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Abstract
Subsidence of the ground surface, caused by hydrocarbon production, compaction of soft ground lay-
ers or other subsidence causes, is a timely topic in the Netherlands. Geodetic measurements of the
surface can help us improve our knowledge of the subsurface; this process is called geomechanical
inversion. Improved knowledge on the subsurface is needed for example to improve deformation pre-
dictions and to safeguard subsurface and surface infrastructure.

Related works in this domain use derivatives of geodetic measurements as input for their inversion
methodologies, but not the measurements themselves. Performing geomechanical inversion with
derivatives of geodetic measurements introduces correlations in the covariancematrix of the data, mak-
ing error propagation into the geomechanical estimates more complex. Defining a direct relationship
between measurements and geomechanical estimates and subsequently inverting this relationship,
makes the error propagation less complex. This thesis presents a new methodology that can be used
to estimate reservoir geomechanical parameters through direct inversion using measurements from
optical leveling campaigns. In the context of this thesis, a direct inversion is an inversion of a linear
relationship between data and measurements.

In this thesis, we propose and test a workflow for the estimation of a simplified set of geomechanical
parameters. Part of the workflow is an extensive testing procedure of the geodetic data. A Geertsma
nucleus-of-strain model is used to express a source parameter term in function of optical leveling mea-
surements. This source parameter term is a lumped term and consists of a volume term, a pressure
term, and several elastic rock parameter terms. This system is inverted using a Tikhonov regulariza-
tion with a spatial penalty term. The methodology is applied to optical leveling data from a case study
(the Norg and Roden gas fields in the northern Netherlands) and shows promising results. The RMS
between modeled and measured subsidence for the most promising parameterization is 3.0 mm.

The proposedmethodology leads to geomechanical estimates with formal quality description, that could
improve geomechanical models and subsequently leads to a better understanding of the subsurface
and better subsidence predictions. The geomechanical parameter that is estimated is lumped and
without additional information, it is impossible to differentiate between individual compaction parame-
ter terms. Feeding the problem more information might also relax the need for regularization but can
lead to the introduction of bias. We believe that the framework proposed in this work can be a good
starting point for further research that uses geodetic measurements directly as input for a geomechan-
ical inversion.
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1
Introduction

1.1. Motivation and background
The aim of this research is to assess whether optical leveling measurements can be used to optimally
derive information about geomechanical subsurface processes with a direct geomechanical inversion.
The main advantage of this method is that the errors of the geodetic measurements can be directly
propagated into the geomechanical parameter estimates. The focus of the research is on surface de-
formation induced by hydrocarbon production. Hydrocarbon production decreases pore pressures in
the subsurface, changing the subsurface stress fields. This leads to reservoir compaction, which is
subsequently imprinted as subsidence at the surface. Geodetic survey campaigns, such as optical
leveling campaigns, are organized to estimate the amount of subsidence. Geodetic estimates can
subsequently be used to estimate geomechanical parameters of the subsurface; this process is called
inverse geomechanical modeling [70].

Monitoring surface deformation is important to safeguard infrastructure and building integrity and to
assess the land’s height with respect to the sea level. Additionally, estimates of surface deformation
are used to evaluate the predictions of expected deformation patterns. If the estimated deformation is
different than expected, it may lead to new insights of knowledge on the subsurface and may lead to
mitigating measures in e.g. hydrocarbon production schemes.

Subsidence, heave and lateral movements of the ground are all forms of surface deformation. Surface
deformation typically takes place at all scales and can be caused by natural and human factors, other
than hydrocarbon extraction. Recent examples of deformation processes in the Netherlands include
peat compaction in the Rhine-Meuse Delta [69], local ground displacements due to a subway con-
struction in Amsterdam (North-South subway line) [30], a migrating cavity leading to foundation failure
under a shopping mall in Heerlen in 2011 [10] and subsidence due to gas extraction in the Groningen
area [75] and the Wadden Sea [18].

To get insight into surface deformation, the surface can be monitored with various geodetic measure-
ment techniques, such as optical leveling, GPS and InSAR. These measuring techniques reflect height
differences at specified moments over time. The main aim of geodetic measurement campaigns is
to use the estimated spatial height differences to derive surface deformations over time. After survey
campaigns are organized, iterative hypothesis testing is applied to a functional model and the resulting
deformation estimations are expressed in either grid or at measurement point level.

To predict the amount of subsidence, geomechanical models are used [15]. These models predict
the response of the subsurface to changes, e.g. to changes in the pressure distribution due to hydro-
carbon production. The changes in the subsurface, such as volume compaction, can subsequently be
translated to deformation at the surface. Subsurface properties and production data are typically taken
as input and subsequently, the subsidence is predicted that results due to the hydrocarbon production
or liquid injection in the subsurface. To validate the predictions of the geomechanical models, often

1



2 1. Introduction

surface deformation data is used. Inverse geomechanical modeling reverses this process: estimates
of deformation at the surface are used to estimate geomechanical subsurface properties.

For inverse geomechanical modeling, surface deformation data is thus used to estimate parameters
of the geomechanical models. In this process, the geodetic data is used as input for inverse geome-
chanical modeling. Inverse theory tries to estimate model parameters from physical measurements
[3]. This thesis uses linear inverse theory to estimate subsurface parameters directly from measure-
ments of surface displacement. The so-called forward model consists of a geomechanical model, that
evaluates surface deformation in function of subsurface parameters, such as subsurface volume com-
paction coefficients. The subsurface parameters are then estimated by inverting the forward model,
using the geodetic deformation data as input. With inverse modeling, the uncertainty of the geodetic
measurements propagates into the estimated geomechanical parameters, resulting in the estimated
geomechanical parameters carrying an uncertainty. If decisions are to be made based on these esti-
mated parameters (e.g. decisions about the development plan of a gas field or the integrity of infras-
tructure), it is important to be aware of how large this uncertainty is. Therefore, a formal and correct
description of the errors should be given after geomechanical inversion. The flow diagram in Figure 1.1
visualizes a workflow currently often used in geomechanical inversion. The main disadvantage of this
workflow is the need for formal error propagation during all steps. The uncertainty structure of raw
leveling measurements is relatively simple, but after the geodetic inversion to subsidence estimates,
correlations are introduced. These correlations make the error propagation during the geomechanical
inversion more complex.

Figure 1.1: Currently often applied workflow for geomechanical inversion. First, geodetic measurements are tested and then
used to estimate deformation, with a geodetic inversion method. Error propagation during this step is usually done properly, often
leading to full covariance matrix. The deformation estimates are in the next step used as input for a geomechanical inversion.
Error propagation in this step is often omitted or carried out incorrectly.

The goal of this thesis is to develop a new method that uses geodetic optical leveling data directly to
estimate geomechanical parameters, and thereby to provide a formal and correct description of the
error propagation for this geomechanical inversion. To achieve that goal, a new workflow is proposed
that includes a geodetic testing procedure and a regularised inversion. To demonstrate the capabilities
of the new workflow, the methodology will be applied to a case study.

The case study focuses on surface deformation caused by two gas fields, one near Norg and one
near Roden (both in the Netherlands), an area that has shown surface deformation over the past 30+
years. The location of both gas fields is indicated on the map in Figure 1.3. The gas production leads to
pressure decline in the subsurface, which caused subsidence. A timeline for both fields can be found
in Figure 1.2. The Norg gas field was discovered in 1965 and produced from 1983 until 1995. The
nearby Roden gas field was discovered in 1970, production started in 1976 and ended in 2003. The
Roden field is currently abandoned. The Norg gas field is since 1997 a gas storage location [48]. This
means that each year gas is injected in the summer period, this gas is produced during colder months.
The NAM has been (and is) closely monitoring the amount of subsidence at these fields and therefore
a large optical leveling dataset of these fields is available. This research focuses on data measured
between 1975 and 1993, which is the period before the gas storage at the Norg location began. In
2000 the NAM wrote a report in which the estimated in 1997 was estimated to be 10 cm since 1975, at
the deepest point of the subsidence bowl [44], see Figure 1.4.
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Figure 1.2: Timeline for Roden and Norg gas fields.

Figure 1.3: Hydrocarbon fields in the North Netherlands, case study Norg field and Roden field are indicated with red arrows.
In 1995, the Norg field has been turned into a gas storage location and in 1995 the Roden field was abandoned (adapted from
NLOG [50])
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Figure 1.4: The amount of subsidence in 1997 above the Norg and Roden fields since 1975, as estimated by the NAM in an
analysis by Quadvlieg [55].

1.2. Current methods
Inversion of surface estimation to estimate subsurface parameters has been a topic of research for
many years, with the research on the Lacq gas field (France) from 1992 being one of the first researches
in this area [61] [37], where a relation between seismic events, subsidence and reservoir pressure drop
was found. In more current research, either direct inverse modeling techniques or data assimilation
techniques are used. Some methods use actual geodetic measurements or double-differenced geode-
tic measurements as input, whereas other methods use deformation estimates. Someworks implement
formal error propagation, whereas others omit error propagation. Here, a summary of a few relevant
current works related to this thesis is given. Fokker and van Thienen-Visser [17] performed an inversion
of double-differenced measurements from optical leveling to estimate compaction parameters, improv-
ing an existing compaction model of the Groningen Gas Field. NAM [46] used amodel ensemble in their
Long Term Subsidence Study Part Two (LTS-2) of the Dutch Wadden Sea, where parameter values for
the compaction and influence function are estimated, by confronting model members to geodetic data
and calculating weights of each specific model member. Hanssen et al. [30] performed an inversion
of radar and leveling data, using a Mogi source model and estimating a source strength, related to
the volumetric strain of a gas field near Alkmaar. Chapter 4 will further elaborate on these and other
studies that perform a geomechanical inversion with geodetic data.

1.3. Objectives and research questions
The main objective of this work is to develop a method in which information about geomechanical sub-
surface processes is directly estimated from geodetic measurements, using a linear inversion, with
formal proper error propagation. This means that the survey observations should be directly written in
function of geomechanical parameters, defining a forward model. Subsequently, this forward model is
inverted using a regularized Tikhonov inversion, to get an estimation of the geomechanical parameters.
After the inversion, a correct description of the uncertainties of the geomechanical parameters is de-
fined. Part of the process is a geodetic testing procedure, to detect outliers in the data and to compute
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model imperfections.

This thesis is carried out in collaboration with Shell. At Shell, geodetic data is used as input in dif-
ferent stages of the hydrocarbon production. Measurement surveys are carried out and deformation,
with corresponding uncertainties, is estimated, after hypothesis testing. The estimated deformation is
used to comply with legislation, to improve the knowledge on the deforming surface, possibly lead to
mitigation measures and to steer deformation predictions. Subsequently, the deformation estimates
are handed over to a geomechanical team, either in measurement point level or at interpolated grid
level. These deformation estimates carry an uncertainty structure with correlations. The geomechan-
ical team uses these deformation estimates (instead of the original geodetic survey observations) for
geomechanical inversions or validations of their geomechanical predictions. This is a two-step pro-
cess, in which the stochastic description of the survey observations is often misinterpreted or even
omitted in the final geomechanical estimates. Therefore, the goal of this thesis is to develop a method
where simple geomechanical parameters are written directly in function of survey observations, and to
propagate precision and correlation of the deformation measurements appropriately into the estimated
parameters.

This leads to the principal research question:

To what extent can results from optical leveling campaigns be used as input for a direct
inversion to estimate a simplified set of geomechanical parameters?

First, it is important to have a clear definition of what a “direct inversion to estimate a simplified set
of geomechanical parameters” means. In this thesis, a direct inversion is defined as the process in
which geomechanical parameters are directly estimated from geodetic input data, so a direct relation-
ship between geodetic data and geomechanical parameters is defined. This direct relationship limits
the amount and complexity of possible geomechanical parameters to be estimated, hence the defini-
tion of “a simplified set of geomechanical parameters”. This thesis focuses on optical leveling data,
taking into account characteristics typical for this kind of survey data. Further research is encouraged
to extend the proposed methodologies to other geodetic surveying techniques.

The principal research question is subdivided into the following sub-questions:

1. What are the current methods used for geomechanical inversion?

Geomechanical inversion can be performed in many ways, all with advantages and disadvantages.
By studying previous researches and their ways of working, we can identify advantages and disad-
vantages and use this information in designing a new workflow. By studying current research we
can also identify gaps in current research. For this assessment, focus will lay on what kind of input
data is used and what the amount of processing of this data is, what kind of inversion methodology
is used, how uncertainty is quantified and whether and how this uncertainty is propagated into the
estimates, and on what prior information is used in the inversion methodology.

2. How are geomechanical parameters directly expressed in terms of geodetic leveling measure-
ments?

To define a relationship between geomechanical parameters and geodetic leveling measurement,
a geomechanical model is needed. This model needs to be rewritten, such that geomechanical
parameters are defined in function of optical leveling measurements. It is important to be aware
of what kind of parameters can be estimated with the proposed inversion and whether additional
information is needed to estimate specific parameters.

3. Why and how can the optical leveling measurements be geodetically tested, before being used as
input for the geomechanical inversion?

Geodetic measurements carry uncertainty, which consists of measurement noise and idealization
noise, which are all deformation signals other than the deformation signal of interest. Geodetic
data-sets should also be tested for outliers. What kind of errors are expected in the optical leveling
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data, how can these errors be detected and how can we deal with these errors? A geodetic testing
procedure will be assessed and a geodetic software program will be tested.

4. How could a direct geomechanical inversion, with correct uncertainty handling and uncertainty prop-
agation, look like?

This thesis will propose a methodology for a direct geomechanical inversion of geodetic data. Part
of this inversion is the propagation of data uncertainties into parameter estimate uncertainties.

5. How does the proposed inversion methodology and error propagation perform on actual geodetic
measurements?

The methodology will be applied to data from a case study: the Norg and Roden field. Optical
leveling data from this case study will be tested, processed and used as input for an inversion.
Different parameterizations will be tested.

6. What are the limitations of a direct linear geomechanical inversion?

A direct geomechanical inversion does have advantages, but there are also several limitations to
the proposed methodology. These limitations can be adressed in future research.

1.4. Outline
This thesis is divided into seven chapters. Chapter 2 starts with the theory behind subsidence, geome-
chanical models that link subsidence to subsurface compaction and elaborates on how to measure
subsidence. Chapter 3 discusses inversion theory combined with regularization. Chapter 4 gives an
overview of other researches done in this area. Chapters 5 discusses the developed methodology and
describes the experiments and case study. In Chapter 6 the results of the experiments are given. A
conclusion is drawn in chapter 7, followed by recommendations for future research. Additional figures
are provided in the Appendices.



2
Subsidence

Subsidence is the gradual settling or sudden sinking of the ground surface, not restricted to a spe-
cific time or area [52]. Other forms of ground movement are lateral movements and uplift or heave.
Subsidence is perhaps the most well-known form of land movement and is often in the Netherlands in
the news concerning hydrocarbon production in Groningen and compaction of peat and clay areas in
the western part of the country [49]. Causes of land movement include both natural and anthropogenic
causes, acting at different time-scales and spatial extents. In this chapter, the causes of subsidence will
be discussed. The chapter subsequently gives an introduction to geomechanics of ground deformation
with the theory of elasticity and poroelasticity. The link between subsidence and reservoir parameters
is described with a geomechanical forward model. The nucleus-of-strain theory is described, with a
focus on Geertsma’s model [21] [22]. The chapter ends with the theory behind measuring subsidence,
an explanation of optical leveling and on how leveling measurements can be tested and processed
using the SuRe software [31].

2.1. Causes of subsidence
Subsidence can be caused by both natural and anthropogenic causes. This section gives an overview
of possible subsidence causes, subdivided into natural and anthropogenic causes.

Kooi et al. [33] describe three major natural contributions to long-term vertical land movements in the
Netherlands: (1) compaction, (2) postglacial isostasy and (3) tectonics. The Netherlands is located at
the end of major rivers, which have been depositing sediments since the beginning of the Cenozoic. The
weight of the deposited sediments causes compaction of underlying sediments, leading to subsidence.
Changes in surface load are not only caused by the deposition of sediments, but also by deglaciation
of land ice. During the last glacial cycle, the melting of glaciers in Scandinavia and Scotland has led to
a reduction of surface load [35], which induces surface deformation. The third contribution to vertical
land movement is tectonic activity, which is most active in the Roer Valley Graben in Southern Nether-
lands. Kooi et al. [33] attempted to quantify the different contributions to the vertical land movement,
see Figure 2.1. This figure shows that the long-term natural causes are each maximally in the order
of ± 0.1 mm/yr. On the shorter term, peat compaction and oxidation, caused by loading and drainage,
are important contributors to subsidence [69]. The amount and rate of subsidence due to peat com-
paction and oxidation is variable in time and space and depends mainly on overburden weight, depth,
groundwater table, time since loading and organic-matter content of the peat. Compaction grades can
vary from ∼10% up to ∼75% of the peat layer, depending on the mentioned factors.

Fokker et al. [18] describe the main anthropogenic subsurface activities affecting the ground surface
level in the Netherlands: hydrocarbon production, solution mining of salt, mining of coal, gas storage,
geothermal exploitation, and groundwater exploitation. All subsurface activities influence different time
scales and spatial extents. This research focuses on vertical deformation caused by hydrocarbon
extraction.

7
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Figure 2.1: Separation of natural contributions to vertical land movement (2.5 Ma-present), constructed by 3D backstripping of
Cenozoic stratigraphy of the Netherlands and the southern North sea basin (from Kooi et al. [33]).

Hydrocarbon production generally induces a decline in fluid pressure in the subsurface, also known
as pore pressure. The reduced pore pressure increases the so-called effective stress field in the sub-
surface, causing the rock itself to shrink, which in turn leads to compaction of the reservoir [15]. Reser-
voir compaction leads to surface subsidence and lateral movements at the surface (see Figure 2.2).
Expansion of a reservoir, due to fluid injection, such as gas storage or steam or water injection, has an
opposite effect: increased subsurface fluid pressure leads to reservoir expansion and thus uplift of the
surface [63].

Figure 2.2: Reservoir compaction leading to subsidence (from Fjaer et al. [15]).

2.2. Geomechanics of subsidence
Geomechanics is the study of the interaction between rock, stresses, pressure and temperatures [59].
With the theory of geomechanics, deformation at the surface can be related to subsurface volume
strain. This section describes the theory and equations behind elasticity and poroelasticity, used in
forward geomechanical models. When hydrocarbons are produced from geological formations, the
stress fields in the subsurface change and effective stress increases, leading to reservoir compaction
and displacements at reservoir and surface level. To predict surface deformation from fluid extraction
and injection, multiple geomechanical models exist. This section gives an equation for reservoir com-
paction, where the compaction coefficient 𝐶 will be introduced. Reservoir compaction is followed by
a brief description of common nucleus-of-strain methods, that are frequently used in the oil and gas
industry to relate reservoir compaction to subsidence. The analytical Mogi model [41] and Geertsma
model [21] [22] are highlighted and compared.
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2.2.1. Elasticity and poroelasticity
The foundation for all geomechanics is elasticity: the ability of materials to resist and recover from defor-
mation produced by forces [15]. Two principal concepts in the theory of elasticity are stress and strain.
In a linearly elastic material, deformation is reversible and stress and strain are linearly proportional
[82]

𝜎 = 𝐹
𝐴 , (2.1)

where stress 𝜎 is defined as the force 𝐹 acting normal through a cross-section with area 𝐴. The
orientation of the cross-section relative to the direction of the force is important in the definition of
stress. If the force is normal to the cross-section, we talk about normal stress. Shear stress is defined
as

𝜏 =
𝐹
𝐴 , (2.2)

where the shear stress 𝜏 is coming from the force component parallel to cross-section 𝐹 . Usually,
shear stresses are defined with two subscripts (e.g. 𝜏 ). The first subscript relates to the surface the
force is acting on, and the second subscript describes the direction of the force. All normal and shear
stresses can be described with a stress tensor, which gives a complete description of the stress state
at a point

(
𝜎 𝜏 𝜏
𝜏 𝜎 𝜏
𝜏 𝜏 𝜎

) . (2.3)

The stress components in 2D are visualized in Figure 2.3.

Figure 2.3: Normal ( ) and shear ( ) stresses in 2D (from Fjaer et al. [15]).

Strain is the relative deformation that occurs when stress is applied to a body,

𝜀 = Δ𝑥
𝑥 . (2.4)
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Strain in the normal direction 𝜀 is called elongation, shear strain Γ is deformation in the same
direction as shear stress 𝜏 . Similar to Equation (2.3), strain at a certain point can be described by a
tensor: the strain tensor

(
𝜀 Γ Γ
Γ 𝜀 Γ
Γ Γ 𝜀

) . (2.5)

Volumetric strain (i.e. the relative decrease in volume) is identical to the trace of the strain tensor
[15]

𝜀vol = 𝜀 + 𝜀 + 𝜀 . (2.6)

The relation between stress 𝜎 and strain 𝜀 is described by Hooke’s law

𝜀 = 1
𝐸𝜎 , (2.7)

where the coefficient 𝐸 is called Young’s modulus: the sample’s resistance against being compressed
by uniaxial stress (i.e. the stiffness of the sample). Young’s modulus is an elastic modulus, like the
Poisson’s ratio 𝜈, which is a measure of lateral expansion relative to longitudinal contraction [15]

𝜈 = −
𝜀
𝜀 . (2.8)

Other elastic moduli include Lamé’s parameters 𝜆 and 𝐺, which are used to express the general
stress-strain relationships for the description of isotropic, linear elastic materials. 𝐺 is also known as
the modulus of rigidity, which is a measure of the sample’s resistance against shear deformation [15].
The relations between stress and strain in the theory of elasticity are given by

𝜎 = (𝜆 + 2𝐺)𝜀 + 𝜆𝜀 + 𝜆𝜀 , (2.9)

𝜎 = 𝜆𝜀 + (𝜆 + 2𝐺)𝜀 + 𝜆𝜀 , (2.10)

𝜎 = 𝜆𝜀 + 𝜆𝜀 + (𝜆 + 2𝐺)𝜀 , (2.11)

𝜏 = 2𝐺Γ , (2.12)

𝜏 = 2𝐺Γ , (2.13)

𝜏 = 2𝐺Γ . (2.14)

The theory of linear elasticity assumes that there are linear relationships between the applied
stresses and the resulting strains. For rocks, this linear assumption holds if the applied stresses are
sufficiently small. However, at a certain pressure, the stress applied to rock can be so large that the
rock starts to show permanent deformation. This type of deformation is called plastic deformation [82].
At even larger stresses, the rock will show failure. Figure 2.4 shows a typical laboratory stress-strain
experiment with uniaxial deformation. The graph shows the amount of strain of certain applied stress,
for a well-cemented rock. At the start of the experiment, when little stress is applied, there is a small
amount of crack closure. The crack closure is followed by linear elastic behavior. Inelastic (plastic)
deformation is seen at the highest stress levels, just before rock failure.

