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Abstract. The present study proposes a novel data assimilation (DA) approach
for estimating emission and wind direction parameters in an advection-diffusion
model. This implementation aims to improve the prediction of a chemical trans-
port model over long distances by updating the emission operator in the model
using DA techniques. As a first step, we want to test the method in a small-scale
scenario. A low-dimensional advection-diffusion model was utilized to evaluate
the effectiveness of the proposed approach under various sampling observation
numbers. The model’s emission and wind parameters are perturbed as a source
of uncertainty. The parameters are sequentially estimated with the adjoint-free
Ensemble Kalman filter with an augmented state vector. These sequential DA
techniques exploit the ensemble of multiple model realizations to reduce uncer-
tainty in the state and parameter representation. An associated stream function
with a divergence-free condition controls the wind fields, and the estimation of
this stream function through the assimilation process allows corrections of the
wind fields without violating physical laws. The technique’s performance was
compared against validation observations such as the Root-Mean Square (RMS),
and it was found that the number of assimilated observations had a significant
impact on the parameter estimations results. This study demonstrates the poten-
tial of the proposed DA approach for improving the prediction of transport in the
advection-diffusion model through parameter estimation.

Keywords: Air Quality modeling - Parameter estimation problem - Chemical
Transport Model - 2D advection-diffusion model - Data Assimilation -
divergence-free -+ LOTOS-EUROS - Ensemble Kalman filter information *
atmospheric transport model

1 Introduction

Chemical Transport Models (CTMs) predict the concentration, transport, and deposi-
tion of several components emitted from natural and anthropogenic sources. Although
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these atmospheric transport models have been evolving for years, refining the phys-
ical, chemical, and mathematical structure representing reality, uncertainty is always
there due to the highly nonlinear phenomena these models try to describe. One of the
primary sources of uncertainty in CTMs comes from the emission inventories, which
could differ significantly from the technique’s location and time against reality. We
inspired or contributed to a real-life scenario where we have a CTM model in a region
with coarse meteorological input information, so the winds are the secondary source of
uncertainty between the model and real directions. Uncertainty in the emission inven-
tories or parameters involved in the emission processes may be reduced but never elim-
inated [1]. With the help of data assimilation (DA), incorporating information in these
models alleviates some difficulties.

Emission parameter estimation has been the center of attention for DA around the
globe for CTM implementations, mainly because the emission inventories tend to have
high uncertainty values, with some different degrees of uncertainty between regions
and source sectors [3,4]. In South America, updating emission inventories can be chal-
lenging due to historical institutional limitations, making it difficult to have up-to-date
information available. This significant variability in CTMs from the emission parame-
ters [5] has been given the principal attention in DA techniques to incorporate observa-
tions into numerical models for determining the most appropriate state and parameter
sets that produce a new state that follows this observation [6]. DA method is commonly
used to incorporate measurements into the system, estimate its states and parameters,
and enhance subsequent simulation forecasts, making it a valuable tool for improving
model performance.

In this work, the state and model parameters, emissions and winds, are estimated
simultaneously using the Ensemble Kalman Filter (EnKF) to estimate the error covari-
ances among several variables with a small scale model of a CTM, an emission
advection-diffusion model. EnKF is the DA technique that generates an update at the
first moment of the probability density function found in the analysis once new obser-
vations are available [8,9]. An ensemble of model propagation is created by perturbing
emission factors and wind direction parameters. The method for estimating the param-
eters using the data provided by the observations uses covariances that include the rela-
tionship between states and initial conditions and compliance with the observed stated.
The “augmented state space” vector technique, proposed by Jazwinsky in 1970 [10], is
used to estimate parameters. Here both the state variables and the model parameters are
part of the state vector and can be estimated through the sequential steps of the filter.
This approach has been used in different parameter estimation studies, specifically with
the LOTOS-EUROS mode” as CTM [11,12].

