
Delft University of Technology

Masters Thesis

Anyone Can Cloud: Democratizing

Cloud Application Programming

Author:

Wouter Zorgdrager

Supervisor:

Dr. Asterios Katsifodimos

Co-supervisor:

Dr. Marios Fragkoulis

Daily supervisor:

Kyriakos Psarakis MSc

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science

in the

Web Information Systems Group

Software Technology

Student number: 4472977

Thesis committee: Prof.dr.ir. G.J.P.M. Houben, TU Delft, chair

Prof.dr. E. Visser, TU Delft

Dr. A. Katsifodimos, TU Delft, supervisor

An electronic version of this thesis is available at

h t t p s : / / r e p o s i t o r y . t u d e l f t . n l / .

November 15, 2021

http://www.tudelft.nl
https://www.linkedin.com/in/wouter-zorgdrager-a4746512a/
http://asterios.katsifodimos.com/
http://mariosfragkoulis.gr/
https://kpsarakis.github.io/
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/
https://repository.tudelft.nl/

i

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Anyone Can Cloud: Democratizing Cloud Application Programming

by Wouter Zorgdrager

The cloud is widely adopted as a flexible and on-demand computing infrastruc-

ture. In recent years, a new and promising cloud paradigm emerged: serverless

computing. Serverless computing promises a pay-as-you-go model and offers fea-

tures such as autoscaling and high availability. Nevertheless, developing scalable

cloud applications remains a painstaking task. Currently, programming models

for the cloud mix operational code and business logic causing developers to spend

a significant amount of time on other tasks rather than implementing the intended

functionality. Moreover, the developer must consider distributed systems con-

cerns such as consistency, communication, and persistence. Modern dataflow

systems, such as Apache Flink and Google Dataflow, address these concerns but

suffer from the same problem: they lack an intuitive programming interface for

general-purpose applications. It remains an open problem to design a developer-

friendly programming interface for implementing scalable cloud applications with

strong guarantees.

In this thesis, we solve this problem by presenting an intuitive programming

interface for scalable cloud applications in which developers primarily focus on

business logic. Given a set of easy-to-follow code conventions, programmers

author stateful entities, a programming abstraction embedded in Python. We

present a compiler pipeline named StateFlow, to analyze the abstract syntax tree

of a Python application and rewrite it into an intermediate representation based

on stateful dataflow graphs. In addition, we present a set of building blocks that

allow the execution of this intermediate representation on a target runtime sys-

tem or cloud provider without a tight integration. Supported runtime systems

include Apache Flink and Beam, AWS Lambda, Flink’s Statefun, and Cloudburst,

each providing a different set of guarantees. Finally, we introduce a client-side

programming interface and HTTP server integration to interact with the deployed

application.

We demonstrate that the execution with StateFlow typically incurs less than

1% overhead. Furthermore, we identify limitations of current dataflow systems

in executing cloud applications at scale in a performance benchmark. Finally, we

compare the expressiveness of StateFlow’s programming abstraction to native

runtime implementations. We show that StateFlow lets a developer write univer-

sal code that does not mix business with operational logic or the runtime’s API

and prevents vendor lock-in by allowing them to switch between runtimes in less

than ten lines of code.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

ii

Acknowledgements

Finalizing my master thesis marks the end of my career at TU Delft. I must con-

fess that doing this thesis was the most challenging but rewarding experience

of all my time at TU Delft. This journey started six years ago when I began my

bachelor’s in Delft. In the second year, I got my first glimpse into the wondrous

world of data-intensive systems when following the ‘Big Data’ course. Soon after,

dr. Georgios Gousios asked me to support this course in subsequent editions and

join the CodeFeedr project. In the years following, I got the opportunity to work

with fascinating technologies such as dataflow systems and event streaming plat-

forms. Later on, Georgios asked me to join the H2020 FASTEN project, where

I created, maintained, and monitored a large-scale processing infrastructure. I

learned so much in all these years. It feels fitting to finalize my degree with a

thesis that combines all this acquired knowledge. I am proud of the final result.

I hope that this thesis conveys a bit of my passion for scalable (cloud) applications.

There aremany people I would like to acknowledge. First, I would like to thank

Georgios for giving me many opportunities within the university. I enjoyed my

time in the Software Analytics Lab and SERG while working on both CodeFeedr

and FASTEN. Second, I want to thank my thesis supervisors: Asterios, Marios,

and Kyriakos. It was always fun to talk with people who share the same research

interests and brainstorm on new ideas. I want to thank Asterios for pitching the

original idea, his endless enthusiasm, and for guiding me throughout the the-

sis process. Moreover, I’m grateful for Marios’s constructive feedback and ideas

during all the thesis meetings. I would like to thank Kyriakos for helping me with

day-to-day struggles and being supportive at all times. I’m grateful for the help by

Xander, who proofread my thesis document and provided me valuable feedback.

I would like to thank the rest of my committee, prof. Houben and prof. Visser, for

making time to evaluate my work.

Furthermore, I want to express my gratitude to friends and family. In particu-

lar, Mike and Joris (‘de echte infoboys’), who were my study buddies throughout

my time at university and are still good friends of mine. Attending lectures and

working on assignments was way more fun with them. I want to thank my par-

ents for everything they have done for me, their unconditional love and support,

and for always encouraging me to work hard and follow my passions. I love you.

Finally, I want to thank my boyfriend, Jelle, for always being there and making

life more fun. Writing a thesis during the Covid times was not always easy. Still,

he kept me sane, motivated me, and made the experience much more enjoyable.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Programming for the Cloud . 2

1.2 Programming for Dataflow Systems 3

1.3 StateFlow . 3

1.4 Research questions . 5

1.5 Contributions . 5

1.6 Thesis outline . 6

2 Preliminaries 7

2.1 Programming languages . 7

2.2 Dataflow systems . 9

2.3 Function-as-a-Service . 11

2.4 Event streaming . 11

3 Introduction to StateFlow 13

3.1 Compiler Pipeline . 13

3.2 Classes to Dataflows . 14

3.3 Executing Stateful Dataflow Graphs 15

3.4 Why Python? . 16

3.5 Running Example . 16

4 Imperative Code to a Stateful Dataflow Graph 18

4.1 Class Analysis . 19

4.2 Class Linking . 20

4.3 Function Splitting . 21

4.3.1 Simple splitting . 21

4.3.2 Conditional splits . 28

4.3.3 Loop splits . 31

4.3.4 State requests . 36

4.3.5 State machine . 37

4.3.6 Execution graph . 37

4.3.7 Nested split functions . 40

4.3.8 Splitting applied to the running example 41

4.4 Intermediate Representation . 41

4.5 Limitations . 42

iv

5 Executing Stateful Dataflow Graphs 45

5.1 Execution in StateFlow . 45

5.1.1 Constructs . 46

5.1.2 Building blocks . 48

5.2 Runtimes . 51

5.2.1 Dataflow systems . 52

5.2.2 Stateful Function-as-a-Service 56

5.3 Client . 60

5.3.1 Interface . 61

5.3.2 Event streaming . 62

5.3.3 REST API integration . 63

5.4 Local execution . 64

5.5 Deployment . 65

5.6 Summary . 66

6 Evaluation 68

6.1 DeathStar benchmark . 68

6.2 Expressiveness . 70

6.2.1 StateFlow versus DeathStar . 71

6.2.2 Native runtime implementation 71

6.3 System overhead . 73

6.3.1 Overhead without runtimes . 77

Experimental setup . 77

Results . 77

6.3.2 Overhead with runtimes . 78

Experimental setup . 79

Results . 81

6.4 Performance . 86

6.4.1 Experimental setup . 87

6.4.2 Results . 89

7 Discussion 91

7.1 Experimental results . 91

7.2 Remaining contributions . 95

7.3 Related work . 96

7.3.1 Distributed Programming . 96

The Actor Model . 97

The Dataflow Model . 99

7.3.2 Stateful Functions . 100

7.3.3 Program Synthesis . 100

Function splitting . 101

Domain Specific Languages . 102

8 Conclusion 103

8.1 Future work . 104

v

List of Figures

1.1 Simple user count application in AWS Lambda. We highlight the busi-

ness logic with pink . 2

1.2 Scalable application with different layers. Figure taken from work

by Helland [2016] . 4

2.1 Word count example using the Flink Python API (PyFlink). This ex-

ample is adapted from the official Flink documentation. 10

2.2 Components involved in a Kafka setup. Image taken from official

Kafka documentation. 12

3.1 All stages of the compiler pipeline of StateFlow. 14

3.2 Overview of all execution components in StateFlow. 15

4.1 Full compilation pipeline including StateFlow. 18

4.2 Analysis results for Item stateful entity. 20

4.3 Call graph before and after the function split of b u y _ i t e m 22

4.4 Visualization of the I s R e m o t e C a l l algorithm. 24

4.5 Visualization of the B u i l d F u n c t i o n D e f algorithm. 25

4.6 Visualization of step 1 of S p l i t F u n c t i o n algorithm. 26

4.7 Visualization of step 2 of S p l i t F u n c t i o n algorithm. 27

4.8 Visualization of step 3 of S p l i t F u n c t i o n algorithm. 27

4.9 Visualization of step 4 of S p l i t F u n c t i o n algorithm. 28

4.10Example of splitting a functionwith a remote call inside an if-statement.

Left is the original function, right is after splitting. 29

4.11Example of splitting a function with a remote call inside the test ex-

pression of an if-statement. Left is the original function, right is after

splitting. 30

4.12Visualization on how an I f node is split. Most child nodes of the

F u n c t i o n D e f are omitted. 30

4.13Example of splitting a function with a remote call inside the while

statement. Left is the original function, right is after splitting. 31

4.14Visualization on how an W h i l e node is split. Most child nodes of the

F u n c t i o n D e f are omitted. 32

4.15Example of splitting a function with a remote call inside the for state-

ment. Left is the original function, right is after splitting. 33

4.16Visualization on how an I f node is split. Most child nodes of the

F u n c t i o n D e f are omitted. 34

4.17The statemachine (left) and execution graph (right) after the d e f a d d _ t o _ b a s k e t

method has been split in the U s e r stateful entity. 41

5.1 Visualization of the operator building block. 49

vi

5.2 Execution of an event for a non-split function invocation. This figure

shows how the building blocks work together. 50

5.3 Execution of an event for a split function invocation. This figure

shows how the building blocks work together. 51

5.4 Selecting and switching between a runtime in StateFlow. 52

5.5 Proposed dataflow architecture embedding StateFlow execution blocks. 53

5.6 Processing graph for the Item operator with a parallelism of 2. For

simplicity the ‘create operator’ node and the StateFlow execution

blocks have been omitted. 54

5.7 Dataflow architecture in which events are executed in remote state-

less functions. 55

5.8 Execution architecture of stateful entities on top of AWS Lambda and

AWS DynamoDB. 56

5.9 Integration of StateFlow with Flink Statefun. 58

5.10The complete CloudBurst architecture. Image retrieved fromSreekanti

et al. [2020] . 60

5.11Integration of StateFlow with CloudBurst. 60

5.12StateFlow’s client integration with event streaming platforms. 63

5.13Automatic generation of HTTP endpoints for all example stateful en-

tities in FastAPI. 64

6.1 Schematic overview of DeathStar’s hotel service implementation in

StateFlow. 69

6.2 User entity in StateFlow versus its native implementation in AWS

Lambda. We highlight application code with pink 72

6.3 Stateful function with a state size of 50KB. 75

6.4 Stateful function with an execution graph of a specific length. 75

6.5 Stateful entity which interacts with other stateful entities in a f o r loop. 76

6.6 Duration of components in StateFlow with varying state size. 77

6.7 Duration of components in StateFlow with varying lengths for the

execution graph. 78

6.8 Duration of components in StateFlowwhen interactingwith other state-

ful functions. 79

6.9 Schematic overview on how overhead in the runtimes PyFlink, State-

fun and Flink JVM is computed. 80

6.10Absolute duration of runtime overhead, including StateFlow, for vary-

ing state sizes. 82

6.11Absolute duration of runtime overhead, including StateFlow, for var-

ious execution graph lengths. 84

6.12Absolute duration of runtime overhead, including StateFlow, for vary-

ing amount of interactions O2.7-2.9. 85

6.13Generalized view of the ’frontend’ architecture for the experiments. . 87

6.14Experimental setup for StateFun and (partly for) PyFlink and Flink

JVM. 88

6.15Average latency per DeathStar endpoint with 10rps. 89

6.16Average and 99th percentile latency for a mixed DeathStar workload

with increasing throughput. 90

vii

7.1 Visualization of the actor model. The figure is adopted from Agha

and Kim [1999]. 97

7.2 The lifetime of a grain in Orleans. 99

viii

List of Tables

3.1 Translation from OO constructs to dataflows. 14

4.1 Auxiliary functions of the global context. 23

5.1 All types of events. 47

5.2 Summary of StateFlow’s supported clients and its integrations. . . . 67

5.3 Summary of StateFlow’s supported runtimes. 67

6.1 Lines of code for the DeathStar implementation in StateFlow and the

original in Go. 71

6.2 Comparison of lines of code for the DeathStar implementation in

StateFlow and native runtime implementations. 72

6.3 Overview of all experiment type for the overhead evaluation. 76

6.4 Relative overhead of StateFlow in the different runtimes for various

state sizes. 83

6.5 Relative overhead of StateFlow in the different runtimes for various

execution graph lengths. 84

6.6 Relative overhead of StateFlow in the different runtimes for various

interactions. 86

1

Chapter 1

Introduction

In the last ten years, the cloud revolutionized the way we deploy and administer

software. Nowadays, two-third of all software spending for enterprise IT is based

in the cloud Castro et al. [2019]. The last decade in cloud computing primarily

focused on simplifying the configuration and management of computing infras-

tructure. The cloud promises a pay-as-you-go model where one only pays for the

resources used and elasticity by providing almost infinite scaling with no up-front

costs. This offering is also known as Infrastructure-as-a-Service (IaaS). A draw-

back of IaaS is that developers are left with the burden of scaling, which often

results in overprovisioning of resources and increased costs Castro et al. [2019].

Consequently, a new paradigm for cloud deployment emerged: serverless

computing. Serverless computing also adopts the pay-as-you-go model and pro-

vides automatic and unlimited up and downscaling of resources matching the

demand. Although the serverless model is promising, modern cloud applica-

tions have to pay a high price for leveraging these cloud offerings Cheung et al.

[2021]. Most prominently, developers struggle with cloud infrastructure abstrac-

tions, configuration, and deployment rather than dealing with application code

Jonas et al. [2017]. In addition, developers are still responsible for implementing

or integrating operational logic to support distributed systems concerns such as

consistency, communication, and persistence. Inevitably, some of these cloud in-

frastructure concerns and operational logic leak through to the application layer

resulting in more complex code.

At the same time, we witness a wide-scale adoption of modern dataflow sys-

tems such as Apache Flink Carbone et al. [2015], Google Dataflow Akidau et al.

[2015], and Timely Dataflow Murray et al. [2013]. These systems do address

concerns such as consistency, communication, and persistence while still being

performant Akidau et al. [2015]. These guarantees and features make dataflow

systems a proper execution model for cloud applications. However, their pro-

gramming model focuses on distributed event processing, and they adopt a func-

tional programming API that is not suitable for general-purpose applications.

To that extent, we identify two major problems we address in this thesis. First,

the lack of a high-level programmingmodel for cloud applications compatible with

the serverless paradigm. We elaborate on this problem in Section 1.1. Second,

even though dataflow systems are widely adopted as execution models, their func-

tional programming models are far removed from the commonly used imperative

programming model. In these systems, implementing general-purpose applica-

tions is practically infeasible. We highlight this problem in Section 1.2. These

two open problems hinder developers in implementing scalable cloud applications

with strong guarantees.

Chapter 1. Introduction 2

1.1 Programming for the Cloud

Themost prominent serverless cloud solution is Function-as-a-Service (FaaS) Schleier-

Smith et al. [2021]. Cloud providers offer these in the form of cloud functions:

AWS Lambda, Google Cloud Functions, and Azure Functions. One of the disad-

vantages of Function-as-a-Service is the lack of application state. Support for this

required the use of external services like DynamoDB. Moreover, developers are

responsible for the integration of both services. To overcome these limitations,

a new breed of systems arrived named Stateful Function-as-a-Service. These

SFaaS solutions do support and integrate state into their execution and program-

ming model. Besides the cloud providers, there are many industry and research

(S)FaaS solutions such as CloudBurst Sreekanti et al. [2020], Beldi Zhang et al.

[2020], and Flink Statefun1.

However, most FaaS and SFaaS solutions still offer a limited, event-driven,

and low-level programming interface Cheung et al. [2021]; Schleier-Smith et al.

[2021]; Hellerstein et al. [2019a]. In addition, developers are still responsible

for non-application logic such as serialization, state manipulation and function-

to-function communication. As a motivating example, we show a simple user

counter application in a FaaS system. Figure 1.1 shows this implementation in

AWS Lambda, one of the most popular cloud-offered FaaS solutions, and with

DynamoDB as a storage engine. DynamoDB fits the serverless paradigm as it

provides autoscaling.

d y n a m o d b = b o t o 3 . c l i e n t (" d y n a m o d b ")

t a b l e = d y n a m o d b . T a b l e (" u s e r s ")

d e f u s e r _ c o u n t e r (e v e n t , c o n t e x t) :

m s g = j s o n . l o a d s (e v e n t [" p a y l o a d "])

u s e r n a m e = m s g [" u s e r n a m e "]

t r y :

r e s p o n s e = t a b l e . g e t _ i t e m (K e y = { " u s e r n a m e " : u s e r n a m e })

e x c e p t C l i e n t E r r o r : # u s e r d o e s n o t e x i s t y e t

u s e r _ c o u n t = { u s e r n a m e : u s e r n a m e , c o u n t : 0 }

t a b l e . p u t _ i t e m (I t e m = j s o n . d u m p s (u s e r _ c o u n t))

e l s e :

u s e r _ c o u n t = j s o n . l o a d s (r e s p o n s e [" I t e m "])

u s e r _ c o u n t [" c o u n t "] + = 1

t a b l e . p u t _ i t e m (I t e m = j s o n . d u m p s (u s e r _ c o u n t))

Figure 1.1: Simple user count application in AWS Lambda. We

highlight the business logic with pink .

Only a few lines of this application concern business logic, and most code re-

volves around operational components such as state management, serialization,

and event handling. As business logic is intertwined with infrastructure code,

changing this logic or switching infrastructure components, like the database,

requires heavy refactoring. Even worse, to move a cloud application between

cloud providers or systems is prohibitive due to significant differences in the un-

derlying systems. Cloud consumers fear such a vendor lock-in reduces bargaining

1
h t t p s : / / f l i n k . a p a c h e . o r g / s t a t e f u l - f u n c t i o n s . h t m l

https://flink.apache.org/stateful-functions.html

Chapter 1. Introduction 3

power in negotiating prices for these cloud offerings Schleier-Smith et al. [2021].

We argue that developers should have control over operational logic such as se-

rialization and state storage, but it should never be part of the application code.

At the same time, we argue the need for stronger guarantees and features nec-

essary for distributed applications in the execution of cloud applications without

exposing this directly in the programming interface.

1.2 Programming for Dataflow Systems

We believe that the main reason for the wide adoption of the dataflow execu-

tion model is that it offers a suitable abstraction for data-parallel computations:

as long as a computation can either be partitioned randomly (e.g., m a p s) or par-

titioned given a key (e.g., e q u i j o i n s), dataflow graphs can be trivially paral-

lelized. Namely, each execution unit (e.g., a CPU core) can take over a partition

of the data and process it sequentially, avoiding race conditions.

Currently, state of the art dataflow systems such as Apache Flink Carbone

et al. [2015], Spark Armbrust et al. [2018] and Jet Gencer et al. [2021] can pro-

cess millions of events per second on a single core, with latency in the order of

milliseconds, with an exactly-once processing guarantee, and high-availability Sil-

vestre et al. [2021]. These systems are already mature: Google offers Dataflow

and Amazon offers Kinesis, both fully-managed cloud services for data processing,

where users simply upload their code and the cloud takes over its execution, au-

toscaling and availability. This shows that dataflow systems are a great fit for the

serverless model. However, developers must currently use a functional program-

ming model when implementing such an application. Not only is this program-

ming model cumbersome to use, it also requires heavy rewrites of the imperative

code that developers typically use for expressing application logic. As a result, a

developer can only enjoy the benefits of dataflow systems at the cost of an expen-

sive development process. It remains an open problem to facilitate an imperative

programming model for dataflow systems.

1.3 StateFlow

To address the two problems of programming for the cloud and dataflow systems,

we introduce StateFlow: a programming model, compiler pipeline, and interme-

diate representation (IR) that compiles object-oriented Python applications into

stateful dataflow graphs and executes them on existing dataflow systems. We

argue that a stateful dataflow graph as an intermediate representation conveys

all aspects of object-oriented applications required for execution in a distributed

setting. At the same time, such a stateful dataflow graph allows outsourcing

painstaking operational concerns such as configuration, scalability, and fault tol-

erance to a target distributed runtime system. Although StateFlow focuses on

dataflow systems, it does not limit the execution of these graphs on other dis-

tributed solutions such as (S)FaaS.

StateFlow offers a developer-friendly programming interfacewhere onewrites

imperative code rather than dataflow programs. StateFlow compiles this appli-

cation code to a stateful dataflow graph. The most significant advantage of using

Chapter 1. Introduction 4

an IR is the ability to replace specific operational components and switch be-

tween the underlying distributed systems without modifying the application code.

Currently, the supported systems include Apache Flink, Flink’s Statefun, Apache

Beam, Amazon’s Lambda Functions, and CloudBurst.

In this thesis, we take inspiration from the work by Helland [2016] which ex-

plores practical approaches for implementing large-scale systems. Helland ar-

gues that a scalable application consists of at least two layers — a scale-aware

lower layer and a scale-agnostic upper layer. Figure 1.2 shows a visualization of

such an application.

Figure 1.2: Scalable application with different layers. Figure taken

from work by Helland [2016]

Furthermore, Helland introduces the concept of an entity: a single collection

of data that a developer manipulates in the scale-agnostic upper-layer. These

entities are addresable by their unique key, and the scale-aware lower-layer man-

ages how to distribute them. According to Helland, most applications already

have a design with an implicit form of such an entity. For example, customers,

orders, shipments, or tax-payers Helland [2016]. StateFlow follows that line

of thought and considers entities to be a proper programming abstraction for

general-purpose, large-scale applications. In particular, StateFlow allows devel-

opers to implement applications using object-oriented code, where each class def-

inition resembles such an entity.

StateFlow follows a similar architecture as presented in Figure 1.2. The upper

layer corresponds to StateFlow’s programming abstraction that compiles entities

to a stateful dataflow graph. This pipeline follows the ‘Lift and Support’ approach,

where a compiler lifts as much as possible to an intermediate representation and

encapsulates what remains in user-defined functions Cheung et al. [2021]. In the

abstraction of this upper layer, developers do not need to worry about the system’s

scalability. The lower layer represents the scale-aware system, like the dataflow

or (S)FaaS system. StateFlow forms a bridge between this scale-agnostic and

scale-aware layer using its IR.

Besides runtime functionality, StateFlow also offers a client-side model to in-

teract with the deployed application. It uses its intermediate representation and

integrates with event streaming platforms such as Apache Kafka. In this client-

side model, developers write object-oriented code, and StateFlow handles event

communication with the target runtime. Again, this programming model ab-

stracts away from all operational aspects and allows developers to focus on busi-

ness logic. Finally, StateFlow provides HTTP integrations and configuration for

cloud deployments of both the runtime systems and the client interface. All in all,

Chapter 1. Introduction 5

StateFlow enables developers to implement, configure, and deploy end-to-end

large-scale applications with minimal effort.

1.4 Research questions

In the previous section, we debated the need for a high-level programming inter-

face that abstracts away from operational and infrastructural aspects. In addi-

tion, we opt for an intermediate representation in the form of a stateful dataflow

graph. Therefore we design a pipeline that compiles such programs to an IR. This

compiler compromises the first research question:

RQ1: How does one transform object-oriented code to event-driven stateful

dataflow graphs?

Moreover, we explore how a stateful dataflow graph fits the architecture of

distributed systems and in particular dataflow systems. Additionally, we prefer

loose coupling of the IR and the execution engine such that switching the engine

is trivial which prevents a vendor lock-in. Therefore, we formulate the second

research question:

RQ2: Given a stateful dataflow graph, how does one execute this graph

with loose coupling to an underlying distributed processing engine?

Finally, we explore the use of dataflow systems such as Apache Flink Carbone

et al. [2015] as a universal execution engine for general-purpose applications.

Notably, we explore how we benefit from the maturity of dataflow systems in

terms of performance and guarantees. At the same time, we would like to identify

the shortcomings of such systems concerning general-purpose applications. This

leads to the third and final research question:

RQ3: What is the performance and overhead of dataflow and (S)FaaS sys-

tems for general-purpose cloud applications, and what are the limiting fac-

tors?

1.5 Contributions

We summarize the contributions of this thesis as follows:

• We present a process for analyzing and transforming an object-oriented

Python application to a stateful dataflow graph, and compare its expres-

siveness to native implementations on three different distributed systems:

Apache Flink, Flink Statefun, and AWS Lambda.

• We desribe an intermediate representation (IR) for cloud applications and

how that IR translates to a stateful dataflow execution graph. We demon-

strate its interoperability by integrating it for a variety of popular distributed

systems.

Chapter 1. Introduction 6

• We introduce a set of building blocks to ease integration with new target

runtime systems. As a result, a developer can integrate the IR for new target

runtimes in as little as 87-190 lines of code.

• We provide a set of integrations, deployment tools, and automatic configura-

tions that allow a developer to deploy end-to-end applications. For example,

we integrate StateFlow’s entities as HTTP endpoints and we provide Kuber-

netes manifests to deploy runtime systems.

• We evaluate StateFlow’s efficiency on each of the supported systems, re-

porting the overhead that StateFlow incurs on top of them. Additionally,

we analyze the performance of these systems on the DeathStar benchmark,

which simulates a realistic workload.

1.6 Thesis outline

We structure the rest of this thesis as follows. In the preliminaries, Chapter 2,

we discuss some of the required background knowledge. Chapter 3 gives a high-

level overview of StateFlow: a compiler pipeline and execution model for stateful

dataflow graphs.

Chapter 4 details the programming model and compiler pipeline of StateFlow.

Chapter 5 follows with a detailed explanation of how StateFlow executes stateful

dataflow graphs and the several runtime architectures it supports.

In Chapter 6, we conduct a set of experiments, evaluating StateFlow from sev-

eral angles: we show the expressiveness of the introduced programming model,

the overhead that StateFlow, and, finally, we evaluate the complete system’s per-

formance using a benchmark.

Following the experimental results, we discuss these in-depth in Chapter 7.

In addition, this chapter reviews the contributions and the related work of this

thesis. We end this work with concluding remarks and a proposal for future work

in Chapter 8.

7

Chapter 2

Preliminaries

In this chapter, we establish background knowledge and explain some of the con-

cepts and terminology used in this thesis. In Section 2.1 we revise some pro-

gramming language terminology and concepts with a focus on the Python lan-

guage. This section lays a foundation for the compiler pipeline proposed in this

work. Next, in Section 2.2 and 2.3, we introduce respectively dataflow systems

and Function-as-a-Service (FaaS): two execution models that we build upon in this

work. Finally, in Section 2.4 we introduce the practice of event streaming.

2.1 Programming languages

A programming language is a computer language compromising a set of instruc-

tions in the form of a syntax and is used to instruct a machine to perform specific

tasks. In this thesis, we primarily work with Python: a popular high-level, versa-

tile and general-purpose programming language. In the remainder of this section,

we use Python syntax in the examples. However, most of the concepts and termi-

nology generalize to other programming languages.

We often split a programming language into two components: syntax and

semantics. The syntax describes the structure and the semantics describe the

meaning of the programming language. For example, the following code is Python

syntax:

5 + 1 0

The syntax of Python allows for the expression < I N T > + < I N T > where < I N T > is an

integer. On the other hand, the semantics of Python tell us that this syntactically

valid expression performs the addition operation on both integers. Formally, the

syntax of a programming language is defined by a grammar, similar to a natural

language.

Functions and Classes Although the syntax of Python is much broader, we

now highlight some of its elements and its terminology. In this work, we consider

developers to define application functionality using classes and functions.

A function, procedure or method, is a block of reusable code encapsulating

a single task. In Python, one defines a function by defining a function signature

or header and the function body. A function signature compromises a function

name, formal parameters and a return type. In the example below, the func-

tion name is a d d , its formal parameters are x : i n t and y : i n t and the return type

Chapter 2. Preliminaries 8

is i n t . In Python, it is optional to specify types (including the return type) for a

function signature.

d e f a d d (x : i n t , y : i n t) F -> i n t :

r e t u r n x + y

Whenever we call or invoke this function: a d d (5 , 1 0) , we label 5 and 1 0 as the ac-

tual parameters. Alternatively, the actual parameters are labelled arguments

and the formal parameters parameters. We follow that convention in this work.

A class is a blueprint for objects and bundles together functionality and data.

One defines the functionality of a class in functions and the data in variables. The

class functions operate on those data, which modifies the state of the object. In

Python, one defines a class like this:

c l a s s U s e r :

d e f F __ i n i t F __ (s e l f , u s e r n a m e : s t r) :

s e l f . u s e r n a m e = u s e r n a m e

s e l f . b a l a n c e = 0

d e f u p d a t e _ b a l a n c e (s e l f , n e w _ b a l a n c e : i n t) :

s e l f . b a l a n c e = n e w _ b a l a n c e

By defining such a class, one creates a new type U s e r . Instantiation of the class

type returns a class object or instance. The functions defined in a class aremeth-

ods. A special method of a class is the constructor: d e f F __ i n i t F __ () . This method

is invoked upon object instantiation. Each method passes a s e l f variable, which

represents the instance of that class. Attributes assigned to this s e l f variable

are instance attributes. Commonly, all instance attributes are declared in the

constructor method.

Types A data type is an attribute of data that instructs the compiler or the inter-

preter on the intended use of that data. Python is a dynamically typed language

and does not enforce defining types for variables. Types are only checked at run-

time and the type of a variable is allowed to change over time. On the other hand,

Python does support type hints or type annotations in its syntax. For exam-

ple: x : i n t = 1 , defines the variable x with the type annotation i n t . These type

annotations are not checked during compilation.

Abstract Syntax Tree A programming language is compiled or interpreted be-

fore execution on a machine. These compilers or interpreters commonly trans-

form the program into an intermediate representation. Such a representation is

useful for different kinds of analysis and optimizations before the machine code is

generated. A common intermediate representation for compilers is an abstract

syntax tree (in short AST). An abstract syntax tree is an ordered tree that repre-

sents the syntactic structure of the code according to the grammar of a language.

This tree is ’abstract’ as it does not denote every detail in the syntax. After the

compiler executes several kinds of analysis and optimizations on the AST, it serves

Chapter 2. Preliminaries 9

as a base for (machine) code generation. In this work, we also use abstract syntax

trees for static analysis and code transformations. Below we show an example of

an AST. Consider the following piece of code:

x = 5 + 1 0

The corresponding AST looks like this:

valuetarget

Assign

value

Name

x

left right

BinOp

value

Constant

value

Constant

5 10

On some occasions, we present an AST in its flattened version:

A s s i g n (t a r g e t = N a m e (v a l u e = x) , v a l u e = B i n O p (l e f t = C o n s t a n t (v a l u e = 5) ,

r i g h t = C o n s t a n t (v a l u e = 1 0)))

Note, we sometimes merge AST nodes to simplify the visualizations.

2.2 Dataflow systems

Dataflow processing or stream processing is an execution model for the paral-

lel execution of dataflow graphs. A dataflow graph or dataflow is a directed

graph of nodes (i.e., operators) and edges where nodes represent computation,

and edges represent how data flows from one node to another. Data enters the

graph via sources — in the form of events — and leaves the graph again via sinks.

We distinguish two kinds of operators in a dataflow graph, stateless and stateful

operators. Stateless operators transform events without storing any information.

Contrary, stateful operators do remember information from previously processed

events (i.e., stateful operations). Commonly, stateful operators require events

to have a key, which scopes the event to a particular piece of state. Dataflow

systems allow processing of unbounded data streams entering the graph via the

source nodes.

Dataflow systems execute dataflow graphs in a parallel and distributed man-

ner. In general, stateless operators in the dataflow graph can be trivially par-

allelized by replicating the operation across multiple compute units. Similarly,

stateful operators are partitioned and distributed across multiple machines or

compute units. The dataflow system ensures that events with identical keys end

up at the operator instance with the corresponding state. Finally, the dataflow

Chapter 2. Preliminaries 10

system moves events from one operator to another to simulate moving over the

edges in the dataflow graph.

One such popular dataflow (or stream processing) system is Apache Flink 1.

We rely on Apache Flink in several contexts, and therefore, we use it as an exam-

ple system throughout this work. On top of (stateful) dataflow graph processing,

Apache Flink offers several features and guarantees. Most features and guaran-

tees are not unique and generalize to other dataflow systems. Most notably, Flink

allows processing large volumes of real-time data with low latency while also pro-

viding fault tolerance. Additionally, it provides strong consistency guarantees for

both the state and the events. We highlight some of the processing guarantees in

Subsection 5.3.2.

These dataflow systems often adopt a functional programming API in which

developers define their program in the form of a dataflow graph. For example,

a simple word count program in Apache Flink looks like the code presented in

Figure 2.1.

e n v = S t r e a m E x e c u t i o n E n v i r o n m e n t . g e t _ e x e c u t i o n _ e n v i r o n m e n t ()

d s = e n v . f r o m _ c o l l e c t i o n ([" t h e w e a t h e r i s a l w a y s n i c e i n D e l f t "])

d s = d s . F fl a t _ m a p (l a m b d a l i n e : l i n e . s p l i t ()) \

. m a p (l a m b d a i : (i , 1)) \

. k e y _ b y (l a m b d a i : i [0]) \

. r e d u c e (l a m b d a i , j : (i [0] , i [1] + j [1])) \

. p r i n t ()

e n v . e x e c u t e ()

Figure 2.1: Word count example using the Flink Python API

(PyFlink). This example is adapted from the official Flink documen-

tation.

