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1
THESIS INTRODUCTION AND

LITERATURE REVIEW

Sleep apnea is a severe disorder that degrades sleep quality for those affected and has been
found related to a variety of cardiovascular diseases. The clinical approach used to di-
agnose obstructive sleep apnea-hypopnea syndrome (OSAHS) is polysomnography (PSG).
However, this requires several wires attached to the patient all night, which is very uncom-
fortable and stressful. For this reason, in this thesis, algorithms to provide sleep apnea
detection using contactless radar systems are investigated.

1.1. BACKGROUND
Sleep apnea is a prevalent disease with a high incidence in the population, particularly
among older people, and is related to several neurocognitive and cardiovascular diseases
such as stroke, chronic heart failure (CHF), coronary artery disease, hypertension[2] and
diabetes, which can be a significant burden on health systems[3]. Meanwhile, it can be
present without significant symptoms; therefore, most potential patients remain undiag-
nosed and untreated. According to the research by dr. Adam V. Benjafield et al. in 2019[4],
in typical developing countries such as China and Brazil, about 23.6% and 49.7% of the
population suffers from OSAHS respectively; meanwhile, the prevalence remains very high
even in some developed countries, at 33.2% and 49% in the United States and the Nether-
lands respectively. The number of adults aged 30-69 who suffer from various degrees of
obstructive sleep apnea (OSA) is estimated to be more than 900 million worldwide [4],
making it a potentially growing global problem in the coming years.

Based on current researches into nocturnal breathing disorders, there are three defined
types of respiratory obstruction: obstructive sleep apnea (OSA), central sleep apnea (CSA),
and mixed sleep apnea (MSA)[5]. OSA occurs when there is a physical blockage of the air-
way at the back of the throat. This obstruction can lead to temporary breathlessness. During
sleep, the body’s muscle tone is usually in a relaxed state. In the human pharynx, the res-
piratory tract is composed of collapsible soft tissue walls. During sleep, the soft tissues
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may collapse and block the airway, preventing airflow in and out, causing what is clini-
cally defined as obstructive sleep apnea. When obstructive sleep apnea occurs, the bones
and muscles controlled by the central nervous system continue to expand and contract pe-
riodically, but no airflow is inhaled or exhaled[6–8]. In contrast, CSA occurs because of a
malfunction of the central nervous system, which prevents it from adequately controlling
the bones and muscles involved in breathing, resulting in inadequate or absent lung ven-
tilation. In this case, the volume of the chest cavity no longer changes in response to the
breathing process[9, 10]. It is referred to as mixed sleep apnea or complex sleep apnea
when a person suffers from OSA and CSA simultaneously[11].

At present, the standard method for clinical diagnosis of sleep apnea is polysomnog-
raphy (PSG), which requires patients to be monitored overnight in a hospital under the
supervision of medical professionals to measure multiple physiological signals, including
electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) and
electrocardiography (ECG). Many potential patients, however, consider this procedure in-
vasive and uncomfortable. Therefore, although the PSG system offers good quality and
durability, it is not the most suitable option for long-term continuous monitoring use and
especially not for home use. Thus there is a high demand for alternative diagnostic technol-
ogy. Several other technologies have been proposed in recent decades, such as actigraphy,
acoustic sensor, camera, and their description and comparison of advantages and disadvan-
tages will be developed in detail in section 1.3.

1.2. CONTRIBUTION OF THE RESEARCH
The main contributions of the research described in this thesis are summarized as follows:

• Proposed a signal processing pipeline involving spectrogram envelope extraction
based on image processing and signal smoothing (specifically VMD, Variational
Mode Decomposition) algorithms.

• Developed a simulation tool that allows Monte Carlo generation of synthetic data
from multiple subjects and models beyond simple sines the vital signs as well as
different types of sleep apnea. Moreover, the sleep position is taken into account.

• Validated the proposed algorithms on experimental data, with a comparison with the
state of the art. Furthermore, possible improvements to state of the art algorithms
such as those by T. Koda[12] have been proposed and validated.

• The potential of the system for more practical applications is confirmed by provid-
ing an example of monitoring a more extended recording of respiration in natural
conditions in a home bedroom. Furthermore, the system was applied to radar data
obtained from actual patients and achieved classification accuracies of upwards of
80%, demonstrating the potential of the developed system for clinical applications.

• The research work developed as part of this thesis has been submitted as a conference
paper entitled "An Approach for Sleep Apnea Detection based on Radar Spectrogram
Envelopes" for the European Microwave Week 2021, London, UK.
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1.3. OVERVIEW OF VITAL SIGNS MONITORING TECHNOLO-
GIES

Many researchers are devoted to investigating new technologies that could reduce the man-
ual involvement and improve the monitoring experience. Many portable and wearable de-
vices which could accurately capture vital signals such as heart rate, breathing rate, blood
pressure, oxygen saturation (SaO2). have been developed. However, even though they are
often small, non-invasive and comfortable to wear, they still have to be connected to the
skin via electrodes, which might affect some of the physiological signals.

Besides, several kinds of non-contact sensors have been applied in many studies, in-
cluding acoustic sensors, passive infrared (PIR) sensors and lidar. The description and
comparison among these vital signs monitoring technologies are shown in Table 1.1. Con-
tactless sensors can obtain respiratory, heartbeat or temperature information, but electro-
physiological signals and blood oxygen saturation are often beyond their reliable detection
capabilities. This trade-off allows them to be employed in a variety of applications.

Each of the listed mechanisms for contactless breath detection also has its own advan-
tages. Camera-based and infrared sensors are particularly suitable for instantaneous mon-
itoring over long periods of time. Lidar has merits of high resolution, high resistance to
active interference, small size and lightweight. Radar and ultrasound sensor share the same
advantages of environment independence and no perception of the subject, while radar is
the one at relatively lower cost and more acceptable accuracy. Thus in this study, the focus
is on radar-based monitoring. Some researchers are also working on developing the system
with a combination of multiple sensors and conducting multi-sensor fusion, which could
be a direction for future research of this study. Studies have pointed out that at 2.4 GHz
and above, more than half of the incident power will be reflected back at the skin surface,
which contributes to the most significant source of reflected power. Therefore, in practice,
one can default to Doppler radar vital signs detection as displacement measurements of the
skin surface[13].

This thesis work aims to perform sleep breathing disorder identification. The algorithm
was based on the amplitude information of the breathing signal, so only respiration was
studied in detail among the different vital signs, and the focus was on radar technology
rather than on all the possible sensors.

1.4. RADAR - BASED SLEEP APNEA DETECTION: STATE OF

ART
In this section, a comprehensive review of the current state of radar-based sleep monitor-
ing technology will be provided, including a review of types of the radar system, signal
processing methodologies and types of classification and features. For each type of radar
application, the latest technologies and achievements, as well as the challenges faced, are
presented in relation to the corresponding literature.

In recent decades, quantitative studies on radar-based sleep monitoring and apnea de-
tection have been done. The most widely used systems are single-tone continuous wave
(CW) radar [24–26], frequency-modulated continuous-wave (FMCW) radar [27–29] and
Ultra Wide Band (UWB) radar [30][31]. Doppler CW radar, with its simple topology and
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low power consumption, is the most common type of application for vital sign monitoring.
However, the lack of distance information limits its application in the field of multi-target
detection. Meanwhile, FMCW and UWB radars retain distance awareness while detecting
the movement of the target through the Doppler effect despite that they each have their lim-
itations, with FMCW radar having high power consumption and phase noise, while UWB
radars are not suitable for long-range measurements. While each of these three radars
comes with its own advantages and disadvantages, in general, a number of studies have
demonstrated their effectiveness in sleep monitoring applications.

Life signals are low-speed target signals with small Doppler shifts, weak echoes and
easily drowned in the background of strong clutter. It is a low frequency, quasi-periodic,
low signal-to-noise ratio, multi-harmonic combination signal that must be detected and
extracted more accurately and effectively by effective signal processing. The classical ap-
proach of retrieving vital signs from the radar data is based on phase processing. Both
traditional arctangent demodulation [32][33] and differentiate and cross multiply (DACM)
[27][30] algorithms have been investigated and implemented in many pieces of research.
However, the signal phase is easily affected by noise; thus, alternative signal processing
methods in the spectral domain are also explored. Signal processing approaches such
as FFT [34][35], continuous wavelet transform (CWT) [36], multiple signal classifica-
tion (MUSIC) [24][37], relaxation (RELAX) [24], atomic norm minimization (ANM) [37]
amongst others, have been verified to provide sufficient accuracy for vital sign signal spec-
trum estimation.

Furthermore, separating the respiratory or heartbeat signals is a signal processing chal-
lenge. The energy of the collected respiratory signal is much greater than that of the
heartbeat signal, and the higher harmonics of the respiratory signal cause surface micro-
movements to overlap with those caused by the heartbeat, and the spectral overlap of the
corresponding signals can make it difficult to isolate the heartbeat signal from the respira-
tory signal. In recent years, various algorithms have emerged for the separation of heart-
beat, and respiratory signals, such as the minimum mean square error cost function method,
which first estimates the complex coefficients of each harmonic and subtracts the harmonic
signal from the mixed-signal containing the heartbeat and respiratory harmonics to obtain
the desired signal[35]. Empirical modal decomposition is applied to decompose the radar
signal into a finite number of intrinsic modal functions, and then the IMF component, which
reflects the structural characteristics of the vital signal, is used to recover the respiratory and
heartbeat signals independently in the time domain to avoid the interference of the respira-
tory harmonics with the heartbeat signal[27, 36]. In 2011, the University of Trento, Italy,
applied the independent component analysis (ICA) algorithm to distinguish between noise
and clutter and successfully extracted respiratory and heartbeat signals[38].

Several algorithms have been proposed that implement non-contact apnoea detection
based on energy spectroscopy. The most widely used is to judge the constructed respiratory
signal according to a threshold based on the strength characteristics of the normal respira-
tory signal and the signal when apnea occurs. Machine and deep learning algorithms are
also extensively used in breath pattern classification. An approach using a Support Vector
Machine (SVM) on features extracted from the spectrogram is proposed in [12] and applied
to experimental data measured on two patients suffering from sleep apnea. They obtained
an accuracy of 79.2% and 79.5% for OSA and CSA, respectively. A hybrid CNN-LSTM
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network that could provide real-time apnea detection with an accuracy over 90% based on
UWB radar is presented in this recent work [39].

Some selected publications studying radar-based vital signs monitoring as well as their
brief description are listed in Table 1.2 and its continued Table 1.3.

It is worth noticing that the achievement of radar-based vital signs monitoring in most
studies is based on the test subject sitting or lying on his back, facing straight to the radar
and remaining stationary, which deviates from the actual sleep situation. There is still much
space to explore the complexity of the sleep environment, such as random body motions,
different sleeping positions, body orientation and harmonics of vital signs. In addition,
attention can be given to the radar-based detection for other physiological signals that may
aid in the detection of respiratory obstruction such as pulse pressure, tidal volume, minute
ventilation and air flow[40].

In terms of signal processing algorithm optimization, inverse tangent demodulation,
time-frequency analysis, adaptive DC calibration, noise and clutter cancellation are still the
focus of future research focus; blind source separation (BSS) signal processing techniques
will increasingly be used to distinguish between ward environment clutter and interference
caused by multiple targets and unconscious body movement. The need for algorithms to
monitor the human body’s vital signals in motion has also been addressed; more clinically
relevant evaluation metrics for medical surveillance radar have yet to be proposed. More
clinically relevant evaluation metrics for medical surveillance radar are yet to be proposed.

Based on this summary of state of the art, this thesis research focused on the gaps
of methods to identify the respiration signal based on the envelopes of spectrograms and
simple machine learning classifiers. These have been extensively validated with simulations
and experimental data with 14 volunteers as well as actual patients.

1.5. STRUCTURE OF THE THESIS
The rest of the thesis is organized as follows. The physiology of the respiration system and
heart and three types of sleep apnea, as well as their corresponding mathematical models,
is presented in Chapter 2. Furthermore, the architecture and principle of Doppler radar
are also explored in this chapter. The pipeline of signal processing and breathing pattern
classification algorithm is described in Chapter 3. Chapter 4 and Chapter 5 presents the
procedure and results of simulation and experimental validation respectively, while Chapter
6 concludes the thesis.
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2
SIGNAL MODELS AND RADAR

SYSTEM FOR SLEEP APNEA
DETECTION

This chapter describes the physiology of the respiration system and heart and proposes
mathematical models of chest wall motion induced by cardiopulmonary activity. Then the
pathology and clinical classification of sleep apnea, including their idealized models, is
introduced. At the end of this chapter, the radar system’s principles, especially those com-
monly used in vital sign monitoring applications, such as continuous wave radar, frequency-
modulated continuous wave radar, and ultra wide band radar, are discussed.

2.1. SIGNAL MODELS FOR RESPIRATION AND HEARTBEAT
2.1.1. PHYSIOLOGY MOTION OF RESPIRATION AND HEART SYSTEM
RESPIRATORY SYSTEM

The most fundamental function of the human respiratory system is to complete the gas
exchange, that is, to diffuse oxygen into the capillaries at the blood-gas barrier and to lib-
erate carbon dioxide from the capillaries into the alveoli to be exhaled. This gas exchange
process is completed during every pulmonary ventilation cycle. Pulmonary ventilation is
induced by alterations in the volume and atmospheric pressure of the chest cavity. This pro-
cess is accompanied by air circulation through the respiratory tract, where the air is drawn
into the body through the mouth and nose, then sequentially through the pharynx, larynx
and trachea into the lungs, where it is oxygenated and then exhaled in the reverse direc-
tion—during normal inhalation, the diaphragm and external intercostal muscles contract,
allowing the thoracic cavity to expand and air to rush into the lungs. During normal exha-
lation, the muscles relax, inducing the chest cavity to contract and the air pressure to rise,
which allows the air to expel. As demonstrated in Figure. 2.1, the expansion and contrac-
tion of the chest cavity cause distinct displacements on the surface of the skin, which can

9
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Figure 2.1: Motion of the chest cavity during one pulmonary ventilation cycle

be captured by radar, allowing non-contact measurement of respiration.
Many researchers have done quantitative studies on the motion of the chest wall dur-

ing breathing. DeGroote et al.[47] marked 36 points by using the projection of a grid on
the body and measured the movement of the chest in all directions. The largest movement
occurs at the sternum and the navel, with the displacement 4.3 and 4.03 mm, respectively.
Kondo et al.[48] studied the relationship between tidal volume and displacement of the ab-
domen. The results showed that the maximum displacement of the abdominal wall reached
12mm (with more than 1100 mL inspiration). In conclusion, thorax motion is different for
every individual during a breathing cycle due to the difference in personal physiology and
pulmonary ventilation volume. Statistically, the fundamental frequency of the respiratory
signal falls in the interval of 0.1 to 0.7 Hz (6 to 42 bpm), and the amplitude of the chest
wall ranges from 4 to 12 mm[48].

HEART SYSTEM
The heart plays a pivotal role in the circulatory system like a pump, delivering a constant
blood flow to the entire body. The left side of the heart pumps arterial blood, which carries
oxygen and nutrients to the tissues and organs, while the right side pumps blood saturated
with metabolic waste like CO2 to the lungs. The demonstration of one cardiac cycle is
shown in Figure. 2.2. In each cardiac cycle, the heart experiences contraction and relax-
ation. As the heart contracts to create the pressure that powers the blood flow, it shifts
within the thoracic cavity, striking the chest wall and producing detectable displacement on
the surface of the skin.

The fundamental frequency of the heartbeat signal lies between 0.9 Hz and 3 Hz (54 to
180 bpm) with an amplitude of approximately 0.5 mm[49].