The elastic stress-strain relationships assume that rocks are homogeneous, solid materials. How-
ever, rocks do have void space, making them inhomogeneous on a microscopic scale. The presence
of a freely moving fluid in a porous rock modifies its mechanical response. If we consider a homo-
geneous reservoir consisting of isotropic material, reservoir compaction can be calculated assuming
linear poroelasticity [15]. Two mechanisms play a key role in the interaction between rock fluids and
porous rocks: (1) an increase of pore pressure causes dilation of the rock and (2) compression of the
rock causes a rise in pore pressure. Important in the theory of poroelasticity is the effective stress 𝜎 :
the difference between external stresses and pore pressure, first described by Terzaghi [64] in 1923.
Reservoir depletion leads to decreases in pore pressure, which induces an increase in effective stress
and thus could lead to reservoir compaction. Biot [7] was the first in 1941 to describe the static and
dynamic properties of elastic porous media [13]. He modified the stress-strain relationships by includ-
ing pore pressure and additional elastic moduli to describe the mechanical response of a two-phase
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Figure 2.4: Typical laboratory stress-strain experiment with uniaxial deformation (from Zoback [82]).

medium. Important for the geomechanical models used in this thesis is the concept of Biot’s poroelastic
coefficient. Biot’s coefficient 𝑎 is used to describe which part of the total external stress on a porous
rock is carried by the fluid, in case of total external stress acting on a rock

𝜎 = 𝜎 − 𝑎𝑝 , (2.15)

with 𝜎 being effective stress, 𝜎 the total stress on the rock, 𝛼 the Biot’s coefficient and 𝑝 the fluid pore
pressure. From a physical point of view, the solid framework carries the part 𝜎 of the total external
stress 𝜎, while the remaining part 𝛼𝑝 is carried by the fluid. Biot’s constant expresses the difference
between the compressibility of the rock as a whole and that of rock particles

𝑎 = 1 − 𝐾
𝐾 , (2.16)

where 𝐾 is the bulk modulus of the rock matrix and 𝐾 the bulk modulus of the rock grains. A more
extensive description of the theory of poroelasticity including the theory behind the bulk modulus is
outside the scope of this thesis, for more information see, e.g., Biot [8], Detournay and Cheng [13] or
Wang [78].

2.2.2. Forward geomechanical model
Reservoir compaction can be calculated with a simple equation if some assumptions are made. Firstly,
linear poroelasticity is assumed and a homogeneous reservoir consisting of isotropic rock. Secondly,
the lateral extent of the reservoir is much larger than it’s thickness so that the lateral strain can be
ignored. This means that the reservoir is assumed to compact only in the vertical direction. And thirdly,
the total vertical stress remains constant. Under these assumptions, the following compaction formula
holds [15]

Δℎ
ℎ = 𝐶 𝑎Δ𝑝 . (2.17)

In this equation, ℎ is the vertical height of the reservoir, the change in reservoir thickness, 𝑎 is
Biot’s poroelastic coefficient, Δ𝑝 the change in pore pressure and 𝐶 is called the compaction coeffi-
cient, which is given by

𝐶 = (1 + 𝜈)(1 − 2𝜈)
𝐸(1 − 𝜈) , (2.18)
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where 𝐸 and 𝜈 are respectively Young’s modulus and Poisson’s ratio. The different parameters in equa-
tion (2.17) are usually derived from different types of sources [18]. The thickness of the reservoir is
usually derived from seismic data and well data. Biot’s poroelastic constant 𝑎 is measured in a core-
experiment, like the compaction coefficient 𝐶 . However, the estimated compaction coefficient is often
higher in experiments than the compaction coefficient found by the inversion of subsidence data. Δ𝑝
(the change in pore pressure) is predicted with reservoir simulation models. These reservoir models
can at a later stage be calibrated by using available field data, such as geodetic deformation data.

To link reservoir compaction to subsidence, the relation between reservoir compaction and defor-
mation at the surface has to be defined. The “nucleus-of-strain” or “point dilatation source” methods
are the frequently used concepts in the oil and gas industry to describe the subsidence due to fluid ex-
traction. These methods use mathematical expressions to relate surface displacement to hydrostatic
inflation or deflation of a small sphere (center of dilatation or nucleus of strain), buried in an elastic half-
space. An elastic half-space is a first approximation of the earth and consists of one planar surface
bounding a continuum that extends infinitely in all other directions [14]. The half-space is an isotropic
linearly elastic solid: it is materially homogeneous and mechanically isotropic and it obeys Hooke’s law
(equation (2.7)). As mentioned earlier in this chapter rocks behave linear elastic within certain stress
bounds (see Figure 2.4). Elastic half-space models do neglect many characteristics of the real Earth,
but do provide a good approximation of surface deformation due to short-term phenomena in the shal-
low crust [14].

The most well-known nucleus-of-strain concept in the oil and gas industry is described by Geertsma
[21] [22]. Geertsma was however not the first to come up with this concept, because the concept of
nucleus-of-strain was introduced by Anderson [2]. In 1936, Anderson described displacement due to
a point of dilatation in the neighborhood of a free plane surface, in the context of magma intrusions.
Mindlin [39] (1936) and Mindlin and Cheng [40] (1950) used the concept of a nucleus-of-strain in the
theory of thermoelasticity. Mogi [41] (1958) described volcano deformation using a nucleus-of-strain,
the ‘Mogi’ point pressure source. The method uses an exact expression for the effects of a hydro-
statically pressurized cavity in a uniform, isotropic elastic full-space. To convert to a half-space with
a stress-free surface, an image of the original source is introduced into the full-space on the opposite
side of the plane, to cancel out-of-plane shear stresses. The combined normal stress on the plane
from the source and its image is then canceled by a similar distribution of opposing normal stress (see
Figure 2.5).

Figure 2.5: Coordinate system and geometric relationships used to derive surface deformation from an embedded point pressure
source (from Dzurisin and Lisowski [14]).
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The surface displacement in vertical 𝑧-direction (at 𝑧 = 0) due to a Mogi source (a spherical cavity
embedded in an elastic half-space, with its radius much smaller as its depth) is given by [14]

𝑢 = 𝑎 Δ𝑃(1 − 𝜈)𝐺
𝑑
𝑅 , (2.19)

where 𝑢 is the displacement at surface point (x,y,0), 𝑅 = √𝑟 + 𝑑 , 𝑎 the radius of the source (see
Figure 2.5) and Δ𝑃 the pressure change in the spherical source. 𝐺 is the shear modulus of the half
space and 𝜈 the Poisson’s ratio. This model can also be defined for horizontal displacement, see e.g.
Dzurisin and Lisowski [14]. For the Mogi model, individual contributions of different terms cannot be
separated, meaning that a small pressure change in a small cavity can produce the same surface de-
formation as a large pressure change in a small cavity.

Geertsma [21] [22] used known solutions from thermoelasticics (Mindlin [39] and Mindlin and Cheng
[40]) to arrive at an expression which expresses deformation as function of a compacting sphere.
Geertsma also represents the subsurface by a homogeneous, isotropic, linear-elastic halfspace. Reser-
voir compaction is represented with many small compaction nuclei that have a small but finite volume V.
A Green’s function is used to calculate displacement for each nucleus. The influence of all nuclei is
summed up to find the total subsidence due to the compacting reservoir. At the surface, vertical dis-
placement in 𝑧 direction due to a compacting nucleus is given by [15]

𝑢 = −𝐶 (1 − 𝜈)
𝜋 𝑉𝛼Δ𝑃 𝑑𝑅 , (2.20)

where:

𝐶 Compaction coefficient
𝜈 Poissont’s Ratio
𝛼 Biot’s coefficient
𝑉 Volume of source
Δ𝑃 Pressure change
𝑑 Depth source
𝑅 Distance to source

Integration of equation (2.20) over an arbitrary-shaped reservoir leads to subsidence at a certain
point at the surface (𝑧 = 0) caused by hydrocarbon production induced by a decline in pore pressure
in all reservoir sections. If the reservoir is subdivided into a finite sum of discrete contributions from 𝑛
small elements Δ𝑉, the integral is replaced by a finite sum [20]

𝑢 (𝑥, 𝑦, 0) = ∑ 𝐶 , (1 − 𝜈 )
𝜋 𝑎 𝑉 Δ𝑃 𝑑

((𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + 𝑑 ) / , (2.21)

where 𝑥 , 𝑦 and 𝑧 are the coordinates of the n-th reservoir volume with volume 𝑉 , in which pore
pressure is decreased by Δ𝑝 , , inducing a vertical displacement 𝑢 at surface point (𝑥, 𝑦). In 1974,
Gambolati [20] used this method to predict subsidence due to hydrocarbon production in Groningen,
by discretization of the Groningen reservoir volume, see Figure 2.6.

With equation (2.20) it is possible to compute subsidence for an arbitrarily-shaped reservoir by using
numerical methods. Geertsma [22] developed equations for subsidence due a disk-shaped reservoir,
by integrating over a reservoir. He expressed displacements and stresses in terms of integrals of Bessel
functions. These Bessel functions are in turn epressed via elliptic integrals [15]. He developed tables
of numerical values of the necessary integrals. For a more extensive description of these equations,
see for example Fjaer et al. [15].

The theory by Geertsma was later further developed by van Opstal [74], who added a rigid basement to
Geertsma’s model. The NAM still uses Geertsma’s en Opstal’s nucleus of strain approach to transfer
derived volume strains at reservoir level to surface subsidence [45]. The methodology is incorporated
in Shell’s ‘SubCal’ software.
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Figure 2.6: (a) location of Groningen reservoir. (b) discretization of Groningen reservoir by Gambolati [20].

Note that the nucleus-of-strain models by Mogi (2.19) and Geertsma (2.20) are quite similar. For a
single point source, they both estimate vertical displacement as

𝑢 (𝑥, 𝑦, 0) = 𝑀 𝑑
𝑅 , (2.22)

where𝑀 is a multiplication factor. The physical parameters involved in this multiplication factor depend
on the application [76]: for volcanic activities, Mogi’s model is used and 𝑀 consists of the radius of the
source, the pressure change, Poisson’s ratio and the modulus of rigidity. For deformation due to gas
extraction, 𝑀 is a function of the compaction coefficient, Poisson’s ratio, the volume of the nucleus,
Biot’s constant and the pressure drop. To integrate over the whole reservoir shape, a superposition of
multiple point sources should be taken.

2.3. Measuring subsidence
To estimate the amount of subsidence, geodetic measurement campaigns are periodically organized.
Typically, spatial height differences are measured and from these height measurements, an estimate
of the amount of deformation is made. This section describes the difference between the deforma-
tion signal of interest and other signals in the measurements, known as idealization noise. The data
used for this thesis is derived from optical leveling campaigns, a short description of the principles
and uncertainties of this technique is given. After survey campaigns are executed, the data should be
geodetically tested and processed, this can, for instance, be done by a software program called SuRe,
which is described in this section.

2.3.1. Signal of interest
The definition of subsidence is the relative height change of a point over time relative to a reference
point. Measuring subsidence can be done using naturally relative techniques, such as leveling or In-
SAR. Other techniques provide positions in a reference system (or “geodetic datum”), such as GNSS
(Global Navigation Satellite Systems). It is important to be aware of what kind of signal the measure-
ment techniquemeasures: height, height differences between points (spatial changes), height changes
for a certain point (temporal changes) or changes in height differences between points (spatio-temporal
changes). Each technique has it’s own platform (spaceborne, airborne or terrestrial) and measurement
characteristics. These measurement characteristics consist of spatial density of measurements, spa-
tial extent, geometric sensitivity, and precision [18]. The height parameter is different for different
techniques. Leveling techniques measure spatial orthometric height differences. Orthometric height
differences are height differences in the direction parallel to the local gravity acceleration vector and
thus have physical meaning. Other techniques, such as GPS, define height differences geometrically
relative to a reference system. For local subsidence, however, the differences between different height
parameter definitions are usually negligible [18].

Some measurement techniques, like leveling, use pre-defined benchmarks to locate the measure-
ments. This means that during every measurement campaign the same points are measured. The
advantage of using benchmarks is that subsidence can directly be estimated from repeated geodetic
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measurements. Other techniques use natural reflection points, which result in a distribution of mea-
surement points, such that subsidence estimation cannot be performed per point. In these cases, some
form of interpolation is needed. Whether or not measurements are located at predefined points, it is
important to be aware of the mechanical foundation of the benchmark or natural reflection point [76].
The subsidence measured at these points will reflect the subsidence of the foundation layer. The total
subsidence at the surface is a sum of all processes in the subsurface. It depends thus on the foundation
of the measurement points, for what kind of compaction effects a benchmark is sensitive. Figure 2.7 vi-
sualizes the effect of the use of two different founded benchmarks with different compaction processes.

Figure 2.7: The effect of different compaction sources on benchmarks founded in different layers. (A) The original situation,
benchmarks (black rectangles) located in house with no foundation on the right and house with foundation in deep stable layer
on the left. (B) Compaction of the hydrocarbon layer, both benchmarks reflect the same subsurface motion. (C) Right house
has an unstable foundation, such that a non-existing subsidence signal is measured. (D) Compaction of shallow layer is only
reflected at the unfounded benchmark, not at deep founded benchmark (from Fokker et al. [18]).

A user of geodetic deformation data should be aware of his objective. Different subsidence regimes
should be separated to find the effects of the subsidence regime of interest. The degree to which the
measurement represents the actual signal of interest is called the idealization accuracy [18].

2.3.2. Optical leveling
The measurements of the surface of the Earth and its surface motions are called geodetic measure-
ments. Geodetic measurements are obtained during geodetic surveys. There are many geodetic sur-
veying methods, including leveling, GPS and InSAR. This thesis will only make use of optical leveling
measurements, so a brief description of an optical leveling survey will be given here. For a more com-
prehensive description of the other various geodetic surveying methods, see for example Alberda and
Ebbinge [1] or Torge and Müller [68].

Leveling measurements can be done both onshore and in rivers, lakes, and off-shore. Leveling in
water bodies is called hydrostatic leveling. This thesis focuses on onshore leveling, also called geo-
metric leveling, spirit leveling or differential leveling. This technique measures height differences, using
horizontal lines of sight between points nearby. A leveling instrument is used together with two ver-
tically standing leveling rods (Figure 2.8). The measured height difference is orthometric, so parallel
to the local gravity acceleration vector. This is indicated with the equal gravity potential lines 𝑊 and
𝑊 in Figure 2.8. The height difference Δℎ between the rods is computed by subtracting the foresight
reading (𝑓) from the backsight reading (𝑏)

Δℎ = 𝑏 − 𝑓. (2.23)

A section between two benchmarks is often too long to be measured with one measurement. There-
fore, the section is broken up into smaller pieces along the path and a couple of measurements are
performed consecutively, as depicted in Figure 2.9.
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Figure 2.8: Leveling principle (from Torge and Müller [68]).

Figure 2.9: Leveling a complete section of length using measurements. Benchmarks are located at the start and end of the
path (from Schomaker and Berry [60]).
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2.3.3. Uncertainties
The random error of the measurements is called the measurement noise. The standard deviation for
optical leveling (𝜎 ) is linearly dependent on the length of the trajectory and is often approximated by

𝜎 = 𝑐 + 𝑐 ⋅ √𝑙, (2.24)

where 𝑙 is the length of the leveling trajectory in kilometer. For different survey campaigns other values
for 𝑐 and 𝑐 are used, typical values for 𝑐 are within 0 and 2 mm [29], for 𝑐 between 0.64 and 1.29
mm/√km [36]. The measured height differences in each leveling campaign are assumed to be uncor-
related.

The total measured subsidence is a sum of all deformation processes in the subsurface. Idealiza-
tion noise is considered as deformation caused by other sources than the deformation signal of interest
[72]. In the case of modeling subsidence induced by hydrocarbon production, deformation is caused
by reservoir compaction and/or aquifer depletion. The main sources of idealization noise are other
deformation regimes, which can be divided up into two groups. The first source of idealization noise
consists of independent motion of individual benchmarks with respect to the foundation layer, due to
for example structural instabilities, benchmark weight or pile friction. This autonomous deformation is
assumed spatially uncorrelated, as construction settings differ per benchmark [57]. However, a tempo-
ral correlation is assumed, because deformation develops in time. The second source of idealization
noise is shallow compaction of the Holocene layer beneath benchmarks, due to for example groundwa-
ter level variation or peat compaction. This type of idealization noise is assumed to have both spatial
and temporal correlation. Idealization noise is unrelated to measurement noise [18].

There are thus two different classes of noise components: measurement noise and idealization noise.
To represent the concept of idealization noise and measurement noise, the notation of van Leijen et al.
[72] is followed. The deformation vector 𝑑 can be decomposed in two components

𝑑 = 𝑑 + 𝑑 , (2.25)

where 𝑑 is the true and deterministic deformation signal of interest and 𝑑 is the sum of all other
deformation signals, here considered as idealization noise. The vector with geodetic observations is
given by 𝑦

𝑦 = 𝑑 + 𝑒 (2.26)

where 𝑒 are the random errors on the observations: the measurement noise. Combining Equations
(2.25) and (2.26) leads to

𝑦 = 𝑑 + 𝑑 + 𝑒. (2.27)

From a geomechanical modeling perspective, the functional model relating the model parameters
to the deformation due to hydrocarbon production will be: 𝐺(𝑚) = 𝑑 . The mathematical model for the
parameter estimation will look like

𝐸{𝑦} = 𝑑 = 𝐺(𝑚), 𝐷{𝑦} = 𝑄 + 𝑄 , (2.28)

where 𝑄 is the covariance matrix of the idealization noise and 𝑄 is the covariance matrix of the
measurement noise.

2.3.4. Output level leveling data
Leveling data can be processed on different levels, it is important to be aware of the output level of a
dataset. The overview of the output levels for leveling data proposed by Samiei-Esfehany and Bähr
[57] is used for this thesis:

• Level0: Levelling campaign observation, that is height observations between benchmarks. This
is the direct result of leveling campaigns.
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• Level1: Adjusted heights per epoch or height differences per epoch with respect to a single
reference benchmark.

• Level2: Double differenced heights with respect to a common reference benchmark and a com-
mon reference epoch. This is the result of taking the temporal differences of adjusted heights per
epoch with respect to the height in a reference epoch.

2.4. Hypothesis testing
This thesis describes how model parameters are estimated from geodetic data, based on the principles
of least squares estimation, combined with regularization. Determination of best values for unknown
model parameters is based on observational data and possible a-priori information. To check the valid-
ity of the model and data, statistical hypothesis testing must be applied. Validation through probabilistic
decision making aims to detect if the model is sufficiently consistent with the data, or whether there are
better alternative models [66]. Finding the optimal parameterization of the unknowns is difficult in defor-
mation analysis and the testing procedure is therefore important [76]. The validity of the null hypothesis
is tested in the Detection, Identification and Adaptation (DIA) procedure as defined by Teunissen [65].
Multiple alternative hypotheses should be evaluated to determine the mathematical model that mini-
mizes the least-square residuals with respect to the observations. With normally distributed data, all
information about the quality of the estimator is contained in variance matrix 𝑄 ̂ ̂ . This assumption only
holds if the assumed mathematical model is valid. This section summarizes the mathematical frame-
work of the adjustment and testing procedure.

Certain errors in the estimation problem do not affect the precision of the estimates, however, they
do affect the size of the residuals and thus the consistency of design matrix 𝐴 with observed data 𝑦.
These errors are due to one of the following reasons [66]:

• outliers in the observed data 𝑦

• a systematic bias in the observed data 𝑦

• a wrong assumption for design matrix 𝐴

• a wrong assumption regarding 𝑄

The default model under the null-hypothesis, providing 𝑥 , is specified with the null hypothesis 𝐻

𝑦 ∼ 𝑁 (𝐸(𝑦), 𝑄 ),
𝐻 ∶ 𝐸(𝑦) = 𝐴𝑥,
�̂� = 𝑦 − 𝐴�̂� .

