
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Implementing Refactorings in the Spoofax
Language Workbench

Maartje de Jonge and Eelco Visser

Report TUD-SERG-2013-008

SERG

TUD-SERG-2013-008

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2013, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Implementing Refactorings in
the Spoofax Language Workbench

Maartje de Jonge and Eelco Visser

Dept. of Software Technology, Delft University of Technology, The Netherlands

Abstract. Spoofax is a language workbench for efficient development
of textual domain-specific languages together with state-of-the-art IDE
support. Spoofax integrates language and IDE development into a sin-
gle environment, using concise, declarative specifications for languages
and IDE services. We are extending Spoofax with a framework for the
implementation of refactorings. The current paper gives an overview of
the framework and demonstrates the implementation of refactorings for
languages developed using Spoofax.

1 Introduction

Refactorings are behavior preserving structural transformations with the objec-
tive to improve the design of existing code [5]. Refactoring tools offer support
for a set of predefined refactorings that are frequently applied by programmers,
examples are: Rename, Extract method and Move method. Refactoring tools
automate source code modifications and report errors and warnings for possible
behavioral changes. The implementation of refactorings is challenging since dif-
ferent concerns must be handled, e.g., user interaction, source code modifications
and behavior preservation checks.

IDE platforms such as Eclipse or Visual Studio reduce the effort to imple-
ment refactorings by factoring out common functionality into generic framework
components. The Eclipse Language Toolkit [6] (LTK) provides a framework for
the implementation of refactorings in Eclipse-based IDEs. The framework offers
an API for implementing refactorings on top of a language neutral layer with
components such as: wizards that guide the user through the refactoring pro-
cess, change objects that represent the textual changes, and a viewer to visualize
patches. The LTK also takes care of “undo” management.

Spoofax [10] is an Eclipse based environment for the development of lan-
guages together with full-featured IDE support. To support language develop-
ment, Spoofax combines multiple domain-specific meta-languages, i.e., languages
that target the domain of language engineering. The modular, declarative syntax
definition formalism SDF [7,15] is used to specify the syntax of a language; the
Stratego transformation language [16] provides a uniform formalism for concise
specification of analysis, transformation, and code generation; editor descriptor
DSLs [10] allow to configure editor services based on the syntax and seman-
tics specified for a language; finally, Spoofax incorporates a language-parametric

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 1

testing language (LPTL) [9] for the declarative specification of test cases for
language definitions.

To reduce the effort to implement refactoring support for new languages, we
are extending Spoofax with a refactoring framework build on top of the Eclipse
LTK framework. The framework makes it possible to use the DSL-based Spoofax
approach for the specification and implementation of refactorings. Furthermore,
the framework provides language-parametric components to handle generic refac-
toring tasks. The framework incorporates the text reconstruction algorithm and
the name binding preservation criterion discussed in respectively [1] and [2]. The
current paper presents an overview of the framework and discusses how it can
be used to implement refactorings for new languages. All examples in this paper
use the Mobl language [8] as a target language.

Outline The paper is organized as follows. First, in Section 2 we discuss the work-
flow that is typically implemented by refactoring tools. Then, in Section 3 we
show how the components from this workflow can be configured using a declar-
ative specification language. Next, in Section 4 we give a short introduction into
the Stratego transformation language, which is used in Section 5 to implement
structural transformations on the AST, and in Section 6 to implement condi-
tions for behavior preservation. Finally, Section 7 discusses automated testing
of refactorings, using a language-parametric testing language (LPTL).

2 Tool Support for Refactorings

Refactoring tools offer support for a set of predefined refactorings, each of which
implements a complex workflow that involves the user in making decisions and
providing additional information. This section gives a short overview of the sub-
sequent steps that are typical for refactoring workflows. All the discussed steps
are supported in the Spoofax refactoring framework.

Refactor menu To apply a refactoring, the
user first selects the code fragment where
the refactoring takes place, and then chooses
the appropriate refactoring from the refactor
menu. In the given example, two refactor-
ings are defined: Rename and Extract. The
extract refactoring is disabled, since it is not
defined on the current selection. As an alter-
native to the refactoring menu, refactorings
can also be selected using a shortcut.

Implementing Refactorings in the Spoofax Language Workbench SERG

2 TUD-SERG-2013-008

Initial failure dialog An error dialog box is
shown in case the initial conditions of the
refactoring are not met. This can happen in
case the refactoring is not defined for the
selected construct, or when the parser fails
to construct an abstract syntax tree because
of unresolved syntactic errors.

Input dialog After the initial validation is
passed, a dialog is displayed that prompts
the user to confirm the refactoring and sup-
ply additional information. The user can
choose to apply the changes directly on the
source code, or to first preview the changes
in a preview dialog.

Preview dialog The preview dialog visual-
izes the textual changes that follow from the
structural transformation. After inspecting
the changes, the user can choose to apply
the changes on the source code or to cancel
the refactoring.

Error dialog Refactorings are supposed to
preserve the behavior of the refactored pro-
gram. However, in some cases the behavior
preservation cannot be guaranteed. The er-
ror dialog presents errors and warnings for
possible problems. After reviewing the pro-
vided information, the user decides whether
or not to continue the refactoring.

