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Abstract

Model based optimization of reservoir water flooding is an ill-posed problem where significantly different control
strategies deliver near identical Net Present Values (NPVs). Discovering and exploiting the existence of “re-
dundant” control strategies - particularly those in close proximity to an optimal strategy - is valuable since this
offers operational flexibility in reservoir management. To identify such ‘flexible strategies’ this thesis proposes
a workflow to characterize the space of feasible solutions. The feasible region or feasible solution space consists
of all control strategies that deliver an NPV within some threshold from an optimal value.

Ensemble-based optimization is performed with strong Wolfe line search to identify an optimal control
strategy. The BFGS scheme is used to iteratively approximate the Hessian matrix. One dimensional explo-
ration is performed along the singular vector directions that characterize the null space of the Hessian. A
thorough exploration results in an accurate characterization of the feasible region. Such an approach however
is computationally intractable in case of realistic reservoirs with multiple hundred controls. To address this,
a high-dimensional polytope is first defined using the end points from the exploration step. Subsequently, an
innovative cross-section constrained maximum volume ellipsoid is inscribed within this polytope to generate an
ellipsoidal approximation of the feasible region. Validation results are then presented which show that even one
ellipsoid centred at the optimum control vector coordinate provides a conservative description of the feasible
solution space.
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Notation

a or A a scalar (integer or real)
a(.) or A(.) a scalar function
a a vector
a(.) a vector function
ai element i of vector a
A a matrix
Ai,j element i, j of matrix A
a a random scalar variable
a a random vector
A a random matrix
∇b a gradient of a with respect to b
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Chapter 1

Introduction

This report considers the model based optimization of reservoir water flooding. Waterflooding is the most
common secondary recovery strategy for oil reservoirs and aims to induce flow of oil towards producing wells by
providing pressure support through injection of water at injection wells. Since the placement of wells and the
heterogeneity of the reservoir rock will make it difficult to say a priori which injection and production strategy
would be most successful, simulation models can be used to investigate alternative scenarios. While this would
undoubtedly provide valuable insight, it may not deliver a strategy that is optimal. Optimality in hydrocarbon
recovery is commonly defined by the economics of the project, and quantified usually in terms of the Net Present
Value (NPV). Numerical optimization methods can then be employed to search for the strategy that delivers
the maximum NPV.

Injection and production strategies can be parametrized by for example well rates or well pressures at spec-
ified times or within specified time intervals. An alternative is to prescribe fixed well pressures (well head or
bottom hole) and manipulate the well rate by the opening and closing of a valve. In this study the controls
that parameterize the operating strategy are chosen to be valve settings. An optimization method is then re-
quired to determine those valve settings that result in maximum NPV. A large number of methods are available
for this purpose, but experience has shown that gradient-based methods tend to be very efficient for reservoir
optimization problems that typically consist of a large number of controls. A problem with this approach
is that exact gradients require the use of an adjoint method that exploits the availability of derivatives that
generally are not accessible for commercial simulators. The EnOpt (Ensemble Optimization) gradient initially
introduced in Chen (2008) [5], Chen (2009) [6] and later improved upon as summarized by Fonseca (2017) [15]
may therefore be a viable alternative. Although more inefficient in comparison to the adjoint gradient presented
in Brouwer & Jansen (2004) [3], at least for deterministic optimization problems, the EnOpt gradient does not
require simulator source code access. This is a major advantage in the context of commercial simulator usability.

Jansen et al. (2009) [25] observed that waterflood optimization is ill-posed as there exist more control vari-
ables than necessary. Mathematically an ill-posed problem is equivalent to a system of linear equations with
infinitely many solutions. It has often been observed that many different control strategies deliver approximately
identical NPVs. Significant value could exist in having multiple optimal solutions available. Firstly, it offers the
possibility to select a solution that also optimizes a second objective. Van Essen et al. (2011) [40] proposed a
methodology for hierarchical multi-objective optimization that exploits the existence of such multiple solutions.
In later work Van Essen et al. (2012) [41] addressed the issue of flexibility. They noted that since reservoir
simulation models are coarse and may not therefore sufficiently resolve the near-well dynamics that affect the
observed behavior in the well, strategies suggested by such models may never be implemented in the field. They
proposed a two-level closed-loop approach in which the reservoir model provides set points for a fast-model op-
timization step, with the idea that the fast model can be continuously adapted to real-time observed dynamics
and therefore provide better operator guidance in the short term. The availability of flexibility is also important
because of unforeseen circumstances that may arise during production. An example could be problems with
wells that need to be taken offline for extensive maintenance. It may not be possible to update models and
re-optimize strategies every time conditions in the field change.

An alternative approach to provide flexibility is to exploit the existence of multiple optimal operating strate-
gies to identify those solutions that are exchangeable at some stage of the life cycle. A first step towards
establishing a workflow that enables identification of ‘flexible strategies’ is to characterize the space of feasible
solutions. We will define these solutions here as those control strategies that deliver an NPV value that is within
some threshold from the optimal value.

Exploration of an optimal solution space has been investigated in different domains. The term ‘design space
exploration’ was encountered frequently in microprocessor design (Gries (2003) [21], Eyerman et al. (2006) [10],
Kang et al. [26] amongst many others) and also in aircraft design (Baker et al. [1]). However in these works,
the focus is on identifying an optimal solution itself rather than characterization of the optimal solution space.
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Quantifying the ranges of feasible control strategies for reservoir lifecycle optimization

The work in systems biology by Zamora-Sillero et al. (2011) [44] aligns most closely with the goals of this
thesis. In this work, a cost function is defined which calculates how well a set of biochemical parameters produces
a certain behavior. The feasible space (which is recognized as potentially non-convex and poorly connected) is
defined as that subset of biochemical parameter space where the cost associated with a parameter vector is be-
low some threshold. To characterize the feasible space, global exploration termed OEAMC (out-of-equilibrium
adaptive Metropolis Monte Carlo) sampling is performed first. The feasible samples found here serve as seed
points for local exploration with MEBS (multiple ellipsoid based sampling). The MEBS approach iteratively
constructs ellipsoids within which uniform sampling is performed. The goal with MEBS is to have multiple
ellipsoids enclose nearly convex feasible sub-regions. The feasible samples inside each ellipsoid are then used to
collectively characterize the feasible space. Uniform sampling within multiple ellipsoids therefore results in a
‘fine-grained’ characterization of the feasible space. Although ideal, such an approach is potentially intractable
in the context of reservoir problems, which typically consist of multiple hundred dimensions.

We investigate here a variation on the above approach that addresses this shortcoming. In particular we
implement a BFGS scheme to estimate the Hessian matrix containing second derivatives of the objective func-
tion with respect to the controls. Following Van Essen et al. (2011) [40] we define its null space and explore the
principal directions of this space in a systematic way. Secondly, we avoid the computational cost that would
be imposed by repeated uniform sampling in multiple ellipsoids by first defining a high-dimensional polytope
and subsequently determining a cross-section constrained maximum volume inscribed ellipsoid. We then show
that this (single) ellipsoid provides a reasonably conservative, if not thorough description of the feasible solution
space.

The remainder of this report is structured as follows: In Chapter 2 we define the mathematical optimization
problem as well as the objective function for our reservoir problem. We also review the fundamentals of
optimization theory that will be required in later chapters as well as the ensemble optimization methodology.
Chapter 3 discusses the steps used for exploration of the Hessian null space. Afterwards in Chapter 4 the
ellipsoid fitting workflow is described in detail. Chapter 5 contains a description of experimental results that
were obtained with a simple reservoir simulation model to which the entire workflow was applied. Finally,
Conclusions and Recommendation for further work are provided in Chapter 6.
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Chapter 2

Optimization

In this chapter the economic lifecycle optimization of a reservoir model is considered. Water flooding is selected
as the method of oil recovery since it is a well understood process and can be simulated/modelled accurately
over long distances and time spans. Water flooding is accomplished with injector wells which help maintain
reservoir pressure and displace oil towards the producer. Each injector well is equipped with one ICV and the
valve aperture can be controlled over time. Controllable wells are fundamental to the continuous (reservoir)
management paradigm of closed loop reservoir management (CLRM). (Brouwer & Jansen (2004) [3]) Such wells
enable improved oil recovery and profitability with decreased water production and delayed water breakthrough.

2.1 NPV Calculation

An objective function J is defined that tracks the discounted net present value (NPV) associated with the
injected and produced liquid volumes at each time step.