(2.29)

To detect whether something is wrong in the default mathematical model (the ‘null hypothesis’), the
overall model test is used. Estimates of the unknown parameters are obtained by the least-squares
adjustment. The validity of the null hypothesis is tested in the detection step. The overall model test
uses the weighted sum of squared residuals called the test statistic, which ‘compresses’ the residual
vector �̂� into a single quantity

𝑇 = ̂𝑒 𝑄 ̂𝑒 ; reject 𝐻 if 𝑇 > 𝐾 = 𝜒 (𝑚 − 𝑛, 0), (2.30)

where 𝑇 equals the test statistic, ̂𝑒 the residuals following from the null hypothesis, as described in
equation (2.29) and 𝐾 = 𝜒 (𝑚 − 𝑛, 0) the critical value, belonging to a significance level 𝛼. If the ob-
servational data is normally distributed, the test statistic 𝑇 follows a central 𝜒 -distribution [66]. The
𝜒 -distribution is characterized by the degrees of freedom of the inverse problem (𝑚 − 𝑛), where 𝑚 is
the number of observations and 𝑛 the number of unknown parameters. This test is only applicable in
case of redundancy (𝑚 > 𝑛) because the 𝜒 -distribution is only defined for degrees of freedom equal
or larger than one.
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The OMT should be rejected if the test statistic is larger than a certain critical value 𝐾. The critical
value is obtained by defining a critical region. The critical region is derived by dividing the observation
space, which represents all outcomes, into two parts: the critical region and its complement, the accep-
tance region. When the observations, as represented by the test statistic, happens to lie in the critical
region, the null hypothesis is rejected. If the test statistic lies in the acceptance region, one accepts that
the null-state reflects the state of the process in reality. This means that one assumes that there are no
outliers, systematic biases or model errors. When the test statistic is rejected, alternative hypotheses
with alternative models should be specified in the identification step, which may lead to an accepted
OMT

𝐻 ∶ 𝐸{𝑦} = 𝐴𝑥 + 𝑐 ∇, (2.31)

where ∇ represents the model error and 𝑐 the relation with the data, which can be multi-dimensional
[76]. To detect single observation anomalies, such as outliers, a test called ‘datasnooping’ can be used
[65]. For this test, 𝑐 will have the shape

𝑐 = [0, 0, ..., 0, 1, 0, ...0] . (2.32)

A-priori, it is often not known which functional model parameterizes the signal of interest best. To
attempt to find the best model, multiple models of different dimensions can be specified. This means
that for every model, 𝑛 can vary. In the evaluation, it is then not straightforward to just take the model
with the lowest test statistic. For that reason, de Heus et al. [11] introduced the test quotient: the ratio
of test statistics and their critical values. The test quotient is found by dividing each test statistic by
the appropriate 𝜒 value. The hypothesis that should be rejected is the hypothesis with the largest test
quotient

𝑇 /𝜒 (𝑚 − 𝑛 ) > 𝑇 /𝜒 (𝑚 − 𝑛 ) ∀𝑗 ≠ 𝑖, (2.33)

where 𝑇 equals the test statistic following from alternative hypothesis 𝐻 , 𝑖, with a critical value 𝜒 with
(𝑚 − 𝑛 ) degrees of freedom and a significance level 𝛼.

The final step is the adaptation step and involves the replacement of the null-hypothesis by the most
likely alternative hypothesis. To test the validity of the alternative hypothesis, the DIA procedure is
executed iteratively.

The DIA procedure is part of the software program that is being used for the geodetic testing of level-
ing data and iteratively estimating subsidence: SuRe. A description of SuRe will be given in the next
section.

2.5. Processing of geodetic data with SuRe
Subsidence Residual Modelling (or SuRe) is a software package developed by Houtenbos [31] and is
currently being used within the NAM to model subsidence. SuRe estimates subsidence by subtract-
ing predicted spatial height differences from measured spatial height differences (“residuals”). The
software package also screens the input data for measurement errors, point misidentifications, and ab-
normal vertical displacement rates. If errors in the input data are found, appropriate action is taken to
minimize the quality loss of the solution. Eventually, the parameters of the variance model are re-tuned
to the patterns of the residuals.
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The mathematical framework behind SuRe can be summarized as

ℎ = 𝐻 − 𝐻 + 𝑧 , − 𝑧 , + 𝛿ℎ + 𝛿𝑠 − 𝛿𝑠 + 𝛿𝑧 , − 𝛿𝑧 , , (2.34)

where:

ℎ the spatial height difference between points 𝑖 and 𝑗 at time 𝑡
𝐻 and 𝐻 initial heights
𝑧 the functional model of subsidence due to gas extraction
𝛿ℎ measurement noise
𝛿𝑠 autonomous movements of points or point/idealization noise
𝛿𝑧 subsidence model imperfections

𝛿ℎ, 𝛿𝑠 and 𝛿𝑧 are stochastically modelled components, which are estimated through variance com-
ponent estimation [76]. Idealization noise is modelled with an empirical covariance function

𝜎 = 𝜎 |𝑡 − 𝑡 | , 𝜎 = 1
2𝜎 (|𝑡 − 𝑡 | − |𝑡 − 𝑢| + |𝑢 − 𝑡 | ), (2.35)

where 𝑡 and 𝑢 are points in time, 𝑡 is the reference time, 𝜎 the standard deviation of autonomous
benchmark displacement and 𝑝 is the power of the empirical covariance function. This power is related
to the smoothness of the benchmark displacement in time. A value of 1 implies a constant displace-
ment rate, the lower the value of 𝑝 the more the displacement rate can vary over short time intervals.

Houtenbos [31] describes the model imperfections that are due to uncertainties in the parameterization
of the subsidence signal also by a covariance function

𝜎 = 1
2𝜎 (|𝑡 − 𝑡 | − |𝑡 − 𝑢| + |𝑢 − 𝑡 | )𝑒 ( / ) , (2.36)

where 𝜎 is the standard deviation of the predicted subsidence model, 𝑞 the power of the model noise
development with time, 𝑙 the distance between benchmarks 𝑖 and 𝑗 and 𝐿 the residuals subsidence
correlation length. A large value of 𝐿 implies very smooth behavior, a low-value graininess of the sub-
sidence residuals. The deeper the subsidence cause, the wider the associated the subsidence on the
surface above will spread, thus leading to a larger 𝐿.

SuRe requires a process parameter file that controls the area of interest, the period of interest and
possible project specifications. It also needs pre-defined noise parameters and a 3D subsidence prog-
nosis. With the process parameter file, height observations are extracted from a database and the
subsidence prognosis is subtracted from the height observations. Subsequently, the program tests
and corrects for data and model errors, corrects noise parameters and computes initial benchmark
heights. The flowchart in Figure 2.10 depicts the process of SuRe.

SuRe works in an iterative manner. First, points that are disconnected from the network are re-
moved, because these points do not contribute to the solution and cause singularities. Then, a design
matrix and variance matrix are constructed that are used in the least squares adjustment that is solved
for the initial benchmark heights. During each iteration, 1D hypothesis testing is applied to identify
points that cause the failure of the overall model test. After each iteration, the most likely cause of the
overall model test failure is reported. Several 1D errors can be detected by SuRe, an overview with
corresponding solution measures is given in Table 2.1.

Table 2.1: 1D Errors indicated by SuRe [31]).

1D Error description Solution
Observation error Observation is deleted
Benchmark misidentification error Bypass affected benchmark
Benchmark disturbance Benchmark history is split in 2 parts
Abnormally fast benchmark displacement Increase of point noise standard deviation



2.5. Processing of geodetic data with SuRe 21

Figure 2.10: Overall process flow of SuRe (from Houtenbos [31])
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At each iteration, the most likely cause of the failure of the overall model test is resolved. If even-
tually, the global test error is larger than all 1D errors, but yet not accepted, SuRe starts to tune the
variance model. All variables in the variance model are adjusted until the data fits the variance model
and all tests are accepted.

The input for the program is mentioned in the flowchart of Figure 2.10 and consists of a project specifi-
cation file, in which the project is specified and time and area are specified. In this file, also values for
the variance parameters that define the variance model are given:

• a factor for measurement noise standard deviation,

• the standard deviation of autonomous benchmark displacement (idealization noise),

• the power of autonomous benchmark displacement (2.35),

• the standard deviation of the prognosed subsidence model,

• the power of the prognosed subsidence model and,

• the correlation length of the prognosed subsidence model (2.36).

In the project specification file, one must also define a reference benchmark, it’s reference height
and a reference date. The last thing in the project specification file that should be defined is the test-
criterion or significance level 𝛼 (2.29). With control of the project specification file, SuRe fetches height
differences from an internal database using an SQL statement.
The second input file the program needs is a 3D prognosis, which gives the approximate subsidence
based on a subsidence model. Both a prognosis for a date before the first observation and a prognosis
after the last observation should be given, such that the whole period of interest is covered. Using more
prognosis grids at intermediate dates is possible. The prognosis grids should cover the entire area of
interest and period of interest.

After the 1D and global tests are accepted, SuRe computes the estimated subsidence and gives full
results. The program outputs three files containing all results. The first output file is a log file, listing
the testing results per iteration. It gives for each iteration the outcome of the global test and the largest
1D test and gives the cause of the largest error, this is one of the 1D errors described in Table 2.1.
Part of the report contains which benchmark or which measurement is flagged with a 1D error and at
which time step(s). If all 1D errors are solved but the overall model is not yet accepted, the parameters
of the variance model are adjusted to prevailing noise patterns. The outcomes of this variance model
adjustment can also be found in this log file. The log file also contains a list of all benchmarks with their
reference heights and estimated subsidence at the reporting date.
The second file that SuRe outputs is a subsidence grid at the reporting date that was stated in the
project specification file. The layout of the file is similar to that of the subsidence prognosis grid. To-
gether with the subsidence grid comes a grid with a standard deviation per subsidence estimate.
The third output file is a SuRe data file, in which a wide variety of data is given for further process-
ing. This file contains the parameters of the variance model, information about all benchmarks and
which benchmarks passed testing, all observations, and information about which observations passed
testing.
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2.6. Discussion and conclusion
Subsidence and other forms of ground deformation occur at all time scales and spatial scales. In
the Netherlands, subsidence results from different deformation regimes, both with natural and anthro-
pogenic causes. This thesis focuses on hydrocarbon production induced subsidence. To model the
relation between hydrocarbon production and subsidence, a nucleus-of-strain model can be used, as
defined by Mogi [41] or Geertsma [21]. Subsidence is estimated from measurements with different
geodetic survey methods, each with its characteristics. When using geodetic survey data, one should
be very well aware of the error sources in the data. These can be divided into two groups: mea-
surement noise and idealization noise. Measurement noise is a characteristic of the measurement
technique and idealization noise is the result of all other deformation signals than the signal of interest.
When using geodetic data as input data for further computations, one should be aware of these error
sources. Testing for errors can be done with the DIA-procedure, which can be integrated into software
tools. SuRe is a software tool that, as part of its workflow, applies a geodetic testing procedure. SuRe
needs a 3D subsidence prognosis and initial variance parameters to work, the influence of these input
files should be investigated. SuRe is one of the possible options for geodetic testing, other tools may
lead to different results.
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Inversion theory and regularization

Menke [38] defines inverse theory as “an organized set of mathematical techniques for reducing data
to obtain useful information about the physical world on the basis of inferences drawn from observa-
tions” (p.1). Inverse theory tries to estimate model parameters using observational data and a general
principle or model. To be able to make a meaningful estimate of the model parameters, there should
be some sort of relation between the data and the model. The contrary of an inverse problem is called
a “forward problem”. Forward theory makes a prediction of data, using a pre-defined model and model
parameters. This chapter elaborates on direct linear inversions and Tikhonov regularization, a method
of regularization for ill-conditioned systems.

3.1. Inversion of discrete linear systems
This research focuses on the inversion of a discrete linear system. This means that the inverse problem
can be represented with an explicit linear equation

𝐴𝑥 = 𝑦, 𝐴 ⊆ 𝑅 × , 𝑥 ⊆ 𝑅 , 𝑦 ⊆ 𝑅 . (3.1)

In equation (3.1), 𝑥 is the vector of model parameters to be determined, 𝑦 the vector with observation
data and 𝐴 the model matrix relating both. In discrete inverse theory, both the data vector 𝑦 and the
vector with model parameters 𝑥 are discrete. Alternatively, a continuous inverse problem consists of
estimating 𝑥, where the model and/or the data are functions of continuous variables. A continuous
inverse problem can be converted to a discrete one, by approximating the function as a summation [3].
The simplest way of solving an inverse problem would be taking the inverse of A to directly convert
the data vector into model parameters: 𝑥 = 𝐴 𝑦. This only leads to a unique solution if matrix A is
invertible: it must be square and have full-rank. When the amount of observations is not equal to the
amount unknown model parameters (𝑚 ≠ 𝑛), this is not possible due to model and data uncertainties.
A mathematical model is an idealized and simplified version of the real world. Therefore, it only gives
a simplified approximation of reality, not describing the data perfectly. Data is a measured quantity and
so there is the presence of errors or noise in the data vector. An inverse problem without an exact
solution can be defined in terms of it’s expectation

𝐸{𝑦} = 𝐴𝑥, (3.2)

which is equal to
𝑦 = 𝐴𝑥 + 𝑒. (3.3)

Observations 𝑦 are realizations of a random variable: 𝑦. Observations or measurements are
made by imperfect instruments and under sub-optimal conditions. Observations are therefore always
stochastic. A random variable is described by a probability density function (PDF). The uncertainty or
precision of the observation vector 𝑦 is described in covariance matrix 𝑄

𝐷{𝑦} = 𝑄 . (3.4)
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The random errors in the observations propagate into the estimated parameters. The probability
density function (PDF) of the random vector 𝑥 ⊆ 𝑅 is described by 𝑓 (𝑥) and 𝑦 ⊆ 𝑅 is written in
function of 𝑥: 𝑦 = 𝐺(𝑥), where 𝐺 ∶ 𝑅 → 𝑅 . The PDF of 𝑦 is given by [66]

𝐷(𝑦) = 𝐷(𝐺(𝑥)) = ∫ [𝐺(𝑥) − 𝑦][𝐺(𝑥) − 𝑦] 𝑓 (𝑥)𝑑𝑥, (3.5)

with 𝑦 = 𝐸{𝐺(𝑥)}.

For the linear case, a simplification is obtained. If 𝑦 = 𝐴𝑥 + 𝑏 and 𝐴 ⊆ 𝑅 × , error propagation
follows the linear variance propagation law

𝐷{𝑦} = 𝑄 = 𝐴𝑄 𝐴 . (3.6)

If the inverse problem has no exact solution, a solution should be found that approximates the exact
solution as good as possible. A useful approximation is a model parameter estimate that minimizes
the estimation error: the misfit between the estimated data and the observed data

�̂� = 𝑦 − �̂� = 𝑦 − 𝐴�̂� (3.7)

The best fitting solution is an estimate with certain model parameters, such that the smallest over-
all error (the sum of squares of the individual errors) is achieved. For least squares this is done by
minimizing the sum of squared residuals

||𝑒|| = √∑𝑒 = √(𝑒 𝑒), (3.8)

where 𝑒 is the estimation error or residual and 𝑚 the total amount of observations. The corresponding
�̂� that minimizes this sum is called the least squares solution of the system of equations

�̂� = min {||𝑒|| } = min {𝑒 𝑒} = min {(𝑦 − 𝐴𝑥) (𝑦 − 𝐴𝑥)} . (3.9)

The minimum of this function is found by taking it’s first derivative to 𝑥 and setting this equal to 0.
Eventually this leads to the least squares estimator

�̂� = (𝐴 𝐴) 𝐴 𝑦. (3.10)

The uncertainty of the estimated model parameters follows after applying the linear error propaga-
tion law

𝐷{�̂� } = 𝑄 ̂ ̂ = (𝐴 𝑄 𝐴) . (3.11)

With ordinary least squares, each of the observations is treated on an equal basis [66]. If the
accuracy of the measurements vary, such that the standard deviation of the individual observations
is not equal, a methodology called weighted least squares can be used, that gives more weight to
more accurate measurements. Instead of minimizing ∑ 𝑒 𝑒, one should minimize the weighted sum
of squares: ∑ 𝑒 𝑊𝑒, with weight matrix 𝑊 = diag(𝑤 ,… ,𝑤 ), 𝑤 > 0, 𝑖 = 1, ..., 𝑚 . Now, the
estimated solution is found by minimizing [38]

�̂� = min {(𝑦 − 𝐴𝑥) 𝑊(𝑦 − 𝐴𝑥)} . (3.12)

Leading to the weighted least squares estimator

�̂� = (𝐴 𝑊𝐴) 𝐴 𝑊𝑦. (3.13)

The dispersion of �̂� again follows from the linear error propagation laws

𝐷{�̂�WLS} = 𝑄 ̂ ̂ = (𝐴 𝑊𝐴) 𝐴 𝑊𝑄 𝑊𝐴(𝐴 𝑊𝐴) . (3.14)
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The best linear unbiased estimator (BLUE) is a special form of the weighted least-squares estimator
(WLSE). BLUE is a special form of WLSE with the inverse covariance matrix of the data (𝑄 ) as weight
matrix

�̂� = (𝐴 𝑄 𝐴) 𝐴 𝑄 𝑦. (3.15)

BLUE is a linear unbiased estimator which has the smallest variance and therefore called “best”
[66]. The covariance matrix of the estimated model parameters �̂� for BLUE is given by

𝐷{�̂� } = 𝑄 ̂ ̂ = (𝐴 𝑄 𝐴) . (3.16)

The quality of the estimators �̂� and �̂� for linear inversion is given by

𝐷{�̂�} = 𝑄 ̂ ̂ = 𝐴𝑄 ̂ ̂𝐴 . (3.17)

𝐷{�̂�} = 𝑄 ̂ ̂ = 𝑄 − 𝑄 ̂ ̂ . (3.18)

The observation data vector 𝑦 consists of 𝑚 entries and the model parameter vector 𝑥 of 𝑛 un-
knowns: 𝑦 ∈ 𝑅 and 𝑥 ∈ 𝑅 . Depending on the rank of the matrix, such a linear system may or may
not have a solution (consistency), and this solution may or may not be unique. The rank of a matrix is
the dimension of the vector space spanned by its columns. This corresponds to the maximal number of
linearly independent columns. If rank(𝐴) = 𝑚, consistency is guaranteed. A linear system may or may
not be consistent if rank(𝐴) < 𝑚. If rank(𝐴) = 𝑛 (the columns of A are independent), a unique solution
exists for the linear system. If rank(𝐴) < 𝑛, the linear system is underdetermined, this means that there
may be more than one solution. In this thesis, the linear system will be full of rank: rank(𝐴) = 𝑛 and
overdetermined: rank(𝐴) = 𝑛 < 𝑚. With such linear systems, least squares can be employed to select
a best approximate solution [38].

3.2. Ill-conditioned problems
Themajority of the inverse problems in geophysics are ill-posed [81]. This means that even if rank(𝐴) =
𝑛, there is no reliable solution when using least squares estimation. Though the residuals are small,
the solution is far off the exact solution. This means that small least-square residuals do not imply a
good least-squares solution. Solving an ill-conditioned problem implies that more information should
be added to the system. To get insight into the nature of an ill-conditioned problem, singular value
decomposition can be used.

Singular Value Decomposition (SVD) of matrix 𝐴 is the superior numerical method for analysis of dis-
crete ill-posed problems [26]. Every matrix has a singular value decomposition [24]. SVD decomposes
an 𝑚 by 𝑛 matrix 𝐴 into three matrices 𝑈, Σ and 𝑉

𝐴 = 𝑈Σ𝑉 =∑𝑢 𝜎 𝑣 , (3.19)

where

• 𝑈 is an 𝑚 by 𝑚 orthogonal matrix, with columns forming the basis of the data space,

• Σ is an 𝑚 by 𝑛 diagonal matrix, with 𝑛 entries called singular values,

• 𝑉 is an 𝑛 by 𝑛 orthogonal matrix, with columns forming the basis of the model space.

The singular values along the diagonal of Σ are arranged in decreasing size: 𝜎 ≥ 𝜎 ≥ ... ≥ 𝜎 ≥ 0.
The least square estimator �̂� and the errors in the least-squares solution can also be expressed in
terms of the singular value decomposition

�̂� = ∑ 𝑢 𝑦
𝜎 𝑣 , (3.20)
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𝑒 ̂ =∑
𝑢 𝑒
𝜎 𝑣 . (3.21)

Equation (3.21) shows that perturbations or errors in the data vector cause perturbations in the least-
squares solution. For exact data, without errors, ||𝑢 𝑦|| usually decreases with increasing 𝑖. However,
this does not directly holds for ||𝑢 𝑒 ||, especially if the data errors have power at higher frequencies,
corresponding to higher indices 𝑖. This means that the solution becomes very noisy with small singular
values in the presence of data errors. This is caused by the amplification of high frequency data errors
by small singular values [26]. Discrete ill-posed problems are characterized by singular values that
decay gradually towards zero and do not show an obvious jump between nonzero and zero singular
values [3].

3.3. Tikhonov regularization
Small singular values of the design matrix A cause the least squares solution to be useless, because
the small singular values amplify data noise. To be able to still compute an estimate of the model
parameters, one could make use of regularization. Regularization is a method that filters out the flawed
components of the least squares solution, or in other words to filter out the contributions to the solution
corresponding to the small singular values. This is done by introducing filter factors

�̂� = ∑𝑓 𝑢 𝑦𝜎 𝑣 , (3.22)

where 𝑓 are the filter factors. The filter factors differ for each regularization technique. The similarity
between all regularization techniques is that as 𝜎 decreases, 𝑓 must tend to zero, such that contribu-
tions to the solution from the smaller 𝜎 are filtered out [28]. Many regularization methods exist, for this
thesis the Tikhonov regularization method is used.