At the end of the refactoring process, the structural changes are applied to
the source code. The refactoring framework takes care of preserving the original
layout and formatting newly inserted elements. Since the Spoofax refactoring
framework is build on top of Eclipse LTK, the framework also offers Undo and
Redo functionality, integrated with the Undo/Redo operations provided by the
editor.

3 Declarative Specification of Refactorings

Spoofax comes with a family of editor service descriptor languages to define ed-
itor services. The description of an editor service configures its user interface

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 3

refactorings

pretty-print: pp-mobl-string

refactoring Id: "Rename" = rename-refactoring (cursor)
shortcut: Shift + Alt + R
input

identifier : "New Name" = ""

Fig. 1. Declarative specification of a refactoring in the editor descriptor lan-
guage.

aspects and specifies which transformation rule to apply for services that are
implemented as AST transformations. The transformation rules themselves are
specified in the Stratego transformation language [16]. In this section we intro-
duce the descriptor language for the configuration of refactorings (Section 3.1),
and we describe the signature of the transformation rule that implements the
refactoring service (Section 3.2).

3.1 Refactoring Configuration Language

To illustrate the descriptor language for the refactoring service, Figure 1 shows
an example specification. The pretty-print element is commonly defined for
all refactorings and specifies the pretty-print strategy that is used to construct
the text for newly inserted elements. The refactoring keyword indicates the
specification of an individual refactoring. Below we give a brief explanation of
the different elements that are part of this specification.

The Id element in Figure 1 indicates that the given refactoring is only spec-
ified on elements of the grammatical sort “Id”. Refactorings can be specified on
multiple sorts separated by a comma, also, (non-empty) list sorts can be speci-
fied using the suffix “+”, as in Stm+. The grammatical sort can be refined with
a constructor name, e.g., Expr.FunCall. The specified sorts determine whether
the refactoring is enabled in the refactor menu, that is, the refactoring is enabled
if and only if the selected construct is of the given grammatical sort.

The "Rename" element in Figure 1 sets the title of the refactoring. The title
appears in the refactor menu and in the dialog boxes that handle the user in-
teraction. As an alternative to the refactor menu, refactorings can also be called
via a shortcut specified by the shortcut element.

The input element configures the user input dialog, which can contain dif-
ferent kind of input fields. A text input specifies a general text input field,
while a boolean input specifies a checkbox that represents a boolean value. The
identifier input shown in Figure 1 configures a text input whereby the input
value must be a valid identifier; that is, it must match an identifier regular ex-
pression, while reserved keywords are excluded. The identifier pattern is looked
up from the editor descriptor language definition, while the list of keywords is
extracted from the grammar. Any problems are reported directly in the input

Implementing Refactorings in the Spoofax Language Workbench SERG

4 TUD-SERG-2013-008

rename-refactoring:
(user-input, selected, position, ast, path, project-path) →
(ast-changes, fatal-errors, errors, warnings)
where

...

Fig. 2. Refactoring transformation in Stratego.

dialogue box and disable the OK button. All input fields are specified according
to the following schema:

<input-type> : "<label-text>" = "<default-value>"

Currently, default values can only be specified in the form of a literal string.
As an improvement, we are planning to support Stratego transformations that
calculate the value from the selected construct. In the rename example, the old
name of the construct can then be used as a default for the new name. As
a further improvement, we are also planning to extend the list of supported
controls with more advanced controls, for example an input element to alter the
name and order of function parameters.

Refactorings can have a number of annotations. The (cursor) annotation
specifies that the construct at the cursor must be considered as the selected
construct in case the user did not select a code fragment. The (source) annota-
tion indicates that the refactoring applies to the AST that results after parsing,
instead of the desugared and decorated AST that results after semantic analy-
sis. Finally, the (meta) annotation specifies that the refactoring should only be
available to language engineers, i.e., not when the plugin is deployed to end-users.

The rename-refactoring element specifies the transformation rule that im-
plements the refactoring. The transformation rule itself is implemented in Strat-
ego. Below, we explain the signature of refactoring implementation rules in more
detail.

3.2 Refactoring Implementation Rules

Refactorings are implemented as regular Stratego rewrite rules with a fixed sig-
nature that forms the interface between the IDE and the transformation specifi-
cation. The signature is illustrated in Figure 2. The terms at the left-hand side
collect information from the IDE, while the terms at the right-hand side provide
information to the IDE, required to perform code manipulations and to report
possible problems to the user.

The input term of the rule collects information required to apply the refactor-
ing transformation. That is, the values entered by the user in the input dialog
(user-input), the selected construct (selected) and its position (position)
in the AST (ast) of the file being edited, the project-relative file system path
(path) and the file system path of the project itself (project-path).

The rule transforms this input into a new abstract term that provides the
required information to calculate the textual changes, and to report semantic
errors and warnings to the user. ast-changes provides a list of term changes that

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 5

result after the refactoring. The term changes are specified as tuples consisting of
the term before and after transformation and can be distributed across multiple
files. The term changes are automatically translated into textual changes by the
text reconstruction algorithm described in [1].