This chapter is organized as follows: In Sect. 2, we introduce the specific methodol-
ogy for the EnKF, including the stochastic model for parameter perturbation and prop-
agation, as well as the technical details of the code and stream function formulation. In
Sect. 3, we focus on the results of this technique with the advection-diffusion model. In
Sect. 4, we present our discussion and concluding remarks. This study offers valuable
information on the effectiveness of stream function DA in improving CTM and can
contribute to developing more accurate air quality monitoring systems.
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2 Methodology

2.1 The Ensemble Kalman Filter for Wind and Emission Parameter Estimation

Ensemble Kalman Filter (EnKF) is a sequential DA mathematical procedure used to
incorporate data into a dynamic model to improve its representation of reality [19,20].
One benefit of the such sequential technique is the estimation of the current state x €
R7*1 with n as the state dimension of a dynamical system that evolves according to
some numerical model operator M from the past to the current time.

X = Mp—1)—k(X—1)(Ae—1,7%-1)) » )

where k denotes the time index. It follows here that a discretization in time takes place
within the EnKF DA technique. This model operator transforms the model states from
time k£ — 1 to time k. Ay represents the emission parameter and -y, represents the wind
direction parameter for the current time k, with the following distribution:

¥~ N (P, Q1) (2)

AN (A, @2) 3)

where the mean corresponds to the nominal values ~, and )\, of the parameters, and
the covariances ()1 and () describe the degree of freedom of the magnitude that those
to have in the system.

2.2 Stochastic Uncertainty Representation for Wind and Emission Parameters

A stochastic representation of the parameter uncertainty is required to implement the
DA method. The emissions employed by the model operator are consequently modeled
as a stochastic process with a factor of random variation.

ér = e (1 + ). “4)

Here, ey, is the nominal emission from the emission inventory. The emission deviation
is modeled as a colored noise process [10] as follows:

Ve = Y1 +toV1i—atw,, )

where wy, is a white noise process with zero mean and unity standard deviation:

w, ~ N(0,1). (6)

The stochastic factors are taken from a normal distribution with zero mean and standard
deviation o. The temporal correlation coefficient o, € [0, 1] is used to describe the
temporal variation, where the value should be set between two extremes: for « = 0,
the deviation is pure white noise with completely different values for every sample; for
«a = 1 there is no temporal variation at all, and the deviation factor is a single sample
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out of the normal distribution. In this study, the correlation parameter is described using
a temporal length scale 7 following [21]:

Qp = exp(—\tk—tk,1|/7') N (7)

where the stochastic model state is formed by augmenting the state vector with a similar
model for the wind parameter perturbation. The DA estimation is performed based on
a first guess or prior estimate x* € R"*!. In ensemble-based methods, an ensemble of
N model realizations and n states is generated:

Xz — [XZ[l]’XZ[2]7 "7XZ[N]] c %an , (8)
which correspond to the different realization of the model generated by perturbing ini-
tial conditions assumed to be normally distributed:

x ~N(x" B). ©))
The mean X = = "7 | x" and the covariance background error matrix are:

Y —R) -x)" e R (10)

i=1

1
n—1

B-=

The parameters involved are the emission factor v and the wind direction A factor,
which has the following distribution for the ensemble method of N model realizations:

I = [y a2 - Y s (1)

A= [A1,1, A,2)s - ALN) - (12)

Each one of the model state, emission factor, and wind deviation matrices ensembles
are rest by the mean value of the ensembles:

XI]; = [Xz[l] — T, XZ[Q] — 7, "7XZ[N] —f] € §Rn><N , (13)
Ir= [7[171] _77 7[1,2] _77 "'77[1,]\7] _7] > (14)
A=Da1 = MNAn — A s Apn] — Al (15)

From these deviation arrays, we create the following augmented vector and calculate
the approximate covariance matrix of this augmented system:

X

p=|r|. (16)
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This matrix can be expanded for each one of the components:

Xk M g—1)—k (Xg—1)(Me—1,75—1)) 0
Ye | = Ok Vi_q + | oVl —?w, | . (17)
Ak Br Ak—1 N1 — 32wy