Tikhonov regularization is a very widely applied regularization method and easily implemented for
regularizing discrete ill-posed problems [3]. The method is developed by Tikhonov [67] in 1963. The
key idea of Tikhonov regularization is to include an a priori assumption about the size and smoothness
of the solution. Tikhonov regularization in its general form leads to the minimization problem

�̂� , = min {||𝐴𝑥 − 𝑦|| + 𝜆 ||𝐿𝑥|| } , (3.23)

where regularization parameter 𝜆 controls the weight given to minimization of the regularization term
||𝐿𝑥||, relative to the minimization of the residual norm ||𝐴𝑥 − 𝑦|| . L is the regularization matrix, which
gives preference to a particular solution with desirable properties. The Tikhonov solution �̂� , is given
by

�̂� , = (𝐴 𝐴 + 𝜆 𝐿 𝐿) 𝐴 𝑦. (3.24)

Equations (3.23) and (3.24) hold for uncorrelated data with covariance matrix 𝑄 = 𝜎 𝐼 . If the
covariance matrix of the data 𝑦 is not equal to 𝜎 𝐼 , the least squares residual should be scaled with
the inverse of the covariance matrix [26]

�̂� , = min {𝑄 ||𝐴𝑥 − 𝑦|| + 𝜆 ||𝐿𝑥|| } , (3.25)

with corresponding Tikhonov solution

�̂� , = (𝐴 𝑄 𝐴 + 𝜆 𝐿 𝐿) 𝐴 𝑄 𝑦. (3.26)

Error propagation after linear inversion with Tikhonov regularization follows the covariance propa-
gation law (equation (3.6)). The covariance matrix of the estimated parameters with Tikhonov regular-
ization is found with [3]
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�̂� , = 𝐵𝑦,
𝑄 ̂ , , ̂ , = 𝐵𝑄 𝐵 ,

with 𝐵 = (𝐴 𝑄 𝐴 + 𝜆 𝐿 𝐿) 𝐴 𝑄 .
(3.27)

The choice of the regularization matrix decides on what kind of measure of 𝑥 is minimized, ex-
pressed as 𝐿𝑥. The simplest choice of 𝐿 would be the identity matrix 𝐿 = 𝐼 , better known as zeroth-
order Tikhonov regularization. For this type of regularization, the norm of the solution, ||𝐼𝑥|| = ||𝑥||, is
minimized. The filter factors for zeroth-order Tikhonov regularization look as

𝑓 = 𝑠
𝑠 + 𝜆 , (3.28)

where 𝑠 is the 𝑖th singular value following from SVD and 𝜆 is the regularization parameter. Employing
the SVD of 𝐴, the regularized solution can be written as

�̂� = ∑ 𝑠
𝑠 + 𝜆

𝑢 𝑦
𝜎 𝑣 . (3.29)

In many situations, one prefers minimization of another measure of 𝑥, such as the norm of the first
or second derivative of 𝑥. Minimization of the first order derivative of 𝑥 for a one-dimensional model
leads to solutions that are relatively flat and can be achieved by using the 𝐿 regularization matrix

𝐿 =
⎡
⎢
⎢
⎢
⎣

−1 1
−1

⋱ ⋱
−1 1

−1 1

⎤
⎥
⎥
⎥
⎦

⊆ 𝑅( )× . (3.30)

Minimization of the second derivative can be achieved by using the second-order Tikhonov reg-
ularization matrix 𝐿 that penalizes solutions that are rough in the squared second derivative sense
[3]

𝐿 =
⎡
⎢
⎢
⎢
⎣

1 −2 1
1 −2 1

⋱ ⋱ ⋱
1 −2 1

1 −2 1

⎤
⎥
⎥
⎥
⎦

⊆ 𝑅( )× , (3.31)

where 𝐿 𝑥 is a finite-difference approximation that is proportional to the second derivative of 𝑥. For
higher-dimensional models, equations (3.30) and (3.31) are not appropriate. In such cases, another
regularization matrix should be implemented using a finite-difference operator of appropriate dimen-
sionality and form. See e.g. Besag et al. [5] or Ryan et al. [56] for examples of regularization with
spatial neighbourhoods.

To solve and analyze a zeroth-order Tikhonov regularization problem, the SVD is used. For higher-
order Tikhonov regularization problems where 𝐿 ≠ 𝐼 , a generalized singular value decomposition
(GSVD) of matrix pair (𝐴, 𝐿) should be employed. The generalized eigenvalues of matrix pair are es-
sentially the generalized eigenvalues of the matrix pair (𝐴 𝐴, 𝐿 𝐿) [26]. With the GSVD, the solution of
3.23 can again be expressed as a sum of filter factors, analogue to Equation (3.29). For a comprehen-
sive derivation of the GSVD, see e.g. Hansen [26] or Menke [38].

The Tikhonov regularization parameter 𝜆 (equation (3.23)) decides how much regularization is
needed, and thus governs the weight given to the minimization of the norm ||𝐿𝑥|| . The larger the
regularization parameter, the more regularization is applied and with a large 𝜆, the solution becomes
very smooth, but the residual norm ||𝑦 − 𝐴𝑥|| becomes very large. If the regularization parameter ap-
proaches zero, 𝜆 → 0, the residuals will become small but the solution will approach the least squares
solution: ̂𝑥 → �̂� . Therefore, an appropriate size of the regularization parameter should be chosen.
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The L-curve is a graphic tool for analysis of discrete ill-posed problems and the role of the Tikhonov
regularization parameter. It is a plot of the norm of the regularized solution ||𝑥 , || versus the corre-
sponding residual norm: ||𝑦 − 𝐴𝑥 ||, see Figure 3.1. Hansen [27] describes the L-curve as “a trade-off
curve between two quantities that both should be controlled” and he describes an algorithm for choos-
ing the regularization parameter 𝜆 with the L-curve criterion. The optimal regularization parameter is
found at the point in the L-curve with maximum curvature [27].

Figure 3.1: Typical L-curve (adapted from Hansen [27]).

Cross validation (CV) is an alternative method of selecting regularization parameter 𝜆. The general
idea behind CV is that the data is split and a part of the data is left out in the inversion. A set of candidate
regularization parameters is defined. The best model for the measurements is the one that predicts
each measurement (or subset of measurements) best as a function of the other measurements. For
each candidate regularization parameter, the regularized least squares solution is computed with the
reduced set of observations. The part of the data that is not used in the inversion, is later used to
test the performance of the inversion for the candidate regularization parameter. The missing obser-
vation(s) are predicted using forward modelling. The root-mean-square (RMS) between “observed”
and “predicted” is computed and the regularization parameter with the smallest RMS is chosen [34].
There are different ways of splitting up the dataset. With k-fold cross validation, the data is split up in
k subsets and the inversion is performed on the other 𝑘 − 1 subsets. This is done 𝑘 times, each time
leaving another subset out. An extreme form of k-fold CV is leave-one-out CV. For leave-one-out CV,
each 𝑘th subset consists of 1 observation.

Generalized cross validation (GCV) is a form of leave-one-out CV and provides an objective methodol-
ogy to choose the regularization parameter [25]. The GCV theorem finds the regularization parameter
that minimizes the GCV functional

min = 1
𝑚∑(𝑦 − �̂� (𝜆)

1 − ℎ(𝜆)
) , (3.32)

where𝑚 are the amount of measurements, 𝑦 the 𝑖th measurement, �̂� (𝜆) the prediction of 𝑦 , computed
with candidate regularization parameter 𝜆 and ℎ(𝜆) = trace(𝐻). 𝐻 is defined by [3]

𝐻 = 𝐴(𝐴 𝐴 + 𝜆𝐿) 𝐴 . (3.33)

GCV can be very computationally expensive, since a number of regularized least-squares solutions
should be computed to find a good regularization parameter.
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Production of hydrocarbons from the subsurface induces a pore pressure reduction. Due to this reser-
voir pressure depletion, the reservoir volume compacts and the surface above the reservoir subsides.
This connection between reservoir compaction and subsidence is used in geomechanical modeling.
Geomechanical models give estimations of subsidence in forward modeling, with the degree of com-
paction and other geomechanical parameters as input. For an elaborated description of geomechanical
models connecting reservoir compaction and surface subsidence, see chapter 2. Inverse geomechan-
ical modeling is used to obtain knowledge of geomechanical parameters from geodetic surface data.
One of the first case studies of hydrocarbon induced subsidence and relations between reservoir pa-
rameters and subsidence data is performed on the Lacq gas field in the south of France. Maury et al.
[37] concluded in his paper in 1992 that “monitoring subsidence and seismic events is a new and useful
aid to understanding reservoir response to fluid withdrawal, the practical consequences with regard to
safety and gas production, and a contribution to our knowledge of reservoir behavior over time.”. In
1994, for the same case study, Segall et al. [61] related pressure reservoir drop to subsidencemeasure-
ments. For Segall’s study, it is, however, hard to judge the quality of the fit, since no quality description
of the data is given.

More recent studies that focus on the relationship between reservoir behavior and subsidence mea-
surements can roughly be divided into three groups: (1) methods that try to estimate geomechanical
parameters using a data assimilation method, (2) methods that use subsidence estimates as a way of
validating the goodness-of-fit of their subsurface models and (3) methods that use geodetic data as
input for a direct inversion.

4.1. Data assimilation methods
Data assimilation is a group of methods that makes predictions of the state of a system, combining
two sources of information: observation data and models that embody the physical laws governing the
behavior of the system [80]. Both the observations and the physical model carry uncertainty, and these
uncertainties should be included in the estimate of the state of the system [77]. Examples of systems are
processes in the atmosphere, ocean, and land surface [80]. For geomechanical inversion, the system is
the land surface and subsurface, modeled by a geomechanical model, which links surface deformation
to reservoir compaction. The observation data consists of geodetic surface data. Various types of data
assimilation techniques exist, currently Ensemble Kalman filters are popular data assimilation methods
that are applied to a wide range of dynamical models [77]. Another popular group of data assimilation
methods is particle filters [71]. This thesis will not go into detail on the theory behind these different
data assimilation methods, for an extensive description see above mentioned papers.

LTS-II: The LTS-II study (Long Term Subsidence study part two) performed in 2017 by the NAM
[46] aims to reduce the difference between the NAM-predicted subsidence and observed subsidence
in the Ameland gas-field in the Netherlands. 58 reservoir pressure models were created, all history
matched to available pressure and production data. Due to long production history and regular pressure
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measurements, the models are narrowly constrained and thus show little variation between the 58
models. Subsequently, for every pressure scenario, parameters of the geomechanical compaction
model and the influence function were varied with a Monte Carlo simulation. For the compaction model,
the Rate Type Compaction isotache Model (RTCiM) (Pruiksma et al. [54]) is used and for the influence
function a modified Geertsma and van Opstal model [23]. TheMonte Carlo procedure picks parameters
for both the compaction model and the influence model. The combination of one reservoir model
together with a set of parameters for both the influence function and the compaction model is called a
subsidence model member, a group of subsidence members defines an ensemble. Each member is
confronted with the geodetic data and a test statistic is computed, to define the probability and weight
of the member. The geodetic data consists of double-differenced leveling and GPS techniques. The
uncertainties of this data are described by a fully populated covariance matrix [72]. The final covariance
matrix of the double differences does not only include measurement noise but also idealization noise:
”idealization noise is associated with deformation components in geodetic observations that are not
related to the signal of interest.” (van Leijen et al. [72]). A formal outlier handling approach was applied
to the data. This workflow identifies the most likely model factors (reservoir pressure model, parameter
values for compaction model and influence function) and posterior probability distributions for the model
data. The workflow of the LTS-II study is summarized in Figure 4.1. In Section 4.4, a closer look at the
processing of the geodetic data will be given.

Figure 4.1: Main components of LTS-II workflow (from NAM [46])

Ensemble smoothing of land subsidence measurements for reservoir geomechanical charac-
terization: Baù et al. [4] applied an ensemble smoother (ES) to provide improved estimates with
reduced uncertainty of reservoir parameters. The ensemble smoother assimilates measurements of
both horizontal and vertical surface displacement into geomechanical results. The ensemble smoother
is a derivate of the classic Kalman filter [32]. The ES minimizes the variance of the estimation error,
by merging the prior mathematical model with actual field data, to derive a corrected posterior esti-
mate, making it a Bayesian data assimilation method. This method uses a Monte Carlo simulation to
represent the model uncertainties by an ensemble of geomechanical parameters. The displacement
ensemble and model parameters are simultaneously updated. The applicability of the ES is tested
to provide reliable estimates of uncertain subsurface parameters. The effect on the geomechanical
estimates of using increasing standard deviation values for the geodetic data is researched, as is the
amount of geodetic measurements used. This paper applies the methodology on Geertsma’s analyt-
ical solution for a disk-shaped reservoir [22] on a synthetic data set. The authors make the remark
that “the effectiveness of the ES data assimilation algorithm heavily relies on the correlation between
reservoir parameters and surface displacement”. This means that the model should be able to explain
all physics behind the processes causing surface displacement. Surface displacement is the summed
effect of multiple components, such as hydrocarbon production, natural consolidation, surface loading,
etc. Deformation components not related to the signal of interest is called “idealization noise”, as in the
LTS-II study [46]. If this idealization noise is not modeled in the ES, the framework will provide fictitious
parameters. Model uncertainty and bias are outside the scope of this paper.
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4.2. Methods that use geodetic data as validation
Other studies use geodetic data primarily as away of validating the outcomes of geomechanical models:

WinningsplanGroningen 2016: The NAM computes reservoir compaction in theWinningsplan 2016
[45] with two compaction models: the Time Decay Compaction model and the rate type compaction
model (RTCiM). Input for these calculations is a top reservoir map, reservoir thickness, reservoir pres-
sure, and porosity. The derived strains are transferred to surface subsidence using an influence func-
tion: semi-analytical approach, based on Geertsma [22] and Geertsma and van Opstal [23]. To cal-
ibrate the outcomes to the measured subsidence, the weighted root-mean-squared (RMS) value of
the residuals between the surveyed and modeled subsidence at all benchmarks is determined. Both
compaction models show a “reasonable to good” fit with the subsidence data, with the RTCiM being
the best case model. The RTCiM model is subsequently used for subsidence forecasting with ongoing
production.

History match of the Groningen field dynamic reservoir model to subsidence data and conven-
tional subsurface data: Van Oeveren et al. [73] propose a new methodology of history-matching
the Groningen field. The Groningen field dynamic reservoir model is usually history-matched to con-
ventional data (pressure data and water influx data). This paper proposes an update of the existing
history match, by including subsidence data. The Groningen field dynamic reservoir model is used
to predict future subsidence, but calculated subsidence based on the results of the reservoir model
resulted in notable mismatches to observed subsidence. Therefore, subsidence data can be used to
constrain dynamic reservoir models, additional to pressure and water influx data. The subsidence data
consists of the estimated displacements at benchmarks between 1972 and 2013 from satellite and lev-
eling surveys, filtered for stable benchmarks. They estimate the measurement error over 1973-2013
to be in the order of 1 cm. The workflow consists of setting up variable uncertain model parameters,
that likely impact the mismatch to the data. 1000 different models are formed, to make combinations
of settings of the variable model parameters. The mismatch of the model output and the conventional
history matching data plus the subsidence data is quantified with the RMS to each data set. Each time,
the model with the lowest combined RMS is chosen and improved. This eventually resulted in a model
that had a mismatch of ±4cm to the subsidence data, which has a data uncertainty of ±1cm. Figure
4.2 shows the results of the history matching. There are clear areal trends in the residuals from the
subsidence match. The study assumes that all measured subsidence is due to reservoir compaction.

Figure 4.2: Results of history matching for subsidence estimates: (A) Modeled subsidence estimate, (B) measured subsidence,
interpolated and (C) difference between (A) and (B) (from van Oeveren et al. [73]).

4.3. Direct inversion methods
The above-mentioned studies all use the geodetic data as a way to confront their geomechanical or
reservoir models or to check the validity of the models. The data assimilation methods also use the
geodetic data as input for estimating or improving geomechanical parameters. The third group of
studies uses geodetic data as input to perform a direct geomechanical inversion.
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Time-dependent inversion of surface subsidence due to dynamic reservoir compaction: Muntendam-
Bos et al. [42] introduced a novel, time-dependent inversion scheme for resolving temporal reservoir
pressure drop from surface subsidence observations in a single procedure. A prior reservoir pressure
model is updated using geodetic observation data and the covariance matrix of the observations. The
method uses both the prior covariance matrix and the data covariance matrix. This implicitly guaran-
tees smoothness of the model estimate, while maintaining specific geological features. The inversion
methodology is adopted from Tarantola [62], minimizing a cost function 𝐽:

𝐽 = exp[−12(𝑚 −𝑚 ) 𝐶 (𝑚 −𝑚 ) − 12(𝑑 − 𝐺(𝑚)) 𝐶 (𝑑 − 𝐺(𝑚))] (4.1)

This leads to the definition of the model estimates and it’s covariance:

�̂� = 𝑚 + 𝐶 𝐺 (𝐺𝐶 𝐺 + 𝐶 ) (𝑑 − 𝐺 )
𝐶 ̂ = 𝐶 − 𝐶 𝐺 (𝐺𝐶 𝐺 + 𝐶 ) 𝐺𝐶 = (𝐺 𝐶 𝐺 + 𝐶 ) (4.2)

where 𝑚 is the vector with adjustable model parameters, in this case, pressure drop, 𝑑 the vector with
observation data, 𝐺 the forward model,𝑚 the prior model, 𝐶 the covariance matrix of the prior model
and 𝐶 the covariance matrix of the observational data. The estimate of the model parameter and its
covariance are given by �̂� and 𝐶 ̂ . The forward model is a linear, semi-analytic approach designed to
account for layering by Fokker and Orlic [16]. The observation data is differenced, over different time
steps, to ensure that available measured data is used optimally. The proposed methodology is applied
to a synthetic data set.

Inversion of double-difference measurements from optical leveling for the Groningen gas field:
Fokker and van Thienen-Visser [17] update an existing reservoir compactionmodel, by linearly inverting
double-differenced leveling measurements. The followed methodology is on the basis similar to the
inversion methodology proposed by Muntendam-Bos et al. [42]. The inversion exists of a conventional
least-squares inversion, where the objective function J (equation (4.1)) is minimized. This study has
formalized the definition of “double differences” and applied the methodology on real case study data,
the Groningen gas field. Also, a smoothness constraint was added and the authors estimated an
independent constant vertical velocity for each benchmark as an additional unknown parameter, to
allow for movement not caused by depletion of the gas field. Eventually, the inversion returns an
updated value for the compaction and values for autonomous movements of benchmarks. The quality
of fit was calculated by 𝜒 = (𝐺 − 𝑑) /𝜎 , and improved from 8.8 to 5.9.

Validation of PSI results of Alkmaar and Amsterdam within the Terrafirma Validation Project:
Hanssen et al. [30] compared deformation estimates from InSAR with in-situ measurements at two
locations: a metro tunnel in Amsterdam and at gas fields in the vicinity of Alkmaar, both in the Nether-
lands. The in-situ measurements in Amsterdam consist of tachymetric observations, in Alkmaar level-
ing measurements are used. The Alkmaar case study is more interesting here since the deformation
at that location is presumably caused by gas production. Correspondence of the leveling and InSAR
measurements is analyzed in both the measurement space and in the parameter space, by their ability
to estimate geomechanical source parameters. Mogi sources are placed in reservoir locations, the
amount of sources depends on the reservoir size. The dimensions and depth are considered a priori
knowledge. Leveling and InSAR data are inverted to derive source parameters. The data is inverted
in Bayesian sense, the paper does not tell whether processed displacement data or raw measurement
data is used. The data are considered uncorrelated and normally distributed, with 𝜎 = 1mm for leveling
data and 𝜎 = 5 mm for InSAR data.

Field-wide reservoir compressibility estimation through inversion of subsidence data above
the Groningen gas field van Eijs and van der Wal [70] present a methodology to model compaction
and subsidence, combining results from rock mechanics experiments and surface deformation mea-
surements. A prior compaction grid was proposed, based on core plug experiments. During these
experiments, porosity and compaction are measured on plugs and a trend line is fitted, defining the
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relation between porosity and compaction. This relation is then used to express the compaction coef-
ficient on a spatial grid, covering the Groningen gas field. The compaction grid is used as prior input in
an inversion scheme. Two penalties are used in the inversion process: (1) the difference between the
inverted compaction coefficient 𝐶 and the porosity derived 𝐶 and (2) the residuals between modeled
and measured subsidence. The forward model used is a time-decay compaction model, where decay
times are varied. Eventually, the 𝐶 with the lowest RMS is the time-decay model with a decay time of 5
years. The geomechanical model is a semi-analytical approach based on Geertsma [22] and Geertsma
and van Opstal [23]. The input geodetic data are height differences at benchmark locations, relative
to a stable benchmark. The reported height differences are not corrected for possible autonomous
movement but present the total displacement at the surface. The study applies a conservative ap-
proach, meaning that all deformation is assumed to be a result of reservoir compaction. The paper is
concluded with a discussion about the uncertainty description of the model and data, mentioning that
the uncertainty description of both the model and data could be improved in further research.

Robust non-linear inversion for reservoir deformation from surface displacement data: Bisdom
et al. [9] developed a workflow to derive geomechanical parameters, inverting surface displacements.
The inverse solution of Geertsma’s semi-analytical nucleus-of-strain model [22] is used together with a
forward solution of a finite element model. The inversion workflow is an iterative procedure, see Figure
4.3.

Figure 4.3: Inversion workflow as proposed by Bisdom et al. [9]. The workflow uses a Geertsma’s nucleus-of-strain model, inte-
grated with forward finite element models. The workflow is here applied to a synthetic dataset. Vertical surface displacement (top
left) is inverted to reservoir strain or compaction (top middle). The updated reservoir compaction is used in a finite element model
to forward-model surface displacement (down right). As long as the residual between modeled and measured displacement is
above the acceptable threshold, the residual is inverted in iteration , repeating until the residual is below the threshold value
(from Bisdom et al. [9])

The study makes use of estimated vertical displacement as input data. Uncertainty propagation has
not been applied, because of the iterative nature of the workflow.