The terms fatal-errors, errors and warnings provide lists of found prob-
lems of decreasing severity. fatal-errors indicate that the selected transforma-
tion cannot be applied, thereby prohibiting the continuation of the refactoring.
errors indicate known violations of semantic behavior. The user can review
the information and choose either to abort the transformation, or to apply the
transformation and manually fix the problems. warnings inform the user about
possible behavioral changes or coding style violations. Again, the user decides
whether or not to continue the refactoring process. The problems are specified
as tuples consisting of the term to which the problem is attributed and an error
message. The error dialog presents the error message and the error context to
the user, using origin-tracking [3,10] to extract the location information from
the error term.

4 The Stratego Transformation Language

Stratego [17] is a language for the specification of program transformations and
analyses, based on the paradigm of term rewriting with programmable traversal
strategies. This section gives a short introduction into the Stratego transforma-
tion language which is used in Spoofax to implement the transformations and
analysis used in compilers and editor services.

Stratego uses conditional rewrite rules to define basic transformations on
terms. These rules adhere to the following schema:

r : p1 → p2 where c

The rule r applies to a term when its left-hand side p1 matches the term, and
the (optional) condition c succeeds. The result is the instantiation of p2 with
the variable bindings found during pattern matching in p1 and c. The rule is
said to fail when either the subject term does not match the left-hand side or
when the condition fails.

Rules are basic strategies that perform the transformation specified by the
rule or fail. Strategies can be parameterized with strategy and term arguments,
e.g., r(s1 ... sm|t1 ... tn). Furthermore, strategies can be overloaded. That
is, when invoking a rule with a given signature, all rules with that signature are
tried in some unspecified order until one succeeds.

Strategies can be combined into more complex strategies by means of strat-
egy operators. Sequential operators combine strategies that apply to the root
of a term, examples are: identity (id), failure (fail), sequential composition
(s1 ; s2), choice (s1 + s2), guarded choice (s1 < s2 + s3), negation (not(s)),
and recursive closure (rec x(s)). Term traversal operators, e.g., all(s), one(s),
and some(s), express strategy application to the direct sub-terms of a term.

Combining these operators allows the generic definition of a wide range of
term traversals. For example, bottomup(s) = all(bottomup(s)); s generi-

Implementing Refactorings in the Spoofax Language Workbench SERG

6 TUD-SERG-2013-008

Fig. 3. Staged transformation: source code is parsed, desugared, and analysed.
The resulting tree is used for semantic feedback, source-to-source transforma-
tions and code generation.

cally defines a post-order traversal. The Stratego standard library provides a
collection of such strategies for general use.

5 Refactoring Transformations in Stratego

Spoofax employs a staged architecture for the implementation of compilers and
language-specific editor services. The different stages are illustrated in Figure 3.
First, a program is parsed to construct an abstract representation of the program.
Then, the abstract representation is optionally simplified by desugaring, i.e.,
mapping “sugared” constructs in an enriched language to equivalent constructs
in the core language. Finally, the desugared tree is semantically analyzed to
detect name bindings and types. The result is an abstract syntax tree that is
decorated with name binding annotations which ensure globally unique names.
Other semantic information such as type information is stored in a global data
structure which can be queried via the unique names. The implementation of
semantic analysis falls outside the scope of this paper, a detailed description can
be found in [10] and [11].

Refactorings require transformation and analyses on the abstract syntax tree.
The specification of refactorings is considerably simplified by desugaring, since
the transformation and the semantic analyses only needs to be implemented
on the core syntax. Furthermore, to perform context-dependent transformation
steps and to check semantic preservation conditions, refactoring transformations
require access to semantic information such as types and name bindings. We
therefore implement refactoring transformations on the AST that results after
the semantic analysis stage.

In this section we discuss the implementation of two example refactorings,
namely Rename and Extract method. We choose these refactorings since they
are frequently applied by programmers and because they capture transforma-
tion patterns that are generically applicable to different languages. This section

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 7

module Example

var x = 1;

function incr(x : Num) : Num
{

return x + 1;
}

Module(
"Example"{"n9"}

, [VarDecl("x"{"n10"}, Num("1"))
, Function(

[]
, "incr"{"n11"}
, [FArg(

"x"{"n12"},
SimpleType("Num"{"n2"})

)]
, SimpleType("Num"{"n2"})
, [Return(BinMethodCall(

Var("x"{"n12"}),
"+",
Num("1")))])])

Fig. 4. Parsing, desugaring, and semantic analysis of a source fragment (left),
results in a desugared and decorated AST (right).

focuses on the AST transformation, while the implementation of behavior preser-
vation conditions is discussed in Section 6.

5.1 Rename

The Rename refactoring is essentially a “smart” search and replace. It allows
users to change names of program entities such as classes, methods, fields, and
variables. The renaming can be called at declaration sites and at call sites, fur-
thermore, all corresponding references in the code must be updated automati-
cally. Since different program entities may accidentally have the same name, the
name of an identifier is not sufficient to determine its reference. The implemen-
tation challenge for the rename transformation is to determine which identifiers
must be renamed given a certain selected name.

