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Summary

In dredging operation, the high-pressure water jet is widely used for the excavation

of soil. To study the jetting process and optimize the design of the dredging devices,

moving vertical water jet penetrating cohesive soil experiments were carried out by

Nobel (2013). However, in terms of the design optimization for dredging devices,

it is not easy to change the jet scale and soil properties during the experiment

due to time and economic constraints. Some detailed physics during the jetting

process, e.g. pressure on the soil surface and shear plane inside the soil during

jetting, were also not monitored by doing the experiment. Therefore, numerical

simulation is chosen in this thesis to optimize the design of dredging devices and

study the physics of the jetting process.

A CFD (computational fluid dynamics) numerical model is used in this thesis

to simulate the moving jet penetrating cohesive soil. The soil is modeled as a

Bingham plastic(Bingham, 1922). By using the Bingham plastic model, the soil

can be modeled as a fluid with a stress strain rate behavior implementing into the

CFD model. The sediment transport is modeled by using drift-flux model(Goeree

et al., 2016). In drift-flux model, all sediment phases are considered as a mixture.

By solving the continuity and the momentum equations for a mixture instead

of each phase, the drift-flux model can save computational power. The moving

jet modeling is achieved by using the dynamic mesh algorithms AMI (arbitrary

mesh interface) and A/R (cell layer addition removal). By combining these two

dynamic mesh algorithms, a steady mesh region can be created which reduce the

numerical error introduced by dynamic mesh. Combining AMI and A/R also

allows for multiple nozzles modeling, which is beneficial for the optimization of

dredging devices. The CFD numerical model for simulating moving jet penetrating
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CONTENTS

cohesive soil has been validated with the experiment of Nobel. The failure modes

during jetting, dimensionless soil cavity depth and clay surface dislodgement rate

are compared with the previous experiment. After the validation, an analysis of

the jetting process based on this CFD model is accomplished proving the CFD

model can reveal the details of the soil failure process during jetting.

Two of the failure modes existing in the previous experiment, which are penetrating

jet and deflecting jet, are successfully predicted by the numerical model. The soil

dimensionless cavity depth calculated by using CFD model also shows a similar

trend and magnitude as the previous experiment. A comparison of soil surface

dislodgement rate between experiment and CFD model is done. The soil surface

dislodgement rate of the experiment is in between the maximum and minimum

transient soil surface dislodgement calculated by the CFD model.

After the validation of the CFD model, the pressure on the soil surface as a function

of time, the shear plane change over time, the soil volume dislodgement rate with

respect to jet traverse velocity, the jet inclination angle and the deflection distance

are analyzed. From the analysis, the following conclusions are drawn. To remove

the cohesive soil, the pressure is building up on the soil surface until the pressure

exceeds the shear strength of the soil. In order to clarify the shear plane of the soil

during jetting, the shear rate is calculated and used to define the shear plane in

this thesis. The shear plane of the deflecting jet does not change over time while

the shear plane of the penetrating jet shows a periodic behavior. Similarly, the

deflection distance of the deflecting jet keeps a constant value over time while that

of penetrating jet shows a periodic behavior. Notably, for a penetrating jet, the

period of shear plane change is the same as the period of deflection distance. It is

also found that for a single moving jet, the soil volume dislodgement rate increases

as the jet traverse velocity increases when jet traverse velocity vt is lower than

1.83m/s.
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Chapter 1

Introduction

1.1 Background

Dredging is an operation removing materials underwater from one location and

relocating the materials to another. The purpose of dredging is mainly about land

reclamation, maintenance of water ways and mining of construction materials.

Dredging operations have to be done by using a dredger. There are two main types

of dredgers, which are the mechanical dredger and the hydraulic dredger. The soil

can be excavated using a mechanical dredger by cutting and a hydraulic dredger by

jetting. Water jets are widely used in hydraulic dredging. A jet with high pressure

and high flow velocity can penetrate the soils and brings them to suspension.

For example, the dragheads of a TSHD (Tailing Suction Hopper Dredgers) are

equipped with a water jet system, see Fig.1.2. During the dredging process, the

water jets will fluidize and remove the soil to create a new depth of water. The

under water operation of a TSHD is shown in Fig.1.1. This operation can be

regarded as a moving jets penetrating soil process.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: under water operation of TSHD(Groen, 2016)

Figure 1.2: Bottom view of a draghead with nozzles(Groen, 2016)

1.1.1 Jetting process description

For sandy soils, the moving jet soil excavation operation works very well. However,

for cohesive soil the moving jets cannot easily achieve a large production of soil.

Therefore, questions about the process of a moving jet penetrating cohesive soil are

frequently asked. Cohesive soil is defined as sticky soil which is usually composed

of a mixture of clay, silt and sand. In cohesive soil, the clay particles are mainly
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Figure 1.3: Moving jet penetrating cohesive material from experiment(Nobel,

2013).

responsible for the cohesive behavior. The pores in between the particles are fully

or partially filled with water. The main characteristics of cohesive soils are: very

low water permeability, high skeleton compressibility and plasticity.

Fig.1.3 shows the experimental result of moving jet penetrating cohesive soil(Nobel,

2013). Due to the traverse velocity of the nozzle and resistance of the soil, the jet

flow in front of the soil is deflected as shown in Fig.1.3. It can be seen that the

soil can be fluidized and removed by using the moving jet.

The main failure mechanism of soil during the jetting process can be classified by

different forces exerting on the soil. The main forces exerting on the soil are(Nobel,

2013):

• The stagnation pressure on the soil: This force is exerting on the soil surface

following the main direction of the jet flow. This force is caused by the mass

flow of the jet.

• The shear force: The shear force is parallel to the flow direction, caused by

the flow velocity and viscosity of water.

In cohesive soil, depending on the loading conditions, different shear surfaces are

formed inside the soil. During jetting process, when the jet load exceeds the

3
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Figure 1.4: Failure mechanism of cohesive soil during jetting(Nobel, 2013). Where

τb is the shear stress, Pstag is the jet stagnation pressure, Fr is the resistance force

of the soil, su is the shear strength of the soil, As is the area of the shear surface.

strength of the soil, the soil will fail along these shear surfaces. This process can

be found in Fig.1.4.

1.2 Research questions and objectives

To optimize the design of dredging devices and study the physics of the jetting

process, moving jet penetrating cohesive soil experiment is carried out by Nobel

(2013). However, in terms of optimization for dredging devices design, it is not

easy to change the jet scale and soil properties during the experiment due to

time and economic constraints. Besides, some detailed physics during the jetting

process, e.g. pressure on the soil surface and shear plane inside the soil during

jetting, cannot be monitored by doing the experiment.

Instead of experimental method, numerical modeling is also an alternative. By

using numerical modeling method, the soil properties and jet scales are relatively
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easier to change compared with the experiment, which means the optimization for

dredging devices can be easily conducted. Besides, the detailed physics can also be

monitored during the simulation. However, numerical simulation has never been

carried out before and after the experimental work of Nobel. Therefore, the main

objectives of this master thesis are:

• To evaluate a proper numerical approach, especially CFD (computational

fluid dynamics) model, to study moving jet penetrating cohesive soil process.

• To validate the numerical model with the previous experimental work of

Nobel by comparing the soil failure modes, soil cavity depth after jetting

and soil surface dislodgement rate.

• To carry out analysis which was not recorded by the previous experiment

based on this numerical model. The results which are not available in the

experiment are the pressure profile on a fixed point of soil surface over time,

the shear plane and the soil volume dislodgement rate over time.

1.3 Approach

The numerical approach used in this thesis is called computational fluid dynamics

(CFD). The reason of using CFD is the cohesive soil clay, which is composed of both

water and soil particles, can be modeled as a fluid mixture. In this thesis, the drift-

flux model is used to calculate the sediment transport. The drift-flux model(Goeree

et al., 2016), which is a simplification of Euler/Euler model, considers all phases

as a mixture. Instead of solving the momentum equations of each phase, drift-flux

model solves only one mixture momentum equation, which saves computational

power. To model the cohesive soil as a fluid, non-Newtonian fluid model Bingham

plastic is used in this thesis. Bingham plastic model(Bingham, 1922) describes the

fluid with a stress strain rate behavior, which is convenient for implementing the

soil into the CFD model.

The partial differential equations in drift-flux model are solved using finite volume

method (FVM). The software OpenFOAM (Open-source Field Operation And Ma-
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nipulation)(Greenshields, 2018) is used in this thesis for simulation. OpenFOAM

is an open source software programmed by C++, which can be modified by user.

Drift-flux model is also available in OpenFOAM, which is called driftFluxFoam.

To model the moving jet, dynamic mesh algorithms AMI (arbitrary mesh inter-

face) and A/R (cell layer addition/removal) are used in this master thesis. Un-

fortunately, dynamic mesh algorithm is not available in driftFluxFoam. To solve

this problem, a drift-flux solver with dynamic mesh algorithm, which name is

driftFluxDyMFoamv1812, is created by author of this thesis.

1.4 Outline

In Chapter 2, the physics of moving jet penetrating cohesive soil is explained. Five

loading conditions and four types of failure modes during jetting will be introduced.

In Chapter 3, the modeling strategies used in this thesis will be explained. The

moving jet is modeled by using dynamic mesh algorithms AMI (arbitrary mesh

interface) and A/R (cell layer addition removal). The drift-flux model is used for

describing the sediment transport. Bingham plastic model, which can describe

cohesive soil by a stress strain rate behavior, is used modeling the cohesive soil.

Buoyant−k− ε model, which includes the modulation of turbulent kinetic energy

caused by density stratification effects, is applied to model the turbulence of the

flow.

In Chapter 4, numerical techniques used in this thesis will be introduced. The

derivation of discretization for Navier-Stokes equations in collocated mesh grid

using finite volume method (FVM) is done in section 4.1. The numerical schemes

used in this thesis are also introduced in section 4.1. The implementation of

boundary conditions is introduced in section 4.2. Solution algorithms: SIMPLE,

PISO and PIMPLE are explained and derived in section 4.3. Dynamic mesh

algorithms AMI and A/R are explained in section 4.4.

In chapter 5, a numerical validation for dynamic mesh models used in this thesis is

conducted by doing a lock-exchange numerical experiment. The results show that
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a combination of AMI and A/R has lower numerical error than only using A/R

dynamic mesh algorithm.

In Chapter 6, moving jet penetrating cohesive soil CFD modeling is accomplished.

In this chapter, the numerical setup including mesh, boundary conditions and ini-

tial conditions are introduced. Mesh and residual convergence are also checked

before comparing the results with the experiment. After convergence check, vali-

dation of CFD model with previous experiment is conducted in section 6.2.

Analysis based on CFD, which was not recorded by the experiment are shown in

chapter 7. Soil volume dislodgement rate w.r.t jet traverse velocity, pressure on

soil surface over time, shear plane change over time, jet inclination angle and jet

deflecting distance are investigated.

Finally, the conclusions of this thesis and recommendations for future work are

given in chapter 8.
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Chapter 2

Physics of moving jet penetrating

cohesive soil

In this chapter, the physics of moving jet penetrating cohesive soil will be intro-

duced. There are several failure modes of soil during jetting when the nozzle has

different traverse velocities and jet ratio(Nobel, 2013). In the following sections,

different failure modes of the soil and the soil failure mechanism during jetting will

be described.

2.1 Hydraulic loads on soil cavity walls during

jetting

The loading conditions of moving jet penetrating cohesive soil(Nobel, 2013) is

shown in Fig.2.1.
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Figure 2.1: Loading conditions of a moving vertical jet penetrating a cohesive soil

bed.

There are five loading conditions (a) - (e) shown in Fig.2.1:

• condition (a): Jet pressure is normally exerting on the soil surface. Jet

pressure is equal to the jet stagnation pressure pstag.