J =
K∑

k=1


{[
QOk

· rO −QWpk
· rWp

]
−
[
QWik

· rWi

]}
·∆tk

(1 + b)

tk
τt

 (2.1)

QOk Oil production rate (m3/day)

QWpk
Water production rate (m3/day)

QWik
Water injection rate (m3/day)

rO Price of oil ($/m3)

rWp
Cost of water produced ($/m3)

rWi Cost of water injected ($/m3)

∆tk Difference between consecutive time steps (days)

tk Cumulative time corresponding to time step k (days)

τt Reference time for discounting (days)

b Discount factor (%/year)

k Time step [-]

K Total Duration (days)

Table 2.1: NPV calculation parameters

2.2 Optimization Formulation

The goal of optimization is to determine the ICV aperture settings that enable the highest NPV over the
producing life of the reservoir. This maximization problem can be formulated as:

Max
u

J(u),

Subject to umin 6 u 6 umax,
(2.2)

where u is a control vector consisting of the injector ICV aperture settings over time. Vectors umin and
umax are simple bound constraints which specify the minimum and maximum valve apertures at each well for
each time step. Consequently, the length of the control vector can be defined as:

length(u) = (ICV’s per well)× (# of wells)× (# of control time steps). (2.3)

As an alternative to ICV apertures, flowing bottom hole pressures or well rates can also be specified as
controls.
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2.3 The EnOpt (Ensemble Optimization) gradient

This thesis uses gradient based optimization. The gradient g at coordinate u of the multi-variate (objective)
function J represents the direction of fastest function rise and can be combined with the steepest ascent algo-
rithm to reach a local optimum (maximum). (Nocedal & Wright (2006) [36] Section 2.2, p. 21)

The adjoint method is one approach to calculate the gradient for a reservoir model. This method is efficient
in that it requires one forward simulation and just one additional backward (adjoint) simulation to determine
the exact gradient, independent of the number of controls. (Brouwer & Jansen (2004) [3]) While efficient,
this method also requires source code access for implementation - a task that is not feasible with commercial
simulators - and is thus not considered.

Consequently, the approximate ensemble based gradient (EnOpt gradient) introduced by Chen (2008) [5] is
used. With this, the gradient is calculated as a statistical (least squares) relation between an ensemble of per-
turbed control vectors and the associated objective function values. The size of the perturbed control ensemble
decides the number of simulations required and also influences the gradient quality. (Fonseca et al. (2015a) [13])

This thesis uses a deterministic reservoir model for optimization where it is assumed the subsurface geology
is already known (single geological realization). Uncertainty in subsurface geology relating to the distribu-
tion of fluid flow related parameters such as permeability and channel orientations can also be accounted for.
This is done by creating an ensemble of equi-probable geological realizations in an approach known as robust
optimization. (Fonseca et al. (2017) [15], Chen et al. (2009) [6] or Van Essen et al. (2009) [39])

2.3.1 Mathematics Of EnOpt

The mathematics of the EnOpt gradient is presented here based on the work in Fonseca et al. (2017) [15]

Here, u is a control vector consisting of d elements where each element is a variable to be optimized. These
elements can either be ICV aperture settings, bottom hole pressures or rates. A user specified initial guess of
u is supplied at the start of optimization.

u =
[
u1, u2, . . . , ud

]T
(2.4)

At iteration l, a multivariate Gaussian distributed ensemble of size Np is generated as [ul,1,ul,2, . . . ,ul,Np
]

with distribution mean as ul and a predefined distribution-covariance matrix CU. The control vector ul is
iteratively updated till convergence while the matrix CU is kept a constant.

The function value for each member of the perturbed ensemble is calculated as J(m,ul,j) where m represents
the geological realization considered and j = 1, · · ·Np. Assuming the second derivatives of J are bounded and
continuous, a truncated Taylor series expansion can be used to express the change in function value arising due
to the perturbations in terms of derivatives as:

J(m,ul,j) ≈ J(m,ul) + (ul,j − ul)
T∇J(m,ul) +O(‖∆u‖2), (2.5)

where ∇J(m,ul) is the d × 1 gradient vector. Ignoring the error term O(‖∆u‖2), the first order approxi-
mation in equation 2.5 can be rewritten as:

(ul,j − ul)
T∇J(m,ul) = J(m,ul,j)− J(m,ul). (2.6)

Equation 2.6 suggests the difference in control vector coordinates and objective function values - relative to
the optimum - introduced by the perturbation can be organized into a linear system of equations.

This is done using a d×Np matrix ∆Ul and an Np × 1 vector ∆jl where:

∆Ul =
[
ul,1 − ul, ul,2 − ul . . . ul,Np

− ul

]
, (2.7)

∆jl =
[
J(m,ul,1)− J(m,ul), J(m,ul,2)− J(m,ul) . . . J(m,ul,Np)− J(m,ul)

]T
. (2.8)

If d = Np, meaning the size of the perturbed ensemble is equal to the number of controls, the gradient
∇J(m,ul) can directly be computed as:

∇J(m,ul) = (∆Ul)
−1∆jl. (2.9)
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However typically, the number of controls d is larger than the ensemble size Np. This means the matrix
∆Ul is singular and an inverse does not exist. In this case, an approximate gradient can still be computed as
the underdetermined least squares solution:

gl = ∇J(m,ul) =
(

∆Ul(∆Ul)
T
)+

∆Ul(∆jl), (2.10)

where the + superscript indicates the Moore-Penrose pseudo-inverse and is computed using a singular value
decomposition. (Strang (2006) [38]). Since only one realization is used, the notation is simplified by eliminating
m. The objective function value and gradient at ul therefore become J(ul) and ∇J(ul) respectively.

With the objective function J , control vector u and gradient vector g defined, lifecycle optimization can be
treated as a constrained, continuous multi-variate optimization problem in d dimensions.

2.3.2 Steepest Ascent Algorithm

If uk is the control vector at the kth optimization iteration, the steepest ascent update can be defined as:

uk+1 = uk + αkgk. (2.11)

The step length parameter αk is determined from line search. For steepest ascent update where Hessian ap-
proximation is not required, the Armijo back tracking line search can be used. See Nocedal & Wright (2006) [36]
Section 3.1, p. 33 for the backtracking algorithm. gk is the EnOpt gradient vector computed at the kth iteration.

Due to its approximate nature the EnOpt gradient need not always be the direction of ascent and optimiza-
tion can occasionally stagnate. This was observed experimentally. (figure 5.1a)

2.4 Exploiting An Ill-Posed Problem

While lifecycle optimization unquestionably forms the foundation of this thesis and has been covered in depth
till now - the true objective of this thesis lies one step further.

Jansen et al. (2009) [25] observed that substantially different control strategies (arising from different con-
trol update frequencies) resulted in near identical NPV’s. This result (amongst others in the paper) led to the
conclusion that waterflood optimization was an ill-posed problem as there existed many more control variables
than necessary. A similar effect was observed before in the minimization of a mismatch function for computer
assisted history matching. (Oliver et al. (2008) [37]) Intuitively, an ill-posed problem is equivalent to a system
of equations that contains more variables than equations and can consequently admit infinitely many solutions.

While this might appear as an issue, an ill-posed problem in the context of this thesis is actually quite
favorable since it translates into potentially multiple control strategies which result in an overall NPV that is
identical to or near the optimum but yet different enough to provide an operator with flexibility to respond to
changing market conditions and financial positions. Flexible production strategies also provide the possibility
of dealing with unforeseen maintenance activity such as well interventions which as mentioned in Van Essen
et al. (2012) [41] is an issue that severely limits the practical usability of model reservoir based production inputs.

The primary objective of this thesis therefore becomes ‘quantifying the ranges of feasible control strategies
that lie within a user defined economic threshold.’ To accomplish this objective it is necessary to explore the
feasible region in the vicinity of the optimum control coordinate - a region where the objective function value
does not decrease beyond the user defined threshold relative to the optimum. Refer to chapter 3 and 4 for
details on the practical implementation.

Exploring the feasible region requires search directions. It is desirable to identify search directions which
result in a minimal change in objective function value as this translates into longer exploration distances and
potentially a greater range of feasible controls. The hierarchical multi-objective production optimization concept
demonstrated by Van Essen et al. (2011) [40] and Fonseca (2011) [12] describes an approach to identify such
directions. In brief, this approach requires computing the Hessian at the optimum and subsequently an SVD
is applied to identify the Hessian’s null space. The basis vectors that span this null space represent directions
relative to the optimum coordinate along which the decrease in objective function value is slowest. Consequently
these directions can be used for exploration. An extensive description is now presented:
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Background: Hierarchical multi-objective optimization requires two objective functions with divergent
goals. The primary objective focuses on long term (future) production by maximizing the cumulative undis-
counted cash flow. The secondary objective focuses on (near initial) short term production by maximizing a
highly discounted cumulative cash flow (where discount factor = 0.25). The two publications suggest that since
lifecycle optimization is ill-posed, redundant degrees of freedom (DOF) exist even when the primary objective
has reached optimality. This redundancy provides “maneuverability” in terms of control strategies and is used
to improve the secondary objective.