Using the augmented vector (17), it is possible to estimate both the state and the
emission correction factor using a sequential DA approach. The non-linear operator M
propagates the augmented state vector x in time, while the right part of the expression
corresponds to the stochastic forcing wy, over the elements of the state. The covariance
matrix is calculated as

pP,PT
P= e 18
N_1 (18)
The observations are also assumed to be normally distributed
y~N(H-x,R), (19)

where H € R™*" is a linear operator that propagates the state space into the observa-
tion space, and R € R is the observation error covariance matrix. In this way, the
deviation observation matrix is:
Y =[yuy ¥V Y YN — Y- (20)
The EnKF computes an optimal variance gain with the expression:
K = PH'[HPHT + R]!, (21)

which is applied to each member of the ensemble:

x¢ =x"+ [P+ H'R'H|'H'R4, (22)

where the innovation d deviation space is created with the inclusion of noise v; ~
N(0,R) is added to the observation y; = y + v; for each ensemble that is going to be
used to perturb the observations before the difference with the correspondent H;x:

dp = [y1 — Hix;y, — Hox, ...y, — H.x]. (23)

2.3 Stream Function Formulation

Consider the scalar stream function

U (z,y), (24)

where
- 2
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ov
-
This scalar stream function constructs the vector field, satisfying the divergence-free
property V - f = 0.

(26)

V=

v

flz,y) = (“) 27)

The stream function ¥ (x,y) is a scalar function describing fluid flow in a two-
dimensional space. The stream function divergence-free property V - f = 0 means that
the total flow across any closed curve in the fluid domain is zero. This feature is ben-
eficial because it allows physical constraints, such as continuity or conservation laws.
The proposed approach involves perturbing the stream function instead of the two wind
velocities. The stream function’s divergence-free property is characteristic of an auxil-
iary space in DA used for parameter estimation, which can have some properties that
help describe the magnitudes related to the model space. Section 3 provides an illustra-
tive example of this method, where we select a suitable stream function to demonstrate
its effectiveness. Moreover, the stream function divergence-free property reduces the
dimensionality of the DA problem. The stream function can transform the state vector
into a new space with a smaller dimension, reducing computational costs. The stream
function can be used as an auxiliary space for DA by transforming the state vector.

3 Results

3.1 Advection-Diffusion Model

Testing an implementation with a simplified model is widely used in the DA field to
check the behavior of new techniques designed. This section considers a 2D advection-
diffusion model to which synthetic data is fed through data assimilation (DA). The
advection-diffusion model for a gas concentration C' is described by the following equa-
tion in the directions = and y with a constant diffusion coefficients D, and D,, and
velocities in the two directions U, and U,;:

oC oC oC 0?C 0%C
E:—Um%—Uya—y—szWntDya—gﬂ—kék. (28)
Synthetic data in this scenario correspond to the data sampled from the true model
states of the advection-diffusion model propagation with different initial conditions.
The true model propagation is one propagation of the model that is taken as the reality.
This model propagation is perturbed, and then this synthetic data sampled from here is
the observation dataset to assimilate. The change in parameters presents a challenge for
DA and predictability. The size of this simple test model is 3600 states (60 x 60 grid)
for the concentrations. The emission parameter depends on the number of sources to be
updated, and the wind direction parameter the number is two times the number of states
because the horizontal wind directions are u and v. In this case, one advantage of the
stream function is reducing the number of wind direction parameters in half because
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once the stream function parameters are estimated, the wind direction is calculated in
the model space through the gradient.

For the discretization form, the central step second order finite difference [2] was
used to generate the propagating following expression from an initial state. The bound-
ary condition used for solving the experiment was the Dirichlet homogeneous zero or
null value fixed in the contour [27].