The corresponding streaming dataflow graph:

flatmap/
map

keyBy reduce print()
from
coll

streaming dataflow graph

transformation
operators

source
operator

sink
operator

In general, each transformation in the syntax corresponds to an operator in

the dataflow graph. However, sometimesmultiple operators are grouped together

(i.e. m a p and F fl a t m a p). Data enters the dataflow graph via the source operator, in

the example a list of strings. Via the edges, the data enters the different operators.

Each operator performs a specific operation or transformation before forwarding

1https://flink.apache.org/

Chapter 2. Preliminaries 11

the data element to the next operator via the graph. Finally, the data enters its

final destination in the form of a sink. In our case, the data is printed to the

console, but this could also be another system such as a database.

2.3 Function-as-a-Service

Function-as-a-Service, or FaaS, is a category of services where one can define a

function implementation and a service provider, like a cloud provider, deals with

deployment, execution and management of this function. By using FaaS one can

achieve a serverless architecture. Popular FaaS solutions include AWS Lambda
2, Google Cloud Functions 3, Azure functions 4 and OpenWhisk 5.

Advantages of using FaaS include, 1) less focus on the deployment of your

application, 2) only pay for the resources you use, 3) scale up and down automat-

ically and 4) enjoy all benefits from a cloud provider like geo replication. One the

other hand, the concept of FaaS is rather new and lacks some important features.

For example, dealing with state inside a function is not yet trivial. It requires

interaction with another (database) service. Moreover, there are no guarantees

with regard to fault tolerance. At best, functions are simply re-executed when-

ever it fails. FaaS solutions that do support application state out-of-the-box are

labelled Stateful Functions or Stateful Function-as-a-Service. Popular SFaaS so-

lutions include Flink Statefun 6 and CloudBurst Sreekanti et al. [2020].

2.4 Event streaming

An event streaming platform (ESP) is a distributed, scalable and durable system

capturing streams of events from various sources. An ESP implements the pub-

lish/subscribe architecture and plays a significant role in the ingestion, storing,

and processing of real-time event data. In this thesis, wemainly work with Apache

Kafka, the most popular open-source ESP. We now explain some event streaming

concepts in the light of Kafka.

Kafka has three main capabilities: 1) publish and subscribe to a stream of

events continuously, 2) store event streams durably, and 3) process streams in

real-time. One deploys Kafka as a distributed cluster, which stores all the event

streams. With the help of a client, one ingests (publish) events into the cluster

or reads (subscribe) from an event stream. Figure 2.2 shows all components in a

Kafka setup.

Kafka stores event streams in the form of a topic. In addition, topics are parti-

tioned to distribute load and make it scalable. A publisher (i.e., producer) writes

to a Kafka topic, whereas a subscriber (i.e., consumer) reads from a topic. In this

work, we use this pattern to interact between clients and runtimes. This approach

has many advantages, and we highlight the most significant ones. First, event

streams are durable, and Kafka provides delivery guarantees for all clients. Sec-

ond, events streams are distributed, and Kafka supports distributed consumers.

2
h t t p s : / / a w s . a m a z o n . c o m / l a m b d a /
3
h t t p s : / / c l o u d . g o o g l e . c o m / f u n c t i o n s
4
h t t p s : / / a z u r e . m i c r o s o f t . c o m / e n - u s / s e r v i c e s / f u n c t i o n s
5
h t t p s : / / o p e n w h i s k . a p a c h e . o r g /
6
h t t p s : / / f l i n k . a p a c h e . o r g / s t a t e f u l - f u n c t i o n s . h t m l

https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://azure.microsoft.com/en-us/services/functions
https://openwhisk.apache.org/
https://flink.apache.org/stateful-functions.html

Chapter 2. Preliminaries 12

Figure 2.2: Components involved in a Kafka setup. Image taken

from official Kafka documentation.

For example, multiple consumers (i.e., a distributed runtime) can read from the

same topic, and events are distributed over the different consumers without event

duplication or event losses. Finally, Kafka deals with backpressure: if down-

stream consumers cannot keep up with the incoming data from producers, Kafka

acts as a buffer.

In this thesis, we use ESP’s to interact between clients and runtimes. Rather

than directly sending events from clients or runtimes (and the other way around),

we send it via the ESP and enjoy all its features and guarantees. This work also

covers AWS Kinesis: a service similar to that of Apache Kafka offered as-a-service

by Amazon.

Delivery guarantees Undoubtedly, Kafka’s consistency/delivery guarantee is

its most significant feature. Kafka provides these guarantees in the complete

pipeline from producer to consumer and even integrates with dataflow systems

like Apache Flink. In the table below, we summarize each guarantee.

Guarantee Description

At least once This guarantees that messages are not getting lost, but may be duplicated.

At most once This guarantees that message are never duplicated, but might be lost.

Exactly once This semantic guarantees that a message is processed only exactly once.

Although these guarantees might sound straightforward, from an implementation

perspective these are rather challenging. Therefore they pose as one of the key

features of systems like Kafka and Flink. AWS Kinesis only supports the at-least-

once guarantee.

13

Chapter 3

Introduction to StateFlow

In this chapter, we introduce StateFlow: a Python framework that simplifies the

development and deployment of general-purpose cloud applications. StateFlow

consists of two main components. First, it compromises a compiler pipeline that

translates object-oriented Python code to a stateful dataflow graph. The second

component accounts for executing these dataflows graph by porting to several

target systems and providing a client-side interface. Both components are dis-

cussed in depth in respectively Chapter 4 and 5.

Using StateFlow, developers define classes that are compiled and deployed on

a distributed runtime of choice. Since StateFlow uses an intermediate represen-

tation of the classes, and execution constructs for runtimes, adding new runtimes

is relatively easy. At the same time, StateFlow offers a simple client-side inter-

face to interact with the deployed application. This approach allows developers

to write applications having large-scale requirements with minimal effort and an

implementation close to plain Python code.

The name StateFlow is a contraction of the words state and flow. Both are im-

portant concepts in the world of distributed systems and stateful dataflow graphs.

State is fundamental in stateful computation, and it is treated as a first-class

citizen in dataflow systems, whereas flow captures the concept of data flowing

through a distributed system.

All code from this thesis is open-source and can be found on GitHub 1.

3.1 Compiler Pipeline

The first component of StateFlow is a compiler pipeline which is shown in Fig-

ure 3.1. The main principle behind this compilation pipeline is to relieve the

developer of the burden of distributed programming. At the base of this pipeline,

developers annotate their Python classes with @ s t a t e F fl o w . The annotation inter-

cepts the class definition, parses the code into its Abstract Syntax Tree (AST), and

triggers the compilation pipeline. StateFlow does not compile arbitrary Python

code, instead it requires developers to define all functionality in class definitions.

We argue that, in line with the work by Helland [2016], classes are a intuitive

abstraction for large-scale systems.

In StateFlow we refer to class objects as stateful entities. Besides the class

annotation, the framework assumes that developers type all method parameters

and implement a d e f F __ k e y F __ () method. StateFlow uses this key method as a

routing and translation mechanism to partition and distribute work among nodes

1
h t t p s : / / g i t h u b . c o m / d e l f t d a t a / s t a t e f l o w

https://github.com/delftdata/stateflow

Chapter 3. Introduction to StateFlow 14

Class analysis

user.py

item.py ���

Class linking Function
splitting Build IR

Source code

Stateful Dataflow

Figure 3.1: All stages of the compiler pipeline of StateFlow.

in a cluster. The key of a stateful entity cannot change throughout the entity’s

lifetime 2. Several stages of static analysis and code transformation result in an

intermediate representation for each annotated class. Chapter 4 discusses the

pipeline components in detail.

For all source code analysis and AST transformations, StateFlow uses the

LibCST framework 3. LibCST parses Python source code into a Concrete Syntrax

Tree (CST). Such CST encapsulates the Abstract Syntax Tree alongside its meta-

data like whitespace, parentheses, and comments. Using a simple API, LibCST

allows StateFlow to traverse the AST of a piece of Python code efficiently. More-

over, it allows manipulation of this AST, which can be recompiled into Python

code. LibCST uses its own intermediate AST/CST data structures, and therefore

StateFlow supports a wide range of Python versions.

3.2 Classes to Dataflows

Most distributed systems, particularly dataflow systems, are event-driven, and

therefore we require a translation from object-oriented code to event-driven exe-

cution. In Table 3.1, we show how the different object-oriented concepts translate

to constructs in a dataflow:

Table 3.1: Translation from OO constructs to dataflows.

Python Dataflow

Class Operator

Object State Operator State

Method Call Arguments Event

Return Value Event

Each class in Python translates to an operator (or vertex) in a dataflow graph.

In these graphs, we cannot directly invoke operators similar to calling methods

on an object. Instead, we send events into the dataflow graph, which ends up at

the correct operator. The operator stores the code of a class and its actual state

to reconstruct a stateful entity. Events encapsulate which method(s) to call and,

finally, also store the return results.

2Currently, we do not have a static way of detecting key changes, and we rely on the responsibility

of the programmer not to break this rule.
3
h t t p s : / / g i t h u b . c o m / I n s t a g r a m / L i b C S T

https://github.com/Instagram/LibCST

Chapter 3. Introduction to StateFlow 15

More specifically, each dataflow operator is capable of executing all methods

of a class, and it is triggered depending on the incoming event. Since opera-

tors can be partitioned across multiple cluster nodes, each partition stores a set

of stateful entities indexed by the unique key of each individual entity. When a

method of an entity is invoked, the entity’s state is retrieved from the local oper-

ator state. Then, using the method’s code that the operator stores, the method

is executed using the arguments found in the calling event, as well as the state

of the entity at the moment that the method is called. StateFlow offers routing

functionality that uses the entity’s unique key as well as the class name in order

to direct the events to the right dataflow operator.

3.3 Executing Stateful Dataflow Graphs

The second component of StateFlow compromises a model to execute stateful

dataflow graphs on top of several distributed runtimes, including dataflow sys-

tems. In addition, it provides a client-side interface to interact with these run-

times. StateFlow follows the client-server model and Figure 3.2 presents an

overview of all its execution components.

Flink
Statefun

Apache
Beam

Apache
Flink

AWS
Lambda CloudBurst

Stateful Dataflow

transforms

Apache
Kafka

AWS
clients

FastAPI Integration

StateFlow client

Runtimes

Clients

StateFlow runtime

transforms

event
streaming

Figure 3.2: Overview of all execution components in StateFlow.

At this stage, both a client and a runtime rely on the intermediate represen-

tation generated by the compiler pipeline of StateFlow. StateFlow transforms

and integrates this IR with several runtime systems, including, but not limited to,

Apache Flink, Flink Statefun, and AWS Lambda. StateFlow provides a set of build-

ing blocks to compose architectures for each of these runtimes. Most prominently,

these building blocks handle event routing and execution of methods in state-

ful entities. Using these building blocks has two significant advantages. First,

event routing and execution are loosely coupled with the underlying runtime, and

Chapter 3. Introduction to StateFlow 16

therefore switching between runtimes is trivial. Secondly, it requires little code

to integrate with runtime systems since StateFlow captures most functionality in

its building blocks. StateFlow does not limit execution to dataflow systems like

Apache Flink and supports FaaS systems like AWS Lambda. In general, StateFlow

can support any distributed runtime as long as it offers some sort of storage or

state.

On the client-side, StateFlow allows developers to interact with the defined

classes like in native Python code. For example, one can construct instances and

call methods. In the background, it sends and receives events from the runtimes

using one of the clients (i.e., the Kafka client). The choice of a client depends on

the selected runtime. For example, to use a Flink runtime requires the use of a

Kafka client. On top of the client, one can enable an HTTP server using FastAPI.

This integration creates HTTP endpoints, allowing one to interact with the stateful

entities in the runtime via REST calls.

All details on the execution of stateful dataflow graphs, for both client and

runtimes, are presented in Chapter 5.

3.4 Why Python?

When working with distributed systems, Python might not be the first program-

ming language to come to mind. It is considered relatively slow, especially com-

pared to more low-level languages like Java, Go, or C++. On the other hand,

Python is a popular language 4 and relatively simple to learn. Moreover, we ob-

serve a shift in the adoption of Python support in dataflow and cloud systems.

For example, Apache Flink started adding support for Python a few months ago

besides its original interface in Java and Scala. In addition, all cloud providers

offer Python support for their FaaS solutions.

3.5 Running Example

In this section, we present an example of two classes defined with StateFlow. The

classes are shown in Listing 1 and 2. First, we define an I t e m class: This class

encapsulates an item which has a p r i c e and a s t o c k . The stock can be updated,

and it can be verified if an item still has enough stock. The unique key of a stateful

entity of the type I t e m equals its i t e m i d . Secondly, we define an U s e r class: This

class encapsulates an user which has a b a s k e t and a b a l a n c e . A user’s balance

can be updated, and items can be added to a user’s basket. The unique key of a

stateful entity is determined by the u s e r i d , similar to the I t e m type. Notice how

the User class interacts with the Item.

4In a 2021 Stackoverflow survey (h t t p s : / / i n s i g h t s . s t a c k o v e r f l o w . c o m / s u r v e y / 2 0 2 1 #

m o s t - p o p u l a r - t e c h n o l o g i e s - l a n g u a g e) Python was the third most popular language behind

Javascript and HTML.

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language

Chapter 3. Introduction to StateFlow 17

@ s t a t e F fl o w

c l a s s I t e m :

d e f F __ i n i t F __ (s e l f , p r i c e : i n t , i t e m i d : i n t) :

s e l f . p r i c e : i n t = p r i c e

s e l f . s t o c k : i n t = 0

s e l f . i t e m i d : i n t = i t e m i d

d e f F __ k e y F __ (s e l f) :

r e t u r n s e l f . i t e m i d

d e f s e t _ s t o c k (s e l f , s t o c k : i n t) :

s e l f . s t o c k = s t o c k

d e f e n o u g h _ s t o c k () F -> b o o l :

r e t u r n s e l f . s t o c k > 0

Listing 1: Code example: An Item class definition.

@ s t a t e F fl o w

c l a s s U s e r :

d e f F __ i n i t F __ (s e l f , u s e r i d : i n t) :

s e l f . b a s k e t : L i s t [I t e m] = []

s e l f . b a l a n c e : i n t = 1 0 0 0

s e l f . u s e r i d : i n t = u s e r i d

d e f F __ k e y F __ (s e l f) :

r e t u r n s e l f . u s e r i d

d e f s e t _ b a l a n c e (s e l f , b a l a n c e : i n t) :

s e l f . b a l a n c e = b a l a n c e

d e f a d d _ t o _ b a s k e t (s e l f , i t e m s : L i s t [I t e m]) F -> b o o l :

t o t a l _ p r i c e : i n t = 0

f o r i t e m i n i t e m s :

i f i t e m . e n o u g h _ s t o c k () :

t o t a l _ p r i c e + = i t e m . p r i c e

i f s e l f . b a l a n c e < t o t a l _ p r i c e :

r e t u r n F a l s e

s e l f . b a s k e t = i t e m s

r e t u r n T r u e

Listing 2: Code example: An User class definition.

We use these classes as a running example in subsequent chapters.

18

Chapter 4

Imperative Code to a Stateful

Dataflow Graph

In this chapter, we elaborate on the compiler pipeline of StateFlow as introduced

in Figure 3.1. The compiler pipeline allows developers to write object-oriented

Python code, which StateFlow compiles to an intermediate representation. State-

Flow uses and extends the original CPython compiler 1. In general, Python source

code (. p y) is first compiled into to Python byte code (. p y c). This bytecode is

then executed on a Python Virtual Machine. Although Python code is compiled

into bytecode, code is not built and linked similarly to languages such as C++

and Java. Therefore, Python is considered to be an interpreted language Subasi

[2020]. Figure 4.1 shows this default pipeline and how StateFlow’s pipeline fits

into this.

pyth

item.py ���

Source code

CPython interpreter

StateFlow compiler
pipeline

CPython
Compiler

CPython
Bytecode

code
gets executed

CPython Virtual
Machine

library
modules

Figure 4.1: Full compilation pipeline including StateFlow.

In this pipeline, the original code is compiled and executed as usual. How-

ever, we intercept class definition and recompile these classes after they pass the

StateFlow compiler pipeline. For each annotated class definition, we derive its

AST, which we analyze and transform before its recompiled. Therefore, the com-

plete source code is only compiled oncewhereas all class definitions are compiled

twice. Due to the dynamic nature of Python, we recompile code during execution,

and therefore, the developer only has to run the code once. Note, we do not mod-

ify the original CPython compiler nor use its internal representation.

StateFlow compilation pipeline consists of several stages, startingwith a round

of static analysis on all annotated classes explained in Section 4.1. Section 4.2

presents the second round of analysis, in which StateFlow links the classes that in-

teract with one another using method calls. All methods with remote interaction

1Python has many compilers including: Stackless Python, Jython, CPython and PyPy. CPython is

the default Python compiler and is widely used.

Chapter 4. Imperative Code to a Stateful Dataflow Graph 19

are a candidate for function splitting shown in Section 4.3. The splitting algo-

rithm transforms code into the continuation-passing style form Reynolds [1972].

At the end of the pipeline, StateFlow builds an intermediate representation as

explained in Section 4.4. Finally, we explain some of StateFlow’s programming

model limitations in Section 4.5.

4.1 Class Analysis

The class analysis is triggered by annotating a Python class with @ s t a t e F fl o w . In

Python, such an annotation is called a decorator: A metaprogramming technique

to modify the underlying structure at runtime. This decorator is a function call

and can also be called explicitly. For example, both code snippets are equivalent:

@ s t a t e F fl o w

c l a s s U s e r :

d e f F __ i n i t F __ (s e l f) :

F F ...

c l a s s U s e r :

d e f F __ i n i t F __ (s e l f) :

F F ...

U s e r = s t a t e F fl o w (U s e r)

In this first round of analysis, we focus on individual classes. We infer the static

properties of a class, like its attributes, by traversing each AST. More specifically,

we collect 1) all instance attributes and their available types and 2) all methods

and their parameter and return types. We identify instance attributes as assign-

ments to s e l f attributes somewhere in the class methods. Although defining in-

stance attributes outside the class constructor is considered bad practice, State-

Flow supports identifying these attributes in non-constructor methods. StateFlow

does not support instance attribute definitions outside of the class definition.

Python is a dynamically typed language. Therefore, it does not require a de-

veloper to explicitly indicate data types. However, we encourage developers to

use Python’s type-hint system, allowing StateFlow to derive data types statically.

Although encouraged in general, we enforce the use of types for method param-

eters. Annotating parameters is necessary as we need to statically derive how

stateful entities interact. For example, the d e f a d d _ t o _ b a s k e t method from the

User class (Listing 2) interacts with a list of Item entities. Therefore, the i t e m s pa-

rameter needs to be typed as L i s t [I t e m] . StateFlow supports all primitive types,

lists, and class types. For class types, we distinguish between classes that are

also stateful entities and those that are not. The latter could be auxiliary classes

or classes from external libraries, and those will not be explicitly part of the state-

ful dataflow graph. StateFlow does not incur any limitation on using an external

library in the code.

In order to collect these properties, we match on patterns in the AST. For

example, to find a instance attribute we try to match the following AST node 2:

2This is a simplified version of the actual AST node that is matched.

Chapter 4. Imperative Code to a Stateful Dataflow Graph 20

targetann value

Assign

name

Attribute *

$TYPE

Annotation

self $VAL

valuevalue

where * is a wildcard and $ V A L , $ T Y P E are variables that are matched. For exam-

ple, the statement s e l f . s t o c k : i n t = 1 , with the corresponding AST node:

A s s i g n (v a l u e = I n t e g e r (1) , t a r g e t = A t t r i b u t e (n a m e = " s e l f " ,

v a l u e = " s t o c k ") , a n n = A n n o t a t i o n (v a l u e = " i n t "))

matches this pattern and we derive the attribute name $ V A L = s t o c k and type

$ T Y P E = i n t . In Python, s e l f is not a reserved keyword, and using it is merely a

convention. However, StateFlow relies on developers using this convention; oth-

erwise, the pattern matching will not work. In this pass over the AST, StateFlow

also verifies if the developers overrides the d e f F __ k e y F __ () method. This method

should return a static result and cannot change during the lifetime of a stateful

entity. There is no additional analysis to ensure that this method is static.

The analysis results in a C l a s s D e s c r i p t o r which stores all these statically de-

rived properties. The C l a s s D e s c r i p t o r of the Item stateful entity can be found

in Figure 4.2. We describe all instance attributes, p r i c e , s t o c k , and i t e m i d as

state. Moreover, we store the input and output types for themethods e n o u g h _ s t o c k

and s e t _ s t o c k . The input of a method is described as an ordered list of tuples

with parameter names and types, whereas for the return variables, we keep track

of only the types.

methods

ClassDescriptor
- name: "Item"

StateDescriptor
- price: int
- stock: int
- itemid: int

MethodDescriptor
- name: "set_stock"

MethodDescriptor
- name: "enough_stock"

InputDescriptor
- stock: int

OutputDescriptor
- No return type

OutputDescriptor
- returns: bool

InputDescriptor
- No parameters

state

Figure 4.2: Analysis results for Item stateful entity.

4.2 Class Linking

In Section 4.1, we show how the first round of static analysis results in a descrip-

tion for each annotated Python class. In a second round, we link the methods

Chapter 4. Imperative Code to a Stateful Dataflow Graph 21

of all analyzed classes. That is, methods that have interaction with methods of

other stateful entities. These methods are candidates for function splitting (Sec-

tion 4.3). We cannot access the classes defined later in the code when interpret-

ing and analyzing a class definition. Therefore, we can only link classes after the

first round of class analysis. In this first round, we stored all analyzed classes in

a global context. To trigger the second round of analysis, the developer has to

execute: s t a t e F fl o w . i n i t () .

In this second round, the M e t h o d D e s c r i p t o r ’s of all analyzed classes are tra-

versed. As mentioned before, StateFlow assumes that if a method interacts with

another stateful entity, a reference to that entity is defined as parameter type.

This type hint has been extracted by StateFlow in the first round and parsed to

the correct type. As Python considers type hints to be an expression, we evaluate

the AST of such an expression to make parsing easier. For example, the type hint

x : L i s t [I t e m] requires the import of the generic L i s t and is parsed as:

A n n o t a t i o n (v a l u e = S u b s c r i p t (v a l u e = ' L i s t ' ,

s l i c e = I n d e x (v a l u e = ' I t e m ')))

The evaluation of this type hint results in the original syntax: L i s t [I t e m] . To this

syntax, we apply a regular expression that parses into I t e m . With a lookup in the

global context, we find and link to the I t e m entity.

4.3 Function Splitting

For simple functions that do not call other remote functions, execution is rather

straightforward. If, for example, the method U s e r . a d d _ t o _ b a s k e t calls the (re-

mote) method i t e m . e n o u g h _ s t o c k whose state lies on a different partition, the

situation becomes more complicated. The dataflow system cannot stop and wait

for the remote function to complete and return before moving on with processing

the next event. Instead, it must ‘suspend’ the execution of a d d _ t o _ b a s k e t right

at the spot that the remote function i t e m . e n o u g h _ s t o c k () is called until the re-

mote function is executed and an event comes back to the U s e r operator with a

return value.

In order to do this, we adopt a technique to transform the imperative functions

into the continuation-passing style (CPS) Reynolds [1993]. More specifically, we

propose an approach to split a function definition into multiple functions at the

AST level. In the running example, the only candidate eligible for function split-

ting is the method d e f a d d _ t o _ b a s k e t (s e l f , i t e m s : L i s t [I t e m]) . None of the

other methods have any reference to stateful entities. Notice that we label this

technique as ‘function splitting’ although we apply it to class methods. We explain

‘function splitting’ in the following subsections based on the Python language and

the Python AST grammar. However, we argue that many of the explained tech-

niques can be applied to other (object-oriented) programming languages.

4.3.1 Simple splitting

To introduce the idea of the function splitting we start with a simple example:

Chapter 4. Imperative Code to a Stateful Dataflow Graph 22

1 d e f b u y _ i t e m (s e l f , a m o u n t : i n t , i t e m : I t e m) :

2 t o t a l _ p r i c e = a m o u n t * i t e m . p r i c e

3 i s _ r e m o v e d = i t e m . r e m o v e _ s t o c k (a m o u n t)

4

5 r e t u r n t o t a l _ p r i c e

This method could be part of the User stateful entity. As we execute this piece of

code, we encounter a problem while invoking i t e m . r e m o v e _ s t o c k (a m o u n t) . The

item entity is located at a different operator in the dataflow graph and it cannot

be invoked without suspending execution of the current method. Therefore, we

split the function at line 3 and form two new functions:

1 d e f b u y _ i t e m _ 0 (s e l f , a m o u n t : i n t , i t e m : I t e m) :

2 t o t a l _ p r i c e = a m o u n t * i t e m . p r i c e

3 r e m o v e _ s t o c k _ a r g = a m o u n t

4 r e t u r n a m o u n t , i t e m , t o t a l _ p r i c e ,

5 { " _ t y p e " : " I n v o k e M e t h o d " ,

6 " a r g s " : [r e m o v e _ s t o c k _ a r g] ,

7 F .. }

8

9 d e f b u y _ i t e m _ 1 (s e l f , t o t a l _ p r i c e , r e m o v e _ s t o c k _ r e t u r n) :

10 i s _ r e m o v e d = r e m o v e _ s t o c k _ r e t u r n

11 r e t u r n t o t a l _ p r i c e

Now, b u y _ i t e m _ 0 evaluates the ‘first part’ of b u y _ i t e m (line 2), evaluates the

parameters of the remote call (line 3) and finally returns (line 4-7). In this return

statement, local variable definitions (t o t a l _ p r i c e) and metadata for the remote

call is returned. This is necessary to invoke the remote call and to continue with

the execution afterward. Figure 4.3 shows how the call graph changed before

and after the split. After splitting the functions into multiple, we can safely move

back and forth between dataflow operators to call remote functions. By returning

and storing the local state of an intermediate function, we ensure ‘continuation’

when the next function is invoked. This approach allows suspending computation

in between dataflow operators, which fits the dataflow execution model.

User operator

buy_item

Item operator

remove_stock

before split

User operator

buy_item_0

Item operator

remove_stock

after split

buy_item_1

Figure 4.3: Call graph before and after the function split of

b u y _ i t e m .

Chapter 4. Imperative Code to a Stateful Dataflow Graph 23

Now that we have shown an example of a simple split, we attempt formalizing

the splitting algorithm. As shown in the previous examples, StateFlow performs

all code transformations by transforming the AST of the class and function defini-

tions. We now present a set of algorithms in the form of visualizations of the AST

nodes. The algorithms both transform and analyze these AST nodes and we apply

the algorithms to each class method. For simplification, details, and edge cases

have been omitted in these algorithms. For the visualization of the AST nodes, we

use a minified version of the LibCST specification, close to the original abstract

Python grammar 3. All algorithms have access to a ‘global context’ that stores all

previously analyzed stateful entities and provides utility functions. These utility

functions and its descriptions are presented in Table 4.1.

Table 4.1: Auxiliary functions of the global context.

Name Description

c a l l T o R e t u r n

Transform a C a l l node to an expression which encapsulates

the metadata of that call. This instructs the execution model

to execute the remote call.

c h i l d r e n

Given an AST node, it returns a list of all child nodes.

In the context of AST’s, these child nodes are ordered the

same way as defined in the code.

b u i l d R e t u r n I d

Builds an identifier for the return variable of a Call node.

For example, a call to the method r e m o v e _ s t o c k (a m o u n t)

will have the return value r e m o v e _ s t o c k _ r e t u r n .

Identify remote call First, we define an algorithm I s R e m o t e C a l l to identify if

an AST node is a call to a remote function (Figure 4.4). This algorithm accepts

an AST node, a list of typed declarations, and the global context. The typed dec-

larations are an ordered list of variable names and their types.The order of this

list is equivalent to the order in which these variables are declared. For example,

consider the following lists of statements:

1 x , y = 0

2 y : i n t

3 p : s t r = " "

4 x : I t e m

After analyzing all statements of this code snippet, the typed declarations are:

((x , N o n e) , (y , N o n e) , (y , i n t) , (p , s t r) , (x , I t e m)) . The I s R e m o t e C a l l

algorithm first verifies if the AST node matches the correct form (step 1). More

specifically, we look for C a l l node with an A t t r i b u t e . From this Call node, the

variable and function names are extracted. The typed declarations are traversed

in reverse order since we need to know the type of the latest declaration of a

variable (step 2). If the variable name matches and the type of this variable is

3The AST grammar of Python is found on the documentation website: h t t p s : / / d o c s . p y t h o n .

o r g / 3 / l i b r a r y / a s t . h t m l

https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

Chapter 4. Imperative Code to a Stateful Dataflow Graph 24

func args

Call

value attr

Attribute

in declarations?

Name($var)

fun_name
part of entity?

$fun_name

$arguments

GlobalContext

Entity: Item
Methods: remove_stock
���

1

2

3
Type

None
None
int
str
Item

Name

x
y
y
p
x

TypedDecls

type is entity?

IsRemoteCall

Figure 4.4: Visualization of the I s R e m o t e C a l l algorithm.

an (remote) entity (step 3), the algorithm returns true. In all other scenarios, the

algorithm returns false.

Build function definition The second algorithmwe define is B u i l d F u n c t i o n D e f

in Figure 4.5. This algorithm builds a new function definition, given a list of state-

ments and an ordered list of usages and definitions. For example, the following

code snippet:

1 x , y = 0

2 z = x + y

3 p * 4

has three statements corresponding to the three lines in the snippet. Note that a

source code line is not always equivalent to a statement. A control flow element,

like an if-statement, might span multiple lines. In the example, the ordered list

of usages an definitions is ((x , D e f) , (y , D e f) , (x , U s e) , (y , U s e) , (z ,

D e f) , (p , U s e)) The order of this list should be equal to the order of evaluation.

In StateFlow we benefit from the LibCST AST implementation, which embeds the

lexical order in its AST data structure. In general, it might require knowledge of

the semantics of a programming language to decide on the order of this usage/def-

inition list. For example, on line 2, first x is referenced followed by y before z is

defined. We know this because the Python language first evaluates the right-hand

side of an assignment statement 4.

4As documented on the official Python website: h t t p s : / / d o c s . p y t h o n . o r g / 3 / r e f e r e n c e /

e x p r e s s i o n s . h t m l # e v a l u a t i o n - o r d e r

https://docs.python.org/3/reference/expressions.html#evaluation-order
https://docs.python.org/3/reference/expressions.html#evaluation-order

Chapter 4. Imperative Code to a Stateful Dataflow Graph 25

BuildFunctionDef

Ctx

Def
Def
Use
Use
Def
Use

Name

x
y
x
y
z
p

UseDefs

Param

Name($var)

ctx is 'Use'

ctx is 'Def'

1

Definitions

Parameters

���

���

Name($var)

2

callToReturn

3

Call

Return

Tuple

stmt stmt1 stmt stmt2

Definitions

Expr(callExpr)

Expr(callExpr)

list of statements

Statements�

paramsname

FunctionDef

Parameters

���

body

Name(funId)

Figure 4.5: Visualization of the B u i l d F u n c t i o n D e f algorithm.

In B u i l d F u n c t i o n D e f , we iterate over these usages and definitions (Figure 4.8).

A definition is generally added to the return statement, whereas a used variable

is defined as a parameter (step 1). For ‘Use’ variables, we only add them as a

parameter if it has not been defined before. For example, in the code snippet,

x and y are used on line 2 but already defined on line 1. Therefore these vari-

able names do not need to be part of the function parameter definition. The goal

of adding these parameters and return variables is to ensure the continuation of

the original function definition. In this context, a function parameter is a depen-

dency on one of the previous function definitions, whereas the return variables

are output on which subsequent functions can depend. If we split a function be-

cause of a remote call, metadata is appended to the return statement to instruct

the execution model (step 2). We defined this operation as c a l l T o R e t u r n in the

global context. More specifically, given a call, (e.g. i t e m . r e m o v e _ s t o c k (a m o u n t))

we build a Python dictionary in the following form:

Chapter 4. Imperative Code to a Stateful Dataflow Graph 26

{

" _ t y p e " : " I n v o k e M e t h o d " ,

" c l a s s _ n a m e " : " I t e m " , # N a m e o f s t a t e f u l e n t i t y

" r e f " : i t e m , # R e f e r e n c e t o t h e e n t i t y v a r i a b l e

" i n v o k e d _ m e t h o d " : " r e m o v e _ s t o c k " ,

" a r g s " : [a m o u n t]

}

We append this expression, a Python dictionary, as the last item in the return

statement. Not all function definitions need to return this call metadata since

not all function are followed by a remote call. For instance, in the first exam-

ple d e f b u y _ i t e m _ 1 , does not need to return with instructions for a remote call.

This metadata has static properties like the class name and the invoked method,

whereas the reference to the entity and the call arguments are dynamically deter-

mined at runtime. In the end, we build a new function definition (step 3) with 1)

the extracted parameters, 2) the input statements, and 3) a new return statement

with potentially the call metadata.

Split a function Finally, we define an algorithm for splitting a function S p l i t F u n c t i o n

in Figure 4.6, 4.7, 4.8 and 4.9.

SplitFunction

stmt1 stmt2

Statements�

paramsname

FunctionDef

body

Name($fname)

���

Parameters�

$param1 $param2
���

1

Type

���
���

Name

$param1
$param2

TypedDecls

add params

CtxName

UseDefs

Figure 4.6: Visualization of step 1 of S p l i t F u n c t i o n algorithm.

This algorithm expects a function definition as input alongside the global context.