To identify the redundant degrees of freedom Fonseca (2011) [12] suggest creating a quadratic approximation
of the primary objective function via the (truncated) Taylor series expansion. The process is explained below:

Suppose u∗ is the optimum coordinate and J is an objective function. Let ∆u be a perturbation vector
with the same length as u∗ i.e., d× 1. The Taylor series expansion around u∗ can be expressed as:

J(u∗ + ∆u) ≈ J(u∗) +∇J(u∗)T ·∆u +
1

2
∆uT · ∇2J(u∗) ·∆u +O(‖∆u‖3). (2.12)

Equation 2.12 is a quadratic approximation of the multivariate objective function J - an approximation
which estimates local function behavior using only knowledge of the function’s first and second derivatives.
The term ∇J(u∗) is the d× 1 gradient vector while ∇2J(u∗) is the d× d Hessian matrix. If u∗ is the (local)
optimum that lies in the interior of the feasible domain with no active constraints then,

∇J(u∗) = 0. (2.13)

Substituting 2.13 in equation 2.12 we obtain:

J(u∗ + ∆u) ≈ J(u∗) +
1

2
∆uT · ∇2J(u∗) ·∆u +O(‖∆u‖3). (2.14)

Equation 2.13 indicates that the gradient vanishes at the optimum. Consequently, the quadratic approxi-
mation in equation 2.14 is dependent only on the Hessian matrix.

Since u∗ is the local maximum, the Hessian matrix H = ∇2J(u∗) at this coordinate is either:
1. negative definite - in which case the Hessian has full rank and redundant DOF’s do not exist.
2. negative semi-definite - in which case the Hessian is rank deficient and both redundant DOF’s and a null

space exist.

Limiting consideration to the case of a negative semi-definite Hessian matrix, the null space of such a matrix
H ∈ Rd×d consists of all vectors x ∈ Rd×1 for which Hx = 0. This is in addition to the zero vector which is
always a part of the null space.

The null space of the Hessian is identified by a singular value decomposition. (Strang (2006) [38]) As the
Hessian is symmetric, the SVD becomes:

H = QΛQT . (2.15)

Singular vectors (q1, . . . , qd) are contained in the columns of Q while the associated singular values (σ1, . . . , σd)
are contained along the diagonal of Λ. The orthonormal basis B that defines the null space of H consists of
the columns of Q corresponding to zero singular values in Λ. This can be represented mathematically as:

B ,
(
qi
∣∣σi = 0, i = 1, . . . , d

)
. (2.16)

If the perturbation vector ∆u is selected from the null space of H,

∇2J(u∗) ·∆u = 0. (2.17)

Substituting 2.17 in equation 2.14 we obtain:

J(u∗ + ∆u) ≈ J(u∗) +O(‖∆u‖3). (2.18)

Equation 2.18 suggests that for a suitably selected ∆u the adjusted control vector (u∗ + ∆u) produces a
minimal change in objective function value relative to the optimum.

Van Essen et al. (2011) [40] and Fonseca (2011) [12] further discuss methods to project the improving search
direction of the secondary objective (i.e., the gradient) onto the null space of the primary - resulting in both
objectives being optimized - but that discussion is not of relevance to this thesis. Equation 2.18 does however
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serve as justification to selecting the null space basis vectors of the Hessian as search directions.

In practice, the BFGS Hessian approximation is positive definite regardless of the true Hessian at a coor-
dinate. (Nocedal & Wright (2006) [36] Section 6.3, p. 150) This means the Hessian matrix has full rank and
no true null space exists. Van Essen et al. (2011) [40] and Fonseca (2011) [12] consequently suggest a relaxed
definition for singular vectors to be admitted as basis vectors of the null space. An admission cut-off is defined
based on relative singular values as:

B ,

(
qi

∣∣∣∣ σiσ1 < 0.02, i = 1, . . . , d

)
, (2.19)

where σ1 is the largest singular value. This replaces the stricter requirement presented in equation 2.16.
For the sake of a thorough exploration, this thesis sets the cut-off as σi/σ1 <= 1 thereby ensuring all singular
vectors are used as search directions.

2.5 Approximating The Hessian Matrix

No reservoir simulator provides direct functionality to compute the Hessian. In this thesis the Broydon-Fletcher-
Goldfarb-Shanno (BFGS) scheme is used to iteratively approximate the Hessian matrix. Iteratively building
curvature/second order derivative information is computationally attractive in comparison to an approach such
as finite difference Hessian approximation which requires (d2+3d)/2 function evaluations where d is the number
of controls. (See Dennis & Schnabel (1983) [7] p. 80, 105) This is especially true when function evaluations are
expensive. Fonseca (2011) [12] also use BFGS Hessian approximation. Van Essen et al. (2011) [40] have access
to an adjoint gradient and this justifies their choice of a finite difference Hessian.

2.5.1 Line Search

The BFGS scheme requires a line search which accounts for gradient information at each iterate to preserve
Hessian positive definiteness. (Nocedal & Wright (2006) [36] Section 6.1, p. 143) For this reason, the strong
Wolfe line search (SWLS) is used. The strong Wolfe conditions for a successful trial iterate uk+1 are:

J(uk+1) > J(uk) + c1αk∇J(uk)Tpk

|∇J(uk+1)Tpk| 6 c2|∇J(uk)Tpk|
(2.20)

(a) Sufficient Increase Condition (b) Curvature Condition

Figure 2.1: Strong Wolfe conditions - line search is depicted as a univariate optimization problem in α where
the goal is to find a step length suitable to both Wolfe conditions. In figure 2.1b the scalar product of gradient
∇J(uk)T and search direction pk indicates slope in the univariate sense - at α = 0.

In the above inequalities, pk is the search direction, αk is the trial step length and ∇J(uk)Tpk is the scalar
directional derivative of the gradient and search direction.

The ‘sufficient increase’ condition relates the minimum acceptable increase in objective function value to
step length. c1 is a constant set as 10−4. Figure 2.1a indicates that a larger c1 results in a stricter ‘Sufficient
Increase’ requirement. The “curvature” condition indicates that at the trial iterate, the magnitude of the scalar
product of the new gradient and search direction |∇J(uk+1)Tpk| should be smaller than that of the existing
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gradient and search direction c2|∇J(uk)Tpk| - by a certain margin. This condition forces α to lie in the neigh-
borhood of the local minimizer or stationary point of J(uk +αpk). The value of c2 can be selected in the range:
0 < c1 < c2 < 1 and is set as 0.9 in the experiments.

From the perspective of an EnOpt gradient, it should be noted that testing for the “curvature” condition
is computationally expensive since the gradient has to be calculated at each intermediate test iterate of line
search - within one optimization iteration. This condition does however ensure that the gradients are sampled
at points which allow the BFGS scheme to appropriately capture curvature information - allowing for a better
Hessian approximation. (Nocedal & Wright (2006) [36] Section 6.1, p. 142)

The Armijo backtracking line search (ABTLS) decreases step length (backtracks) relative to a trial step
length till the ‘sufficient increase’ condition is met. However there is no provision to test the gradient at any
intermediate iterate to see if the “curvature” condition is satisfied - which therefore makes it unsuitable for
BFGS Hessian approximation. (Nocedal & Wright (2006) [36] Section 6.1, p. 143)

Refer to appendix A1.2 for details on how the trial step length is calculated. With a known trial step length,
the step length bracketing and zoom operations suggested in Nocedal & Wright (2006) [36] Algorithm 3.5, 3.6,
p. 60, 61 are used to identify a final step length that satisfies both strong Wolfe conditions - if it exists. The
MATLAB implementation of these algorithms sourced from Guipeng Li [29] is used.

2.5.2 Steepest Ascent Algorithm with BFGS

The steepest ascent update with BFGS approximation consists of the following steps:

1. Set the search direction pk where,

(a) pk = ∇J(uk) - steepest ascent
(b) pk = H−1k ∇J(uk) - quasi-Newton (not used)

2. Update controls: uk+1 = uk + αkpk Where αk is found through strong Wolfe line search

3. Set sk = uk+1 − uk

4. Set yk = ∇J(uk)−∇J(uk+1)

5. The updated approximate Hessian is: Hk+1 = Hk −
Hksks

T
kHk

sTkHksk
+

yky
T
k

yT
k sk

Note that Nocedal & Wright (2006) [36] use Bk to refer to the approximate Hessian and Hk to refer to its
inverse. This thesis uses Hk to refer to the approximate Hessian instead. sk represents the difference between
two consecutive iterates while yk represents the difference in gradient at consecutive iterates. At the first iter-
ation, the Hessian is set as the identity matrix.