3.2 Results Advection-Diffusion Model

Figure 1 provides a schematic normally-distributed perturbation for the wind direction
along with a comparison of various standard deviation values of the wind direction per-
turbation for the advection-diffusion model as a grey shade region that describes a set
of variations in the direction of the wind from the ideal or true value. In comparison, the
different standard deviation values of the wind direction perturbation in the advection-
diffusion model Eq.28 determine the region of uncertainty expanded where the vari-
ation in the modeled wind direction occurs. The Figure provides insights into how
perturbations in the wind direction can impact the accuracy of the advection-diffusion
model. It highlights the importance of accurately estimating wind direction in improv-
ing model accuracy. Furthermore, comparing the different standard deviation values of
the wind direction perturbation is a useful guide for determining the maximum level
of uncertainty or variability that should be considered when modeling wind direction
for various applications. The wind fields V,, were homogeneously perturbated in direc-
tion assuming that the magnitudes remain constant and equal to |V;,| = 1. The noise
distribution for generating the distribution is NV, ~ A (%, R)

Vi =Vik—1+ Ap—1, (29)

Vi =+vV1-V2, (30)

0.701

Fig. 1. (a) Schematic perturbation for the wind direction according to the model in Eq. (30) both
in one and in two dimensions (b) Comparison for different standard deviation values of the wind
direction perturbation for the advection-diffusion model. Colorbar indicates concentration. Dif-
ferent panels correspond to different time steps as indicated.

Ak = B A1 F1v 1 — 2w, (3D
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Analysis state Analysis state Analysis state AffalySiS state
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Fig. 2. Panels (a) and (b) show the result of the advection-diffusion emission parameter perturba-
tion and estimation with wind direction not being estimated for the true wind direction pointing to
the east (a) and the true wind pointing to the south (b). For each one of these cases, two situations
for the dimension of the observation operator H are shown, one where the number of observa-
tions is low and the other where they are high. Colorbars represent the concentration levels. In
the last row, the emission and wind direction parameters in time are presented.

The following Figures compare the analysis output between the truth state and three
scenarios: emission perturbed, winds perturbed, or emissions and winds perturbed. The
number of observations was increased for each experiment to study the discrepancy
between the analysis state and the true change. Figure 2 presents the results of an Advec-
tion Diffusion emission parameter estimation DA experiment.

The simulation was conducted under two wind directions, one pointing towards the
east, and the other towards the south. The top image shows the analysis output, indi-
cating that the wind directions were not updated. Two situations for the dimension of
the observation operator H are presented for each case, which has a varying impact
on the error reduction. This Figure highlights how fundamental it is to accurately esti-
mate wind directions and how large is the impact of the number of observations on the
analysis output.

Figure 3 describes an Advection Diffusion model DA for estimating emission
parameters and wind direction. The top image shows the analysis wind field, which
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results from the DA process. The middle image shows the true wind direction, pointing
east in the first case and south in the second case. For each case, two situations with
different observation dimensions are shown, where the graphic below shows the esti-
mated parameters. This Figure helps to demonstrate the impact of DA on estimating
parameters and wind direction in the Advection Diffusion model. The results suggest
that the DA process can improve the accuracy of the estimated parameters, even with
fewer observations, and that the true wind direction can be better estimated with more
observations.

Analysis state Analysis state
Wind std: 0.5 Wind std: 0.5
Error : 38.995

Error : 12.025

0 4w 6 » « o °
X grid X grid

True state

Y @id

w w0 e
X grid

ind dirction fact

Emission Factor
Emission Factor -

d diroction f
Emission Factor

Time stesp Time stesp Time stesp Time stesp

(a) (b)

Fig. 3. Panels (a) and (b) show the result of the Advection-diffusion emission parameter perturba-
tion and estimation with wind direction now being estimated for the true wind direction pointing
to the east (a) and the true wind pointing to the south. For each one of these cases, two situations
for the dimension of the observation operator H are shown, one where the number of observa-
tions is low and the other where they are high. Colorbars represent the concentration levels. In
the last row, the emission and wind direction parameters in time are presented.