In the previous analysis phases, StateFlowmarked this function definition eligible

for the splitting algorithm. Initially, all parameters of the function definition are

considered as typed declarations (Figure 4.6). Although this function definition

does not explicitly declare these parameters, they ought to be available in the

function scope as call arguments. In a previous AST analysis, we already enforced

types to be available for the parameters.

Next, we iterate over all statements in the function definition (Figure 4.7). For

each statement, we iterate over its child nodes. The order of child node traversal

is identical to how it appears lexically in the code. We maintain a list of vari-

able usages and (typed) definitions for the current list of statements, respectively

U s e D e f s and T y p e d D e c l s . If a child node is a remote call, we go to step 3 to

perform a ‘split’ (Figure 4.8). If a node is a N a m e or A n n A s s i g n , we add these

variables to U s e D e f s or T y p e d D e c l s . A statement is added to the current list of

statements when all child nodes have been traversed.

Chapter 4. Imperative Code to a Stateful Dataflow Graph 27

2
stmt1 stmt2 ���

for each stmt

stmtchildren

for each child

or

addName($var, $ctx) Ctx

$ctx

Name

$var

UseDefs

addAnnAssign($var, $type)
Type

���
���
$type

Name

$param1
$param2

$var

TypedDecls

or

IsRemoteCall $call

if true, go to step

,TypedDecls

3

add stmt to current

stmt 3
stmt 1 stmt 2

current

Figure 4.7: Visualization of step 2 of S p l i t F u n c t i o n algorithm.

3
BuildFunctionDef current, UseDefs

Ctx

Use

Name

buildReturnId($call)

UseDefs

current

build new function definition

FunctionDef 3

FunctionDef 1

FunctionDef 2

newFuns

add to new functions

empty current

empty UseDefs

transform$call
Name(buildReturnId($call),

LOAD)

Figure 4.8: Visualization of step 3 of S p l i t F u n c t i o n algorithm.

If we identify a child node as a remote call, we perform a split by building a

new function definition. This function definition is created based on the current

list of statements alongside its variable usages and definitions list. We empty the

current list of statements as well as the list of usages and definitions. However,

to the latter, we add a reference to the return result of the remote call. For the

call i t e m . r e m o v e _ s t o c k (a m o u n t) , the return id would be r e m o v e _ s t o c k _ r e t u r n . By

adding it as the first entry in the (emptied) U s e D e f s list, we ensure that it will

be the first parameter of the next function definition. Secondly, we transform the

remote call node $ c a l l to a N a m e node referring to that return variable. For exam-

ple, given the following statement: x = 1 0 * i t e m . r e m o v e _ s t o c k (a m o u n t) , these

operations ensure that the next function definition has the following signature

and first statement:

1 d e f f u n _ n a m e _ x (r e m o v e _ s t o c k _ r e t u r n) :

2 x = 1 0 * r e m o v e _ s t o c k _ r e t u r n

Finally, when we traversed all statements of the original function definition, we

Chapter 4. Imperative Code to a Stateful Dataflow Graph 28

4 when all statements are analyzed

FunctionDef n-1

newFuns

���

stmt n-1 stmt n
current

BuildFunctionDef current, UseDefs

addFunctionDef n

the last statements

build last
function
definition

Figure 4.9: Visualization of step 4 of S p l i t F u n c t i o n algorithm.

built the final function definition from the remaining statements (Figure 4.9. The

output of the complete algorithm is the list of new function definitions.

To ensure coordination and continuation of these generated function defini-

tions, StateFlow builds a state machine that encodes where to go (i.e., which op-

erator), what to do (i.e., which function to invoke), and what to store (i.e., which

local definitions are stored). Essentially, this state machine connects the new

function definitions to simulate the syntax of the original definition and looks sim-

ilar to the call graph shown in Figure 4.3. A function with only sequential control

flow and n remote calls splits into n+1 new functions. This algorithm assumes one

remote call per statement. That means call nesting and multiple remote calls per

statement are not supported. However, simple desugar rules could be adopted to

deal with this:

d e f n e s t e d _ c a l l (i t e m : I t e m) :

r e s u l t = i t e m . r e m o v e _ s t o c k (i t e m . g e t _ s t o c k ())

d e f n e s t e d _ c a l l _ d e s u g a r (i t e m : I t e m) :

x = i t e m . g e t _ s t o c k ()

r e s u l t = i t e m . r e m o v e _ s t o c k (x)

d e f m u l t i p l e _ c a l l s (i t e m : I t e m) :

r e s u l t = i t e m . g e t _ s t o c k () + i t e m . g e t _ p r i c e ()

d e f m u l t i p l e _ c a l l s _ d e s u g a r (i t e m : I t e m) :

x = i t e m . g e t _ s t o c k ()

r e s u l t = x + i t e m . g e t _ p r i c e ()

In this desugared form, the proposed splitting algorithm can be applied.

4.3.2 Conditional splits

In the previous section, we introduced the splitting algorithm. Until now, we as-

sumed that all function definitions that are a candidate for this splitting algorithm

have only sequential control flow. In this section, we introduce the support for

conditional (non-looping) control flow. In other words, we show how StateFlow

deals with if-statements. We consider two scenarios for an if-statement; there is

a remote call inside the body of the if or there is a remote call in the test expres-

sion of the if. Again, we start by showing some examples before explaining the

splitting approach.

Figure 4.10 shows a split based on a remote call inside the if-statement. The

left snippet shows the original code whereas the right shows the code after split-

ting. The figure also includes the call graph for the function that was split. Start-

ing with the original method c a l l _ i n s i d e _ i f , line 2 is reflected in the newly

generated method c a l l _ i n s i d e _ i f _ 0 . The test expression of the if-statement

(line 3) is incorporated in c a l l _ i n s i d e _ i f _ c o n d _ 1 . The result of this function,

Chapter 4. Imperative Code to a Stateful Dataflow Graph 29

determines if either c a l l _ i n s i d e _ i f _ 2 or c a l l _ i n s i d e _ i f _ 4 is invoked. These

functions reflect respectively lines 4-5 and line 7 from the original code snippet.

1 d e f c a l l _ i n s i d e _ i f (i t e m : I t e m) :

2 s t o c k = 1 0

3 i f s t o c k F >= 0 :

4 i t e m . r e m o v e _ s t o c k (s t o c k)

5 r e t u r n T r u e

6

7 r e t u r n F a l s e

call_inside_if_0

true

call_inside_if_cond_1

call_inside_if_2 call_inside_if_4

call_inside_if_3

false

d e f c a l l _ i n s i d e _ i f _ 0 (i t e m : I t e m) :

s t o c k = 1 0

r e t u r n i t e m , s t o c k , { " _ t y p e " : " I f S p l i t " }

d e f c a l l _ i n s i d e _ i f _ c o n d _ 1 (s t o c k) :

r e t u r n s t o c k F >= 0

c a l l _ i n s i d e _ i f _ c o n d _ 1 i s T r u e

d e f c a l l _ i n s i d e _ i f _ 2 (s t o c k , i t e m) :

r e m o v e _ s t o c k _ a r g = s t o c k

r e t u r n { " _ t y p e " : " I n v o k e M e t h o d " ,

" a r g s " : [r e m o v e _ s t o c k _ a r g]

F .. }

d e f c a l l _ i n s i d e _ i f _ 3 (r e m o v e _ s t o c k _ r e t u r n) :

r e m o v e _ s t o c k _ r e t u r n

r e t u r n T r u e

c a l l _ i n s i d e _ i f _ c o n d _ 1 i s F a l s e

d e f c a l l _ i n s i d e _ i f _ 4 () :

r e t u r n F a l s e

Figure 4.10: Example of splitting a function with a remote call in-

side an if-statement. Left is the original function, right is after split-

ting.

Figure 4.11 presents a split based on a remote call inside the test expression

of the if-statement. Again, the left snippet presents the original code whereas

the right snippet shows the code after splitting. In the original code snippet

c a l l _ i n _ c o n d , line 2 and the call on line 3 are reflected in the new definitions

c a l l _ i n _ c o n d _ 0 and c a l l _ i n _ c o n d _ c o n d _ 1 . Based on the result of c a l l _ i n _ c o n d _ c o n d _ 1 ,

either c a l l _ i n _ c o n d _ 2 or c a l l _ i n _ c o n d _ 3 is executed. These function defini-

tions reflect line 4-5 and line 6 respectively.

To support these if-statements, we adapt the presented S p l i t F u n c t i o n algo-

rithm slightly. First, we allow the S p l i t F u n c t i o n algorithm to operate on a set

of statements rather than a function definition. It means we skip the first step of

the algorithm (Figure 4.6). Moreover, we add another trigger for splitting in step

2 (Figure 4.7). Not only do we split when we encounter a remote call, but also in

the case of an if-statement. As seen in the examples, we completely remove the

original if-statement and encode its behavior in new function definitions. We show

this transformation in Figure 4.12. First, we create the function definition, which

evaluates the test expression of the if-statement. This definition returns either

true or false, and based on the result, a different execution path is taken. When

the test expression encapsulates a remote call, like in the c a l l _ i n _ c o n d example,

the remote call is executed before the if condition function is called. Similarly to

step 3 (Figure 4.8), the return result of this remote call is passed to the if condition

function. Secondly, we recursively apply the splitting algorithm to the body and

the else path of the statement. As mentioned before, we build a state machine for

each function that is split. This state machine encodes these conditional edges

so that the correct functions are invoked in the correct order during execution.

Chapter 4. Imperative Code to a Stateful Dataflow Graph 30

1 d e f c a l l _ i n _ c o n d (i t e m : I t e m) :

2 s t o c k = 1 0

3 i f i t e m . r e m o v e _ s t o c k (s t o c k) :

4 r e t u r n T r u e

5

6 r e t u r n F a l s e

call_in_cond_0

true

call_in_cond_cond_1

call_in_cond_2 call_in_cond_3

false

d e f c a l l _ i n _ c o n d _ 0 (i t e m : I t e m) :

s t o c k = 1 0

r e m o v e _ s t o c k _ a r g = s t o c k

r e t u r n i t e m , s t o c k ,

{ " _ t y p e " : " I n v o k e M e t h o d " ,

" a r g s " : [r e m o v e _ s t o c k _ a r g]

F .. }

d e f c a l l _ i n _ c o n d _ c o n d _ 1 (r e m o v e _ s t o c k _ r e t u r n) :

r e t u r n r e m o v e _ s t o c k _ r e t u r n

c a l l _ i n _ c o n d F __ c o n d _ 1 i s T r u e

d e f c a l l _ i n _ c o n d _ 2 () :

r e t u r n T r u e

c a l l _ i n _ c o n d F __ c o n d _ 1 i s F a l s e

d e f c a l l _ i n _ c o n d _ 3 () :

r e t u r n F a l s e

Figure 4.11: Example of splitting a function with a remote call in-

side the test expression of an if-statement. Left is the original func-

tion, right is after splitting.

When encountering (conditional) control flow, a function is always split regard-

less of a remote call or not. Since the splitting algorithm is applied recursively,

nested if-statements are supported.

$bodySplitFunction

$test $body

test body orelse

If

$orelse

��� ���

body

FunctionDef

$test

stmt1 stmt2 stmt1 stmt2

Return

true

false

SplitFunction $orelse

Statement�

transform

Figure 4.12: Visualization on how an I f node is split. Most child

nodes of the F u n c t i o n D e f are omitted.

Chapter 4. Imperative Code to a Stateful Dataflow Graph 31

4.3.3 Loop splits

Now that we introduced the splitting algorithm for sequential and conditional

control flow, we only miss support for looping control flow. In this section, we

adapt the splitting algorithm to support for and while loops. Python is a dynami-

cally typed language: types are determined at runtime. As the StateFlow splitting

algorithm operates on source code, it cannot rely on this dynamic typing. There-

fore, this section shows how StateFlow deals with data structures like lists by

looking at its syntax. Finally, we also show how we deal with b r e a k and c o n t i n u e

statements.

While loops The way we deal with while loops is very similar to that of if-

statements. In principle, a while-loop is an if-statement where its body block is

repeatedly executed until the test condition evaluates to false. Like if-statements,

a while statement can have a remote call inside the test expression or inside

the while body. An example ‘while’ split is shown in Figure 4.13. In this ex-

ample, the remote call is inside the while body. The ‘while’ statement is com-

1 d e f c a l l _ i n _ w h i l e (i t e m : I t e m) :

2 i = 5

3 w h i l e i > 0 :

4 i t e m . d e c r e a s e _ s t o c k (i)

5 i = i - 1

6

7 r e t u r n T r u e

call_in_while_0

true

call_in_while_cond_1

call_in_while_2 call_in_while_4

call_in_while_3

false

d e f c a l l _ i n _ w h i l e _ 0 (i t e m : I t e m) :

i = 5

r e t u r n i t e m , i , { " _ t y p e " : " W h i l e S p l i t " }

d e f c a l l _ i n _ w h i l e _ c o n d _ 1 (i) :

r e t u r n i > 0

e x e c u t e w h i l e c a l l _ i n _ w h i l e _ c o n d _ 1 i s T r u e

d e f c a l l _ i n _ w h i l e _ 2 (i , i t e m) :

r e m o v e _ s t o c k _ a r g = i

r e t u r n { " _ t y p e " : " I n v o k e M e t h o d " ,

" a r g s " : [r e m o v e _ s t o c k _ a r g]

F .. }

d e f c a l l _ i n _ w h i l e _ 3 (i) :

r e m o v e _ s t o c k F __ r e t u r n

i = i - 1

r e t u r n i

c a l l _ i n _ w h i l e _ c o n d _ 1 i s F a l s e

d e f c a l l _ i n _ w h i l e _ 4 (r e m o v e _ s t o c k _ r e t u r n) :

r e t u r n F a l s e

Figure 4.13: Example of splitting a function with a remote call in-

side the while statement. Left is the original function, right is after

splitting.

pletely removed from the code (line 3), instead the test expression is evaluated

in c a l l _ i n _ w h i l e _ c o n d _ 1 . If this function evaluates to true, we execute both

c a l l _ i n _ w h i l e _ 2 and c a l l _ i n _ w h i l e _ 3 are before we evaluate the test expres-

sion again. Finally, when the test expression evaluates to false c a l l _ i n _ w h i l e _ 4

is executed. Notice how we introduced an edge in the state machine introducing

a cycle in executing this complete function.

To support these while loops, we adapt the splitting algorithm to execute a split

when we encounter a while statement. Secondly, the while statement is removed

from the abstract syntax tree and replaced with new function definitions. This

Chapter 4. Imperative Code to a Stateful Dataflow Graph 32

transformation is shown in Figure 4.14. First, we build a new function definition

that evaluates the test expression of the while loop. This test expression can also

evaluate the result of a remote call. Secondly, the body of the while statement

is (recursively) split, and an edge is added to cycle back to the test expression

function. Note that, a while statement also includes an else clause (the o r e l s e

node). This else clause is executed after the while loop, only if the while loop has

not been terminated using a b r e a k statement. We recursively split the statements

inside this o r e l s e node as well. Finally, we build an edge that denotes the path

once the function with the test expression evaluates to false. This edge is linked

to the next function definition. The splitting algorithm follows the order of the

statements in the code; therefore, we will add this edge after generating the next

function definition.

$bodySplitFunction

$test $body

test body orelse

While

$orelse

��� ���

body

FunctionDef

$test

stmt1 stmt2 stmt1 stmt2

Return

true

orelse

SplitFunction $orelse

Statement�

transform

false

Figure 4.14: Visualization on how an W h i l e node is split. Most child

nodes of the F u n c t i o n D e f are omitted.

For loops Where if and while statements rely on a test expression, for loops rely

on iterators. Simply put, an iterator is a data structure that allows for traversal.

In a for loop, we repeatedly evaluate this iterable, and its result is stored in a

target variable (i.e., f o r t a r g e t i n i t e r a b l e). In each iteration, the for loop’s

body is executed until the evaluation of the iterable throws an S t o p I t e r a t i o n ex-

ception 5. When StateFlow splits such a function, we remove the actual line (i.e.,

f o r t a r g e t i n i t e r a b l e); however, we simulate the semantics of this construct

in the newly generated function definitions and the corresponding state machine.

5This is how Python handles iterators and does not necessarily generalize to other programming

languages.

Chapter 4. Imperative Code to a Stateful Dataflow Graph 33

We show an example of a ‘for split’ in Figure 4.15. In the first function defini-

tion of the split, c a l l _ i n _ f o r _ 0 , the iterator is ‘prepared’ by calling the i t e r (i t e r a b l e)

function. i t e r () is a built-in Python function that returns an iterator for a given

object. As mentioned before, this iterator can be iterated one element at a time.

This is similar to what the Python interpreter executes under the hood. c a l l _ i n _ f o r _ 1

is executed iteratively before the body of the for loop. In this method, the next

element in the iterable is retrieved and returned. Whenever the S t o p I t e r a t i o n

exception is thrown, the loop is exited. c a l l _ i n _ f o r _ 2 and c a l l _ i n _ f o r _ 3 rep-

resent the body of this for loop (line 4), whereas c a l l _ i n _ f o r _ 5 encapsulates the

statements after the for loop (line 5).

1 d e f c a l l _ i n _ f o r (i t e m s : L i s t [I t e m]) :

2 t o t a l _ p r i c e = 0

3 f o r i t e m i n i t e m s :

4 t o t a l _ p r i c e + = i t e m . g e t _ p r i c e ()

5

6 r e t u r n t o t a l _ p r i c e

call_in_for_0

loop entry

call_in_for_1

call_in_for_2 call_in_for_4

call_in_for_3

loop exit

d e f c a l l _ i n _ f o r _ 0 (i t e m s : L i s t [I t e m]) :

t o t a l _ p r i c e = 0

i t e r _ 1 = i t e r (i t e m s)

r e t u r n i t e m s , t o t a l _ p r i c e , i t e r _ 1 ,

{ " _ t y p e " : " F o r L o o p S p l i t " }

d e f c a l l _ i n _ f o r _ 1 (i t e r _ 1) :

t r y :

i t e m = n e x t (i t e r _ 1)

e x c e p t S t o p I t e r a t i o n :

r e t u r n { " _ t y p e " : " S t o p I t e r a t i o n " }

r e t u r n i t e m , i t e r _ 1

l o o p e n t r y , m e t a d a t a f o r g e t _ p r i c e c a l l

d e f c a l l _ i n _ f o r _ 2 (i t e m) :

r e t u r n { " _ t y p e " : " I n v o k e M e t h o d " ,

" a r g s " : []

F .. }

d e f c a l l _ i n _ f o r _ 3 (g e t _ p r i c e _ r e t u r n) :

t o t a l _ p r i c e + = g e t _ p r i c e _ r e t u r n

r e t u r n t o t a l _ p r i c e

l o o p e x i t

d e f c a l l _ i n _ f o r _ 4 (t o t a l _ p r i c e) :

r e t u r n t o t a l _ p r i c e

Figure 4.15: Example of splitting a function with a remote call in-

side the for statement. Left is the original function, right is after

splitting.

To support these loops, initial adoptions are similar to those of if and while

statements. We perform a split whenever we encounter the for construct in step 2

of the splitting algorithm (Figure 4.7). We show the transformation of the original

F o r node in the AST in Figure 4.16. We append the following statements to the

function definition before the for loop:

1 i t e r _ 1 = I T E R

2 r e t u r n D E C L S , i t e r _ 1 , { " _ t y p e " : " F o r L o o p S p l i t " }

where I T E R is the $ i t e r expression (see Figure 4.16) and D E C L S are all the dec-

larations in that function definition. Similar to a split of a remote call, we encode

Chapter 4. Imperative Code to a Stateful Dataflow Graph 34

metadata in the return variables (i.e. { " _ t y p e " : " F o r L o o p S p l i t " }). StateFlow

uses this metadata at runtime to determine the next action. We do not visualize

adding these statements in the transformation (Figure 4.16).

Depending on the amount of for loops in the original function definition, State-

Flow generates a unique name for each i t e r _ i variable. We encapsulate the

evaluation of the iterable in a separate function definition, similar to how if/while

statements have a different definition for the test expression. In the if/while sce-

nario, simply the test expression is returned, whereas in the for loop scenario,

we ‘perform the iteration’ in this function. Essentially, the following definition is

generated (F o r B l o c k function in Figure 4.16):

1 d e f f o r _ b l o c k (i t e r _ 1) :

2 t r y :

3 T A R G E T = n e x t (i t e r _ 1)

4 e x c e p t S t o p I t e r a t i o n :

5 r e t u r n { " _ t y p e " : " S t o p I t e r a t i o n " }

6

7 r e t u r n T A R G E T , i t e r _ 1

Where TARGET is the $ t a r g e t expression. For simplicity, we omit the corre-

sponding AST of this code in the transformation figure 4.16. The transformation

recursively splits the b o d y and o r e l s e clauses, and we create the proper edges.

Another edge is created from the last function definition from the body to the

function which performs the iteration. Finally, we create an edge for the loop

exit. The loop exits when either a b r e a k or S t o p I t e r a t i o n is encountered. We

connect this edge to the function definition after the for loop.

$target

$iter

$bodySplitFunction

$target $body

target body orelse

For

$orelse

��� ���

body

FunctionDef

stmt1 stmt2 stmt1 stmt2

loop
entry

orelse

SplitFunction $orelse

Statement�

transform

loop exit

$iter

iter

ForBlock

Figure 4.16: Visualization on how an I f node is split. Most child

nodes of the F u n c t i o n D e f are omitted.

Chapter 4. Imperative Code to a Stateful Dataflow Graph 35

Lists Python is a dynamically typed language, and types are only determined

at runtime. However, the splitting algorithm by StateFlow operates on source

code; therefore, variable types need to be statically derived. A developer can

generally use typed assignments to deal with container data structures (e.g., list,

arrays, tuples, dictionary). In this scenario, StateFlow does not care about the

right-hand side of the assignment. For example:

i t e m : I t e m = i t e m s [0 : 3] [0 : 2] . p o p ()

StateFlow determines the type of i t e m by looking at its type hint. It does not

require any knowledge on the data structure that i t e m was retrieved from. There

are also scenarios where the type (hint) is not directly available. For example, the

following expression (line 2):

1 i t e m s : C o m p l e x C o n t a i n e r [I t e m]

2 i t e m s . g e t _ f i r s t _ e l e m e n t () . r e m o v e _ s t o c k (1 0)

Determining the type of i t e m s . g e t _ f i r s t _ e l e m e n t () requires knowledge on

both the syntax and the semantics of the underlying data structure 6. We need

to know that the g e t _ f i r s t _ e l e m e n t () method returns a single element of type

I t e m . It is not trivial to derive this and might require external type checkers like

MyPy 7. Due to this complexity, StateFlow does not support these kinds of ex-

pressions out of the box. However, StateFlow does support type inference on list

slices as this is a common Python expression. In the following code:

i t e m s : L i s t [I t e m]

i t e m s [0] . r e m o v e _ s t o c k (1 0)

StateFlow recognizes the subscript on the variable with a list type and therefore

statically derives i t e m s [0] to be of type I t e m . Consequently, the function is split

because of the remote call r e m o v e _ s t o c k . Similarly, we derive the type of the

target variable in a for loop when dealing with lists. By deriving this type and

storing it in T y p e d D e c l s (see Figure 4.7), a remote call on this variable can be

recognized (see Figure 4.4).

i t e m s : L i s t [I t e m]

f o r t a r g e t i n i t e m s :

W e k n o w t a r g e t i s o f t y p e I t e m

In a non-list scenario, developers have to annotate the variable inside the body.

For example, when iterating over a dictionary:

6This assumes the underlying data structure does not use types; otherwise, the type can be

derived syntactically.
7A popular static type checker h t t p : / / m y p y - l a n g . o r g / .

http://mypy-lang.org/

Chapter 4. Imperative Code to a Stateful Dataflow Graph 36

d a t a i s t y p e D i c t [s t r , I t e m]

f o r k , v i n d a t a . i t e m s () :

v : I t e m = v

v is explicitly annotated with type I t e m . Therefore the splitting algorithm adds

this variable to T y p e d D e c l s , whichmight trigger a split in subsequent statements.

Continue or break Whenworkingwith loops in Python, one can use the c o n t i n u e

and b r e a k statements inside its body. The c o n t i n u e statement exits the current

body of the loop and returns to the t e s t or i t e r expression. Alternatively, the

b r e a k statement exits the current loop and continues executing the code after

the loop. Using a b r e a k statement also skips the e l s e clause of the loop.

StateFlow removes the while and for syntax and encodes its behavior in new

function definitions. As a consequence, using c o n t i n u e and b r e a k inside these new

function definitions results in invalid code. Therefore, these statements are also

removed and replaced with return statements. A c o n t i n u e statement is replaced

with r e t u r n { ' _ t y p e ' : ' C o n t i n u e ' } and b r e a k with r e t u r n { ' _ t y p e ' : ' B r e a k ' } .

Whenever StateFlow encounters such a return statement, either the test/iter func-

tion is executed or the first function after the while/for loop for dealing with re-

spectively c o n t i n u e and b r e a k .

4.3.4 State requests

So far, we have only seen interaction with remote entities in the form of calls.

However, in Python, one can also access or update attributes of another object.

For example:

i t e m o f t y p e I t e m

i t e m . p r i c e # A t t r i b u t e a c c e s s

i t e m . s t o c k = 1 0 # A t t r i b u t e u p d a t e

We support attribute access by syntactically inferring these expressions in the

statements of the original function definitions. Once inferred, we append some

metadata to the newly generated function definitions. This metadata is not re-

flected in the code of corresponding definition. During execution, before this

function is invoked, the accessed attributes of this remote entity are retrieved.

StateFlow passes around a lightweight data structure for remote entities that

stores these retrieved attribute values. This way, the original syntax in the form

o b j . a t t r i b u t e does not need to be transformed. We present more details on ex-

ecution and internal representations in Chapter 5.

In StateFlow we do not support attribute updates of remote entities; however,

adding this is straightforward. One can set an attribute via an explicit method call

o b j . F __ s e t a t t r F __ (k e y , v a l u e) . Therefore, attribute updates can be desugared to

this explicit call form and then we treat it as a remote call.

Chapter 4. Imperative Code to a Stateful Dataflow Graph 37

4.3.5 State machine

The splitting algorithm transforms a single function definition into multiple. A

state machine encodes how these new function definitions interact with each

other. This state machine can be seen as a call graph, deciding on the order

of function evaluation. Some examples of this state machine have been given in

Figure 4.10, 4.11, 4.13 and 4.15. Essentially, this state machine simulates the

semantics of the original (i.e., before splitting) function definition.

Edge type

n e x t

t r u e

f a l s e

l o o p e n t r y

l o o p e x i t

o r e l s e

r e m o t e c a l l

In this state machine, the states represent the different

function definitions. There are different types of transitions be-

tween states (i.e., edges). The table on the right shows all these

transition types. The most basic transition is n e x t , and regard-

less of the outcome the current state moves to the next state.

This transition mimics sequential control flow in the original

function definitions. The t r u e and f a l s e edges encapsulate

conditional transitions. Depending on the binary outcome of

the test expression function, either the t r u e or f a l s e transi-

tion is taken. Similarly, l o o p e n t r y and l o o p e x i t transitions

encapsulate respectively executing the body of the loop or ex-

iting the loop. The o r e l s e transition represents the e l s e clause of the if, for and

while statements. Finally, the r e m o t e c a l l transition encodes that in between

the two states it connects, a remote call to another stateful entity is executed.

4.3.6 Execution graph

The state machine encodes how the split functions transition such that we sim-

ulate the original function definition. We extend the state machine with specific

instructions for execution and label this the execution graph. This graph stores

local variable definitions, return variables, and metadata on the invocations. This

graph instructs the execution model to invoke the correct functions at runtime

(see Chapter 5). Note that functions that are not split, do not have an execution

graph as their execution is straightforward. This section elaborates on all the

different node types and how StateFlow traverses this graph.

z = ?
p = ? Output

x = ?
y = ?

Input

INVOKE_FUN

Invocation nodes The most common node in this graph is a

I N V O K E _ F U N . This node instructs the execution model to invoke

a function and has input and output variables. The node’s input

resembles the arguments of the function it ought to invoke. The

output variables are the declarations of that function and po-

tentially metadata (i.e. { " _ t y p e " : " F o r L o o p S p l i t } . These are

returned upon function exit as shown in Figure 4.5. The meta-

data variable is omitted from the figure on the right. After func-

tion invocation, the output variables are stored inside the node,

and the node is marked as finished. The next node in the graph

is selected based on the metadata in the function output variables. The traversal

of this graph is dynamic since this metadata is returned during runtime and might

be different for each invocation. Upon reaching a I N V O K E _ F U N node, we retrieve

input variables from previously visited nodes. We traverse the graph backward,

and match the names of the latest output variable to the input variable names of

Chapter 4. Imperative Code to a Stateful Dataflow Graph 38

the current node. These output variables correspond to the latest declaration of

that variable. The figure below shows an example traversal.

z = "test"
p = 2 O

x = 3
y = 10

INVOKE_FUN
split_0

p = 4 O

p = 2
x = 3

I

INVOKE_FUN
split_1

x = ?
z = ? O

p = 4
z = "test"

I

INVOKE_FUN
split_2

?p, ?z?z

current
node

I

It shows the function s p l i t which has been split into three definitions. After in-

voking s p l i t _ 0 and s p l i t _ 1 , s p l i t _ 2 needs to be invoked. This function has

the variables p and z as input. The execution graph is traversed backward to find

the latest versions of output variables with the same name. Afterward, once the

function is invoked, the output variables are set, the node is marked as finished,

and the next node in the graph is selected. We select the next node by travers-

ing the outgoing edge of the current node. This backward traversal approach

is somewhat naive and impacts the performance for large execution graphs.The

evaluation Chapter 6 discusses the impact of this approach.

ret0=?
ret1=? Output

RETURN

arg0=?
arg1=? Output

START
Start and return nodes The first node of each execution

graph is always a S T A R T node. This node does not invoke or ex-

ecute a function and only stores the initial function arguments

as output variables. These function arguments match the pa-

rameters defined in the original (i.e., before splitting) function

definition. By storing it in the output of this start node, child

nodes can access it by traversing the graph backward. Exe-

cution of the graph always ends whenever we reach a R E T U R N

node. As the original function definition might have multiple re-

turns, so does the execution graph. This node stores the return

variables, which are passed back to the client.

arg0=?
arg1=?

Input

falsetrue

INVOKE_COND

Conditional nodes The I N V O K E _ C O N D node encodes the func-

tion definition storing the test expression for an if statement.

Similar to invocation nodes, it evaluates the function based on

input variables. However, instead of having multiple return

variables, this function is supposed to return either true or false.

The execution graph traverses the corresponding edge and se-

lects the next node. Only the previously executed nodes are

visited whenever a child node needs to find the correct input

variable. Therefore an execution graph might have unvisited

subgraphs.

Loop nodes The I N V O K E _ L O O P node encodes the function definition which is the

‘starting point’ of a loop. For a while statement this is the function with the test

expression, whereas for a for statement this is the function traversing the iterator.

Chapter 4. Imperative Code to a Stateful Dataflow Graph 39

The correct edge is traversed based on the output of the function. Different from

the nodes seen so far, this node is revisited and different output edges might be

traversed. For example, the loop entry path is traversed x times before the loop

is exited.

arg0=?
arg1=?

Input

loop
exit

loop
entry orelse

x=?
y=?

ScopeINVOKE_LOOP

As loop nodes introduces cycles in the execution graph, back-

wards traversal becomes less trivial as each iteration might over-

ride variables of the previous execution path. Therefore the

I N V O K E _ L O O P stores a list of all latest output variables defined

in the body of the loop (i.e. the nodes in the subgraph of l o o p

e n t r y). In essence this list resembles the scope of this loop.

Whenever a subsequent node outside of the loop requires a vari-

able defined inside the loop it can be found in this ‘scope’ list.

Therefore all nodes inside the loop body do not need to be tra-

versed.

ret0=?
ret1=?

arg0=?
arg1=?

Input

INVOKE_REMOTE

Output

Remote call nodes We encode a call to a remote stateful

entity in the I N V O K E _ R E M O T E node. This node is similar to

the I N V O K E _ F U N node. The only difference is that a function

of a remote entity is invoked. In practice, this is the moment

we exit the current operator and move to the operator stor-

ing the ‘remote’ entity. After invoking the function on this

entity, we move back to the original operator to continue

traversing the execution graph. Properties like the key of

the remote entity and its function arguments are dynamically determined by the

node executed before I N V O K E _ R E M O T E . This metadata is encoded in a dictionary

structure as shown in Figure 4.5.

name0=?
Attr

val0=? Vals

STATE_REQ

State requests The final node type is the S T A T E _ R E Q U E S T .

This node requests an attribute of a remote entity. Similar to

I N V O K E _ R E M O T E , it triggers a switch between dataflow opera-

tors to request the attributes. This node does not have output

variables; instead, it sets the retrieved values for the requested

attributes in the reference object of the remote entity. This way,

attribute access like i t e m . p r i c e is made possible.

Graph visualization We hide the execution of the splitting algorithm and the

creation of the state machine and execution graph for the developer. StateFlow

offers utility methods to generate visualizations of the state machine and execu-

tion graph to give the developer insights and provide transparency. We print these

visualizations in the well-known DOT format 8. The DOT format can be visualized

in many (online) tools. These utility methods can be used during execution to

debug function invocations.

8The DOT format is graph description language h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / D O T _

(g r a p h _ d e s c r i p t i o n _ l a n g u a g e)

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)

Chapter 4. Imperative Code to a Stateful Dataflow Graph 40

4.3.7 Nested split functions

An execution graph executes all the functions for a function declaration that has

been split. Until now, we assumed that remote calls in such execution graphs

are not split. To support nested ‘split’ functions, we merge execution graphs.

By merging the execution graphs, execution can be done similarly to a single

execution graph.