• condition (b): Besides the normal stagnation pressure parallel to the jet flow

direction exerting on the soil, normal pressure perpendicular to the jet flow

direction is also exerting on the soil.

• condition (c): Due to the deflection of the jet flow, the pressure exerting on

the soil is normal to the soil surface.

• condition (d): Shear stress parallel to the soil is exerting on the soil surface.

• condition (e): Due to turbulence pressure fluctuations, temporary normal

pressure is exerting on the soil.

As the SOD(stand off distance: the distance between the jet outlet and soil surface)

of the jet is about one time the nozzle diameter(30 mm), the cavitation of the jet

can be neglected in the study.

9



CHAPTER 2. PHYSICS OF MOVING JET PENETRATING COHESIVE SOIL

2.2 Failure modes during jetting

Moving vertical jet penetrating cohesive material experiment has been done by

Nobel (2013) with different jet traverse velocity vt and jet ratio pj/su, where pj

is the jet pressure, su is the shear strength of the soil. In his work, four different

types of failure modes are found:

• Penetrating jet: (1) Penetrating jet happens when jet ratio pj/su > 12 and

the jet traverse velocity vt ≤ uf,h. uf,h is the soil horizontal propagation

velocity, which is defined in Fig.2.6. (2) The soil cavity is narrow and deep,

with a cavity width of 1 to 1.5 times the jet diameter. (3) A soil wall

with vertical and curving nerves is built. The vertical nerves are present in

non-deflection zone while the curving nerves are in deflection zone. (4) The

dislodged soil is completely fluidized.

Figure 2.2: Penetrating jet: regular pattern of soil that is pushed up at the soil

cavity edge (a) overview, (b) soil cavity traversal cross-sections. Test conditions:

pj/su = 21, Dn = 32.5 mm, vt = 0.25 m/s. (Nobel, 2013)

• Deflecting jet: (1) Deflecting jet happens when jet ratio 7.3 < pj/su < 12

and the jet traverse velocity vt > uf,v. uf,v is the soil vertical propagation
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velocity, which is defined in Fig.2.6. (2) The soil cavity is shallower compared

with penetrating jet, which is smaller than 2.5 times the nozzle diameter. (3)

A soil wall with curving nerves texture is built, representing the deflection

zone. (4) Limited amount of dislodged soil lumps can be found after the

experiments.

Figure 2.3: Deflecting jet: vertically oriented nerves in non-deflection zone. Test

conditions: (a) pj/su = 25.8, Dn = 20 mm, vt = 0.15 m/s, (b) pj/su = 8.9, Dn =

5 mm, vt = 1 m/s. (Nobel, 2013)

• Dispersing jet: (1) Dispersing jet happens when jet ratio 5.4 < pj/su < 7.3

and the jet traverse velocity vt � uf,v. (2) The depth of the soil cavity is

shallow while the width of the soil cavity is wider, which can be equal to

5 times the nozzle diameter. (3) The soil wall structure is irregular. (4)

Dislodged soil lumps that can be found after the experiments.
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Figure 2.4: Dispersing jet: typical shallow soil cavity shape (a) top view, (b)

transverse cross section. Test conditions: pj/su = 9, Dn = 32.5 mm, vt = 1 m/s.

(Nobel, 2013)

• Hydro-fracturing: Hydro-fracturing happens when traverse velocity vt < 0.15

m/s. The soil cavity dimensions are irregular. The soil fails at its weakest

position.

Figure 2.5: Hydro fracturing: (a) top view, with two planes of weaknesses along

which the jet had penetrated the soil surface, (b) longitudinal cross section. Test

conditions: Dn = 32.5 mm, pj = 0.82 MN/m2, vt = 0.125 m/s, su = 70 kN/m2.

(Nobel, 2013)
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Figure 2.6: Definition of nozzle traverse velocity vt, soil horizontal propagation

speed uf,h, soil vertical propagation speed uf,v (Nobel, 2013)

The penetrating jet and deflecting jet are the most relevant failure modes for the

water injection dredging engineering.The penetrating jet and deflecting jet are the

main objectives to be investigated in this thesis. The penetrating jet has two

jet zones, which are non-deflection zone and deflection zone, see Fig.2.7. In the

non-deflection zone of the penetrating jet, soil failure mechanism (a), see Fig.2.1,

dominates. Pressure builds up on the surface of the soil until the jet stagnation

pressure is over the shear strength of the soil. Then the soil is removed by the

stagnation pressure of the jet. The smaller the jet ratio, the longer the duration of

this process. When the traverse velocity of the nozzle is relatively low, the jet flow

can follow a vertical line in the non-deflection zone as shown in Fig.2.7. As the

traverse velocity of the jet is increasing, the jet flow in the non-deflection region

will have an inclination angle as shown in Fig.2.7. The higher the jet traverse

velocity, the larger the inclination angle will be. In the deflection zone of the

penetrating jet, the jet flow will be deflected due to the traverse velocity of the jet

and the resistance of the soil.

As the jet traverse velocity increases, the non-deflection zone will disappear, which

is shown in Fig.2.8. This failure mode is called deflecting jet. The deflecting jet

is comparable with the deflection zone of penetrating jet. The difference is the

width of the soil strips. In deflecting jet, the jet flow can disperse freely in all
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Figure 2.7: Definition of jet zones of penetrating jet. Zone I is the non-deflection

zone, zone II is the deflection zone. When the jet traverse velocity is larger, jet

flow follows a inclination line

direction. Differently, the jet flow in deflection zone of penetrating jet is hindered

by the non-deflection zone. Therefore the the soil strips width of penetrating jet

is equal to the soil cavity width.

Figure 2.8: The definition of deflecting jet, which has only a deflection zone
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Chapter 3

Modeling strategies

In this chapter, the modeling strategies used in this thesis will be introduced. The

modeling of moving jet penetrating cohesive material can separate to three parts:

moving jet modeling, soil modeling and sediment transport modeling. Besides,

as the jet has a high inlet velocity and a high jet Reynolds number (UiDn/ν, Ui

is the jet inlet velocity, Dn is the nozzle diameter, ν is the kinetic viscosity of

the fluid), the turbulence modeling is also needed. Dynamic mesh method AMI

(arbitrary mesh interface) combined A/R (cell layer addition/removal)is applied

modeling the moving jet. The drift-flux model is used for calculating the sediment

transports. The cohesive soil clay is modeled as a Bingham plastic. Buoyant-k− ε
model is used modeling turbulence.

3.1 Moving jet modeling

In this section, the moving jet modeling method will be introduced. The moving

jet penetrating cohesive material is similar to a moving impinging jet. Before

studying the moving impinging jet, the steady turbulent impinging jet is studied.

Steady impinging jet CFD simulation has been done a lot in recent years. Table.3.1

shows the works of investigating the PTIJ (plane turbulent impinging jet) using

RANS (Reynolds-averaged Navier–Stokes) models.
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Table 3.1: Overview of CFD studies with RANS on PTIJ

Overview of CFD studies with RANS on PTIJ

Authors h/w Re
turbulence

model

results
Type of jet

jet region impinging region

Jaramillo et al. (2008) 4, 9.2 20000 SKO, SKE v, RMS Nu
circular,

plane

Jaramillo et al. (2012) 4, 9.2 20000 SKO, SKE, DNS v, RMS Nu
circular,

plane

Angioletti et al. (2005) 4.5

1000

1500

4000

RNG, SST, RSM v Nu circular

Seyedein et al. (1994) 2.5, 5, 7.5 5000− 20000 LRKE, HRKE v p, Nu plane

Craft et al. (1993) 2, 6
23000

70000
LRKE, RSM v, RMS Nu circular

Park et al. (2003) 0.5− 4

9800

11000

16400

20000

25100

SKO v Nu,Cf plane

Kubacki and Dick (2010) 4, 9.2, 10
13500

20000

Hybrid SKO/LES,

SKO
v, RMS

Reynolds stress,

Cf , Nu
plane

Heyerichs and Pollard (1996) 2.6 10000 SKE, SKO Nu, Cf plane

Note: SKO means standard k − ω model, SKO means standard k − ε model, DNS means direct numerical

simulation, RNG means Re-Normalization Group k − ε model, SST means SST k − ω model, RSM means

Reynolds stress equation model, LRKE and HRKE means low and high Reynolds number k − ε model

Moving jet CFD simulation can only be found in Rahimi and Soran (2016) through-

out published materials. Besides, only a moving inlet boundary condition is imple-

mented in the study of Rahimi and Soran (2016) without modeling a real moving

nozzle with geometry. It means that CFD modeling for a moving jet will be a

challenge.

In this thesis, the moving jet modeling problem is solved using dynamic mesh AMI

(arbitrary mesh interface) and A/R (cell layer addition removal). By combining

AMI and A/R, a moving nozzle with real geometry is modeled instead of using a

moving inlet boundary condition. The dynamic mesh algorithms used for modeling

the moving jet will be introduced in section 4.4.
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3.2 Soil modeling

Soil can be modeled as a solid following Hooke’s law with a stress strain behavior

or a fluid with a stress strain rate behavior. When describing the soil by a stress

strain behavior, the deformation of soil can be regarded as a solid mechanics

problem. FEM (finite element method)(Zienkiewicz et al., 2000) and FVM (finite

volume method) (Cardiff et al., 2014) can both be used to solve the solid mechanics

problem. In this study, the failure of the cohesive soil during jetting process is not

only a deformation problem. The soils are first cut off and then fluidized by the

jet flow. By modeling the soil with a stress strain behavior, the fluidization of the

soil can not be simulated. Besides, CFD method is chosen in this thesis to study

the fluid mechanics of the jet flow, a soil model with a stress strain rate behavior is

relatively easier to be implemented into the CFD model. Therefore, the cohesive

soil studied in this thesis is modeled as a fluid with a stress strain rate behavior.

The non-Newtonian fluid model Bingham plastic model(Bingham, 1922), which

can describe the cohesive material with a stress strain rate relation is applied in

this thesis modeling the cohesive soil. In this section, the non-Newtonian fluid

model Bingham plastic will be introduced.

For Newtonian fluid, the shear stress is linearly depending on the shear rate. The

shear stress and shear rate of Newtonian fluid is described by using a constitutive

equation:

τ = µγ̇ (3.1)

where τ is the shear stress, µ is the molecular viscosity, γ̇ is the shear rate. In 1D

case, the shear rate γ̇ follows:

γ̇ =
∂u

∂y
(3.2)

In 3D case, the shear rate should be expressed using shear rate tensor. Using

Einstein notation, the shear rate tensor can be expressed as:

eij =
1

2
(ui,j + uj,i) (3.3)

where eij is the shear rate tensor. The shear stress tensor τij is calculated as:

τij = 2µ(eij −
1

3
∆δij) (3.4)
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where ∆ is given by:

∆ = eα,α = uα,α (3.5)

The fluid model used in this thesis for describing the cohesive soil clay is called

Bingham plastic. A Bingham plastic (Bingham, 1922) can behave as solid or

fluid in different load conditions. It behaves as a solid at low shear stress and

viscous fluid at high shear stress. The threshold value of the shear stress used for

determining if the Bingham plastic is in fluid or solid state is called yield stress

τy. When the shear stress is larger than the yield stress τy, the Bingham plastic

behaves as a viscous fluid. On the contrary, when the shear stress is lower than the

threshold value τy, the Bingham plastic behaves as a solid. The Bingham plastic

follows the following constitutive relation:

τ = τy + ηγ̇ (3.6)

where η is the plastic viscosity, γ̇ is the shear rate. Fig.3.1 shows the behavior

of Bingham plastic model compared with other constitutive models. If the yield

stress τy of the Bingham plastic is zero, it becomes a Newtonian fluid.