The ranges of amplitude and frequency listed above are selected from the literature and
will be used in subsequent simulations of respiratory and heartbeat signals. It is worth notice
that these numbers do not necessarily describe the vital signatures of particular individuals
in reality very precisely; however, a precise estimation of these quantities is not the scope
of this thesis; the models built in the following sections will still hold even if those numbers
are slightly changed.
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Figure 2.2: Sketch of the cardiac cycle and circulation

2.1.2. SIGNAL MODEL FOR CARDIOPULMONARY ACTIVITY
In this section, the development of a signal model demonstrating the movement of the
thoracic/abdominal wall during normal breathing is presented. Based on this model, the
simulation to study the signal processing techniques could be conducted.

The simplest and most commonly used modelling method uses two sinusoidal signals
with different amplitudes and frequencies to simulate the displacement at skin surface
caused by respiration and heartbeat, respectively. This method is employed by many re-
searchers due to its simplicity[50]. With known amplitude and frequency of breathing and
heartbeat, skin surface displacement could be modelled as:

x (t ) = Ar sin
(
2π fr t

)+ Ah sin
(
2π fh t

)
(2.1)

where Ar , fr represent the amplitude and frequency of respiration, respectively, and Ah , fh

represent the amplitude and frequency of heartbeat respectively.
However, in reality, the displacement of the chest wall caused by respiration and heart-

beat is much more complicated than sinusoidal signals. Many researchers have studied how
to model respiration and heartbeat authentically. In 2008, Dennis R. Morgan et al. found
that it is more accurate to model the waveform of breathing with a higher-order sinusoidal
signal[35]. They also pointed out that the signal model they developed was not intended
as a rigorous physiological model. It was still a highly idealized model of skin-surface
movement. However, it could provide sufficient precision for capturing the essence of vital
signs and verifying the signal processing techniques. The movement of chest-wall can be
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expressed as:
x (n) = xh (n)+xr (n) (2.2)

where xh (n) and xr (n) are the contribution of cardiac and respiratory component, respec-
tively.

The heartbeat can be constructed by periodically repeating the prototype analog pulse
ph (t)[35]. The exponential e−t/τ is used to approximate the pulse signal, where τ is the time
constant. The pulse signal is filtered by a second-order Butterworth filter which has fcut

as its cutoff frequency. This model conceptualizes a cardiac cycle. During the isovolumic
systole, the ventricles continue to contract. As the pressure in the ventricle continues to
rise, exceeding the pressure of the aorta and pulmonary arteries, the heart valves open. The
blood will be quickly injected into the artery, producing a short impulse movement which
is eventually sensed by the thorax/abdomen wall through the filtering of bones and tissue.
The characteristic pulse shape can be derived by taking inverse Laplace transform of the
product of impulse response of the exponential, after which a Butterworth filter is applied,
and the result is as follow:

ph (t ) = e−t/τ+
[( p

2

ωcutτ
−1

)
sin

(
ωcut tp

2

)
−cos

(
ωcut tp

2

)]
e−ωcut t/

p
2 (2.3)

where ωcut = 2π fcut . We then repeat ph periodically at frequency fh to construct the heart-
beat signal. After sampling at frequency fs , the discrete-time motion could be obtained:

xh (n) = ph

(
n

fs
−

⌊
n

fs
fh

⌋
· 1

fh

)
(2.4)

where bxc is the floor function. Then the discrete-time signal component should be scaled
to the amplitude Ah . The improved heartbeat model is shown in Figure 2.3, where the
amplitude and frequency of heartbeat are set to be 5×10−4m and 0.25Hz, respectively. In
section 2.1.1, a range of values for the frequency and amplitude of the cardiopulmonary
signal was introduced; here, a value typical within this interval is chosen. This particular
value was taken to give an example of the signal waveform, and the proposed model remains
valid for other values in the range.

The improved respiration signal model can be defined by a half-cycle kth order sinu-
soidal function:

pr (t ) = sinkπ fr t ,0 ≤ t ≤ 1

fr
(2.5)

The exponent k controls the rounding of the cusp as well as the general shape. In a similar
approach, we get the expression of discrete-time respiration signal model:

xr (n) = pr

(
n

fs
−

∣∣∣∣ n

fs
fr

∣∣∣∣ · 1

fr

)
(2.6)

where fr and fs represent the respiration frequency and sample frequency, respectively.
Then we scaled it to amplitude Ar . The waveform of this respiration model is shown in
Figure 2.4:

The movement of the chest wall can be modelled as the superposition of the heartbeat
and respiration signal, the waveform is shown in the Figure. 2.5 below:



2.1. SIGNAL MODELS FOR RESPIRATION AND HEARTBEAT

2

13

0 1 2 3 4 5 6 7 8 9

Sample number, n 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x
h
(n

),
 m

10
-4

Figure 2.3: Signal model for heartbeat, fh = 1.375H z, Ah = 0.0005m, τ= 0.05, fcut = 1H z, fs = 262826.6667H z
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Figure 2.4: Signal model for respiration, fr = 0.25H z, Ar = 0.005m, fs = 262826.6667H z
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Figure 2.5: Combined signal model for respiration and heartbeat
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2.2. SIGNAL MODELS FOR DIFFERENT TYPES OF APNEA
As demonstrated in the previous chapter, clinically, there are three types of sleep apnea:
OSA, CSA and MSA. This section will introduce the pathological characteristics of these
three types of sleep apnea and develop an appropriate model for each of them.

2.2.1. OBSTRUCTIVE SLEEP APNEA
OSA is caused by repetitive bouts of upper airway obstruction during sleep due to the
narrowing of respiratory passages[51]. This kind of block causes temporary cessation of
respiration. Patients usually suffer from snoring and awakening from sleep with a feeling of
suffocation because their nasopharynx is blocked. The schematic diagram of physiological
characteristics of OSA is shown in Figure. 2.6.

When OSA occurs, the nerve centre still gives instructions to the bones and muscles,
controlling them to maintain breathing. In this case, the undulation of the chest wall and
abdomen will be maintained; however, since there is no air coming in through the nose and
mouth, the pulmonary ventilation volume is reduced significantly, resulting in subnormal
chest displacement. Sometimes, due to the shortage of oxygen, the frequency of respiration
will increase under the control of the brain. The amount of reduction in the amplitude of
chest motion and the change in respiratory rate vary from person to person.

It is assumed that when respiratory obstruction occurs, the waveform of the respiration
remains unchanged; only the amplitude and frequency are affected. On the other hand,
the impact of respiratory obstruction on the heartbeat is negligible. Based on the vital sign
models derived in the previous section, in subsequent simulations, the following models are
used to simulate OSA[52]:

Figure 2.6: Sketch of OSA physiology with obstruc-
tion of air flow to the lungs
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Figure 2.7: OSA type1 signal model

1. As shown in Figure. 2.7, the amplitude values of respiratory activity decreasing,
A

′
r = 0.2× Ar and the respiratory frequency accelerating, f

′
r = 1.3× fr .

2. The frequency of the breathing activity is constant, but the amplitude is diminished
by more than 50%, A

′
r = 0.5× Ar , as demonstrated in Figure. 2.8;
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3. The amplitude and frequency of respiratory activity are of fluctuating nature. The
model of this type of OSA is shown in Figure. 2.9. The frequency of the three
respiratory cycles during obstructive sleep apnea is 1.5, 1.8 and 2.2 times that of
normal breathing, with amplitudes of 0.18, 0.19 and 0.2 times respectively.
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Figure 2.8: OSA type2 signal model
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Figure 2.9: OSA type3 signal model

It is worth noting that all three of the above mathematical models of respiratory obstruc-
tion are based on the following assumptions:

• At the level of mathematical modelling, the envelope shape of the respiratory sig-
nal remains unchanged when OSA occurs, which means Equation 2.5 and 2.6 are
still used to simulate breathing during respiratory obstruction, except that the two
parameters of respiratory amplitude and frequency are changed.

• When OSA occurs, the heartbeat signal is assumed to be completely unaffected by
the respiratory obstruction, and the waveform remains consistent, whose mathemat-
ical model is described by Equation 2.3 and 2.4. However, there is also a coupling
between the heartbeat signal and the respiratory obstruction, but since their correla-
tion has not been studied thoroughly and precisely, and since the amplitude of the
heartbeat signal is very weak compared to that of respiration, the variance of heart-
beat is ignored here.

• For reasons of simplicity, the proportional decrease in respiratory amplitude at the
occurrence of OSA, as well as the increase in frequency, is chosen as a typical value
in the interval given by the model, in order to give a visual example of the three
different types of OSA. The results of the whole modelling and simulation still hold
when other values are taken.

2.2.2. CENTRAL SLEEP APNEA
Compared to OSA, CSA is rarer in the population but also more severe. One specific type
of central sleep apnea, also called the Ondine curse, often happens in neonates, which can
be fatal. CSA occurs because the part of the brain stem that controls breathing behaviour
operates abnormally. In central sleep apnea, the brain stem shows less sensitivity to changes
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in the level of carbon dioxide in the blood. Thus, muscles involved in respiration are not
excited by the signal from the brain, which causes the displacement of the chest wall due
to breathing. As the change in chest volume due to breathing disappears when CSA occurs,
the chest wall no longer undulates due to breathing, but the displacement caused by the
heartbeat remains[9]. At the level of the equation expression, as shown in Equation 2.2,
the second term vanishes and only the component of the heartbeat represented by the first
term is retained. The model of the heartbeat is still described by Equation 2.3 and 2.4. The
pathological demonstration and the signal model of CSA are shown in Figure. 2.10, the
motion of the thorax is merely associated with the heartbeat.

(a) Physiology of CSA
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 m
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(b) Signal model for CSA

Figure 2.10: Demonstration of CSA: (a)Sketch of CSA physiology with central nervous system failure (b) Signal
model for CSA

2.2.3. MIXED SLEEP APNEA
When OSA and CSA occur at the same time, it is medically defined as mixed sleep ap-
nea(MSA). The exact mechanism of the failure of the central respiratory controller in mixed
sleep apnea remains unknown. The inducement and manifestation of MSA are very com-
plex and have not been thoroughly studied. Typically, this type of apnea is detected when
treating OSA with continuous positive airway pressure, and central sleep apnea emerges.
Therefore, an additional model of MSA is omitted in this research.

2.3. RADAR SYSTEM FOR SLEEP APNEA DETECTION
As discussed in previous sections, the breathing and heartbeat of living organisms cause
chest wall movement, which can be captured by the radar. The electromagnetic wave emit-
ted by the radar is reflected by the chest wall, and the reflected wave carries the information
of the heartbeat and breathing of the monitored object. The vital signs can be well extracted
by conducting appropriate signal processing algorithms. The signal processing techniques
for different radars are distinctive. In the field of vital sign monitoring, researchers gener-
ally use three types of radars: CW (Continuous-Wave) Doppler radar, FMCW (Frequency-
Modulated Continuous-Wave) radar and UWB (Ultra Wide-Band) radar. This section presents
a summary of the models of these radars and the comparison between them.
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2.3.1. CONTINUOUS WAVE RADAR
Doppler CW radar detects vital signs based on the Doppler effect of moving objects. It
emits a continuous single frequency sinusoidal wave signal and simultaneously continu-
ously receives reflected wave. The movement of the skin surface causes the Doppler effect,
which is equivalent to phase modulation of the incident wave. The vital signs could be
constructed by performing phase demodulation of the reflected signal in the receiver end.
Figure. 2.11 demonstrates a typical structure of Doppler CW radar, in which synchronous
demodulation is applied, that is, the local oscillator signal of the receiver is directly taken
from the transmitter.

Figure 2.11: Simplified block diagram of CW radar sensor and the mechanism of non-contact respiration detection
based on the thorax/abdomen displacement

In the transmitter, the transmitted signal is generated by frequency synthesizer and can
be represented as:

st (t ) = At cos
(
2π fc t +Φ (t )

)
(2.7)

where fc represents the carrier frequency, At represents the amplitude of the transmitted
signal and Φ (t ) is the phase noise.

Assume the movement of the thorax is x (t ) and the initial distance between the radar
and the thorax is d0. Thus, the distance between the transmitter and chest wall can be
represented as:

d (t ) = d0 +x (t ) (2.8)

For CW radar, the distance between the transmitter and the chest will induce a round trip
time delay, which is:

td = 2d (t )

c
= 2(d0 +x (t ))

c
(2.9)

where c is the light speed. Therefore, the received signal can be considered as a scaled
replication of the transmitted signal with a time delay:

sr (t ) = st (t − td ) (2.10)
= Ar cos

[
2π fc (t − td )+Φ (t − td )+θ0

]
(2.11)
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where θ0 is the phase shift induced by variety of factors. Substitute eq. 2.8 and eq. 2.9 into
eq. 2.11, the following equation could be obtained:

sr (t ) = Ar cos

[
2π fc t − 4πd0

λ
− 4πx (t )

λ
+Φ

(
t − 2d0

c

)
+θ0

]
(2.12)

= Ar cos

[
2π fc

(
t − 2d (t )

c

)
+Φ

(
t − 2d (t )

c

)
+θ0

]
(2.13)

By mixing the received signal with the local oscillator sLO (t ) = cos
[
2π fc t +Φ (t )

]
we can

obtain the beat signal:

sb ≈ Ab cos

[
2π f I F t +θ+ 4πx (t )

λ
+∆Φ (t )

]
(2.14)

similarly, Ab represents the amplitude while ∆Φ (t ) =Φ (t )−Φ
(
t − 2d0

c

)
is the residual phase

noise. θ = 4πd0
λ −θ0 is the phase shift related to the initial location of the target. Then the

signal is filtered by a low-pass filter, which results in a simplified signal component:

sb = Ab cos

[
4πx (t )

λ
+θ+∆Φ (t )

]
(2.15)

After sampling by the ADC module, the analog signal is converted to a time discrete form:

sb (n) = Ab cos

[
4πx (nT )

λ
+θ+∆Φ (nT )

]
(2.16)

Doppler CW radar uses phase demodulation to extract vital sign information with high
accuracy[53][54]. When the Doppler radar uses a single-channel structure, the first-order
expansion of eq. 2.16 is generally used to approximate the phase. However, we generally
will encounter a problem of null detection point, that is, when the target locates at some
specific positions, the eq. 2.16 has a zero value differential, which results in a significant
detection error. In this case, a quadrature receiver is commonly used to avoid this problem.
The output of the I/Q component is shown as follows:

I (n) = AI cos

[
4πx (n)

λ
+θ+∆Φ (n)

]
(2.17)

Q (n) = AQ sin

[
4πx (n)

λ
+θ+∆Φ (n)

]
(2.18)

The phase history that contains range information of the target is extracted by conducting
the arctangent transformation:

Φhi s (t ) = arctan

(
Q (t )−b

I (t )−a

)
+ kπ

2
(2.19)

= 4πx (n)

λ
+θ+∆Φ (n) (2.20)

where a and b denote the dc offsets in I and Q channels.
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2.3.2. ULTRA WIDE BAND RADAR
UWB pulse radar is one of the most commonly used vital signs detection radar. It contin-
uously emits periodic electromagnetic pulses, whose pulse width are generally below one
nanosecond. The pulses will be reflected back by the object and then be captured by the re-
ceive antenna. Similar to the CW radar, the information of chest wall motion is modulated
into the reflected electromagnetic wave. Ultra wide band refers to an instantaneous frac-
tional energy bandwidth greater than about 0.2-0.25[55, 56]. The relative large bandwidth
of UWB radar leads to a considerably high range resolution, which helps it distinguish and
eliminate most of the multipath interference. The good performance of UWB radar in range
resolution makes it eminently suitable for the detection of small signals such as heartbeat
and breathing. Unlike CW radar, UWB radar is also very applicable for multi-target detec-
tion because the echoes contain distance information. IR-UWB radar is characterised by
robustness in noisy environments, accurate positioning to the centimetre level, low power
consumption[57] and good object penetration[58], which contributes to it being widely used
in many fields[59–62].