After generating the execution graphs of all split functions, we iterate over all

remote call nodes and identify if the function that this node is supposed to invoke

is also split. If that is the case, we retrieve the execution graph of this remote call

and merge the two. For example, consider the following two execution graphs

which we need to merge as we also split the remote call r a n d o m _ o t h e r _ m e t h o d ()

inside the method r a n d o m _ m e t h o d () .

INVOKE_COND

RETURN

INVOKE_REMOTE

START

INVOKE_FUN

INVOKE_FUN

INVOKE_FUN RETURN

INVOKE_REMOTEINVOKE_FUN INVOKE_FUN RETURNSTART

random_method()

random_other_method()

invokes random_other_method()

We merge these two graphs by removing the I N V O K E _ R E M O T E node and connect

its incoming edge to the S T A R T node of the other execution graph. All R E T U R N

nodes of the other execution graph are connected with the node after the removed

I N V O K E _ R E M O T E node. The figure below shows this merge:

INVOKE_COND

RETURN

START

INVOKE_FUN

INVOKE_FUN

INVOKE_FUN RETURN

INVOKE_REMOTEINVOKE_FUN INVOKE_FUN RETURNSTART

random_method()

As each execution graph simulates the scope of a function, these merged execu-

tion graphs should not have access to each other scope. Therefore, each execution

graph gets a unique id. Whenever a node requires a particular input variable, it

Chapter 4. Imperative Code to a Stateful Dataflow Graph 41

can safely traverse the merged execution graph and skip the nodes with a differ-

ent id. R E T U R N nodes are exempted from this as they store return variables rather

than variables in the scope of a function.

4.3.8 Splitting applied to the running example

In Section 3.5 we show the example of two stateful entities U s e r and I t e m . In

these entities, only the method d e f a d d _ t o _ b a s k e t is a candidate for the splitting

algorithm. All other methods can be invoked without requiring a remote call.

The state machine and execution graph for this function after splitting is show in

Figure 4.17.

next

def add_to_basket_1(self, iter_1):
 try:
 item = next(iter_1)
 except StopIteration:
 return {"_type": StopIteration}

 return item, iter_1

def add_to_basket_0(self, items: List[Item]):
 total_price: int = 0

 iter_1 = iter(items)
 return (total_price,
 items,
 iter_1,
 {'_type': 'ForLoopSplit'})

def add_to_basket_2(self, item):
 return {'_type': 'InvokeMethod',
 'class_name': 'Item'
 'method': 'enough_stock',
 'key': item._get_key(),
 'args': []}

def add_to_basket_cond_5(self, total_price):
 return self.balance < total_price

def add_to_basket_cond_3(self, enough_stock_return):
 return self.balance < total_price

def add_to_basket_4(self, total_price, item):
 total_price += item.price
 return (total_price, {'_type': 'NormalSplit'})

def add_to_basket_6(self):
 return False

loop entryloop exit

remote call

def add_to_basket_7(self, items):
 self.items = items
 return True

true false

next

true false

next next
remote call
result

remote call

START

INVOKE_FUN

INVOKE_LOOP

next

next

INVOKE_LOOPINVOKE_COND

loop entryloop exit

INVOKE_REMOTE

INVOKE_COND

INVOKE_FUN

false
true

next

INVOKE_FUN INVOKE_FUN

true false

RETURN RETURN

Figure 4.17: The state machine (left) and execution graph (right)

after the d e f a d d _ t o _ b a s k e t method has been split in the U s e r

stateful entity.

4.4 Intermediate Representation

The StateFlow compiler pipeline results in an intermediate representation for the

defined and annotated classes. This IR captures all Python classes and translates

to a stateful dataflow graph. In summary, to get to this point, developers have

to write the following code:

Chapter 4. Imperative Code to a Stateful Dataflow Graph 42

f r o m s t a t e F fl o w i m p o r t s t a t e F fl o w , D a t a F fl o w

@ s t a t e F fl o w

c l a s s U s e r :

F F ...

@ s t a t e F fl o w

c l a s s I t e m :

F F ...

F fl o w : D a t a F fl o w = s t a t e F fl o w . i n i t ()

Developers write functionality in the form of (annotated) classes. These classes

are recompiled into a stateful dataflow graphwith s t a t e F fl o w . i n i t () . The D a t a F fl o w

object stores (re)compiled classes, execution graphs, and metadata for each an-

notated Python class. Finally, this IR is the starting point to either build the client-

side of the application or to pick a target runtime system to which we compile the

IR. We extensively discuss both options Chapter 5.

4.5 Limitations

Although the compiler pipeline of StateFlow opens up a set of possibilities, it also

imposes some limitations for the developer using it. In this section, we identify

several of these limitations and propose workarounds if available.

Python constructs The splitting algorithm of StateFlow does not cover all Python

constructs. For example, we do not handle a try/catch construct. StateFlow cov-

ers 72% of all statement constructs, and 74% of the expression constructs 9 in its

transformation and analysis phases. Moreover, some nested constructs, like re-

mote call nesting or multiple remote calls in a single statement, are not supported.

Covering all constructs is mostly an implementation effort, and the current State-

Flow codebase already spans around 10000 lines of code. We believe that most of

these uncovered constructs can easily be implemented using the ideas presented

in this chapter. For example, a try/catch construct can easily be split into mul-

tiple function definitions and have a distinct node type in the execution graph.

Alternatively, desugar rules can be applied to transform the code into a form that

is supported for the splitting algorithm. Finally, we argue that the constructs

currently supported cover the most important programming principles.

Serializability StateFlow requires all instance attributes to be serializable. When-

ever we split a function, its local declarations also need to be serializable. For

example, storing a database connection or local pipe inside a variable is not sup-

ported. In general, not complying with this results in unexpected behavior or

runtime errors. In distributed programming, serialization is often a hard require-

ment as code or data is sent around the network.

9Based on the official Python grammar h t t p s : / / d o c s . p y t h o n . o r g / 3 / l i b r a r y / a s t . h t m l

https://docs.python.org/3/library/ast.html

Chapter 4. Imperative Code to a Stateful Dataflow Graph 43

Remote entity instantiation In StateFlow, we always assume that references

to remote entities are passed around as variables and not instantiated inside

a class method. Consequently, the developer always has to instantiate an en-

tity on the client-side before it can be passed as an argument to a function. In

Python, an object instantiation can be made explicit by a method call. For ex-

ample, I t e m . F __ i n i t F __ (i t e m , i n i t _ a r g s) initializes the variable i t e m . StateFlow

may support object initialization by identifying it, desugaring it into its explicit

form, and treating it as a call to a remote entity.

Immutablity Whenever we split a function, we recommend treating state (i.e.,

instance attributes) as immutable. For example, consider the following stateful

entity and its state:

@ d a t a c l a s s

c l a s s R o o m :

r e s e r v e d : b o o l = F a l s e

p r i c e : i n t = 1 0

@ s t a t e F fl o w

c l a s s H o t e l :

d e f F __ i n i t F __ (s e l f) :

s e l f . r o o m : R o o m = R o o m ()

d e f r e s e r v e (s e l f , u s e r : U s e r) :

t h e _ r o o m : R o o m = s e l f . r o o m

u s e r . p a y (t h e _ r o o m . p r i c e)

t h e _ r o o m . r e s e r v e d = T r u e

Notice that R o o m is not a stateful entity and is simply a container class storing

some data. As the reserve method has a remote call, it is split and results in the

following two methods:

d e f r e s e r v e _ 0 (s e l f , u s e r : U s e r) :

t h e _ r o o m : R o o m = s e l f . r o o m

u s e r . p a y (t h e _ r o o m . p r i c e)

r e t u r n t h e _ r o o m , { " _ t y p e " : " I n v o k e M e t h o d " , F F ... }

d e f r e s e r v e _ 1 (s e l f , t h e _ r o o m : R o o m , u s e r _ p a y _ r e t u r n) :

u s e r _ p a y _ r e t u r n

t h e _ r o o m . r e s e r v e d = T r u e

Due to serialization, the ‘link’ between t h e _ r o o m and s e l f . r o o m is broken. In

r e s e r v e _ 0 , these variables share the same memory address. However, after that

method is exited and both variables are separately serialized their shared mem-

ory address is gone. Updates to t h e _ r o o m are not reflected in s e l f . r o o m and the

other way around. Treating state as immutable and explicitly updating it pre-

vents this issue. In this example, appending the statement s e l f . r o o m = t h e _ r o o m

Chapter 4. Imperative Code to a Stateful Dataflow Graph 44

in r e s e r v e _ 1 resolves the issue. If R o o m is an remote entity, this would not be a

problem as updates to its state are explicit.

Dynamic code Python code is rather dynamic. For example, one can add a

method or attribute after the class definition. In general, Python allows for easy

manipulation of class or function definitions at runtime. StateFlow operates on

(static) code, and therefore these kinds of dynamic operations are not supported.

Polymorphism StateFlow does not support polymorphism. It assumes that classes

do not inherit functionality from a parent class. To support this, StateFlow needs

to extend its analysis and function splitting algorithm to identify parent classes

and (recursively) split their functions if necessary.

45

Chapter 5

Executing Stateful Dataflow

Graphs

In Chapter 4, we introduced a compilation pipeline to transform object-oriented

Python code to a stateful dataflow graph. In this chapter, we propose methods to

execute these dataflow graphs in line with the introduction given in Figure 3.2.

First, we explain how StateFlow translates its intermediate representation to dif-

ferent runtime systems in Section 5.1 and 5.2. In Section 5.3, we explain how

StateFlow utilizes the same IR to provide a client-side interface. This interface

allows easy interaction with the deployed application. We show how developers

can unit-test their classes in a local execution environment in Section 5.4. Sec-

tion 5.5 highlights the tools and configuration files StateFlow offers to ease the

deployment of end-to-end cloud applications. We end this chapter with a summary

of all implemented client interfaces and runtime systems in Section 5.6.

5.1 Execution in StateFlow

StateFlow follows an event-driven approach for execution: events traverse the

stateful dataflow graph and trigger method execution. To port and execute the

stateful dataflow graph on top of the runtime system, we propose a set of building

blocks. These building blocks allow loose coupling with the underlying runtime

systems. StateFlow encapsulates most of the runtime functionality in these build-

ing blocks, including event execution, serialization, and routing. It has several

advantages to ‘lift’ functionality to StateFlow. First, integrations with runtimes

require little code, and adding new runtimes is trivial. Second, we can add new

functionality to these building blocks, such as monitoring and logging, without

changing any integration code. Finally, as StateFlow handles the actual event

execution, runtime behavior is consistent across all runtimes.

Execution in StateFlow operates at the event level: building blocks solely per-

form transformations on events and possibly state. However, StateFlow does not

take charge of runtime features such as (auto)scaling, event streaming, fault-

tolerance, consistency and state management. We rely on the underlying run-

time for these features. Each runtime offers different guarantees and features

with certain trade-offs.

As mentioned in Section 3.2, the stateful dataflow graph encapsulates the de-

fined Python classes in operators (i.e., nodes or vertices in a graph). These op-

erators do not perform any computation without being triggered by an incoming

event. In OOP terms, an object does not perform computation before its method is

Chapter 5. Executing Stateful Dataflow Graphs 46

explicitly called. We expect these events to be sent from a client via event stream-

ing platforms such as Apache Kafka. Below, we summarize the general procedure

for events entering the stateful dataflow graph. Note, this is the procedure for

invoking stateful entities: the most common type of event. For each incoming

event:

1. Route event to the correct operator.

2. Retrieve the state for the given key.

3. Construct the stateful entity and execute the method.

4. Store the (updated) state.

5. For the resulting event, route to the next stateful entity or send back to the

client.

Essentially, for each stateful dataflow graph, we dynamically build an application

encapsulating these steps on the runtimes. For example, in a streaming system

like Apache Flink, we implement step 1 and 2 using m a p () and k e y B y () opera-

tions. Then for each stateful entity in the IR, we build a separate Flink p r o c e s s ()

operator to cover step 3 and 4. Finally, a m a p () operation covers step 5.

Depending on the runtime, steps are skipped or combined. For example, in a

FaaS solution like AWS Lambda, we do not necessarily have the notion of ‘opera-

tors’, and therefore we skip step 1 and query a database directly. The rest of this

section elaborates on the constructs and building blocks in StateFlow.

5.1.1 Constructs

Before we dive into the building blocks of StateFlow, we elaborate on some of the

constructs and techniques it uses. Most of these constructs are common in the

world of distributed systems and programming.

id
type
entity_address
payload

EVENT
Events Events are the core of event-driven systems such as

dataflow systems. In StateFlow, we use events primarily to in-

voke methods of stateful entities. In short, whenever a client

invokes the method of a stateful entity, we generate an event

encoding this request. This event is sent to a target (runtime)

system to perform the actual invocation of that method. The

return values of a method invocation are sent back to the client

in the form of an event. An event has a set of properties, as shown in the figure on

the right. An event id is a unique identifier and allows matching event requests

to its responses. The entity address encapsulates the ‘virtual location’ of a state-

ful entity. We discuss this in more detail in the next paragraph. The event type

describe the purpose of each event, for example, ‘invoke a method’.

Besides method invocation, an event might have a different purpose, such as

creating a new entity. We present a complete summary of all event types in Ta-

ble 5.1. Most of the types are self-explanatory. We use the I n v o k e M e t h o d S p l i t

type to indicate the invocation of a method that StateFlow has split. Finally, the

event encodes a payload which encodes all additional (meta)data. Most impor-

tantly, it encodes the call arguments and return variables when invoking a method

and it stores the execution graph of a function that is split.

Chapter 5. Executing Stateful Dataflow Graphs 47

Table 5.1: All types of events.

Type

Request Reply

I n i t E n t i t y S u c c e s f u l C r e a t e E n t i t y

I n v o k e M e t h o d S u c c e s f u l I n v o c a t i o n

F i n d E n t i t y F a i l e d I n v o c a t i o n

G e t S t a t e F o u n d E n t i t y

S e t S t a t e E n t i t y N o t F o u n d

I n v o k e M e t h o d S p l i t S u c c e s s f u l S t a t e R e q u e s t

P i n g P o n g

The invocation of a non-split function is relatively simple: an event enters the

runtime system, performs some computation in an operator, and then leaves the

system again. However, for a split function, we need to invoke multiple functions

at different operators. All this information is encoded in the execution graph

and embedded in the corresponding event. As such an event flows through the

runtime system, StateFlow traverses the enclosed execution graph, determining

where to go and what function to invoke.

key
ADDRESS

namespace
type

TYPE

Entity address To route events to the correct entity, we use

the concept of an entity address. This concept is inspired by

the function address used in Flink Statefun 1. In a local pro-

gramming context, we keep references to objects (i.e., state-

ful entities) in the form of variables. In a distributed setting,

the runtime location of an entity, or its state, is often not ex-

posed to the user. Instead, we maintain a reference in the

form of an entity address. In this address, we store the (static) type of the en-

tity. This type corresponds to the class name and its namespace. Currently,

all class types are in the same namespace g l o b a l s . However, we envision

that developers should be able to set this namespace via the class annotation

(i.e. @ s t a t e F fl o w (n a m e s p a c e = " w e b s h o p ") . A namespace allows duplication of class

names. The address also encodes the key of the stateful entity. We derive an entity

key by calling its d e f F __ k e y F __ () method. Using this ‘entity address’ scopes the

corresponding events to that specific entity. The concept of virtually addressable

entities is not new and has been proposed before by Hellerstein et al. [2019b].

State In StateFlow we define the state of an entity as a set of keys/values corre-

sponding to the attributes of that entity. In the object-oriented context, this cor-

responds to the instance attributes of an object. We operate on this state through

method invocations. In other words, given a method invocation event and the

state of an entity, we can compute the result of this method. We can do this com-

putation anywhere as long as the corresponding class definition is available. This

approach simulates invoking a method on an object in a local context. Depending

on the runtime system, the state is stored in a database or the stateful operators

of a dataflow system.

1
h t t p s : / / c i . a p a c h e . o r g / p r o j e c t s / f l i n k / f l i n k - s t a t e f u n - d o c s - r e l e a s e - 2 . 2 /

c o n c e p t s / l o g i c a l . h t m l # f u n c t i o n - a d d r e s s

https://ci.apache.org/projects/flink/flink-statefun-docs-release-2.2/concepts/logical.html#function-address
https://ci.apache.org/projects/flink/flink-statefun-docs-release-2.2/concepts/logical.html#function-address

Chapter 5. Executing Stateful Dataflow Graphs 48

Serialization As we are dealing with a distributed setting, we need to send and

receive events over the network. Network communication requires serialization

and deserialization techniques. In StateFlow, we currently support J S O N , p i c k l e

and P r o t o b u f serialization. Moreover, we allow developers to add other seri-

alization frameworks. For that, one only has to implement a serialization and

deserialization method of the E v e n t type.

5.1.2 Building blocks

Now that we established a set of constructs used in StateFlow, we introduce build-

ing blocks. These building blocks allow easy integration with different target run-

time systems. As an advantage, we can add or modify the functionality of these

building blocks without touching any of the code related to the runtime integra-

tion. StateFlow offers two main building blocks: routers and operators.

Router

In Event

Out Event

Routers We propose two types of routers: an ingress router

and an egress router. These routers analyze the (incoming)

events and output information on the route they should take.

The ingress router processes incoming events, whereas the

egress processes the outgoing events. The routers also (de)se-

rializes the events as we assume that events enter and leave

the runtime system in a serialized form. In a dataflow graph

context, the ingress router selects which edge the event has to

traverse or which (logical) partition it belongs to. The router

uses both the event type and the enclosed entity address to determine this. For

example, if we want to invoke a method on the entity I t e m with k e y = j e a n s , then

the ingress router instructs us to traverse the edge towards the I t e m (dataflow)

operator. In addition, it forwards the event to the the logical partition which

stores the key j e a n s . The egress router determines if we need to send the return

event to the client or we flow the event back into the system. The latter might be

necessary when invoking a split function. The routers generalize its output such

that we can also use this route information in a non-dataflow system.

Note that the routers do not modify the incoming event. Moreover, they are

completely stateless which means that it keeps no persistent state; only the in-

coming event is required to execute the routing operation. We can easily paral-

lelize stateless operators by distributing the incoming events. Finally, routers are

completely static regardless of the intermediate representation.

For non-split functions, routers primarily decide on the route based on the

entity address field since it only targets one entity. However, in a split function,

multiple entities are involved. In that scenario, routers consider the current node

in the execution graph and infer which entity it concerns. Similarly, the egress

router analyzes the execution graph to decide when to go back to the client (i.e.,

the current node has a R e t u r n type) or not.

Operators The compiler pipeline, discussed in Chapter 4, results in (dataflow)

operator for each annotated Python class. This operator stores the compiled class,

a class description, and, if necessary, corresponding execution graphs for each

Chapter 5. Executing Stateful Dataflow Graphs 49

method. We extend this operator to be able to execute events. We show the

general idea behind execution in Figure 5.1.

In Event

In State

Operator

Method #1 Out Event

Out State

Method #2

Method #3

���

Figure 5.1: Visualization of the operator building block.

A StateFlow operator executes a class method using the current state and an

incoming event. It uses the state to reconstruct the stateful entity (i.e., object),

and the event encodes the correct method and call arguments. The operator

outputs the updated state and the outgoing event. In this model, storage of state

and computation are decoupled. The underlying runtime manages the state on

behalf of the entity. This way, execution is stateless, and we can perform the

computation anywhere as long as the event and the state are available. Industry

solutions like Flink Statefun and CloudState also adopt this model 2.

StateFlow assumes all incoming events are scoped to the correct operator (i.e.,

the U s e r or I t e m operator). The ingress router plays a role in scoping events.

Moreover, we assume that the incoming state belongs to the specified entity. In

other words, if we have an event with an entity address pointing towards an I t e m

with the key j e a n s , then we retrieved the state of that entity. How we retrieve

this state depends on the underlying runtime. In the case of a dataflow system,

we assume this state is available in the scope of the operator, whereas in FaaS

context, we might need to retrieve it from an external database.

Figure 3 shows how StateFlow invokes a method using the incoming event

and the state. Given the input event and state, StateFlow constructs the entity

and invokes the method. In object-oriented terms, we create an empty object, set

the attributes, and then invoke the event’s specified method. Notice that we do

not initialize the object; otherwise, the d e f F __ i n i t F __ (F ..) method is called, and

we do not want that. Based on the output of the method, we build an outgoing

event. For example, if the method throws an error, we return F a i l e d I n v o c a t i o n .

Finally, we extract the updated state from the created object. In this model, the

lifetime of an entity spans only its method invocation.

Whenever StateFlow splits a function, it also builds an execution graph in its

compiler pipeline. We copy the execution graph into the event’s payloadwhenever

a user invokes such a split function. Rather than invoking a single method, we

traverse the execution graph and execute the corresponding methods. If the next

node in the graph instructs to invoke a method part of another stateful entity,

we leave the current operator. On the other hand, if the next node in the graph

2Flink Statefun: h t t p s : / / f l i n k . a p a c h e . o r g / s t a t e f u l - f u n c t i o n s . h t m l and CloudState:

h t t p s : / / c l o u d s t a t e . i o /

https://flink.apache.org/stateful-functions.html
https://cloudstate.io/

Chapter 5. Executing Stateful Dataflow Graphs 50

t r y :

C o n s t r u c t t h e e n t i t y .

c o n s t r u c t e d _ e n t i t y = s e l f . c l s . F __ n e w F __ (s e l f . c l s)

S e t s t a t e o f e n t i t y .

f o r k i n s e l f . c l a s s _ d e s c . s t a t e _ d e s c . g e t _ k e y s () :

s e t a t t r (c o n s t r u c t e d _ e n t i t y , k , s t a t e [k])

C a l l t h e m e t h o d .

m e t h o d _ t o _ c a l l = g e t a t t r (i n s t a n c e , m e t h o d _ n a m e)

m e t h o d _ r e s u l t = m e t h o d _ t o _ c a l l (F ** a r g u m e n t s . g e t ())

G e t u p d a t e d s t a t e .

u p d a t e d _ s t a t e = { }

f o r k i n s e l f . c l a s s _ d e s c . s t a t e _ d e s c . g e t _ k e y s () :

u p d a t e d _ s t a t e [k] = g e t a t t r (i n s t a n c e , k)

R e t u r n t h e r e s u l t s .

r e t u r n I n v o c a t i o n R e s u l t (

S t a t e (u p d a t e d _ s t a t e) , m e t h o d _ r e s u l t

)

e x c e p t E x c e p t i o n a s e :

r e t u r n F a i l e d I n v o c a t i o n (f " E x c e p t i o n d u r i n g i n v o c a t i o n : { e } . ")

Listing 3: Code used to invoke a method given an event and the

state of an entity.

instructs to invoke a method from the same stateful entity, we reuse the object

constructed for the first invocation.

Examples In Figure 5.2, we show how the building blocks are supposed to work

together to manage the execution of a non-split function. The incoming event,

Route

1

IngressRouterIn Event

In Event

2

Runtime

In State

User operator

��init�� Out State

set_balance

add_to_basket
In Event Out Event

3 4

EgressRouter

5

Route

Out Event

time

Figure 5.2: Execution of an event for a non-split function invoca-

tion. This figure shows how the building blocks work together.

which encodes the involved entity, method to invoke and call arguments, enters

the runtime system and is first forwarded to the ingress router 1 . The ingress

router derives the ’route’ of the event and encapsulates which exact stateful entity

is involved 2 . Depending on the runtime, this allows deciding ‘where to go’ or

’what to request from a database’. For example, this route enables moving the

event to the partition, storing the stateful entity in a dataflow system. Given the

Chapter 5. Executing Stateful Dataflow Graphs 51

route, the correct state is retrieved from the runtime, and in combination with the

incoming event, the operator building block is invoked 3 . The operator block

executes the correct method and returns the updated state plus the outgoing

event 4 . We also pass the state back to the runtime to store it there. Finally, the

egress router analyzes the outgoing event and determines a new route 5 . This

route encodes if the event is sent back to the client or passed to the next operator.

Similarly, we show in Figure 5.3 how building blocks work together to execute

a split function. The event triggering such an invocation encodes the execution

graph, which is traversed as the event flows through the system. First, the event

Route

1

IngressRouterIn Event

In Event

2

Runtime

In State

User operator

��init�� Out State

set_balance

add_to_basket
In Event Out Event

3 4

EgressRouter

5

Route

Out Event

IngressRouter

START INVOKE_FUN INVOKE_REMOTE RETURN

START INVOKE_FUN INVOKE_REMOTE RETURN

Route

In Event

6Item operator

��init��

set_stock

enough_stock

Runtime

In State Out State

Out Event

78

START INVOKE_FUN INVOKE_REMOTE RETURN

EgressRouterRoute

Out Event

9

Figure 5.3: Execution of an event for a split function invocation.

This figure shows how the building blocks work together.

with the execution graph enters the system 1 . The S T A R T node in this graph is

traversed on the client-side already and stores call arguments of the split func-

tion. In the ingress router block, StateFlow identifies the route of the event 2 .

It checks the current node in the execution graph and extracts the involved state-

ful entity. StateFlow retrieves the corresponding state from the runtime and,

together with the incoming event, executes the operator building block 3 . The

operator returns the resulting event and updates the resulting state 4 . Besides

executing the correct code, the operator also traverses the execution graph. The

egress router identifies that the execution graph has not been traversed entirely

and forwards the event back into the system to the ingress router 5 . Again,

the ingress router identifies the current stateful entity in the execution graph 6 .

Like before, StateFlow passes the event and state to the operator 7 , resulting

in an outgoing event and an updated state 8 . The outgoing event is sent to an

egress router, which identifies that the current node is a R E T U R N and sends the

event back to the client 9 .

5.2 Runtimes

In this section, we elaborate on the different runtime systems StateFlow sup-

ports. We use the previously defined building blocks and constructs to propose

Chapter 5. Executing Stateful Dataflow Graphs 52

architectures for several runtime systems. StateFlow generates runtime imple-

mentations dynamically given the compiled stateful dataflow graph. Due to these

existing blocks, the code footprints of these integrations are tiny, and supporting

new runtimes is a trivial task. We make a distinction between two types of sys-

tems: dataflow systems (Subsection 5.2.1) and (Stateful) Function-as-a-Service

(Subsection 5.2.2).

From a developer’s perspective, switching between runtimes only requires

importing a different runtime integration. Find an example in Figure 5.4:

f r o m r u n n i n g _ e x a m p l e i m p o r t s t a t e F fl o w , U s e r , I t e m

f r o m s t a t e F fl o w . r u n t i m e i m p o r t F Fl i n k R u n t i m e , B e a m R u n t i m e

I n i t i a l i z e s t a t e F fl o w

F fl o w : D a t a F fl o w = s t a t e F fl o w . i n i t ()

P i c k a r u n t i m e .

r u n t i m e : F Fl i n k R u n t i m e = F Fl i n k R u n t i m e (F fl o w)

O R , s w i t c h t o B e a m

r u n t i m e : B e a m R u n t i m e = B e a m R u n t i m e (F fl o w)

S t a r t t h e r u n t i m e .

r u n t i m e . r u n ()

Figure 5.4: Selecting and switching between a runtime in State-

Flow.

This code generates an application on top of the selected runtime using State-

Flow’s IR. Most runtimes run out-of-the-box in this local environment. To deploy

the runtime application onto a cluster requires more effort and differs for all run-

times. StateFlow offers guides and default configurations to ease this process.

5.2.1 Dataflow systems

In this section, we introduce the integration of StateFlowwith two popular stream-

ing processing frameworks: Apache Flink and Apache Beam. In these frame-

works, developers implement their applications in the form of a streaming dataflow

graph. As StateFlow’s intermediate representation uses the form of a stateful

dataflow graph, there exists an simple translation to this streaming dataflow graph.

For the integrations with Flink and Beam, we use their Python API. Both frame-

works are not implemented in Python, and their Python API is merely a binding to

their native JVM implementation. Unfortunately, this Python support is relatively

new and has implications for its performance. We elaborate on these performance

issues in the evaluation. Alternatively, we present an integration directly imple-

mented using Flink on the JVMwhere the actual Python code executes in (remote)

stateless Python functions. We opt for AWS Lambda for the latter.

Flink and Beam in Python Streaming systems operate on unbounded datas-

treams by means of a directed acyclic graph (DAG). These streaming dataflow

graphs start with sources and endwith sinks. This graph represents (user-defined)

operators and performs a computation or transformation over the datastream.

Chapter 5. Executing Stateful Dataflow Graphs 53

Edges in this graph represent how data in the datastream flow from one opera-

tor to another. StateFlow supports calling methods from other stateful entities:

this requires cycles in the stateful dataflow graph. However, streaming dataflow

graphs do not support cycles. We rely on Apache Kafka, an event streaming plat-

form, to cycle events back into the streaming graph. Thus, the combination of the

streaming dataflow graph plus Apache Kafkamimics StateFlow’s stateful dataflow

graph.

We benefit from the event delivery guarantees offered by Flink or Beam. State-

Flow relies exactly-once guarantee, ensuring an event is only processed once even

in the case of failures. Inherent to the architecture of streaming systems, events

with identical keys end up at the same logical operator and will be executed se-

quentially. Therefore, in the context of StateFlow, there is no concurrency for

stateful entities with the same entity address. This is an advantage as concurrent

updates to the same stateful entity might result in race conditions.

KafkaSource

OperatorIngressRouter

ingress
route

stateful
operator

k/v
store

create
operator

egress
route

Operator EgressRouter

StateFlow building
blocks

Streaming
system

KafkaSink

for each stateful
entity

Figure 5.5: Proposed dataflow architecture embedding StateFlow

execution blocks.

Figure 5.5 shows the general dataflow architecture used in Flink and Beam.

Note that for each stateful entity we have a ‘create operator’ and a ‘stateful oper-

ator’. In the running example, this means we have a create and stateful operator

for I t e m as well as for U s e r .

We distinguish between a ‘create’ and a ‘stateful‘ operator to deal with the cre-

ation of stateful entities. Whenever an entity is instantiated, we cannot evaluate

its d e f F __ k e y F __ () method before its constructor is called. Therefore, we handle

a request to instantiate a new entity in the ‘create operator’. This operator, given

the arguments, calls the d e f F __ i n i t F __ (F ..) method. Afterward, we derive the key

of the newly created entity and extract its state. Using the key, we traverse the

streaming dataflow graph to end up at the correct operator. In the stateful op-

erator, we store the state of the newly created entity. After entity initialization,

the key is known, and we directly invoke all other class methods in the stateful

operator.

Although we rely on execution via the streaming system, the actual logic is

encapsulated in the building blocks. A major advantage of this approach is that

application logic is not tightly coupled to the underlying system anymore. Fig-

ure 5.6 presents an alternative perspective on the proposed architecture. Here

we show the actual processing graph for the Item operator with a parallelism of

Chapter 5. Executing Stateful Dataflow Graphs 54

2. For simplicity, we omitted the ‘create operator’ node and the StateFlow build-

ing blocks. All orange blocks in the architecture figures encapsulate stateless

operations, whereas the blue blocks are stateful.

State is partitioned across all parallel instances (in Figure 5.6: 2 instances),

and each stateful operator is responsible for a subset of this state. After routing,

data is redistributed across the different parallel instances and forwarded to the

correct stateful operator. In the case of StateFlow, each piece of state represents

a stateful entity. Therefore, each instance of a stateful operator stores a subset

of the stateful entities. For example, in the figure, one of the operator instances

stores the Item entities with the keys: j e a n s , t - s h i r t , and s o c k s . All events

corresponding to those keys end up at this particular instance. Streaming systems

ensure that the corresponding piece of state is available upon arrival of such

an event. We pass this available state, and the arrived event to the StateFlow

operator building block, which handles the execution. We update the resulting

state in the stateful operator before forwarding the resulting event to the egress

router. Finally, the figure also shows how we achieve this architecture through

map, keyBy, and process operators in Apache Flink. We use a similar syntax for

Apache Beam.

routerKafkaSource

router

Item
operator0

jeans
t�shirt
socks

���
���
���

k/v store

keys [jeans, t-shirt, socks]

Item
operator

scarf
shoes
dress

���
���
���

k/v store

keys [scarf, shoes, dress]

map()

keys [scarf, shoes, dress]

keys
 [jeans, t-shirt, s

ocks]

1

keyBy() process()

router
0

router
1

map()

KafkaSink

KafkaSink

addSink()

KafkaSource

addSource()

00 0 0

111

Figure 5.6: Processing graph for the Item operator with a paral-

lelism of 2. For simplicity the ‘create operator’ node and the State-

Flow execution blocks have been omitted.

As a bridge between the streaming system and a client side, we use event

streaming in the form of Apache Kafka. Events are produced to a single request

topic in an Apache Kafka cluster at the client side. An incoming event enters the

streaming system via the Kafka source and leaves the streaming system again

via a Kafka sink to the reply topic. An advantage of Kafka is that its paralleliza-

tion strategy has seamless integration with streaming systems like Flink or Beam.

Moreover, Kafka and the streaming system together offer the exactly-once guar-

antee. As streaming systems do not support cycles in their (directed and acyclic)

streaming graph, we also use Kafka to cycle events back into the system. These

cycles are necessary for split function invocations as such events need to move

back and forth between different stateful entities located at different operators.

As mentioned before, StateFlow offers the building blocks for generating the

streaming dataflow graphs using the intermediate representation. Therefore, the

integration with frameworks such as Beam and Flink is lightweight. The integra-

tion code for Apache Flink (in Python) covers only 169 lines of code, whereas, for

Apache Beam (in Python), this is 153 lines of code.

Chapter 5. Executing Stateful Dataflow Graphs 55

Flink JVM We propose a second integration using Flink in Java rather than

Python. In this setup, we use a streaming system to enrich the events with the

corresponding entity state and then do the actual (Python) execution on remote

stateless functions. Figure 5.7 shows this architecture. The architecture is sim-

ilar to the previously presented architecture, apart from the actual event execu-

tion. In this architecture, we execute the events in a remote stateless function.