Figure 3.1: Shear stress and shear rate relationship of Newtonian fluid and non-

Newtonian fluid

From the definition of shear stress and shear rate, Eq.(3.6) can also be written as:
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γ̇ = 0 when τ < τy

γ̇ =
τ − τy
η

when τ > τy
(3.7)

Eq.(3.7) is the Bingham plastic model in 1D. In 3D, shear rate is a second order

tensor with magnitude: √
1

2
eijeji =

√
I2 (3.8)

where I2 is the second invariant,

I2 =
1

2

{[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

(3.9)

+
1

2

(
∂v

∂x
+
∂u

∂y

)2

+
1

2

(
∂w

∂y
+
∂v

∂z

)2

+
1

2

(
∂u

∂z
+
∂w

∂x

)2
}

(3.10)

The 3D Bingham plastic model then becomes:

τij =

(
2η +

τy√
I2

)
eij (3.11)

The viscosity of the Bingham plastic is calculated from the definition of the Bing-

ham plastic model Eq.(3.11):

µ =
τy√
I2

+ 2η (3.12)

Yield stress is only applied in the soil regions. The soil regions are identified by

the concentration field. After fluidization, the yield stress of the soil becomes zero.

The yield stress is then defined as:

τy =

τy when αd > αt

0 when αd < αt
(3.13)

where αd is the concentration of the sediment phase, αt is the threshold value for

fluidization of soil.

3.3 Sediment transport modeling

The sediment suspensions consist of a carrier fluid and several sediment phases.

The carrier fluid and sediment phases have certain volume concentration in the
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sediment. This means the sediments can be described by the volume concentra-

tion of each content. Each sediment phase can be regraded as a continuum with

certain density and viscosity. The motion of each phase can be described and

solved numerically using separated continuity and momentum equations. This

method is called Euler/Euler method, which is used often for solving multiphase

flow problems. The computational cost of this method is limited when solving

two or three phases flow. However, when dealing with multiple phases flow, the

computational cost becomes prohibitively large. In dredging industry, the trans-

ported sediment always consists of multiple fractions or phases. Therefore the

computational cost of the Euler/Euler method becomes unacceptable. Besides,

in Euler/Euler method, the coupling forces between phases need to be modeled.

When dealing with multiple phases, the coupling forces between phases cannot be

easily modeled.

Another approach which can be used to solve the sediments transport is called

CFD-DEM (Computational Fluid Dynamics / Discrete Element Method) model

(Tsuji et al., 1993). CFD-DEM model can be used to model or simulate systems

combining fluids with solids or particles. In CFD-DEM, the motion of discrete

solids or particles phase is obtained by the DEM which applies Newton’s laws of

motion to every particle, while the flow of continuum fluid is solved by using CFD

approach. The DEM model needs to be solved by using GPU (graphics processing

unit), while the CFD model is solved by CPU (central processing unit). As the

limitation of GPU power, this method is not used in this thesis.

An alternative approach is called drift-flux model, which is a simplification of the

Euler/Euler model. In drift-flux model, the momentum equation for each phase

is summed, yielding one momentum equation which describes the motion of the

mixture flow. Therefore, the number of continuity and momentum equations are

limited which saves computational power. As the lower computational cost and

its sufficiency for predicting the sediment transport , drift-flux model is chosen

modeling the sediment transport in this thesis. Derivation of drift-flux model

can be seen in Zuber and Findlay (1965), Drew (1983), Manninen et al. (1996),

Hiltunen et al. (2009), Ishii and Hibiki (2010), Jakobsen (2014) and Goeree et al.

(2016). In the following section, a short derivation of the drift-flux model will be
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shown.

3.3.1 Governing equations

The governing equations of drift-flux model will be explained in this section. A

detailed derivation of the drift-flux model is shown in Appendix A.

Mixture continuity equation

The mixture continuity equation is:

∂ρm
∂t

+∇ · (ρmum) = 0 (3.14)

where ρm is the mixture density, um is the mixture velocity vector.

Mixture momentum equation

The mixture momentum equation is:

∂ρmum
∂t

+∇ · ρmumum =

−∇pm +∇ · (Tm + Tt
m −

N∑
k=1

αkρkukmukm) + ρmg
(3.15)

where pm is the mixture pressure, Tm and Tt
m are viscous and turbulent shear

stress tensors of mixture. g is the gravitational acceleration vector. αk is the

volume fraction of phase k. ukm is the velocity difference between mixture and

phase k.
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Phase transport equation

The closure of the concentration term αk in the mixture momentum equations is

accomplished by using phase transport equation:

∂αk
∂t

+∇ · (ukαk) = 0 (3.16)

3.4 Turbulence modeling

As the jet used in this thesis has a high inlet velocity (around 30m/s) and high

jet Reynolds number, turbulence modeling is needed. From the literature study in

section 3.1, RANS model has the ability to simulate the turbulent jet. Turbulence

modeling is the construction and use of a mathematical model to predict the effects

of turbulence. Without turbulence modeling, capturing the turbulence using DNS

(Direct Numerical simulation) needs very small mesh size and small time step,

in other words, huge computational power. Therefore, using DNS for engineering

application is not cheap. In order to reduce the computational cost, turbulence

modeling is employed. LES (Large Eddy Simulation) and RANS (Reynolds Aver-

aged Navier Stokes) model are widely used turbulence modeling methods. In this

thesis, a buoyancy k − ε RANS model is used for turbulence modeling.

3.4.1 Averaging method

RANS models use time averaged or ensemble method defining the turbulence. The

turbulent terms can be modelled as:

φ = φ̄+ φ′ (3.17)

where φ̄ is the time averaged value, φ′ is the fluctuating value. The averaged term

φ̄ is defined as:

φ̄ =
1

T

∫ T

0

φdt or
1

N

∑
i

φi (3.18)
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where i is the experiment number. The fluctuation term φ′ has the following

property: ∫ T

0

φ′dt = 0 (3.19)

In drift-flux model, using RANS model, the velocity u and pressure p can be

described as:

u = ū + u′ p = p̄+ p′ (3.20)

Substitute these into continuity and momentum equation of Navier Stokes equa-

tion, and take an time average of those equations. The continuity and momentum

will become:

∇ · ū = 0 (3.21)

∂ū

∂t
+∇ · ūū = −1

ρ
∇p̄+∇ · (T + Tt) (3.22)

The T and Tt term are the viscous shear stress and Reynolds stress. The Reynolds

stress term is given as:

Tt = −u′iu′j (3.23)

When i = j, this term behaves as a normal stress. When i 6= j, it behaves as a

shear stress. The existence of Reynolds stress term means a non-closure problem.

This term will be closed by using buoyant k − ε model. The buoyant k − ε model

will be introduced in the next section.

3.4.2 Buoyant k − ε model

Buoyant − k − ε model is similar to the k − ε model, which has both turbulent

kinetic energy k and dissipation rate ε. The reason why buoyant− k− ε is chosen

refers to the modulation of turbulent kinetic energy caused by density stratification

effects is incorporated in this model. The turbulent kinetic energy is defined as:

k =
1

2
(u′1

2
+ u′2

2
+ u′3

2
) (3.24)

The Reynolds shear stress term is modelled as:

−u′iu′j = νt(
∂ui
∂xj

+
∂uj
∂xi

)− 2

3
kδij (3.25)
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where k is the turbulent kinetic energy, δij is the Kronecker δ (δij=1 for i = j,

δij=0 for i 6= j). νt is the turbulence eddy viscosity which is modelled as:

νt = Cµ
k2

ε
(3.26)

Two new variable turbulence kinetic energy k and and turbulence dissipation rate

ε are created, it means two new equations are needed to close this problem. Trans-

port equation of k and ε are used to close this problem:

∂k

∂t
+∇ · (uk) = ∇ · (ν +

νt
σk
∇k) + Pk +Gk − ρε (3.27)

∂ε

∂t
+∇ · (uε) = ∇ · (ν +

νt
σε
∇ε) + C1ε

ε

k
(Pk +Gk − C3εGk)− C2ε

ε2

k
(3.28)

where Pk is the production of turbulence kinetic energy k, which is given by:

Pk = νt(
∂ui
∂xj

∂uj
∂xi

)
∂ui
∂xj

(3.29)

and Gk is the buoyancy production/destruction of k, which is given by:

Gk =
gi
ρr

νt
σt

∂ρ

∂xi
(3.30)

Cmu, σk, σε, C1ε, C2ε and C3ε are constant values gathered from experiment. The

value of these terms are shown in Table:

parameters in buoyant k − ε model

Cν C1ε C2ε C3ε σk σε σt

0.09 1.44 1.92 0.8 1.0 1.3 1.0

Physically, turbulence model should not be applied to the soil, which does not move

before fluidizing to sediment suspensions. Therefore a concentration limitation for

the eddy viscosity νt is applied to the turbulence model. The eddy viscosity of the

flow follows:

νt =

0 when αd > αtur

νt when αd < αtur
(3.31)
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where αd is the volume concentration of the sediment, αtur is the threshold value

determining if the turbulence eddy viscosity is applied. To start the calculation,

the initial and boundary conditions also need to be applied to the turbulence

kinetic energy k and dissipation rate ε. The initial condition for turbulent kinetic

energy is calculated as:

k =
3

2
(UI)2 (3.32)

where U is the mean flow velocity and I is the turbulence intensity. For dissipation

rate ε:

ε = Cµ
k

3
2

l
(3.33)

where Cµ has a constant value, which always equals to 0.09. l is the turbu-

lent length scale. For calculating jet inlet situations, l is calculated as l =

0.015Dn(Jaramillo et al., 2012).

To resolve the turbulence boundary layer near the wall, a prohibitively large num-

ber of grid points would be required. To get rid of huge amount of grid points

near the wall and save computational power, wall functions are used. The wall

functions follow the ’law of the wall’(Wilcox et al., 1998), see Fig.3.2. The value

of y+ at the first grid cell from the wall should follow 30 < y+ < 300. If y+ is too

low, the model is invalid. If y+ is too high, the wall is not properly resolved.

25



CHAPTER 3. MODELING STRATEGIES

Figure 3.2: Typical velocity profile for a turbulent boundary layer(Wilcox et al.,

1998). y+ = yuτ/ν, u+ = u/uτ . y is the distance from the wall to the center of

the first grid-cell from the wall. uτ is the wall friction velocity. ν is the kinetic

viscosity of the fluid. u is the flow velocity.
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Chapter 4

Numerical techniques

The Navier Stokes equations are partial differential equations, which do not have a

analytical solution till today. The most common way to solve it is using numerical

discretization approaches. The drift-flux model used in this thesis is composed of

several Navier Stokes like equations, which also have no analytical solution. Three

widely used discretization methods are FDM (Finite Difference Method), FEM

(Finite Element method) and FVM(Finite Volume Method). FVM is used in this

thesis study, which is available in OpenFOAM(Greenshields, 2018). The solution

algorithm of drift-flux model used in OpenFOAM is based on PIMPLE algorithm,

which is a combination of PISO (Pressure Implicit with Splitting of Operator) and

SIMPLE (Semi-Implicit Method for Pressure-Linked Equations). Collocated grids,

which save all variables (e.g. pressure, velocity, density and concentration) at the

cell center, are used instead of staggered grids. Collocated method suffers velocity

pressure coupling problem resulting an oscillating solution. To prevent this, Rhie

and Chow’s method is used (Rhie and Chow, 1983). Besides, to model the moving

jet, dynamic mesh algorithms AMI (arbitrary mesh interface) and A/R (cell layer

addition/removal) are used. In this chapter, the numerical techniques used in this

thesis will be introduced.
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4.1 Discretization methods and numerical schemes

The discretization method used in this thesis is called FVM (Finite Volume Method).