Typically sk = αkpk is used and is acceptable for unconstrained optimization problems. When simple bound
constraints are used, as done in this thesis αkpk need not equal uk+1−uk. αkpk represents the suggested change
in controls whereas uk+1 − uk is the actual change. The difference arises when controls in uk are situated at
bounds and the direction vector pk points outwards - meaning it attempts to decrease a control at the lower
bound or increase a control at the upper bound. Controls that exceed bounds during a line search update have
to be reset to their minimum/maximum values and this gives rise to the discrepancy.

Gill et al. (2001) [18] mention that in quasi-Newton methods such as BFGS, the second order derivative
information is accumulated in a sequence of expanding subspaces. They state, “at the kth iteration (k < d),
function curvature is known along vectors that lie in a gradient subspace that can have at most k + 1 di-
mensions.” (d is the number of controls to be optimized) This result implies for an approximate Hessian to
completely capture curvature - at least d iterations of the BFGS update are required. A BFGS Hessian update
counts as valid only when both ‘sufficient increase’ and “curvature” conditions of the strong Wolfe line search
are met.

To ensure sufficient BFGS updates before convergence, the steepest ascent search direction is used in place
of the quasi-Newton search direction. Griffin (2012) [22] present the BFGS algorithm from a maximization
point of view and this publication was useful in solving issues related to sign convention. The BFGS scheme has
been validated on both the regular (minimization - appendix A1.3.3) and inverted (maximization - appendix
A1.3.4) 2D Rosenbrock function.
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2.6 Reservoir model

Figure 2.2: Reservoir permeability

This thesis uses the MATLAB Reservoir Simulation Toolbox (MRST) by Sintef [30]. Four injector wells equipped
with one inflow control valve (ICV) per well are specified. From a reservoir simulation perspective, each ICV
setting is modelled as the well productivity index that indicates connectivity between a well and its reservoir
gridblock. The aperture for each ICV can be set as a scalar value between 10−6 and 1. The production period is
4000 days divided in 10 time steps of 400 days each. Using equation 2.3 this results in an optimization problem
consisting of 40 variables. (4 wells × 1 ICV/well × 10 time steps)

Properties of the reservoir model are as follows:

Grid blocks 49× 49× 1
Reservoir permeability 100 mD

Fault permeability 0 mD
Porosity 0.20

Initial Sw 0.20
Initial Pres 200 bar

Table 2.2: Initial reservoir properties

The reservoir consists of a single layer with 2401 gridblocks and has an ‘L’ shaped fault that impedes fluid
flow - posing a challenge from a lifecycle optimization perspective. Two phase incompressible flow is considered
where the effects of gravity and capillary pressure are neglected. The four injectors are operated at a constant
BHP of 300 bars while the producer is operated at a constant BHP of 100 bars.
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Property Water Oil Unit
Viscosity 0.4 0.9 cP
Density 1014 859 kg/m3

Relperm exponent 2 2 [-]
Phase residual saturation 0.2 0.3 [-]

Phase relperm @ residual saturation 0.4 0.8 [-]

Table 2.3: Fluid properties

The discounted net present value is calculated based on equation 2.1 and the following inputs:

Oil price 150 $/m3

Water production cost 25 $/m3

Water injection cost 5 $/m3

Discount factor 0.08

Table 2.4: NPV calculation parameters
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Chapter 3

Exploration

The outcome of optimization is a control strategy that results in a (potentially local) maximum NPV for the
previously described reservoir model. It is now useful to explore the d-dimensional control space for strategies
that result in near optimal NPV. In the context of exploration, ‘near optimal’ refers to an acceptable decre-
ment in objective function value - relative to the optimum. This user specifiable ‘acceptable decrement’ defines
a lower threshold Jmin for the objective function value where associated control strategies can still be called
feasible. The lesser the threshold, the larger the range of strategies admitted in the feasible region. The goal of
exploration is thus identifying the shape of this feasible region - which is a d-dimensional space containing all
feasible control strategies - including the optimum.

Mathematically, the feasible region F consists of the set of all control vectors u in Rd for which the function
value condition J(u) > Jmin holds.

F = {u ∈ Rd |J(u) > Jmin} (3.1)

Identifying the shape of the feasible region is equivalent to identifying the shape of the objective function
contour/boundary/level-set for a given function value threshold. A thorough exploration requires many function
evaluations and translates to a large number of samples on this boundary.

The samples/points found on the boundary of the feasible region serve as vertices to a d-dimensional poly-
tope which constrains the centre and axis lengths of an inscribed hyper-ellipsoid. (chapter 4) More points on
the function boundary results in more polytope constraints and consequently a better ellipsoidal approximation
of the feasible region. Exploration however is subject to the curse of dimensionality meaning the number of
function evaluations needed to map the boundary increases exponentially with number of dimensions. So, while
it may be computationally intractable to map the function boundary perfectly a coarse approximation can still
be made.

Regarding terminology, this thesis uses the terms ‘singular vector’, ‘exploration direction’ and ‘direction
vector’ interchangeably.

3.1 In practice

The singular value decomposition of the BFGS Hessian at the optimum gives d orthonormal singular vec-
tors (q1, . . . , qd). Exploration is performed by varying the optimum coordinate along the positive and negative
extents of only one singular vector at a time and this results in 2 × d points obtained on the boundary of
the feasible region. The algorithm for exploration is presented in 3.2. Similar one dimensional exploration is
performed in Director & Hatchel (1977) [9] and Zamora-Sillero et al. (2011) [44].

It should be noted that exploration along only d singular vectors means function value information away from
the exploration axis (defined by singular vectors) is not available. This means - with the current exploration
algorithm - it is unknown how the objective function value changes/evolves when the optimum coordinate is
perturbed along say, two or more singular vectors simultaneously.

If the optimum coordinate were to be varied along two singular vector directions simultaneously, then func-
tion value information is identified along a 2-dimensional plane in d-dimensional control vector space. This idea
has been used only to diagnose the quality of ellipsoid fit in the feasible region - in an approach this thesis terms
‘2D Plane Scan’. While such exploration does indeed lead to a larger number of points on the feasible region
boundary - which is desirable - the main issue which disqualifies its consideration is computational cost. For
example: Two singular vectors can be chosen from d total vectors in dC2 combinations. In the 40 dimension
reservoir case, this results in 40C2 = 780 unique 2-dimensional planes that require exploration.
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u← uoptimum

α← αinit

for i ∈ {1, · · · , d}
while α > αmin

utemp ← u + αqi

Evaluate J(utemp)

if J(utemp) < Jmin

α← α× 0.5

else

Store
(
J(utemp),utemp

)
u← utemp

end if

end while

Reset u← uoptimum, α← αinit

Repeat while block with− qi

end for

(3.2)

The above algorithm can be interpreted as a 1D line search where singular vectors are used as search
directions and termination is based on a minimum acceptable step size condition. Vector qi represents the
ith singular vector. The function values and coordinates at each intermediate step are stored and this allows
visualizing the change in objective function value relative to distance from the optimum. From a parallel
computation point of view, the 2× d line searches can be initiated simultaneously (along positive and negative
extents of d singular vectors).

3.2 Log Transformed Controls

As indicated in equation 2.2, lifecycle optimization is a constrained optimization problem. The vectors umin

and umax indicate the lower and upper bounds for values the ICV settings can take. The presence of bounds
poses a challenge for exploration.

3.2.1 The Issue With Projection

Figure 3.1: Bound constraints are a hindrance to exploration

Experimentally it was observed that the optimum control vector has many controls at bounds. A control at
the lower bound for example indicates that the optimizer has deemed zero injection for the associated well and
time step as ideal from an NPV standpoint.
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If an exploration direction has a vector element that results in an increase in the magnitude of a control at
the lower bound then this is not a problem. However, if the direction vector element points outwards meaning it
tries to decrease a control already at the lower bound or say, tries to increase a control at the upper bound then
exploration is possible only with ‘projection’ - where the control violating the bound constraint is projected
back to its minimum or maximum value - at each exploration step.

Points found through projection-based exploration do not lie in the span of the singular vectors used for
exploration. This means the vector distance from the exploration origin (i.e., the optimum coordinate) to a
projected point on the feasible region boundary cannot be expressed in terms of the singular vector used for
exploration. This however is an issue specific to the ellipsoid fitting workflow described in chapter 4. Projection
also means the exploration directions are no longer mutually orthogonal.