In the other architecture, we directly execute events in the operator that stores

the corresponding state.

KafkaSource

OperatorIngressRouter

ingress
route

stateful
operator

k/v
store

create
operator

egress
route

Operator EgressRouter

StateFlow JVM

Streaming
system JVM

KafkaSink

for each stateful
entity

StateFlow JVMStateFlow Python

Figure 5.7: Dataflow architecture in which events are executed in

remote stateless functions.

A significant advantage of this architecture is that we use the streaming sys-

tem solely for routing and state enrichment. In other words, we use the streaming

engine to route events, enrich them with the correct state, and then execute the

event in a remote stateless (Python) function. Therefore the streaming architec-

ture can run its native implementation, in this case in Java. This way, we benefit

from the improved performance and maturity of the system. In addition, one

can execute the Python code in a remote stateless executor of one’s choice. We

believe stateless functions in the cloud are a good choice, as they scale automat-

ically, adopt a pay-as-you-go model, and are managed by a cloud provider. These

functions are stateless and only initialized with the StateFlow operator building

block.

For interoperability between the JVM and Python, we rely on Protobuf. We

define a protocol buffer for StateFlow’s events. This way, we can send and modify

the events between Python and Java environments. Components like the execu-

tion graph, which we embed in the payload of an event, store specific Python

constructs. We pickle (i.e., using pickle serialization) these into the event pay-

load as bytes such that the Python components can unpickle and use it directly.

Therefore, the payload of an event is not touched by any of the Java components.

In this architecture, we use Apache Flink as the streaming system and AWS

Lambda for the (stateless) execution of the Python code. However, switching to

another streaming system written in a JVM language like Apache Beam or Hazel-

cast Jet is also possible. Similarly, one can port the other remote stateless func-

tions to execute the events, such as Azure or (Google) Cloud functions or even

HTTP servers. To realize this integration, we ported the StateFlow router com-

ponents to a Java implementation. Moreover, StateFlow generates a streaming

dataflow graph given a list of stateful entity names. Given the StateFlow routing

Chapter 5. Executing Stateful Dataflow Graphs 56

components, supporting this architecture only spans 348 lines of Java code. The

code for this architecture is part of a different repository 3.

5.2.2 Stateful Function-as-a-Service

Although we adopt a dataflow model for the stateful entities, we believe its exe-

cution is not limited to dataflow systems. We now propose a set of architectures,

embedding the building blocks of StateFlow, using (S)FaaS systems. First, we

propose an architecture that adopts stateless (cloud) functions — secondly, we

show how to build on top of Flink Statefun. Finally, we present an architecture on

top of CloudBurst Sreekanti et al. [2020], a popular research initiative on Stateful

FaaS. We believe many (S)FaaS architectures can be supported with the existing

StateFlow functionality. Therefore, the proposed architectures also serve as in-

spiration to support other (S)FaaS systems.

AWS Lambda AWS Lambda is a stateless FaaS solution and has no notion of

state. Therefore, we rely on an external service for state storage. We opt for

DynamoDB, a performant key-value store. DynamoDB is also an AWS service and

follows the serverless model. Therefore it scales on-demand and follows the pay-

as-you-go model. Although we use AWS Lambda also in the Flink JVM setup, its

purpose is entirely different. AWS Lambda compromises only a tiny part of the

complete architecture in the Flink JVM integration: it acts as a stateless Python

executor. In this setup, AWS Lambda acts as a complete runtime handling all

components such as routing and state management.

AWS Lambda
invocation

IngressRouter EgressRouterOperator

StateFlow building
blocks

k/v
store

AWS DynamoDB

OR

OR

OR

OR

SDK invocation

AWS Kinesis sink

HTTP result

OR

OR

SDK reply

AWS Kinesis source

AWS Gateway

Figure 5.8: Execution architecture of stateful entities on top of AWS

Lambda and AWS DynamoDB.

Figure 5.8 shows the architecture using AWS Lambda and DynamoDB. There

are multiple ways to invoke an AWS Lambda instance with an event. StateFlow

offers the three most common approaches: AWS Kinesis, AWS Gateway or invo-

cation via the AWS SDK.

Each approach has its advantages and disadvantages. For example, AWS Ki-

nesis allows event streaming and batch invocations rather than direct Lambda

invocations. However, Kinesis has a higher latency compared to AWS Gateway

3
h t t p s : / / g i t h u b . c o m / w z o r g d r a g e r / s t a t e f l o w - f l i n k

https://github.com/wzorgdrager/stateflow-flink

Chapter 5. Executing Stateful Dataflow Graphs 57

or the SDK. AWS Gateway serves an HTTP interface in front of the AWS Lambda

service, where the SDK invocation has the lowest latency but requires code.

Whenever an event arrives in the AWS Lambda invocation, its first passed to

the ingress router. This router derives which stateful entity is involved. The state

of this entity is requested from DynamoDB before StateFlow executes the event

in its operator building block. We update the resulting state in DynamoDB and

pass the resulting event to the egress router. As we have access to all the state in

DynamoDB, we do not need to cycle events to the other operators as necessary

for streaming systems. Instead, we loop these events back to the ingress router.

We repeat this loop until the full execution graph is traversed, and we send the

result back to the client. Therefore, we execute split functions in a single AWS

Lambda invocation.

AWS Lambda and DynamoDB offer far fewer guarantees than streaming sys-

tems do. There is no notion of delivery semantics nor fault-tolerance. Using this

architecture might result in events being lost or inconsistent state. Streaming

systems guarantee that identical keys for the same operator (i.e., a single stateful

entity) are executed in order rather than in parallel. Not doing so might result in

race conditions. We do not have this guarantee in the AWS architecture. How-

ever, to simulate this in-order execution of identical keys, we use key locking. In

other words, before the execution of the event, we ‘lock’ the corresponding key in

DynamoDB. During this lock, no other AWS Lambda instance can use it. When the

lock is obtained, the event is executed, and afterward the lock is freed again. As

DynamoDB does not offer key locking as a feature, we rely on an external library.

The key locking has implications for the performance on which we elaborate in

Chapter 6.

Again, the proposed architecture primarily relies on the StateFlow building

blocks. The integration with the AWS services is very lightweight and imple-

mented in only 190 lines of code.

Flink Statefun Flink Statefun is a Stateful FaaS solution built on top of Apache

Flink. Statefun revolves around the concept of a stateful function: an event han-

dler having access to a partitioned piece of state. Statefun application consist

of two parts 1) this stateless event handler are encapsulating business logic 2)

a Flink cluster sending events and state to the stateless event handlers. More

specifically, each incoming event has a particular key, the Flink cluster retrieves

the state for that key, and finally, both the event and the state are sent to the

function handler. In the stateful function handler, one can manipulate the (keyed)

state, which is then persisted by the Flink cluster. Moreover, Statefun enjoys the

many features of Flink such as exactly-once processing and state management.

These stateful functions are deployed as (remote) stateless HTTP servers to

which a Flink cluster sends events and state. Below we show an example of

an event function handler in Flink Statefun. This application computes a seen

counter for users.

Chapter 5. Executing Stateful Dataflow Graphs 58

@ f u n c t i o n s . b i n d (

t y p e n a m e = ' g r e e t e r ' ,

s p e c s = [V a l u e S p e c (n a m e = ' s e e n _ c o u n t ' , t y p e = I n t T y p e)])

a s y n c d e f g r e e t (c t x : C o n t e x t , m e s s a g e : M e s s a g e) :

n a m e = m e s s a g e . a s _ s t r i n g ()

s t o r a g e = c t x . s t o r a g e

s e e n = s t o r a g e . s e e n _ c o u n t o r 0

s t o r a g e . s e e n _ c o u n t = s e e n + 1

c t x . s e n d _ e g r e s s (k a f k a _ e g r e s s _ m e s s a g e (

t y p e n a m e = ' g r e e t s ' ,

t o p i c = ' g r e e t i n g s ' ,

k e y = n a m e ,

v a l u e = f " H e l l o { n a m e } f o r t h e { s e e n } t h t i m e ! "))

In this function handler, an event arrives in the form of a message and state is

stored in a context. Each handler is invoked based on a key, in this example the

key is a name. Therefore, we also retrieve the seen count state of that belongs to

that particular name. Notice, how this event handler is complete stateless. State

manipulation on the context object is returned to the Flink cluster.

The execution in Statefun is very similar to the proposed Flink JVM architec-

ture in the previous section. Nevertheless, it has three significant differences.

First, the Flink JVM also supports stateless operations, for example, when creat-

ing a new stateful entity. Statefun requires every function call to be stateful. Sec-

ondly, Flink JVM’s concept and integration code generalizes to other streaming

systems, whereas Statefun tightly integrates with Apache Flink. Finally, Statefun

implements its internal routing mechanism supporting cycles, whereas the Flink

JVM setup cycles events via Kafka.

Figure 5.9 shows the integration of StateFlow with Flink Statefun. The figure

also gives insight on the default workings of Statefun. For each operator (i.e.,

stateful entity) in StateFlow’s IR, we generate a stateful function (handler) in

Statefun. We rely on Python closures to generate these functions dynamically.

A HTTP server runs these stateful function and multiple functions reside on the

same server.

Apache Flink
cluster

Kafka cluster

HTTP server

HTTP POST
request Operator EgressRouter

StateFlow

for each stateful
entity

reply on POST
request

Figure 5.9: Integration of StateFlow with Flink Statefun.

These HTTP servers are stateless, and the Flink cluster triggers computation

by calling an HTTP endpoint. In this call, Flink encodes the incoming event plus

the state (i.e., the state of the corresponding stateful entity). After computation

in the stateful function, the updated state and the outgoing event are sent back

Chapter 5. Executing Stateful Dataflow Graphs 59

to the client. Confusingly, Statefun calls these functions stateful, but in practice,

these are stateless functions performing stateful computation.

In the streaming system integration, the client interface produces events to

a single Kafka topic. Subsequently, the streaming framework routes to the cor-

rect operator using Stateflow’s ingress router. For Flink Statefun, we cannot use

a single topic as it requires a topic per stateful function. Therefore, we use a

Kafka topic per stateful entity (i.e., a topic for the User entity). Moreover, we

ensure each Kafka message, besides an event, stores the key of the stateful entity

concerned. Therefore, we already route events at the client-side to determine

the correct Kafka topic and message key. Unlike the streaming systems, Flink

Statefun allows and takes care of messaging to other stateful functions.

As Statefun consists of two components, the HTTP server for the stateful func-

tions and the Flink cluster, StateFlow offers integrations for both. We offer the

HTTP server as a runtime implementation similar to Figure 5.4. Moreover, we

generate the configuration required to deploy a Statefun application on a Flink

cluster given a stateful dataflow graph. We present a full example below:

G e n e r a t e F Fl i n k c o n f i g u r a t i o n

s t a t e f u n _ m o d u l e _ g e n e r a t o r . g e n e r a t e (F fl o w)

S e t u p a n d s t a r t r u n t i m e .

r u n t i m e : S t a t e F fl o w R u n t i m e = S t a t e f u n R u n t i m e (F fl o w)

i f F __ n a m e F __ F == " F __ m a i n F __ " :

w e b . r u n _ a p p (r u n t i m e . g e t _ a p p () , p o r t = 8 0 0 0)

The proposed architecture scales in two ways. First, one can add more re-

sources to the Flink cluster and increase its parallelism. Secondly, one can scale

the number of remote function deployments. These deployments are stateless

and can be scaled horizontally. It requires a load balancer in front of these de-

ployments to distribute the workload over the HTTP deployments. Most cloud

providers offer these load balancers as a service.

The integration of StateFlow with Flink Statefun spans 121 lines of code.

CloudBurst CloudBurst is a Stateful FaaS solution with a dedicated runtime

built on top of the Anna key-value store Wu et al. [2018]. Like Flink Statefun,

developers implement stateful functions, and the runtime takes care of scaling,

fault-tolerance, and state management. Moreover, CloudBurst allows function-

to-function communication and a client-side interface to invoke the stateful func-

tions. We show the full CloudBurst architecture in Figure 5.10.

Chapter 5. Executing Stateful Dataflow Graphs 60

Figure 5.10: The complete CloudBurst architecture. Image re-

trieved from Sreekanti et al. [2020]

.

In Figure 5.11, we show the integration of StateFlow with CloudBurst. We

build a CloudBurst function for each building block in StateFlow: an ingress

router, egress router and operators for each stateful entity. In these functions,

we have direct access to the Anna key-value storage. Therefore, in the operator

function, we directly query this store to get and update the state of entities.

CloudBurst
runtime

EgressRouter

CloudBurst function

StateFlow

CloudBurst function

Operator

StateFlow

for each stateful
entity

IngressRouter

CloudBurst function

StateFlow

incoming
events

Figure 5.11: Integration of StateFlow with CloudBurst.

The integration of StateFlow with CloudBurst spans 87 lines of code. Unfor-

tunately, we could not get the CloudBurst runtime working in a local setup nor a

cluster 4. The project seems to be abandoned, and some artifacts, like required

Docker images, are deleted. As a result, we decided not to add a client-side im-

plementation for CloudBurst in the StateFlow prototype.

5.3 Client

Although the runtime systems perform the heavy-lifting in terms of computation,

clients trigger these computations in the form of events. In other words, a run-

time executes a class method, but the client triggers this execution. The primary

goal of a client is to be a lightweight interface to the runtime system. Similar to

the runtime systems, clients rely on the intermediate representation compiled by

StateFlow. Amongst others, the client uses this IR to generate the correct events.

StateFlow offers a generic client-side programming interface, which allows

developers to interact with the deployed stateful entities. We elaborate on this

interface in Subsection 5.3.1. This programming interface integrates with multi-

ple clients, such as Apache Kafka, and enables communication with the runtime

system. Essentially, each of these clients provides an event streaming integra-

tion, and we discuss these in Subsection 5.3.2. Finally, StateFlow offers an HTTP

4Other TU Delft students raised several issues in the CloudBurst GitHub repository without any

luck: h t t p s : / / g i t h u b . c o m / h y d r o - p r o j e c t / c l o u d b u r s t / i s s u e s

https://github.com/hydro-project/cloudburst/issues

Chapter 5. Executing Stateful Dataflow Graphs 61

integration on top of each client such that each stateful entity can be manipulated

via HTTP endpoints. We present this integration in Subsection 5.3.3.

5.3.1 Interface

In order to improve the developer’s experience, StateFlow client-side interface is

close to the programming experience in a local Python environment. In general,

the client-side interface allows developers to instantiate objects and call their

methods. In the background, StateFlow generates events for each action and

sends them to the runtime. The resulting events are asynchronously retrieved

in a background thread before, using a future construct, StateFlow reports the

result.

To achieve this, the @ s t a t e F fl o w decorator intercepts a class definition and re-

places it with a metaclass. Using metaclasses is a form of metaprogramming in

Python and gives us control over class creation. This metaclass stores all analyzed

metadata of a class definition, as derived from the compiler pipeline (Chapter 4).

Upon construction of this substituted metaclass, for example I t e m (1 0 , " j e a n s ") ,

StateFlow sends a I n i t E n t i t y request to the runtime. If successfully created,

the metaclass constructs a new wrapper object for that specific entity. A wrapper

object stores a reference to a stateful entity in the form of an entity address (see

Subsection 5.1.1). Using this wrapper is a form of duck typing: from a devel-

oper perspective it seems like one interacts with the actual object. On the other

hand, StateFlow wraps results in futures as communication with the runtime is

asynchronous. For existing entities, StateFlow’s offers utility methods to gener-

ate a wrapper object: i t e m : I t e m = I t e m . f r o m _ k e y (" j e a n s ") . A full example of

client-side interaction is shown below:

e n t i t i e s . p y s t o r e s I t e m a n d U s e r c l a s s d e f i n i t i o n

f r o m e n t i t i e s i m p o r t U s e r , I t e m , s t a t e F fl o w

f r o m s t a t e F fl o w . c l i e n t . c l i e n t i m p o r t S t a t e F fl o w C l i e n t , S t a t e F fl o w F u t u r e

I n i t i a l i z e c l i e n t

c l i e n t : S t a t e F fl o w C l i e n t = F F ...

u s e r : U s e r = U s e r (" t e s t - u s e r ") . g e t ()

c r e a t e 1 0 i t e m s , c o n c u r r e n t l y

i t e m s _ f u t : L i s t [S t a t e F fl o w F u t u r e [I t e m]] = \

[I t e m (2 5 , f " t e s t - i t e m - { i } " f o r i i n r a n g e (0 , 1 0)]

i t e m s : L i s t [I t e m] = [f u t . g e t () f o r f u t i n i t e m s _ f u t]

a d d i t e m s t o b a s k e t o f u s e r

u s e r . a d d _ t o _ b a s k e t ([i t e m s]) . g e t ()

Whenever a method is invoked, StateFlow generates the corresponding event.

Each event carries a unique id, which we use to trace back reply events to its re-

quests. Moreover, StateFlow extracts the entity address from the wrapper object.

Finally, we embed the method call arguments into the events payload. Whenever

Chapter 5. Executing Stateful Dataflow Graphs 62

a split function is invoked, we copy its execution graph into the event. More-

over, we set the call arguments in the output variables of the start node (see

Subsection 4.3.6). Besides method invocation, StateFlow also supports setting

and getting entity attributes:

u s e r : U s e r = U s e r (" t e s t - u s e r ") . g e t ()

G e t t h e b a l a n c e

t h e _ b a l a n c e : S t a t e F fl o w F u t u r e [i n t] = u s e r . b a l a n c e

t h e _ b a l a n c e . g e t ()

S e t t h e b a l a n c e

u s e r . b a l a n c e = 0

A downside of setting attributes is that updates are asynchronous, whereas the

syntax gives the impression that it is not. One cannot use StateFlow’s future

system with attribute assignments.

Asyncio As an alternative to StateFlow’s futures, one can use Python asyncio.

Asyncio is the default concurrency library for Python and allows writing asyn-

chronous code through the a w a i t and a s y n c keywords. The code snippet below

shows asyncio code for StateFlow:

u s e r : U s e r = a w a i t U s e r (" t e s t - u s e r ")

a w a i t u s e r . s e t _ b a l a n c e (1 0)

b a l a n c e = a w a i t u s e r . g e t _ b a l a n c e ()

Asyncio does not allow setting or getting attributes asynchronously (e.g. u s e r . b a l a n c e);

instead, one needs to define getter and setter methods explicitly. The use of asyn-

cio requires an asynchronous implementation of a client such as Apache Kafka.

In Section 5.6, we highlight which clients have this integration.

5.3.2 Event streaming

To bridge between client and runtimes, we rely on event streaming platforms.

These platforms act as middleware between the client and the runtime and have

several advantages. Most significantly, these platforms provide a durable event

stream and are highly scalable. This middleware scales with the application’s

load and ensures no event is lost in case of failures. Additionally, these platforms

handle backpressure whenever the runtime cannot keep up with the requests

from a client. Most event streaming platforms support at-least-once delivery for

events, whereas others support even stronger consistency, such as exactly-once

delivery. These consistency models ensure that client-runtime communication is

reliable.

StateFlow supports two event-streaming clients: Apache Kafka and AWS Kine-

sis. Apache Kafka integrates with runtimes such as Apache Flink, Apache Beam,

Chapter 5. Executing Stateful Dataflow Graphs 63

and Flink Statefun, whereas AWS Kinesis integrates with the AWS Lambda run-

time. AWS Kinesis only supports at-least-once delivery, whereas Apache Kafka

supports at-least-once, at-most-once, and exactly-once. Note that these platforms

run as a separate deployment. To use Apache Kafka requires a separate Kafka

cluster. AWS Kinesis is offered as a service by Amazon and requires deployment

on their cloud platform. The clients integrate into StateFlow by sending and re-

ceiving events (i.e., publish and subscribe) to and from these platforms, whereas

runtime systems have a similar integration.

b_fut = user.get_balance()

1

b_fut.get()

EVENT

0f9dd886
InvokeMethod
Address(User, key="jane")
Payload(method="get_balance")

generates

2

subscribe

event streaming
cluster

Kafka
producer

Kinesis
producer

3 4

publish

6

runtime

5

subscribe

publish

Kafka
consumer

Kinesis
consumer

EVENT

0f9dd886
SuccessfulInvocation
Address(User, key="jane")
Payload(result="10")

78

Figure 5.12: StateFlow’s client integration with event streaming

platforms.

In Figure 5.12, we show how StateFlow integrates with these platforms. Upon

method invocation 1 , StateFlow generates the corresponding event 2 which is

abstracted away from the developer. Via a Kafka or Kinesis producer 3 , the

event is published to its cluster 4 . The runtime system reads the event from the

cluster, processes it, and sends the resulting event back to the event streaming

cluster 5 . In a separate thread, the client receives all incoming events via its

consumer 6 . The resulting event, with the identical event id, is parsed 7 , and

the corresponding future is enriched with the results 8 .

Not all runtimes support each event streaming platform. In addition, some

setups completely omit such a platform and directly send events from a client to a

runtime. In Section 5.6, we highlight all client integrations and their compatibility

with runtimes.

5.3.3 REST API integration

REST is one of the most popular web API architectures. For thit reason, State-

Flow supports a REST integration on top of several of the presented clients. Such

a REST API allows interacting with the deployed stateful entities via HTTP end-

points without writing client-side code. StateFlow leverages FastAPI, a modern

web framework, to create such a REST API 5.

With the help of the intermediate representation, StateFlow dynamically cre-

ates endpoints for each class method, entity construction, and entity lookup.

For example, to find an Item stateful entity with the key j e a n s , one queries

/ s t a t e F fl o w / g l o b a l / I t e m / f i n d ? k e y = j e a n s . Upon receiving such a query, State-

Flow constructs the corresponding event, sends it via the client to the runtime,

waits for the runtime’s return event, and, finally, provides an HTTP response. In

FastAPI, one defines HTTP endpoints via function definitions, and StateFlow gen-

erates these functions automatically. In Figure 5.13, we show the automatically

generated REST API for the entities in the running example.

5FastAPI was chosen out of convenience and could be substituted by any other web framework.

Chapter 5. Executing Stateful Dataflow Graphs 64

Figure 5.13: Automatic generation of HTTP endpoints for all exam-

ple stateful entities in FastAPI.

For the endpoint generation, StateFlow transforms the parameters of a Python

method to query parameters of an HTTP endpoint. Primitive types can be ex-

pressed as a string, and therefore its conversion is straightforward. However, we

cannot do the same for complex types like objects or lists. We convert object pa-

rameters to a string and a list of objects to a list of strings to tackle this problem.

This requires that the types of these objects are other stateful entities annotated

in StateFlow. If that is not the case, we abort the endpoint generation for that

method and give awarningmessage. For example, consider the following function

signature in the I t e m stateful entity: d e f f o o (s e l f , x : i n t , y : U s e r , l : L i s t [U s e r]) .

An example query on this endpoint: s t a t e F fl o w / g l o b a l / I t e m / f o o ? x = 1 & y = j a n e

& l = j o e & l = a n n a

In addition to the generated endpoints, developers can add more endpoints

encapsulating custom behavior. For that, one uses the FastAPI interface in com-

bination with StateFlow’s asyncio integration. For example, to create a GET end-

point that creates multiple entities of the type I t e m :

@ a p p . g e t (" / c r e a t e _ m u l t i p l e _ i t e m s ")

a s y n c d e f c r e a t e _ i t e m s (i t e m _ n a m e s : L i s t [s t r]) :

f o r i t e m i n i t e m _ n a m e s :

a w a i t I t e m (0 , i t e m) # C r e a t e i t e m , s e t p r i c e t o 0 .

r e t u r n " C r e a t e d a l l i t e m s ! "

5.4 Local execution

To improve transparency and usability, StateFlow offers a local execution environ-

ment to unit test all defined classes. This execution environment simulates both

the client and runtime environment. In the code snippet below, we show how one

uses this environment.

Chapter 5. Executing Stateful Dataflow Graphs 65

f r o m s t a t e F fl o w i m p o r t s t a t e F fl o w _ t e s t

d e f t e s t _ a d d _ t o _ b a s k e t () :

u s e r = U s e r (" t e s t - u s e r ")

i t e m = I t e m (1 0 , " t e s t - i t e m ")

a s s e r t u s e r . b a l a n c e F == 1 0 0 0

a s s e r t u s e r . a d d _ t o _ b a s k e t ([i t e m]) i s T r u e

a s s e r t u s e r . b a s k e t [0] . i t e m i d F == " t e s t - i t e m "

From a developer’s perspective, this is a standard unit test. However, under-

neath, the environment creates events, passes them through all building blocks,

and returns a resulting event. Instead of relying on a runtime, the environment

stores all the entity state in a local hashmap. We use metaprogramming to inter-

cept object construction and inject the local execution environment.

An advantage of this local execution environment is that execution follows all

steps used in client and runtime environments. For example, when a function is

split, it moves back and forth between different operators. This local environ-

ment ensures that, when local execution succeeds, results will be similar in a

distributed setup using a runtime.

5.5 Deployment

So far, StateFlow has introduced several integrations with runtimes, clients, and

even an HTTP server. Nevertheless, we did not yet cover a costly operational

aspect of (cloud) applications: deployment. Each of the involved components

requires its own configuration and deployment procedure. For example, to deploy

an AWS Lambda runtime, one needs to package the application, including its

dependencies, and upload it to the AWS platform. In addition, one needs to set

up a DynamoDB cluster and configure permissions such that each service has

access. Contrarily, Apache Flink requires deploying a standalone Flink cluster,

packaging the application, and submitting the application via a separate CLI tool.

To support the deployment process, StateFlow offers several default deploy-

ment configurations and tools. First of all, for all standalone deployments, such

as the Apache Flink cluster or the FastAPI web server, we propose Kubernetes

manifests 6. Kubernetes is the most popular container orchestration platform al-

lowing deploying and scaling of container applications. These manifests allow

a one-click deployment of any application and provide a starting point for more

tailored deployments. Secondly, for AWS Lambda, we provide a configuration

for serverless 7. Serverless is a toolbox to package, configure and deploy AWS

Lambda applications automatically. Finally, for Flink Statefun, one needs to cre-

ate an application configuration that defines all involved functions, inputs, and

outputs. Apache Flink uses this configuration to create a corresponding stream-

ing dataflow graph. Since creating this configuration is a painstaking activity,

StateFlow offers a utility to automatically generate this configuration file, given

the intermediate representation of the implemented application.

6
h t t p s : / / k u b e r n e t e s . i o /
7
h t t p s : / / w w w . s e r v e r l e s s . c o m /

https://kubernetes.io/
https://www.serverless.com/

Chapter 5. Executing Stateful Dataflow Graphs 66

Besides default configurations and deployment files, StateFlow has a deploy-

ment guide for each client and runtime. By these offerings, StateFlow’s attempts

to provide an ’end-to-end experience’. In other words, we support developers in

implementing, configuring, and deploying their applications.

5.6 Summary

In this chapter, we presented several clients and runtimes for the execution of

applications in StateFlow. We summarize all implemented clients in Table 5.2 and

show if they integrate with acyncio and our HTTP integration. Table 5.3 shows

all implemented runtimes and their compatibility with the clients. In addition, we

show which runtimes do not support execution in clusters or locally. For example,

CloudBurst suffers bugs which prevents execution at all.

Client name Service asyncio integration HTTP integration

K a f k a C l i e n t Apache Kafka 4 5

A W S K i n e s i s C l i e n t AWS Kinesis 5 5

A W S G a t e w a y C l i e n t API Gateway 5 5

K a f k a F a s t A P I C l i e n t Apache Kafka 4 4

A W S G a t e w a y F a s t A P I C l i e n t API Gateway 4 4

A W S L a m b d a F a s t A P I C l i e n t AWS SDK 4 4

Table 5.2: Summary of StateFlow’s supported clients and its integrations.

Runtime name Service Local execution Cluster execution
Compatible clients

Apache Kafka AWS Kinesis API Gateway AWS SDK

F Fl i n k R u n t i m e Apache Flink (PyFlink) 4 4 4 5 5 5

S t a t e f u n R u n t i m e Flink StateFun 4 4 4 5 5 5

A W S L a m b d a R u n t i m e AWS Lambda 4 4 5 5 5 4

A W S G a t e w a y L a m b d a R u n t i m e AWS Lambda 4 4 5 5 4 5

A W S K i n e s i s L a m b d a R u n t i m e AWS Lambda 4 4 5 4 5 5

B e a m R u n t i m e Apache Beam 4 5 4 5 5 5

C l o u d B u r s t R u n t i m e CloudBurst 5 5 5 5 5 5

Q R e m o t e L a m b d a Apache Flink (JVM) 4 4 4 5 5 5

Table 5.3: Summary of StateFlow’s supported runtimes.

Q The Flink JVM runtime requires the deployment of an AWS Lambda Python application and a (JVM) Flink application.

68

Chapter 6

Evaluation

In this chapter, we evaluate the work of this thesis from three angles. Firstly, we

evaluate the expressiveness of StateFlow’s programming model compared to the

native programming model of each runtime (Section 6.2). Secondly, we show the

overhead of all the components in StateFlow. That is, showing how much over-

head our system incurs on top of executing the Python code written by the devel-

oper (Section 6.3). Moreover, we show how this overhead relates to the overhead

of the underlying runtimes. Thirdly, we execute a performance benchmark with

the different runtime backends supported by StateFlow, including AWS Lambda,

Apache Flink, Flink Statefun, and Flink JVM (Section 6.4). In this experiment, we

show how each of the runtimes performs under an increasing workload. In the

expressiveness and performance experiments, we rely on the DeathStar bench-

mark Gan et al. [2019]. We explain this benchmark in Section 6.1. Finally, we

use the following runtime versions for all experiments: Apache Flink and PyFlink

1.13.0 and Flink Statefun 3.0.

All code for the experiments in this chapter can be found in an open-source

repository 1. To improve replicability of all experiments, we explain the experi-

mental setup in detail, and Jupyter Notebooks and Python scripts2 are provided to

show how results are post-processed. Moreover, each section in the Jupyter Note-

book/code links to the implementation used for the corresponding experiment.

6.1 DeathStar benchmark

For expressiveness and performance evaluation, we opt for the DeathStar bench-

mark Gan et al. [2019]. Popular benchmark alternatives include YSCB Cooper

et al. [2010] and TPC-C Raab [1993]. However, both these alternatives primar-

ily focus on transactional workloads, and the uses cases are synthetic. Contrary,

DeathStar introduces a set of real-world applications and its microservice design.

These applications include a social media network, a banking system, and a hotel

reservation service. For these experiments, we only focus on the hotel reservation

service and port its implementation in StateFlow. Whereas DeathStar provides Go

code for most of their services, specifications are not well-defined. Therefore, we

specify the requirements of each service using the information provided in both

the paper and the open-source code. One downside of DeathStar is that it is de-

signed for microservices. In StateFlow, we partition state on an entity key and

1
h t t p s : / / g i t h u b . c o m / d e l f t d a t a / s t a t e f l o w - e v a l u a t i o n
2An example notebook

https://github.com/delftdata/stateflow-evaluation
https://github.com/delftdata/stateflow-evaluation/blob/main/results/overhead/overhead_results_with_runtime.ipynb

Chapter 6. Evaluation 69

distribute these entities among different instances. However, a microservice ar-

chitecture assumes access to a (global) database storing all the state. DeathStar

also incorporates this assumption into its design. Therefore, we make some slight

adjustments in its design to make it fit the stateful entities philosophy. To the best

of our knowledge, there does not exist a benchmark for partitioned stateful enti-

ties.

Hotel reservation service As the name suggest, this application mimics that of

a hotel reservation service. It includes seven stateful entities and four endpoints.

We implement the entities as Python classes and the endpoints in the HTTP inte-

gration of StateFlow. We give a full overview in Figure 6.1. Below we elaborate

on each stateful entity and its functionality:

• Geo: determines the five closest hotels given a latitude and longitude coor-

dinate.

• Rate: returns the rate plans for a list of hotel ids.

• Search: given a latitude and longitude coordinate, determines the five clos-

est hotels and return their rate plan. This entity interacts with the Rate and

Geo entities.

• Recommend: recommends a list of hotel ids. A recommendation has either

the shortest distance, the lowest room price, or the highest hotel rate.

• Profile: returns the profiles for a list of hotel ids.

• Reserve: either reserves a hotel room or checks the availability for a spec-

ified date. This entity represents the reservation service of a specific hotel.

• User: logins a user, given the correct password.

Search

Recommend

Geo

Rate

Profile

Reserve

User

endpoints
/search

/recommend

/reserve

/login

Read�only, partitioned on user_id

Read/write, partitioned on hotel_id

Read�only, no partitioning key, replicated

Legend

Figure 6.1: Schematic overview of DeathStar’s hotel service imple-

mentation in StateFlow.

Chapter 6. Evaluation 70

As mentioned before, DeathStar is designed as a microservice benchmark, and

assumes some of its services have access to the global state. In the figure, all

these services are in pink blocks . In StateFlow, we do not have this notion of

a global state. Instead, we always partition entities on their key, and requests

for equal keys are processed atomically. Consequently, if we have only a single

instance of such an entity, the system does not scale. To overcome this issue,

we replicate the read-only entities. For example, we create n copies of the Geo

entity, all with a unique key. This way, we can have n concurrent requests querying

the Geo service. In other words, we mimic a read-only DeathStar microservice

with n replicated stateful entities. Such a strategy cannot be used with services

requiring write requests, as entities would have to synchronize their data. At

the same time, there is a straightforward partitioning key for both the User and

Reserve entity. For the User entity, this is the unique user id, whereas, for the

Reserve entity, this is the hotel id. The number of instances for these entities

equal respectively the amount of users or hotels.

Below we summarize the different endpoints as implemented in StateFlow

HTTP integration. For the read-only replicas, these endpoints select a replica at

random. We assume that over time and as the throughput scales, replicas are

selected uniformly, distributing the load.

• /login: logins a user (User entity).

• /recommends: first requests a set of recommendations (Recommend en-

tity) and then retrieves the profiles of the recommend hotels (Profile entity).