Figure 4 compares the error between the true state and the analysis state after assim-
ilation and how it relates to the sampled space size (the number of observations as the
black pixels in the true state of the images above). The experiment was conducted 50
times under two scenarios: one with a small (2.7%) and another with a large (55%) per-
cent of sampled space size. The Figure shows the density of the group of dots, which
confirms the experiment’s success in reducing error consistently. The analysis suggests
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that a larger sample size leads to a more accurate analysis state and lower error. This
finding emphasizes the importance of adequately sampling the state space to improve
the accuracy of the assimilation process.

Comparison between 50 experiments error EnkF } 0 o i 0

H
g
2
d
8
2

2.7% observed state space

- Experiments ’ j - —

Example for one experiment

Fig. 4. Statistical comparison for the error for 50 experiments between one scenario with a small
(2.7%) and large (55%) size, compared to the state space size, for the observation matrix H.

To test the case with the scalar stream function as an auxiliary space to perform the
DA for the parameter estimations, we use the following linear function for a test case.

(2, y) = upy — vp , (32)
where ow
b
=2 33
up 3y (33)
ov,
= —_——. 34
Vp B 34

Figure 5 compares the stream function correction after sequential DA, which
involves estimating emission and wind direction parameters. This Figure illustrates the
true and analysis wind direction corresponding to the gradient direction, depicted with
the red and blue arrows, respectively. Over time, the ends of the arrows align, indicating
that the DA process successfully corrected the stream function. This result highlights
the potential of DA techniques to improve model accuracy and the importance of accu-
rately estimating emission and wind direction parameters. Overall, the insights from
this Figure provide a valuable contribution to the literature on DA and offer guidance
to researchers in optimizing their modeling approaches.
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PU——

Fig. 5. Comparison of the stream function correction after time through the sequential DA, which
estimates emission and wind direction parameters, the true and analysis wind direction corre-
spond to the gradient direction of the stream function, which ends align through time.

4 Discussion

DA techniques have been increasingly incorporated into CTM to improve their accu-
racy. Most of these models use DA to improve emission estimates by ingesting new
data. The next step in our research is to test the stream function DA technique with
advection diffusion in a larger model, such as the LOTOS-EUROS, to evaluate its effec-
tiveness. The results of this work can provide valuable insights into the application of
DA techniques in different domains and contribute to the ongoing efforts to improve
the accuracy of CTMs. Atmospheric trace gasses measurements retrieved from Satel-
lite instruments can perceive different plumes of pollutants emitted from sources and
recently different works propose techniques to detect them [22-24], thus estimating the
wind direction through the incorporation to the model of concentration plumes can act
as a virtual sensor of wind direction.

5 Conclusions

In conclusion, this study presents a novel DA approach that addresses the challenge
of estimating emission and wind direction parameters in an advection-diffusion model
for improving the accuracy of CTM over long distances. The proposed approach utilizes
the ensemble Kalman filter with an augmented state vector to sequentially estimate both
parameters while considering additional uncertainties. By perturbing both emission and
wind parameters, the proposed approach provides a comprehensive understanding of
both parameters’ impact on the chemical transport prediction.

The effectiveness of the proposed approach was evaluated using a 2D low-
dimensional advection-diffusion model under various sampling observation numbers.
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The technique’s performance was compared against validation observations using dif-
ferent metrics such as Mean Factorial Bias (MFB) and Root-Mean-Square (RMS). The
results indicate that the number of assimilated observations significantly impacts the
accuracy of the predicted chemical transport.

One of the significant advantages of the proposed approach is the estimation of
the associated stream function that controls the wind fields. The assimilation of this
stream function allows for the correction of the wind fields while preserving the phys-
ical laws. Considering the uncertainties associated with wind direction, the proposed
approach provides a more accurate representation of chemical transport in advection-
diffusion models. This study demonstrates the potential of the proposed DA approach
for improving the accuracy of CTM in advection-diffusion models. The next crucial
step towards advancing our research is introducing spatially variable perturbations to
the stream function, thereby generating a diverse range of spatially varying velocity
patterns to introduce divergence-free structures on the wind fields to be estimated.

Acknowledgements. Universidad EAFIT and TuDelft University.
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