Determining the reference of identifiers requires information about the bind-
ing structure of the program at hand. In Spoofax, the binding structure of the
abstract syntax tree after analysis is made explicit by using name annotations
that are globally unique; that is, two identifiers are annotated with the same
reference name if and only if they bind to the same declaration. For example
in Figure 4, the field declaration x in var x = 1; is distinguished from the
function parameter x in x : Num by the annotations, "x"{"n10"} respectively
"x"{"n12"}. The variable access x in return x + 1; refers to the function pa-
rameter x : Num, which is made explicit by the annotation "x"{"n12"}.

Globally unique name annotations make the implementation of the rename
refactoring almost trivial, Figure 5 shows the Stratego code. The alltd strategy
applies the (anonymous) rewrite rule oldname -> newname along a frontier of
the ast term, replacing all terms that match the old name (including its anno-
tation) with the new name. The name annotation is preserved in the new name
term; this allows checking of name binding preservation as discussed in Sec-
tion 6.1. Thus, application of the rename rule with the parameters "x"{"n12"}

Implementing Refactorings in the Spoofax Language Workbench SERG

8 TUD-SERG-2013-008

rename(|oldname, newname):
asts → <alltd(preserve-annos((oldname → newname)))> asts

Fig. 5. Rename refactoring transforms oldname{ref} terms to newname{ref}
terms. The {ref} annotation distinguishes between different identifiers that ac-
cidentally have the same name.

and "y" on the AST of Figure 4 results in an AST whereby both "x"{"n12"}
terms are replaced with "y"{"n12"} terms. Notice that the transformation rule
of Figure 5 does not contain any language-specific elements, which means that
it is generically applicable to different languages.

Global variable declarations may be referenced across multiple files. Further-
more, the renaming of a global variable may accidentally affect the name bind-
ings of other global variables that have the same name as the newly inserted
name. For performance reasons, it is important to restrict the set of analyzed
and transformed files to a set of files that are possibly affected by the rename
transformation. In Spoofax, name binding information is stored in an external
data structure that can be queried for files that contain the definition or use sites
of a given reference name. We use this infrastructure to collect the ASTs of files
that are affected and/or possibly semantically endangered by the transformation.
The name analysis and resulting data structure are described in [11].

5.2 Extract Method

We describe the Extract method refactoring in three parts. First, we focus on
the basic transformation, ignoring parameters and return values. Then, we show
how parameters and return values can be calculated based on a data-flow anal-
ysis. Finally, we discuss which parts of the extract method refactoring can be
implemented generically for different languages.

Basic Transformation Extract method is a refactoring that encapsulates a
previously anonymous list of statements in a newly created method. The ex-
tracted method presumably represents a well-defined piece of functionality which
can potentially be reused by other methods. The basic transformation for method
extraction involves the following two steps. First, the selected statements are
separated out into a new method which is inserted after the method where the
abstraction takes place. Secondly, the selected statements are replaced by a call
to the extracted method. The Stratego code for the basic transformation is shown
in Figure 6.

Data-Flow Repair Strategies The basic transformation of Figure 6 is incom-
plete since it does not compensate for possible changes in the use-define chains of
local variables. We identified two problems for which we developed two different
compensation strategies.

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 9

extract-block(|name, from, to):
ast → ast-transformed
where

pos-method := <fetch-up-position(?Function(_,_,_,_)|ast)> from;
pos-extracted := <position-next-sibling> pos-method;
method-call := ExpStat(Call(name, []));
selected := <select-sublist(|from, to)> ast;
extracted-method := Function(name, [], None(), selected);
ast-transformed := <

replace-sublist(|selected, [method-call]);
insert-list-element(|pos-extracted, extracted-method)

> ast

Fig. 6. Basic transformation that encapsulates a statement block in a newly
created method.

function funX() {
var j : Num = 3;
print(j);

j = 5;

foo(j);

}

function funX() {
var j : Num = 3;
print(j);
funY();

}

function funY() {
j = 5;
foo(j);

}

function funX() {
var j : Num = 3;
print(j);
funY();

}

function funY() {
var j : Num;
j = 5;
foo(j);

}

Fig. 7. Basic extraction of funY causes a missing variable declaration in the ex-
tracted method (mid). The problem is fixed by inserting the missing declaration
(right).

Missing declarations The extracted method or the remainder of the original
method may contain variables that miss their original declaration. This problem
occurs in case the selected statements contain accesses of variables that are
declared outside the selection, or vice versa. Missing declarations that occur
before a variable assignment can be compensated by inserting the declaration
before the assignment, Figure 7 provides an example. The repair strategy for
missing declarations that occur before a variable read access is given in the next
paragraph, which discusses function parameters and return values.