These issues are avoided by applying a log transformation to the controls.

Figure 3.2: Log transformed vs. Regular controls

The log transformation is a non-linear transform which maps the lower bound umin
i = 10−6 to si = −∞

and the upper bound umax
i = 1 to si = +∞ where i = 1, · · · , d and si is a control in the log transformed space.

(Gao et al. (2006) [17]) As the lower/upper bounds are eliminated the log transformed space is unconstrained
and consequently optimization, exploration and ellipsoid fitting are performed in this space.

The ith control ui is converted to the log transformed space as:

si = ln

(
ui − umin

i

umax
i − ui

)
(3.3)

To return to the regular space the inverse transform is defined as:

ui =
exp(si)u

max
i + umin

i

1 + exp(si)
(3.4)

The EnOpt gradient & BFGS Hessian are computed with respect to the log transformed coordinates and
the SVD of the Hessian still provides the exploration directions in the log transformed space. The regular space
is used only to evaluate the objective function value and generate the ensemble of perturbed control vectors
for EnOpt gradient computation. Issues relating to the control vector perturbation process - as described in
Wang et al. (2007) [42] - are addressed in appendix A1.4. This appendix section also describes the gradient
computation workflow and presents the motivation for restricting controls in the control vector ensemble more
conservatively to within umin

i,perturb = 10−4 and umax
i,perturb = 0.9999.

In practice numerical issues arise with equation 3.3 when ui = 10−6 or ui = 1 as the corresponding log
transformed controls reach − inf and + inf respectively. This is addressed locally in the MATLAB code by
adding +eps to all vector elements in umax and -eps to all vector elements in umin where eps = 2.2204×10−16.
Consequently for ui = 10−6, si = −36.0437 and for ui = 1, si = +36.0437 as can be seen in figure 3.2.

13
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3.3 2D Plane Scan

Exploration can be performed by varying the optimum control vector along two singular vector directions simul-
taneously. This way, the function value information is identified along a 2-dimensional plane in d-dimensional
control vector space. The algorithm for this exploration is presented below and consists of two steps:

Step 1 (Primary exploration):
i← 1

α← αinit

u← uoptimum

U(:, i)← u

while α > αmin

uprimary
temp ← u + αp

Evaluate J(uprimary
temp )

if J(uprimary
temp ) < Jmin

α← αmin

else

i← i+ 1

Store J(uprimary
temp )

u← uprimary
temp

U(:, i)← u

end if

end while

Reset u← uoptimum, α← αinit

Repeat while block with− p

(3.5)

Step 2 (Secondary exploration):

α← αinit

for j ∈ {1, · · · , i}
u← U(:, j)

while α > αmin

usecondary
temp ← u + αs

Evaluate J(usecondary
temp )

if J(usecondary
temp ) < Jmin

α← αmin

else

Store
(
J(usecondary

temp ),usecondary
temp

)
u← usecondary

temp

end if

end while

Reset u← U(:, j), α← αinit

Repeat while block with− s

end for

(3.6)

In step 1, a primary direction p is selected from d total singular vectors and a line search is performed along
its positive and negative extents. The control vector coordinates at each primary exploration step are stored as
column vectors in a matrix U . These then serve as the initial coordinates for exploration along the secondary
direction s in step 2, where s is chosen from the remaining d− 1 singular vectors.
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From a parallel computation perspective, the i feasible control vector coordinates found at the end of pri-
mary exploration are used to initiate 2× i parallel line searches for the secondary exploration phase. 2× i arises
from the fact that both positive and negative extents of s need to be explored.

To visualize the 2D plane (that exists in d-dimensional space), the number of steps along the positive and
negative extents of each primary and secondary exploration iteration are stored. With the step length α known,
this information is used to create a proxy 2D plot where the function value information is presented in terms
of marker color. The 2D plane scan results are presented in section 5.3.

To be clear in both plane scan algorithms 3.5 and 3.6, step size contraction is not used. Instead, a constant
initial step size is specified (αinit = 2.5 in experiments) and if it is observed that function value at an exploration
step decreases below the acceptable threshold, exploration along that extent is simply terminated.
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Chapter 4

Approximating the feasible region

4.1 Workflow overview

The goal of this thesis is to capture the feasible region where the objective function value is greater than some
threshold. The outcome of exploration along positive and negative extents of each singular vector is a set of
2 × d extremapoints at the boundary of the feasible region. See Figure 4.1. While sampling 2 × d points in
d-dimensional space is not thorough by any means, it still very coarsely captures the shape of the objective
function contour.

With orthogonal exploration directions, the extremapoints found lie on linearly independent singular vectors
and serve as vertices to a d-dimensional polytope (d-polytope). A polytope is a convex bounded polyhedron.
See theorem 2 in [43]. While a polytope is itself an approximation of the feasible region, this thesis explores the
idea of using an ellipsoid inscribed within such a polytope.

Figure 4.1: This 3-polytope is contained in the feasible region of the 3D Rosenbrock function. The optimum
is chosen as the coordinate (0,0,0) for easy visualization. Singular vectors from the Hessian’s SVD at this
coordinate are used as search directions - which happen to be parallel to the Cartesian axes. The intermediate
steps in line search are shown in blue. Exploration is terminated when the function value at a point exceeds
a predefined threshold and the point immediately prior is termed an extremapoint. With 3 singular vectors, 6
extremapoints are obtained.

Inscribing an ellipsoid is treated here as an optimization problem. See section 8.4.2 in [2] and appendix A2.4
for more information. Convex optimization requires constraints that help define the centre, orientations and
axis lengths of an ellipsoid. In this thesis, the d singular vector directions from the Hessian’s SVD serve as axis
orientations for the inscribed ellipsoid. This serves as a simplifying assumption and leaves only the centre and
axis lengths to be found through optimization. In fact if necessary, the centre of the inscribed ellipsoid can also
be selected beforehand (as the optimum) leaving only the axis lengths to be found through convex optimization.
The disadvantage with both these approaches is that the quality of the BFGS Hessian approximation now
influences the orientations of the inscribed ellipsoid.

Every polytope can be represented in two equivalent forms:
1. As the convex hull of its vertices (Figure 4.2)
2. As the set of solutions to a system of linear inequalities where each inequality defines a unique facet of

the polytope (Figure 4.3). In this sense, C = {x | aix 6 bi, i = 1, . . . , k} is a polytope that consists of
the set of all elements x for which the k linear inequalities hold.
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These are the vertex and halfspace representations respectively. For additional details refer to Glossary
15.1 in [24] & Theorem 2.49 in [45]. A facet is a d − 1 dimensional face of the polytope. These inequalities
or polytope facets serve as constraints to the convex optimization problem. See appendix A2.4. The linear
inequalities that define these facets can be generated from the vertices (extremapoints) through a process
known as facet enumeration. The vert2con package from MATLAB file exchange [32] is used for this.

Figure 4.2: The six vertices of the 3-polytope

Figure 4.3: The eight facets of the 3-polytope are marked in red

If all 2 × d extremapoints are used at once as vertices of the polytope, the number of constraints (facets)
generated becomes intractable (e.g., 40 dimensions = 80 points (2× d) = 240 constraints). This is because the
number of constraints scales exponentially in relation to the number of dimensions. To keep the optimization
problem realistic, this thesis replaces the single d-polytope with multiple lower dimensional m-polytopes. See
figure 4.4. Each m-polytope is defined in a unique m-dimensional space (m-space for short). Since exploration
is performed away from the optimum, the optimum itself serves as the origin or zero coordinate in each m-
dimensional space. m orthonormal singular vectors replace the Cartesian axes as basis vectors in each such
space. With m singular vectors, only the subset of extremapoints in d-dimensional space that lie in the span
of these m vectors become vertices to an m-polytope. The singular vector coordinate system in each m-space
converts the coordinates of the extremapoints originally in d-dimensions into coordinates in m-dimensions. Re-
fer to appendix A2.1 for more information. This is possible because the distance from the exploration origin
(optimum) to each extremapoint can be expressed as some linear combination of the singular vectors.
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This way, a set of vertices can be defined for each m-polytope. These sets of vertices are used to enumerate
the facets of each m-polytope. m dimensions can be chosen from d total dimensions in dCm unique combinations:

dCm =
d!

m!(d−m)!
(4.1)

The facets of the dCm m-polytopes now replace facets of the single d-polytope as constraints in the opti-
mization formulation. See appendix A2.4 for more information.