Regularised direct inversion to compaction in the Groningen reservoir using measurements
from optical leveling campaigns: Bierman et al. [6] proposed a statistical methodology to estimate
reservoir compaction through direct inversion using double-differenced measurements from optical lev-
eling campaigns. This model does not use a prior compactionmodel to be not reliant on certain assump-
tions, as many of the other inversion studies do. Due to the absence of a prior model, regularization
must be imposed to estimate compaction is different reservoir sections. regularization is achieved by
imposing spatial smoothness on compaction estimates and by applying a non-negativity constraint.
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The report does not talk about uncertainty of the used data, nor does it quantify measurement or ideal-
isation noise. The uncertainty of the regularised compaction estimates has also not been given, nor is
a methodology for assessing the error propagation given. This is mentioned as topic for future work.

4.4. Data-processing of LTS-II study
This section focuses on geodetic processing as performed for the LTS-II [46] study because this study
gives an extensive description of the geodetic processing performed before measurements were used
in the inversion. For other researches, this description usually misses. For the LTS-II study, both GPS
and leveling data were prepared for subsidence modeling by the NAM with substantial support by Delft
University of Technology [72]. Since the methodology proposed in this thesis works with leveling data,
only LTS-II data processing from optical leveling campaigns will be described. For a description of
processing and testing of the GPS data, see NAM [46] and Samiei-Esfehany and Bähr [57].

The leveling data consists of data from 26 optical leveling campaigns between 1986 and 2017. Hydro-
static leveling campaigns turned out to be too sparse for correct quality assessment, so these mea-
surements were not used.

Samiei-Esfehany and Bähr [57] advised in 2015: “Use double differences with multiple reference
epochs and points as an optimal interface between geodetic data and geomechanical modeling.” In
2017, they revised this statement after more research to: “It can be concluded that the choice of the
output level does not make a difference as long as the full covariance matrix is used.”, which implies
that no multiple reference epochs and points are needed, as long as the error propagation in process-
ing steps is done adequately. So for the LTS-II research, spatio-temporal double-differences are used.
This implies that changes in surface positions between two points in space and two epochs in time are
used for the confrontation of measurements and subsidence model predictions. No assumption on a
stable reference point is now necessary. A lot of double-differenced data in the LTS-II research has
identical reference points and epochs and uncertainty is described by a full covariance matrix.
Measurement uncertainty was quantified with standard models, as described in section 2.3.3. Idealiza-
tion noise is described by NAM [46] as “the displacements of the measurement points due to shallow
movements like building settlement or soil compaction. Together with themeasurement noise, it models
the uncertainty of geodetic observations when used to quantify subsidence caused by (deep) reser-
voir compaction.” The model that is used for the quantification of the idealization noise differentiates
between 2 components:

• Temporal component: Shallow effects that are correlated in time but not in spatial extent,

• Spatio-temporal component: Shallow effects that are correlated in both space and time.

Idealization noise is estimated for each double-difference that is computed for the final analysis.
Both idealization noise components are modeled by a five-parametric model described by Samiei-
Esfehany and Bähr [57] [58]

𝜎 = 2𝜎 Δ𝑡 + 2𝜎 (1 − 𝑒 ( )Δ𝑡 , (4.3)

where:

Δ𝑡 time difference,
Δ𝑑 spatial difference,
𝜎 the variance of the temporal component,
𝑃 the power of the non-stationary signal associated with the temporal component,
𝜎 the variance of the spatio-temporal component,
𝑃 the power of the non-stationary signal associated with the spatio-temporal component and,
𝐿 correlation length.

The parameters of this idealization noise model were estimated with two datasets: (1) an onshore
leveling dataset from an area where no gas production took place, to estimate both components, and
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(2) an offshore leveling dataset, to calibrate the temporal component to relative intra-cluster move-
ments.

Outlier handling was proposed in Samiei-Esfehany and Bähr [57] and implemented by van Leijen et al.
[72]. Time series analysis is performed per benchmark of double-differences, with a common reference
point and reference epoch. An a priori subsidence model is subtracted from the time series. A DIA-
procedure is subsequently applied to the time series of the model residuals, to analyze for disturbances,
identification errors and abnormal behavior, see Figure 4.4.

Figure 4.4: Alternative hypothesis to be tested in the LTS-II research with corresponding actions: identification errors are re-
moved, at place of the disturbance, the timeseris is split in two and with abnormal behaviour, the entire time series is rejected
(from NAM [46]).

The testing threshold in the DIA-procedure was largely increased because there were residual im-
perfections in the stochastic model and because of subsidence modeling imperfections and uncertainty.
The consequence of this approach was that only obvious outliers were detected and the test statistic
values for the confrontation of leveling observations and subsidence model predictions were far too
high. To mitigate this, they tried additional outlier handling by visualizing time series and manually han-
dling outliers. Even after this approach, test statistics were above the expected value, which can be
an indication for a subsidence model mismatch, and it also became clear that remaining data outliers
made a substantial contribution. To detect more outliers, they exploited the spatio-temporal smooth-
ness of deformation signal caused by hydrocarbon production, by complementing the workflow with a
spatio-temporal analysis of the geodetic observations. This is done by using a two-step approach: first,
a zero deformation (a “null prognosis) is used to estimate a spatio-temporal correlated subsidence sig-
nal from the geodetic data. This estimation is then used as an approximation of the subsidence signal
in a second run. The workflow of the outlier handling for the LTS-II study is visualized in Figure 4.5.

4.5. Discussion and conclusion
Research into geomechanical inversion can roughly be divided into three groups: (1) data assimilation
methods, (2) methods that use geodetic data as validation and (3) direct inversion methods. These
methods are characterized by the way the geodetic data is used as input into the inversion. For data
assimilation methods, a confrontation between model states and geodetic data is done, to achieve a
better estimation of the model state. Methods that use geodetic data as validation only use this data
as a way of validating the outcomes of other physical models, so these methods do not use geodetic
data actively. The third group, containing direct inversion method,is of most interest for this thesis.
These methods use geodetic data as input data for an actual direct inversion. This means that the
geomechanical estimates are usually in some form are expressed in function of geodetic data and that
this system is inverted.

The input data and processing level for each methodology is different. Studies use either processed
leveling, GPS or InSAR data. Bisdom et al. [9] and van Eijs and van der Wal [70] use surface dis-
placement data at benchmark level. This means that geodetic data is used to estimate displacement
at point level. Estimating displacements at point level introduces correlations in the covariance matrix
of the data, and could possibly introduce biases, because a stable reference point has to be chosen.
Other studies use geodetic data at other levels of processing, like NAM [46], Muntendam-Bos et al.
[42], Fokker and van Thienen-Visser [17] and Bierman et al. [6], that use double differenced (spatio-
temporal) leveling measurements.
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Figure 4.5: Outlier handling workflow for LTS-II (from NAM [46]).
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Uncertainty quantification and error propagation is often not mentioned in previous research. Only
NAM [46] mentions an extensive noise modeling and outlier handling and therefore a description of
their workflow is disclosed in section 4.4. Muntendam-Bos et al. [42] and Fokker and van Thienen-
Visser [17] estimate uncertainty of the model parameters, other works often acknowledge that uncer-
tainty handling is part of future work.

The amount of information that is given to the inversion problems also differs per work. If we focus
on the direct inversion methods, a few works update an existing physical model. Muntendam-Bos et al.
[42] for example, updates a prior reservoir pressure model. Fokker and van Thienen-Visser [17] and
van Eijs and van der Wal [70] update an existing reservoir compaction model. Other works don’t use a
prior model, like Bierman et al. [6], to not rely on certain assumptions (e.g. a prior reservoir compaction
model). This however leads to the need of regularization.

The goal of this thesis is to develop a method in which geomechanical parameters are directly esti-
mated from optical leveling measurements. This implies that the input data exists of non-differenced
leveling data, which differs from all previous work mentioned above. With a direct inversion, error prop-
agation is less complex and should be included. Uncertainty should be quantified, both measurement
noise and idealization noise. Use of prior models does bring more information into the problem, but
can also lead to reliance on wrong assumptions. If no prior assumptions on e.g. a compaction model
are used, there might be a need for regularization.





5
Methodology

The goal of this thesis is to develop a methodology, which makes it possible to estimate geomechanical
parameters directly from optical leveling measurements. The advantage of this direct relation between
measurements and geomechanical parameters is the possibility to propagate geodetic uncertainties
directly into geomechanical estimates. Currently, in Shell, the prevalent geomechanical inversion pro-
cess takes three steps, see Figure 5.1. Optical leveling survey campaigns are organized and subse-
quently, a geodetic testing procedure is applied to the geodetic measurements by the SuRe software.
SuRe adjusts measurements and adapts the design matrix and variance matrix accordingly to the
outcome of the geodetic tests and delivers subsidence estimates as end-result. These subsidence
estimates are used as input in the actual geomechanical inversion, performed by a geomechanical
team. Estimation of subsidence (surface deformation) introduces correlated uncertainties, whereas
the raw measurements are uncorrelated. The stochastic model for geodetic data that is currently de-
ployed for geomechanical inversion is simplified and incomplete because it neglects correlations and
only accounts for the uncertainty of the measurement itself.

Figure 5.1: Current prevalent workflow for geomechanical inversion in Shell from geodetic data

The methodology proposed in this thesis removes the step in which surface deformation estimates
are made, such that geomechanical parameters are directly estimated from geodetic measurements
(see Figure 5.2). Geodetic testing is applied to the data, but no subsidence estimates are made. The
extra information retrieved from the geodetic testing procedure is used to adjust the measurements.
Error propagation for this process becomes less complex and computational heavy.

Figure 5.2: New proposed work flow for direct geomechanical inversion from geodetic data

41
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The methodology is split into two parts: testing and processing of the data, to identify erroneous
components in the data and to act on these outliers, and the actual inversion, where geomechanical
parameters are estimated from the optical leveling measurements. Geodetic testing is performed with
geodetic testing software currently used within Shell: SuRe. The geodetic department in Shell uses
SuRe now predominantly to estimate subsidence, but for this thesis, SuRe will be used for the build-in
geodetic testing procedures. After testing of the measurements, actual inversion takes place. The
geomechanical parameterization used for this thesis is the Geertsma nucleus-of-strain model. The
problem is ill-conditioned and thus regularization has to be applied.

5.1. Testing and processing of raw data
The first step of the new workflow is testing and subsequent processing of the raw leveling measure-
ments of output level 0 (see Section 2.3.4 for an explanation of output levels). The input dataset
consists of leveling measurements, which have not yet been adjusted. During each leveling campaign,
the data has been tested for gross errors and if these are encountered, measurements were redone.
The measurement noise for each measurement is considered known and is based on the length of
the measured trajectory. Point noise for each measurement is added based on the adjusted variance
model which is one of SuRe’s output files. The point noise is computed with equation (2.35).

The data is not yet geodetically tested for any other outliers than gross measuring errors during the
campaign. 4 types of outliers are considered: (1) observation errors, (2) benchmark identification er-
rors, (3) benchmark disturbances and (4) abnormally fast benchmark displacement. With observation
errors, an error in the measurement is encountered and the measurement is considered useless. A
identification error is a measurement where another benchmark than indicated is measured. The data
can still be used by bypassing the observation. If a measurement from benchmark A to B is done
and from B to C and a identification error is encountered for benchmark B, a bypass can be made by
combining the measurements of A and C. A disturbance error is an abrupt jump in the time series of
a benchmark. This error can be solved by splitting the time series at the time of the jump. Figure 5.3
shows the concept of identification errors and disturbances. Abnormally fast behavior or idealization
noise is indicated by a benchmark that behaves differently than expected, usually due to compaction
of undeep layers or benchmark settling.

Figure 5.3: Concept of identication errors and disturbances in the timeseries of benchmark movement

To test the data for these outliers, the geodetic testing procedure of SuRe is applied. Part of the
program is an extensive geodetic testing procedure, in which four 1D tests take place. The program
tests respectively for observation errors, identification errors, benchmark disturbances, and abnormally
fast benchmark movements. After each iteration, the program identifies the cause of the largest 1D
error and solves the error appropriately by adjusting the observation(s), changing the variance model or
deleting certain observations. For this methodology, SuRe is used only for the outcome of the geodetic
testing procedure. One of the output files of SuRe is a log file with geodetic testing information per
iteration. Based on this information, adjustments to the raw data and the uncertainty structure of the
raw data are made:

• Observation error: the observation is deleted.

• identification error: a bypass is made.
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• Disturbance: the time-series of the benchmark is split in two, by introducing a new benchmark.

• Abnormally fast displacement: the standard deviation of the measurement is adapted by adding
a larger point noise standard deviation than for “normal” moving benchmarks. The idealization
noise standard deviation of the abnormal fast-moving benchmark can also be found in SuRe’s
output files. By doing so, the measurement doesn’t have to be rejected.

After the edits resulting from the testing procedure are done, the network is tested for disconnected
network parts by testing if all benchmarks are connected with the reference benchmark.

SuRe is designed to make adjustments to the data, but these adjustments are not used for this work-
flow. The original height differences which also forms part of the input of SuRe are used as input for
the geomechanical inversion together with the information given by SuRe.
As input, SuRe requires next to height differences a project file that states initial parameters for the
variance model and a subsidence prognosis or subsidence model. This subsidence model is used to
test the data against and the variance parameters are start parameters for the variance model. These
parameters are later updated in the process, as is the subsidence model. To find out what the exact
roles are of the subsidence prognosis and variance parameters on the results from SuRe, runs are
done and the outcomes are compared, both on subsidence estimate level and flag level. The exact
experiment set-up is described in Section 5.4.

5.2. Geomechanical inversion
The direct geomechanical inversion consists of a regularized least-squares inversion, weighted by the
covariance matrix of the data. The forward geomechanical model is a Geertsma nucleus-of-strain
model, with multiple nuclei to represent the reservoir. Vertical displacement of a point (𝑥, 𝑦) on the
surface due to multiple Geertsma nuclei is defined as (see also equation (2.21))

𝑢 , (𝑥, 𝑦, 0) = ∑ 𝐶 , (1 − 𝜈 )
𝜋 𝑎 𝑉 Δ𝑃 , 𝑑

((𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + 𝑑 ) / , (5.1)

where:

𝑢 (𝑥, 𝑦, 0) Vertical displacement of a surface point with coordinates (x,y) between time 𝑡 and 𝑡,
𝐶 , Compaction coefficient of volume element 𝑉 ,
𝜈 Poissont’s Ratio of volume element 𝑉 ,
𝑎 Biot’s coefficient of volume element 𝑉 ,
𝑉 Volume of reservoir element represented by nucleus 𝑛,
Δ𝑃 , Pressure reduction in volume element 𝑉 between time 𝑡 and 𝑡,
𝑑 Depth of nucleus 𝑛,
𝑥 x-coordinate of nucleus 𝑛,
𝑦 y-coordinate of nucleus 𝑛.

This equation can be simplified by grouping terms Δ𝑆 = , ( )𝑎 𝑉 Δ𝑃 and by grouping terms
𝑅 = ((𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + 𝑑 ) / . Equation (5.1) simplifies to

𝑢 , (𝑥, 𝑦, 0) = ∑Δ𝑆 , 𝑑
𝑅 , (5.2)

where 𝑅 is the distance from the surface point to the nucleus and Δ𝑆 , is the change in the so-called
“source term” between time 𝑡 and 𝑡. The source term is a lumped parameter term, that consists of

Δ𝑆 , = 𝐶 , (1 − 𝜈 )
𝜋 𝑎 𝑉 Δ𝑃 , . (5.3)

The goal of the inversion is to use the leveling measurements as input and to give an estimate of
each source term Δ𝑆 and corresponding uncertainties of the estimates.
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The input data for this inversion does however not consist of vertical displacements of surface points
but of differential leveling measurements ℎ , thus spatial height differences between points 𝑖 and 𝑗 at
time 𝑡. To express these spatial height differences in function of Geertsma’s nuclei, we have to in-
troduce initial heights 𝐻 and 𝐻 to add a temporal difference to the equation. The data is “spatial
differenced”, which means that within each campaign the measured height of each benchmark is ex-
pressed as relative to the height of another benchmark and “temporal differenced”, meaning that the
difference between two campaigns of the measured relative height differences between benchmarks is
estimated, by estimating an initial height. The equation relating spatial height differences to temporal
height differences is as follows

𝐸{ℎ } = ℎ , − ℎ , + 𝐻 − 𝐻 , (5.4)

where the spatial height difference ℎ is expressed as function of temporal height differences ℎ , and
ℎ , by introduction of initial heights 𝐻 and 𝐻 . The temporal height differences are equal to the
vertical displacement term 𝑢 of equation (5.2). This means that now we can express the spatial height
difference as function of Geertsma nuclei

𝐸{ℎ } = ∑Δ𝑆 , 𝑑
𝑅 ,

−∑Δ𝑆 , 𝑑
𝑅 ,

+ 𝐻 − 𝐻 . (5.5)

The location, depth, and the number of nuclei are considered known, the source terms and the initial
heights are unknowns. This equation can be further simplified to

𝐸{ℎ } = ∑Δ𝑆 , 𝑑
𝑅 , − 𝑅 ,

+ 𝐻 − 𝐻 . (5.6)

At the time of the measurements of the first survey campaign at 𝑡 , subsidence is assumed to be 0
so the expectation of the measurements at 𝑡0 can be expressed only in terms of the initial heights

𝐸{ℎ } = 𝐻 − 𝐻 . (5.7)

When performing an inversion, one of the initial heights should be set to 0. All the other initial heights
are then estimated relative to that benchmark height. Not setting one of the benchmark heights to 0
causes singularities in the inversion.

The linear system of equations 𝐸{𝑦} = 𝐴𝑥 incorporating equations (5.6) and (5.7) is different for each
case. The design of 𝐴 depends on how many measurements campaigns are used, which measure-
ments are done during a campaign, and what kind of parameterization of the geomechanical model is
used. An example of how the linear system of equations could look like is undermentioned in Equation
(5.8). For this system, we have 𝑧 measurement campaigns and 𝑗 benchmarks. Each measurement
campaign could consist of a different number of measurements, the only requirement is that each mea-
surement from benchmark 𝑎 to 𝑏 should be executed at least during two measurement campaigns.
Height differences observed once do not contribute to the final solution. For this example, the height
difference between points 1 and 2 ℎ , is measured during each campaign
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The vector of estimators consists of system of equations (5.8) consists of terms for the source
parameters (Δ𝑆 ) and initial benchmarks heights (𝐻 ). The measurement noise of the un-adjusted
measurements is captured in its covariance matrix 𝑄

𝑄 =
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, (5.9)

The idealization noise, captured in 𝑄 for eachmeasurement is added to this, following equation (2.28).
The idealization noise is computed with equation (2.35), with parameters found in SuRe’s output file.
For measurements with a abnormally fast displacement flag, a larger term for the standard deviation of
autonomous benchmark displacement is used, this larger term is found in one of SuRe’s output files.
This system is inverted using regularized least-squares inversion as described in chapter 3.

Due to the ill-conditioned nature of the problem, Tikhonov regularization is applied by penalizing first-
order spatial differences between estimates of compaction in neighboring reservoir blocks or sections.
The larger the penalty on spatial differences the more the estimates of compaction in reservoir sections
are restricted to vary smoothly over space.

For the Tikhonov regularization matrix, a first-order spatial neighborhood matrix is used. The exact
design of 𝐿 depends on the distribution of nuclei over the reservoir. Each nucleus represents a volume
section of the reservoir. This thesis uses two different parameterizations: a centroid parameterization
and a grid parameterization. For the centroid parameterization, the centroid or center of mass of each
reservoir block is computed (assuming a constant reservoir thickness). The centroid of each reservoir
block represents a Geertsma nucleus, see Figure 5.4. The centroid of each reservoir block is chosen
because of the assumption that maximum deformation from each reservoir block is located at the cen-
ter of the mass of the reservoir block. The depth of each nucleus is assumed to be the depth of the top
of the reservoir at the centroid location.
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Figure 5.4: Centroid parameterization of Geertsma nucleus-of-strain model

For the centroid parameterization, the Tikhonov regularization matrix is designed such that large
differences between source estimates of neighboring blocks are penalized. On the main diagonal a
value that resembles minus the number of neighboring reservoir blocks is set. Each neighboring block
gets a 1 on the off-diagonal. The rest of the off-diagonal values are 0. For the initial height estimates, the
diagonal of that part of the L matrix consists of ones, because there is no spatial relationship between
these points since they can be arbitrarily located at different heights. A “1” on the main diagonal means
that the method will try to minimize the norm of that solution. The first 8 rows and columns and last
rows and columns of the regularization matrix L for the centroid parameterization look like
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The second parameterization consists of a grid set-up, with a pre-defined grid spacing. For this
parameterization, L again is a spatial penalty matrix with now on the diagonal minus the number of
neighbors in the Queen neighborhood of each of the neighboring reservoir sections. A value of 1 for
each of the off-diagonal elements that represent a neighboring reservoir block is set. All other off-
diagonal elements get a value of 0. An illustration of a Queen’s neighborhood for a reservoir split up in
9 quadrants with the corresponding regularization L are given in Figure 5.5 and equation (5.11). The
elements representing the initial heights again get a value of 1 on the diagonal. All other off-diagonal
elements are 0.
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Figure 5.5: Illustration of a Queen’s neighbourhood, which was used for defining the Tikhonov regularization matrix L (equation
(5.11)). The Queen’s neighbourhood is used for the grid parameterization.
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The optimal regularization parameter 𝜆 is computed using cross-validation, by evaluating a
range of candidate parameters. Recursively the parameter column �̂� is estimated with a subset of all
available measurements, after which themeasure of the fit of the estimatedmeasurements as predicted
by the resulting model is evaluated to the measurements that have been omitted from the total data
set. This is a form of k-fold cross-validation as described in Section 3.3. The following steps are used
in the algorithm for cross-validation to find the optimal regularization parameter:

1. Partition the dataset of observations into 𝑘 groups. For this thesis, a 4-fold CV scheme was
used, which means that a grid was overlaid on the dataset partitioning the data in 4 subsets. The
observations are assigned to a subset based on the midpoint of the measured trajectory. There
are observations from all survey campaigns in each subset.