We detect missing declarations by comparing declarations and uses before
and after, respectively, the remove-sublist transformation for the remainder
of the original method, and the select-sublist transformation for the body
of the extracted method. In the latter case, we filter out declarations that are
passed as a function parameter as described in the next paragraph. To obtain
the declarations that are missing after a transformation, we first collect all vari-
able declarations in the original term, and then exclude from this collection all
declarations that remain after the transformation and all declarations that are
not accessed in the transformed term. The implementation in Stratego is straight
forward, taking as input a rule that maps declarations onto the name of the de-

Implementing Refactorings in the Spoofax Language Workbench SERG

10 TUD-SERG-2013-008

function funX() {
var j : Num = 3;
print(j);

foo(j);

j = 5;

bar(j);
}

function funX() {
var j : Num = 3;
print(j);
funY()
bar(j);

}

function funY() {
foo(j);
j = 5;

}

function funX() {
var j : Num = 3;
print(j);
j = funY(j)
bar(j);

}

function funY(j : Num) {
foo(j);
j = 5;
return j;

}

Fig. 8. Basic extraction of funY affects the reaching definitions of the variable j
in bar(j) and foo(j) (mid). Method parameters and return values compensate
for the broken data flow (right).

clared variable. Since we take as input the analyzed abstract syntax, we assume
that all variables are annotated with a unique name.

Parameters and return values The reaching definitions of a variable are given by
all declarations and assignments that can reach the variable without an interven-
ing assignment. The reaching definitions determine the values that the variable
can have at a certain point in the program. The basic extract transformation
may affect the reaching definitions of a variable in case a read access is moved
to the extracted method while a preceding assignment or declaration remains
in the original method, or vice versa. The remedy is to pass the variable value
as a function argument or as a return value, respectively. Figure 8 provides an
example. Some languages allow multiple return values, for example by packing
the values into a tuple or in the form of output parameters. For other languages,
only one value can be returned, which means that multiple return values must
be reported to the user as a possible behavioral change.

We detect missing reaching definitions by comparing use-definition chains of
local variables before and after the basic extract transformation. For this, we as-
sume a (partial) data-flow analysis that annotates all local variable declarations
and assignments with a unique identifier, and all variable read accesses with a list
of identifiers that correspond to their reaching definitions. The data-flow analy-
sis can be implemented on top of the name analysis and a possible control-flow
analysis. The implementation of flow analyses in Stratego is discussed in [13].

We use data-flow annotations to detect missing reaching definitions, Fig-
ure 9 illustrates the process. First the original method is decorated with data-
flow annotations (left fragment). Then, the original method is transformed by
extracting the selected statements. The original data-flow annotations are pre-
served during the transformation and express the intended use-definition chains
in the transformed constructs (mid fragment). Next, we re-analyze the data-flow
of the transformed constructs which sets annotations that express the actual
use-definition chains (right fragment). Finally, we compare the intended use-
definition chains with the actual use definition chains. In the given example, this

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 11

function funX() {
var j{d1} : Num = 3;
print(j{[d1]});
foo(j{[d1]});
j{d2} = 5;
bar(j{[d2]});

}

function funX() {
var j{d1} : Num = 3;
print(j{[d1]});
funY()
bar(j{[d2]});

}

function funY() {
foo(j{[d1]});
j{d2} = 5;

}

function funX() {
var j{e1} : Num = 3;
print(j{[e1]});
funY()
bar(j{[e1]});

}

function funY() {
foo(j{[]});
j{e2} = 5;

}

Fig. 9. Comparison of the intended data-flow pattern (mid) and the actual data-
flow pattern (right) shows a violation for the variable j in the original method
(d1 and d2 both map to e1), and in the extracted method (d1 is not matched).

reveals a violation in the remainder of the original method (d1 and d2 both map
to e1) as well as in the extracted method (d1 is not matched).

Figure 10 shows the Stratego code for the described process. The rewrite
rule extract-method-parameters calculates the method parameters and re-
turn values that compensate for missing reaching definitions in respectively the
extracted method body (select-sublist) and the remainder of the original
method (remove-sublist). The rule get-df-changes compares the annota-
tions that express the intended data-flow (analyze-df; transform), with an-
notations that express the actual data-flow (transform; analyze-df) on the
term that results after the transformation. To detect the binding violations
(binding-violations), we first construct a mapping between old and new iden-
tifiers set as single annotations at the declaration and assignment sites. We then
try to apply this mapping to the annotation lists at the read accesses. A viola-
tion is detected in case the mapping cannot be applied. The code is left out of
the figure. The data-flow preservation technique is similar to the name binding
technique discussed in [2]

Reusable Extraction Strategies The implementation of the Extract method
refactoring contains language generic elements which we factored out as part of
the refactoring framework. First, the calculation of missing declarations and the
calculation of method parameters and return values are language generic, taking
the data-flow analysis as a strategy parameter. Furthermore, we generalized the
basic transformation, taking the extracted method and method call (plus added
declarations) as term parameters. The construction of the extracted method and
the method call is left to the language developer.

6 Behavior Preservation Conditions

Refactorings are structural transformations that preserve the behavior of a pro-
gram. Though it is hard to guarantee behavior preservation in general, refactor-
ing tools can detect violations of the static semantics by means of a static analysis

Implementing Refactorings in the Spoofax Language Workbench SERG

12 TUD-SERG-2013-008

extract-method-parameters(analyze-df):
(method, from, to) → (parameter-vars, return-vars)
where

parameter-vars :=
<get-df-changes(select-sublist(|from, to), analyze-df)> method;

return-vars :=
<get-df-changes(remove-sublist(|from, to), analyze-df) > method

get-df-changes(transform, analyze-df):
term-before → df-changes
where

df-intended := <analyze-df; transform> term-before;
df-actual := <transform; analyze-df> term-before;
df-changes := <binding-violations> (df-intended, df-actual)

//Returns terms for which the binding annotation pattern has changed
binding-violations:

(df-intended, df-actual) → binding-violations
where

...