In FVM, the computational domain is divided into a finite number of CV (control

volumes). The variables can be saved at both the center and boundary of CV. In

the drift-flux solver of OpenFOAM, collocated grids method is used, the variables

are all saved on the center of CV. The rate of change of variables (the ∂φ/∂t term,

φ means variable) are calculated by the fluxes over the surface of CV at each time

step. These fluxes are determined by both the convection and diffusion term of the

partial differential equations. The fluxes at the cell surface is calculated by doing

interpolation with the neighbour cells. If the cells are located at the boundary,

the fluxes will be determined by the boundary conditions. The details of the finite

volume methods can be found in Ferziger and Peric(Ferziger and Peric, 2012).

4.1.1 Discretization of Navier Stokes equations

In OpenFOAM, the Navier Stokes equations are discretized on collocated grid

instead of staggered grid. Even collocated grid has results oscillating problem

compared with staggered method, it still has the following advantages(Wesseling,

2001):

• It is relatively easy to extend collocated scheme to a structured curvilinear

grid in Cartesian reference frame compared with staggered arrangement.

• Solving compressible Navier Stokes equations favors collocated grid better

than staggered grid.

• The most efficient way to solve linear system is based on solving momen-

tum and pressure correction equations. Using the momentum and pressure

correction equations needs hierarchical algorithms like e.g. multigrid. This

can be easily done by using collocated grid while the grid arrangement in

staggered grid is difficult.
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In the following part of this section, the discretization of Navier Stokes equations

on collocated grid will be explained.

Collocated grid

In collocated grid method, the unknowns are saved collocated with respect to each

other at the cell center. The arrangement of the unknowns in a 2D cell is shown

in Fig.4.1.

Figure 4.1: 2D unknowns arrangement in collocated grid on cell Ωij,→ and ↑mean

the vector field e.g. velocity, • means the scalar field e.g. pressure, i, j represent

the index of the cell

In later part of this section, a 2D discretization based on collocated grid of Navier

Stokes in Cartesian coordinate system will be explained.

Discretization of continuity equation on collocated grid

Using FVM to continuity equation on cell Ωij:∫
Ωij

uα,αdΩ =

∮
∂Ωij

uαnαdS = hju1|i+1/2,j
i−1/2,j + hiu2|i,j+1/2

i,j−1/2 (4.1)

where central interpolation is used to u1|i+1/2,j and u2|i,j+1/2:

u1|i+1/2,j =
u1|i,j + u1|i+1,j

2

u2|i,j+1/2 =
u2|i,j + u2|i,j+1

2

(4.2)

Discretization of momentum equation on collocated grid
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The momentum equation can be described as:

uα,t + (uαuβ),β = −p,α +Re−1uα,ββ + fβα (4.3)

Move the RHS terms to the LHS and take the volume integration in Ωij:∫
Ωij

[uα,t + (uαuβ),β +p,α −Re−1uα,ββ − f bα]dΩij

=

∫
Ωij

[(uαuβ + δαβp−Re−1uα,β),β]dΩij + hihj(uα,t − f bα)i,j

=hj(uαu1 + δα1p+Re−1uα,1)|i+1/2,j
i−1/2,j + hi(uαu2 + δα2p+Re−1uα,2)|i,j+1/2

i,j−1/2

+hihj(uα,t − f bα)i,j = 0

(4.4)

The derivatives are approximated as follows:

uα,1|i+1/2,j =
uα|i+1,j − uα|i,j

hi

uα,2|i,j+1/2 =
uα|i,j+1 − uα|i,j

hj

(4.5)

The inertia terms are approximated by using central interpolation as follows:

u2
1|i+1/2,j =

u2
1|i,j + u2

1|i+1,j

2

(u1u2)|i,j+1/2 =
(u1u2)|i,j + (u1u2)|i,j+1

2

(4.6)

The pressure term is also interpolated using central scheme:

pi+1/2,j =
pi,j + pi+1,j

2
(4.7)

The stencil of collocated grid is shown in Fig.4.2.

Figure 4.2: Stencil of collocated grid in 2D,− and |mean velocity, •means pressure
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4.1.2 Numerical schemes

When simulating sediment transport using drift-flux model, it is important to pre-

vent negative values in the solution of sediment concentrations. A negative value

of concentration, which can be caused by numerical fluctuations is not physically

possible. To prevent the numerical oscillation, a certain class of interpolation

schemes does not suffer from negative values in the outcome of the numerical solu-

tion can be used. These schemes are called Total Variational Diminishing schemes

(TVD). TVD schemes are monotone and second-order accurate and make use of

so-called flux limiters. In this thesis the van Leer flux limiter is used, see Van Leer

(1974). This numerical scheme is applied to the concentration convection terms

in momentum equations of drift-flux model to prevent a negative value of concen-

tration. Central scheme, which is introduced and applied in section 4.1 has been

implemented to other terms during the simulation.

Besides, to prevent numerical diffusion, local min scheme is implemented to the

diffusion term in the momentum equation of drift-flux model. The local min

scheme follows:

φi+1/2,j = min(φi,j, φi+1,j) φi,j+1/2 = min(φi,j, φi,j+1) (4.8)

Figure 4.3: Definition of local min scheme.
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Figure 4.4: Boundary condition set up for explanation, inflow condition is applied

to the left, outflow condition is applied to the right, no-slip condition is applied on

the bottom, free surface condition is applied on the top. The domain has a width

of w = a and length of L = b

4.2 Boundary conditions

There are several boundary conditions which are mostly used in CFD simulations,

which are no-slip, free surface, inflow and outflow boundary conditions. These

boundary conditions will be explained in this section. To explain the boundary

conditions, a boundary set up shown in Fig.4.4 is used.

No-slip wall conditions

When the viscous fluid is flowing along the solid wall, it has no relative velocity

between the fluid and wall. At the solid surface, it follows:

u(t,x) = v(t,x) (4.9)

where u is the fluid velocity, v is the local wall velocity. No-slip wall boundary

condition is a Dirichlet boundary condition seen from Eq.(4.9).

Free surface conditions

The free surface boundary condition implies the tangential stress components at

the free surface are zero. To simply introduce this, a free surface boundary condi-
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tion is applied at x2 = a in Fig.(4.4). At the free surface, the normal velocity and

tangential shear rate is zero:

u2(t, x1, x2 = a) = 0, u1,2(t, x1, x2 = a) = 0 (4.10)

Dirichlet boundary condition is applied to the normal velocity u2 and Neumann

boundary condition is applied to the tangential shear rate u1,2.

Inflow conditions

In Fig.4.4, an inflow boundary condition is applied to the left boundary x1 = 0.

The inflow condition is a Dirichlet boundary condition:

u1(t, x1 = 0, x2) = U1(t, x1 = 0, x2), u2(t, x1 = 0, x2) = U2(t, x1 = 0, x2) (4.11)

where U1 and U2 are the prescribed velocity by the inflow condition defined by

user.

Outflow conditions

The physical information of the outflow boundary is often not enough. Usually,

only the pressure is known. To get rid of spurious numerical wiggles, an artificial

outflow boundary condition, which apply homogeneous Neumann boundary con-

dition for tangential velocity is always used. The outflow boundary condition at

x1 = b in Fig.4.4 is:

p(t, x1 = b, x2) = p∞, u2,1(t, x1 = b, x2) = 0 (4.12)

4.3 Solution algorithms

Three solution algorithms, which are available in OpenFOAM, will be introduced

here. The three algorithms are SIMPLE (Semi-Implicit Method for Pressure-

Linked Equations), PISO (Pressure Implicit with Splitting of Operators) and PIM-

PLE (a combination of SIMPLE and PISO). In this thesis, solver driftFluxDyMFoamv1812

uses PIMPLE algorithm.
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Figure 4.5: Flow chart of SIMPLE algorithm(Holzinger, 2015)

SIMPLE

In OpenFOAM, SIMPLE algorithm predicts the velocity using UEqn.H and then

corrects both pressure and velocity using pEqn.H. This procedure repeats till a

convergence criteria is reached. The solving procedure is shown in Fig.4.5. The

solving procedure can be described as:

1) Check convergence using simple.loop()

2) Predict velocity using momentum predictor in UEqn.H

3) Correct both pressure and velocity using pressure corrector and velocity correc-

tor in pEqn.H

4) Solve turbulence model using turbulence->correct()

5) Repeat 1) to 4).

In SIMPLE algorithm, the rate of change ∂φ/∂t term is not solved. The Navier

Stokes equations solved by SIMPLE is:

The continuity equation:

∇ · u = 0 (4.13)
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The Momentum equation:

∇ · (uu)−∇ · ν∇u = −∇p (4.14)

The discretized form of the momentum equations, which is used as the momentum

corrector in UEqn.H can be described as:

M · u = −∇p (4.15)

The M · u term can be separated as:

M · u = A · u−H (4.16)

where matrix A is a diagonal matrix with the value of diagonal of matrix M.

Substitute Eq.(4.16) into Eq.(4.15):

A · u−H = −∇p (4.17)

The momentum corrector in pEqn.H can then be derived:

u = A−1 · (H−∇p) (4.18)

Take a divergence of Eq.(4.18) and apply continuity equation, the pressure correc-

tor in pEqn.H can be derived:

∇ · (A−1 · ∇p) = ∇ · (A−1 ·H) (4.19)

PISO

PISO solves the rate of change term which SIMPLE does not solve. The momen-

tum equation in PISO algorithm is:

∂u

∂t
+∇ · (uu)−∇ · ν∇u = −∇p (4.20)

In PISO algorithm, the velocity is first predicted by UEqn.H. Then, go through

piso.loop and correct velocity and pressure using pressure corrector and velocity

corrector in pEqn.H until the residual tolerance is reached. The solving procedure

is shown in Fig.4.6. The solving procedure can be described as:

1) Predict velocity using momentum predictor in UEqn.H

2) Check convergence using piso.loop()
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Figure 4.6: Flow chart of PISO algorithm(Holzinger, 2015)

3) Correct both pressure and velocity using pressure corrector and velocity correc-

tor in pEqn.H.

4) Solve turbulence model using turbulence->correct()

5) Repeat 1) to 4).

PIMPLE

PIMPLE algorithm is a combination of SIMPLE and PISO. The solving procedure

is shown in Fig.4.7. The solving preocedure can described as:

1) Check convergence using pimple.loop()

2) Predict velocity using momentum predictor in UEqn.H

3) Correct both pressure and velocity using pressure corrector and velocity correc-

tor in pimple.correct().

4) Solve turbulence model using turbulence->correct()

5) Repeat 1) to 4).
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Figure 4.7: Flow chart of PIMPLE algorithm(Holzinger, 2015)

4.4 Dynamic mesh algorithms

When a moving object is appearing in the simulation, dynamic mesh can be a

solution for this kind of problem. In this thesis, a moving jet has to be studied,

which can be modelled by using dynamic mesh. Two main dynamic mesh concepts

which are AMI (arbitrary mesh interface) and A/R (cell layer additional removal)

have been used. In this section, the dynamic mesh algorithm used in this thesis

will be introduced.

4.4.1 Basic equations for dynamic mesh

In this thesis, OpenFOAM (Greenshields, 2018), a CFD software based on FVM

(finite volume method), is used for simulation. Therefore, when using dynamic

mesh algorithm, the actual moving part of the mesh is the volume. The dynamic
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mesh algorithm for FVM follows Eq.(4.21):

∂

∂t

∫
ρφ∂V +

∮
ρn· (u− us)φ∂S −

∮
ργφn· ∇φ∂S =

∫
sφ∂V (4.21)

In Eq.(4.21), φ is the transport property (e.g. velocity, temperature), ρ is the den-

sity of the transport property, n is the unit normal factor of the boundary surface

of the control volume, u is the velocity vector of the fluid, us is the velocity of the

boundary surface of the moving mesh, γφ is the diffusion coefficient, sφ is the vol-

ume source term. Relationship between the change rate of volume V and boundary

surface S velocity us is defined by SCL (space conservation law)(Demirdzic and

Peric, 1988) in Eq.(4.22).