Assume the distance between the object and antenna is d (t ), then the round trip time lag
is τd (t ) = 2d(t )

c . Based on the time delay, the position of the object is determined. The signal
of interest at the receiver front end for IR-UWB radar is the convolution of transmitted pulse
(with a carrier of frequency νc ) and impulse response of vital signs h (τ, t ) multiplied by
the amplitude of collected pulse A[63]:

r (τ, t ) = s (τ)∗h (τ, t ) = A · s (τ−τd (t )) , (2.21)

The output of I/Q branches and the corresponding complex pulse are described by:

I (τ, t ) = r (τ, t ) ·cos(2πνcτ) (2.22)

Q (τ, t ) = r (τ, t ) · sin(2πνcτ) (2.23)

y (τ, t ) = I (τ, t )−Q (τ, t ) (2.24)
= r (τ, t ) ·exp

(− j 2πνcτ
)

(2.25)

Then the FFT of y (τ, t ) in fast-time and slow-time can be obtained, denoted respectively
as Y (τ,ν) and Y

(
τ, f

)
. The received signals are sampled in fast time with ADC sampling

period T f and in slow time with pulse repetition interval Ts :

R [n,k] = r
(
τ= nT f , t = kTs

)
, k = 1,2, ...,K , n = 1,2, ..., N . (2.26)

where N and K denote the number of discrete time sequence in fast time and slow time
domain, respectively. The chest wall displacement is contained in the Doppler information
and range history for UWB radar can be acquired by selecting range cell r where the target
is located:

Rhi s [k] = R [r,k] (2.27)

The phase information of UWB radar can be obtained along slow-time by performing
FFT on each pulse:

Y (ν, t ) =[
A ·S (ν)exp

(− j 2πντd (t )
)]∗δ (ν+νc )

=A ·S (ν+νc )exp
[− j 2π (ν+νc )τd (t )

]
(2.28)



2

20 2. SIGNAL MODELS AND RADAR SYSTEM FOR SLEEP APNEA DETECTION

where S (ν) is the result of the FFT performed on transmitted pulse (τ, t ) in τ. To get the
FFT under minimal computation complexity, Equation 2.28 is computed at dc:

Y (0, t ) =
∑
k

[
I (τk , t )− jQ (τk , t )

]
=A ·S (νc )exp

[− j 2πνcτd (t )
]

. (2.29)

Phase history is then demodulated from the I/Q component of Y (0, t ):

Φhi s (t ) = arctan

(
M (t )

R (t )

)
+ kπ

2
(2.30)

= 4πx (n)

λ
+Φ (2.31)

In which M (t ) = Imag [Y (0, t )] and R (t ) = Real [Y (0, t )]. Phase history for the UWB
radar is consistent with that for CW radar which is expressed by Equation 2.20, showing a
linear relationship between time delay.

Due to the extremely small pulse width, high accuracy can be achieved when calculating
the target position over time. The range resolution of UWB radar is determined by -3dB
bandwidth, which could be approximated by the inverse of pulse duration, B = 1/τ. The
Doppler resolution of pulse radar depends on main lobe width of an individual spectral
line, which is inverse of coherent processing interval Td according to principle of Fourier
transform of finite long sequences, ∆ fd = 1/Td .

2.3.3. FREQUENCY MODULATED CONTINUOUS WAVE RADAR

Doppler CW radar is widely used in the field of vital signs detection because of its high
accuracy, low power consumption and simple structure. However, using CW radar will
lose the range information and multi-target discrimination ability. UWB radar can maintain
robustness to multipath interference and cluttering while measuring the target position with
high accuracy.

FMCW radar transmits frequency modulated continuous wave, which is also called
chirp signal, as shown in Figure 2.12, The expression of chirp signal can be written as[53][54]:
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Figure 2.12: The basic principle of the FMCW radar with the sawtooth shape modulation:(a) the transmitted and
received signal, (b) the corresponding beat frequency, and (c) the beat signal processing flow.[1]

sLF M (t ) = At e
j
[

2π
∫ t

0

(
fc+ B

Ts
t
)
d t+φ(t )

]
(2.32)

= At e
j
[

2π
(

fc+ B
2Ts

t
)
t+φ(t )

]
,0 < t < Ts (2.33)

where At is the amplitude of the transmitted signal, fc is the carrier frequency, B is the
bandwidth and Ts represents the chirp duration.

The transmitted signal is reflected by the chest wall of the object. As the chest wall
moves very slowly, it can be considered immobile at the moment the electromagnetic waves
are reflected. Suppose we have a target with an initial range R and a radial velocity vr , the
time delay will be τ= 2(R+vr t )

c .Thus the received signal can be expressed by:

sr (t ) = sLF M (t −τ) (2.34)

= Ar e
j
{

2π
[

fc+ B
2Ts

(t−τ)
]

(t−τ)+φ(t−τ)
}

(2.35)
(2.36)

where Ar represents the amplitude of received signal. After mixing with the local oscillator
signal, the high frequency components will be filtered out, which produces a baseband
signal:

sb (t ) = Abe
j
[

2π
(

B
Ts
τt+ fcτ− B

2Ts
τ2

)
+φ(t )−φ(t−τ)

]
(2.37)

≈ Abe
j 2π

(
B

Ts
τt+ fcτ

)
(2.38)
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the term B
2Ts

τ2 is called residual video phase, which can be ignored. φ (t )−φ (t −τ) is the
residual phase noise, which is also negligible, especially when the target is close to radar.
Then we could obtain the phase of beat signal as:

φb (t ) = 2π

[
2 fc R

c
+

(
2 fc · vr

c
+ 2B ·R

c ·Ts

)
t + 2B · vr

c ·Ts
t 2

]
(2.39)

By taking the differential, the frequency of beat signal can be calculated:

fb = 1

2π

∂φb (t )

∂t
= 2B ·R

c ·Ts
+ 2 fc · vr

c
(2.40)

in which the Range-Doppler-Coupling is emitted. As introduced previously, the analog beat
signal is sampled at frequency 1

T by the ADC module and get to the time discrete form:

sb (n) = Ab ·w (n)e
j 2π

[
2 fc R

c +
(

2 fc ·vr
c + 2B ·R

c·Ts

)
nT

]
(2.41)

It can be seen that the frequency of the beat signal is proportional to the range of the chest
wall. Thus the target position can be calculated by reconstructing the signal frequency.
We could use the same phase extraction procedure as in the CW radar system. However,
the introduction of the arctangent function will bring us a typical "unwrap" problem. The
unwrap function compensates for a π where the phase is not continuous, but this will reduce
its robustness to noise. Therefore, many researchers have proposed other algorithms to
recover the respiration component from the beat signal; some of them are discussed in
Chapter 3.

The overall comparison of the three radar systems discussed above is summarised in
Table 2.1[64, 65].

In the subsequent study, the modelling and simulation in Chapter 4 is based on the
FMCW radar because of the desire for higher SNR and the lack of restrictions on power
consumption, while the experimental part in Chapter 5 is based on the UWB radar, as
this model of radar was readily available, compact and simple to use for the experimental
verification outside of laboratory conditions. As the scenario assumed in this study was
in a home sleep environment and the measurements were taken on a single person, the
results would not change massively if another type of radar capable of measuring range
information had been used. This is because the proposed signal processing pipeline starts
from range-time matrices generated by both FMCW and UWB radars.

2.4. CONCLUSION
This chapter presented a mathematical model of chest wall displacement due to normal car-
diopulmonary activity and mathematically models of different types of sleep apnea. Then
three radars that are widely used in the field of contactless vital sign monitoring are intro-
duced: CW, FMCW and UWB radars, followed by a brief description of the radar principles
and the signal processing pipeline for the received beat frequency signals. Lastly, a com-
parison of the three radars’ applications is discussed as a conclusion.
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Table 2.1: Comparison of Radar-Based Vital Signs Monitoring Systems

Radar Type Advantage Disadvantage

CW
1. Simple topology
2. Low power consumption

Lack of range information

FMCW

1. Enhanced result with MIMO antenna
topologies
2. Combine the results from each channel
3. Relatively high SNR

1. Relatively high level of phase noise
2.Require calibration to compensate for
nonlinearities during frequency sweeping
3. High power consumption

UWB

1. Good range resolution
2. Relatively high SNR
3. Immunity to spurious and multipath
interference

1. Require high-speed ADC
2. Limited power of the pulse



3
ALGORITHMS DEVELOPED FOR

SLEEP APNEA DETECTION

This chapter demonstrates the pipeline of signal processing and breathing pattern classi-
fication for sleep apnea detection. The block diagram of the complete algorithm can be
seen in Figure 3.1. This chapter is structured as follows: Section 3.2 describes three signal
pre-processing methods based on phase and time-frequency analysis and discusses feature
extraction and signal denoising algorithms. Section 3.3 and Section 3.4 discuss strategies
of respiration frequency estimation and apnea detection respectively. Afterwards, the pros
and cons of different signal processing methods are stated as the conclusion of this chapter.

Figure 3.1: Signal processing pipeline proposed in this thesis work

3.1. SIGNAL PROCESSING AND CLASSIFICATION PIPELINE
The pipeline of the complete signal processing and breathing pattern classification algo-
rithm is shown in Figure 3.1. To obtain the waveform of respiration signal, the range-time

24
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matrix obtained from the radar is processed with three pre-processing algorithms: Arct-
angent demodulation, DWT and STFT together with image processing. Then the recon-
structed respiration waveform is processed for noise reduction and smoothing via VMD
and the result is considered as feature for apnea detection. Threshold-based approach and
applied machine learning are employed for breathing obstruction detection.

Note that each of the three branches of pipeline represents one possible signal process-
ing as well as classification method. Not all of these branches are necessary, they can be
substituted for each other. A comparison of these methods will be developed in subsequent
sections.

3.2. PRE-PROCESSING ALGORITHMS

3.2.1. PHASE EXTRACTION

As demonstrated in Chapter 2, the phase of the signal is obtained by equation 2.20. How-
ever, this process requires using the arctangent function, which will introduce a typical
"unwrap" problem. Since the range of the arctangent function is (−π/2,π/2), the calculated
phase is limited to this interval, which breaks the original continuity of the signal phase.
Therefore, it is necessary to apply a process to unwrap the values of the phase, that is, to
compensate the phase of π at the point where the phase is interrupted. But unwrapping is
not easy. If the signal varies too fast, it will cause the failure of the unwrapping process. In
the meanwhile, the unwrapping process will also reduce the algorithm’s robustness to noise.
An algorithm that can avoid this problem is the differentiate and cross multiply algorithm,
which takes advantage of the fact that although the arctangent function is a transcendental
function, which is difficult to calculate, its derivative is a rational function[66].

The derivative of arctanget is: dar ct an(x)
dt = 1

(1+x2)
× dx

dt . Therefore, the corresponding

phase value can be obtained by integrating dar ct an(x)
dt = 1

(1+x2)
× dx

dt , and the integration
process ensures the continuity of the calculation result.

For instance, the value of ar ct an(Q(t )/I (t )) can be calculated as follows:

ar ct an(Q(t )/I (t )) =
∫ −∞

t

I 2(s)

Q2(s)+ I 2(s)
· Q̇(s)I (s)−Q(s)İ (s)

I 2(s)
ds (3.1)∫ −∞

t
·Q̇(s)I (s)−Q(s)İ (s)

Q2(s)+ I 2(s)
ds (3.2)

The above formula can be discretized as:

ar ct an(Q[n]/I [n]) ≈
n∑

k=−∞

(Q[k]−Q[k −1])I [k]−Q[k](I [k]− I [k −1])

Q2[k]+ I 2[k]
(3.3)

where Q[n] =Q(n∆t ), I [n] = I (n∆t ).
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Figure 3.2: Results of phase extraction on simulation data: (a)normal respiration, without noise; (b) normal
respiration, SNR=20 dB; (c) sleep apnea, without noise; (d) sleep apnea, SNR=20 dB

As shown in Figure 3.2, phase extraction with the differentiate and cross multiply al-
gorithm could well reconstruct the desired signal in an clean environment; however, when
there exists some noise, the result of phase extraction is not so reliable because the signal
phase is easily affected by noise. Thus, alternative signal processing methods in the spectral
domain are also explored.

3.2.2. SHORT-TIME FOURIER TRANSFORM
Short-time Fourier transform is an effective approach widely used in vital sign detection. As
the most classic frequency domain analysis tool, Fourier transform also has its limitation,
which is that it depicts the frequency spectrum globally and cannot reflect the character-
istics of the local area in the time dimension. This limitation of the Fourier Transform is
particularly severe for non-stationary signals as vital signs. Although people can clearly
see the value of each frequency component contained in a whole signal from the Fourier
transform, it struggles to obtain temporal information of the signal corresponding to the
frequency domain component, which greatly reduces the role of Fourier transform in more
sophisticated analysis. The short-time Fourier transform applies a sliding window with cer-
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Figure 3.3: Range-Time plot of radar signal with noise added, SNR = 20dB

tain width and step length on the time domain signal, and calculate the Fourier transform
of each window separately to obtain its corresponding frequency domain signals, which is
spliced together to become time-frequency information.

The definition of short-time Fourier transform is as follows:

X (n,ω) =
∞∑

m=−∞
x(m)w(n −m)e− jωm (3.4)

where x(m) is the input signal and w(m) is the window function, which is inverted in
time and has an offset of n samples. X (n,ω) is a two-dimensional function of time t and
frequency ω. Based on which time-frequency analysis could be performed, for example to
obtain the spectrogram by S(n,ω) = |X (n,ω)|2.

The range-time plot of the simulated radar signal is shown in Figure 3.3; the target was
located half a meter away from the radar. Then spectrogram was applied on the coherent
range bins where the target was. The results are shown in Figure 3.4, Figure 3.4a and Figure
3.4b respectively show the time-frequency information of normal breathing and obstructive
sleep apnea under ideal conditions, while Figure 3.4c and Figure 3.4d demonstrate the
spectrogram of normal respiration and sleep apnea in a noisy environment (with SNR=20
dB). After comparing with the results of phase extraction, it can be found that the short-time
Fourier transform is more robust to noise.
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Figure 3.4: Results of spectrogram of simulation data: (a)normal respiration, without noise; (b) normal respiration,
SNR=20 dB; (c) sleep apnea, without noise; (d) sleep apnea, SNR=20 dB

It can be noted that in Figure 3.4b, artefacts appear at the time bins corresponding to
approximately 3s, 5s, and 8s. In the simulation of obstructive sleep apnea, due to the sim-
plicity of the model, the decrease in respiratory amplitude cannot be a continuous process
as in practice. In contrast, the respiration obstruction can only be approximated by a sud-
den drop in signal amplitude, which will lead to the appearance of intermittent points in
the mathematical model built, further leading to the formation of artefacts in the frequency
domain. The existence of artefacts is due to limitations in accurately modelling the signal
and is not a defect in the signal processing algorithm, as can be seen from the following
envelope extraction results where artefacts do not show much impact on signal waveform
reconstruction. Moreover, in practical application scenarios, artefacts do not appear; thus,
the algorithm’s reliability is ensured.

3.2.3. DISCRETE WAVELET TRANSFORM
Apart from STFT, wavelet transform (WT) is also a type of transform which is capable
of providing time localization of the spectral components, hence delivering us the time-
frequency information of the signal. WT is widely used in the field of biological signals
analysis, due to its effectiveness in non-stationary signals processing[67][68]. Meanwhile,
because of the particularity of wavelet base, wavelet transform is non-redundant and allows
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more accurate local description and separation of signal features. Discrete wavelet trans-
form (DWT), also called binary wavelet transform, is obtained by discretizing the scale
and displacement of continuous wavelet transform (CWT) by a power of two. To provide
sufficient information for signal synthesis and realize an utterly reversible transformation,
discrete wavelet transform requires the wavelet base to be orthogonal or biorthogonal. In
the discrete case, filters with different cut-off frequencies are used to analyze signals of
different scales. The signal passes a series of high-pass filters to analyze high frequencies
and low-pass filters to analyze low frequencies[69].