It should be noted while each m-space consists of a unique combination of singular vectors, a given singular
vector can itself be included in multiple m-spaces. This means the extremapoints in d-dimensional space that
lie in the span of a singular vector will become part of each m-polytope and m-space that incorporates this
singular vector as basis. See underlined coordinates in Figure 4.4b & 4.4d where d = 3 and m = 2.

(a)
(b)

(c) (d)

Figure 4.4: In this figure the 3-polytope is replaced by 3C2 = 3 2-polytopes. The dashed lines in 4.4a represent
the 1D span of each singular vector. In the remaining figures, the small green circle at coordinate (0,0) represents
the origin of each 2D plane. Each 2-polytope is defined in a two dimensional space and consists of a subset
of the vertices of the complete 3-polytope. The singular vectors replace the Cartesian axes coordinate system
in each 2D space. They also allow the coordinates in 3D space to be represented in 2D. The facets (edges)
of the three 2-polytopes replace the facets of the 3-polytope in Figure 4.3 as constraints in the optimization
formulation.
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Each m-polytope constrains an m-dimensional cross-section of the complete d-dimensional ellipsoid. An
m-dimensional cross-section is a unique m-dimensional ellipsoid (or m-ellipsoid for short) that is comprised of a
subset of the axes of the complete d-ellipsoid. Recall from earlier that the complete d-ellipsoid uses the singular
vector directions as axes orientations. This way each singular vector is paired with one d-ellipsoid axis. This
results in two properties: (See Figure 4.5)

1. Each m-ellipsoid has axes orientation parallel to the singular vector basis/coordinate system of its m-space.
2. The singular vectors that define an m-space determine the subset of d-ellipsoid axes that are included in

the inscribed m-ellipsoid.

As with singular vectors and m-spaces, each axis of the d-ellipsoid will be included in multiple m-ellipsoids.
(See Figure 4.5, where each axis of the 3-ellipsoid is included in two 2-ellipsoids) The centre and axis lengths of
each m-ellipsoid are selected as the appropriate subset of components of a common/shared d× 1 centre vector
and d×d diagonal axis length matrix - See appendix A2.2 and algorithm A2.19. This way, each m-ellipsoid that
includes a specific axis of the d-ellipsoid will have both an identical axis length and common centre coordinate
along the paired singular vector basis. Note that by this definition each m-polytope constrains a unique subset of
the previously mentioned centre vector and axis length matrix - specifically the subset that defines the associated
m-ellipsoid. Convex optimization [19] [20] is subsequently used to determine the ideal d × 1 centre vector and
d× d diagonal axis length matrix that ensures the dCm m-ellipsoids fit in their corresponding m-polytopes.

(a) (b)

(c) (d)

Figure 4.5: Each 2-polytope constrains a 2-dimensional cross-section of the complete 3-ellipsoid. The red
point at the intersection of the ellipse axes indicates the ellipse centre whose coordinates are annotated. Each
2-ellipsoid has axes orientation parallel to the singular vector coordinate system.
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The figures 4.5b - 4.5d represent the largest 2-ellipsoids that can be inscribed within the three 2-polytope
constraints. The axis of the 3-ellipsoid paired with SV1 is included in two 2-ellipsoids - in Figure 4.5b & 4.5d
respectively. This axis has an identical length and centre coordinate in both 2-ellipsoids. The remaining axes
of the 3-ellipsoid paired with SV2 and SV3 also follow this rule. The CVX convex optimization package for
MATLAB [19] [20] is used to inscribe each 2-ellipsoid. (The ellipsoids are plotted with [35])

These definitions become necessary since the end goal is inscribing an ellipsoid in d-dimensions. This means
the m-dimensional cross-sections of the d-ellipsoid cannot be treated in isolation.

Since optimization ensures that each ellipsoid cross-section (m-ellipsoid) is inscribed within its m-polytope
constraint, the reconstructed d-dimensional ellipsoid will also remain within each of these dCm m-polytope
constraints. This is seen in Figure 4.5a where the reconstructed 3-ellipsoid remains completely within the three
2-polytope constraints.

The reconstructed d-dimensional ellipsoid’s surface replaces the facets of the d-polytope as the boundary
of the approximated feasible region. Consequently this ellipsoid (defined by a d × d matrix and d × 1 centre
vector) becomes a more compact representation of the feasible region at the cost of being a poorer approxi-
mation. See appendix A2.3 for a mathematical description of an ellipsoid. The final reconstructed d-ellipsoid
is henceforth referred to as d-CSC-MVIE which stands for d-dimensional cross-section constrained maximum
volume inscribed ellipsoid.

The steps involved in the ellipsoid fitting workflow can be summarized as follows:

1. Split d singular vectors into dCm groups of m vectors where each group defines a unique m-space.
2. Convert the extremapoints originally in d-dimensions to m-polytope vertices in each m-space.
3. Use the m-polytope vertices (in each m-dimensional space) to enumerate facets using a MATLAB package

such as vert2con [32].
4. Using these facets as constraints, solve dCm convex optimization problems to inscribe the largest m-

ellipsoids that fit in each of the dCm m-polytopes.
5. Re-associate the final axis lengths with singular vector directions. (appendix A2.4)

The ellipsoid fitting workflow in this thesis was developed as a combination of ideas from two publications:

1. Director & Hatchel (1977) [9] (sourced from Wai-Kai Chen (2009) [4]) led to the idea that the 2 × d
extremapoints obtained at the end of exploration could be treated as a d-polytope that constrains an
inscribed d-ellipsoid.

2. Karl et al. (1994) [27] led to the idea that inscribing a single ellipsoid in a d-dimensional space (which as
mentioned at the start of this chapter is computationally intractable) can be replaced with the problem of
inscribing multiple lower dimensional ellipsoid cross-sections that can be reconstructed. Although to be
clear, in the context of this thesis the term “reconstruction” simply means re-associating the axis lengths
found through convex optimization (appendix A2.4) with the singular vector directions that are known
before hand.

In the experiments, m is chosen as 2. This way, the m-dimensional ellipsoid becomes a 2-ellipsoid that is
inscribed in a 2-polytope (or a regular 2D polygon). With the 40 dimension reservoir case, the optimization
problem consists of inscribing 40C2 = 780 2-ellipsoids in 2-polytopes. To serve as reference choosing m = 3
with this same example means the optimization problem consists of inscribing 40C3 = 9880 3-ellipsoids in 3-
polytopes. Increasing the value of m increases the number of constraints. The upper bound is m = d, in which
case the single m-polytope has as many dimensions and facets as the initial d-polytope.

4.2 Validation

The purpose of validation is to test the quality of ellipsoid fit in the feasible region. The workflow and code
presented in Dezert et al. [8] are used to generate a uniform distribution of samples in the interior of the
ellipsoid. This workflow uses the symmetric positive definite ellipsoid matrix Q as the covariance matrix Σ
for a multivariate distribution. As a result the shape (orientation/axes lengths) of the ellipsoid is taken into
account in sample generation.

An alternative to sampling in the interior of the ellipsoid is sampling only on the ellipsoid surface. For
this, the uniform distribution of points generated in the ellipsoid interior are projected to the ellipsoid surface.
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(appendix A2.6) Such an approach has two benefits:

1. Sampling is now limited to the d−1 dimensional surface of the d-ellipsoid and the reduced dimensionality
means more surface can potentially be covered with the same sampling budget.

2. The distance of the samples generated relative to the optimum coordinate at the ellipsoid centre is maxi-
mized.

Results of testing the two sample generation approaches on the Rosenbrock function have been included in
Appendix A2.6. In the context of this thesis, the fit quality is just a ratio that compares the number of feasible
samples to the total number of samples. Each sample counts as one function evaluation and represents a unique
control vector coordinate in d-dimensional space.

(a) Combined view
(b) 3-MVEE fit with Khachiyan algorithm [28][34]

(Minimum Volume Enclosing Ellipsoid)

(c) 3-CSC-MVIE (d) 3-MVIE

Figure 4.6: Comparison of ellipsoid sizes - As seen, MVEE > CSC-MVIE > MVIE
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Chapter 5

Results

5.1 Optimization

Optimization is performed in the log transformed space. The EnOpt gradient is used along with strong Wolfe
line search and the BFGS scheme approximates the Hessian. The production period is 4000 days divided in
10 time steps of 400 days each. Using equation 2.3 this results in an optimization problem consisting of 40
variables. (d = 4 wells × 1 ICV/well × 10 time steps = 40)

An ensemble of 12 control vectors is used. All controls are set at 0.5 (half open state) at the initial iteration.
This initial setting is converted to the log transformed space using equation 3.3. The optimizer is allowed to
remain at a coordinate for three successive iterations without an increase in function value. After this a new
coordinate is accepted even if it results in a decrease in NPV.