Fig. 10. Method parameters and return values are calculated by comparing an-
notations that express the intended data-flow (analyze-df; transform), with
annotations that express the actual data-flow (transform; analyze-df) on the
term that results after the transformation.

of the source code. Ad hoc precondition based approaches are tedious and error-
prone, since it is hard to guarantee that the conditions implemented for behavior
preservation implement the same static semantics as the compiler for the lan-
guage. Instead, we aim for a more generic approach that reuses the language
semantics to check preservation criteria. We propose a language-parametric cri-
terion for the preservation of name bindings (Section 6.1) and for the preserva-
tion of static semantic correctness (Section 6.2). In Section 6.3 we discuss the
preservation of data- and control-flow.

6.1 Name Binding Preservation

Name bindings associate identifiers with program entities such as variables, fields
and methods. All refactorings that introduce new names into a scope have to
guard against accidental changes of existing name bindings, which change the
semantic behavior of the program. Figure 11 shows an example where a Rename
refactoring transformation accidentally causes a name collision. As a result, the
foo function before and after the refactoring returns a different value.

Name bindings form a semantic concern that should be preserved by refac-
torings. Intuitively, all name accesses in a program should bind to the same
declarations before and after the transformation. Name binding preservation is
checked using the language-parametric preservation criterion described in [2].
The preservation criterion takes as input the name analysis defined for the lan-
guage and returns a (possibly empty) set of name binding violation errors. The
violation errors are constructed as a tuple consisting of the offending identifier
and a generic “Name collision detected for . . . ” message.

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 13

module Example

var y = 0;

function foo() : Num
{

var x = 1;
return y;

}

module Example

var x = 0;

function foo() : Num
{

var x = 1;
return x;

}

Fig. 11. Renaming y to x causes a name collision that changes the behavior
of the program; the foo function in the left fragment returns 0, while the foo

function in the right fragment returns 1.

application example

screen root() {
header("Example")

}

application example

screen foo() {
header("Example")

}

Fig. 12. Renaming root to foo causes a semantic error, since the root screen
is a required element for applications written in Mobl.

6.2 Semantic Consistency Preservation

Semantic constraints are part of the specification of a language and define
whether a program is semantically well-formed. Common examples include con-
straint errors for unbound variables, duplicate declarations, missing elements,
and incompatible types. In addition to semantic errors, semantic warnings can
be used to warn the user against code fragments that are probably not intended
(e.g. dead code), or code fragments that are likely to result in runtime errors
(e.g. uninitialized variables), or style violations (e.g. ignoring a style convention
to use a capital).

Refactorings are supposed to preserve the semantic well-formedness of a pro-
gram. Refactoring implementations must check this preservation criterion since
the applied transformations may introduce semantic errors. Figure 12 provides
an example; renaming the root screen in a Mobl [8] program results in an incor-
rect program. The resulting program violates the semantic constraint that the
root screen is a required element.

Semantic errors and warnings are reported in an IDE by placing error and
warning markers near the construct that caused the problem. In Spoofax, se-
mantic constraints are defined as rewrite rules that succeed for terms that vi-
olate the constraint. The constraints are checked in a generic tree traversal,
collect-all(constraint-error, conc), that collects constraint errors for all
terms where a constraint-error rule succeeds. The constraint-error rule
produces a target term plus a diagnostic message that is reported to the user.
The target term represents the term to which the error is attributed; from this

Implementing Refactorings in the Spoofax Language Workbench SERG

14 TUD-SERG-2013-008

//Input term consists of the analyzed AST before the transformation
//and the (re)analyzed AST after the transformation.
consistency-problems(constraint-issue):

(ast-before, ast-after) → (new-issues, solved-issues)
where

issues-before := <collect-all(constraint-issue, conc)> ast-before;
issues-after := <collect-all(constraint-issue, conc)> ast-after;
new-issues := <diff(same-issue)> (issues-after, issues-before);
solved-issues := <diff(same-issue)> (issues-before, issues-after)

same-issue:
issue-tuple@((trm1, message1), (trm2, message2)) → issue-tuple
where

<origin-equal> (trm1, trm2);
<equal> (message1, message2)

Fig. 13. Language-parametric rule that returns all semantic issues that are
introduced or solved by the refactoring.

term, the required location information is retrieved by the Spoofax infrastruc-
ture.

We reuse the constraint error rules defined in the compiler front end to im-
plement a language-parametric preservation criterion for semantic consistency.
First, we stretch the definition of preservation a bit so that it also applies to refac-
torings that take a semantically incorrect program as input. That is, we report
consistency problems for all semantic errors that are introduced (or solved) by
the refactoring. Figure 13 shows the Stratego code. The consistency-problems
rule is used to detect semantic errors (or warnings) that are introduced or solved
after the transformation. The rule returns all constraint issues that occur in the
analyzed AST before the transformation (ast-before), but not in the analyzed
AST after the transformation (ast-after), and the other way around. To see if
two issues actually represent the same problem, the same-issue rule compares
their error messages and the origin of their target terms, i.e., the terms in the
original AST that originated the target terms in the AST before and after the
transformation.