Assume that ψ(t ) ∈ L2(R), and its Fourier transform is ψ̂(ω∗), when ψ̂(ω) satisfies:

Cψ =
∫

R

∣∣ψ̂ (ω)
∣∣2

|ω| dω<∞ (3.5)

Thenψ is called a basic wavelet or mother wavelet. After scaling and translating the mother
wavelet, a wavelet sequence is obtained:

ψs,τ = 1p|s|ψ
(

t −τ
s

)
,τ, s ∈ R ; s 6= 0 (3.6)

Which contains two variables, s and τ, the scale and translation parameters, respectively.
For any function f (t ) ∈ L2(R), the continuous wavelet transform is defined as:

W f (s,τ) = 〈 f ,ψs,τ〉 = 1p|s|
∫

x(t )ψ∗
(

t −τ
s

)
d t (3.7)

The definition of inverse transform is as follows:

f (t ) = 1

Cψ

∫ ∞

−∞

∫ ∞

−∞
1

s2 W f (s,τ)ψ

(
t −τ

s

)
d sdτ (3.8)

Generally, the discrete formulas of the scale parameter s and the translation parameter τ are
respectively taken from the CWT on a dyadic grid: for instance, s0 = 2 and t0 = 1, yielding
s = 2 j and t = k ·2 j . Note that s0 6= 1 and when discretizing the translation parameter τ, we
usually make a uniform discretization value to cover the entire time axis; and the sampling
interval τ satisfies the Nyquist sampling theorem.

The hierarchical structure as shown in Figure 3.5 demonstrates the procedures of the
DWT, where x[n] denotes the original signal to be decomposed, and g [n] and h[n] are
lowpass and highpass filters, respectively. The frequency in this case is normalized to π.
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Figure 3.5: Third level filter bank block diagram representation of DWT

The Daubechies N (db N) wavelet is a widely used wavelet basis function in vital signal
processing because of its excellent regularity, orthogonality and tight support[70, 71]. Db
N wavelets are characterized by a larger order of vanishing moments as the order (sequence
N) increases. The higher the vanishing moment, the better the smoothness, the stronger
the localisation of the frequency domain, but it makes the time domain less tightly sup-
ported, while the computational effort increases significantly and the real time performance
becomes worse[72]. Here the fourth order Daubechies basis was chosen[73, 74]. DWT
with db4 base was used as a filter in the proposed algorithm to extract the respiration signal
whose frequency locates in the interval of 0.1 to 0.7 Hz. After the nth level decomposition,
n = log2

(
F s

2× fr

)
, respiration signal could be extracted from the range-time signal. The four

lowpass and highpass, decomposition and reconstruction filters associated db4 wavelet and
the scaling function as well as the wavelet waveform are shown in Figure 3.6



3.2. PRE-PROCESSING ALGORITHMS

3

31

-0.2

0

0.2

0.4

0.6

0.8
Decomposition Lowpass Filter

0 2 4 6 8

-0.5

0

0.5

1
Decomposition Highpass Filter

0 2 4 6 8

-0.2

0

0.2

0.4

0.6

0.8
Reconstruction Lowpass Filter

0 2 4 6 8

-0.5

0

0.5

1
Reconstruction Highpass Filter

0 2 4 6 8

The four filters for db4

(a)

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

db4 Scaling Function

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

1.5
db4 Wavelet

(b)

Figure 3.6: Characteristics of the Daubechies’ extremal phase wavelet with 4 vanishing moments:(a) the four
lowpass and highpass, decomposition and reconstruction filters associated db4 wavelet; (b) the scaling function
and wavelet waveform.

The signal decomposition result in simulation environment when SNR = 20 dB could
be seen in Figure 3.7. Waveform of respiration is marked in red.

3.2.4. ENVELOPE EXTRACTION
The envelope extraction algorithm is based on image processing. It aims to find the pixels
with the highest red saturation in the time-frequency plot as shown in Figure 3.4.

1. Separate RGB channel and get the saturation of the red component;

2. For each column, compute the historgram of the red saturation and normalize it to 1;
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Figure 3.7: DWT decomposition of radar signal containing respiration, SNR = 20 dB



3.2. PRE-PROCESSING ALGORITHMS

3

33

3. For each time bin, eliminate the the pixels with a value of normalized red saturation
less than 0.9.

The extracted envelope is illustrated in Figure 3.8.
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Figure 3.8: Results of envelope extraction on simulation data: (a)normal respiration, without noise; (b) sleep
apnea, without noise

3.2.5. NOISE REDUCTION AND SIGNAL SMOOTHING BASED ON VARIA-
TIONAL MODE DECOMPOSITION

As can be seen in Figure 3.4, the signal waveform obtained by envelope extraction is not
smooth and has many spikes due to the presence of noise as well as the heartbeat sig-
nal, which can negatively affect the subsequent breathing obstruction detection algorithm.
It is necessary to decompose the respiratory signal and perform a denoising operation.
Therefore, variational mode decomposition algorithm is introduced in the signal processing
pipeline.

The basic concept of modal decomposition is to consider a signal as being a superpo-
sition of sub-signals of different "modes", while variational modal decomposition believes
that the signal is superimposed by sub-signals with different frequencies. Here a mode,
also called Intrinsic Mode Functions (IMF), is defined as a signal whose number of local
extrema and zero-crossings should be the same, or differ by one at most. In many later re-
searches, the definition was slightly revised to amplitude-modulated-frequency-modulated
(AM-FM) signals, which can be expressed as:

uk (t ) = Ak (t )cos (Φk (t )) (3.9)

where the phase Φk (t ) is a non-decreasing function whose first derivative is non-negative,
Φk

′
(t ) ≥ 0. It is worth noting that the envelope Ak (t ) ≥ 0 and the instantaneous frequency

ωk (t ) := Φk
′
(t ) change much slower than the phase Φk (t )[75][76]. This definition en-

sures that on a sufficiently long interval [t −δ, t +δ],δ ≈ 2π/Φk
′
(t ), the mode uk (t ) can

be regarded as a pure harmonic signal who has a limited bandwidth. The total practical
bandwidth of an IMF was estimated as[77]:

BW AM−F M = 2
(
∆ f + fF M + f AM

)
(3.10)
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VMD is to iteratively search for the optimised solution of the variational model to de-
termine the mode uk (t ) and its corresponding centre frequency ωk (t ) and bandwidth BW ,
note that the obtained IMF should result in a smallest sum of the bandwidth. The following
scheme was proposed to determine the bandwidth of each IMF[78]:

1. The analytical signal corresponding to each intrinsic mode uk (t ) is calculated through
the Hilbert transform to obtain a unilateral spectrum:

uk,A (t ) =
(
δ (t )+ j

πt

)
∗uk (t ) (3.11)

where δ (t ) represents Dirac function.

2. By multiplying uk,A (t ) and the exponential signal to the corresponding estimated
centre frequency ωk , the spectrum of the pattern is shifted to the baseband:[(

δ (t )+ j

πt

)
∗uk (t )

]
e− jωk t (3.12)

3. Estimate the bandwidth of each mode by determining the squared L2-norm of the
gradient. This forms a constrained variational problem:

min
{uk },{ωk }

{∑
k

∥∥∥∥∂t

[(
δ(t )+ j

πt

)
∗uk (t )

]
e− jωk t

∥∥∥∥2

2

}
s.t.

∑
k

uk = f (3.13)

where {uk } := {u1, ...,uk } and {ωk := {ω1, ...,ωk } represent set of all K IMFs and their
centre frequencies, respectively.

The second penalty and Lagrangian multiplier are used to find the optimal solution to
convert the appeal constraint problem into a non-constrained problem. The unconstrained
problem is usually solved by using alternate direction multiplier, which is updated itera-
tively to eventually obtain all signal decomposition patterns[78].

Specifically, we follow the steps below to solve the problem:

1. We introduce the second penalty and the augmented Lagrangian multiplier L as
follows:

L ({uk },{ωk },λ):=α∑
k

∥∥∥∥∂t

[(
δ(t )+ j

πt

)
∗uk (t )

]
e− jωk t

∥∥∥∥2

2
(3.14)

+
∥∥∥∥∥ f (t )−∑

k
uk (t )

∥∥∥∥∥
2

2

+
〈
λ(t ), f (t )−∑

k
uk (t )

〉
. (3.15)

where α and λ (t ) are the quadratic penalty coefficient and the Lagrange multiplier
respectively.
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2. The original minimization problem is now converted to a convex problem which aims
to find the saddle point of the L . This could be solved by alternate direction method
of multipliers (ADMM); the specific steps of the operation are as follows:

Algorithm 1 ADMM optimization concept for VMD

Initialize {u1
k }, {ω1

k },λ1,n ← 0
repeat

set n ← n +1
for k = 1 : K do

Update uk :
un+1

k ← argmin
uk

L
({

un+1
i<k

}
,
{
un

i≥k

}
,
{
ωn

i

}
,λn

)
(subproblem. 1)

end for
for k = 1 : K do

Update ωk :
ωn+1

k ← argmin
ωk

L
({

un+1
i

}
,
{
ωn+1

i<k

}
,
{
ωn

i≥k

}
,λn

)
(subproblem. 2)

end for
Dual ascent:
λn+1 ←λn +τ(

f −∑
k un+1

k

)
until convergence:

∑
k

∥∥un+1
k −un

k

∥∥2
2

/
∥∥un

k

∥∥2
2
< ε

3. In Algorithm 1, the problem of minimization w.r.t . uk and ωk remains:

A. minimization w.r.t . uk :
In order to update the modes, subproblem. 1 could be converted to:

un+1
k = argmin

uk∈X

{
α

∥∥∥∥∂t

[(
δ(t )+ j

πt

)
∗uk (t )

]
e− jωk t

∥∥∥∥2

2

+
∥∥∥∥∥ f (t )−∑

i
ui (t )+ λ(t )

2

∥∥∥∥∥
2

2

}
(3.16)

The above minimized term can be transformed to the frequency domain using
the properties of Parseval/Plancherel Fourier isometry under the L2-norm and
the differential properties of the Fourier transform:

ûn+1
k = argmin

ûk ,uk∈X

{
α

∥∥ jω
[(

1+ sgn(ω+ωk )
)

ûk (ω+ωk )
]∥∥2

2

+
∥∥∥∥∥ f̂ (ω)−∑

i
ûi (ω)+ λ̂(ω)

2

∥∥∥∥∥
2

2

}
. (3.17)
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Replacing ω−ωk by ω, we could get:

ûn+1
k = argmin

ûk ,uk∈X

{
α

∥∥ j (ω−ωk )
[(

1+ sgn(ω)
)

ûk (ω)
]∥∥2

2

+
∥∥∥∥∥ f̂ (ω)−∑

i
ûi (ω)+ λ̂(ω)

2

∥∥∥∥∥
2

2

}
. (3.18)

Using the Hermitian symmetry of real signals in the reconstruction fidelity term,
the two terms of Equation 3.18 can be rewritten as:

ûn+1
k = argmin

ûk ,uk∈X


∞∫

0

4α(ω−ωk )2 |ûk (ω)|2

+2

∣∣∣∣∣ f̂ (ω)−∑
i

ûi (ω)+ λ̂(ω)

2

∣∣∣∣∣
2

dω

}
. (3.19)

By letting the first variation in the positive frequency disappear, it is easy to find
a solution to this secondary optimization problem:

ûn+1
k (ω) = f̂ (ω)−∑

i 6=k ûi (ω)+ λ̂(ω)
2

1+2α(ω−ωk )2 (3.20)

B. minimization w.r.t . ωk :
Due to the fact that the center frequencies ωk only appears in the prior band-
width, the corresponding problem subproblem. 2 could be converted to:

ωn+1
k = argmin

ωk

{∥∥∥∥∂t

[(
δ(t )+ j

πt

)
∗uk (t )

]
e− jωk t

∥∥∥∥2

2

}
(3.21)

As we have done to the previous optimization problem, we transform it to the
spectrum domain and get:

ωn+1
k = argmin

ωk


∞∫

0

(ω−ωk )2 |ûk (ω)|2 dω

 (3.22)

The interactive formula will be:

ωn+1
k =

∫ ∞
0 ω |ûk (ω)|2 dω∫ ∞

0 |ûk (ω)|2 dω
(3.23)

4. By substituting the solutions to subproblem. 1 and subproblem. 2, the complete
algorithm for VMD is discribed in Algorithm 2.

The VMD algorithm is used to decompose the extracted envelope into modes with dif-
ferent frequencies, and determine the respiratory signal by comparing the center frequencies
of the IMFs with the respiratory frequency interval. Through this step, the heartbeat and
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Algorithm 2 Complete Optimization of VMD

Initialize {û1
k }, {ω1

k }, λ̂1,n ← 0
repeat

set n ← n +1
for k = 1 : K do

Update ûk for all ω≥ 0:

ûn+1
k (ω) ← f̂ (ω)−∑

i<k ûn+1
i (ω)−∑

i>k ûn
i (ω)+ λ̂n (ω)

2

1+2α
(
ω−ωn

k

)2

Update ωk :

ωn+1
k ←

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2
dω∫ ∞

0

∣∣∣ûn+1
k (ω)

∣∣∣2
dω

end for
Dual ascent for all ω≥ 0:
λ̂n+1(ω) ← λ̂n(ω)+τ(

f̂ (ω)−∑
k ûn+1

k (ω)
)

until convergence:
∑

k

∥∥ûn+1
k − ûn

k

∥∥2
2

/
∥∥ûn

k

∥∥2
2
< ε
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Figure 3.9: Results of signal smoothing by VMD: (a)normal respiration, without noise; (b) sleep apnea, without
noise
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other noises are filtered out; the smoothed signal after VMD is applied is depicted in Figure
3.9. It could be seen that the respiration component is well retrieved.

After VMD smoothing, the improvement in signal reproduction is especially noticeable
when the signal-to-noise ratio is low, as could be seen in Figure3.10. This is the result of
the simulation with a SNR of three. Figure 3.10a, 3.10b and 3.10c show the envelope of
normal breathing, CSA and OSA extracted from spectrogram, and Figure 3.10d, 3.10e and
3.10f corresponds to their results after VMD smoothing, respectively. It can be observed
that plenty of burrs which might affect the result of the breathing obstruction test vanished.
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Figure 3.10: Improvement of reconstructed signal after VMD when SNR = 3 dB: signal before VMD (a) normal
breath (b) CSA (c) OSA, and signal after VMD (d) normal breath (e) CSA (f) OSA

3.3. VITAL SIGNS FREQUENCY ESTIMATION
As demonstrated in Figure 3.1, after noise reduction process, the smoothed respiration sig-
nal is obtained, based on which the breathing rate could be estimated. The frequency is es-
timated by calculating the frequency spectrum of the reconstructed biological signal filtered
by the second-order Butterworth bandpass filter. The filter is used to ensure that spurious
and noise that may affect the estimation of the breathing frequency are filtered out and only
signals with frequencies in the frequency range of normal breathing ([0.1H z,0.7H z], as
demonstrated in the previous chapter) are retained. Here, a second-order Butterworth band-
pass filter with a centre frequency of 0.4Hz and a bandwidth of 0.7Hz is applied. IIR filter
is used because they typically meet a specific set of specifications at a much lower filter or-
der than the corresponding FIR filter. Furthermore, the distortion caused by the non-linear
phase of the IIR filter can be circumvented as the MATLAB "filtfilt" function allows the use
of a non-causal zero-phase filtering method. Furthermore, as the signal used for frequency
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estimation has already been smoothed via VMD described previously, a higher-order filter
is not required for accurate frequency screening. Thus, the order of the IIR filter has been
determined to be second order.
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Figure 3.11: Respiration rate estimation for modelled signal under SNR = 20dB with ground truth fr es_tr ue =
0.35H z

Frequency estimation result for the signal shown in Figure 3.9 could be seen in Figure
3.11. The comparison with the ground truth shows that the respiratory rate is accurately
estimated.

The root mean square error of the respiratory frequency estimates for the sample set at
different signal-to-noise ratios will be elaborated in Chapter 4.