• /search: requests a search (Search entity) which returns a set of hotel ids.

For each hotel, availability is checked (Reserve entity). Finally, for all avail-

able hotels profiles are requested (Profile entity). In total, this endpoint

involves nine stateful entity calls.

• /reserve: logins a user (User entity) and a reserves a hotel room (Reserve

entity).

In the expressiveness evaluation (Section 6.2), we show how the original Death-

Star Go implementation relates to that of StateFlow. Moreover, we compare na-

tive runtime implementations of DeathStar to implementations using StateFlow.

Finally, we use DeathStar in the performance experiments (Section 6.4) to evalu-

ate the runtimes under an increasing load.

6.2 Expressiveness

In this section, we discuss the expressiveness of the programming interface of

StateFlow. We show that developers only have to focus on application code rather

than non-application code such as infrastructure, event routing, serialization, and

storage. We discuss this using the implementation of the DeathStar benchmark

(Section 6.1). First, we show how StateFlow’s implementation differs from the

original implementation in the Go programming language. Afterward, we com-

pare the StateFlow implementation to a native implementation in the target run-

times.

Chapter 6. Evaluation 71

6.2.1 StateFlow versus DeathStar

In Table 6.1, we compare the StateFlow (Python) implementation to the original

implementation of DeathStar in Go. The table shows the lines of code (LOC) for

each stateful entity and the percentage non-application code (NAC). For State-

Flow we consider the amount of non-application code to be fixed: developers

annotate their classes with @ s t a t e F fl o w and implement a d e f F __ k e y F __ () method.

StateFlow DeathStar Go

LOC LOC % NAC

Search 13 33 0%

Geo 25 53 15%

Profile 26 64 20%

Rate 24 71 30%

Recommend 48 88 27%

Reserve 36 169 46%

User 9 14 0%

Table 6.1: Lines of code for the DeathStar implementation in State-

Flow and the original in Go.

From the figure we conclude that DeathStar in StateFlow requires less than

50% lines of code for all stateful entities compared to the original implementa-

tion. Note that the original implementation is in Go, and therefore syntax is

slightly different. In addition, in the DeathStar Go implementation, infrastructure

code mixes with application code. More specifically, connections with databases,

caches, and serialization methods are part of the application code. This leak

from the infrastructure to the application layer has two significant disadvantages.

First, code becomes more lengthy and complex and is therefore prone to bugs.

Secondly, changing the underlying infrastructure requires refactoring the entire

application. For example, changing the type of database requires a refactor for

the whole class.

6.2.2 Native runtime implementation

We now discuss the StateFlow stateful entity implementation compared to na-

tive implementation in the target runtime. We compare implementations in AWS

Lambda, Flink Statefun, and PyFlink. The Flink JVM and Apache Beam imple-

mentations would be very similar to that of PyFlink, and therefore, we omit it. All

these runtimes offer a Python API. We focus on the stateful entities and do not

compare code for the frontend or initialization functionality.

In Figure 6.2 we compare the StateFlow implementation for a User to a native

implementation in AWS Lambda. We highlight the application code with pink .

Similar to the Go implementation, AWS Lambda mixes the application with in-

frastructure code. For example, we have to store the user state in DynamoDB

manually. In StateFlow, this is abstracted away from the developer. Moreover,

in AWS Lambda, developers implement an event handler and one needs to write

the logic for event parsing. In StateFlow, this is also taken care of, and develop-

ers implement functionality through class methods. Note that the User entity is

Chapter 6. Evaluation 72

@ s t a t e F fl o w

c l a s s U s e r :

d e f F __ i n i t F __ (s e l f , u s e r n a m e : s t r ,

p a s s w o r d : s t r) :

s e l f . u s e r n a m e : s t r = u s e r n a m e

s e l f . p a s s w o r d : s t r = p a s s w o r d

d e f l o g i n (s e l f , p a s s w o r d : s t r) F -> b o o l :

r e t u r n s e l f . p a s s w o r d F == p a s s w o r d

d e f F __ k e y F __ (s e l f) :

r e t u r n s e l f . u s e r n a m e

d y n a m o d b = b o t o 3 . c l i e n t (" d y n a m o d b ")

t a b l e = d y n a m o d b . T a b l e (" u s e r s ")

d e f u s e r _ h a n d l e r (e v e n t , c o n t e x t) :

u s e r n a m e = e v e n t [" u s e r n a m e "]

p w = e v e n t [" p a s s w o r d "]

i f e v e n t [" t y p e "] F == " C R E A T E _ U S E R " :

u s e r _ i t e m = { u s e r n a m e : u s e r n a m e , p w : p w }

t a b l e . p u t _ i t e m (I t e m = j s o n . d u m p (u s e r _ i t e m))

r e t u r n { " m e s s a g e " : " c r e a t e d a u s e r ! " }

e l i f e v e n t [" t y p e "] F == " L O G I N _ U S E R " :

t r y :

r e s p o n s e = t a b l e . g e t _ i t e m (K e y =

{ " u s e r n a m e " : u s e r n a m e })

e x c e p t C l i e n t E r r o r a s e :

r e t u r n { " m e s s a g e " : " u s e r n o t f o u n d " }

e l s e :

u s e r = j s o n . l o a d s (r e s p o n s e [" I t e m "])

r e t u r n { " m e s s a g e " : u s e r [" p w "] F == p w }

Figure 6.2: User entity in StateFlow versus its native implementa-

tion in AWS Lambda. We highlight application code with pink .

still one of the simplest entities, whereas more complex ones like Reserve require

even more routing, serialization, and database code. In this figure, we highlight

AWS Lambda, but the code for Flink Statefun and PyFlink looks very similar. For

PyFlink, developers must also implement a streaming dataflow graph to route

events to the correct stateful operator.

StateFlow AWS Lambda Flink StateFun PyFlink

LOC LOC % NAC LOC % NAC LOC % NAC

Search 13 13 62% 20 55% 22 68%

Geo 25 31 32% 34 35% 39 48%

Profile 26 33 36% 35 37% 37 46%

Rate 24 30 43% 36 50% 43 52%

Recommend 48 54 26% 53 17% 54 18%

Reserve 36 60 48% 66 25% 61 35%

User 9 17 64% 22 50% 25 72%

Table 6.2: Comparison of lines of code for the DeathStar implemen-

tation in StateFlow and native runtime implementations.

In Table 6.2 we compare all entities in StateFlow to its native runtime imple-

mentation 3. In these implementations, we keep application code as similar as

possible. Similar to the comparison with Deathstar Go, we show how many lines

of code (LOC) each entity requires and the percentage of non-application code

(NAC). The table shows that, for all entities, the code footprint in StateFlow is

smaller compared to native implementations. This difference is no surprise as

StateFlow requires a minimal amount of non-application code.

3Native runtime implementations are available in the evaluation repository: h t t p s : / / g i t h u b .

c o m / d e l f t d a t a / s t a t e f l o w - e v a l u a t i o n / t r e e / m a i n / a l t e r n a t i v e

https://github.com/delftdata/stateflow-evaluation/tree/main/alternative
https://github.com/delftdata/stateflow-evaluation/tree/main/alternative

Chapter 6. Evaluation 73

Client side interaction All runtimes discussed in this thesis are event-driven.

Therefore, developers implement event generation and handler code to interact

with the runtimes on the client-side. In the User entity example (Figure 6.2),

to interact with this AWS Lambda handler, one has to create an event like this:

e v e n t = { t y p e : " L O G I N _ U S E R " , F .. } and send it to the runtime via the AWS SDK.

In addition, one needs to implement code to handle the resulting events. In State-

Flow, client-side interation with the runtimes is not event-driven. Instead, devel-

opers write (asynchronous) object-oriented code. For example:

C r e a t e a u s e r

u s e r = a w a i t U s e r (" t u d e l f t " , " p a s s ")

L o g i n a u s e r

c a n _ l o g i n = a w a i t u s e r . l o g i n (" t u d e l f t " , " w r o n g _ p a s s ")

We argue that, from an application perspective, such implementations are more

intuitive than event-driven code.

Runtime portability One of the strengths of StateFlow is its portability. One

can switch between runtimes rather easily and it does not require any changes

to the application code. Switching between runtimes always requires less than

10 lines of code. In contrast, native implementations are tightly bound to their

underlying runtime and switching runtimes requires heavy refactoring.

Moreover, implementations to support new runtimes are lightweight. With the

help of StateFlow building blocks, we manage to reduce the amount of integration

code. The interface implementation for using a new runtime system with State-

Flow ranges between 87 and 190 lines of code for all supported runtime systems.

Therefore, we argue that adding new runtimes is straightforward.

6.3 System overhead

In these experiments, we identify the overhead caused by using StateFlow as

a programming model and as an integration with a runtime system. We show

how overhead changes for different conditions in stateful entities. Moreover, we

compare the overhead of StateFlow with that of the different runtimes. For this

evaluation, we do not rely on the Deathstar benchmark and implement a syn-

thetic workload. In StateFlow, we identify five distinct components which incur

overhead. These have a clear connection with the StateFlow building blocks (Sub-

section 5.1.2).

1. State serialization: StateFlow serializes the state of an entity before stor-

ing it in a persistent database or persistent state storage of the runtime.

Before and after storage, StateFlow serializes the state.

2. Event serialization: StateFlow serializes events when communicated over

a network. As a result, events need to be deserialized when entering the

runtime and serialized when it leaves the runtime.

Chapter 6. Evaluation 74

3. Routing: In several stages of the dataflow, StateFlow routes events towards

the next operator or stage. StateFlow offers a router for incoming events,

the ingress router, and a router for outgoing events, the egress router.

4. Stateful entity construction: The lifetime of a stateful entity is limited

to its invocation. Whenever a stateful entity is invoked, we first reconstruct

the entity using its (persistent) state. After construction, the correct method

is invoked, and finally, StateFlow retrieves the updated state and destructs

the instance. We consider all these actions to be overhead, apart from the

actual invocation.

5. Execution graph traversal: Methods of stateful entities might be inter-

active: they call methods of other stateful entities. StateFlow splits these

methods in its compiler pipeline, andwe execute such invocations by travers-

ing an execution graph. Whenever a function is invoked, StateFlow tra-

verses the execution graph and updates the nodes with output variables.

Moreover, the graph is traversed backwards to find previously defined vari-

ables. Both types of traversal incur overhead.

We perform all the overhead experiments at the event level. In other words, we

compute the overhead for an event entering the runtime system until it leaves the

system again. We follow the event handling logic as explained in the introduction

of Section 5.1 Note, the actual execution of a user-defined functionality does not

count towards this overhead. In general, we compute the overhead as follow:

o v e r h e a d S t a t e F Fl o w = o v e r h e a d B u i l d i n g B l o c k s

o v e r h e a d R u n t i m e = e v e n t out - e v e n t in - o v e r h e a d S t a t e F Fl o w

We consider the overhead of StateFlow, as the sum of durations for executing all

building blocks involved in the event handling. The runtime overhead is the time

difference between an event entering (e v e n t in) and leaving (e v e n t out) the system,

minus the StateFlow overhead. For some runtime systems, we can give a more

fine-grained analysis of where overhead is spent. For example, in AWS Lambda

we show how much time is spent on database interaction.

We split the overhead evaluation into two parts: without runtimes and with

runtimes. In the evaluation without runtimes, we evaluate the absolute duration

of the different StateFlow components. For the evaluation with runtimes, we

compare the overhead of StateFlow with that of the runtimes. All workloads for

these experiments are synthetic. We design three types of experiments in which

we vary with properties of stateful entities: state size, execution graph length

and interactivity.

State size The state size is the amount of data that is stored inside the instance

of a stateful entity. For our experiments we tests with sizes 50KB, 500KB, 5MB

and 50MB. An example of such an stateful entity can be found in Figure 6.3. We

simulate the state size by having a byte array of a fixed length.

Execution graph length Whenever StateFlow splits a function, we encode the

execution behavior in an execution graph. This execution graph grows as the

function has more remote function calls or control flow elements. This graph

Chapter 6. Evaluation 75

@ s t a t e F fl o w . s t a t e F fl o w

c l a s s E n t i t y 5 0 K B :

d e f F __ i n i t F __ (s e l f) :

s e l f . d a t a = b y t e a r r a y ([1] * 5 0 0 0 0)

d e f e x e c u t e (s e l f) :

p a s s

d e f F __ k e y F __ (s e l f) :

r e t u r n " e n t i t y 5 0 k b "

Figure 6.3: Stateful function with a

state size of 50KB.

@ s t a t e F fl o w . s t a t e F fl o w

c l a s s E n t i t y E x e c u t i o n G r a p h 1 0 :

d e f F __ i n i t F __ (s e l f) :

s e l f . d a t a = b y t e a r r a y ([1] * 5 0 0 0 0)

d e f e x e c u t e (s e l f ,

o t h e r : " E n t i t y E x e c u t i o n G r a p h 1 0 ") :

A d d i n g ' o t h e r ' p a r a m e t e r w h i c h

t r i g g e r s t h e f u n c t i o n t o b e s p l i t .

x = 1

i f T r u e :

p a s s

F F ...

i f T r u e :

r e t u r n x

d e f F __ k e y F __ (s e l f) :

r e t u r n " e n t i t y e x e c u t i o n g r a p h 1 0 "

Figure 6.4: Stateful function with an execution graph of a specific

length.

is traversed backward to find previously defined variables and therefore incurs

overhead. In practice, a function is only split when it has one or more function

calls. However, in this experiment, we create a non-interactive function that has

an execution graph. We can still force the compiler pipeline to split a function by

adding a stateful entity as a parameter. To increase the length of the execution

graph, we add more control flow elements as these elements trigger a split. By

having a non-interactive (i.e., no remote function calls) execution graph, execu-

tion is limited to a single stateful entity, and we isolate the impact of an increasing

execution graph. We show an example in Figure 6.4. We experiment with vari-

ous execution graph lengths: 10, 50, 100, and 200. These execution graphs are

acyclic. Finally, we fix the state size to 50KB.

Chapter 6. Evaluation 76

Interactivity In this experiment, we vary with the interactivity of a stateful func-

tion. That is, the amount of remote function calls within a function. More specifi-

cally, we create a function that calls another stateful entity in a for-loop. In other

words, the execution graph of this function is cyclic, and we vary with the number

of cycles. Note that for these graphs, we move back and forth between different

stateful entities different from the ‘execution graph length’ experiments which

are limited to a single entity. We do not have a nested execution graph, as the re-

mote functions are not split. An example of such an entity is shown in Figure 6.5.

We vary with 5, 10, 15, and 20 interactions with other stateful entities. Again, we

fixed the state size to 50KB for each entity involved.

@ s t a t e F fl o w . s t a t e F fl o w

c l a s s E n t i t y I n t e r a c t i v e :

d e f F __ i n i t F __ (s e l f) :

s e l f . d a t a = b y t e a r r a y ([1] * 5 0 0 0 0)

d e f e x e c u t e (s e l f ,

o t h e r s : L i s t [E n t i t y R e m o t e]) :

f o r o t h e r i n o t h e r s :

o t h e r . e x e c u t e (o t h e r)

r e t u r n 1

d e f F __ k e y F __ (s e l f) :

r e t u r n " i n t e r a c t i v e - e n t i t y "

Figure 6.5: Stateful entity which interacts with other stateful enti-

ties in a f o r loop.

Tomeasure overhead, we synchronously invoke the d e f e x e c u t e (s e l f) method

on the different stateful entities. This resembles sending one event to the runtime.

Then for each event, we measure the overhead of all different components. We

summarize all experiments types in Table 6.3 and repeat these experiments with

and without runtime respectively in Subsection 6.3.1 and 6.3.2.

Experiment Short description Parameters Code

State size

We compute overhead for

various state sizes and a

non-interactive stateful entity.

State size is 50KB, 500KB,

5MB or 50MB. There is

no execution graph involved.

Figure 6.3

Execution graph length

We compute overhead for

various execution graph lengths

with a non-interactive stateful

entity.

State size is fixed to 50KB.

Execution graph length is

10, 100, 500 or 1000.

Figure 6.4

Interactivity

We compute overhead for

various interactions with other

stateful entities.

State size is fixed to 50KB.

We experiment with 5, 10, 15

and 20 interactions.

Figure 6.5

Table 6.3: Overview of all experiment type for the overhead evalu-

ation.

Chapter 6. Evaluation 77

6.3.1 Overhead without runtimes

The goal of these experiments is to show the performance of StateFlow regardless

of the underlying runtime. Moreover, we show how specific components of our

system become more expensive as conditions of the stateful entities change.

Experimental setup

We execute the experiments as shown in Table 6.3 and measure the absolute du-

ration, in milliseconds, of each component in StateFlow. We perform all computa-

tion in the local runtime (Section 5.4), whichmeans that we store state in-memory.

Both state and event serialization use the pickle serializer. We perform all these

experiments on a local machine with an Intel Core i5-6600k CPU @ 3.5GHz and

32GB of RAM. To deal with performance variability, we repeat experiments 10000

times.

Results

The results for the non-interactive stateful entity with varying state size experi-

ment can be found in Figure 6.6. For the duration (y-axis), we use a logarithmic

scale as the durations span over a wide range. This figure shows the absolute

Stateful entity
construction

Routing Event
serialization

State
serialization

0.01

0.10

1.00

10.00

100.00

D
u
ra

ti
o
n
 (

in
 m

s)

50KB
500KB
5MB
50MB

Figure 6.6: Duration of components in StateFlowwith varying state

size.

duration for different state sizes grouped by the StateFlow component. We omit

the ‘execution graph traversal’ component: this function is not split and therefore

has no execution graph. As a first observation, we see that varying state sizes do

not heavily impact any components but the ‘state serialization’. Most operations

are executed in ≤ 0.1 ms. The ‘state serialization’ component duration grows for

increasing state sizes. This growth is an expected effect as serialization time is di-

rectly affected by the size of the serialized data. In essence, this graph shows the

performance of the pickle serializer 4 used by StateFlow. Although not affected

4Pickle is a built-in serialization framework in Python. Besides Pickle, StateFlow also supports

JSON and Protobuf serialization.

Chapter 6. Evaluation 78

in this experiment, the same is true for event serialization. To improve this per-

formance, developers can implement a more performant serialization framework.

Figure 6.7 shows the results for experiment with various execution graph

lengths. Again, we use a logarithmic scale for the duration (y-axis). First of all,

the length of this graph does not impact the performance of the ‘routing’, ‘en-

tity construction’ and the ‘state serialization’. These components still take ≤ 0.1

ms. Interaction with the execution graph is minimal for these components, and

its size does not influence their performance. As expected, the traversal duration

Stateful entity
construction

Routing State
serialization

Event
serialization

Execution graph
traversal

0.01

0.10

1.00

D
u
ra

ti
o
n
 (

in
 m

s)

10 nodes
100 nodes
500 nodes
1000 nodes

Figure 6.7: Duration of components in StateFlow with varying

lengths for the execution graph.

increases as the size of the execution graph grows. Looking at the code exam-

ple in Figure 6.4, the last statement returns variable x which has been defined in

the first statement. In other words, the last node requires variable x , and State-

Flow traverses the execution graph backward to find this declaration in the first

node. As mentioned before, this is a naive approach and has a negative impact

on performance. In the Chapter 7, we discuss potential improvements. Finally,

the event serialization duration also increases as the size of the graph increases

as Stateflow embeds the graph into the event.

Figure 6.8 shows the results for the experiment where a stateful entity has var-

ious interactions. This time, we show the durations on a linear scale (y-axis). We

see a linear growth for all components as the number of interactions increases: as

the number of interactions doubles, the duration also doubles. Invoking a method

x times in isolation incurs the same overhead as if one stateful entity would invoke

x other stateful entities plus the costs of execution graph traversal. To reduce

overhead, StateFlow should improve the execution graph traversal performance

and compress its size to improve event serialization.

6.3.2 Overhead with runtimes

Although the overhead experiments without runtimes indicate the performance

of StateFlow, it does not give any perspective on the relativity of this overhead

Chapter 6. Evaluation 79

Stateful entity
construction

Routing State
serialization

Event
serialization

Execution graph
traversal

0.00

2.00

4.00

6.00

8.00

D
u
ra

ti
o
n
 (

in
 m

s)

5 interactions
10 interactions
15 interactions
20 interactions

Figure 6.8: Duration of components in StateFlowwhen interacting

with other stateful functions.

in the complete system. Therefore, we repeat the experiments from the previous

section, but we also measure the overhead of the different runtimes. We consider

all implemented runtimes except Apache Beam and CloudBurst: AWS Lambda,

Flink Statefun, PyFlink, and Flink JVM. We exclude Apache Beam and CloudBurst

because they both suffer significant bugs to be deployed outside a local IDE 5.

Experimental setup

Apart from AWS Lambda, we deploy all runtimes in a local setup using minimal

resources. Most runtimes use batching mechanisms or parallel computation to

improve performance. For example, Statefun sends events from the Flink cluster

to the remote Python functions using batches. In addition, AWS Lambda auto-

matically parallelizes the execution of incoming events, which might influence the

performance of components like DynamoDB. As the goal of these experiments is

to identify the overhead of single events, we try to avoid these mechanisms. We

do this by sending events to the runtimes synchronously with intervals of 1 second

to avoid batching. We have access to an Intel Core i5-6600k CPU @ 3.5GHz and

32GB of RAM on the local machine. A downside of these setups is that some re-

quire more resources than others. For example, the streamings systems require

a local Kafka cluster, whereas the FaaS setup with AWS Lambda does not. As a

result, StateFlow performance is slightly different for each setup. Therefore, we

also time and report the StateFlow overhead again for these experiments.

AWS Lambda We configure AWS Lambda with 1024MB of memory and a max

duration of 6000ms. We configure DynamoDB to be in on-demand mode, allowing

it to scale with the number of reads and writes. Finally, AWS Lambda functions

are invoked from the client using AWS Gateway. We do not include the overhead

5Beam suffers a bug with Kafka such that no records are received: h t t p s : / / i s s u e s . a p a c h e .

o r g / j i r a / b r o w s e / B E A M - 1 1 9 9 8 . Similarly, CloudBurst cannot be deployed as all Docker images

are broken and out-of-date h t t p s : / / g i t h u b . c o m / h y d r o - p r o j e c t / c l o u d b u r s t / i s s u e s / 6 2 .

https://issues.apache.org/jira/browse/BEAM-11998
https://issues.apache.org/jira/browse/BEAM-11998
https://github.com/hydro-project/cloudburst/issues/62

Chapter 6. Evaluation 80

of AWS Gateway in this experiment as we focus on the overhead inside the run-

times. In AWS Lambda, we explicitly control key locking and interaction with

state, as these are function calls in the Lambda handler. Therefore, we measure

the overhead of these components individually. We consider reading and writing

of state as two separate overhead components, whereas we combine the overhead

of key locking and unlocking as key unlocking is often very fast.

Statefun, PyFlink and Flink JVM Setups for these three runtimes are rela-

tively similar, and all rely on an Apache Flink cluster. We deploy a single JobMan-

ager and a single TaskManager with only one task slot. We configure both the

Job and TaskManager to use 1GB of memory and have access 1 CPU core. We

use such a minimal setup since we measure overhead for single events and do

not require parallelism. Finally, we use a single-broker local Kafka setup to facil-

itate communication from the client to the runtimes. For Statefun, we also run

a single-threaded web server in which we execute the remote Python functions.

For the Flink JVM setup, we configure AWS Lambda with 1024MB of memory and

a max duration of 6000ms.

For these runtimes, it is impossible to measure overhead for the stateful entity

invocation steps as presented in Section 6.3. For example, reading and writing

state is abstracted away in these runtimes, and without adjusting their internal

code, it is impossible to measure the overhead of these operations individually.

Moreover, due to the nature of streaming systems, there is no explicit locking

of keys. Instead, events for keyed operators are executed sequentially for equal

keys. This simulates the effect of key locking. Similarly, reads and writes to the

state are abstracted away and cannot be measured individually. Therefore, we

measure the overhead of the complete system rather than single components. A

schematic overview for this approach can be found in Figure 6.9.

time

Stateflow Streaming
framework

Streaming
framework

Figure 6.9: Schematic overview on how overhead in the runtimes

PyFlink, Statefun and Flink JVM is computed.

To measure overhead, we attach a timestamp whenever the client sends an

event to the streaming framework. Whenever this event arrives at the stateful

operator where StateFlow handles the event, we compute the time elapsed us-

ing the previously attached timestamp. When StateFlow finishes processing the

event, a new current timestamp is attached to the event. Finally, when the event

arrives back at the client, the elapsed time is computed again. To compensate

for communication from client to runtime (and the other way around), we deduct

the Kafka latency twice. We consider this a constant latency and compute it by

synchronously sending a message to Kafka and immediately reading that same

message. We repeat this process 10000 times to get a realistic estimate. For a

local Kafka setup, this resulted in single-trip latency of 7.18ms. In the case of

Chapter 6. Evaluation 81

PyFlink and Flink JVM, events cycle through Kafka whenever a stateful entity in-

teracts with another entity. We do not compensate for these interaction cycles.

These cycles are a limitation of these runtimes and therefore count towards their

overhead.

For these setups, we repeat the experiments from Subsection 6.3.1 presented

in Table 6.3. Therefore we again consider three types of experiment: the over-

head of having a stateful entity with various state sizes, execution graph lengths,

and the number of interactions. The only difference is that for the state size ex-

periment, we choose state sizes of 50KB, 100KB, 150KB, and 200KB. The reason to

modify these sizes is because DynamoDB, part of the AWS Lambda setup, restricts

the size of single data items. In the experiments without runtime we compute

overhead of individual StateFlow components. For this experiments with run-

times, we consider the total overhead of StateFlow by summing the overhead of

all these components. Contrary to the experiments without runtimes, we only re-

peat these experiments a 100 times. On the other hand, we do use the same class

definitions for the stateful entities and similar client-side experimental code.

Results

Figure 6.10 shows the results for the experiment with various state sizes. Fig-

ure 6.10a shows the overhead for each runtime, whereas Figure 6.11b shows the

breakdown of each component in AWS Lambda. We do not have such a break-

down for the other runtimes as we can not compute overhead of its components

individually. As mentioned before, depending on the setup, StateFlow performs

slightly differently in each runtime. Therefore we report the overhead of State-

Flow separately for each runtime. For Figure 6.10a, we use a logarithmic y-scale

as the duration results have a wide range.

Figure 6.10a shows that all runtimes, apart from Flink JVM, are not hugely

affected by increasing the size of the state. For the Flink JVM setup, we make

two observations: 1) StateFlow’s overhead is generally higher than StateFlow’s

overhead in other runtimes, and 2) we see a growth in StateFlow and Flink JVM

durations as the state size increases. We attribute the first observation to the

increase in event serialization costs. In the Flink JVM setup, we send the state

and the event to the remote Lambda function. After computation in the remote

AWS Lambda function, the updated state and event are sent back to the Flink

cluster. This communication requires serialization and therefore increases these

StateFlow costs. The second observation also relates to sending state to the re-

mote AWS Lambda function. As the state increases, not only serialization but also

communication costs increase. We attribute serialization costs to StateFlow and

communication costs to the Flink JVM setup. Therefore overhead grows for both

these components as the state size increases.

In the other runtimes, we do not see such effects. For the StateFlow com-

ponent, the reason is that other runtimes make less use of event and state seri-

alization. Each runtime uses the StateFlow building blocks differently, resulting

in less or more overhead. For example, the Flink JVM uses event serialization

twice to send events to AWS. Furthermore, we argue that, in this experimental

setup, state sizes might be too small to see any significant effect. The results from

the experiment without runtime (Figure 6.6), where we used larger state sizes,

back up this hypothesis. In the Flink JVM setup, the overhead of increasing state

Chapter 6. Evaluation 82

Stateflow AWS
Lambda

Stateflow Statefun Stateflow PyFlink Stateflow Flink
JVM

0.10

1.00

10.00

50.00
100.00
200.00

D
u
ra

ti
o
n
 (

in
 m

s)
50KB
100KB
150KB
200KB

(a) Overhead for each runtime: AWS Lambda, Statefun, PyFlink and Flink JVM.

Read state Write state Key locking AWS Lambda
total

0

10

20

30

40

50

60

D
u
ra

ti
o
n
 (

in
 m

s)

AWS Lambda components

50KB
100KB
150KB
200KB

(b) Overhead breakdown for AWS Lambda.

Figure 6.10: Absolute duration of runtime overhead, including

StateFlow, for varying state sizes.

size is simply amplified as it requires twice the amount of serialization and costly

communication over the internet (i.e., from the local machine to AWS Lambda).

PyFlink and Flink JVM have the highest overhead of all runtimes. Not seen in

this figure, but the most significant part of the overhead in Flink JVM runtime is

communication to AWS. More specifically, ≤ 3% is non-communication overhead.

PyFlink is slower than most other runtimes because it is a new Python integration

of Flink with several performance issues 6.

In Figure 6.10b we do see increase of state read and write overhead when

the size increases, but this increase does not hold for all state sizes. Moreover,

reading and writing state has similar duration and key locking is the most expen-

sive operation. The latter involves multiple interactions with DynamoDB making

it more complex than just reading and writing state.

To put all overhead into perspective, Table 6.4 shows the relative overhead of

StateFlow in each runtime. It shows that for all state sizes, StateFlow contributes

6For example, in Flink version 1.13, Python operators are not chained: h t t p s : / / i s s u e s .

a p a c h e . o r g / j i r a / b r o w s e / F L I N K - 2 3 6 1 6

https://issues.apache.org/jira/browse/FLINK-23616
https://issues.apache.org/jira/browse/FLINK-23616

Chapter 6. Evaluation 83

to less than ≤ 1% of the total overhead.

State size

50KB 100KB 150KB 200KB

Stateflow %

of AWS Lambda
0.65% 0.62% 0.34% 0.54%

Stateflow %

of Statefun
0.47% 0.42% 0.38% 0.68%

Stateflow %

of PyFlink
0.09% 0.13% 0.15% 0.08%

Stateflow %

of Flink JVM
0.58% 0.38% 0.39% 0.36%

Table 6.4: Relative overhead of StateFlow in the different runtimes

for various state sizes.

In Figure 6.11 we present the results for experiments where we vary with

the length of the execution graph. Figure 6.11a shows the results for each

runtime, whereas Figure 6.11b shows a breakdown for AWS Lambda. Once again,

StateFlow is presented per runtime due to slight performance differences. For

Figure 6.11a a logarithmic y-scale is used. Unfortunately, the experiment could

not be executed with PyFlink for 500 and 1000 nodes. Due to a bug in PyFlink,

classes with a lot of control flow elements resulted in a serialization exception.

Therefore, these results are missing in the figure and table.

For the StateFlow component, regardless of the runtime, we see an increase

in overhead as the execution graph length increases. This result is similar to that

of the experiment without runtime (Figure 6.7). For the runtime overhead, we

only see an increase in the Flink JVM setup. In this setup, the highest cost is

sending events to and from AWS Lambda. We assume that a larger event size has

a higher latency to AWS. StateFlow embeds the execution graph into an event,

and therefore we can see this increase in the runtime overhead. All other run-

times are barely affected because their setup is different, similar to the state size

experiment. In general, runtimes do not directly deal with the execution graph

and are not affected by its length. If we look at the detailed overhead of AWS

Lambda in Figure 6.11b, we see this confirmed. Finally, both PyFlink and Flink

JVM have the highest overhead for the exact same reasons as mentioned in the

state size experiment.

In Table 6.4, we see the relative overhead of StateFlow as part of the total over-

head. As the execution graph increases, StateFlow plays a more significant role

in the total overhead. For all configurations, StateFlow is responsible for ≤ 32%

of all overhead. However, these results do confirm that the execution graph ap-

proach and its implementation is one of the weak spots in StateFlow. We discuss

this in more detail in Chapter 7.

Figure 6.12 shows the results for the experiments where we vary with the

number of interactions. Figure 6.12a shows overhead of the runtimes, whereas

Figure 6.12b shows a breakdown specifically for AWS Lambda. For each runtime

the StateFlow performance is shown, due to performance differences. Finally, a

logarithmic scale is used for the y-axis of Figure 6.12a.

Chapter 6. Evaluation 84

Stateflow AWS
Lambda

Stateflow Statefun Stateflow PyFlink Stateflow Flink
JVM

0.10

1.00

10.00

50.00

100.00

200.00
D

u
ra

ti
o
n
 (

in
 m

s)

10 nodes
100 nodes
500 nodes
1000 nodes

(a) Overhead for each runtime: AWS Lambda, Statefun, PyFlink and Flink JVM.

Read state Write state Key locking AWS Lambda
total

0

10

20

30

40

50

D
u
ra

ti
o
n
 (

in
 m

s)

AWS Lambda components

10 nodes
100 nodes
500 nodes
1000 nodes

(b) Overhead breakdown for AWS Lambda.

Figure 6.11: Absolute duration of runtime overhead, including

StateFlow, for various execution graph lengths.

Execution graph length

10 100 500 1000

Stateflow %

of AWS Lambda
1.12% 4.55% 16.49% 29.74%

Stateflow %

of Statefun
1.48% 6.57% 31.8% 29.29%

Stateflow %

of PyFlink
0.35% 1.89% - -

Stateflow %

of Flink JVM
0.89% 1.74% 5.19% 9.29%

Table 6.5: Relative overhead of StateFlow in the different runtimes

for various execution graph lengths.

The main takeaway from this figure is that interactive stateful entities are ex-

pensive. The performance is in the order of seconds for most runtimes, whereas

Chapter 6. Evaluation 85

Stateflow AWS
Lambda

Stateflow Statefun Stateflow PyFlink Stateflow Flink
JVM

1.00

10.00

100.00

1000.00

5000.00
D

u
ra

ti
o
n
 (

in
 m

s)
5 interactions
10 interactions
15 interactions
20 interactions

(a) Overhead for each runtime: AWS Lambda, Statefun and PyFlink.

