, axis=0)/sample_num), label="<para>") 

plt.ylim(0, 1) 

plt.xlabel("Time [s]") 

plt.ylabel("Phase-coherence [-]") 

plt.legend() 

 

plt.show() 

 