∂

∂t

∫
∂V =

∮
n·us∂S (4.22)

4.4.2 Topological change dynamic mesh

The lowest mesh topological change is called primitive mesh operations. Primitive

mesh operations can add, remove or (connect) modify a point, a face or a cell on

the mesh. It allows user to completely collapse an existing mesh or to build a mesh

starting from empty space. Primitive mesh operations are flexible but tedious and

impractical to use. For example, a single primitive mesh operation for a point,

face or cell may lead to an invalid mesh. Therefore, primitive mesh changes need

to be executed in batches.

The second level of mesh topological changes is called mesh modifier. Mesh mod-

ifier is executed based on primitive mesh operations. It holds s self-contained def-

inition and a triggering mechanism. For example, the cell layer addition/removal

which is going to be used in the thesis. The triggering mechanism for this is the

thickness of the cell layer. When the thickness of the cell layer is larger than

the user-defined limitation, a new layer will be added. Vice versa, when the

layer thickness is lower than the limitation, the cell will be removed. In Open-

FOAM (Greenshields, 2018), the following mesh modifiers are now available.

• Cell layer addition/removal;
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• Attach-detach boundary;

• Sliding interface(which is called AMI in OpenFOAM );

• Dynamic crack propagation in non-linear structural analysis;

• Regular octree mesh refinement for hexahedral mesh regions.

Cell layer addition/removal(Greenshields, 2018) and AMI(Farrell and Maddison,

2011)(Farrell et al., 2009)(Menon and Schmidt, 2011) will be used in this thesis

for simulating the moving jet. In the following sections, these two dynamic mesh

algorithms will be introduced.

AMI - Arbitrary Mesh Interface

Arbitrary mesh interface is similar as the sliding interface and the general grid

interface (GGI)(Beaudoin and Jasak, 2008). Sliding interface topology modifier

allows for the dynamic stitching and splitting of mesh regions with different mesh

structures. It generates seamless joint, therefore no special numerical methods are

needed to solve the equations across the interface. This is different from AMI,

because AMI is solving two topologically separated mesh by interpolating the flux

among the surface using weighting factors. In AMI, the interpolation of flux is

taking place at the inner boundary of the outer domain and outer boundary of the

inner domain. The interpolation method is a conservative interpolation method

called local Galerkin projection(Farrell and Maddison, 2011). The sliding interface

and AMI algorithm are shown in Fig.4.9 and Fig.4.8 below.
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Figure 4.8: AMI interpolation between interface(Mangani et al., 2014), where NB

means the neighbour point, C is cell under consideration

Figure 4.9: Stitching and splitting of mesh in sliding mesh algorithm(Piscaglia

et al., 2014)

A/R - Cell layer addition/removal

A/R (cell layer addition/removal) is a dynamic mesh algorithm, modifying mesh

by adding and removing cell layers when the mesh is moving. When mesh is

modifying, the majority of the mesh remains fixed, while only parts of the mesh

layers are added or removed. This property of A/R allows keeping the mesh
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quality (both size and shape of the mesh) constant during the simulation. Mesh

layer thickness needs to be monitored during simulation. Two threshold values,

which are maximum and minimum mesh layer thickness need to be set up before

starting the simulation. During the simulation, for every time step, these two

thresholds will be checked up. When the cell layer thickness is over the maximum

value, new cell layers will be added. However, cell layers will be removed while the

layer thickness decreases to the minimum value. This dynamic mesh algorithm is

valid in OpenFOAM (Greenshields, 2018). Fig.4.10 and Fig.4.11 show how A/R

dynamic mesh algorithm works.

Figure 4.10: Layer addition/removal dynamic mesh algorithm - layer addition
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Figure 4.11: Layer addition/removal dynamic mesh algorithm - layer removal

Fig.4.10 shows when mesh is moving downward, new meshes (the pink meshes) will

be added at the top of the computational domain. Fig.4.11 shows how meshes are

removed when the mesh is moving downward and reaching the minimum threshold

value.

Combination of AMI and A/R

The idea of combining AMI and A/R comes from tutorial sphereDrop in Open-

FOAM (Greenshields, 2018). The mesh set up of this tutorial is shown in Fig.4.12.

The left blue region is a steady mesh region separating the right A/R dynamic

mesh region by AMI interface in between these two regions.

In this tutorial, the sphere is dropping downward by gravity. New meshes will be

added at the top of the pink part if the mesh size is larger than the maximum

threshold value. Old meshes will be removed at bottom of the purple part if mesh

size is smaller than the threshold value. Once the topology changes of the mesh is

done, old values in old mesh at old time step will be mapped to the new mesh at

next time step.

By using combination of AMI and A/R, the mesh quality can stay constant in

steady mesh region during calculation. The most concerned part during simulation
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can be put in the steady mesh region to get a relatively accurate result.

Figure 4.12: 2D sphere drop with both AMI and A/R dynamic mesh algorithm
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Numerical validation for dynamic

mesh model

In this section, numerical validation will be done to check the feasibility of using

dynamic mesh algorithms. The validation is done by comparing the results calcu-

lated from dynamic mesh with the results calculated from steady mesh. The use

of dynamic mesh algorithm will bring errors e.g. mass loss or gain, interpolation

error. In this section, test case lock-exchange will be done to check how large the

error is.

The main difference between dynamic mesh and steady mesh is the motion of

the mesh. In dynamic mesh algorithms, when mesh is moving, values from old

mesh will be mapped to the new mesh. The faster the mesh is moving the more

interpolation and mapping procedures will be done. Mapping and interpolation

will introduce numerical error. Therefore, the mesh moving velocity can influence

the numerical error during simulation.

Four different mesh moving velocities are tested in this section, which are 0.01,

0.02, 0.04 and 0.06 m/s. Four results of lock-exchange experiment will be used as

validation data in the numerical experiment:

• Flow patterns difference
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• Froude number FH = U√
g′h

, the dimensionless front speed of flow

• Total mass of the computational domain

• COG (center of gravity) of the fluids at certain time

To achieve the moving jet moving jet penetrating cohesive soil simulation, drift-flux

model and dynamic mesh algorithms AMI and A/R are required. driftFluxDyMFoam

is a drift-flux model solver with dynamic mesh algorithms developed by Gill (2016)

for OpenFOAM version v3.0.1. Unfortunately, in OpenFOAM version v3.0.1, AMI

and A/R dynamic mesh algorithms are not existing. In OpenFOAM version v1812,

A/R and AMI are available to achieve the moving jet modeling. Therefore, a new

drift-flux model plus dynamic mesh algorithms solver, driftFluxDyMFoamv1812,

for OpenFOAM version v1812 is built and applied for the moving jet penetrating

cohesive soil simulation in this thesis. In this chapter, driftFluxDyMFoamv1812,

is used to check the error of the dynamic mesh.

Two dynamic mesh algorithms have been chosen for modeling the moving jet,

which are A/R (cell layer addition/removal) and AMI (arbitrary mesh interface).

The modeling of the moving jet can be achieved by these two methods:

• Only using A/R dynamic mesh algorithm.

• Combine A/R and AMI dynamic mesh algorithms.

In the following sections, feasibility of these two dynamic mesh methods will be

tested.

5.1 Lock-exchange physics

Before doing the simulation, the physics behind lock-exchange test will be intro-

duced. In lock-exchange experiment, two different fluids with different densities

will initially be separated by a vertical lock gate putting in the middle of them.

The fluids are at rest before the lock gate is removed. After removing the lock
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gate, the two fluids will start mixing. The denser fluid will flow along the bot-

tom of the tank, while the lighter fluid will flow along the top of the tank. The

motion of the flow is caused by the gravity and density difference of two fluids.

The difference of the density is described by density ratio γ = ρ1/ρ2 (Shin et al.,

2004). The density ρ2 has a larger value than ρ1. In this numerical experiment ρ2

is 1000 kg/m3, ρ1 is 996 kg/m3. The density ratio in this numerical experiment

is ρ1/ρ2 = 0.996. This is a Boussinesq lock exchange case, because the density

difference is small(Goeree et al., 2016). The kinetic viscosity of both fluids are

the same, which is 1.004 × 10−6 m2/s. The setup of the experiment is shown in

Fig.5.1.

Figure 5.1: Experiment set up for lock-exchange test. The denser fluid is put to

the left of the lock gate with ρ2 = 1000kg/m3 and the lighter fluid is put to the

right of the lock gate with ρ1 = 996kg/m3. The lock gate is put in the middle of

them. All fluids are sealed inside the surrounding wall.

5.2 Initial and boundary conditions

In this section, the initial and boundary conditions for numerical experiment will

be introduced. The computational domain is shown in Fig.5.1. The length, width

and height of the computational domain are L=1.8m, D=0.2m and H=0.2m sep-

arately. Uniform 2D Cartesian grids with a local length of 0.005m are used in the

calculation.

The boundary conditions are shown in Fig.5.2. No slip wall boundary condition

is used for velocity field on the walls. Zero gradient boundary condition is used

for pressure on the walls. Zero gradient boundary condition is also applied for
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concentration field on the walls.

Figure 5.2: Boundary condition for lock-exchange test. No slip wall boundary

condition for velocity field and zero gradient for pressure field

The initial conditions are shown in Fig.5.1. The initial concentration of the heavy

and light fluid are 0.1 and 0 respectively. The densities are ρ1 = 996 kg/m3

and ρ2 = 1000 kg/m3. The time step in numerical calculations is adjustable

corresponding to the Courant number.

The initial dynamic mesh set up for AMI combined A/R and only using A/R

cases are shown in Fig.5.3 (a) and Fig.5.3 (b) separately. The blue mesh region

in Fig.5.3 (b) is the steady mesh part, separating the dynamic mesh region above

by AMI interface. The mesh will move to the right direction with a certain speed.

Mesh profiles at 25 seconds are shown in Fig.5.4. Comparing Fig.5.3 and Fig.5.4,

the mesh motion can be clearly seen.

Figure 5.3: The above mesh set up is for only using A/R case. The below mesh

set up is for AMI combined A/R case. Time = 0 sec, mesh moving velocity =

0.01m/s.

47



CHAPTER 5. NUMERICAL VALIDATION FOR DYNAMIC MESH MODEL

Figure 5.4: The above mesh set up is for only using A/R case. The below mesh

set up is for AMI combined A/R case. Time = 25 sec, mesh moving velocity =

0.01m/s.

5.3 Results

In this section, results comparison between steady and dynamic mesh methods

will be presented. The flow patterns, Froude number FH , total mass of the fluid

and the COG of the fluid will be used as references.

5.3.1 Flow patterns

In this section, the flow patterns of both dynamic mesh methods compared with

steady mesh will be shown. The flow patterns of only using A/R and AMI com-

bined A/R are shown in Fig.5.5 and Fig.5.6 separately.
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Figure 5.5: Flow pattern calculated by A/R dynamic mesh algorithm at 21 seconds.

Mesh moving velocity: 0.01 m/s, 0.02 m/s, 0.04 m/s and 0.06 m/s

The results in Fig.5.5 and Fig.5.6 reveal that both dynamic mesh methods can

bring errors. Compared the results calculated by using A/R dynamic mesh algo-

rithm, AMI combined A/R has a lower error. The mixing waves pattern of AMI

combined A/R looks relatively similar to the result of steady mesh. It can also be

seen that the faster the mesh is moving, the larger the error will be.