Refer to section 2.6 for the initial reservoir parameters.

cslo 0.1
cslc 1

Wolfe c1 10−4

Wolfe c2 0.9
Wolfe iterations 5
Zoom iterations 8
Initial Hessian Identity

Table 5.1: Optimizer configuration

umin 10−6

umax 1
umin,perturb 10−4

umax,perturb 0.9999

Table 5.2: Bound Specification

cslo and cslc are used to calculate the trial step length (appendix A1.2) for strong Wolfe line search.
umin,perturb and umax,perturb are heuristically determined parameters (appendix A1.4) which limit the mini-
mum and maximum magnitudes of controls in the perturbed control vector ensemble.

Optimization iterations 131
Final NPV $8.2965× 107

Final gradient norm 1.1091× 105

BFGS updates 62

Table 5.3: Optimization results
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(a) Function value evolution (b) EnOpt gradient norm evolution

(c) ICV settings @ iteration 131 (d) BFGS positive definiteness check

Figure 5.1: Optimization results

Figures 5.1a and 5.1b present the function value and gradient norm evolution over optimization iterations.
A total of 62 BFGS updates occur which satisfy both the sufficient increase and curvature conditions. As the
number of valid updates is greater than the number of controls (d = 40), the criteria suggested in Gill et Al.
(2001) [18] - relating to the minimum number of iterations required for the BFGS Hessian to fully capture
curvature information - is met. Optimization was stopped at iteration 131 since no further increase in NPV
was observed.

Figure 5.1c indicates the valve settings in each well at each time step. With 10 timesteps, 10 controls per
well are obtained. The eigen values of each BFGS Hessian are computed to verify if the matrix is indeed positive
definite. A successful test results in a value of ‘1’ in figure 5.1d. In case a BFGS update does not occur due
to either Wolfe condition not being met, the BFGS Hessian for that iteration is declared NaN. This corresponds
to a value of ‘−0.25’ in figure 5.1d. Values of ‘0’ and ‘−1’ respectively represent mixed and negative definite
matrices - neither of which are encountered.
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(a) Well BHP (b) Water cut

(c) Well flux

Figure 5.2: Production results corresponding to ICV controls at optimization iteration 131

As mentioned in section 2.6, figure 5.2a indicates that injectors are fixed at 300 bars BHP while the producer
operates at 100 bars BHP. The control time step is 400 days while the simulator time step is a maximum of 30
days. Figure 5.2b shows water production beginning around 730 days and water cut at the end of production
being 87.93%.

Figure 5.2c indicates that the producer is shut in (zero flux) over 3 intervals: 2000 to 2400 days, 2800 to
3200 days and 3600 to 4000 days. This result is most likely explained by the fact that both water injection and
water disposal are charged, meaning it is efficient from the perspective of maximizing NPV to simply shut in
the well.
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(a) Initial water saturation (b) Final water saturation at 4000 days production

Figure 5.3: Reservoir water saturation Swc = 0.2, Sw,max = 1 − Sor = 1 − 0.3 = 0.7. This information is used
to set the color axis scale as [0.2 0.7] The intermediate saturation snapshots are also presented.
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5.2 Exploration

(a) Regular control space (b) Log transformed space

Figure 5.4: Optimum control vector in regular and log transformed space

The SVD of the BFGS Hessian at the optimum provides the search directions for exploration in log trans-
formed space. The log transformed control vector in figure 5.4b serves as the exploration origin. Three unique
runs of exploration are performed where up to 0.5%, 1.0% and 2.0% decrease in NPV relative to the optimum
are accepted.

Optimum NPV $8.2965× 107

Run 1 J0.5%
min (0.5% decrease) $8.2550× 107

Run 2 J1.0%
min (1.0% decrease) $8.2136× 107

Run 3 J2.0%
min (2.0% decrease) $8.1306× 107

Table 5.4: Exploration criteria

% decrement Step size Function evaluations

0.5% α0.5%
init = 0.25 5524

1.0% α1.0%
init = 1.0 2815

2.0% α2.0%
init = 2.0 2886

Table 5.5: Function evaluations performed for exploration along all d singular vectors - Minimum accepted step
size is αmin = 10−4

To gain intuition of exploration in a multivariate sense, the change in controls and associated objective func-
tion values along an exploration direction can be visualized. This information is presented in figures 5.5-5.8.
While exploration is performed along all 40 singular vectors, only the results corresponding to singular vector
18 (which is arbitrarily selected) are displayed.
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(a) Objective function value (O.F.V) evolution with exploration
(step size = 0.25)

(b) Elements of singular vector 18

(c) Exploration ranges in log transformed space

Figure 5.5: (Part 1) Exploration till 0.5% decrement ($8.2550× 107) along singular vector 18

The algorithm presented in equation 3.2 is used for exploration. Each exploration step corresponds to a
unique d-dimensional control vector that differs slightly with respect to the optimal controls. Figure 5.5a indi-
cates the objective function values associated with each such exploration step - along singular vector 18 (SV18).
Figure 5.5a can also be interpreted as the visualization of a 1D line search procedure where SV18 is the search
direction. The objective function values for exploration steps along the positive and negative extents of SV18
are indicated in blue and red respectively. The effect of step size contraction near the feasible region boundary
is seen with the relatively large number of steps concentrated around the $8.2550× 107 mark.

Figure 5.5b presents the elements of singular vector 18. The Euclidean norm of this vector (as with all
singular vectors) is 1. For a given step size, the sign and magnitude of a singular vector element determine the
change in value of the corresponding (log transformed) control vector element. Figures 5.5c and 5.6a present
respectively the (same) change in controls along SV18 in two different spaces - the log transformed space and
regular control space. At each control, exploration steps along the positive extent are indicated by progressively
lighter red while exploration steps along the negative extent are indicated by progressively darker red. Common
shades of red across all 40 controls therefore indicate one exploration step/control vector.
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(a) Exploration ranges in regular control space with optimum control vector from figure 5.4a overlayed

(b) Controls at final positive step
(lightest red in figure 5.6a)

(c) Controls at final negative step
(darkest red in figure 5.6a)

Figure 5.6: (Part 2) Exploration till 0.5% decrement ($8.2550× 107) along singular vector 18

From figures 5.5 and 5.6, a few observations can be made:
1. As exploration is performed in the log transformed space, the change in controls at each exploration step

when visualized in the regular control space is non-linear.
2. Controls with a large magnitude in the log transformed space remain unchanged in the regular space. Only

controls with magnitudes within a narrow range in the log transformed space (indicated by red dashed
lines in figure 5.5c) exhibit change in the regular space during exploration.

3. Exploration along the positive and negative extents of one singular vector results in two (extrema) points
on the boundary of the feasible region. The two extremapoints are connected by a continuous set of
feasible control vectors and for the step size selected (αinit = 0.25), the objective function value changes
smoothly in between.

4. The control vectors associated with the positive (figure 5.6b) and negative (figure 5.6c) extremapoints
have identical objective function values - although they represent fairly different control strategies.

These observations both validate the idea that lifecycle optimization is ill-posed and demonstrate that
feasible control strategies can be identified by exploring the Hessian null space. Figures 5.7 and 5.8 present
similar exploration results where a 1.0% and 2.0% decrement is accepted relative to the optimum.
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(a) Objective function value (O.F.V) evolution with exploration (step size = 1)

(b) Exploration ranges in regular control space (c) Exploration ranges in log transformed space

(d) Controls at final positive step
(lightest red in figure 5.7b)

(e) Controls at final negative step
(darkest red in figure 5.7b)

Figure 5.7: Exploration till 1.0% ($8.2136× 107) decrement along singular vector 18
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(a) Objective function value (O.F.V) evolution with exploration (step size = 2)

(b) Exploration ranges in regular control space (c) Exploration ranges in log transformed space

(d) Controls at final positive step
(lightest red in figure 5.8b)

(e) Controls at final negative step
(darkest red in figure 5.8b)

Figure 5.8: Exploration till 2.0% decrement ($8.1306× 107) along singular vector 18
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5.2.1 Explorable distances - Reservoir case

(a) Exploration till 0.5% decrement ($8.2550 × 107)

(b) Exploration till 1.0% decrement ($8.2136 × 107) (c) Exploration till 2.0% decrement ($8.1306 × 107)

Figure 5.9: Singular value magnitude vs. total explorable distance - Reservoir case. LogT C.V stands for log
transformed control vector and indicates that exploration is performed in the log transformed space

Figure 5.9 compares the singular value magnitudes of the BFGS Hessian against the total explorable distance
along each singular vector. The singular value magnitudes are listed on the left log Y-axis. The explorable
distance for a given singular vector is measured as the euclidean distance between its two extremapoints in the
log transformed space. This is listed on the right Y-axis. (Extremapoints are the final feasible coordinates on
positive and negative exploration extents of a singular vector. Exploration along one singular vector produces
two extremapoints on the boundary of the feasible region) Figure 5.9 leads to a few observations:

1. Larger accepted decrements from the optimum NPV result in longer exploration distances.
2. The singular value magnitudes are identical across figures 5.9a-5.9c since the same BFGS Hessian is used

for all three exploration tests.
3. Unlike in the 40D Rosenbrock case (appendix A1.3.5) the singular value magnitudes do not correlate with

explorable distances - as in, a smaller singular value does not translate to a larger explorable distance
along the associated singular vector direction.
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While it is possible that the stochastic nature of the EnOpt gradient results in a poor BFGS Hessian ap-
proximation (thereby resulting in the lack of correlation between singular value magnitudes and explorable
distances), it is more likely that the Hessian SVD derived curvature/null space information is only “locally”
valid. In this context, “locally” refers to small perturbations in the immediate vicinity of the optimal control
vector where the Taylor series derived quadratic objective function approximation stated in equation 2.18 holds
valid.