2. For each of the 𝑘 subsets of the dataset and a range of candidate values for 𝜆, the following steps
are taken:

(a) The dataset is split up in an testset 𝑦 and a training set 𝑦 . The design matrix is
adapted accordingly to the training set (𝐴 ).

(b) The reduced training data set and adapted design matrix (𝐴 ) are used to compute a
regularized solution �̂�.

(c) The sum of squared differences 𝑆 between the predicted and observed observations from
the test data set is computed (𝑆 = ||𝑦 − �̂�|| ).

3. Evaluate for which 𝜆 the sum of all squared differences 𝑆 = ∑ 𝑆 is minimized, this is 𝜆 .

4. Use 𝜆 for the actual regularised inversion.

To check whether the model fits the data, an overall model test is performed as described in Section
2.4. If the OMT is not accepted, a w-test is applied to identify and delete the observations that cause
this failure.
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5.3. General description of the workflow
Testing and processing of raw data and a description of the geomechanical inversion process are given
in previous sections. This section gives a brief overview of all steps that should be taken when using
the proposed workflow:

1. Importing all raw leveling data from area and period of interest from the database.

2. Importing reservoir data:

(a) Reservoir geometry: outlines reservoir blocks, top of reservoir data, reservoir thickness
(b) Geographical center-points of reservoir blocks or center-points of grid division of reservoir

3. Geodetic testing with SuRe, saving geodetic test report and adjusted variance model.

4. Adding point noise to variance model of all measurements, based on Sure’s adjusted variance
model outcome.

5. Adjustment of raw measurements based on geodetic test report:

(a) Observation error: observation is deleted.
(b) identification error: bypassing the affected benchmark. If benchmark 𝑏 is misidentified, the

trajectories 𝑎 → 𝑏 and 𝑏 → 𝑐 are combined to a new observation 𝑎 → 𝑐. The uncertainty of
the observation is adjusted accordingly.

(c) Disturbance error: the time-series of the affected benchmark is split, the observations after
the disturbance are assigned to a new benchmark.

(d) Abnormal behaving benchmark: the uncertainty of the observation is increased by adding
the estimated point noise. The point noise estimation is based on SuRe’s adjusted variance
model outcome.

6. Defining a reference benchmark that is measured during every measurement campaign. Remov-
ing all network parts that are disconnected from the reference benchmark.

7. Remove all measurements that have the same “from” and “to” coordinates.

8. Regularised inversion:

(a) Defining a design matrix A and a regularization matrix L,
(b) Compute regularization parameter 𝜆 with 𝑚-fold cross validation
(c) Perform actual inversion
(d) Check whether overall model tests gets accepted, otherwise redo inversion after w-test.

9. Interpretation of results

(a) Forward model subsidence based on source strength estimates
(b) Plot initial height estimates and visually compare them with the elevation model.

5.4. Experiments
To get insight into the used model, to research the outcomes of the geodetic testing procedure and to
prove the feasibility of the proposed methodology, several experiments are designed. The experiments
are split up in three parts:

1. Experiments with the Geertsma nucleus-of-strain methodology to see what the implications of the
model are. Forward modeling is applied in which the depth of the source is changed, to assess
the influence of the assumed depth on the source terms. Also, an assessment of the size of the
subsidence bowl is made. Forward modeling is applied to the assumed parameterizations from
the case study to find a rough approximation of the expected source strengths and amount of
subsidence.

2. SuRe input sensitivity experiments to see what the influence of the input parameters on the out-
come of the geodetic testing procedures and the final subsidence estimates is.

3. Inversion experiments, where the proposed workflow is applied to real geodetic data.
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5.4.1. Geertsma nucleus-of-strain experiments
Goal: The goal of these experiments is to implement the used model into software and to assess the
model with a couple of forward modeling experiments. The three subgoals of these experiments are:

1. To analyze the influence of the depth of the source on the expected subsidence and the size of the
subsidence bowl. The size of the subsidence bowl is analyzed by computing at which distance
𝑥 ,fraction max the vertical displacement 𝑢 is a fraction of the maximum vertical displacement at the
center of the bowl (𝑥 = 0), right above the source. This can be done with equation (5.12).

𝑥 ,fraction max = √(
𝑢 ,
𝑢 ,

⋅ 𝑑𝑧 ) / − 𝑑𝑧 , (5.12)

with 𝑑𝑧 being the depth of the source and 𝑢 , the displacement on location 𝑥. In the inversion
workflow, the location and depth of the Geertsma are assumed known. With these experiments,
an assessment of the influence of the depth of the sources is made.

2. To use the forward model to assess how large the source strengths are if certain assumptions
regarding the parameters in the Geertsma model are made. The parameters are chosen based
on reports by de Kloe et al. [12] and Nagelhout and Roest [43] and with the reservoir maps from
NLOG [51], which can be found in Appendix A.

3. To forwardly model the amount of subsidence expected from the source strengths, estimated in
experiment 2.

5.4.2. SuRe sensitivty experiments
Goal: The goal of these experiments is to see what influence the input parameters have on SuRe out-
put, both on the test results and the final subsidence estimates. To assess the effect of each parameter,
the software is ran multiple times, each time with different input settings. The outcomes are compared
to the outcomes of a default setting. The SuRe input consists of:

• Prognosis grids, which serve as an approximate subsidence model. At least 2 subsidence grids
are required, that must comprise the subsidence reference date and the range of observation
dates. The grid northing and easting range must comprise the coordinates of all observations,

• A variance model, that gives initial values for the 5 variance model parameters used for the
stochastic model,

• A test criterion, which specifies the significance of the 1D tests.

With this input, SuRe starts an analysis and finally gives full results. The SuRe output consists of:

• Subsidence estimate grids, with the amount of subsidence at the reporting date, relative to a
reference date.

• Subsidence estimates at benchmark level, again with the amount of subsidence at the report-
ing date, relative to a reference date. These values are taken from the grid cells in which the
benchmarks are located.

• Test results, which indicate which observations get flagged because they have led to the failure
of a 1D test. This flag can be (1) an observation error, which indicates a failure in the observation,
(2) a benchmark identification error, which means that the leveling beacon is inaccurately placed
on the benchmark or another benchmark, (3) a benchmark disturbance and (4) abnormally fast
benchmark displacement.

• A re-tuned variance model, where the parameters of the variance model are adapted to the pre-
vailing noise patterns, such that the overall model test gets accepted.
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To analyze the implications of the input on the SuRe output, several runs of the case study data with
different input values are done and the output is analyzed. First, default values need to be established
such that all outcomes can be compared with these default values. The default values are based on
experience from the NAM. The default grids and parameters are summarized in Table 5.1. With 0-
prognosis, a zero subsidence model is prepared that is used as a prognosis grid, at both a date before
the first observation and a date after the last observation.

Table 5.1: Default parameters for SuRe sensitivity experiments.

Input Parameter Value
Prognosis grids - 0-prognosis
Variance model SD factor for measurement noise 1.00

SD for autonomous displacement 0.33
Power of autonomous displacement 0.75
SD of prognosed subsidence model 2.7
Power of prognosed subsidence model 0.75
Correlation length of prognosed subsidence model 4000

Test criterion 𝛼 0.001

The result of this default input is used to compare the results of runs with other input values. For
each run, only 1 input value is changed, such that the influence of each input value on the output
data can be analyzed, see Table 5.2. For the first run, the 0-prognosis grids are substituted for a
geometrical subsidence estimation grid at each survey campaign date. This subsidence estimation
is a model developed by Quadvlieg [55], details of this model are given in section 5.5.2. This model
is assumed to give a more realistic subsidence model than the 0 prognosis. All input parameters of
the variance model are increased and decreased relative to the default values, except for the factor
of the standard deviation of the measurement noise, because this value is considered known. SuRe
testing is finished with increasing and decreasing the test criterion 𝛼 , to see what effect this has on
the outcomes.

Table 5.2: Input set up SuRe tests

Prognosis grid Variance model Test criterion
Meas. noise Point noise Model noise
S.D. factor S.D. [ ] P [-] S.D.[ ] P [-] C.R. [m] 𝛼 [-]

Geometric 1.0 0.33 0.75 2.7 0.75 4000 0.001
0 1.0 0.10 0.75 2.7 0.75 4000 0.001
0 1.0 1.0 0.75 2.7 0.75 4000 0.001
0 1.0 0.33 0.55 2.7 0.75 4000 0.001
0 1.0 0.33 0.95 2.7 0.75 4000 0.001
0 1.0 0.33 0.75 1.0 0.75 4000 0.001
0 1.0 0.33 0.75 5.0 0.75 4000 0.001
0 1.0 0.33 0.75 2.7 0.55 4000 0.001
0 1.0 0.33 0.75 2.7 0.95 4000 0.001
0 1.0 0.33 0.75 2.7 0.75 3000 0.001
0 1.0 0.33 0.75 2.7 0.75 5000 0.001
0 1.0 0.33 0.75 2.7 0.75 4000 0.0001
0 1.0 0.33 0.75 2.7 0.75 4000 0.01
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To compare the outcome of a SuRe run with certain input parameters with the outcome of the SuRe
run with default parameters, the RMSE is computed. For two subsidence grids of size𝑀×𝑁, the RMSE
can be computed as

RMSE = √ 1
𝑀𝑁 ∑ ∑(𝑢 (𝑚, 𝑛) − 𝑢 (𝑚, 𝑛)) , (5.13)

where 𝑢 is the amount of subsidence at a grid cell with coordinates (𝑚, 𝑛). SuRe can give more than 1
output grid, it can give output grids with subsidence at every requested reference date. The RMSE can
not only be computed to compare individual grids at 1 reference date, but also to compare all outcome
grids if more reference dates are used

RMSE = √ 1
𝑀𝑁𝑍 ∑∑ ∑(𝑢 (𝑚, 𝑛, 𝑧) − 𝑢 (𝑚, 𝑛, 𝑧)) , (5.14)

where 𝑍 is the total amount of output grids (and thus reference dates). Benchmark subsidence is
extracted from the grid subsidence estimates. Therefore, no tests on benchmark subsidence estimates
are done.

5.4.3. Inversion experiments
Goal: the goal of the inversion experiment is to assess if the proposed methodology works on a case
study. The proposed steps in the workflow will be applied on optical leveling data from the Norg and
Roden field, to see the effects of data testing, processing, and regularisation. Finally, the results for
different parameterizations are compared. The tested parameterizations are:

• Centroid parameterization: 1 nucleus represents every reservoir block,

• Three nuclei in Norg reservoir. two in Roden,

• One nucleus in each reservoir,

• A grid parameterization, where both reservoirs are filled with a grid with a 1 kilometer spacing.

For each parameterization, the estimated source parameters will be given, together with uncertainty.
These estimates will be used in a forward model to compute subsidence. The RMSE (root-mean-
square-error) for each inversion is given, as is the amount of rejected obseravations (after the w-test)
and the test statistic with critical value.

5.5. Case study: Norg and Roden
The methodology developed in this thesis is applied to a dataset with optical leveling measurements
from multiple geodetic surveys from an area in the vicinity of two gas fields in the Northern Netherlands.
The fields are called the Norg field and the Roden field. The location of the Norg gas field and the Roden
gas field can be found in Figure 5.6. Some key numbers of the fields are summarized in Table 5.3. The
Roden field was produced for 27 years starting in 1976, whereas production of the Norg field started
in 1983 and lasted for 12 years. The Roden field is currently abandoned and the Norg field has been
turned into an underground gas storage [48].

5.5.1. Geology
The north-eastern part of the Netherlands is structurally dominated by an NW-SE trending pull-apart
system which has been formed by a complex interplay of wrench tectonics [19]. The geological struc-
tures of the Norg field and Roden field are dominated by two major fault systems, which are associated
with the tectonic wrench system: NW-SE faults and NE-SW faults are present at the reservoir level.
As shown in Figure 5.7, natural gas in the Norg field was structurally trapped by a large normal fault,
which bounds the NE-dipping reservoir [43]. Due to tectonic activity, numerous faults of different types
are present in the reservoir. The Norg field has been subdivided into 4 blocks, with block 2 forming the
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Figure 5.6: Location of Norg and Roden field with respect to other gas field in the northern Netherlands (adapted from NLOG
[50]).

Table 5.3: Key numbers Norg and Roden fields (all derived from NLOG [51]).

Roden Norg
discovery 1970 1965
start production 1976 1983
end production 2003 1995
number of wells 3 13
average reservoir height 165 m 140 m
approximate area 10 km 30 km
current status (2019) temporarily abandoned underground gas storage
depth top reservoir ± 2875 - 3025 ± 2700 - 2850
gas water contact 3021 m block 1-3: 2847 m

block 4: 2860 m
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main part of the field (Figure A.1). SW-NE trending extensional faults form the boundaries of the blocks.
These faults are not sealing and all blocks are in pressure communication. This has been inferred by
similar pressure depletion encountered at wells at different blocks and by the similar GWC and gas
compositions [44]. The Roden field has been subdivided by a non-sealing fault into two blocks, see
figure A.2.

The Norg and Roden reservoirs are both made up of the Upper Rotliegend group, subdivided into
the Slochteren sandstone and Lower ten Boer formations. These formations consist of fine to coarse
sandstone deposits with local conglomerates. The lowermost reservoir unit is a few meters thick and
consists of the Lower Slochteren Member and consists of fluvial and/or fan conglomerate deposits.
This unit shows relatively low porosity. The Lower ten Boer unit makes up the largest part of the reser-
voir thickness and has a considerably higher porosity and permeability [43]. On top of the Rotliegend,
we find the Zechstein Group: a sequence consisting of evaporites and carbonates with some thin in-
tercalations of claystone of about 360 meters thick [44]. This layer acts as a caprock.

Figure 5.7: Seismic section of Norg. Depth is indicated by two-way traveltime (msec). The reservoir is located to the right side
of the indicated fault, underneath the salt layer (from Nagelhout and Roest [43]).

The shallow subsurface in the vicinity of the Norg and Roden field consists mainly of sand, as can be
seen in Figure 5.8, where soil data from the WUR [79] (Wageningen University Research) is visualized
with reservoir outlines and all measured benchmark locations. The majority of the 886 benchmarks are
founded in sandy soil. Mainly in the north-eastern part of the research area, benchmarks are founded
in peat or clay. In the upper north-east corner, all benchmarks are located in the build-up area of the
city of Groningen.

5.5.2. Production and subsidence
Historic pressure data for Norg (Figure 5.9) underlines the years given in Table 5.3. It can be observed
that production in Norg started in 1983 and stopped in 1995. During the production period, the pore
pressure dropped from 325 bar to 185 bar. This figure also illustrates that pressure does not differ
much between wells located at different blocks. The wells mentioned in this figure can be found on the
map in Appendix A.

Production of the Roden field commenced in 1976 and continued until 2003when production stopped.
Measurements were done at the three Roden wells and are visualized in Figure 5.10. From 1986 the
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Figure 5.8: Soil types with benchmark locations and reservoirs (with data from WUR [79]).

Figure 5.9: Pore pressure development for Norg, based on historic well data (from Nagelhout and Roest [43]).
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Roden-201 well was not able longer to contribute and ceased the gas production. As the sand column
in the southern block of the Roden field is shallower than in the northern Roden block, the southern
block was more sensitive to water breakthrough. The volume connected to the well is also small. While
the expanding aquifer was moving into depleted gas zones the reservoir pressure was rising while the
well was idle. The pressure at the Roden-201 well declined down to 180 bar and rose to 270 bar. The
other two wells (Roden-101 and Roden-102) kept producing until the field was abandoned in 1995.

Figure 5.10: Pore pressure development for Roden, based on historic well data. Location of wells can be found on map in A.

The NAM is obliged to comply with legislation and has to report deformation due to the produc-
tion of hydrocarbons, to retain their license to produce and to safeguard the integrity of infrastructure.
Therefore, the NAM frequently publishes reports on subsidence [47]. In 2000, Quadvlieg [55] analyzed
optical leveling measurement in the vicinity of Roden and Norg to describe the subsidence due to gas
production in Norg and Groningen. For this analysis, leveling measurement from 1975 until 2000 were
used. The subsidence analysis was split up into two parts: the period from 1975-1997 and 1997-2000.
From 1997 onward the Norg has been used as underground gas storage and the NAM expected a
heave. A comparison was made for both periods.

The subsidence model that was used for this analysis is purely geometrical, modeling the subsi-
dence as two overlapping elliptical bowls, one for each gas field. The subsidence 𝑧 at time 𝑡 for a point
with coordinates 𝑥 and 𝑦 is computed with

𝑧{𝑥, 𝑦, 𝑡} {
0, if 𝑡 ≤ 𝑡
�̇�(𝑡 − 𝑡 ) exp−𝑟 /2, if 𝑡 < 𝑡 < 𝑡
�̇�(𝑡 − 𝑡 ) exp−𝑟 /2, if 𝑡 ≥ 𝑡 ,

(5.15)

with

𝑟 = 𝑢 + 𝑣
𝑢 = ((𝑥 − 𝑥 ) sin 𝛼 + (𝑦 − 𝑦 ) cos 𝛼)/𝐴
𝑣 = ((𝑥 − 𝑥 ) cos 𝛼 + (𝑦 − 𝑦 ) sin 𝛼)/𝐵,

(5.16)

where:
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𝑧 : subsidence due to hydrocarbon production
𝑥, 𝑦, 𝑡 : coordinates surface point and time
𝑡 ,𝑡 : start and end time of linear subsidence trend
𝑥 , 𝑦 : coordinates of centre of subsidence bowl
𝐴, 𝐵 : distance from centre of bowl to steepest slope of bowl, long and short axis of the bowl
𝛼 : angle of long axis of the bowl
�̇� : subsidence velocity at centre of bowl

The estimated total subsidence based on this model is visualized in Figure 5.11.

5.5.3. Geodetic data
The NAM has frequently carried out optical leveling survey campaigns in the northern Netherlands, to
assess the amount of subsidence due to natural gas production. The survey campaigns are not only
carried out above the Groningen gas field but also cover other areas where subsidence is expected due
to depletion from smaller gas fields. The first leveling survey for the Groningen gas field was carried out
in 1964, only covering the southern part of the field. In 1972 the first leveling survey covering the whole
area was conducted [45]. The leveling network of the Groningen field, also covering the Norg and
Roden fields in the south is found in Figure 5.12. Since 2010, the PS-InSAR technique has also been
used for deformation monitoring. Global Positioning System (GPS) have been placed at 10 locations
in Groningen and are recording since 2014 [45].

For this case study, geodetic leveling data in the Norg andRoden area from 1975 until 1993 has been
used. Production from the Roden field started in 1976 and gas storage in the Norg field commenced
in 1997. This limits the time frame. One leveling campaign before the gas production started has
been chosen and the rest should be from the period before gas storage. Five large campaigns have
been carried out during this period, the average date and amount of observations per campaign are
summarized in Table 5.4. The leveling network in the Norg area from 1993 is visualized in Figure 5.13.
The trajectories of all other campaigns (1975, 1978, 1981, 1987 and 1993) can be found in Appendix
B.

Table 5.4: Leveling campaigns at Norg and Roden between 1975 and 1993

campaign average date number of observations
1975 1-9-1975 316
1978 1-1-1978 320
1981 1-07-1981 351
1987 1-08-1987 632
1993 1-04-1993 686
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Figure 5.11: Estimated subsidence in 1997 since 1975, by Quadvlieg [55], based on geometrical subsidence model.
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Figure 5.12: Leveling network of the Groningen field as surveyed in 2013, Roden and Norg fields in the south-west (from NAM
[45]).

Figure 5.13: leveling network at the Norg and Roden field, as surveyed in 1993.
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The data is considered as “raw” measurement data (Level 0 data, see section 2.3.4). When a
leveling survey campaign is conducted for the NAM, the data is during the campaign checked for gross
errors. If the measurement error of a certain path is too large and falls outside certain error ranges, the
trajectory has to be re-measured. The data was collected from 1975 to 1993 and unfortunately, it is
therefore not known whether the final dataset consists of single measurements, or whether averaged
values of multiple measurements are known. Measurement errors were computed as function of the
measurement distance and are assumed known.





6
Results

6.1. Geertsma experiments
The goal of the first synthetic experiments is to assess the influence of different factors in Geertsma’s
methodology [21] [22]. The experiments start with a simple test set-up: oneGeertsma nucleus-of-strain,
placed at varying depths. The influence of the depth of the nucleus on the maximum subsidence right
above the nucleus is plotted in Figure 6.1. Depths from 2650 to 3050 are chosen because these depths
cover the entire depth of both reservoirs. The second result shows the size of the subsidence bowl
due to one nucleus. The maximum amount of subsidence is found right above the source at 𝑥 = 0.
Figure 6.2 shows at which surface distance from the nucleus center the amount of subsidence is 50%
and 10% of the maximum subsidence right above the nucleus. This means that if a nucleus causes 60
mm subsidence right above the nucleus center, one can assess with these plots at which distance 30
mm and 6 mm subsidence are expected. It also indicates the total size of the subsidence bowl. Note
that these plots are based on Geertsma’s nucleus-of-strain models, as defined in (2.20), not on the
analytical solution for a disk-shaped reservoir.