In Fig.5.5, it can be seen that both light and heavy front of the density flow moves

faster when A/R dynamic mesh algorithm is used. In Fig.5.6, it can be seen that

only light front moves notably faster when AMI combined A/R is used. The reason

is when AMI combined A/R dynamic mesh method is used, the heavy front of the

density flow is staying in the steady mesh region while the light front of the density

flow is staying in the dynamic mesh region. It means the exiting of steady mesh

region can reduce the error. The most concerned part in the simulation can be

then put in the steady mesh region to reduce error. This is an advantage of AMI

combined A/R method over only using A/R method.
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Figure 5.6: Flow pattern calculated by AMI + A/R dynamic mesh algorithm at

21 seconds. Mesh moving velocity: 0.01 m/s, 0.02 m/s, 0.04 m/s and 0.06 m/s
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5.3.2 Dimensionless front speed Froude number FH

In this section, the dimensionless front speed, Froude number FH = U√
g′h

, cal-

culated from both steady mesh and dynamic mesh will be compared. In lock-

exchange experiment, the Froude number is determined by the density difference

of the two fluids, gravity acceleration g, height of the lock-gate H and the front

speed U of the density current. It can be found that only the front speed U of the

density current varies among different simulation cases. This means the difference

of the Froude number FH calculated from different cases is determined by the dif-

ference of the density current front speed U . The front speed U is calculated from

the change rate of the density current front position. The density current front

positions over time are shown in Fig.5.7.

Figure 5.7: Dimensionless front position of density flow over time of numerical

lock-exchange experiment

Seen from Fig.5.7, the front positions of the density current are linearly increasing

with respect to time. This means the front speed of the density current is constant,

which agrees with Shin et al. (2004). By calculating the slope of the lines, the
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front speed U of the density currents are known. The Froude number can then be

calculated by FH = U√
g′h

using the velocity U calculated from the slope in Fig.5.7.

The Froude number FH of both heavy and light currents calculated by driftFlux-

DyMFoam1812 are shown in Table.5.1 and Table.5.2 below. The errors in the table

are calculated as err = |FHd−FHs

FHs
|, where FHd is the Froude number of dynamic

mesh cases. FHs is the Froude number of steady mesh case.

Table 5.1: Heavy density current FH error comparison among different mesh mov-

ing speed

driftFluxDyMFoamv1812 with AMI and A/R dynamic mesh

steady vel 0.01 vel 0.02 vel 0.04 vel 0.06

FH 0.433 0.439 0.445 0.445 0.452

Err FH 1.45% 2.90% 2.90% 4.35%

driftFluxDyMFoamv1812 with A/R dynamic mesh

steady vel 0.01 vel 0.02 vel 0.04 vel 0.06

FH 0.433 0.445 0.458 0.470 0.470

Err FH 2.90% 5.80% 8.70% 8.70%
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Table 5.2: Light density current FH error comparison among different mesh moving

speed

driftFluxDyMFoamv1812 with AMI and A/R dynamic mesh

steady vel 0.01 vel 0.02 vel 0.04 vel 0.06

FH 0.433 0.461 0.467 0.470 0.476

Err FH 6.52% 7.83% 8.70% 10.00%

driftFluxDyMFoamv1812 with A/R dynamic mesh

steady vel 0.01 vel 0.02 vel 0.04 vel 0.06

FH 0.433 0.452 0.467 0.470 0.467

Err FH 4.35% 7.83% 8.70% 7.83%

Comparing the error of FH among heavy current cases in Table.5.1, using AMI

combined A/R dynamic mesh method has lower error than only using A/R dy-

namic mesh algorithm. By using AMI combined A/R dynamic mesh method, the

heavy flow can stay at the steady mesh region, where mesh quality is constant.

Because of this, the error of AMI combined A/R cases can be smaller.

Comparing the error of FH through the light current cases in Table.5.2, both

dynamic mesh methods have a relatively larger error. The reason is the front of

light density current for both dynamic mesh methods stay at dynamic mesh region

during calculation. Besides, the faster the mesh is moving the larger the error is.

By comparing the FH error for both dynamic mesh methods, it can be found that

when doing the calculation, the most concerned area can be placed in the steady

mesh region to reduce error. And this is the advantage of AMI combined A/R

dynamic mesh algorithm over only using A/R dynamic mesh algorithm.
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5.3.3 COG comparison and mass conservation check

Using dynamic mesh can also influence the COG of the currents and bring mass

conservation error. In this section, both COG position and mass conservation will

be checked. The mass conservation and COG position are checked at t = 21s.

First, the mass conservation is checked. The results are shown in Table.5.3. It can

be seen that the mass conservation can be ensured. The error between the steady

mesh case and all dynamic mesh cases are around 0.001%.

The COG positions at t = 21s are shown in Table.5.4. Both x and z coordinates

of the COG are checked. The COG is calculated by Eq.(5.1) and Eq.(5.2).

COGx =
Σciρx

Σciρ
(5.1)

COGz =
Σciρz

Σciρ
(5.2)

where ci is the concentration of phase i. The results in Table.5.4 shows that the

errors are within 10%. The faster the mesh moves, the larger the error is. It can

also be seen that A/R brings more error than combining AMI and A/R.

Table 5.3: Mass conservation check at 21 seconds

driftFluxDyMFoamv1812 with AMI and A/R dynamic mesh

steady vel 0.01 vel 0.02 vel 0.04 vel 0.06

Mass 3.60000 3.59991 3.59994 3.59989 3.59995

Mass err 0.002% 0.002% 0.003% 0.001%

driftFluxDyMFoamv1812 with A/R dynamic mesh

steady vel 0.01 vel 0.02 vel 0.04 vel 0.06

Mass 3.60000 3.60002 3.60002 3.60000 3.59997

Mass err 0.001% 0.001% 0.000% 0.001%
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Table 5.4: COG position check at 21 seconds

driftFluxDyMFoamv1812 with AMI and A/R dynamic mesh

steady vel 0.01 vel 0.02 vel 0.04 vel 0.06

COGx 0.744 0.768 0.768 0.773 0.778

Err COGx 3.31% 3.32% 4.03% 4.59%

COGz 0.0613 0.0589 0.0587 0.0584 0.0583

Err COGz 3.85% 4.23% 4.70% 4.94%

driftFluxDyMFoamv1812 with A/R dynamic mesh

steady vel 0.01 vel 0.02 vel 0.04 vel 0.06

COGx 0.744 0.745 0.777 0.798 0.803

Err COGx 0.23% 4.45% 7.30% 8.05%

COGz 0.0613 0.0598 0.0578 0.0571 0.0564

Err COGz 2.51% 5.71% 6.94% 8.01%

5.4 Summary and remarks

In this section, two dynamic mesh methods, only using A/R and AMI combined

A/R, have been validated with the steady mesh result by a lock-exchange nu-

merical experiment. Flow patterns, Froude number FH , COG position and mass

conservation are used as the validation reference.

From the results of both dynamic mesh methods, it can be concluded that the

faster the mesh moves, the larger the error is. The reason is when the mesh moves

faster, more interpolation and mapping will happen. These procedures will bring

numerical error.

The mass conservation check shows that both dynamic mesh methods introduce

no mass gain or loss. But when comparing the flow pattern, FH and COG of both

dynamic mesh methods, AMI combined A/R shows advantage over only using

A/R. The error of these references calculated from AMI combined A/R method

55



CHAPTER 5. NUMERICAL VALIDATION FOR DYNAMIC MESH MODEL

are all smaller than only using A/R. Due to the comparison above, the suggestions

for modeling the moving jet in this thesis will be using AMI combined A/R method

instead of only using A/R method.
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Chapter 6

CFD modeling of moving jet

penetrating cohesive soil

In this chapter, the moving jet CFD simulation will be done. The drift-flux model

and dynamic mesh AMI and A/R introduced in Chapter 3.3 and Chapter 4.4

will be used. Solver driftFluxDyMFoamv1812 made by the author will be used

for calculation. In Section 6.1, the mesh setup, initial conditions and boundary

conditions will be explained. In Section 6.2, the results of the CFD numerical

simulation will be validated with experimental results from Nobel (2013). The

validated results are:

• The failure modes of soil during jetting

• The dimensionless soil cavity depth Zc/Dn at different jet traverse velocity

vt when jet ratio pj/su = 19.5

• The clay surface dislodgement rate during jetting
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6.1 Numerical setup

In this section, the numerical setup for simulation will be introduced. In Section

6.1.1, the mesh setup will be shown. In Section 6.1.2 and 6.1.3, the initial and

boundary conditions will be described.

6.1.1 Mesh setup and mesh sensitivity check

To model the moving jet, dynamic mesh methods are used in this thesis. In

Chapter 5, it is found that AMI combined A/R has advantage over only using

A/R. In this thesis combination of AMI and A/R will be used modeling the moving

jet penetrating clay process.

By combining AMI and A/R dynamic mesh algorithm, the moving jet can be put

in the A/R dynamic mesh region, while the soil can be placed in the steady mesh

region. The steady mesh region and A/R dynamic mesh region are separated

by AMI interface. By putting the soil in the steady mesh region, the soil failure

process can be calculated more accurately. The setup of the dynamic mesh regions

at t = 0 is shown in Fig.6.1. After one second, with a mesh moving velocity of

vmesh = 1.5m/s, the mesh region layout becomes what is shown in Fig.6.2.
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Figure 6.1: Mesh region layout of moving jet penetrating cohesive soil clay using

AMI and A/R at t = 0s, mesh moving velocity vmesh = 1.5m/s

Figure 6.2: Mesh region layout of moving jet penetrating cohesive soil clay using

AMI and A/R at t = 1s, mesh moving velocity vmesh = 1.5m/s

The bottom green part is the steady mesh region, separating the A/R dynamic

mesh region by the AMI interface. When the jet is moving from left to right, new

cells are added to the left and old cells are removed from the right.

59



CHAPTER 6. CFD MODELING OF MOVING JET PENETRATING COHESIVE SOIL

Table 6.1: Mesh sensitivity check: dimensionless soil cavity depth at different jet

traverse velocity of two mesh sizes(0.01m and 0.005m)

Vt (m/s) Zc/Dn (mesh0.01) Zc/Dn (mesh0.005) error

0.25 5.33 5.27 1.27%

0.50 4.67 4.65 0.43%

1.00 4.00 3.83 4.35%

1.49 3.67 3.57 2.80%

1.83 3.50 3.48 0.59%

Two mesh sizes, 0.01m and 0.005m, have been used for calculation. As the limi-

tation of the computational power, the smallest mesh size is limited to 0.005m. A

mesh convergence check is carried out by comparing the soil dimensionless cavity

depth at different traverse velocity. The results are shown in Fig.6.3 and Ta-

ble.6.1. Even though a finer mesh cannot be used for simulation as the limitation

of computational power, the error between two mesh size is within 5%. If more

computational power is available in the future, calculations with finer mesh can

be conducted to check the sensitivity of the mesh more accurately.

In Fig.6.3 and Table.6.1, it can be found that the error is not constant at different

jet traverse velocity. When jet traverse velocity increases, soil failure modes will

change from penetrating jet to deflecting jet. Compared with finer mesh cases,

some of the soil failure mechanisms cannot be captured during the simulation

in coarse mesh cases. Therefore, during the transition from penetrating jet to

deflecting jet, the error increases to 4.35% when jet traverse velocity is 1m/s.
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Figure 6.3: Mesh sensitivity check: dimensionless soil cavity depth comparison at

different jet traverse velocity of two mesh sizes (0.01m and 0.005m).

6.1.2 Initial conditions setup

The soils are put in the steady mesh region as mentioned in Section 6.1.1. Fig.6.4

shows the initial condition of the concentration field. The red part stands for the

soils while the blue part represents water. The volume concentration of the soils

are quantified by αs (volume concentration of soil) in driftFluxDyMFoamv1812

solver. The initial volume concentration of the soil is 0.576 referring to Nobel

(2013) for validation. The blue part, which represents water, has a zero value of

alpha.sludge.
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Figure 6.4: αs layout in whole computational domain in 3D

The soil used here is the cohesive soil clay. The clay has a yield stress of 23 KN/m2

and density of 2588 Kg/m3. To validate the result with the work of Nobel (2013),

the jet inlet velocity is set as 30 m/s w.r.t jet pressure pj = 0.45Mpa. Therefore,

the jet ratio pj/su = 19.5, which is the same as the work of Nobel (2013). The

initial concentration field of the soil is shown in Fig.6.5.