3.4. SLEEP APNEA DETECTION
3.4.1. THRESHOLD-BASED DETECTION
As demonstrated in Chapter 2, the obstructive sleep apnea is modelled by a 50% drop in
breathing amplitude and simulate CSA by vanishing of chest movement caused by respira-
tion. Based on this simulation settings, a method that detects apnea by setting a threshold
of 50% drop in average amplitude is proposed. According to the standard for sleep apnea
detection introduced by the American Academy of Sleep Medicine (AASM), apnea is re-
ported when there is a drop in the signal amplitude of the baseline for at least 10 seconds
[79]. Note that when building the simulation environment, the sampling rate and PRF were
set at a high value to obtain higher distances and Doppler resolution, resulting in a mas-
sively large radar data. Due to computer memory limitations, the duration of the generated
apnea was half the duration of that in reality; thus the duration was set to half the clini-
cal diagnostic criteria when performing the respiratory obstruction diagnosis. As a result,
the reconstructed signal is split into segments of 5s with an overlap of 4s. Then the av-
erage amplitude for each segment is computed, and the amplitude drop is compared with
the baseline, set to be the maximum average amplitude of these segments. Those segments
with an amplitude decrease of more than 60% are labelled as apnea.
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Figure 3.12: Demonstration of apnea detection based on threshold

3.4.2. APNEA DETECTION USING APPLIED MACHINE LEARNING

In addition to applying simple methods of setting thresholds, classifiers based on machine
learning have also been used for sleep apnea detection. The threshold-based approach is
simple and easy to implement, but as the physiology of the subject during respiratory ob-
struction varies greatly in terms of the value of the change in chest wall displacement, the
threshold setting has to change depending on the subject being monitored. Generally, sev-
eral sets of reference tests are required to assist in setting the appropriate threshold after
changing the subject, which results in a lack of adaptivity and portability of the algorithm.
On the contrary, although machine learning-based classifiers require a large number of sam-
ples and time to train, the trained model is highly portable and more suitable for practical
applications.

In this subsection, two of the simplest machine learning algorithms that are widely used
for human motion recognition and sleep pattern classification are presented: support vector
machines with Gaussian kernels and KNN.

SUPPORT VECTOR MACHINE

The basic theory of Support Vector Machine (SVM) is to find the separation hyperplane
that can correctly divide the training data set and have the largest geometric interval. As
shown in Figure 3.13, the w ·x+b = 0 is the separating hyperplane. For a linearly separable
data set, the unique separable hyperplane with the most significant geometric interval can
always be found among an infinite number of such hyperplanes.
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Figure 3.13: Demonstration of SVM principle with support vectors and separation hyperplane

Given a training data set on the feature space:

T = {(
x1, y1

)
,
(
x2, y2

)
, ...,

(
x N , yN

)}
Where x i ∈ Rn , yi ∈ {+1,−1}, i = 1,2, ..., N , xi is the i th eigenvector, and yi is the class
label. For a given data set T and hyperplane w · x +b = 0, the geometric interval of the
hyperplane with respect to the sample points

(
xi , yi

)
is defined as:

γi = yi

(
w

‖w‖ · x i + b

‖w‖
)

The minimum value of the geometric interval of all sample points in the hyperplane is:

γ= min
i=1,2,...,N

γi

Therefore the problem of solving the maximum split hyperplane of the SVM model can be
expressed as the following constrained optimization problem:

max
w,b

γ

s.t. yi

(
w

‖w‖ · x i + b

‖w‖
)
≥ γ, i = 1,2, ..., N (3.24)

Which can be simplified to:

min
w ,b

1

2
‖w‖2

s.t. yi (w · x i +b) ≥ 1, i = 1,2, ..., N (3.25)

A delicate solution has been derived to solve this convex optimization problem, which could
be seen in Algorithm 3.
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Algorithm 3 Complete Solution to SVM
Input: T = {(

x1, y1
)

,
(
x2, y2

)
, ...,

(
x N , yN

)}
, in which x i ∈ Rn and yi ∈ {+1,−1}, i =

1,2, ..., N
Output: Hyperplane and classification decision function

1. Specify kernel function K (x, z), penalty parameter C > 0
Solve: min

α

1
2

∑N
i=1

∑N
j=1αiα j yi y j K

(
x i · x j

)−∑N
i=1αi

s.t.
∑N

i=1

∑N
j=1αi yi = 0

0 ≤αi ≤C , i = 1,2, ..., N
obtain the optimal solution α∗ = (

α∗
1 ,α∗

2 , ...,α∗
N

)T

2. Calculate w∗ =∑N
i=1α

∗
i yi x i :

Select a component of α∗, α∗
j that satisfies the 0 <α∗

j <C

calculate b∗ = y j −∑N
i=1α

∗
i yi K

(
x i · x j

)
3. Obtain the hyperplane:
w∗ · x +b∗ = 0
and classification decision function:
f (x) = si g n

(∑N
i=1α

∗
i yi K (x, xi )+b∗)

K-NEAREST NEIGHBOR ALGORITHM
K-Nearest Neighbour is a non-parametric machine learning algorithm based on the super-
vised learning technique. It does not involve a learning process from the training set; on
the contrary, it is data-oriented, storing datasets and acting on them as it operates to classify
them, which explains why it is also known as a lazy learner algorithm. The new data will
be sorted into the category with the shortest Euclidean distance from it. The algorithm of
KNN is demonstrated in Algorithm 4[80].

Algorithm 4 K-Nearest Neighbor Algorithm

Classify (X ,Y , x)// X : training data, Y : class labels for X , x: unknown sample
for i = 1 : m do

Compute distance d (Xi , x)
end for
Compute set I containing indices for the k smallest distance d (Xi , x).
return majority label for {Yi wher ei ∈ I }

3.5. CONCLUSION
In this chapter, a signal processing pipeline that can provide the required details of tho-
rax/abdomen movements with breath-to-breath accuracy is developed. Different pre-processing
algorithms used to reconstruct the respiration waveform are discussed and compared. Based
on the results the following conclusions could be drawn:

• Phase extraction is the simplest and most intuitive method, but is least robust to noise;

• Discrete wavelet transform is also a convenient approach and not easily interfered by
noise, but the restoration of signal amplitude will be slightly distorted;
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• Spectrogram shows superior robustness to noise and can restore signal waveforms
very effectively; however, the extraction of the envelope requires additional image
processing steps, and its performance will be limited by frequency resolution.

Moreover, sleep apnea detection methods based on threshold for signal magnitude and ap-
plied machine learning are also elucidated. The effectiveness of these algorithms will be
further verified in the next two chapters by both the simulation data and experimental data.



4
SIMULATION RESULTS

This chapter presents the simulation verification of the validity of the proposed algorithms.
A model of vital signs captured by radar in different environments and on various subjects
was built. Then the simulation signal was processed by the algorithms proposed in the
previous chapter to obtain the features used to conduct apnea detection. The performance
of the breath pattern classifiers is evaluated by the classification results on the simulated
signal.

4.1. STRATEGY OF MONTE CARLO SIMULATION
In the previous chapter, the proposed algorithms were clarified, and the results of the pre-
processing algorithm were given in a simulation environment where the rate and amplitude
of heartbeat and respiration were fixed, and the SN R = 20dB . Monte Carlo simulation was
introduced to study the effectiveness of this set of algorithms on different subjects under
different noise levels and different sleeping positions. Monte Carlo simulation is a proba-
bilistic model usually used in situations where there is intervention of random variables in
a system to study the effect of random variables on the outcome, which will be environ-
mental noise and parameters of vital signs in this research. The simulation process includes
assigning multiple random values to the uncertain variables in the model to obtain their
corresponding consequences, and obtain the estimated value by taking an average.

Two sets of Monte Carlo simulation will be performed. In this simulation, there are two
random variables, the waveform of respiration signal and environmental noise. First, a set of
Monte Carlo simulations for different test objects are designed, and the vital sign model es-
tablished in it has a randomly selected amplitude and frequency. Because in reality, different
targets breathe at distinct frequencies and amplitude, resulting in an inconsistent breathing
signal. As introduced in Chapter 2, the ranges of respiratory rate is [0.1H z,0.7H z], while
it’s amplitude usually values in [4mm,12mm][48]. The cardiopulmonary activity usually
has a frequency in the interval [0.9H z,3H z] and an amplitude about 5mm[49]. For simplic-
ity, all the parameters are assumed to be normally distributed with µ equals to the centroid
of the corresponding range and σ= 1. A total of one hundred random samples were gener-

44
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ate, where the respiratory frequency and amplitude of each sample were randomly selected
from the normal distribution described.

Meanwhile, another set of Monte Carlo simulations for environmental noise was also
performed. This set of simulations assumes that all measurements are conducted on the
same person in different environments, which means that the waveform of the vital sign is
constant, while the ambient noise is randomly added. The amplitude and frequency of vital
signs are specified according to the values used in the mathematical model demonstrated in
the Chapter 3, Ar = 7mm, fr = 0.35H z, Ah = 0.5mm and fh = 1.2H z. The SNRs are taken
iteratively from the set A, A = {x|0 ≤ x ≤ 30, x ∈Z}. Under each SN R, 200 sets of radar
signals with white Gaussian noise are randomly generated, and the proposed algorithm is
applied to them to obtain the average detection accuracy as the final result.

The results for each Monte Carlo simulation will be presented and analyzed in the fol-
lowing sections. Besides, the impact of sleeping posture on the simulation results was also
studied and demonstrated.

4.1.1. EVALUATION METRICS
A confusion matrix is a visualization metric of the classification results of a classifier with n
classes, which has a dimension of n×n. A typical two-dimension confusion matrix is shown
in Figure 4.1. It has two rows and two columns that reports the following meaning[81]:

• TP denotes the number of true positives predictions;

• FP denotes the number of false negatives predictions;

• FN denotes the number of false positives predictions;

• TN denotes the number of true negatives predictions.

Figure 4.1: Confusion matrix for two-class classification problem.
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The evaluation metrics are calculated by:

Accur ac y = T P +T N

T P +F P +F N +T N
(4.1a)

Pr eci si on = T P

T P +F P
(4.1b)

Recal l = T P

T P +F N
(4.1c)

F 1Scor e = 2×Recal l ×Pr eci si on

Recal l +Pr eci si on
(4.1d)

Where accuracy indicates the proportion of the total number of predictions that were cor-
rect, precision is a measure of the proportion of positive cases that are recognised properly,
reports the percentage of all true positive cases that are correctly detected and F1-Score is
the harmonic mean of precision and recall values for a classification problem.

4.2. MONTE CARLO SIMULATION FOR DIFFERENT SUBJECTS
To evaluate the performance of the proposed algorithm, a Monte Carlo simulation is per-
formed to mimic different patients by selecting random combinations of frequency and
amplitude for respiration and heartbeat. A hundred sets of data with Normally distributed
random amplitude and frequency are generated to simulate the measurements on 100 dif-
ferent person. The STFT together with image processing is used in this case to extract the
envelope of the signal. Details of signal processing and apnea detection algorithm are pre-
sented in Chapter 3. The simulation was assumed to be in the same environment, where the
signal-to-noise ratio was set to 20 dB.

As Table 4.1 shows, the classifiers can provide apnea detection results with sufficient
accuracy.

Table 4.1: Apnea Detection Results For 100 Simulated Subjects and 3 Classification Algorithms, SNR = 20dB

Algorithm Evaluation Matrices
Accuracy Precision Recall F1 Score

Threshold 97.0% 95.4% 100% 98.0%

KNN 94.0% 91.5% 100% 96.0%

SVM 93.0% 100% 89.2% 94.0%

4.2.1. ERROR ANALYSIS
After analyzing several examples where detection errors occur, it is observed that the cause
of detection failures comes from the signal pre-processing step. To approximate the distri-
bution of people’s breathing rate in reality, a normal distribution is used in the simulation
whose mean is centred in the middle of the range interval, which also means that the mod-
elled signal’s frequency will fall outside the regular interval in rare cases.

Figure 4.2 shows the outputs of each step of the signal pre-processing workflow for
these examples where errors have occurred. The failure happened because the respiration
rate was too high that the time resolution did not meet the requirement of a sound restora-
tion, as could be seen in the plot of spectrogram. Hence, the outcomes of the envelope
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extraction are somewhat distorted, which further leads to the failure of the modal decom-
position. Another reason for detection failure is that the apnea duration is too short, which
is also a side effect of excessive frequency. Because the duration of apnea is set to two
or three full respiratory cycles in the simulation, the rapid respiratory rate resulting in too
short an apnea duration to be detected by the five-second detection window.

Micro-Doppler Signature
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Figure 4.2: Results of each step of the signal pre-processing workflow: after STFT (Doppler-time spectrogram
pattern) with (a) central sleep apnea and (d) obstructive sleep apnea, after envelope extraction (Doppler frequency
vs time pattern) with (b) central sleep apnea and (e) obstructive sleep apnea, after VMD (Doppler frequency vs
time pattern) with (c) central sleep apnea and (f) obstructive sleep apnea

However, in reality, breathing signals generally occur at low frequencies, hence such
extreme cases do not affect the validity of the algorithm. When a uniformly distributed
probability is used to generate the vital signal parameters, which implies that the frequency
and amplitude are strictly limited to their range, fresh 420 sets of raw data are generated.
The evaluation metrics for this dataset are shown in Table 4.2, where all three classification
algorithms achieved nearly 100% accuracy. It is worth noticing that the model used to
simulate respiration signal and sleep apnea is a highly idealized model and the signal, in
reality, is much more complicated.

4.3. MONTE CARLO SIMULATION FOR THE ENVIRONMENT
Monte Carlo simulations for different environments represented by different signal-to-noise
ratio SNR were performed to investigate the robustness of the proposed algorithm. The tar-
get was assumed to be the same person, with invariant amplitude and frequency of their
vital signs. The signal-to-noise ratio traverses all values from 0 to 30, under which two
hundred sets of data are generated and used for follow-up process and classification.
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Table 4.2: Apnea Detection Results For 420 Simulated Subjects and 3 Classification Algorithms; Subjects are in
supine position and SNR = 20dB

Algorithm Evaluation Matrices
Accuracy Precision Recall F1 Score

Threshold 100% 100% 100% 100%

KNN 99.8% 100% 99.8% 99.9%

SVM 100% 100% 100% 100%

4.3.1. RESULT FOR FREQUENCY ESTIMATION
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Figure 4.3: RMSE of respiration frequency estimation as a function of SNR for wavelet-based vs phase extraction
approaches

Under different SNRs, the comparison between the frequency estimated by the two algo-
rithms and the root mean square error of the true value is shown in Figure 4.3. Both algo-
rithms could provide the estimation of the frequency with sufficient accuracy when SNR
larger than a threshold. However, frequency estimation based on wavelet do show more
robustness against noise.
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4.3.2. SIMULATION IN SUPINE POSITION
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Figure 4.4: Evaluation metrics of Monte Carlo simulation on the environmental noise: (a) Accuracy (b) Precision
(c) Recall (d) F1 Score

Figure 4.4 compares the accuracy, precision, recall and F1-score for two time-frequency
distributions (the proposed STFT and the CWT for comparison) from which the envelope
is extracted, and the usage of KNN classifier vs a simple amplitude threshold. STFT yields
better results than CWT for lower SNR values, while in general results are above 70%. The
difference between KNN vs simple detection threshold appears to be not too relevant.

4.3.3. SIMULATION FOR DIFFERENT SLEEPING POSTURE
To investigate the impact of sleeping posture on apnea detection, a model that simulates
the radar echo at the chest wall was built, in which an ellipsoid is used to model the human
torso. As shown in Figure 4.5, assume that the target lies on the xO y plane along the y axis,
and the radar is placed at (0,0,0.6). In general, a, b, c are taken as 0.15, 0.3, 0.1 respectively.
These data are from one of the subjects in the subsequent experimental procedure who has
a relatively small torso. However, this will not have an impact on the simulation results as
the simulation is designed to capture the differences in sleep positions. Using the concept
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Figure 4.5: Ellipsoid geometry used to model human torso; target lies on the xO y plane along the y axis

of relative coordinates, the motion of the target turning over is equivalent to object keeping
still and the radar rotating around the target. Under this condition, the equivalent radar cross
section of the torso is defined as:

σ= πa2b2c2(
a2sin2θcos2φ+b2sin2θsin2φ+ c2cos2θ

)2 (4.2)

Where
(
θ,φ

)
are

(
0, π2

)
,
(
π
2 ,0

)
and

(
π, π2

)
for supine, side and prone position, respectively.