We combined the criteria for name binding preservation and semantic correct-
ness preservation in a single rule that carefully schedules analysis and constraint
checking so that they are applied in the right order and so that they are never
applied twice on the same AST.

6.3 Data- and Control-Flow Preservation

Control-flow refers to the order in which the individual instructions or statements
of a computer program are executed or evaluated. The control-flow determines
the data-flow, i.e., the values that variables can have at various locations in the
program. Refactorings that affect the structure of the abstract syntax tree risk
changing the control- and/or data-flow of the program, which may result in a
change of the observable behavior. Figure 14 provides an example whereby a

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 15

class A {
void foo() {

int i = 5;
if(i > 0)

return;
System.out.println(i); /+ +/

}
}

class A {
void foo() {

int i = 5;
bar(i);
System.out.println(i);

}
void bar(int i) {

if(i > 0)
return;

}
}

Fig. 14. Extracting a fragment with a return statement causes a control flow
violation that changes the behavior of the program; the foo function in the left
fragment would return immediately, while the foo function in the right fragment
prints 5 before returning.

naive implementation of Extract method results in a behavioral change due to
its effect on the control-flow.

The cause of the incorrect refactoring shown in Figure 14 is the return state-
ment which cannot be moved safely into the newly constructed method. This
symptom is typical for control statements that have a jump like nature; other
examples include Java constructs such as break, continue and try ...catch.

As an ad hoc solution to guard against flow violations, refactoring imple-
mentations can create warnings for any transformation that restructures code
fragments containing branching statements that endanger control-flow preserva-
tion. The user of the refactoring can review the information and decide whether
or not to perform the refactoring. More refined conditions may be implemented
to prevent warnings for situations that are in fact harmless, and to report errors
instead of warnings for sure behavioral changes.

A more sophisticated approach is proposed in [4]. Given an existing control-
flow and data-flow analysis, the authors propose an invariant-based preservation
condition. The condition for control-flow preservation basically states that all
statements in the affected methods should maintain their control-flow predeces-
sors and successors throughout the refactoring. The data-flow condition states
that all variables should have the same reaching definitions before and after the
refactoring.

We implemented a generic data-flow preservation condition based on term
annotations set by a (partial) data-flow analysis. In Section 5.2 we demonstrated
how this preservation condition can be used in Extract method to calculate the
required method parameters and return values of the extracted method. We
did not (yet) look into the preservation of control-flow. Firstly, because most
language implementations in Spoofax do not include flow analyses. Furthermore,
since flow preservation is mostly a local problem we consider it acceptable to let
the user decide, after reviewing the information provided by a warning. Still, it
seems possible to extend the refactoring framework with a criterion for control-
flow preservation based on control flow annotations.

Implementing Refactorings in the Spoofax Language Workbench SERG

16 TUD-SERG-2013-008

7 Testing Refactorings

Testing is one of the most important techniques to control the quality of a piece
of software, and to gain confidence in it working correctly. Programmers rely
on refactoring tools to restructure their source code as expected, and to warn
them against possible semantic changes. To meet the expectations of the users
of refactoring tools, refactoring implementations must be tested.

7.1 Test Specification Language

Spoofax offers support for testing of language definitions and IDE services by
means of a language-parametric testing language (LPTL) [9]. The testing lan-
guage allows declarative specification of test cases, using language embedding to
quote program fragments in the language under test. All test cases are specified
according to the following schema:

test description [[
fragment

]] condition*

where description is a string that describes the test case, fragment is an embed-
ded program or program fragment in the subject language, and the condition*
elements specify expectations with regard to the outcome of actions performed
to the input fragment. Conditions for test fragments are specified using an ex-
tensible set of test condition specification constructs. Currently, this set contains
constructs for testing of syntax, static semantics, dynamic semantics, generated
code and editor services. In the input fragment, a subfragment can be marked
as “selected” by surrounding it with a pair of square brackets ([[...]]). This
feature is useful to test editor services that depend on the user selection such as
content completion, reference resolving and refactorings.

The testing framework offers tool support for editing and running the test
cases. The tool support for editing tests includes editor services for the test
specification language as well as for the language under test. The tool support
for running tests includes live evaluation of test cases as they are edited and a
batch test runner, which is particularly useful for running larger test suites.

7.2 Specifying Refactoring Tests

The language-parametric testing framework can be used to test refactoring im-
plementations in Spoofax. Figure 15 provides an example of a refactoring test
case. The example tests the rename refactoring with the input term “y” which
represents the user input value, determining the new name of the selected identi-
fier “x”. The first test condition compares the output of the AST transformation
to the expected AST. Both the input as the expected output program are spec-
ified as concrete syntax fragments, though the actual transformation and com-
parison is done on their abstract representations. The second test condition lists
the expected problems. The semantic problems are specified as the number of

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 17

language mobl

test Rename Global-Variabele-Shadowing [[
module Example

var y = 1;

function foo(x : Num) : Num {
return [[x]] + y;

}
]] refactor rename-refactoring("y") to [[

module Example

var y = 1;

function foo(y : Num) : Num {
return y + y;

}
]]
1 error /Name collision at ’y’/

Fig. 15. Testcase for Rename refactoring in Mobl.

expected problems, followed by their type (fatal-errors, errors, warnings),
plus (optional) a list of substrings that are part of the subsequent problem mes-
sages. The substrings are of the form /.../. The condition 0 errors can be
omitted if no errors are expected, likewise for warnings and fatal-errors.