Figure 6.5: Side view of initial concentration field : the clay has a 1.5 m length,

0.15 m width(not shown in this figure), 0.28 m depth. The blue part is water, the

red part is clay. The length, width and height of the computational domain are

1.8m, 0.15m and 0.3m.

The jet in Fig.6.5 is a round jet with a diameter of 30 mm. The SOD (stand off

distance: distance between jet outlet and soil surface) is 20 mm, which is the same

as the setup mentioned in thesis of Nobel (2013).
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6.1.3 Boundary conditions setup

Fig.6.7 and Fig.6.8 show the side view and front view of the computational domain

with boundary conditions setup. The clay is placed in between the two side walls.

Outlet boundary conditions are implemented in front, end and top of the com-

putational domain. No slip boundary condition is applied to the walls. Dirichlet

boundary condition is implemented to the jet inlet. Wall functions (Wilcox et al.,

1998) are applied to the turbulence dissipation rate ε and turbulence kinetic energy

k on the walls. The description of wall functions refers to section 3.4.2. The initial

value of k and ε need estimations, which follow Eq.(3.32) and Eq.(3.33). Table.6.2

shows the detailed boundary conditions setup of the computational domain. It

has to be mentioned that no boundary condition is applied to the interface be-

tween water and soil. In this numerical model, the concentration at the soil water

interface is not changing sharply but gradually, see Fig.6.6. The reason is the soil

at the soil water interface is not only cut but also fluidized by the jet flow. The

fludized soil has a volume concentration in between the water and the unfluidized

soil. Therefore, the soil volume concentration profile at the soil water interface is

assumed to change gradually, but not sharply.

Table 6.2: Boundary conditions set up at different positions for all variables

U (m/s) prgh (pa) k (m2s−2) ε (m2s−3) αs (−)

walls noSlip zeroGradient WallFunction WallFunction zeroGradient

outlet zeroGradient Dirichlet inletOutlet inletOutlet inletOutlet

inlet Dirichlet zeroGradient Dirichlet Dirichlet Dirichlet

Note: U is the velocity. Prgh = P − ρgh, which is the pressure without hydro-static

pressure. k is the turbulence kinetic energy, ε is the turbulence dissipation rate. αs

is the soil volume concentration.

The dynamic mesh algorithm also needs a boundary condition setup. The mo-

tion of the mesh is controlled by file pointDisplacement in OpenFOAM. The

walls, which do not move during simulation, has a zero fixed value of displacement

boundary condition. The jet, which has a constant moving velocity, is defined

as boundary condition type solidBodyMotionDisplacement with a certain moving

velocity in OpenFOAM.
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Figure 6.6: The soil volume concentration profile along the red dash line in the

left figure is assumed to follow the volume concentration changing rule of figure(a).

In figure(a), the volume concentration of soil at the soil water interface increases

gradually, while that in figure(b) changes sharply.

Figure 6.7: Boundary conditions setup side view

Figure 6.8: Boundary conditions setup front view
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6.2 Comparison with experiment

In this section, numerical results of moving jet penetrating cohesive soil clay will

be validated with work of Nobel (2013). The mesh sensitivity check has been

carried out in section 6.1.1. The residual convergence is also ensured before doing

the simulation. For example, the residual convergence of the case when jet ratio is

pj/su = 19.5 and jet traverse velocity vt = 1.83m/s is shown in Fig.6.9. In Fig.6.9,

the final residual after iterations at each time step is shown. It can be seen that

the residual of each variable is controlled under its residual tolerance.

Figure 6.9: Residual convergence check of the case when jet ratio is pj/su =

19.5 and jet traverse velocity vt = 1.83m/s. Residual convergence of soil volume

concentration αs, pressure Prgh and velocity in three directions Ux, Uy and Uz

are checked. The residual tolerance of αs, Prgh and U are 10−16, 10−10 and 10−9

respectively.
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6.2.1 Failure modes during jetting

As mentioned in Chapter 2, there are four failure modes during jetting. In this

thesis, two modes, which are penetrating jet and deflecting jet are reproduced by

CFD simulation. The results are shown in Fig.6.10.

Figure 6.10: Failure modes calculated from CFD. Figure (a) represents the pene-

trating jet, with jet inlet velocity Vin = 45m/s, jet ratio pj/su = 38 and jet traverse

velocity Vt = 0.5m/s. Figure (b) represents the deflecting jet with jet inlet velocity

Vin = 30m/s, jet ratio pj/su = 19.5 and jet traverse velocity Vt = 1.83m/s. The

brown parts represent soils, while the red parts represents jet flow.

The figure (a) in Fig.6.10 shows the case when jet traverse velocity is 0.5 m/s and

jet ratio is pj/su = 38. The figure (b) in Fig.6.10 shows the case when jet traverse

velocity is 1.83 m/s and jet ratio is pj/su = 19.5. It can be clearly seen that figure

(a), which has two zones (non-deflection zone and deflection zone) can represent

the penetrating jet. Figure (b), which has one zone (deflection zone) can represent

the deflecting jet. This means both penetrating jet and deflecting jet mentioned

in the work of Nobel (2013) can be reproduced by the CFD numerical model.
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6.2.2 Dimensionless soil cavity depth at different traverse

velocity with a jet ratio 19.5

In thesis of Nobel (2013), the cavity depth of the soil Zc is nondimensionalized

by the nozzle diameter Dn. The dimensionless soil cavity depth is calculated as

Zc/Dn. Jet ratio pj/su = 19.5 with different jet traverse velocity vt cases have

been done in his experimental work. CFD calculations with same setup have been

done in this thesis work to validate the CFD model. Fig.6.11 shows the comparison

between CFD and experiment. The uncertainty of the experiment mentioned in

Nobel (2013) is 20%, which is shown by the red uncertainty bar in Fig.6.11. Several

remarks can be summarized from Fig.6.11:

Figure 6.11: Dimensionless soil cavity depth at different jet traverse velocity when

jet ratio pj/su = 19.5. The uncertainty of experimental work is 20%, see red

uncertainty bar. The dots represent the results calculated by laminar solver. The

triangles represent the results calculated by buoyant − k − ε RANS model. The

cross symbols represent experimental result from Nobel (2013). The dash lines are

the linear trend lines of results calculated using laminar and RANS solver. The

solid line is the linear trend line of experimental results(Nobel, 2013).

• Compared with laminar model, results calculated by buoyant−k−ε is closer

to the experimental results of Nobel (2013).
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• Both CFD models and experimental work show a decreasing trend of soil

cavity depth as the jet traverse velocity increases.

• The trend lines are almost parallel to each other, meaning the slope of the

trend lines are close to each other.

As the implementation of the buoyant− k− ε turbulence model, the energy dissi-

pation due to the turbulence of the jet flow is considered. Therefore, the soil cavity

depths calculated by using laminar model are deeper than using buoyant − k − ε
model. As the increase of the jet traverse velocity, the time scale of the jet flow

cutting cohesive soil process becomes shorter. As a result, the soil cavity depth

becomes shallower as the the jet traverse velocity increases.

6.2.3 Clay surface dislodgement rate

In this section, the soil surface dislodgement rate calculated from CFD simulation

will be compared with experimental results of Nobel (2013). The case with jet

traverse velocity 0.5 m/s and jet ratio 38, which is a penetrating jet case, is used

here for validation. Fig.6.12 shows the amount of soil dislodged during experiment.

Seen from Fig.6.12, around 6 cells are removed after 0.003 sec jetting process. The

size of the cells in Fig.6.12 is 6.25 mm × 6.25 mm. Because of the limitation of

the experimental data on hand, the transient soil surface dislodgement rate of the

experiment cannot be calculated. With the experimental data on hand, the clay

dislodgement rate is calculated as 0.078 m2/s.
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Figure 6.12: The amount of clay removed after 0.003s jetting from experi-

ment(Nobel, 2013). From the figure, around 6 cells are removed after jetting.

The jet traverse velocity is vt = 0.5 m/s and jet ratio is pj/su = 38.

The surface dislodgement rate of clay as a function of time calculated by CFD

simulation is shown in Fig.6.13. The green dash line in Fig.6.13 represents the

soil surface dislodgement rate of the experiment, which is 0.078 mm2/s. From

Fig.6.13, it can be found that the soil surface dislodgement rate of the experiment

is in between the maximum and minimum value calculated by CFD model. It can

also be seen that the soil surface dislodgement rate calculated by CFD model has

a periodic behavior. The period of the soil surface dislodgement rate is equal to

0.02s, see Fig.6.13.
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Figure 6.13: The soil surface dislodgement rate as a function of time calculated by

CFD model. The green dash line represents the soil surface dislodgement rate of

experiment, which is equal to 0.078 mm2/s.
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Chapter 7

Analysis based on CFD

simulation

In this chapter, analysis based on this CFD model, which was not conducted by

the experiment of Nobel (2013) will be carried out. The following objectives will

be analyzed in this section:

• Soil volume dislodgement rate with respect to jet traverse velocity

• Pressure exerting on soil as a function of time

• Shear plane change during jetting as a function of time

• Jet inclination angle and deflection distance

7.1 Soil volume dislodgement rate with respect

to jet traverse velocity

The volume dislodgement rate of soil during jetting w.r.t jet traverse velocity for

a single moving jet will be discussed in this section. The volume change of soil
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after jetting can be simulated by this CFD model, see Fig.7.1. The soil volume

dislodgement rate V̇d of soil is calculated as:

V̇d = Vd/Td (7.1)

where Vd is the dislodgement volume of soil, Td is the time interval.

Figure 7.1: The soil concentration contour change as a function of time. The jet

ratio is pj/su = 19.5 and the jet traverse velocity is vt = 1.83m/s.

Figure 7.2: Soil dislodgement rate with respect to jet traverse velocity vt. The jet

ratio is pj/su = 19.5.

The volume dislodgement rate of soil w.r.t jet traverse velocity for a single moving

jet when jet ratio is pj/su = 19.5 is shown in Fig.7.2. It can be found that when
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jet traverse velocity is lower than 1.83m/s, the volume dislodgement rate of soil

increases as the jet traverse velocity increases. It means that for a single moving

jet case, the increase of jet traverse velocity can bring a high volume dislodgement

rate of soil. Higher jet traverse velocities are not studied in this thesis, due to

the highest operation velocity of a dredging ship is usually lower than 2 knots

(≈ 1m/s).

7.2 Pressure on soil surface over time

The cohesive soil fails when the pressure exerting on it is over the shear strength.

The pressure is assumed to build up on the soil surface over time until the pressure

exerting on the soil is large enough to break the soil. In experiment, the pressure

on the soil is hard to detect. But CFD software can save the pressure profile as a

function of time. Fig.7.3 shows the pressure profile of a point on the soil surface

over time. It can be seen the pressure is building up on the soil surface when

the jet flow is upon the soil surface. When the pressure is large enough to break

the soil, the soil will be cut off and the pressure will decrease. When the jetting

process is over, the pressure at the chosen position will decrease.

Figure 7.3: Pressure profile on soil surface of deflecting jet over time
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7.3 Shear plane change as a function of time

The shear plane determines where the cohesive soil breaks during jetting. The real

position of the shear plane is hard to determine. The shear plane in this thesis is

determined by the second invariant I2 of shear rate. When the shear rate is larger

than zero, it means the soil is starting to flow.