The modeling and simulation of signals for different sleeping positions are based on the
following assumptions:

1. The physiological characteristics of breathing as well as heart rate do not change
when the target is in different sleeping positions. This is a rather idealistic as-
sumption, since studies have shown that the frequency of breathing as well as pul-
monary ventilation and even respiratory abnormalities are associated with the sleep
position[82][83][84]. Nonetheless, this correlation revealed very complex features,
and no mathematical model has been proposed that can well simulate this alter-
ation. Consequently, in this simulations, the changes in the physiological properties
of breathing are ignored.

2. The ellipsoidal model mentioned above is applied to simulate the human torso, and
the calculation of the radar scattering cross section is solely based on this assumption,
which means that the influence of the limbs is neglected.

3. For reasons of simplicity and based on the research on "Effects of posture on chest-
wall configuration and motion during tidal breathing" [84], the Anteroposterior (AP)
diameter changes at the thorax in different sleeping positions was set quantitatively
to AP supi ne : AP si de : AP pr one = 1 : 0.7 : 0.3, AP supi ne = 0.7mm.

This simulation does not fully reproduce the actual sleep situation, but only gives a
reference for the analysis of the accuracy of sleep apnea detection with respect to the torso
radar scattering cross section and skin surface displacement.
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Figure 4.6: Evaluation metrics of Monte Carlo simulation on the environmental noise in different sleeping posture:
(a) Accuracy (b) Precision (c) Recall (d) F1 Score

Figure 4.6 shows the Monte Carlo simulation results for the ambient noise when the
target is in different poses. Following observation can be made:

1. The supine state has the highest detection accuracy, followed by prone and then side-
lying.

2. In the supine and prone position, the radar cross section is larger, resulting in a higher
reflected signal energy, which contributes to its robustness to noise.

3. Comparing the results for supine and prone, it can be concluded that the reduction of
displacement amplitude doesn’t have much effect on the results due to the sufficient
Doppler resolution in the simulation.

4. As the signal in the simulation environment is relatively ideal and the high-resolution
setting, the algorithm can achieve 100% detection accuracy in all three sleeping pos-
tures when the signal-to-noise level is above a certain threshold.
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4.3.4. ERROR ANALYSIS
Figure 4.7 demonstrates the signal reduction for some examples where detection errors
occurred. It can be seen that, as in the Monte Carlo simulation for patients, the problem
lies mainly in the signal pre-processing procedure, where the signal is masked under the
white noise in many simulations due to the very low signal-to-noise ratio. (In some cases
the signal can still be restored, as shown in Section 3.2.5 in Chapter 3.)
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Figure 4.7: Examples of detection errors, i.e. patterns that are incorrectly recognised by the classification algo-
rithms: for SNR = 0 dB (a) normal breath (b) CSA (c) OSA, and for SNR = 3 dB (d) normal breath (e) CSA (f)
OSA

After the analysis of the error cases, the following findings can be obtained:

1. The effect of noise is mainly reflected in the signal amplitude;

2. Under a fixed signal-to-noise ratio, since the noise is randomly added, its influence
on the detection result is unpredictable;

3. The proposed algorithm tends to generate false alarms at low SNRs instead of miss
detection.

4.4. CONCLUSION
This chapter presents the results of Monte Carlo simulations for noise and vital signal pa-
rameters; different sleep positions are taken into account and error studies are performed.
It is verified that the proposed pre-processing algorithms can restore the signal well except
for extreme cases and cases where the SN R < 5dB . The obtained signal envelopes are also
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very effective as features for respiratory obstruction detection, and all three applied classi-
fication algorithms can obtain an accuracy rate of more than 90%. Simulations on sleeping
posture point out that the RCS (which is directly related to the received signal energy) is the
most critical factor in determining the detection effectiveness in a low SNR environment.
However, this simulation is based on the premise that the signal model is highly idealized
and the sleeping posture is highly standardized. It only provides a reference for analyzing
the accuracy of sleep apnea detection from the torso RCS and skin surface displacement.
The relationship between the real situation for sleeping posture and radar-based breathing
obstruction detection will be characterised more in detail in the next chapter using experi-
mental data.



5
EXPERIMENTAL VALIDATION

An experiment on 14 participants was conducted to verify the effectiveness of the proposed
system and pre-processing and apnea detection algorithms illustrated in Chapter 3. This
chapter will present the experimental procedure, measured data composition, and signal
processing and apnea detection results, followed by some comments and discussion. Ethics
approval for the research was provided by the Delft University of Technology Ethics Com-
mittee and written informed consent was obtained from each subject.

5.1. EXPERIMENTAL ENVIRONMENT SETUP
The experiment took place in a project room at Delft University of Technology. As shown
in Figure 5.1, the yoga mat was placed on an open area of the floor and the radar was fixed
to the edge of the table. The subjects were asked to lie on the yoga mat with a pillow, and
the radar was placed 110 cm directly above their chest. There was no obstruction between
the subjects and the radar.

The radar used in this experiment is the Xethru X4M03 low power UWB module, which
combining a 7.29/8.748 GHz transmitter with 1.5 GHz bandwidth. Coherent integration
was used to achieve processing gain and the level of processing gain increase with higher
integration. The sampling rate is 23.328 GS/s and the Pulse Repetition Frequency (PRF) is
100 Hz.

The subjects included 14 volunteers aged 22-35, 10 of whom were males and 4 were
females. Their breathing was measured in the supine, side and prone positions. Note that
these volunteers are not actual patients who suffer from obstructive sleep apnea, but healthy
people. Thus the apnea events were simulated by the subjects holding their breath. And
then the above measurements were repeated while the subjects were covered by a blanket.
Lying in each position, they were asked first to breathe normally and then to hold their
breath for several seconds. The simulated respiratory interruption generally lasted between
ten and twenty seconds on average. Note that even if the experiment is not for true apnea,
what we aimed for was to capture transitions between normal and holding. During the
measurement, the participants were told to be as natural as possible, to be as they usually
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do when they sleep. For example, when lying on their side, their bodies are naturally curled
up, and their arms are relaxed.

The composition of the experimental data is shown in the Table5.1. A total of 365 sets
of data were measured, of which 181 sets were normal breathing and 184 were sleep apnea
cases (simulated by subjects holding breath for more than 10s). The duration of each set
of recordings is 40 s. Note that during these 365 sets of measurements, the subjects were
asked to stay as still as possible and could not make movements such as turning over. Apart
from this, we also conducted 23 sets of measurements during which the participants were
allowed to change the sleeping position to study the feasibility of breathing monitoring
when the subject is moving.

Figure 5.1: Picture of the experimental setup with radar in the red circle; the subject is lying on his side

Table 5.1: Experimental Data Composition; Units in the table: number of data collection

Sleeping Position
Total

Supine Side Prone
Blanket 56 68 56 180

No Blanket 56 71 58 185

Total 112 139 114 365

In addition, a set of control experiments were carried out. As in the previous experi-
ment, we measured the subjects’ breathing in the supine, side and prone positions with and
without the blanket. In this experiment, the only difference will be that the participant was



5

56 5. EXPERIMENTAL VALIDATION

also wearing breathing belts to monitor his respiration while being measured by radar. This
set of control data is used to verify the effectiveness of our algorithm against the measured
data. Thus the algorithm can be appropriately improved according to the results.

Finally, we also performed respiration monitoring for one hour in an actual sleeping
scenario on one of the subjects. During the test, the subject was lying on the bed and
covered with a quilt, and the radar was placed 70 cm above the chest.

5.2. PRE-PROCESSING RESULTS

5.2.1. SIGNAL RECONSTRUCTED BY PHASE DEMODULATION

In Chapter 4 we verified the effectiveness of the signal processing algorithms by simulation
data and perform Monte Carlo simulation for the noise level. The results indicated that in
the case of a high signal-to-noise ratio (SNR> 20 dB), the phase extraction and Doppler
frequency-based signal reconstruction are both reliable.

However, after processing and analyzing the experimental data, we found that phase
demodulation does not always provide accurate results in this experimental environment.
Phase demodulation for UWB radar is performed on slow time. The phase history demod-
ulated from two sets of the radar signal, and the corresponding ground truth gathered by
respiration belt was demonstrated in Figure 5.2. The trajectory extracted by the phase de-
modulation algorithm described in previous chapter is shown in Figure 5.2a and 5.2b, where
Figure 5.2a demonstrates normal breathing and Figure 5.2b demonstrates apnea.

We could observe that the phase trajectories have an overall upward trend, which is
inconsistent with the record measured by the breathing belt. After analyzing the extracted
phase, it is discovered that this happens because the phase compensation is performed at
the wrong phase discontinuity point. The phase demodulation process involves a process of
compensating 2π when the phase suddenly changes more than an entire period. However,
when an aberrant phase jump occurs, an error occurs in the result of phase demodulation.
The appearance of anomalous phase jumps is related to noise, the initial phase of the pulse
and relatively low PRF. We take the scenario of apnea depicted in Figure 5.2b as an ex-
ample; at the points of time marked by the labels, there was an unexpected sudden change
in the phase, which led to the failure of the demodulation algorithm. Unexpected phase
discontinuities are usually caused by noise and low sampling frequency, especially when
the respiratory signal is weak.

To solve this problem, we skipped the phase compensation step and repeat the demod-
ulation operation. Therefore we reached the results shown in Figure 5.2c and 5.2d, which
have shown consistency with the ground truth. However, the chest wall displacement
caused by cardiopulmonary activity usually lies in the interval of [4mm,12mm] (supine
position)[48]. According to Equation 2.31, the maximum phase shift caused by the chest
wall movement to the UWB radar signal will be from 1.2 rad to 4.4 rad. Combining the
initial phase, it may easily lie outside the interval of [−π,π]. Skipping unwrap procedure
may sometimes causes the upwrapping failure at the normal phase jump that should be
phase compensated. Examples are shown in Figure 5.3. In these two cases, the effective-
ness of the two phase demodulation methods is completely opposite to that of the previous
examples.



5.2. PRE-PROCESSING RESULTS

5

57

0 5 10 15 20 25 30 35

Time (sec)

0

5

10

15

20

25

30

35

40

45

A
m

p
lit

u
d

e

Smoothed Demodulated Phase

(a)

0 5 10 15 20 25 30 35 40

Time (sec)

-5

0

5

10

15

20

A
m

p
lit

u
d

e

Smoothed Demodulated Phase

X 7.6819

Y 3.3622

X 11.7529

Y 9.5825

X 15.1738

Y 15.5719

(b)

0 5 10 15 20 25 30 35

Time (sec)

-3

-2

-1

0

1

2

3

A
m

p
lit

u
d

e

Smoothed Demodulated Phase, No Compensation

(c)

0 5 10 15 20 25 30 35 40

Time (sec)

-3

-2

-1

0

1

2

A
m

p
lit

u
d

e

Smoothed Demodulated Phase, No Compensation

(d)

0 5 10 15 20 25 30 35

Time (sec)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
re

s
s
u

re
 (

N
)

Respiration Signal Measured by the Belt

(e)

0 5 10 15 20 25 30 35

Time (sec)

1

2

3

4

5

6

P
re

s
s
u

re
 (

N
)

Respiration Signal Measured by the Belt

(f)

Figure 5.2: Phase demodulation results: normal breathing in supine position for phase demodulation with unwrap
process (a) phase demodulation without unwrap process (c) and ground truth (e), and holding breath episode in
supine position for phase demodulation with unwrap process (b) phase demodulation without unwrap process (d)
and ground truth (f)
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Figure 5.3: Phase demodulation results: normal breathing in side position for phase demodulation with unwrap
process (a) phase demodulation without unwrap process (c) and ground truth (e), and holding breath episode in
side position for phase demodulation with unwrap process (b) phase demodulation without unwrap process (d)
and ground truth (f)

A conclusion could be drown that the modified approach to deal with compensation in
experimental data works for the majority of the cases and allowed us to get good results.
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However, in some cases the compensation produces phase errors that still remains to be
fixed.

5.2.2. SIGNAL RECONSTRUCTED BY SHORT-TIME FOURIER TRANSFORM
After investigating the performance of the phase demodulation on all the reference data,
the conclusion that the signal phase is not robust to noise has been verified. The noise that
appears at certain times can sometimes have a fatal effect on the phase. In contrast, we have
validated in Chapter 3 that the signal spectrum is more robust to noise. The Doppler-time
plot corresponding to the above four records can be seen in Figure 5.4. Figure 5.4a and
5.4c illustrate examples of normal breathing in supine and lateral recumbency respectively.
Figure 5.4b and 5.4d show the sleep apnea in supine and side position, where sleep apnea
were present in the (20s,35s) and (16s,31s) time intervals respectively.
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Figure 5.4: Spectrogram for: normal breath in supine position (a), holding breath episode in supine position (b),
normal breath in side position (c) and holding breath episode in side position (d)

Then we have studied the performance of short-time Fourier transform applied to all
control data sets. It turns that spectrogram could be considered a dependable signal restora-
tion method. The chest movement is captured by the radar spectrograms; however, due
to the limitation of frequency resolution, the difference between the spectrogram of nor-
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mal breath and sleep apnea (simulated by holding breath) is not so apparent that classifiers
can easily distinguish it. An image processing algorithm is then applied to find the pixels
with the highest red saturation in the image to extract the envelope. The reconstructed en-
velope is then processed for noise reduction and smoothing via VMD, whose explanatory
introduction was presented in Chapter 3. The outcomes of this series of operations and
their comparison with the ground truth measured by the breathing belt will be elaborated in
Section 5.2.4.

5.2.3. SIGNAL RECONSTRUCTED BY DISCRETE WAVELET TRANSFORM
The signal decomposition result of reference experimental data could be seen in Figure 5.4.
When configuring the radar, PRF is set to 100 Hz. Thus the respiration component will be
extracted in the 8− th level, and its waveform is marked in red.
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Figure 5.4: Wavelet decomposition (a) normal breath in supine position (b) apnea in supine position

5.2.4. COMPARISON WITH MEASUREMENTS OF RESPIRATION BELT
First, the respiration signal waveforms extracted by the proposed algorithm are compared
with those derived from simultaneous measurements with a reference respiration belt. The
belt uses a force sensor to measure respiratory event and breathing rate, which is secured to
the subject’s chest by a nylon strap. It has a resolution of 0.01 N and a response time of 50
ms. The respiration rate was calculated every 30 s with an advance interval of 10 s[85].

Figure 5.5: Picture of the Go Direct Respiration Belt product

The belt used for comparison is Go Direct Respiration Belt whose schematic diagram
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could be seen in Figure 5.5. In operation, the sensor is fixed to the chest by means of a
nylon strap and the data is transmitted to the computer via Bluetooth.
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Figure 5.6: Waveform comparison radar vs reference respiration belt: normal breathing in side position for radar
based on STFT (a) DWT (c) and for belt (e), and holding breath episode in prone position for radar based on STFT
(b) DWT (d) and for belt (f)
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Figure 5.6 demonstrate the breathing signal captured by the radar and the respiration
belt, respectively, for normal breathing in the side-lying position and breath-holding in the
prone position. It could be easily observed that, except for a time lag of about 1 second,
the waveforms are consistent. The existence of time lag is due to the limitation of the
experimental environment: the radar and the respiration belt are manually synchronized,
and the respiration belt has a response time of 50ms.