Read state Write state Key locking AWS Lambda
total

0

200

400

600

800

1000

1200

1400

D
u
ra

ti
o
n
 (

in
 m

s)

AWS Lambda components

5 interactions
10 interactions
15 interactions
20 interactions

(b) Overhead breakdown for AWS Lambda.

Figure 6.12: Absolute duration of runtime overhead, including

StateFlow, for varying amount of interactions O2.7-2.9.

this experiment still excludes end-to-end communication latency. State in stream-

ing systems is partitioned, and for an entity to invoke another entity, an event

needs to be re-routed to the corresponding (streaming) operator. In PyFlink and

Flink JVM, we cycle to another operator in the streaming dataflow graph by in-

gesting the event back into this graph via a Kafka source. Repartitioning events

is an expensive operation, mainly because streaming systems are optimized for

acyclic graphs. Similarly, in the AWS Lambda runtime, we have to read, write

and lock state from DynamoDB sequentially. Interestingly, Statefun is an order

of magnitude faster than all other runtimes. It indicates that the internal routing

system for Statefun, which StateFlow relies on, is much more optimized. PyFlink

and Flink JVM have similar overheads, although there is no apparent reason for

that. Again, the Flink JVM overhead mainly consists of communication latency to

AWS. We believe that there is still much room for improvement in the runtimes

and StateFlow. We discuss these extensively in Chapter 7.

Table 6.6 shows the relative overhead. For all runtimes but Statefun, State-

Flow is responsible for ≤ 1% of the overhead. With Statefun as a runtime, State-

Flow takes up to ≈ 13% of all overhead. StateFlow’s share in the total overhead

Chapter 6. Evaluation 86

is roughly the same for the first three configurations (i.e., 5, 10, and 15). This

indicates that both Statefun and Stateflow have the same overhead growth for

these parameters. However, this trend seems to break for 20 interactions.

Number of interactions

5 10 15 20

Stateflow %

of AWS Lambda
0.60% 0.59% 0.58% 0.56%

Stateflow %

of Statefun
9.06% 9.62% 9.45% 12.90%

Stateflow %

of PyFlink
0.17% 0.17% 0.20% 0.22%

Stateflow %

of Flink JVM
0.76% 0.80% 0.85% 0.85%

Table 6.6: Relative overhead of StateFlow in the different runtimes

for various interactions.

6.4 Performance

In the performance experiments, we evaluate StateFlow and its runtimes using

the DeathStar benchmark (Section 6.1). Note that StateFlow is not a runtime sys-

tem and only provides functionality at the event-level. In other words, StateFlow

is not responsible for how the complete system scales and deals with increasing

workloads. Therefore, these experiments are mainly to show how these runtime

systems scale for general-purpose cloud applications. On the other hand, some

design decisions in StateFlow, like its stateful entities, did influence the architec-

tures of the underlying runtimes.

Using the DeathStar application, we design two types of experiments. First,

a low-throughput experiment where we query each endpoint in isolation. We

benchmark each endpoint for 30 seconds with 10 requests per second. To deal

with performance variability, we repeat the experiment three times. In the second

experiment, we query all endpoints and gradually increase the throughput.

We experiment with 200, 300, 400, 500, 600, 700 and 800 requests per second

for 60 seconds. We follow the DeathStar setup and distribute the requests. More

specifically, 60% of the requests are to the /search endpoint, 39% to the /recom-

mend endpoint, and only 0.5% to the /user and /reserve endpoint. This request

distribution attempts to mimic a real-life scenario. To perform the benchmark,

we rely on the wrk2 tool 7. wrk2 is an HTTP benchmarking tool and produces

a constant throughput load for a specific time. After benchmarking, it outputs a

detailed report on the latency. For all experiments, we report end-to-end latency

in milliseconds. We define this end-to-end latency as the time it takes to send

the HTTP request and retrieve its result. For these experiments, we took inspira-

tion from the evaluation done by the authors of the Beldi framework Zhang et al.

[2020].

7
h t t p s : / / g i t h u b . c o m / g i l t e n e / w r k 2

https://github.com/giltene/wrk2

Chapter 6. Evaluation 87

6.4.1 Experimental setup

In the setup, we distinguish between the frontend and the runtime. The setup for

the frontend is equal for all experiments. However, the setup per runtime differs.

Again, we exclude Apache Beam and CloudBurst as they suffer bugs preventing

deployment. This time, we also exclude PyFlink from the increasing throughput

experiment. We do include PyFlink for the low-throughput experiment. In pre-

liminary performance experiments, PyFlink underperformed heavily, and most

benchmark requests timed out. We dedicate this poor performance to the imma-

turity of the PyFlink framework. We believe that PyFlink’s performance will be

improved infuture releases. Therefore in these experiments, we include the run-

times: AWS Lambda, Flink Statefun, PyFlink (only low-throughput experiment)

and Flink JVM.

We consider the frontend to consist of the benchmarking tool wrk2 and a set

of HTTP servers. Figure 6.13 gives an overview. The wrk2 benchmark tool runs

on a single AWS machine configured with 8 CPUs and 32GB of RAM. An AWS

load balancer distributes requests over the different HTTP servers. Each HTTP

instance serves the different endpoints in StateFlow’s FastAPI integration. The

HTTP instances relay the events to the runtime. Depending on the runtime, this is

an event to Kafka topic or a direct request to AWS Lambda. These HTTP instances

are stateless, and we scale them to 20 replicas. We configure each instance with 1

CPU and 1GB of RAM. To orchestrate these deployments, we rely on a Kubernetes

cluster. We configured the frontend services with enough resources such that

they never become the bottleneck. To prevent cold starts, we run a part of the

workload before the experiments.

AWS L7 LoadBalancer

wrk2

AWS machine

HTTP server
#1

HTTP server
#2

HTTP server
#20���

Kubernetes
cluster

http

target
runtime

Figure 6.13: Generalized view of the ’frontend’ architecture for the

experiments.

AWS Lambda The setup for AWS Lambda is relatively simple. The HTTP in-

stances directly invoke AWSLambda. Amazon handles distribution over the differ-

ent instances and auto-scales whenever necessary. We set the max concurrency

of AWS Lambda at 1000. Moreover, we configured DynamoDB in on-demand

Chapter 6. Evaluation 88

mode which ensures auto-scaling. Each Lambda instance has 1024MB and a max-

duration of 6000ms. We disabled key-locking as preliminary experiments showed

it had detrimental effects on the performance.

Flink Statefun Figure 6.14 visualizes the setup we use for the Statefun run-

time. The frontend setup (Figure 6.13) is minimized to one block in this figure.

The frontend communicates with the runtime via Kafka. We configure a Kafka

cluster in Confluent Cloud 8. We create all topics in the Kafka cluster with 40 par-

titions. Each TaskManager has access to 8GB of RAM and 2CPUs. For the Apache

Flink cluster, we deploy 8 TaskManagers with five slots and set parallelism to 40.

Finally, we deploy 20 HTTP servers for the remote Python execution. Each server

is configured with 1GB of RAM and 1 CPU. Requests to these instances are load-

balanced by an AWS load balancer. For all services, we use the same Kubernetes

cluster as for the frontend. However, we force the Statefun remote servers and

the Flink cluster to reside on different physical servers than the HTTP instances.

frontend

Flink cluster

JM

TM TM TM TM

Statefun HTTP
server #1

AWS L7 LoadBalancer

Statefun HTTP
server #20���

Kubernetes
cluster

Kafka cluster

Figure 6.14: Experimental setup for StateFun and (partly for)

PyFlink and Flink JVM.

PyFlink For PyFlink we use the exact same setup as for Statefun (Figure 6.14).

However, PyFlink does not rely on remote Python functions and performs compu-

tation directly in its TaskManagers. Therefore, the load balancer and the HTTP

servers are not part of PyFlink’s setup.

Flink JVM Similar to Statefun and PyFlink, we use the Flink cluster for the

Flink JVM setup. However, the Flink JVM setup outsources its computation to

AWS Lambda. Looking at Figure 6.14, the TaskManagers send requests to AWS

Lambda rather than local HTTP servers. We configure AWS Lambda with 1024MB

of RAM, a max-concurrency of 1000, and a max-duration of 6000ms.

8Confluent offers Kafka as a cloud service: h t t p s : / / w w w . c o n f l u e n t . i o / c o n f l u e n t - c l o u d /

https://www.confluent.io/confluent-cloud/

Chapter 6. Evaluation 89

6.4.2 Results

We show the results for the experiment with low-throughput and isolated end-

points in Figure 6.15. This figure shows the average end-to-end latency for each

endpoint with ten requests per second. Note that a request to an endpoint might

involvemultiple calls to stateful entities and therefore the x-axis shows the amount

of calls rather than the number of HTTP requests. For example, the /search end-

point involves nine calls.

login search reserve recommend
HTTP endpoint

0

100

200

300

400

500

600

700

800

La
te

nc
y

(in
 m

s)

5873 ms

AWS Lambda
Statefun
PyFlink
Flink JVM

Figure 6.15: Average latency per DeathStar endpoint with 10rps.

The figure shows that AWS Lambda has the lowest latency for all the end-

points. Disabling key-locking improves the performance drastically. On the other

hand, AWS Lambda does not give us any guarantees compared to the Flink se-

tups. Whereas Statefun, PyFlink, and Flink JVM guarantee atomicity for single

keys, AWS Lambda does not. The lack of atomicity is no issue for the read-only

entities, but write entities might experience race conditions. In the hotel service

scenario, the AWS Lambda setup might result in doubly booked rooms. Similarly,

Flink setups provide us with an exactly-once guarantee. Such a guarantee does

not exist for AWS Lambda. The performance differs the most for the /search end-

point, and AWS Lambda outperforms the others by a large margin. The reason

for that is that AWS Lambda handles split functions in a single Lambda invoca-

tion. Split functions require moving back and forth between operators at different

(physical) locations in all other setups.

Interestingly, Flink JVM performs better than the Statefun runtime. In the

overhead experiments, we saw Statefun outperform Flink JVM on all occasions.

These overhead experiments also showed that the most significant overhead in

the Flink JVM is the latency to AWS Lambda. In the performance experiments,

however, the setup is much different. Flink JVM is deployed in an AWS environ-

ment rather than a local machine. Moreover, both AWS Lambda and all services

are deployed in the same (physical) region. This setup reduces the inter-service

latency and explains the improved performance of Flink JVM. Finally, PyFlink has

the worst performance, especially for the /search endpoint. Again, we attribute

this to the immaturity of the PyFlink integration.

Figure 6.16 shows the results for the mixed workload with gradually increas-

ing throughput. At the x-axis, we show the throughput as calls to stateful entities

Chapter 6. Evaluation 90

rather than requests per second to the frontend. We argue that this gives a more

realistic impression of the actual throughput. For example, 100 requests to the

frontend result in 620 calls to stateful entities. We did not execute this experiment

for PyFlink. The figure shows the average and 99th-percentile latency.

500 1000 1500 2000 2500 3000 3500 4000 4500
Throughput (calls/s)

0

250

500

750

1000

1250

1500

1750

2000

La
te

nc
y

(in
 m

s)

AWS Lambda 50p
AWS Lambda 99p
Statefun 50p
Statefun 99p
Flink JVM 50p
Flink JVM 99p

Figure 6.16: Average and 99th percentile latency for a mixed

DeathStar workload with increasing throughput.

We conclude that AWS Lambda has the best performance, which does not de-

grade for an increased workload. With AWS Lambda autoscaling capabilities, we

get resources up to 1TB of memory and around 580 CPUs9. At the same time, Dy-

namoDB scales automatically with the amount of reads and writes. The resources

for all other setups are much more scarce and static (i.e., no autoscaling). There-

fore, one could argue that setups are not comparable in terms of resources. In

addition, AWS Lambda’s performance is at the cost of an exactly-once guarantee

and atomicity for equal keys.

In the Statefun setup, we see results deteriorate after 3000 calls per second

with a 99th percentile latency exceeding 2 seconds. For the Flink JVM setup, we

see the latency increase more gradually with the increased throughput. However,

we do not observe the same performance drops as in the Statefun setup. In the

presented results, it is hard to argue why results deteriorate for specific runtimes.

We argue that a more extensive evaluation is necessary to identify bottlenecks in

each runtime. For example, an overhead evaluation for bigger workloads (i.e.,

higher throughput) should reveal potential shortcomings. At the same time, we

believe StateFlow is not the cause of the lack of scalability as it only operates at

the event level.

9In AWS Lambda, one configures the maximum RAM per instance, and AWS allocates CPUs

proportional to the amount of RAM. According to AWS, an 1024MB instance has access to 0.58

CPUs. With a max-concurrency of 1000, this is equal to 580CPUs

91

Chapter 7

Discussion

In this chapter, we discuss the key findings, implications, and limitations of State-

Flow. Furthermore, we present the related work. To structure the discussion, we

divide this chapter into three parts. First, we discuss and interpret the evaluation

results in-depth in Section 7.1. Second, we discuss the contributions of this thesis

in Section 7.2. Finally, we compare StateFlow to existing work in Section 7.3.

7.1 Experimental results

In Chapter 6, we present a thorough evaluation of StateFlow. In this evaluation,

we primarily focus on the expressiveness of the programming model, the over-

head of StateFlow, and performance for runtime systems. We acknowledge that

this evaluation does not cover all aspects of StateFlow. For example, we omit a

performance analysis of the compiler pipeline. We argue that such an evaluation

has a low priority, as the compiler only has one-time costs. In other words, the

compiler only incurs initialization costs on the runtime and client systems. We

consider these initialization costs negligible.

Similarly, we did not evaluate the client-side overhead in isolation similar to

that of the runtimes. However, we know that the client-side overhead is minimal

by design. StateFlow performs no computation at the client-side and only con-

structs, sends, and receives events. Therefore, we argue that such an evaluation

does not offer valuable insights.

The rest of this section elaborates on the key findings from the conducted

experiments.

Expressiveness In the expressiveness evaluation, we compare the DeathStar

benchmark implementation in StateFlow to a native implementation in the sup-

ported runtime and the original Go implementation. We show that StateFlow’s

implementation requires the least amount of code and close to no non-application

code. We conclude that StateFlow excels with its programming model in two

ways: 1) developers only have to focus on application logic, while 2) developers

still have control over operational aspects like the serialization framework. In ad-

dition, as StateFlow compiles code to an IR, switching runtimes does not require

refactoring application logic. This runtime decoupling prevents a vendor lock-in

not only with respect to cloud providers but also technologies like Apache Flink.

It empowers developers and organizations to select a runtime that matches their

features and even pricing preferences. If StateFlow does not support a preferred

Chapter 7. Discussion 92

runtime yet, integration requires little effort as all the building blocks already

cover most functionality.

StateFlow requires developers to implement all application logic following the

object-oriented paradigm. Additionally, all runtime code must be encapsulated

in class definitions. One might argue this is a rather restrictive model, but we

argue object-oriented code is an appropriate abstraction for large-scale applica-

tions with the potential to almost-infinitely scale. In this argument, we follow the

reasoning of the work by Helland [2016]. Uniquely-identifiable entities are 1)

an intuitive scale-agnostic programming abstraction for applications and 2) scale

naturally by partitioning over multiple machines.

Since StateFlow decouples the programming interface and runtime system,

one might miss out on runtime features. For example, Flink Statefun supports

sending delayed events to stateful functions. StateFlow focuses on general-purpose

large-scale applications, but some use cases require tailored solutions. In this

instance, a developer might require a native implementation rather than using

StateFlow. On the other hand, we envision that StateFlow supports more features

embedded into the building blocks in the future. Features such as monitoring,

logging, and even consistency models like multi-entity transactions.

Finally, StateFlow does not support all Python language constructs in the class

definitions. As a result, developers cannot write arbitrary code. For example, the

compiler pipeline does not support exception handlers (i.e., try/catch). In Sec-

tion 4.5, we elaborate on all missing constructs. We argue that the existing sup-

port provides workarounds for unsupported constructs, and therefore, the pro-

gramming model covers most implementations. Moreover, supporting more con-

structs is primarily an implementation effort, and we consider this future work.

Overhead In the overhead experiment, we evaluate StateFlow with and without

runtime against experiments with different variables: various state sizes, various

execution graph lengths, and different number of interactions.

Looking at StateFlow in isolation, it performs in the order of nanoseconds for

routing and entity construction, reducing overhead to a minimum which is negli-

gible in practice. The bottlenecks of StateFlow are its serialization and execution

graph traversal which operate in the order of milliseconds. We use serialization

for event communication and state storage, whereas the execution graph stores

an execution plan for split functions.

Currently, the execution graph is a somewhat naive and unoptimized solution.

We see multiple paths for improvement and envision this as future work. First,

we argue for modifying the function splitting algorithm such that we only split

(nested) control flow if it contains a remote call. Currently, we split for all control

flow nodes (e.g., i f or f o r AST nodes) to simplify implementation. Only split-

ting for remote calls reduces the number of nodes in the execution graph and

optimizes its performance. A smaller execution graph also improves serialization

performance as it reduces the size of the graph.

Moreover, we see room for optimization in the execution graph traversal ap-

proach. At the moment, we traverse the graph backward to find previously de-

clared variables. This backward traversal is a greedy approach with a time com-

plexity of O(n) where n is the length of the execution graph. Instead, we envision

having data dependency edges in the execution graph. These edges encode which

Chapter 7. Discussion 93

nodes have a data dependency and reduce the traversal to constant timeO(1). We

can deduce these dependencies in the compiler pipeline by building a definition-

use chain 1.

Another naive aspect of the execution graph is its storage of all usage and

definitions variables. We do not analyze if subsequent nodes in the execution

graph require any of the defined variables, and we simply store all. A liveness

analysis in the compiler pipeline could identify unused variables in subsequent

nodes and prevent storing them after function execution. Such an approachwould

optimize the execution graph by reducing its size and improving the serialization

speed.

Finally, the execution graph is inherently sequential, and parallelization is not

straightforward. For example, consider a function with a for-loop in which we call

remote functions. In some instances, we could optimize this for-loop by execut-

ing each iteration in parallel. In theory, the dataflow model allows this kind of

parallelization but is limited by the execution graph. To parallelize this execution

graph, we require some sort of synchronization point. In terms of consistency and

fault-tolerance, such synchronization is challenging to implement.

We argue that StateFlow has little control over the serialization overhead. In

these experiments, we use Python’s built-in pickle for both the event and state

serialization and rely on its performance. To improve this performance, we rec-

ommend experimentation with other (faster) serialization frameworks like ser-

pyco 2. As StateFlow integrates with runtimes using building blocks, changing

the serializer is trivial.

If we compare StateFlow’s overhead to that of the runtimes, we see it is neg-

ligible for most configurations: StateFlow is only responsible for less than 1% of

the total overhead. This minimal overhead shows that StateFlow does not sac-

rifice much performance in favor of its programming and execution model. The

exception to this finding is the execution graph traversal experiment, but we see

many potential improvements as mentioned above. Still, at its worst, StateFlow

is only responsible for less than 32% of the total overhead.

Performance In the performance experiments, we benchmark the runtime sys-

tems against the DeathStar workload. We demonstrate how end-to-end latency

changes as the throughput increases. In other words, we evaluate the scalability

of the complete system. StateFlow operates at the event level and contributes

a constant overhead. This overhead does not change as the system scales, and

therefore, these experiments show the performance of underlying runtimes.

The DeathStar benchmark is a microservice benchmark and does not neces-

sarily fit the concept of stateful entities (i.e., applications with partitioned state).

For example, some components in the benchmark require access to the global

state. Since dataflow systems partition their state across all operators, access to

the global state is not trivial. As a solution, we use read-only replicas to distribute

1A definition-use chain is a data structure storing a definition and all usage variables reach-

able from that definition. This chain is a common technique used in static code analysis, used for

example, for compiler optimizations Stoltz et al. [1994].
2There exist many Python serialization frameworks, this benchmark shows that serpco is among

the fastest: h t t p s : / / v o i d f i l e s . g i t h u b . i o / p y t h o n - s e r i a l i z a t i o n - b e n c h m a r k /

https://voidfiles.github.io/python-serialization-benchmark/

Chapter 7. Discussion 94

the load. However, we argue that a benchmark with a stateful and partitioned ap-

plication would have been a better fit. Unfortunately, to the best of our knowledge,

no public benchmark exists at this moment.

The results of the performance experiment show that AWS Lambda has the

lowest and most consistent latency, whereas Flink and Statefun show increased

latency for higher throughput. Nevertheless, it is hard to directly compare run-

time systems as each has its own features and characteristics. At the same time,

it is hard to reason why performance deteriorates, and we argue that more exten-

sive evaluation is necessary to identify bottlenecks. In particular, combining an

overhead experiment and performance experiment might give fruitful insights.

Although reasoning about specific bottlenecks is hard, we still present some ten-

tative conclusions and recommendations regarding the runtime system based

on our evaluation. Again, we divide the runtime systems into two categories:

dataflow systems and (S)FaaS solutions.

Compared to AWS Lambda, dataflow setups like Apache Flink have a poorer

performance. On the other hand, Flink offers guarantees like exactly-once and

atomicity for single keys, which AWS does not. The benchmark results did not

reflect such features. At the same time, the Python implementations of dataflow

systems are immature and contain bugs. We expect that, over time, these Python

API’s will improve.

Furthermore, we argue that dataflow systems are a good fit for general-purpose

cloud applications in terms of consistency guarantees, fault tolerance, and par-

allelization of computation. In terms of performance, there is still room for im-

provement, and we propose two specific research directions. First, we argue the

lack of querying the global state in dataflow systems prevents the adoption

of a more generalized workload. The lack of a global state forced us to change

the DeathStar benchmark slightly and use read-only replicas. We envision that,

at runtime, operators in dataflow systems should be able to query the global state

such that the system behaves similarly to a database. We already see efforts

made by frameworks such as Apache Flink by allowing state access from outside

the compute cluster, but this is still premature and experimental. Second, we ar-

gue for optimizing operator-to-operator communication in dataflow systems.

We require this communication between operators to support split functions. Cur-

rently, it requires roundtrips through external systems like Apache Kafka to make

this work. Results in Figure 6.15 show that this approach is costly. Dataflow sys-

tems are built around directed acyclic execution graphs, and many features such

as fault tolerance (i.e., checkpointing) rely on this principle. Therefore, adding cy-

cles in the stateful dataflow graph is not straightforward. Nevertheless, we think

an effort should be made to allow cycles, for example, by supporting forwarding

events directly from a dataflow sink to a source rather than cycling through Kafka.

We observe the best overall performance for FaaS solutions like AWS Lambda

(i.e., cloud functions), but at the cost of guarantees. Thesemissing guarantees are

not reflected in this benchmark. For example, AWS Lambda does not offer fault-

tolerance nor delivery guarantees. The lack thereof might result in an unreliable

application. Moreover, DynamoDB, which is part of the AWS Lambda setup, does

not natively support key locking. As a result, execution for equal stateful entities

is not atomic and might result in race conditions. We attempted to use an external

library for key locking on DynamoDB, but preliminary experiments showed this

Chapter 7. Discussion 95

library does not scale.

7.2 Remaining contributions

In this section, we highlight all the contributions from this thesis and discuss

the limitations and implications which are not covered by the evaluation results

(Section 7.1).

Compiler pipeline In StateFlow’s compiler pipeline, we transform object-oriented

code to event-driven stateful dataflow graphs. The compiler analyzes each anno-

tated class’s AST and derives several static properties like method names, pa-

rameters, and instance variables. Moreover, we transform functions with remote

invocations to a continuous-passing style form to support event-driven runtime

architectures.

The major advantage of such a compiler pipeline is that developers write

object-oriented Python code regardless of the underlying execution engine (i.e.,

runtime). Furthermore, it abstracts away from operational aspects, such as seri-

alization, allowing developers to focus solely on business logic. Finally, develop-

ers enjoy the guarantees and features of a runtime without explicitly integrating

these in the application code.

We reflect on two limitations of this compiler pipeline. First, as mentioned

before, it restricts a developer in its programming model: it cannot compile arbi-

trary Python code. To resolve this, we envision the compiler to be extended, cov-

ering more Python constructs. Second, compiling code to a completely different

representation and transforming code is not always transparent for a developer.

As a result, reasoning about code and debugging code becomes more difficult.

We try to improve this transparency by offering utilizations tools to visualize the

compiled code. For example, we visualize the state machine of a split function

which shows how the code is split (see Figure 4.17).

Finally, in this work, we do not formalize and prove any of the code transfor-

mations. Ideally, we prove that a split function has the same semantics as the

original function. Instead, we use an empirical evaluation to assess its correct-

ness. Formalizing and proving these transformations are not in the scope of this

work, but we envision this as future work.

Stateful dataflow graphs In this work, we use stateful dataflow graphs as an

intermediate representation for cloud applications. We propose a translation from

object-oriented code to these graphs and how to execute these on top of several

runtimes. Dataflow systems show that such a graph representation provides a

perfect model for low-latency parallel computation. We now reflect on some of the

shortcomings of stateful dataflow graphs as a representation for general-purpose

applications. Most of these shortcomings, correspond to the discussed issues with

the dataflow systems.

First of all, a stateful dataflow graph is less suitable for operator-to-operator

communication (i.e., remote calls). One cannot directly invoke other operators

and communication requires event messaging between them. To solve this, we

compile functions with references to other functions in a continuation-passing

style which abstracts this communication away from the developer. Moreover, we

Chapter 7. Discussion 96

provide execution graphs at runtime to coordinate the execution of such functions.

In addition, a stateful dataflow graph representation is less suitable for having a

global state. The graph assumes the state is partitioned across operators (i.e.,

nodes). We rely on underlying runtimes to support some sort of global querying.

Building blocks, integrations and deployment tools StateFlow provides build-

ing blocks to execute the stateful dataflow graphs on the different runtime sys-

tems. These building blocks have two major advantages. First, it decouples ac-

tual execution from the underlying runtime and gives StateFlow control over this

logic. As a result, more functionality can be embedded into building blocks with-

out touching integration code. Second, with the help of building blocks, code for

integration with runtimes is minimal. Therefore, adding new runtimes is simple

and integration with all supported runtimes required less than 190 lines of code.

A disadvantage of using building blocks is the extra overhead. However, we show

that for most situations, this overhead is minimal.

Besides building blocks to compose runtimes, StateFlow offers integrations

with event streaming clients such as Kafka, an HTTP client, local unit tests, and

tools for deployment. We argue that these integrations and tools offer an end-

to-end ‘experience’ for the developer. In other words, StateFlow simplifies the

implementation, testing, and deployment of scalable cloud applications.

Finally, we envision an ecosystem around StateFlow, supporting more run-

times, clients, and deployment tools. Such an ecosystem allows developers to

simply write their application code and follows a plug-and-play approach to de-

ploy this application in their desired setup.

7.3 Related work

In this section, we discuss work related to this thesis. In Subsection 7.3.1, we

discuss related work on different paradigms for distributed programming and

compare it to the paradigm proposed in this thesis. Subsection 7.3.2 discusses a

new generation of distributed applications and how it relates to the execution of

StateFlow applications. Finally, in Subsection 7.3.3 we discuss work on program

synthesis and domain-specific languages and compare it to the techniques we

used in StateFlow’s compiler pipeline.

7.3.1 Distributed Programming

There exist two programming paradigms for the interaction of loosely coupled dis-

tributed systems: message passing and shared memory Kshemkalyani and Sing-

hal [2011]. In the former paradigm, components of the distributed system pass

around messages, whereas in the latter, components have access to shared mem-

ory for their communication and coordination.

In this thesis, we only workwith systems following themessage-passing paradigm,

and therefore, in this section, we will not discuss any work on the shared mem-

ory paradigm. We first elaborate on the actor model as its concept is close to the

stateful entities introduced in this thesis. Secondly, we discuss the dataflowmodel

since we use this model for the execution of these entities. We discuss the most

notable programming languages and frameworks that encapsulate these models.

Chapter 7. Discussion 97

The Actor Model

The actor model originates from the work by Hewitt et al. [1973], where the au-

thors introduced actors as a primitive for concurrent computation. This model

builds on previousmodels of computation such as the early version of the Smalltalk

programming language Deutsch and Schiffman [1984] and the Simula language

Nygaard and Dahl [1978]. Figure 7.1 presents a visualization of the actor model

as discussed in Agha and Kim [1999]. Actors are isolated and autonomous ob-

jects which encapsulate data and methods. Each actor has its private local data

(i.e., state), and the methods encode the behavior of this actor. This behavior in-

cludes creating new actors, sending messages to other actors, and modifying its

local data. Actors are autonomous because they run in their own thread of con-

trol. They interact with other actors and external environments through message

passing which is asynchronous. Each actor has a unique name to which messages

can be directed (i.e., the actor address). The messages in the mailbox of an actor

are executed one at a time. This ensures that the execution of methods in a single

actor is atomic.

state

thread

method

message

address

Legend

Actor

Figure 7.1: Visualization of the actor model. The figure is adopted

from Agha and Kim [1999].

Looking at the figure, actors are very similar to the stateful entities described

in this thesis. Stateful entities also encapsulate state and methods which are

triggered through messages. Moreover, via the underlying runtime, we enforce

single-thread execution and atomicity of method execution. However, we argue

there are two main differences between the original actor model and StateFlow

stateful entities. First of all, StateFlow entities are virtual and can ‘live’ every-

where as long as their state is available. Contrarily, actors are always ‘alive’ in

their own control thread, waiting for the next message to arrive. The lifetime of

a stateful entity is limited to its method execution. Bernstein et al. [2014] first

introduced this idea as virtual actors in the Orleans framework. The second dif-

ference is that stateful entities abstract away from some constructs in the actor

model. In other words, developers write object-oriented code and are not directly

exposed to the concepts in the actor model. For example, to invoke a method on

a stateful entity, one just calls the method rather than passing a message.

Programming Languages Some of the early actor programming languages in-

clude Rosette, Act 1, and Cantor proposed by respectively Tomlinson et al. [1989],

Lieberman [1981], and Athas and Boden [1989]. However, most of these early lan-

guages weremerely research prototypes and never had a significant adoption rate

Chapter 7. Discussion 98

in industry. However, the actor model has never been forgotten and it has been

adopted in many established programming languages. We now discuss some of

these languages.

The first ‘industry-strength’ language to adopt the actor model was Erlang

Koster et al. [2016]. The Erlang language by Armstrong [2013] was initially de-

veloped within the telecommunications company Ericson in 1986 before it was

open-sourced in 1998. In Erlang, actors are labeled processes, and everything

within Erlang is a process. Each process is strongly isolated, and they only in-

teract using message passing. One of the unique features of Erlang is that each

process has its own memory (i.e., heap) which cannot be accessed by other pro-

cesses and that garbage collection is optimized for this actor model.

The JVM language Scala also adopts the actor model by the name of Scala

Actors introduced in Haller and Odersky [2009]. The authors claim Scala Actors

to be a unification of thread-based and event-based actors. The developer can

choose either for an actor to have its own thread (thread-based) and suspend this

thread while waiting for a new message, or to use a thread-pool shared among

multiple actors and only use a thread whenever a new message arrives (event-

based). As opposed to Erlang, Scala Actors do not explicitly isolate the memory

of each actor. On the other hand, Scala is more of a general-purpose language

and offers other features besides its actors.

Many more modern programming languages are embracing the actor model,

including Dart3, Scala Odersky et al. [2004], and Elixir 4.

Frameworks Besides the programming languages encapsulating actors, there

are also several concurrency frameworks embracing the actor model. Most no-

tably, these frameworks support the execution of actors in a distributed setting.

Therefore, these frameworks allow the scaling of actors beyond a single machine.

Moreover, they offermore advanced features like transactions and fault tolerance.

Akka is an open-source JVM toolkit for distributed computing with an empha-

sis on actor-based concurrency Wyatt [2013]. Like Erlang, Akka implements most

concepts in the actor model, such as a single thread and private state for each

actor. Akka provides a distributed runtime allowing the actors to scale. Communi-

cation with actors in Akka is guaranteed to be at-most-once or at-least-once. Akka

does not support the exactly-once guarantee. Each actor in Akka has a physical

reference, and its location is fixed at creation. This physical actor location pre-

vents dynamic load balancing, migration of actors, and machine failure handling

Bernstein et al. [2014].

The work by Bernstein et al. [2014] and Bykov et al. [2011] introduced the

Orleans framework. Orleans was the first to introduce virtual actors, which has

been adopted in this thesis. Virtual actors are not bound to a physical location

in the system and can always be ‘activated’ at any location. Like StateFlow, in

Orleans, one can write object-oriented C# code where each object is an actor.

Moreover, each actor in Orleans is also addressable by its type and unique key.

In Orleans, these virtual actors are called grains. A silo, the term for a server

instance, stores many of these grains. A new instance is created and stored in

3
h t t p s : / / d a r t . d e v /
4
h t t p s : / / e l i x i r - l a n g . o r g /

https://dart.dev/
https://elixir-lang.org/

Chapter 7. Discussion 99

memory whenever a specific grain is invoked (i.e., activated). We show the com-

plete lifetime of a grain in Figure 7.2. As Orleans persists grains, they can be

moved between silos whenever necessary.

Figure 7.2: The lifetime of a grain in Orleans. Figure retrieved from

the official Orleans documentation 5.

We identify twomain differences between StateFlow and Orleans. First, State-

Flow decouples state and compute. Unlike Orleans, we do not assign stateful

entities to specific servers (i.e., Orleans silos). Stateful entities exist only in the

underlying runtime’s database or stateful operator, and its lifetime is limited to

a method execution. Therefore StateFlow follows more of a serverless approach

and integrates easier with the pay-as-you-go model. The second difference is that

StateFlow abstracts away from the underlying runtime. Therefore, execution is

not limited to a single distributed runtime, whereas Orleans tightly integrates its

programming interface with its specialized runtime. In terms of message reliabil-

ity, Orleans does not provide exactly-once guarantees. On the other hand, it does

provide single-actor transactions. We do not have such guarantee in StateFlow.