Figure 6.1: Influence of the depth of the nucleus ( ) on subsidence ( ) at the surface directly above the reservoir (x = 0).

An assessment of the source strength per nucleus for a certain parameterization can be computed.
Subsequently, the amount of subsidence that results from these nuclei can be computed. This is a
forward model. Figure 6.4 shows the resulting subsidence per year with a centroid parameterization.
The centroid parameterization uses 1 nucleus in each reservoir block. The parameters used for this
forward model are very roughly estimated and are based on data from Nagelhout and Roest [43],
de Kloe et al. [12] and maps from NLOG [51], see Table 6.1. Using the forward Geertsma model

61
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Figure 6.2: Size of subsidence due to one Geertsma nucleus: depth nucleus versus percentage of maximum displacement right
above nucleus.

with these approximated parameters gives an estimation of the source strength for 1 nucleus in each
reservoir block (see Figure 6.3).

Table 6.1: Parameter assumptions used for forward estimations of source strengths.

Parameter Value
𝐶 (Roden and Norg) 6 ⋅ 10 bar
𝜈 0.17
𝛼 0.95
Δ𝑃 Roden (1978, 1981, 1987, 1993) 50, 80, 145, 210 bar
Δ𝑃 Norg (1978, 1981, 1987, 1993) 0, 0, 25, 100 bar
Height Roden 165 m
Height Norg 140 m
Area Roden (block 1, 2) 7.2, 3.2 km
Area Norg (block 1, 2a, 2b, 2c, 3, 4) 3.7, 6.2, 1.9, 3.4, 11.7 km

These computed source strengths can subsequently be used to forward compute the amount of
subsidence, due to these nuclei (see Figure 6.4).
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Figure 6.3: Expected Geertsma source strengths per reservoir block centroid parameterization, based on literature parameter
assumptions.

Figure 6.4: Forwardly modelled subsidence with centroid parameterization, literature based parameter assumptions and the
Geertsma model
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6.1.1. Discussion and conclusion
The Geertsma nucleus-of-strain model can be broken up in two parts: a source strength term Δ𝑆, which
consists of Δ𝑆 = ( )𝑎𝑉Δ𝑃 and of a geometrical term, which consists of the 𝑥, 𝑦 coordinates and
depth of the nucleus. The source strength has a linear relationship with the amount of subsidence. The
depth of the nucleus has at the depth interval range of the reservoirs of the case study a nearly linear
relationship with the amount of subsidence expected right above the source. At 3000 meter depth, the
amount of subsidence right above the nucleus is approximately 80% of the amount of subsidence with
a source at 2650 meters. The deeper the nucleus, the larger the radius of the subsidence bowl. With a
source at 2650 meter, half of 𝑢 , is expected at 2050 surface meters from the source. If the nucleus
is placed at 3000 meters, the surface distance increases to 2300 meters. The size of the subsidence
bowl can easily be calculated for different percentages of 𝑢 , . The size of the subsidence bowl tells
us also something about the minimum lateral resolution at which the independent contribution of neigh-
boring nuclei can be estimated. With a burial depth of 2800 meters, 50% of the maximum displacement
is expected at 2200 meters from the nucleus. If we place another nucleus at this distance, independent
contributions can not be estimated.
Rough assumptions of all parameters in Geertsma’s model for the case study are given and these pa-
rameters are used to calculate the source strengths with a forward model. The amount of subsidence
largely depends on the volume of the reservoir that the nucleus represents and for the chosen param-
eterization varies in 1993 (the year of the last leveling campaign) between 0.4 ⋅10 m and 3.7 ⋅10 m .
These source strengths can be used to give an estimation of the amount of subsidence at all survey
years, which is with this parameterization estimated to be maximally 60 mm in 1993.

A superposition of a limited amount of Geertsma nuclei represents a very simple approximation of
the reservoir. Reservoir parameters are assumed equal for the entire half-space. Each Geertsma
nucleus-of-strain is assumed to represent an entire reservoir block. There exist many other geome-
chanical models that might resemble reality more, the Geertsmamodel, however, does offer a relatively
simple, linear methodology to link reservoir compaction and surface deformation.
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6.2. SuRe experiments
Multiple runs of the SuRe software are executed to analyze the effect of certain input parameters on
the outcomes of the program. The input parameters of the program are:

• the subsidence prognosis grids,

• the parameters of the variance model,

• the test criterion.

,
For each run, the input parameters are varied and the output that SuRe gives will be compared. The
output consists of:

• subsidence estimates,

• outliers,

• adjusted variance model.

First a run with default parameters is done and the results are given, such that the outcomes of all runs
can be compared with the default settings. The default settings are chosen based on recommendations
done by the NAM.

6.2.1. Default run
The default input uses a zero subsidence prognosis at all reference dates (or “0-prognosis”), an initial
variance parameter model that was suggested by the NAM and a test criterion 𝛼 of 0.001. Running
the program with these input settings leads to a subsidence estimation for the 4 survey dates (except
1975, because no subsidence due to gas production is expected on that date), see Figure 6.5. The
first subfigure shows the subsidence estimates for 1978, where a subsidence bowl with approximately
6 mm of subsidence at the deepest part of the bowl at the southern part of the Roden field can be
identified. Production was not yet started in the Norg field, so no subsidence is expected there. In
1981 the amount of subsidence at the deepest part of the bowl has increased to approximately 15
mm, no subsidence is visible at the Norg field still. In 1983 production starts in the Norg field and the
subsidence bowl area starts to shift to the Norg field. At the deepest part of the bowl in Roden, now
approximately 40 mm of subsidence is computed. During the last survey campaign in 1993, a clear
subsidence signal covering both fields can be identified. The deepest part of the subsidence bowl is
still located over the Roden field, where now approximately 60 mm of subsidence is estimated.

One of the output files is the geodetic testing results and indicates the identified outliers. All abnor-
mal behaving benchmarks are plotted the soil type map in Figure 6.6, to see whether there is a spatial
relation of certain soil types with abnormal behaving benchmarks. The majority of points indicated as
benchmarks with abnormal behavior are located in the north-eastern part of the map. This is also the
part of the map with a lot of clayey and peat soil. In the most north-eastern corner, the city of Gronin-
gen is located. This type of soil is classified as a build-up area in the WUR data but does presumably
consist of clayey soil as well.

Other outliers are observation errors and misidentification errors, which occur at specific dates at
specific benchmarks. The third type of outlier is a disturbance. Disturbances indicate a jump in the time-
series. These three kinds of errors are assumed to not be spatially correlated so these are counted per
type, see Table 6.2.

Table 6.2: Outliers per type indicated by geodetic testing SuRe with default input settings.

Type of outlier Counts
Observation error 13
Disturbance 3
Misidentification error 13
Abnormal behaviour 37
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Figure 6.5: SuRe subsidence grids estimates, default input settings

The third outcome of the SuRe run is the adjusted variance model. The parameters of the variance
model are adapted until the overall model test is accepted. The initial parameters of the variance model
and the outcomes are listed in Table 6.3.

Table 6.3: Initial and adjusted variance model SuRe with default input settings.

Noise type Parameter Initial values Adjusted outcome values
Measurement noise Standard deviation factor [-] 1.00 1.00
Point noise Standard deviation [mm/yr ] 0.33 0.23

Power (p) [-] 0.75 0.81
Model noise Standard deviation [mm/𝑦𝑟 ] 2.7 1.35

Power (q) [-] 0.75 0.82
Correlation length [m] 4000 4083
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Figure 6.6: Benchmarks flagged with “abnormal behaviour” by SuRe with default input settings on a soil map with data from
WUR [79].
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6.2.2. Different subsidence prognosis
SuRe was run with a different prognosis grid to see what the influence of the approximate subsidence
model input is on the subsidence output and the testing results. As prognosis grids for this run, the
subsidence model proposed by Quadvlieg [55] was applied. This model gives a geometrical interpre-
tation of the fields by fitting an ellipsoidal shape through each field. This model is assumed to resemble
the real subsidence due to gas production better than a zero subsidence prognosis. The outcome sub-
sidence grid is subtracted from the outcomes from the default settings to see what the differences are
between both estimates, see Figure 6.7. The RMSE for the estimates at each reference date and all
the output estimates together is computed in Table 6.4.

Table 6.4: RMSE of SuRe subsidence estimates for default input versus input with geometrical prognosis grid

Dataset (survey date) RMSE [mm]
1978 0.418
1981 0.895
1987 2.342
1993 2.348
all 1.501

Figure 6.7: Difference in subsidence grids between default run and run with geometric prognosis

The geodetic testing results were analyzed and the different types of outliers counted (see Table
6.5). For this input data, 39 benchmarks were indicated as abnormal behaving benchmarks, of which
37 were similar to the benchmarks indicated with the default settings, adding two extra benchmarks to
the list. The same holds for the other outliers, all error list contain the errors of the default settings with
the addition of some extra observations/time series.
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Table 6.5: Outliers per type indicated by geodetic testing SuRe with geometrical prognosis grid.

Type of outlier Count geometrical grid Count default settings Difference default
Observation error 14 13 +1
Disturbance 4 3 +1
Misidentification error 16 13 +3
Abnormal behaviour 39 37 +2

The output parameters of the variance model are listed in Table 6.6 and vary from the variance
model outputted from the default model.

Table 6.6: Initial, adjusted outcome variance model SuRe with geometrical prognosis and outcome of default run.

Noise type Parameter Initial Adjusted Default Difference default
Point noise Standard deviation [mm/yr ] 0.33 0.19 0.23 -0.04

Power (p) [-] 0.75 0.84 0.81 +0.03
Model noise Standard deviation [mm/𝑦𝑟 ] 2.7 1.25 1.35 -0.10

Power (q) [-] 0.75 0.80 0.82 -0.02
Correlation length [m] 4000 4334 4083 +251

6.2.3. Different variance model parameters
During the next runs, the parameters of the variance model are changed one by one while the other
parameters are kept on the default value. In total, 5 parameters of interest are tested, two in the point
noise model and three in the model noise model. The measurement noise is assumed to be known
and this factor is thus kept on 1.00. The results are given per noise type.

Point noise The point noise has two parameters: the standard deviation (S.D.) and the power (P).
Each run, one of these parameters is changed while the others are kept on the default value. The
RMSE per year and in total for the entire subsidence outcome dataset is computed (see Table 6.7).

Table 6.7: RMSE with default input values for changing point noise parameters (S.D. = standard deviation, P = power). Each
column represents 1 changed parameter.

dataset RMSE
S.D = 0.1 S.D = 1 P = 0.55 P = 0.95

1978 0.90 0.63 0.31 0.60
1981 1.35 0.96 0.62 0.89
1987 2.17 1.32 1.04 1.21
1993 2.05 1.34 1.25 1.31
all 1.62 1.06 0.80 1.00

The number of outliers indicated by SuRe for these different settings are summarised in Figure 6.8.
For every run with variations in the input variance model, SuRe adjust the final variance model

differently to match it to the noise in the data. The results of this adjustment for all different input
settings for the point noise parameters are summarised in Table 6.8.
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Figure 6.8: Outlier count per type for variation of one parameter of the input point noise variance model

Table 6.8: Initial and adjusted variance model SuRe with variations in the point noise parameters.

Noise type Parameter Default SD = 0.1 SD = 1 P = 0.55 P = 0.95
Point S.D.[mm/yr ] 0.23 0.083 0.26 0.17 0.22

P [-] 0.81 0.83 0.85 0.74 0.92
Model S.D. [mm/𝑦𝑟 ] 1.35 1.91 1.18 1.42 1.23

Q [-] 0.82 0.77 0.88 0.81 0.87
C.R. [m] 4083 3913 4596 4004 4431
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Model noise SuRe uses 3 parameters for the model noise: the standard deviation (S.D.), the power
(Q) and the correlation length (C.R.). Each parameter is varied every multiple run while keeping all
other parameters on the default value. The RMSE for the model noise variations are listed in Table 6.9,
an outlier count in Figure 6.9 and the adjusted variance model after each run in Table 6.10.

Table 6.9: RMSE with default input values for changing model noise parameters (S.D. = standard deviation, P = power, C.R. =
correlation length)

dataset RMSE
S.D = 1 S.D = 5 P = 0.55 P = 0.95 C.R. = 3000 C.R. = 5000

1978 0.71 0.13 0.40 0.51 0.47 0.25
1981 1.06 0.18 0.62 0.69 0.61 0.51
1987 1.36 0.26 0.96 0.94 0.91 1.10
1993 1.44 0.36 1.05 1.26 1.10 1.20
all 1.14 0.23 0.76 0.85 0.77 0.76

Figure 6.9: Outlier count per type of SuRe outcomes for variations in the input model noise variance model

Table 6.10: Initial and adjusted variance model SuRe with variations in the model noise parameters.

Noise type Parameter default SD = 1 SD = 5 P = 0.55 P = 0.95 CR = 3000 CR = 5000
Point S.D. 0.23 0.26 0.20 0.21 0.23 0.20 0.23

P 0.81 0.78 0.85 0.83 0.80 0.83 0.81
Model S.D. 1.35 1.12 1.32 1.15 1.35 1.10 1.35

Q 0.82 0.94 0.84 0.88 0.94 0.88 0.82
C.R. 4083 4716 4037 4523 3992 3474 4678

6.2.4. Different test criterion
The last input parameter analyzed in this sensitivity study is the test criterion 𝛼. 𝛼 is increased and
decreased by a factor 10, to see what the effects on both the subsidence grids and outlier testing is.
For 𝛼 = 0.01, the program keeps on iterating, because it cannot find a hypothesis that gets accepted.
This means that the test criterion is set too high, SuRe cannot find a model within the set acceptance
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criterion. For 𝛼 = 0.0001, SuRe can find a solution within the acceptance bounds. All results are
summarised in Tables 6.11, 6.12 and 6.13.

Table 6.11: RMSE of SuRe subsidence estimates for default input versus input with test criterion of . .

Dataset (survey date) RMSE [mm]
1978 0.181
1981 0.381
1987 0.651
1993 0.855
all 0.501

Table 6.12: Outliers per type indicated by geodetic testing SuRe with test criterion of . .

Type of outlier Count adapted 𝛼 Count default Difference default
Observation error 9 13 -4
Disturbance 2 3 -1
Misidentification error 13 13 +0
Abnormal behaviour 32 37 -5

Table 6.13: Initial and adjusted variance model SuRe with geometrical prognosis.

Noise type Parameter Initial Default Adjusted Difference default
Point noise Standard deviation [mm/yr ] 0.33 0.24 0.23 +0.01

Power (p) [-] 0.75 0.82 0.81 +0.01
Model noise Standard deviation [mm/𝑦𝑟 ] 2.7 1.4 1.35 +0.05

Power (q) [-] 0.75 0.82 0.82 +0.00
Correlation length [m] 4000 4058 4083 -25

6.2.5. Discussion and conclusion
For this thesis, a workflow is developed in which geomechanical parameters are directly estimated from
survey observations. Part of this workflow consists of a geodetic testing procedure of these survey
observations, which is carried out by SuRe, the subsidence estimation program currently being used
by the NAM. Part of this program is an extensive geodetic testing procedure. To assess the influence
of different input parameters, multiple runs with the program were performed and the outcomes are
compared. The input of SuRe consists of “raw” measured height differences from different optical
leveling campaigns, a subsidence prognosis model, an initial variance model, and a test criterion.
Experts at the NAM recommended certain input parameters that they would use for this project, based
on their experience. These input settings serve as a default model, against which all other settings
were tested. The influence of the subsidence prognosis grid, the initial variance model and the test
criterion is assessed.

Default run The subsidence estimates of the default run in Figure 6.5 show a subsidence pattern
that is expected with the production numbers from the NAM. Subsidence starts at the Roden field and
the subsidence bowl progressively moves to the Norg field. In the area of interest are 751 benchmarks
located which have been measured at least once, SuRe indicates that with default settings 37 of these
benchmarks show abnormal behavior. The majority of these benchmarks are located on clayey, peat
or build-up soils, which are areas that are expected to lead to for example compaction or benchmark
settling. The other outliers are assumed to have no spatial relation. When all 1D errors are solved,
SuRe adjusts the variance model until the overall model test gets accepted. The biggest adjustment
is done to the standard deviation of the model noise, this means that the standard deviation of the
prognosed subsidence model is decreased.
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Influence of prognosis grid The default settings use a zero subsidence grid (“0 prognoses”). This
setting was tested against a run with a geometrical prognosis, which was based on a subsidence
model earlier developed by the NAM [55] for this field. The subsidence estimates per grid cell show
a difference up to 6 mm with the 0 prognoses, this is however on local spots. The RMSE for the total
dataset is 1.501 mm. The amount of outliers indicated by the program has slightly increased compared
with default settings, whilst the standard deviation of the subsidence model has decreased by -0.1. A
possible explanation could be that by using a more realistic subsidence prognosis model, the model
uncertainty decreases, leading to the indication of slightly more outliers. The differences are however
not significant enough for a statement to be made with certainty. The adjusted variance matrix does
not show significant changes. The influence of the prognosis grid is thus limited to the outcomes of the
geodetic testing procedure and on the adjusted variance model.

Influence of initial variance model By varying all parameters of the variance model, both point and
model noise, an assessment can be made on what influence these parameters have on the geodetic
testing outcome and the subsidence estimates. Changing the point noise parameters has the most
significant effect on the amount of detected abnormal velocity outliers. This is because decreasing the
point noise standard deviation for all points allows for more points to be indicated as outlier because
their behavior does not fall under the uncertainty ranges of the point behavior. Increasing the standard
deviation does however not make a big difference compared to the default settings, which means
that the majority of abnormal behaving benchmarks are captured within an uncertainty range standard
deviation of 0.55. The power of the point noise is related to the expected smoothness of the benchmark
displacement. A lower value of p leads to frequent misfits of the surveyed sections, whereas a higher
value implies a constant displacement rate, leading to less abnormal behaving errors. Changing the
model noise parameter has no significant effect on the detected outliers nor the adjusted variance
model. The most significant changes are visible when the parameters of the point noise model are
adjusted, which could lead to a larger outlier count. To prevent the program from detecting too many
false positive abnormal behaving outliers, the point noise standard deviation should not be set too low.

Influence of test criterion Setting the test criterion to 𝛼 = 0.01 does not lead to convergence of the
program. The 1D tests get never accepted because the test criterion is set too tight. Decreasing the
test criterion leads to relaxing of the overall model test and the test is thus faster accepted. This means
that fewer outliers are indicated. By varying the test criterion, one can manage the number of outliers
identified. This value should neither be set too conservative because this will not lead to acceptance
of the overall model test nor too loose, because that will cause to acceptance of too many outliers.

Overall conclusion SuRe has an extensive geodetic testing procedure, by testing alternative hy-
potheses are outliers detected in the data. The programmakes use of a prior subsidence model (“prog-
nosis grid”), which could lead to biased outlier detection. Changing the prognosis grid however does
not have a significant influence on the outcomes of SuRe for the case study, neither has changing
the model noise parameters. The most significant effect is visible when the point noise parameters
are changed, because more benchmarks are flagged as abnormal behaving benchmark, due to the
decreased point noise standard deviation. For the remainder of the experiments, the default settings
are kept. These settings are recommended by experts and changing these parameters has proven not
to result in significantly different results.
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6.3. Inversion experiments
For the third group of experiments, the proposed methodology is applied to the case study data. First,
data testing and processing are applied to data in the area of interest. The area of interest is defined by
looking at the results from theGeertsma experiments. Subsequently, regularized inversion is performed
by selecting a parameterization, a regularization parameter and then applying the actual inversion. This
eventually leads to estimates for the source strengths for all nuclei and initial height estimates for all
benchmarks. These source strengths estimates are subsequently used in a forwardmodel to determine
the amount of subsidence in the area of interest.

6.3.1. Processing of raw data
The area of interest is determined based on the outcomes of the previous experiments. The Geertsma
experiments showed that at approximately 5 km from the source, 10% of the maximum deformation
signal is found. Therefore, the area of interest is limited to approximately 5 km from the outlines of the
reservoir. The area of interest is chosen to be: 𝑥 = [2.15 ⋅ 10 m− 2.35 ⋅ 10 m] and 𝑦 = [5.60 ⋅ 10 m−
5.80 ⋅ 10 m]. The raw measurements are imported from the database and used as input for a SuRe
run. The outcome of the SuRe run can be found in Table 6.14.

Table 6.14: Outcomes SuRe run for chosen area of interest (outliers and variance model).

Noise type Count Variance model parameter Adjusted value
Observation error 2 Point noise s.d. 0.18
Misidentification error 6 Point noise power 0.86
Disturbance 2 Model noise s.d. 1.35
Abnormal benchmark behaviour 12 Model noise power 0.81

Model noise correlation length 4133

Knowing which measurements represent outliers, the raw data is processed and with the adjusted vari-
ance model, the corresponding uncertainty model is adjusted. A reference benchmark that is present
in all survey campaigns is selected and all measurements that are disconnected from this reference
benchmark are removed (this reference benchmark is indicated in Figure 6.14. Points with similar
“same” and “to” coordinates were removed. Table 6.15 gives an overview of the number of observa-
tions before and after the processing of the raw measurements.

Table 6.15: Amount of observations in area of interest before and after raw measurement processing.