Fig.7.4 and Fig.7.5 show the shear plane patterns of deflecting jet and penetrating

jet over time. The deflecting jet has a traverse velocity vt = 1.83 m/s and jet

ratio pj/su = 19.5. The penetrating jet has a traverse velocity vt = 0.5 m/s and

jet ratio pj/su = 38. The shear plane pattern can be recognized by the colour

difference shown in Fig.7.4 and Fig.7.5.

It can be found that the changing rule of shear plane pattern over time for deflecting

jet and penetrating jet are different. The shear plane pattern of a deflecting jet

is not changing over time, see Fig.7.4. But the shear plane pattern of penetrating

jet has a periodic behavior as a function of time, see Fig.7.5.

In Fig.7.4, it can be found that the shear plane pattern of deflecting jet, which

has a maximum radius of 90 mm, is not changing over time. In Fig.7.5, it can be

seen the shear plane in the non-deflection zone of the penetrating jet is changing

over time with a period of 0.02 s. The maximum radius of the shear plane of the

penetrating jet is around 75 mm.

It can be concluded from the CFD results that the shear plane pattern change

is determined by the failure mode during jetting. The shear plane pattern is not

changing for deflecting jet, which only has a deflection zone. For a penetrating jet,

which has both non-deflection zone and deflection zone, the shear plane pattern

has a periodic behavior over time.
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Figure 7.4: Shear plane patterns over time of deflecting jet. Jet traverse velocity

is vt = 1.83 m/s. Jet ratio is pj/su = 19.5. The shear rate is plotted on the soil.

The shear plane pattern is marked by the white curve.

Figure 7.5: Shear plane patterns over time of penetrating jet. Jet traverse velocity

is vt = 0.5 m/s. Jet ratio is pj/su = 38. The strain rate is plotted on the soil.

The shear plane is marked by the white curve. Two periods of shear plane change

are shown. The period of the shear plane change is 0.02 s.
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7.4 Jet inclination angle and deflection distance

To define when the jet starts deflecting, the inclination angle of the jet flow is used

in this thesis. The inclination angle θj of the jet is calculated as:

θj = atan(Ux/Uz) (7.2)

where Ux and Uz are the x and z components of jet center line velocity U , see

Fig.7.6. In this thesis, the threshold value of the inclination angle is set to be 5

degree. When the inclination angle θj is larger than 5 degree, the jet is determined

to start deflecting.

Figure 7.6: Definition of jet inclination angle and deflecting distance. Ux and Uz

are the x and z components of jet center line velocity U . The deflecting distance is

defined as the vertical distance between the soil surface and deflecting point. The

deflecting point is the position where jet inclination angle is equal to 5 degree.

The depth where penetrating jet and deflecting jet start deflecting as a function

of time is shown in Fig.7.7. This depth, which is called deflection distance in this

thesis, is defined as the vertical distance from the soil surface to the deflecting

point. The deflecting point is the position where jet inclination angle is equal to

5 degree.

It can be concluded from Fig.7.7 that the deflection distance of penetrating jet

shows a periodic behavior. The changing period of the deflection distance for
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Figure 7.7: The deflection distance over time of penetrating jet and deflecting jet.

The deflection distance is defined as the vertical distance between the soil surface

and deflecting point. The deflecting point is the position where jet inclination

angle is equal to 5 degree. The penetrating jet has a traverse velocity of 0.5 m/s

and jet ratio 38. The deflecting jet has a traverse velocity of 1.83 m/s and jet

ratio 19.5.

penetrating jet is 0.02 s, which is the same as the period of the shear plane change

mentioned in section 7.3. The deflection distance of deflecting jet stays around 0.01

m, which does not change over time. This behavior also coincide the non-periodic

behavior of the deflecting jet shear plane as shown in section 7.3.

It can also be concluded that the non-deflection zone of the penetrating jet does

not have a constant depth. The depth of the non-deflecting zone is changing

periodically. However, the deflection zone of the deflecting jet does not change

during jetting process.
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Chapter 8

Conclusions and

recommendations

In this chapter, the conclusions and recommendations of this master thesis will be

presented.

8.1 Conclusions

In this thesis, a CFD numerical model for simulating moving jet penetrating cohe-

sive soil is built and validated with experimental work of Nobel (2013). Drift-flux

model(Goeree et al., 2016) has been used modeling the sediment motion. Bingham

plastic(Bingham, 1922) has been used modeling the cohesive soil. Dynamic mesh

algorithms, AMI and A/R, are used modeling the moving jet. Besides, analysis

based on this CFD model which was not recorded by the experiment is also con-

ducted. The CFD model has the ability to reveal the details of the jetting process

that could not be retrieved by the experiment.
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8.1.1 Dynamic mesh model

In this thesis, two dynamic mesh algorithms, AMI and A/R, are found and used

modeling the moving jet. AMI combined A/R dynamic mesh method is finally

chosen for modeling the moving jet after a lock-exchange numerical validation.

The combination of AMI and A/R dynamic mesh method is efficient, stable and

accurate. By using this combination, a steady mesh region which separates the

dynamic mesh region by AMI can exist during the simulation. The soil which

is going to be jetted can be settled in this steady mesh region, increasing the

simulation accuracy. The parallel calculation is also available for this combination,

increasing the computational speed and saving computational time. The mesh

quality stays constant during simulation, keeping the accuracy of the calculation.

Besides, this combination allows for arbitrary geometry of the nozzle, which will

be beneficial for optimizing the water injection dredging device.

8.1.2 Validation with experiment

Compared with experimental results from Nobel (2013), the following conclusions

are found:

• Both deflecting jet and penetrating jet failure modes can be reproduced by

the CFD model.

• Using the buoyant − k − ε turbulence model can relatively well predict the

soil cavity depth compared with using the laminar model.

• A comparison of soil surface dislodgement rate between experiment and CFD

simulation illustrates that the CFD simulation can have the same magnitude

of soil production rate as the experiment.
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8.1.3 Analysis based on CFD simulation

Besides the validation with experiment, analysis based on CFD simulation apart

from the experiment are also carried out. From these analysis, the following con-

clusions are found:

• The soil volume dislodgement rate for a single moving jet increases as the jet

traverse velocity increases when jet traverse velocity is lower than 1.83m/s.

• During jetting, the pressure will build up on the soil surface until the pressure

is large enough to remove the soil.

• A shear plane determined by shear rate is defined. By observing the shear

plane change over time, it can be found that the shear plane of the deflecting

jet is not changing over time while the shear plane of penetrating jet is

changing periodically.

• To determine when the jet starts deflecting, a jet inclination angle θj is

defined. A threshold value of jet inclination angle, which is used to determine

if the jet starts deflecting is set to be 5 degree in this thesis. When θj is over

5 degree, the jet is determined to start deflecting. The depth where the

jet inclination angle is equal to 5 degree is called deflection distance in this

study. The deflection distance of deflecting jet does not change over time.

However, the deflection depth of penetrating jet is changing periodically.

8.2 Summary and Recommendations

This thesis work reveals that it is possible to describe the hydraulic excavation

of cohesive soil with reasonable accuracy using CFD numerical model. The CFD

model can also reveal details of the failure process that could not be retrieved from

the experiments. Since the model is generic, the CFD approach can be applied

for a jet bar with multiple nozzles. This can be helpful to improve the design of

dredging equipment, optimize operational settings and estimate production. Based
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on this thesis work, some recommendations for future research will be presented

in this section.

• In this thesis work, the jetted material is the cohesive soil. Bingham plastic

model has been implemented modeling the cohesive soil. In future study,

the material can be replaced by non-cohesive materials (e.g. sand) or less

cohesive materials (e.g. mud) to see the flexibility of this numerical model.

• As a limitation of both time and computational power, the mesh size is

limited to a local size of 0.005 m. As a result, some physics behind cannot be

revealed. If more computational power is available in the future, a calculation

with finer mesh can be done to dig the physics.

• The optimization for the production of the soil is not done in this thesis. It is

interesting to see how the production varies by changing the nozzle diameter,

SOD (stand off distance) of the nozzle and even the water injection angle of

the nozzle.

• Single moving jet cases have been carried out in this thesis. Multiple jets

cases can be done in the future.
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Appendix A

Derivation of drift-flux model

Definitions

Drift-flux model uses continuum theory to describe the motion of the sediments.

Continuum theory deals with the mechanical behavior of materials modeled as a

continuous mass rather than as discrete particles. Instead of describing the motion

of single soil particles (e.g. silt, sand and clay particles), using continuum theory

saves lots of computational power.

The average amount of volume occupied by a sediment fraction is defined as:

αk =
Vk
V0

(A.1)

where αk is the volume concentration of phase k, Vk is the volume of phase k, V0

is the total volume. V0, the total volume also includes the carrier fluid phase is

defined as V0 =
∑N

k=1 αk. The total volume concentration as defined should follow:

N∑
k=1

αk = 1 (A.2)

where N is the total amount of phases. The mixture density is defined as:

ρm =
N∑
k=1

ρkαk (A.3)
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where ρk is the density of phase k. The mixture velocity is calculated by mass

weighted averaged, the Favre averaging:

um =
1

ρm

N∑
k=1

ρkαkuk (A.4)

where um is the mixture velocity, uk is the velocity of phase k. The mass fraction

ck is given by:

ck =
ρkαk∑N
k=1 ρkαk

=
ρkαk
ρm

(A.5)

The relative velocity between the carrier fluid and phase k is defined as:

ukr = uk − uf (A.6)

where uk is the velocity of phase k, uf is the velocity of the carrier fluid. When

k = 1, u1 = uf . The diffusion velocity, which is the relative velocity between

mixture velocity and phase velocity is defined as:

ukm = uk − um (A.7)

The diffusion velocity ukm also follows this relation:

N∑
k=1

αkρkukm = 0 (A.8)

Mixture continuity equation

The mixture continuity equation for phase k is:

∂αkρk
∂t

+∇ · αkρkuk = Λk (A.9)

where Λk is the source term, denoting a phase transition. Due to sediment phase

transitions are assumed to be absent, Λk is equal to zero. The continuity equation

of phase k then reduces to:

∂αkρk
∂t

+∇ · αkρkuk = 0 (A.10)
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Summing up continuity equation of all phases, it will obtain:

∂

∂t

N∑
k=1

αkρk +∇ ·
N∑
k=1

αkρkuk = 0 (A.11)

This is identical to:
∂ρm
∂t

+∇ · (ρmum) = 0 (A.12)

Mixture momentum equation

For each sediment phase, the momentum equation is given by:

∂αkρkuk

∂t
+∇ · (αkρkukuk) =

−∇αkpk +∇ · (αkTk + αkT
t
k) + αkρkg + αkmk

(A.13)

Tk and Tt
k are viscous and turbulent shear stress tensors respectively. mk is the

source term contributed by interacting force between each volume fraction. pk is

the pressure of phase k. g is the gravitational acceleration vector. Summing up

momentum equation of all sediment phases:

∂

∂t

N∑
k=1

αkρkuk +∇
N∑
k=1

(αkρkukuk) =

−∇
N∑
k=1

αkpk +∇ ·
N∑
k=1

(αkTk + αkT
t
k)+

N∑
k=1

αkρkg +
N∑
k=1

αkmk

(A.14)

Substitute Eq.(A.3), Eq.(A.4), Eq.(A.7) and Eq.(A.8) into Eq.(A.14), the momen-

tum equation finally becomes:

∂ρmum
∂t

+∇ · ρmumum =

−∇pm +∇ · (Tm + Tt
m −

N∑
k=1

αkρkukmukm) + ρmg
(A.15)

where the internal force mk is canceled out when summing up all phases. The

ukm, which is the diffusion velocity needs to be closed. The detail of closing this

term refers to Richardson and Zaki (1954).
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Phase transport equation

The closure of the concentration term αk in the mixture momentum equations is

accomplished by using phase transport equation:

∂αk
∂t

+∇ · (ukαk) = 0 (A.16)
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