The Dataflow Model

In the dataflow model, computation is data-centric, and one defines a program

as a series of transformations and operations on this data. Often, the program is

expressed as a directed graph in which nodes represent computation and edges

represent how data flows from one transformation to another. Not only does the

dataflow model refer to a language paradigm but also to a family of architectures

based on this paradigm. In work by Whiting and Pascoe [1994], the evolution of

historic dataflow languages and architectures are discussed.

The dataflowmodel gained popularity with the introduction ofMapReduce by

Dean and Ghemawat [2008]. MapReduce resulted in the Apache Hadoop frame-

work, one of the most popular open-source large scale batch processing engines.

In MapReduce, one defines a program as a map followed by a reduce operation.

The underlying execution framework, like Apache Hadoop, takes care of the ’dis-

tributed‘ aspects like parallelization, communication, and fault-tolerance. The

5
h t t p s : / / d o t n e t . g i t h u b . i o / o r l e a n s / d o c s / i n d e x . h t m l

https://dotnet.github.io/orleans/docs/index.html

Chapter 7. Discussion 100

work by Isard et al. [2007] introduced Dryad which was inspired by the MapRe-

duce paradigm. Dryad extended theMapReduce concept by allowing user-defined

operators defined in a directed acyclic graph (DAG).

Whereas MapReduce and Dryad still assumed data was provided in batches,

many stream processing systems were introduced operating on unbounded data

in the years following. For example, large companies like Linkedin, Google and

Microsoft introduced respectively Samza Noghabi et al. [2017],MillWheel Aki-

dau et al. [2013] and Naiad Murray et al. [2013]. At the same time, TU Berlin

developed Apache Flink Carbone et al. [2015] and UC Berkeley Spark Stream-

ing Zaharia et al. [2013].

Like StateFlow, popular streaming processing systems have recently been

tested as a general-purpose execution engine for cloud applications. For example,

Flink Stateful Functions demonstrates how the streaming engine Flink is lever-

aged for Function-as-a-Service applications. Interestingly, this thesis proposes to

combine both the actor and the dataflow model—the actor model as a program-

ming abstraction and the dataflow model as a way to execute these actors.

7.3.2 Stateful Functions

In recent years, a new breed of systems has arrived both from industry and

academia. These systems aremarketed as Stateful Functions or Stateful Function-

as-a-Service (SFaaS) and include systems such as CloudBurst Sreekanti et al.

[2020], Apache Flink Statefun de Heus et al. [2021], Lightbend’s CloudState
6 as well as an early Scala prototype on top of Apache Flink Akhter et al. [2019].

Stateful Functions share similarties with the virtual actor model as discussed in

Subsection 7.3.1. These systems often consist of a distributed runtime with fea-

tures such as automatic scaling and fault tolerance. Moreover, often they include

a more intuitive programming interface rather than low-level event handlers. For

example, in CloudBurst, one can define and interact with Python functions which

are then distributed and deployed onto a cluster. Opposed to StateFlow, each

of these systems requires its specialized runtime. Besides, ‘Stateful Functions‘

are often limited to single functions and do not support interactive entities as

presented in this work. Moreover, due to the design of StateFlow and the use

of building blocks, StateFlow allows for easy compiling to such distributed run-

times. In this work, we have shown this by supporting both Flink Statefun and

CloudBurst as target systems with little integration code.

7.3.3 Program Synthesis

In this thesis, we present an approach to compile imperative Python code to a

stateful dataflow graph. There are numerous works on translating imperative

programs to other (intermediate) representations like dataflows or SQL. In this

section, we highlight some of the works which embed a kind of program synthesis.

Moreover, we discuss some work on continuation passing style as well as domain

specific languages (DSL’s).

With DBRidge Emani et al. [2017], developers write an imperative program

that is translated to an SQL query. DBRidge detects parts of the code that can

6
c l o u d s t a t e . i o

cloudstate.io

Chapter 7. Discussion 101

be expressed as SQL queries using static analysis. With the help of program

transformations, DBRidge replaces these parts with SQL code. These analysis

and synthesis techniques are similar to that of this thesis.

The work by Gupta and Sohi [2011] presents a model which executes sequen-

tial imperative programs on a multicore dataflow architecture. The proposed

model dynamically extracts parallel tasks from imperative programs. Unlike our

work, developers still have to specify which function invocations are part of the

dataflow. Moreover, this thesis focuses on parallelizing and partitioning class in-

stances rather than generic function invocations.

Ben-Nun et al. [2019] proposes a more generic synthesis technique. The au-

thors present the Stateful DataFlow multiGraph (SDFG), an intermediate repre-

sentation separating the program definition from its execution. Similar to State-

Flow, one can define a Python program that translates to a dataflow graph. Unlike

Stateflow, the work focuses on scientific code like matrix operations. Moreover

the authors focused on optimizing their intermediate dataflow representation to

improve the runtime performance. Such optimizations do not exist yet in State-

Flow.

Gévay et al. [2021] presents a framework termed Mitos. Mitos abstracts away

specific control flow elements, like while loops, into a dataflow graph. Mitos al-

lows developers to write imperative programs (i.e., for loops, if statements) mixed

with functional constructs (i.e., map, reduce). Moreover, it includes a runtime

to execute these dataflow graphs. Unlike StateFlow, it does not support object-

oriented code, nor does the intermediate dataflow graph compile to different run-

times.

In the field of machine learning, program synthesis is used to ease expressing

complex machine learning programs. Similar to how StateFlow compiles imper-

ative code to dataflow graphs, these works present approaches to compiling im-

perative code to an IR compatible with ML frameworks. For example, AutoGraph

Moldovan et al. [2019] and Janus Jeong et al. [2019] convert imperative Python

deep learning code into an intermediate graph representation. This IR can be

executed on the TensorFlow framework 7.

Function splitting

This thesis proposes a ‘function splitting’ algorithm transforming imperative code

to a continuation-passing style (CPS) Reynolds [1993]. Close to our approach is

the work by Komondoor and Horwitz [2003b]. In this work, the authors propose

automatic ‘procedure extraction’ aiming to simplify procedures (i.e., functions) by

extracting some of the statements and replacing them with a procedure call. This

way, the amount of code in the original function is reduced. Similar to StateFlow,

functions are transformed at the syntax level while preserving the semantics of

the original function definition. In follow-up work, this idea of procedure extrac-

tion is extended to eliminate code duplication Komondoor and Horwitz [2003a].

To compiler presented in Hemel and Visser [2011] for the Mobl language also

applies transformations to ensure continuation-passing style. The Mobl language

targets mobile web applications and integrates components, like user interface

7TensorFlow is one of the most popular deep learning frameworks: h t t p s : / / w w w . t e n s o r f l o w .

o r g / .

https://www.tensorflow.org/
https://www.tensorflow.org/

Chapter 7. Discussion 102

design and data modeling, into a single language. In these applications, some

method calls, such as retrieving geolocations, are asynchronous. The compiler for

Mobl transforms these asynchronous API calls to the continuation-passing style

Hemel and Visser [2011]. As a result, developers can simply write synchronous

code.

Domain Specific Languages

One aim of a domain specific language (DSL) is to abstract away from boiler-

plate code and therefore increase the productivity of a software developer Visser

[2007b]. A good example is WebDSL Visser [2007a]; Hemel et al. [2008], which

integrates several domains of web development, like data modeling and client-

side interfaces, into a single language. Often a distinction is made between ex-

ternal and embedded domain-specific languages. An external DSL often has its

own compiler or interpreter, whereas an embedded DSL is implemented within

an existing host language. StateFlow falls in the latter category.

103

Chapter 8

Conclusion

This thesis presents StateFlow: a programming model, compiler pipeline, and ex-

ecution model for general-purpose cloud applications. StateFlow compiles object-

oriented Python code to a stateful dataflow graph and executes these on dataflow

systems and (Stateful) Function-as-a-Service solutions. To conclude this work, we

explicitly answer the research questions as presented in the introduction.

StateFlow allows developers to write object-oriented applications in which

they do not have to consider operational nor infrastructural aspects. At the same

time, we argue that stateful dataflow graphs are a proper intermediate repre-

sentation for large-scale (cloud) applications. Therefore, we propose to compile

object-oriented code to such an IR, by which we answer the first research ques-

tion:

RQ1: How does one transform object-oriented code to event-driven

stateful dataflow graphs?

In Chapter 4, we introduce the compiler pipeline of StateFlow. This pipeline

compiles class definitions to stateful dataflow graphs through static analy-

sis and code transformations. More specifically, in Section 4.1 and 4.2, we

show how StateFlow analyzes the AST of classes in a Python program to de-

rive static properties, such as method names and instance variables. Then,

StateFlow builds a stateful dataflow graph from all analyzed classes. In

this graph, each operator represents a class and stores the state of objects.

To invoke a method of an object, a client sends an event into the dataflow

graph with the call arguments. The result of the invocation flows out of the

dataflow graph in the form of another event. Finally, StateFlow transforms

the functions with remote calls into a continuation-passing style to make it

compatible with the event-driven stateful dataflow graph, as explained in

Section 4.3.

The compiler pipeline of StateFlow ends in a stateful dataflow graph for all

analyzed classes. In turn, StateFlow integrates this with several distributed pro-

cessing engines, by which we answer the second research question:

RQ2: Given a stateful dataflow graph, how does one execute this

graph with loose coupling to an underlying distributed processing

engine? In Chapter 5, we present StateFlow’s building blocks: operators

and routers. Together, these building blocks offer a comprehensive model

of execution for stateful dataflow graphs. StateFlow handles all execution

Chapter 8. Conclusion 104

logic in its building blocks regardless of the underlying runtime, so the

execution is loosely coupled. In addition, integration with these runtimes is

lightweight, and switching runtimes does not require any application code

refactoring. We show the effectiveness of using these building blocks by

supporting several types of architectures in less than 190 lines of code.

The use of an intermediate representation for general-purpose cloud applica-

tions allows us to benchmark and compare several runtimes executing identical

application code. In this thesis, we primarily focused on dataflow systems and

(S)FaaS solutions. This leads us to answering third and final research question:

RQ3: What is the performance and overhead of dataflow and (S)FaaS

systems for general-purpose cloud applications, and what are the

limiting factors? In Chapter 6, we experiment with runtime systems and

StateFlow measuring both overhead and performance. Typically, the over-

head added by the building blocks of StateFlow is minimal, incurring less

than 1% of the total overhead. We observe that AWS Lambda, a FaaS solu-

tion, incurs the least overhead and has the best performance. At the same

time, AWS Lambda has the least guarantees, which makes it prone to faulty

and unreliable execution. For dataflow systems, such as Apache Flink,

we conclude that performance is mainly limited by expensive operator-to-

operator communication and a lack of global state. On the other hand, its

exactly-once guarantee makes it a reliable runtime. At this point in time,

selecting a runtime system is a trade-off between consistency guarantees

and performance.

8.1 Future work

In the discussion, we already hinted at some future research directions for State-

Flow. In this section, we elaborate several of those directions.

Extended Python support We argue that a successful embedded DSL does not

significantly restrict the developer. A developer should be able to use almost all

programming constructs of the underlying language. StateFlow currently covers

around 70% of all Python constructs inside the class definitions. For example,

one cannot use a try/catch statement or a list comprehension expression. Future

work could extend StateFlow’s programming model to fully support all Python

constructs. In addition, StateFlow can be extended to support object-oriented

concepts such as polymorphism and inheritance. Some of these extensions are

merely an implementation effort, whereas others might require more tailored so-

lutions.

Transactions Currently, some of the runtime systems provide atomicity for single-

key stateful entities. This prevents race conditions when modifying the state of

a single entity. However, StateFlow does not have such a guarantee for a func-

tion involving multiple entities. In that scenario, StateFlow moves back and forth

Chapter 8. Conclusion 105

between operators, and parallel events might update the state in between, result-

ing in unexpected results. We consider transactions for multiple entities to be a

promising research direction. We envision embedding such a guarantee in the

building blocks of StateFlow, by relying on primitives provided by the runtime.

From a developers perspective, one could then enable a transactional guarantee

by annotating the particular method with @ t r a n s a c t i o n . Again, StateFlow would

abstract away the complexity of transactions and enforce transactional semantics

at the runtime level. A starting point for this research direction is the work by

de Heus et al. [2021], which explores distributed transactions for (S)FaaS.

Extend the support and optimize architectures Our work currently sup-

ports numerous runtime systems, including AWS Lambda, Apache Flink, and Flink

Statefun. One of the strengths of this work is the ability to easily integrate the IR

with new runtimes. Besides adding more runtimes, we envision adding different

types of runtimes. This thesis focuses on the dataflow system and (S)FaaS solu-

tions, but we argue StateFlow is not limited to these distributed runtime types.

For example, distributed actor runtimes such as Akka or Dapr could be exciting

additions 1, because each of these has a different set of guarantees, features, and

performance and therefore are a better fit for specific applications. At the same

time, we acknowledge the need for a more extensive evaluation of underlying run-

times. We envision that StateFlow has its own benchmark allowing a fine-grained

evaluations of the performance and the overhead of the underlying runtime. Not

only does this highlight potential bottlenecks, but it also enables the assessment

of new runtimes.

Formal verification of the compiler We believe that a form of formal verifi-

cation for the compiler would benefit the pipeline. It is essential that all code

transformations implemented in the compiler pipeline preserve the semantics of

the original function definition. In this work, we verified this through an empiri-

cal evaluation by implementing a benchmark. Formal verification of all proposed

AST transformations would underline the theoretical correctness of StateFlow’s

compiler pipeline. To prove semantic preservation of AST transformations, it re-

quires a formal definition of the Python semantics. Several works have already

proposed formal operational semantics for Python Köhl [2021]; Smeding [2009];

Politz et al. [2013].

1
h t t p s : / / a k k a . i o / and h t t p s : / / d a p r . i o /

https://akka.io/
https://dapr.io/

106

Bibliography

G. A. Agha and W. Kim. Actors: A unifying model for parallel and distributed com-

puting. J. Syst. Archit., 45(15):1263–1277, 1999. doi: 10.1016/S1383-7621(98)

00067-8. URL h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / S 1 3 8 3 - 7 6 2 1 (9 8) 0 0 0 6 7 - 8 .

A. Akhter, M. Fragkoulis, and A. Katsifodimos. Stateful functions as a service in

action. In VLDB, 2019.

T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,

D. Mills, P. Nordstrom, and S. Whittle. Millwheel: Fault-tolerant stream

processing at internet scale. Proc. VLDB Endow., 6(11):1033–1044, 2013.

doi: 10.14778/2536222.2536229. URL h t t p : / / w w w . v l d b . o r g / p v l d b / v o l 6 /

p 1 0 3 3 - a k i d a u . p d f .

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma,

R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The dataflow

model: A practical approach to balancing correctness, latency, and cost in

massive-scale, unbounded, out-of-order data processing. Proceedings of the

VLDB Endowment, 8:1792–1803, 2015.

M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and

M. Zaharia. Structured streaming: A declarative api for real-time applications

in apache spark. In SIGMOD, 2018.

J. Armstrong. Programming Erlang: software for a concurrent world. Pragmatic

Bookshelf, 2013.

W. C. Athas and N. J. Boden. Cantor: an actor programming system for scientific

computing. ACM SIGPLAN Notices, 24(4):66–68, 1989. doi: 10.1145/67387.

67402. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 6 7 3 8 7 . 6 7 4 0 2 .

T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler. State-

ful dataflow multigraphs: a data-centric model for performance portability on

heterogeneous architectures. In M. Taufer, P. Balaji, and A. J. Peña, editors,

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, SC 2019, Denver, Colorado, USA, November

17-19, 2019, pages 81:1–81:14. ACM, 2019. doi: 10.1145/3295500.3356173.

URL h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 2 9 5 5 0 0 . 3 3 5 6 1 7 3 .

P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin. Orleans: Distributed virtual

actors for programmability and scalability. 2014.

S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin. Orleans: cloud

computing for everyone. In SoCC, 2011.

https://doi.org/10.1016/S1383-7621(98)00067-8
http://www.vldb.org/pvldb/vol6/p1033-akidau.pdf
http://www.vldb.org/pvldb/vol6/p1033-akidau.pdf
https://doi.org/10.1145/67387.67402
https://doi.org/10.1145/3295500.3356173

BIBLIOGRAPHY 107

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache

flink tm : Stream and batch processing in a single engine. In IEEE Data Eng.

Bull., 2015.

P. C. Castro, V. Ishakian, V. Muthusamy, and A. Slominski. The rise of serverless

computing. Commun. ACM, 62(12):44–54, 2019. doi: 10.1145/3368454. URL

h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 3 6 8 4 5 4 .

A. Cheung, N. Crooks, J. M. Hellerstein, and M. Milano. New directions in cloud

programming. In 11th Conference on Innovative Data Systems Research, CIDR

2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org,

2021. URL h t t p : / / c i d r d b . o r g / c i d r 2 0 2 1 / p a p e r s / c i d r 2 0 2 1 _ p a p e r 1 6 . p d f .

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Bench-

marking cloud serving systems with YCSB. In J. M. Hellerstein, S. Chaud-

huri, and M. Rosenblum, editors, Proceedings of the 1st ACM Symposium on

Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010,

pages 143–154. ACM, 2010. doi: 10.1145/1807128.1807152. URL h t t p s :

/ / d o i . o r g / 1 0 . 1 1 4 5 / 1 8 0 7 1 2 8 . 1 8 0 7 1 5 2 .

M. de Heus, K. Psarakis, M. Fragkoulis, and A. Katsifodimos. Distributed trans-

actions on serverless stateful functions. In Proceedings of the 15th ACM In-

ternational Conference on Distributed and Event-Based Systems, DEBS ’21,

page 31–42, New York, NY, USA, 2021. Association for Computing Machin-

ery. ISBN 9781450385558. doi: 10.1145/3465480.3466920. URL h t t p s :

/ / d o i . o r g / 1 0 . 1 1 4 5 / 3 4 6 5 4 8 0 . 3 4 6 6 9 2 0 .

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clus-

ters. In Communications of the ACM, 2008.

L. P. Deutsch and A. M. Schiffman. Efficient implementation of the smalltalk-80

system. In SIGACT-SIGPLAN, 1984.

K. V. Emani, T. Deshpande, K. Ramachandra, and S. Sudarshan. Dbridge: Trans-

lating imperative code to sql. In SIGMOD, 2017.

Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,

B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen,

C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla,

and C. Delimitrou. An open-source benchmark suite for microservices and

their hardware-software implications for cloud & edge systems. In I. Bahar,

M. Herlihy, E. Witchel, and A. R. Lebeck, editors, Proceedings of the Twenty-

Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April

13-17, 2019, pages 3–18. ACM, 2019. doi: 10.1145/3297858.3304013. URL

h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 2 9 7 8 5 8 . 3 3 0 4 0 1 3 .

C. Gencer, M. Topolnik, V. Durina, E. Demirci, E. B. Kahveci, A. G. O. Lukás,

J. Bartók, G. Gierlach, F. Hartman, U. Yilmaz, M. Dogan, M. Mandouh, M. Fragk-

oulis, and A. Katsifodimos. Hazelcast jet: Low-latency stream processing at the

99.99th percentile. In VLDB, 2021.

https://doi.org/10.1145/3368454
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3465480.3466920
https://doi.org/10.1145/3465480.3466920
https://doi.org/10.1145/3297858.3304013

BIBLIOGRAPHY 108

G. E. Gévay, T. Rabl, S. Breß, L. Madai-Tahy, J. Quiané-Ruiz, and V. Markl. Efficient

control flow in dataflow systems: When ease-of-use meets high performance.

In 37th IEEE International Conference on Data Engineering, ICDE 2021, Cha-

nia, Greece, April 19-22, 2021, pages 1428–1439. IEEE, 2021. doi: 10.1109/

ICDE51399.2021.00127. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / I C D E 5 1 3 9 9 . 2 0 2 1 .

0 0 1 2 7 .

G. Gupta and G. S. Sohi. Dataflow execution of sequential imperative programs

on multicore architectures. In MICRO, 2011.

P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based

programming. Theor. Comput. Sci., 410(2-3):202–220, 2009. doi: 10.1016/j.tcs.

2008.09.019. URL h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . t c s . 2 0 0 8 . 0 9 . 0 1 9 .

P. Helland. Life beyond distributed transactions: an apostate’s opinion. In

ACMQueue, 2016.

J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith, V. Sreekanti,

A. Tumanov, and C. Wu. Serverless computing: One step forward, two

steps back. In 9th Biennial Conference on Innovative Data Systems Re-

search, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceed-

ings. www.cidrdb.org, 2019a. URL h t t p : / / c i d r d b . o r g / c i d r 2 0 1 9 / p a p e r s /

p 1 1 9 - h e l l e r s t e i n - c i d r 1 9 . p d f .

J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith, V. Sreekanti,

A. Tumanov, and C. Wu. Serverless computing: One step forward, two

steps back. In 9th Biennial Conference on Innovative Data Systems Re-

search, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceed-

ings. www.cidrdb.org, 2019b. URL h t t p : / / c i d r d b . o r g / c i d r 2 0 1 9 / p a p e r s /

p 1 1 9 - h e l l e r s t e i n - c i d r 1 9 . p d f .

Z. Hemel and E. Visser. Declaratively programming the mobile web with Mobl. In

OOPSLA, 2011.

Z. Hemel, L. C. L. Kats, and E. Visser. Code generation bymodel transformation. In

Theory and Practice of Model Transformations, First International Conference,

ICMT, 2008.

C. Hewitt, P. B. Bishop, and R. Steiger. A universal modular ACTOR formal-

ism for artificial intelligence. In N. J. Nilsson, editor, Proceedings of the 3rd

International Joint Conference on Artificial Intelligence. Standford, CA, USA,

August 20-23, 1973, pages 235–245. William Kaufmann, 1973. URL h t t p :

/ / i j c a i . o r g / P r o c e e d i n g s / 7 3 / P a p e r s / 0 2 7 B . p d f .

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-

parallel programs from sequential building blocks. In P. Ferreira, T. R. Gross,

and L. Veiga, editors, Proceedings of the 2007 EuroSys Conference, Lisbon,

Portugal, March 21-23, 2007, pages 59–72. ACM, 2007. doi: 10.1145/1272996.

1273005. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 1 2 7 2 9 9 6 . 1 2 7 3 0 0 5 .

E. Jeong, S. Cho, G. Yu, J. S. Jeong, D. Shin, and B. Chun. JANUS: fast and flexible

deep learning via symbolic graph execution of imperative programs. In J. R.

https://doi.org/10.1109/ICDE51399.2021.00127
https://doi.org/10.1109/ICDE51399.2021.00127
https://doi.org/10.1016/j.tcs.2008.09.019
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/1272996.1273005

BIBLIOGRAPHY 109

Lorch and M. Yu, editors, 16th USENIX Symposium on Networked Systems

Design and Implementation, NSDI 2019, Boston, MA, February 26-28, 2019,

pages 453–468. USENIX Association, 2019. URL h t t p s : / / w w w . u s e n i x . o r g /

c o n f e r e n c e / n s d i 1 9 / p r e s e n t a t i o n / j e o n g .

E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud:

distributed computing for the 99%. In Proceedings of the 2017 Symposium on

Cloud Computing, SoCC 2017, Santa Clara, CA, USA, September 24-27, 2017,

pages 445–451. ACM, 2017. doi: 10.1145/3127479.3128601. URL h t t p s : / /

d o i . o r g / 1 0 . 1 1 4 5 / 3 1 2 7 4 7 9 . 3 1 2 8 6 0 1 .

R. Komondoor and S. Horwitz. Eliminating duplication in source code via proce-

dure extraction. Technical report, University of Wisconsin-Madison Department

of Computer Sciences, 2003a.

R. Komondoor and S. Horwitz. Effective, automatic procedure extraction. In

11th International Workshop on Program Comprehension (IWPC 2003), May

10-11, 2003, Portland, Oregon, USA, pages 33–43. IEEE Computer Society,

2003b. doi: 10.1109/WPC.2003.1199187. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 /

W P C . 2 0 0 3 . 1 1 9 9 1 8 7 .

J. D. Koster, T. V. Cutsem, and W. D. Meuter. 43 years of actors: a taxonomy of

actor models and their key properties. In S. Clebsch, T. Desell, P. Haller, and

A. Ricci, editors, Proceedings of the 6th International Workshop on Program-

ming Based on Actors, Agents, and Decentralized Control, AGERE 2016, Ams-

terdam, The Netherlands, October 30, 2016, pages 31–40. ACM, 2016. doi: 10.

1145/3001886.3001890. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 0 0 1 8 8 6 . 3 0 0 1 8 9 0 .

A. D. Kshemkalyani and M. Singhal. Distributed computing: principles, algo-

rithms, and systems. Cambridge University Press, 2011.

M. A. Köhl. An executable structural operational formal semantics for python,

2021.

H. Lieberman. A preview of act 1. 1981.

D. Moldovan, J. M. Decker, F. Wang, A. A. Johnson, B. K. Lee, Z. Nado, D. Sculley,

T. Rompf, and A. B. Wiltschko. Autograph: Imperative-style coding with graph-

based performance. In A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceed-

ings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA,

March 31 - April 2, 2019. mlsys.org, 2019. URL h t t p s : / / p r o c e e d i n g s . m l s y s .

o r g / b o o k / 2 7 2 . p d f .

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a

timely dataflow system. In M. Kaminsky and M. Dahlin, editors, ACM SIGOPS

24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA,

USA, November 3-6, 2013, pages 439–455. ACM, 2013. doi: 10.1145/2517349.

2522738. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 2 5 1 7 3 4 9 . 2 5 2 2 7 3 8 .

S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta, and

R. H. Campbell. Samza: Stateful scalable stream processing at linkedin. Proc.

VLDB Endow., 10(12):1634–1645, Aug. 2017. ISSN 2150-8097. doi: 10.14778/

3137765.3137770. URL h t t p s : / / d o i . o r g / 1 0 . 1 4 7 7 8 / 3 1 3 7 7 6 5 . 3 1 3 7 7 7 0 .

https://www.usenix.org/conference/nsdi19/presentation/jeong
https://www.usenix.org/conference/nsdi19/presentation/jeong
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1109/WPC.2003.1199187
https://doi.org/10.1109/WPC.2003.1199187
https://doi.org/10.1145/3001886.3001890
https://proceedings.mlsys.org/book/272.pdf
https://proceedings.mlsys.org/book/272.pdf
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.14778/3137765.3137770

BIBLIOGRAPHY 110

K. Nygaard and O. Dahl. The development of the SIMULA languages. In R. L.

Wexelblat, editor, History of Programming Languages, from the ACM SIGPLAN

History of Programming Languages Conference, June 1-3, 1978, Los Angeles,

California, USA, pages 439–480. Academic Press / ACM, 1978. doi: 10.1145/

800025.1198392. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 8 0 0 0 2 5 . 1 1 9 8 3 9 2 .

M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,

M. Schinz, E. Stenman, and M. Zenger. An overview of the scala programming

language. 2004.

J. G. Politz, A. Martinez, M. Milano, S. Warren, D. Patterson, J. Li, A. Chitipothu,

and S. Krishnamurthi. Python: The full monty. In Proceedings of the 2013 ACM

SIGPLAN International Conference on Object Oriented Programming Systems

Languages & Applications, OOPSLA ’13, page 217–232, New York, NY, USA,

2013. Association for Computing Machinery. ISBN 9781450323741. doi: 10.

1145/2509136.2509536. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 2 5 0 9 1 3 6 . 2 5 0 9 5 3 6 .

F. Raab. TPC-C - the standard benchmark for online transaction processing

(OLTP). In J. Gray, editor, The Benchmark Handbook for Database and Transac-

tion Systems (2nd Edition). Morgan Kaufmann, 1993.

J. C. Reynolds. Definitional interpreters for higher-order programming languages.

In Proceedings of the ACM Annual Conference, 1972.

J. C. Reynolds. The discoveries of continuations. LISP Symb. Comput., 6(3-4):

233–248, 1993.

J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J. Yadwadkar, R. A.

Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson. What serverless computing

is and should become: the next phase of cloud computing. Commun. ACM,

64(5):76–84, 2021. doi: 10.1145/3406011. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 /

3 4 0 6 0 1 1 .

P. Silvestre, M. Fragkoulis, D. Spinellis, and A. Katsifodimos. Clonos: Consistent

causal recovery for highly-available streaming dataflows. In SIGMOD, 2021.

G. J. Smeding. An executable operational semantics for python. Universiteit

Utrecht, 2009.

V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. Gonzalez, J. M. Hellerstein,

and A. Tumanov. Cloudburst: Stateful functions-as-a-service. Proc. VLDB

Endow., 13(11):2438–2452, 2020. URL h t t p : / / w w w . v l d b . o r g / p v l d b / v o l 1 3 /

p 2 4 3 8 - s r e e k a n t i . p d f .

Stoltz, Gerlek, andWolfe. Extended ssawith factored use-def chains to support op-

timization and parallelism. In 1994 Proceedings of the Twenty-Seventh Hawaii

International Conference on System Sciences, volume 2, pages 43–52, 1994.

doi: 10.1109/HICSS.1994.323280.

A. Subasi. Chapter 1 - introduction. In A. Subasi, editor, Practical Machine

Learning for Data Analysis Using Python, pages 1–26. Academic Press, 2020.

ISBN 978-0-12-821379-7. doi: https://doi.org/10.1016/B978-0-12-821379-7.

https://doi.org/10.1145/800025.1198392
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1145/3406011
https://doi.org/10.1145/3406011
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf

BIBLIOGRAPHY 111

00001-1. URL h t t p s : / / w w w . s c i e n c e d i r e c t . c o m / s c i e n c e / a r t i c l e / p i i /

B 9 7 8 0 1 2 8 2 1 3 7 9 7 0 0 0 0 1 1 .

C. Tomlinson, W. Kim, M. Scheevel, V. Singh, B. Will, and G. Agha. Rosette: An

object-oriented concurrent systems architecture. ACM SIGPLAN Notices, 24

(4):91–93, 1989. doi: 10.1145/67387.67410. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 /

6 7 3 8 7 . 6 7 4 1 0 .

E. Visser. WebDSL: A case study in domain-specific language engineering. In

GTTSE, 2007a.

E. Visser. Domain-specific language engineering. In Pre-Proceedings of the In-

ternational Summer School on Generative and Transformational Techniques in

Software Engineering (GTTSE 2007). Braga, Portugal, 2007b.

P. G. Whiting and R. S. V. Pascoe. A history of data-flow languages. IEEE Ann. Hist.

Comput., 16(4):38–59, 1994. doi: 10.1109/85.329757. URL h t t p s : / / d o i . o r g /

1 0 . 1 1 0 9 / 8 5 . 3 2 9 7 5 7 .

C.Wu, J. M. Faleiro, Y. Lin, and J. M. Hellerstein. Anna: A KVS for any scale. In 34th

IEEE International Conference on Data Engineering, ICDE 2018, Paris, France,

April 16-19, 2018, pages 401–412. IEEE Computer Society, 2018. doi: 10.1109/

ICDE.2018.00044. URL h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / I C D E . 2 0 1 8 . 0 0 0 4 4 .

D. Wyatt. Akka concurrency. Artima Incorporation, 2013.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized

streams: Fault-tolerant streaming computation at scale. In Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP

’13, page 423–438, New York, NY, USA, 2013. Association for Computing Ma-

chinery. ISBN 9781450323888. doi: 10.1145/2517349.2522737. URL h t t p s :

/ / d o i . o r g / 1 0 . 1 1 4 5 / 2 5 1 7 3 4 9 . 2 5 2 2 7 3 7 .

H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu. Fault-tolerant and trans-

actional stateful serverless workflows. In 14th USENIX Symposium on Operat-

ing Systems Design and Implementation, OSDI 2020, Virtual Event, Novem-

ber 4-6, 2020, pages 1187–1204. USENIX Association, 2020. URL h t t p s :

/ / w w w . u s e n i x . o r g / c o n f e r e n c e / o s d i 2 0 / p r e s e n t a t i o n / z h a n g - h a o r a n .

https://www.sciencedirect.com/science/article/pii/B9780128213797000011
https://www.sciencedirect.com/science/article/pii/B9780128213797000011
https://doi.org/10.1145/67387.67410
https://doi.org/10.1145/67387.67410
https://doi.org/10.1109/85.329757
https://doi.org/10.1109/85.329757
https://doi.org/10.1109/ICDE.2018.00044
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1145/2517349.2522737
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran

	Abstract
	Acknowledgements
	Introduction
	Programming for the Cloud
	Programming for Dataflow Systems
	StateFlow
	Research questions
	Contributions
	Thesis outline

	Preliminaries
	Programming languages
	Dataflow systems
	Function-as-a-Service
	Event streaming

	Introduction to StateFlow
	Compiler Pipeline
	Classes to Dataflows
	Executing Stateful Dataflow Graphs
	Why Python?
	Running Example

	Imperative Code to a Stateful Dataflow Graph
	Class Analysis
	Class Linking
	Function Splitting
	Simple splitting
	Conditional splits
	Loop splits
	State requests
	State machine
	Execution graph
	Nested split functions
	Splitting applied to the running example

	Intermediate Representation
	Limitations

	Executing Stateful Dataflow Graphs
	Execution in StateFlow
	Constructs
	Building blocks

	Runtimes
	Dataflow systems
	Stateful Function-as-a-Service

	Client
	Interface
	Event streaming
	REST API integration

	Local execution
	Deployment
	Summary

	Evaluation
	DeathStar benchmark
	Expressiveness
	StateFlow versus DeathStar
	Native runtime implementation

	System overhead
	Overhead without runtimes
	Experimental setup
	Results

	Overhead with runtimes
	Experimental setup
	Results

	Performance
	Experimental setup
	Results

	Discussion
	Experimental results
	Remaining contributions
	Related work
	Distributed Programming
	The Actor Model
	The Dataflow Model

	Stateful Functions
	Program Synthesis
	Function splitting
	Domain Specific Languages

	Conclusion
	Future work