Average date campaign Number of measurements
before processing after processing

01-Sep-1975 120 114
01-Jan-1978 125 121
01-Jul-1981 143 132
01-Aug-1987 293 285
28-Mar-1993 298 296

6.3.2. Centroid parameterization
The optimal regularization parameter 𝜆 is computed with a 4-fold cross-validation scheme, where the
data is partitioned into 4 subsets by overlaying the area of interest with a 4 quadrant grid. The variance
of the prediction error 𝑆 for a range of candidate 𝜆 is depicted in Figure 6.10. The partitioning of the
data for the 1993 campaign is depicted in Figure 6.11, the same grid partitioning holds for data from
the other survey campaigns.

The optimal regularization parameter is found to be 𝜆 = 10 . With this 𝜆 an estimation of
the source strengths and initial heights is made. The estimated source strengths are depicted in Figures
6.12 and 6.13. The other group of estimated parameters is the initial benchmark heights (the heights
in 1975). These are plotted and compared with a (relative) height map derived with laser-altimetry
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Figure 6.10: Estimated optimum regularization parameter for the 4-fold cross-validation scheme. is indicated by a red
circle on the graph.

Figure 6.11: Data in the area of interest is split up into four quadrants, to be used in the 4-fold cross validation scheme. This
figure depicts 1993, same partitioning scheme holds for other survey campaigns.
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derived data from PDOK [53] (see Figure 6.14). This AHN map serves as a visual way of comparing
the height estimates and height data roughly. The benchmarks are usually not found at ground level,
but rather in walls on arbitrary heights. The AHN-3 data was collected from 2014 until 2019 and thus
does not reflect ground heights in 1975. The estimated initial heights and the AHN-3 data do show a
good spatial correlation.

Figure 6.12: Graph of estimated source strength, for the centroid parameterization. Error bars indicate 1 standard deviation.

The RMSE for the entire dataset is 0.0077m. The RMSE can also be computed for each survey
campaign, results are summarised in Table 6.17. The overall model test for these estimates gets
accepted, see Table 6.16 after removal of 9 observations with a w-test procedure.

Table 6.16: Test statistic and K ( . ) for the centroid parameterization.

T K
629.61 695.33

Table 6.17: Root-mean-square errors (RMSE) for the centroid parameterization, for entire dataset and per campaign

Campaign RMSE [m]

1975 0.00086
1978 0.0016
1981 0.0015
1987 0.0029
1993 0.0043
total 0.0030

The source estimates can be used in a forward model to give an estimation of the amount of sub-
sidence due to these sources, see Figure 6.15.
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Figure 6.13: Plot of estimated source strengths in reservoir blocks for the centroid paramterization. At 1978 and 1981, the Norg
reservoir is not yet producing and thus is assumed to be 0 for the nuclei of this field.

Figure 6.14: Estimated initial benchmark heights estimates (1975) with a height map derived from AHN data, for visual compar-
ison (from PDOK [53]).
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Figure 6.15: Estimated subsidence based on source strengths estimates from Figure 6.13.

6.3.3. Other parameterizations
Three nuclei in Norg reservoir, 2 in Roden The centroid parameterization is chosen because each
nucleus represents one reservoir block. The Norg reservoir blocks are separated by non-sealing faults,
which means that pressure decline is assumed to be equal in each block. The nuclei in the 2a, 2b, 2c
and 3 blocks are in the proximity of each other and the minimum lateral resolution at which independent
contribution of neighboring nuclei can be detected is probably exceeded. It is therefore that for the
next parameterization, the nuclei representing blocks 2a, 2b and 3 were deleted. A new regularised
inversion was run with this new parameterization. The source strengths for the Norg field are again
assumed to be 0 for 1975 and 1981. The results are plotted in Figure 6.16 and visualized in Figure
6.17. The overall model test for this test was accepted after the removal of 5 observations. The test
statistic and the critical value are listed in Table 6.18. The RMSE per campaign and the RMSE for all
data is found in Table 6.19. Expected subsidence is again estimated for this parameterization, results
are visualized in Figure 6.18.

Table 6.18: Test statistic and K ( . ) for lesser nuclei in Norg reservoir (3).

T K
670.10 706.23

Table 6.19: Root-mean-square errors (RMSE) of the estimated model, for all data and data per campaign, for lesser nuclei in
Norg reservoir (3).

Campaign RMSE [m]

1975 0.0010
1978 0.0068
1981 0.0061
1987 0.011
1993 0.0063
total 0.0077
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Figure 6.16: Graph of estimated source strengths with 5 nuclei: 3 in Norg field and 2 in Roden. Error bars indicate 1 standard
deviation.

Figure 6.17: Plot of source strengths in reservoir blocks for 5 nuclei: 3 in Norg field and 2 in Roden field.
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Figure 6.18: Estimated subsidence based on the source strengths estimates from Figure 6.13 (for the 5 nuclei parameterization).

1 nucleus per reservoir The next inversion is performed on a parameterization with 1 nucleus rep-
resenting an entire reservoir. The position of the nucleus is determined by taking the center of mass of
each reservoir. The source strengths are assumed for the Norg field are again assumed to be active
after 1983. During processing, now 4 observations are removed after the w-test. The source strengths
estimates are plotted in a graph in Figure 6.19 and on the reservoir maps in Figure 6.19.

Figure 6.19: Graph of estimated source strengths if only 1 source strength per reservoir is estimated. Error bars indicate 1
standard deiation.

The overall model test for this parameterization is accepted, the test statistic and critical value are
given in Table 6.20. The root-mean-square-error is given in Table 6.21, note that for this parameteri-
zation more observations were removed, possibly leading to a relatively lower RMSE. The estimated
source strengths are used to forward model subsidence (see Figure 6.21.
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Figure 6.20: Plot of estimated source strengths in reservoirs, if only 1 source strength per reservoir is estimated.

Table 6.20: Test statistic and K ( . ), for parameterization with 1 source strength estimated for each reservoir.

T K
704.32 709.50

Table 6.21: Root-mean-square errors (RMSE) of the estimated model for one source strength estimated in each reservoir, for
data per campaign and entire dataset

Campaign RMSE [m]

1975 0.00095
1978 0.0014
1981 0.0015
1987 0.00312
1993 0.0045
total 0.0031
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Figure 6.21: Estimated subsidence based on source strengths estimates from Figure 6.20, if the parameterization consist of two
sources, one in each reservoir.

Grid parameterization Finally, an inversion is performed with a so-called “grid parameterization”.
This means that the entire reservoir outlines are filled with nuclei, with a grid spacing of 1 km. This
distance is smaller than the minimum lateral resolution at which the contribution of a nucleus can be
detected. After a w-test, 2 observations were removed. The estimated sources are visualized in Figure
6.22.

Another tested parameterization is the grid parameterization. Both reservoirs are filled with nuclei
with a grid spacing of 1 km. The estimated sources are visualised in Figure 6.22. The RMSE per
campaign and for the total dataset can be found in Table 6.23. The critical value and test statistic are
stated in Table 6.22

Table 6.22: Test statistic and K ( . ) for grid parameterization.

T K
433.66 594.66

These results are used to forward model the amount of subsidence expected with these compaction
estimates, see Figure 6.23.
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Figure 6.22: Plot of source strengths in reservoir blocks for grid parameterization.

Table 6.23: Root-mean-square errors (RMSE) of the estimated model with one source in each reservoir, for all data and data
per campaign

Campaign RMSE [m]

1975 0.00067
1978 0.0011
1981 0.0013
1987 0.0028
1993 0.0021
total 0.0020
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Figure 6.23: Estimated subsidence based on source strengths estimates from Figure 6.22, if the parameterization consist of a 1
km grid.
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6.3.4. Discussion and conclusion
The proposed methodology was applied to a dataset that consists of measurements from five leveling
campaigns in the period 1975-1993. The dataset was tested with SuRe and subsequently the observa-
tions were adjusted if necessary and the covariance model of the data was adapted, by including a term
for the point noise. A regularized inversion was performed on different parameterizations, where each
time the location and depth of the nuclei are considered known. The experiments lead to mixed results.
On parameterization with few sources, where the distance between sources was large enough for in-
dependent contributions of u nuclei to be estimated (“the minimum lateral resolution”), the inversion led
to estimates that reflect the expected behavior for the reservoir blocks that the nuclei represent. The
amount of compaction grows for each time step. When considering the Roden field, it is visible that
during the first three time steps maximum compaction takes place for the southern block (block 2). If
this is compared with the pressure depletion graphs for the ROD-201 well that was drilled in this block,
it becomes clear that pressure depletion in this block is faster than in the other block that was drilled by
ROD-101 and ROD-102. In 1993, the maximum amount of compaction is at the Northern block. It is
known that the southern field was producing water after 1987 and that pressure as a result increased.
The source estimates for the Norg field are assumed 0 for the first two time steps since the Norg field
has not been producing during these survey campaigns. In 1987, negative compaction is estimated for
some reservoir blocks, but not for all. Two reasons could explain this behavior, the first one being the
lateral resolution at which individual contributions of nuclei can be detected. It could be that the sources
are too close to be properly detected and another form of regularization could be applied to constrain
the outcome space for these sources. The second reason for the unexpected outcomes is the signal to
noise ratio. In 1987, the Norg has field has only been producing a limited time with small pressure de-
cline. It could be that the signal to noise ratio is too small to properly detect the compaction for this field.

Using other parameterizations leads to mixed outcomes. By using only 3 nuclei for the Norg field,
the problem of negative compaction estimates is again visible in 1987. Using only 1 nucleus for each
reservoir leads to only compaction estimates The downside of using 1 nucleus is however that only 1
reservoir compaction parameter is estimated and that the forward modeled subsidence due to 1 source
can not account for the overall subsidence.

Estimating compaction for multiple nuclei in a grid formation leads to unrealistic results, with some-
times alternating high and low values. The main reason for the results is probably the lateral resolution
at which individual contribution for independent nuclei can be detected. Again, feeding the problem
more information, by for instance another form of regularisation, might help to constrain the outcome
such that better estimates can be made.

RMSE differs for different datasets, but it is impossible to compare these figures for different parameter-
izations. Some parameterizations lead to a decline of the w-test and a few observations are removed.
Other parameterizations lead to immediate acceptance of the w-test. Removal of more outliers gener-
ally leads to lower RMSE.
The used inversion methodology together with data testing and processing leads overall to acceptance
of the overall model test. The geomechanical estimates lead to mixed results. For some parameteri-
zations, results follow expected trends. Other parameterizations lead to positive source terms, which
would indicate a pressure increase. This is not expected and is probably caused by the minimum lateral
resolution at which the contribution of an independent nucleus can be detected.
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Conclusions

This research aims to assess whether optical leveling measurements can directly be used to derive
information about geomechanical subsurface processes, with a direct geomechanical inversion. This
means that a direct relation was sought between optical leveling measurements and geomechanical
parameters. The biggest advantage of this direct relationship would be the ability to relatively easily
propagate uncertainties from the geodetic data to the geomechanical estimates. In previous research,
direct relationships between geodetic data and geomechanical data have been defined, but never di-
rectly with measurements. The data in previous research is always temporal differenced, such that
double-differences are formed, or even an absolute height difference, by defining a stable reference
point. The downside is of this methodology is that correlation is introduced into the covariance of the
data. Other previous studies define non-linear relationships between data and geomechanical esti-
mates. The goal of this thesis is thus to assess to what extent a direct relationship between geome-
chanical parameter estimates and optical leveling measurements can be defined.

7.1. Conclusions
To answer the main research question of this thesis, a few subquestions were drawn up. First, the
subquestions will be answered, after which the main question will be answered.

1. What are the current methods used for geomechanical inversion?
First, it is important to have a clear definition of what “geomechanical inversion” means. In this
thesis, a direct geomechanical inversion is defined as the process in which subsurface information
is estimated with surface deformation data, by inverting a direct relation between measurements
and data. Previous researches can be split up into three groups: data assimilation methods,
methods that use geodetic surface deformation data as a way to validate their subsurface esti-
mates and methods that use geodetic data as input for a direct inversion. No research is found
where optical leveling measurements are directly used as input for an inversion, all researches
perform a form of differencing. This can be double-differencing, where spatio-temporal differ-
ences are computed, or estimated spatial displacements at point or grid level. The disadvantage
of using estimated spatial displacements is that an assumption regarding a stable reference point
should be done, which could include bias. This disadvantage does not hold for double-difference
data, because double-differences are relative. When double-differences or spatial displacements
are estimated, correlations are included in the covariance matrix of the estimates. The disadvan-
tage of having correlations into the covariancematrix of the data is that error propagation becomes
more complex, especially when a non-linear inversion is performed on the data. Error propagation
is therefore often omitted in previous work, making the quality assessment of the geomechanical
estimates impossible. A positive exception is the LTS-II study, where extensive geodetic process-
ing is applied to the data and uncertainties of the data are quantified in a complete covariance
matrix.
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2. How are geomechanical parameters directly expressed in terms of geodetic leveling mea-
surements?
The relation between subsidence and geomechanical parameters is expressed in a geomechan-
ical model, such as the Mogi model or Geertsma’s model. These models are so-called nucleus-
of-strain models. These models relate subsurface compaction to deformation at the surface. The
deformation terms in these models consist of vertical displacements of points on the surface, or
“temporal differences”. Optical leveling measurements are “spatial differences”, which means
that they express a height difference between two points at a specific point in time. To relate
subsurface compaction to leveling measurements, a temporal component should be introduced
into the equation. This is done by not only estimating compaction terms but also initial height
parameters. The introduction of these initial heights makes it possible to estimate temporal com-
paction parameters from spatial measurements. If these models are used for linear inversion,
a-priori information should be fed to the problem, such as the location of the sources. If only the
location of the sources is considered known, a lumped parameter is estimated in the inversion,
which we call the “source term”. In this “source term”, we find a pressure term, a volume term, and
several elastic rock parameters. To estimate a specific term, such as the compaction coefficient,
assumptions regarding all other terms in the source term should be made.

3. Why and how can the optical leveling measurements be geodetically tested, before being
used as input for the geomechanical inversion?
Optical leveling measurements should be tested and adjusted before they are used as input data
for a geomechanical inversion, to detect outliers in the data and to account for idealization noise.
Outliers can consist of observations errors, benchmark misidentification errors, benchmark dis-
turbances, and abnormally fast benchmark displacement. Idealization noise is considered as
all surface deformation signals caused by other sources than hydrocarbon production. During
geodetic leveling measurement campaigns, geodetic testing on gross outliers has taken place
and trajectories with obvious outliers were remeasured. Other testing than that is not yet ap-
plied to the data used for this thesis. For further geodetic testing, we used a software program
called Subsidence Residual Modelling (SuRe), because this program has an extensive build-in
geodetic testing procedure. Based on several input parameters, a subsidence prognosis, and
raw optical leveling measurements, the program tests the measurements and estimates a subsi-
dence model. The outcomes of the testing procedure are used for this thesis, to detect outliers
and subsequently appropriately act on these outliers. Observation errors are deleted, misidentifi-
cation errors are bypassed, time-series with benchmark disturbances are split and the idealization
noise of benchmarks with abnormally fast displacement is increased. Another outcome of SuRe
is are parameters that describe a variance model for the point noise. These parameters are used
to estimate the idealization noise of each measurement, which is added to the measurement
noise of the raw measurements.

4. How could a geomechanical inversion, with correct uncertainty handling and uncertainty
propagation look like?
For this thesis, it is chosen to use the nucleus-of-strain model of Geertsma to define the rela-
tionship between geodetic measurements and geomechanical parameters. If the location of the
nuclei is considered known and the principle of superposition is used, the problem becomes lin-
ear. A system of equations is set up, with a design matrix and a data vector. The data vector
consists of leveling measurements. These leveling measurements are geodetic tested and, if
necessary, adjusted. The covariance matrix of the data is constructed by including measurement
noise and idealization noise for each measurement. This inversion problem is ill-conditioned,
like many geophysical inversion problems with limited information, which means that a form of
regularization should be applied. Regularization can be achieved in many ways, for this thesis
we used Tikhonov regularization that penalizes spatial differences for source estimates of neigh-
boring reservoir blocks. The amount of spatial smoothness is controlled by the regularization
parameter, which is determined by a cross-validation scheme. The uncertainty of the geodetic
measurements is propagated by following linear variation propagation laws.
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5. How do the proposed inversion methodology and error propagation perform on actual
geodetic measurements?
To test the validity of the proposed methodology, a case study was defined. The Norg and Roden
gas fields are located in the northern Netherlands, just south of the Groningen field. Several
optical leveling campaigns were organized here while these fields were producing. The first data
results from a leveling campaign from 1975 and the most recent data used stems from 1993
because one of the fields was turned into a gas storage field in 1995, to only capture subsidence
in the measurements. The undeep underground surrounding these gas fields consist of mainly
sandy soils, which means that a limited amount of subsidence due to undeep compaction is
expected. This means that the signal-noise ratio for this field is probably relatively good. The
geodetic testing procedure was applied to the data and the data was subsequently adapted.
Subsequently, the actual regularized inversion was applied. The RMSE on the total dataset is
3.0 mm. The resulting compaction estimates follow the trends expected from the corresponding
reservoir blocks. However, some results are not exactly what is expected. Some reservoir blocks
show negative compaction, or expansion, which is not expected from these fields. This is due to
the minimum lateral resolution at which the independent contribution of the neighboring section
in the reservoir can be estimated, which is about the burial depth of the reservoir. For the Norg
and Roden fields, this is approximately 2800m. This means that sources should be placed with a
spacing of least 2800m, which is not the case when placing sources in all reservoir blocks. The
overall conclusion after the experiments is that the proposed inversion is likely improved when
more information is added to the inversion.

6. What are the limitations of a regularised direct linear geomechanical inversion?
The main limitation of the proposed inversion methodology is that a lumped parameter term is
estimated, the “source term”. This term includes pressure, volume, and elastic rock property
parameters and without additional information, it is not possible to differentiate between these
different terms.
When using a regularisation for an inversion, extra information is added to the problem. This
means that regularised inversion will result in biased estimates of parameters. The estimates will
vary with the choice of cross-validation scheme, regularization matrix, and regularization matrix.
The choice for certain epochs or survey campaigns used for the inversion is important too. If little
subsidence has taken place during between survey campaigns, the signal-noise ratio will be low,
due to measurement errors or idealization noise (subsidence caused by other processes than
reservoir compaction.
The proposed methodology assumes a linear relationship between compaction estimates and
observational data. This means that a linear inversion can be applied and linear variance prop-
agation. If a more complex model like a finite element model is used, this kind of inversion and
error propagation does not work.

These subquestions lead to the main question:

To what extent can results from optical leveling campaigns be used as input for a direct
inversion to estimate a simplified set of geomechanical parameters?

To answer this question, a methodology is proposed that uses optical leveling measurements as
input data and estimates geomechanical compaction parameters, by defining a direct relationship be-
tween leveling measurements and a simplified set of geomechanical parameters. The main advantage
of this methodology is that the uncertainties that are tied to optical leveling measurements can be rela-
tively easily propagated into the geomechanical parameter estimates. The biggest limitation is that only
a lumped parameter can be estimated, which consists of volume, pressure and rock elastic properties.
If one would want to know one specific parameter, such as the compaction coefficient, assumptions
regarding all other parameters should be made. Another limitation is that regularization should be
imposed to solve the inversion. Regularization imposes extra information on the problem and will in-
evitably result in biased parameter estimates. The parameter estimates will vary depending on the
form of regularization imposed.
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7.2. Recommendations
The following topics have been identified for further research:

• Feed the inversion more information, such as reservoir pressure models or compaction models.
This might relax the need for regularization and thus lead to better geomechanical estimates.
More information could also lead to the differentiation of parameters in the lumped source term.

• Implement the methodology on data from other reservoirs, to assess whether the methodology
is applicable for other case studies.

• Find ways of implementing a geodetic test procedure iteratively in the inversion methodology.
Within this research, geodetic testing is applied once before the inversion, but including testing
in the workflow might improve consistency.

• Implement more complex reservoir models that describe the subsidence signal more realistic.
The Geertsma model used for this thesis is a relatively simple geomechanical model and will
within the limitations of a linear inversion never be able to describe the subsidence signal perfectly.
A more complex geomechanical model might be able to describe the signal closer to reality and
give more insight into the subsurface.

• Further investigate the effects of regularization, the effect of the choice of CV scheme, the design
of the regularisation matrix and the regularization parameter. More regularization could be added,
for example by restricting the compaction estimates to be only positive, such that no volume
expansion is allowed. Also, a penalty on temporal smoothness could be added, if pressure decline
is smooth over a reservoir. Adding more information on the reservoir characteristics and pressure
declines could constrain the outcome space and lead to better estimates.

• Modify the workflow such that observational data can also be used as input for non-linear inver-
sions, as used by for example finite-element methods.

• Use other kinds of geodetic observation data as input for the inversion, such as InSAR or GPS
data. This data has other characteristics than optical leveling data, so parts of the methodology
should be adapted. The geodetic testing procedure should be adjusted to InSAR and/or GPS
data and the inversion design. For the uniformization of different kinds of geodetic data, we refer
to van Leijen et al. [72].
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A
Top Rotliegend maps of reservoirs

Figure A.1: Roden top Rotliegend depth contour map with faults and well locations (from NLOG [51]).
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98 A. Top Rotliegend maps of reservoirs

Figure A.2: Norg top Rotliegend depth contour map with faults and well locations (from NLOG [51]).



B
Surveyed levelling networks

Figure B.1: Levelling network at the Norg and Roden field, as surveyed in 1975.
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100 B. Surveyed levelling networks

Figure B.2: Levelling network at the Norg and Roden field, as surveyed in 1978.

Figure B.3: Levelling network at the Norg and Roden field, as surveyed in 1981.
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Figure B.4: Levelling network at the Norg and Roden field, as surveyed in 1987.

Figure B.5: Levelling network at the Norg and Roden field, as surveyed in 1993.
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