8 Conclusion

Spoofax [10] is an Eclipse based environment for the development of textual
languages together with full-featured IDE support. We have extended Spoofax
with a framework for the implementation of automated refactorings. The two
pillars of the framework are the use of domain-specific meta languages to define
the language-specific aspects of refactorings, and the use of language-parametric
techniques to handle generic refactoring concerns. Together, these techniques
help language engineers to implement refactoring tools that are functional and
reliable for end users.

The presented refactoring framework focuses on the implementation of pre-
defined refactorings for end users. An interesting direction for future work is
support for the implementation of refactorings for and by language developers.
Given the fact that language development in Spoofax involves multiple DSLs,
this requires an integrated approach to cross-language analysis and refactor-
ing [14]. Furthermore, the IDE support for refactorings must implement an open
structure that allows the application of user-defined transformations [12].

References

1. M. de Jonge and E. Visser. An algorithm for layout preservation in refactoring
transformations. In U. Aßmann and T. Sloane, editors, Software Language Engi-

Implementing Refactorings in the Spoofax Language Workbench SERG

18 TUD-SERG-2013-008

neering, Fourth International Conference, SLE 2011, Braga, Portugal, July, 2011,
Revised Selected Papers. Springer, 2012.

2. M. de Jonge and E. Visser. A language generic solution for name binding preser-
vation in refactorings. In Proceedings of the Twelfth Workshop on Language De-
scriptions, Tools, and Applications, LDTA ’12, pages 2:1–2:8, New York, NY, USA,
2012. ACM.

3. A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of Symbolic Com-
putation, 15(5/6):523–545, 1993.

4. T. Ekman, M. Schäfer, and M. Verbaere. Refactoring is not (yet) about trans-
formation. In Proceedings of the 2nd Workshop on Refactoring Tools, WRT ’08,
pages 5:1–5:4, New York, 2008. ACM.

5. M. Fowler. Refactoring: Improving the design of existing code. volume 2418 of
Lecture Notes in Computer Science, page 256. Springer, 2002.

6. L. Frenzel. The language toolkit: An api for automated refactorings in eclipse-based
ides. Eclipse Magazine, 5, 2006.

7. J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF – reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

8. Z. Hemel and E. Visser. Declaratively programming the mobile web with mobl. In
K. S. Fisher, editor, Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2011), SIGPLAN Notices, Portland, Oregon, USA, 2011. ACM.

9. L. C. L. Kats, R. Vermaas, and E. Visser. Integrated language definition testing:
Enabling test-driven language development. In K. S. Fisher, editor, Proceedings
of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2011), SIGPLAN Notices. ACM,
2011.

10. L. C. L. Kats and E. Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In W. R. Cook, S. Clarke, and M. C. Rinard,
editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA, pages
444–463. ACM, 2010.

11. G. D. P. Konat, L. C. L. Kats, G. Wachsmuth, and E. Visser. Language-parametric
name resolution based on declarative name binding and scope rules. In K. Czar-
necki and G. Hedin, editors, Software Language Engineering, Fourth International
Conference, SLE 2012, Dresden, Germany, September, 2012, Revised Selected Pa-
pers, 2013. (To appear).

12. H. Li and S. Thompson. Let’s make refactoring tools user-extensible! In Proceedings
of the Fifth Workshop on Refactoring Tools, WRT ’12, pages 32–39, New York, NY,
USA, 2012. ACM.

13. K. Olmos and E. Visser. Composing source-to-source data-flow transformations
with rewriting strategies and dependent dynamic rewrite rules. In R. Bodk, editor,
Compiler Construction, 14th International Conference, CC 2005, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3443 of Lecture Notes in
Computer Science, pages 204–220. Springer, 2005.

14. D. Strein, H. Kratz, and W. Lowe. Cross-language program analysis and refac-
toring. In Proceedings of the Sixth IEEE International Workshop on Source Code
Analysis and Manipulation, SCAM ’06, pages 207–216, Washington, DC, USA,
2006. IEEE Computer Society.

15. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

SERG Implementing Refactorings in the Spoofax Language Workbench

TUD-SERG-2013-008 19

16. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific
Program Generation, volume 3016 of Lecture Notes in Computer Science, pages
216–238. Spinger-Verlag, 2004.

17. E. Visser, Z.-E.-A. Benaissa, and A. P. Tolmach. Building program optimizers
with rewriting strategies. In M. Felleisen, P. Hudak, and C. Queinnec, editors,
Functional programming, pages 13–26. ACM, 1998.

Implementing Refactorings in the Spoofax Language Workbench SERG

20 TUD-SERG-2013-008

TUD-SERG-2013-008
ISSN 1872-5392 SERG