As shown in Figure 5.7, breathing frequencies estimated by our algorithm for these two
sets of data are 0.25 Hz and 0.24 Hz respectively, while the respiration rates measured by the
belt are 15.8 bpm (0.27 Hz) and 15.5 bpm (0.26 Hz). The overall RMSE of the estimated
frequency for the twenty control experiments compared to the reference respiratory belt
data is 0.018 Hz. It turns out that the error is considerably small; thus we can get to the
conclusion that the radar could provide us reliable vital sign monitoring result.
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Figure 5.7: Spectrum comparison radar vs reference respiration belt: normal breathing in side position for radar
(a) and belt (c), and holding breath episode in prone position for radar (b) and belt (d)

After comparing the respiratory waveforms reconstructed by the three signal pre-processing
algorithms and the results measured with the belt, it can be observed that the outcomes of
phase extraction are not always reliable. In contrast, both the short-time Fourier transform
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and the discrete wavelet transform could provide solid signal reconstruction results. There-
fore, in the following section, the verification of the apnea algorithm is based on the signals
obtained by STFT and DWT.

5.3. APNEA DETECTION RESULTS
5.3.1. APNEA DETECTION RESULTS FOR ALL THE EXPERIMENTAL DATA
According to the standard for sleep apnea detection introduced by the American Academy
of Sleep Medicine (AASM), apnea is reported when there is a drop of more than 90% in
the signal amplitude of the baseline for at least 10 seconds [79]. Based on this criterion,
a method that detects apnea by setting a threshold of 90% drop in average amplitude is
proposed. Because holding breath was used to simulate sleep apnea, respiration obstruction
in our case can be considered central sleep apnea, manifested by the absence of chest wall
displacement caused by breathing. Therefore, we set the signal amplitude threshold for
judging respiratory obstruction to 10% of the benchmark.

Based on the threshold method, the results of respiratory obstruction detection on wave-
forms restored by different signal pre-processing methods are studied. The evaluation met-
rics are shown in Table 5.2. The result turns out signals restored by spectrogram provides
stronger evidence for apnea detection. Therefore the exploration of machine learning clas-
sifiers is based on the results of spectrogram and image processing.

Table 5.2: Apnea Detection Results Based on Threshold For The Entire Experimental Dataset

Pre-processing Algorithm Evaluation Matrices
Accuracy Precision Recall F1 Score

Spectrogram 89.3% 89.6% 89.1% 89.3%

Discrete Wavelet Transform 86.0% 81.8% 92.9% 87.0%

When machine learning algorithms were applied, the proportion of the training set is
set to 80% of all experimental data, and the remaining 20% is used for testing. For both
KNN and SVM, holdout validation has been applied, the training was repeated six times
according to the division ratio of training set: test set = 8:2 and the values of accuracy,
precision, recall and F1 score are obtained by calculating the average. In terms of precision,
recall and F1 score, we take their weighted average as the final values, which is, to calculate
metrics for each label and find their average, weighted by support (the number of valid
instances for each label). This calculation procedure takes the imbalance of labels into
account, making changes to the data set at a macro level; as a result, it may result in F1
scores that are outside the range of precision and recall.

The apnea detection results for the entire experimental data set are shown in Table 5.3.
Based on the signal reconstructed by the proposed algorithm, both classification methods
with and without machine learning can provide compelling apnea detection results, with
accuracy, precision, recall and F1 score all about 90%. Among these three classifiers (i.e.
simple threshold, KNN, and SVM), KNN has the best classification performance. However,
the performance of SVM is generally better than KNN. This might be because KNN is a
lazy algorithm that hardly relies on statistics and comparisons. It’s a non-sparse model that
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must track many features and use all training samples to obtain a prediction, while SVM
aims to find the optimal hyperplane depending on the training set. After determining an
equation that separates the two categories, the forecast is entirely based on this equation.
We summarized several reasons why KNN performed better than SVM:

• The size of our data set is relatively small, which limits the search for the optimal hy-
perplane; however, KNN considers every samples when making decision, a relatively
small data set will not be a problem.

• With an increasing number of features, the clearer optimal hyperplane could be ob-
tained. SVM generally shows superiority when dealing with the high-dimensional
problem, whereas the KNN tends to perform a bit degraded. We only used one fea-
ture, the signal envelope, to train the model, which results in SVM losing its superi-
ority.

The algorithm proposed in [12] by Koda et al. in 2021 was also applied on the experi-
mental data to compare the results. In their study, they also processed radar data with STFT;
however, instead of extracting the envelope, they directly used the down-sampled images
(20×30 pixels) of the spectrogram, which were then converted to 600×1 vectors, to train
the SVM classifier. In this paper, the dimension of down-sampled spectrogram images is
27×36 as the original spectrograms had larger size.

The classification results are shown in Table 5.3, labelled as "Koda’s algorithm". This
method achieved an accuracy of about 80%. As discussed in chapter 3, the quality of the
spectrogram was limited by resolution and existence of static clutter. A modification of
their algorithm is also proposed, by adding a moving target indication filter to their signal
processing pipeline. This improved the classification accuracy by approximately 10%, even
if the results with the proposed envelope-based algorithm are still higher.

Table 5.3: Apnea Detection Results For The Entire Experimental Dataset

Apnea Detection Algorithm Evaluation Matrices
Accuracy Precision Recall F1 Score

Threshold 89.3% 89.6% 89.1% 89.3%

KNN 90.1% 91.0% 90.0% 90.0%

SVM 87.7% 89.3% 89.0% 89.0%
Koda’s algorithm[12] 78.6% 78.5% 77.8% 76.7%
Koda’s algorithm with MTI 87.6% 87.2% 87.3% 87.2%

5.3.2. APNEA DETECTION RESULTS FOR DIFFERENT SLEEPING POS-
TURES

Differences in sleeping postures in terms of apnea detection were also investigated, with
results reported in Table 5.4. The best classification results were obtained for supine posi-
tion, followed by side and prone positions. This is due to the differences in amplitude of the
recorded respiration signal, the highest in supine position, followed by side and prone posi-
tions, due to the different extent of the chest and thorax movements. Noticeable variations
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of the signal levels and classification performance can be seen for different individuals, for
example the effect of arm posture while in side position, as the arm and elbow over the chest
can partially obscure the relevant movement. Note that Koda’s algorithm [12] appears to be
rather robust to differences in sleeping postures.

Table 5.4: Apnea Detection Experimental Results for Different Positions

Proposed Algorithm Accuracy
Supine Side Prone

Threshold 98.2% 90.6% 78.9%

KNN 96.2% 90.5% 85.9%

SVM 90.3% 87.5% 81.2%
Koda’s algorithm[12] 80.8% 71.5% 70.6%
Koda’s algorithm with MTI 86.7% 86.9% 86.4%
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Figure 5.8: Signal reconstructed for Target 2 in prone position: normal breathing in prone position without blanket
(a) with a blanket (c), and holding breath episode in prone position without blanket (b) with a blanket (d)
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After analyzing the samples with errors in the detection of respiratory obstruction in
each sleeping position, we have the following observations:

• For most of the participants, the recorded respiration signal shows a significant dis-
tinction in amplitude, the highest in supine position, followed by side and prone po-
sitions, Ampl i tude supi ne > Ampl i tude si de > Ampl i tudepr one ; this is due to the
different extent of the chest and thorax movements. Due to the limitation of Doppler
frequency resolution, the smaller the amplitude, the more challenging it is to recon-
struct perfectly, which results in a higher possibility of classification failure. For
target 2, the error of apnea detection only happens when she was lying on her belly.
The restored signals measured in the prone position are as shown in Figure 5.8. It
can be easily observed that the critical information to distinguish normal breath and
sleep apnea is completely lost.

• The impact of side and prone position on accuracy varies greatly among individuals.
However, after studying their relative position to radar, the inaccurate for side posi-
tion could attribute to the posture of the target. For example, some people are more
used to put their elbow on the chest and turn the torso slightly towards the ground.
For instance, error of detection happens mostly when target 6 is in side position. As
shown in Figure 5.9, normal respiration episodes are obscured. In contrast, the error
in prone position is usually caused by the physical factor, that is, Ampl i tudepr one
is generally smaller.
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Figure 5.9: Signal reconstructed for Target 6 in side position: holding breath episode in prone position without
blanket (a) with a blanket (b)

For most of the participants, E.g. For target-2, error of apnea detection only happens
when she was in prone position The impact of side and prone position on accuracy varies
greatly among individuals. E.g. For target-6, error of detection happens mostly on side
position. However, after studying their relative position to radar, the inaccurate for side
position could attribute to the posture of the target. For example, some people are more
used to put their elbow on the chest and turn the torso slightly towards the ground. In
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contrast, the error in prone position is usually caused by the “physical factor”, that is, a
much smaller chest wall displacement.

5.3.3. APNEA DETECTION RESULTS VERSUS EXISTENCE OF BLANKET
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Figure 5.10: Reconstructed signal for Target 1: normal breathing in supine position (a) side position (b) prone
position (c) without blanket, and normal breathing in supine position (d) side position (e) and prone position with
a blanket

Table 5.5: Apnea Detection Results versus Blanket

Accuracy Precision Recall F1 Score
Blanket 88.9% 91.6% 85.4% 88.4%

No Blanket 89.7% 88.0% 92.6% 90.2%

The restored respiration signals for target 1 are demonstrated above in Figure 5.10, the
presence of blanket did not show much difference. We could see the result when target
was lying in his belly under a blanket is slightly distorted; however, after further study, this
could attribute to the influence of position instead of the blanket.

5.3.4. RESULTS VERSUS GENDER
The impact on sleep apnea classification of participants’ gender was also investigated. No
significant trend was observed with very similar evaluation matrix obtained for this com-
parison.
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Table 5.6: Apnea Detection Results versus Gender

Accuracy Precision Recall F1 Score
Male 89.6% 91.1% 87.9% 89.5%

Female 88.1% 87.3% 89.8% 88.5%

5.4. NON-IDEALITY OF EXPERIMENT
Our experimental environment is not ideal, there are some unexpected factors that will
affect the results of the experiment, such as the slight vibration of the radar during the mea-
surement and the failure of the subject to simulate respiratory obstruction. In this section
we will explain what causes these factors and study their impact on the results.

5.4.1. VIBRATION OF THE RADAR
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Figure 5.11: Examples of the effects on signal processing caused by radar vibration: target in supine normal
without blanket (a) supine apnea with a blanket (b) prone apnea without blanket (c) side normal without blanket(d)

During the measurement, the radar should have been stationary; however, sometimes, slight
vibration of the desk caused by a sudden hit or typing will make the radar slightly vibrates,
which will add additional movement to the signal.

Figure 5.11 shows several typical examples of the effects on signal processing caused
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by radar vibration. As shown in Figure 5.11a, during this measurement on one of the partic-
ipants breathing normally in the supine position, the radar jitter was caused by the recorder
typing on the computer. This disturbance lasted for the entire measurement time (40 s). The
radar vibration will not affect apnea detection based on the threshold, while it will decrease
the performance of classifiers involving machine learning. This disturbance will definitely
leads to an inaccurate frequency estimation, regardless of whether it has an impact on the
breathing pattern classification. In terms of the scenario in Figure 5.11b and Figure 5.11c,
the target was simulating sleep apnea in supine and prone position respectively. Measure-
ment shown in Figure 5.11d was conducted when the participant was lying on his side and
having a normal breath. In these three cases, the jitter appears owing to a sudden hit to the
table, causing an undesired spike in vital signal. This type of radar jitter often results in
failure of apnea detection, no matter which detecting approach is applied. In contrast, its
impact on frequency estimation could be ignored.

5.4.2. PARTICIPANTS HOLDING BREATH FOR TOO LONG
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Figure 5.12: Example of the effect that participant holding breath for too long: reconstructed signal (a) recon-
structed zoomed in (b)

During several measurements, the target held his breath for longer than thirty seconds,
which will not occur in actual sleep apnea. The feature extracted for apnea detection is the
signal amplitude, specifically the sudden drop of the signal magnitude. As could be seen
in Figure 5.12a, only two seconds of normal breath could not provide us with a reliable
reference of amplitude in standard breathing epoch. Meanwhile, it is not possible for us to
detect apnea based on the absolute value of amplitude instead of the change in amplitude.
Because when we zoom in the signal, as shown in Figure 5.12b, the absolute value in the
magnitude of apnea in the supine position is comparable to that of normal breath in the
prone position.

Such extreme examples account for only 2% of the total number of measurements and
were retained in the evaluation of the classifier.
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5.5. RESULTS IN REAL SLEEPING SCENARIO
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Figure 5.12: Typical examples of the measurement in sleeping scenario: (a) normal breath, (b) body movement
during sleep and (c) possible sleep apnea

An experiment in real sleeping scenario was conducted, the purpose of this measure-
ment is to argue the effectiveness of the proposed system in real sleep situations. The
measurement was carried out in a home bedroom environment and the spatial relationship
between the radar and the subject was similar to that in the project room described above,
except that the subject was lying on a bed with a quilt instead of a yoga mat. The radar
was fixed 70 cm above the chest and there was no cover between the radar and the sub-
ject except for the quilt. The subject was a healthy 23 year old female. Note that during
this measurement the subject was in a natural sleep condition, which means that her body
movements were not restricted. Some of the results are shown in Figure 5.12.

Figure 5.12 shows three typical examples of what appears in the measurement results.
In Figure 5.13b, We could see clearly that there is a huge motion happens at about 250s, and
after that the amplitude of respiration become smaller. This can be attributed to subject’s
turning over from supine to side. At about 320s, Doppler shows there is a small motion, but
the respiration amplitude did not change after that, which indicates a consistency in posture.

As shown in Figure 5.12c, an apnea event was detected from 530s to 540s. The respi-
ration disappeared for about ten seconds and reappear. The amplitude of breath before and
after this period are the same, which means there is no change in sleeping position. An ex-
ample of normal breath is demonstrated in Figure 5.13a. For most of the time not shown in
the figure, there is a repetition of normal breathing in Figure 5.13a and rolling over and limb
movement behaviour in Figure 5.13b. These results can be considered a good indication of
realism applied to the algorithm.
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5.6. VALIDATION WITH REAL PATIENT’S DATA

Furthermore, the proposed algorithm was applied to data measured on real patients to assess
the overall performance of the system and made available through a research collaboration.
The experiments were conducted at the Huai’an First People’s Hospital, Jiangsu, China,
with the participation of a patient who has been diagnosed with nocturnal respiratory dis-
turbances. The experiment was approved by the relevant institutional review board of the
hospital. Data includes up to seven hours of overnight monitoring on one patient, where the
ground truth of respiratory obstruction were provided by the PSG device and the processed
data collected with an FMCW radar.

5.6.1. PRE-PROCESSING OF THE RESULTS

The phase information extracted from the radar signal was also provided; Figure 5.13 and
5.14 show an example of normal breathing and respiratory obstruction as reflected in the
phase information respectively. As it can be observed from the figures, the phase compen-
sation failures caused by the phase bursts described in Section 5.2.1 are still present even
in these data generated by the collaborators team. It is worth noting that this problem is
prevalent in current research on radar signal processing and is an important factor limiting
the accuracy of phase information, which needs to be addressed in future research.

Figure 5.13: Phase information obtained by collaborators at Huai’an First People’s Hospital, Jiangsu, China: an
example of normal breath
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Figure 5.14: Phase information obtained by Huai’an First People’s Hospital, Jiangsu, China: example of sleep
apnea

The other two pre-processing algorithms discussed in Chapter 3 were also applied to this
data set. Short-time Fourier transform (STFT) is used to generate the spectrogram of the
respiration signal, followed by image-based extraction of its envelope and signal smoothing
via variational mode decomposition (VMD). The reconstructed respiration signal is shown
in Figure 5.15 and 5.16. Figure 5.15a demonstrates a period of normal breathing recorded
while Figure 5.15b shows a record of breath containing ten apnea events, where the ground
truth of apnea was marked in red. The corresponding results of Discrete Wavelet Transform
(DWT) are shown in Figure 5.16a and Figure 5.16b. It is observed that there is a good cor-
respondence between the signal obtained after processing by the proposed algorithm and
the ground truth for both proposed algorithms, where spectrogram with envelope extrac-
tion methods better preserve the signal waveform. Therefore, the subsequent sleep apnea
detection algorithm is based on the result of Figure 5.15.
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Figure 5.15: Reconstructed signal from spectrogram for real patient: (a) normal breath (b) sleep apnea episodes
(with ground truth)
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(a)

(b)

Figure 5.16: Reconstructed signal from DWT for real patient: (a) normal breath (b) sleep apnea episodes (with
ground truth)

5.6.2. APNEA DETECTION RESULTS
APNEA DETECTION RESULTS VERSUS SEGMENTATION DURATION
The data obtained is an overnight monitoring period of seven hours in duration, which need
to be preprocessed (results of which was discussed in the previous section) and segmented
to train and test the classifier for apnea detection.

Firstly, the effect of segment duration on the results was investigated. The window size
was set to 40 s, 60 s and 80 s with an overlap of 95% to sufficiently reflect the normal breath-
ing section. Note that according to the basic facts given by the PSG, segments containing
respiratory obstruction were in the majority after segmentation, causing an imbalanced data
set. To prevent the model from overfitting to the majority class, it is necessary to ensure that
each category in the training set contains the same number of samples. Thus, the segments
labelled as normal breath were randomly upsampled by the imbalance ratio, which can be
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calculated by the number of class apnea segments divided by the number of normal class.
To ensure the reliability of the conclusions, the threshold method and machine learning

classifier were applied separately to investigate the results of apnea detection with different
segmentation durations. As indicated in Table 5.7 and 5.8, with both the application of
threshold method and SVM classifier, segmentation interval of 80 second provides the best
classification results. Because the duration of apnea or hypopnea is on average 25s to 45s
(Mean = 35s and std = 10s) based on the analysis of the ground truth, longer segments can
contain more normal respiratory cycles, which makes it easier to capture the transition from
normal breath to breathing disorders. However, a wider time window also means that the
classification is less time-sensitive and less accurate in detecting the total number of occur-
rences of respiratory obstruction. This trade-off deserves further expansion in subsequent
studies but was not discussed in depth in this final study due to time constraints. Therefore,
in the following study, a cutting duration of 40s was used in order to have a more adequate
amount of data and to ensure that each of the respiratory obstruction event was split out as
independently as possible.

Table 5.7: Apnea Detection Results for Real Patient’s data versus Segment Duration (Threshold based)

Segment Duration Accuracy Precision Recall F1 Score
40s 64.7% 59.5% 92.4% 72.4%

60s 69.9% 64.7% 87.3% 74.3%

80s 71.9% 66.9% 86.6% 75.5%

Table 5.8: Apnea Detection Results for Real Patient’s data versus Segment Duration (SVM Classifier)

Segment Duration Accuracy Precision Recall F1 Score
40s 74.3% 75.0% 74.0% 74.0%

60s 89.1% 91.0% 89.0% 89.0%

80s 94.9% 95.0% 95.0% 95.0%

APNEA DETECTION RESULTS FOR DIFFERENT CLASSIFIER

The results of the respiratory patterns classification obtained by applying different classi-
fiers with a 40s window length are shown in the Table 5.9.

Table 5.9: Apnea Detection Results for Real Patient’s data - Different classifiers

Classification Methods Accuracy Precision Recall F1 Score
Threshold 64.7% 59.5% 92.4% 72.4%

KNN 62.5% 63.0% 63.0% 63.0%

SVM 74.3% 75.0% 74.0% 74.0%

Threshold-based detection methods could achieve a high level of accuracy in the pre-
vious tests due to the fact that a very idealised and simplistic model was used to simulate
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apnea. The effectiveness of the threshold method is directly related to the dominance of
signal amplitude as a feature to distinguish normal breathing from respiratory obstruction.
However, for clinical cases with real patient’s data, the variation in the magnitude of chest
wall displacement is far more complex than in the simulation model, let alone the distur-
bance of respiratory monitoring by body movement. These factors combine to make the
threshold method least effective.

Note that as opposed to the previous experimental results shown in Table 5.3, the classi-
fication performance of SVM outperformed KNN in this data set of actual patient due to the
large number of samples and the higher complexity and dimensionality, where the advan-
tage of the SVM classifier became dominant. In addition, the large amount of data causes
KNN to be very computationally intensive and takes a long time to obtain the classification
results, which is also a very important disadvantage.

5.6.3. ERROR ANALYSIS
The overall accuracy of above 74% can be considered acceptable as an initial, proof of con-
cept result. However, studying error cases can help identify the limitations of the algorithms
on realistic data.

ERROR TYPE I: HYPOPNEA
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Figure 5.17: Error case for the result on real patient: Hypopnea

Figure 5.17 demonstrates the reconstructed signal for some examples where detection errors
occurred. The algorithm failed to identify the hypopnea indicated by the ellipse in the
figure. This is because:

1. The chest wall remains heaving when the hypopnea occurs and the reduction in am-
plitude of movement is not appreciable enough for the proposed algorithms to detect;

2. With successive occurrences of obstruction, the period of normal breathing between
obstructed breaths was not sufficient to provide a sample against which to compare
the hypopnea, which makes the algorithm failed to capture the transition between
normal breath and hypopnea;
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3. The fluctuations in amplitude caused by hypopnea can easily be confused with changes
in chest wall displacement caused by small body movements.

ERROR TYPE II: RANDOM BODY MOVEMENT

550 600 650 700 750 800 850 900 950 1000 1050

Time(sec)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

D
o
p
p
le

r 
fr

e
q
u
e
n
c
y
(H

z
)

Reconstructed respiration

Apnea ground truth

Random body movement

Figure 5.18: Error case for the result on real patient: Body movement

The second typical error usually occurs in records within an hour of falling asleep. This
is when the patient is in a light sleep state with more physical activity, which distorted the
breathing signal. As shown in Figure 5.18, during the period from 750s to 1050s, the signal
amplitude fluctuated considerably, but the PSG device did not report any apnea/ hypopnea
events, which could attribute to subject’s random body movements. The same situation
occurred in the 2018 research by Zhao et al.[86]. A set of control tests were performed,
with the condition that the first hour of recording was eliminated. The results for this
shortened data are shown in Table 5.10.

Table 5.10: Apnea Detection Results for Real Patient’s data with segment duration of 40s; record with the first
hour removed

Classification Methods Accuracy Precision Recall F1 Score
Threshold 72.1% 67.6% 72.8% 70.1%

KNN 67.1% 67.0% 68.0% 67.0%

SVM 80.1% 86.0% 80.0% 80.0%

Compared to Table 5.9, it can be observed that after discarding the first hour of data, the
classification accuracy increases by about 6%.
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ERROR TYPE III: RANDOM CASES
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Figure 5.19: Error case for the result on real patient: Random case

Besides the two typical classification failures mentioned above, some other errors can be
confusing and more challenging to explain, such as the ones shown in Figure 5.19. The two
detected false alarms occur between the time intervals [1058s,1108s] and [1138s,1164s]. In
terms of the reduced signal, there is a clear decrease in respiratory amplitude of more than
50%; however, the ground truth is labelled as normal breathing. In contrast, the PSG system
reported a sleep apnea between 1258s to 1291s, whereas only a fluctuation in amplitude of
less than 10% occurred here. The author’s analysis of the causes of this phenomenon is set
out below:

1. Apnea is a more complex phenomenon that just movements of the chest/abdomen.
Although chest wall displacement is the most important factor that can be relied upon
to determine respiratory obstruction, it is not the only and 100% absolute relevant
factor.

2. In some transient episodes of OSA and MSA, the chest wall displacement remains at
its original magnitude, but oxygenation does not happen because no air goes down
to the lungs. This cannot be checked relying only on the radar data as done for this
initial analysis in this section.

3. Very unlikely but still possible to be errors in the recording of PSG equipment.

In summary, the proposed method of extracting the spectrogram envelope as well as the
classification algorithms is also feasible for these realistic data, providing an accuracy of at
least 74% percent. It can be considered a good proof of concept result, but to generalise
this to clinical significance there are further steps to take. Although the proposed algorithm
achieves encouraging results in experiments in which healthy subjects held their breath to
simulate respiratory obstruction, it does not work as well as expected on real cases. Here
listed several possible improvements that could be done as follow up work:

1. Body movement cancellation algorithm can be explored;
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2. Conduct more experiments to increase the amount of training data;

3. Try to apply classifiers involving deep learning to further improve the detection ac-
curacy.

4. Combine other vital signals that can be obtained by radar or other contactless sensors
and related to apnea event to provide a more comprehensive and clinically meaningful
diagnosis.

5.7. CONCLUSION
In this chapter, the environment settings and procedure to verify the experiment of respira-
tion monitoring using UWB radar are first presented. Then the effectiveness of the proposed
algorithm is then verified by analysis of its performance on experimental data. The main
contents and results are summarised below:

1. How the pre-processing algorithms described in Chapter 3 perform on the measured
data is studied. Then the results are compared with the ground truth obtained from
the respiration belt to further validate the algorithm. With regard to signal processing
algorithms, the following comments can be made:

• The phase extraction results were analysed, and it was found that in some in-
stances, incorrect phase compensation was performed due to the presence of
phase glitch points. In turn, if the phase compensation threshold is enlarged or
if phase compensation is skipped, new problems are introduced, causing phase
demodulation to fail. While the phase extraction works in general, solving the
problems encountered sporadically for these episodes remains an aspect to ad-
dress in future work.

• In contrast to the phase extraction approach, spectrogram and DWT provide
us with required details of thorax movements with breath-to-breath accuracy,
where signal restored by spectrogram provides stronger evidence for apnea de-
tection.

• The signal after envelope extraction and smoothing was compared with the data
measured by the respiration belt to prove its consistency with the ground truth,
providing in general good agreement as can be seen in 5.2.4.

2. The effectiveness of the proposed classifiers was verified by experimental data with
14 participants measured in several body positions. Initial classification results on ex-
perimental data in controlled conditions (i.e. participants holding breath to simulate
sleep apnea) show encouraging results with performance metrics above 90%.

3. Then Koda’s algorithm[12] from the state of the art was explained and compared with
ours in terms of the performance on apnea detection. An improvement strategy to his
method was also proposed and valued.

4. A study was conducted to examine how sleep position, the presence of a blanket and
gender altered the results of apnea detection. Classification results were found to be
independent of gender and blanket coverage but correlated with sleep position. The
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highest accuracy rate is achieved in the supine scenario with 96%, followed by lateral
lying with 90% accuracy, followed by prone lying with 86% accuracy.

5. The non-ideal nature of the experimental environment and its effect on the results are
analysed, focusing mainly on the radar jitter and subjects holding their breath for too
long. These non-idealities of the experiment performed can be addressed in future
verification studies to be performed as follow-up of this thesis.

6. The effectiveness of the developed system in the actual sleep environment with a
subject sleeping in their bedroom has also been confirmed.

7. The proposed algorithm was applied on whole-night radar monitoring data obtained
from real patients, reproducing the respiratory signal well and obtaining an accept-
able classification accuracy. The error cases were analysed from a comprehensive
perspective. Although further steps remains to be taken before clinical application,
the results demonstrate the potential of the developed system to assist in clinical di-
agnosis.



6
CONCLUSION AND FUTURE

WORK

6.1. CONCLUSION
This research aims to develop a contactless, radar-based sleep apnea detection method;
patients can be in either supine, side or prone position. In order to achieve this, development
and simulations of signal processing algorithms that can provide the required details of
thorax/abdomen movements and breath-to-breath accuracy is needed. Thus a simulation
environment is built where target is assumed to be 0.5 m away from the radar and chest wall
displacement information is stored in the radar range history. A signal processing pipeline
is proposed which includes Doppler frequency based and phase based signal reconstruction
method as well as three respiratory obstruction diagnostic approaches. The validation of the
methods is conducted via simulation as well as experimental data collected on 14 volunteers
in controlled conditions, including supine, side and prone positions and the presence of a
blanket.
The main contributions of this thesis research are summarised below:

• The cardiopulmonary physiological activity of the human body is mathematically
modelled with signals beyond simple sinusoidal functions. Then an appropriate
model for monitoring respiration based on FMCW radar system and a simulation
tool that allows modelling multiple subjects in a Monte Carlo fashion as well as dif-
ferent types of sleep apnea is established, with different sleep positions also being
taken into account.

• A signal processing pipeline involving spectrogram envelope extraction based on im-
age processing and signal smoothing (specifically VMD, Variational Mode Decom-
position) algorithms is specifcally proposed and compared with the phase demodu-
lation algorithm and discrete wavelet transform. Analysis of the algorithms’ perfor-
mance on simulated as well as experimental data reveals that the spectrogram and
image processing based algorithm provides the highest accuracy in detecting sleep
apnea.

83
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• Monte Carlo simulations for different subjects and different environments are per-
formed to validate the proposed algorithm in a modelling environment, taking into
account different sleep postures. Simulation results show that at signal-to-noise ratios
greater than 5 dB, the proposed pre-processing algorithm can recover the respiratory
signal waveform well enough to use it as a feature for sleep apnea detection with
all three applied classification algorithms demonstrating classification accuracies of
over 90%. Simulations of standardised sleeping postures show that in a low SNR
environment, the RCS becomes the most pivotal factor in detection effectiveness due
to the direct correlation with the received signal energy.

• Initial results on simulated and experimental data in controlled conditions (i.e. par-
ticipants holding breath to simulate sleep apnea) show encouraging results with per-
formance metrics above 90%. The result is compared with state of art algorithm that
proposed by Takato Koda[12] and one of its improved algorithm. Good agreement
between radar measurements and a reference respiration belt is also demonstrated.
Based on the experiment, a number of factors that may affect the results of the sleep
apnea detection were also investigated. The results demonstrate that for all the dif-
ferent sleeping positions, the classification accuracy can reach more than 80%, with
the highest accuracy in the supine scenario reaching 96%, followed by lateral lying
with 90% accuracy, followed by prone lying with 86%. In contrast, the gender of the
subjects and the presence or absence of a blanket had no effect on the classification
success rate.

• The potential of the system for more realistic applications is confirmed by providing
an example of monitoring a longer recording of respiration in real conditions in a
home bedroom.

• The proposed algorithm was applied to radar data obtained from real patients and
achieved a classification accuracy of up to more than 80%, demonstrating the poten-
tial of the developed system for clinical applications.

6.2. FUTURE WORK
1. The problem of phase demodulation failure due to phase mutation, identified in Chap-

ter 5, is not perfectly addressed by the proposed scheme. This remains a major obsta-
cle limiting the use of phase signal only as an effective feature for reliable respiratory
impairment detection. An element of possible future work can be to investigate a
final solution to this problem;

2. While this study explored the detection of sleep apnea in different sleep positions, it
did not develop a solution when the subject was moving (e.g. turning over). Thus
there is a great need for studying the algorithms for monitoring of vital signals and
the diagnosis of respiratory obstruction in humans in the presence of significant and
continuous movements;

3. In the study, it was found that clutter and multiple targets, as well as unconscious
body movements, can cause interference with radar signals, both in the home and
ward environment. As shown in Chapter 5, the simplest moving target identification
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algorithm applied to Koda’s algorithm can improve the detection success rate. Thus
the exploration of algorithms that can distinguish between ward ambient clutter and
interference caused by multiple targets and unconscious body movements can be an
essential part of the next stage of research; Blind Source Separation (BSS) technique
could be one option;

4. Sleep apnea, especially mixed sleep apnea, often shows complex clinical pathology,
which means that chest wall displacement is not the only diagnostic vital charac-
teristic. A combination of respiration and other physiological signals such as blood
pressure, SaO2, and carotid pulses (obtained by radar monitoring of the neck or head)
can be considered to help obtain more accurate and clinically meaningful results;

5. As described in Chapter 1 in an overview of the different contactless sleep moni-
toring schemes available today, the various sensors used for respiratory monitoring
(e.g. Camera-Based sensor, passive infrared sensor and pressure sensor) all have their
advantages and disadvantages. Each of these solutions has many researchers work-
ing on them. This allows the fusion of radar-derived features with those from other
contactless sensors for more accurate respiratory obstruction detection;

6. In this study, only two simple machine learning methods were considered. There is
still plenty of room to explore in the field of deep learning, combined with estimation
theory to study real-time respiratory obstruction detection.
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