Exploration on the contrary involves large steps away from the optimum and also takes into account the
shape/size (asymmetry and non-convexity - See in 5.3) of the feasible region since the extremapoints are always
sampled on the feasible region boundary. It should also be noted that the shape/size of this feasible region
depends on a user specified function value threshold (See equation 3.1) and that the Hessian can in no way
capture this information.

5.3 2D plane scan and ellipsoid fitting

The 2× d extremapoints from each of the three exploration runs are independently used as inputs to the ellip-
soid fitting workflow described in chapter 4. With d = 40 controls in the reservoir case and constraint polytope
dimension m = 2, the convex optimization problem consists of inscribing dCm = 40C2 = 780 2-ellipsoids in
2-polytopes - for each exploration run. Similarly, 40C2 unique 2D plane scans can be performed with the algo-
rithm described in 3.5 and 3.6.

For a given pair of singular vectors, the constraint 2-polytope and inscribed 2-ellipsoid generated by the
ellipsoid fitting workflow is overlayed on the corresponding 2D plane scan - which now serves as a (visual)
diagnostic to identify the quality of fit for the inscribed 2-ellipsoid in the feasible region of that 2D plane. Since
the number of function evaluations required to generate 40C2 2D plane scans is computationally intractable,
only the results for a few arbitrarily selected singular vector combinations are presented.

Plane 0.5% 1.0% 2.0% Total Samples (Decrement %)

P1S11 116 501 1829 1991 (2.1%)

P5S28 273 563 1758 1882 (2.1%)

P4S2 381 1004 6325 28734 (3.0%)

Table 5.6: Number of feasible samples in each 2D plane scan result. ‘P’ and ‘S’ indicate singular vectors
corresponding to primary and secondary exploration directions. Plane scan step size is set as αinit = 2.5

Each 2D plane scan is performed till a maximum decrement of 2.1% ($8.1223× 107 - P1S11,P5S28) or 3.0%
($8.0476× 107 - P4S2) relative to the optimum NPV ($8.2965× 107). Using this data, the 2D plane scans for
0.5%, 1.0% and 2.0% decrements are generated as the appropriate subset of feasible samples. The “extra” data
is used mainly to improve the distinction between feasible/non-feasible regions.

In the following pages, figures 5.10-5.12 elaborate the relation between 1D exploration and 2D plane scans.
Figures 5.13, 5.14-5.15 and 5.16-5.17 present respectively the plane scan results for P1S11, P4S2 and P5S28.
The 2-polytope and 2-ellipsoid generated by the ellipsoid fitting workflow for each 1D exploration result (0.5%,
1.0%, 2.0%) are overlayed on the corresponding 2D plane scan. The scaling constant for ellipsoid fit specified
in algorithm A2.19 is set as zero to ensure the largest inscribed 2-ellipsoid. (Refer to figure 5.19b and A2.4
to see the effect of a non-zero scaling constant) The centre of each 2-ellipsoid is also fixed as the exploration
origin/optimum and is indicated by a green dot.
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Figure 5.10: Exploration (plane scan) till 2.1% decrement ($8.1223× 107). Samples with function value within
2.0% ($8.1306×107) of optimum NPV are indicated in color. The remaining samples are colored black to better
distinguish the feasible region. The optimum is indicated by a green dot at the intersection of the two bold lines

(a) Function value change along SV1 (step size = 2.5)
Exploration till 2.1% decrement ($8.1223 × 107)

(b) Function value change along SV11 (step size = 2.5)
Exploration till 2.1% decrement ($8.1223 × 107)

Figure 5.11: Function value change along axes of figure 5.10 - Horizontal axis in 5.11a & Vertical axis in 5.11b

In figure 5.10, singular vector 1 is used to perform primary exploration and the feasible samples found are
indicated along the horizontal line (X-axis). All primary exploration samples are then used as initial coordinates
for secondary exploration along positive and negative extents of singular vector 11 - which is indicated vertically.
As mentioned in section 3.3, figure 5.10 is a proxy 2D plot since exploration in d-dimensional space cannot be
visualized directly. This means, each sample in 2D is associated with a d-dimensional control vector. If (X,Y ) is
the coordinate of a sample on the 2D plane, the associated d-dimensional control vector is located at a distance
of X units along singular vector 1 and Y units along singular vector 11 away from the optimum control vector.
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The process of representing d-dimensional coordinates in a lower m-dimensional space where m = 2 is iden-
tical to the approach followed by the ellipsoid fitting workflow (See chapter 4 and appendix A2.1). This makes
it possible to overlay the 2-polytope and inscribed 2-ellipsoid generated by the ellipsoid fitting workflow on the
corresponding 2D plane scan for a given pair of singular vectors.

(a) Function value change along SV1 (step size = 2)
Exploration till 2.0% decrement ($8.1306 × 107)

(b) Function value change along SV11 (step size = 2)
Exploration till 2.0% decrement ($8.1306 × 107)

Figure 5.12: Objective function value (O.F.V) evolution in 1D exploration

The bold horizontal/vertical lines in figure 5.10 highlight function value change for exploration steps along
the singular vector axes (in terms of marker color). For better readability, this result is reproduced in figures
5.11a and 5.11b. As expected, the function value change along each (singular vector) axis of the 2D plane scan
is nearly identical to the corresponding 1D exploration result in figures 5.12a (SV1) and 5.12b (SV11). Minor
differences arise from the fact that the step sizes used are different: α = 2 in 1D exploration and α = 2.5 in 2D
plane scan. Additionally, the 2D plane scan does not use step size contraction and exploration is performed till
a 2.1% ($8.1223× 107) decrement relative to the optimum.

The arrows in figure 5.10 indicate that for the selected decrement in function value relative to the optimum
(2.1%), the non-convex feasible region is not fully explored. This means if the primary and secondary explo-
ration directions are switched, the overall shape of the 2D plane scan will change. This issue is avoided in case
of results with 0.5% and 1.0% decrements since exploration is performed till a relatively larger initial decrement
(> 2.1%) which therefore makes it possible to display the entire feasible sample subset.

Two issues limit the usability of 2D plane scans in exploration:

1. The ellipsoid fitting workflow requires that each m-polytope is convex. With 1D exploration where two
singular vectors produce 4 extremapoints per 2D plane - this requirement is easily met. In comparison, the
2D plane scan produces a much larger number of samples on the feasible region boundary - which as seen
in figure 5.10 is non-convex. While the ‘concave hull’ algorithm presented in Galton & Duckham (2006)
[16], Moreira & Santos (2007) [33] can be used to identify and extract the set of samples on the feasible
region boundary, creating a convex approximation of this non-convex set still needs to be addressed.

2. Computational cost: Tables 5.5 and 5.6 present respectively, the function evaluations used in each 1D
exploration run and 2D plane scan. It is noted that the number of evaluations required to explore/map
one 2D plane is sometimes greater than the number of evaluations used in a complete 1D exploration run.
While larger step sizes and more efficient exploration algorithms are possible, 40C2 = 780 unique 2D plane
scans will still be required for the reservoir case with d = 40 controls.
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(a) 0.5% accepted decrement ($8.2550 × 107)
0.6% maximum decrement ($8.2467 × 107)

(b) 1.0% accepted decrement ($8.2136 × 107)
1.1% maximum decrement ($8.2052 × 107)

(c) 2.0% accepted decrement ($8.1306 × 107)
2.1% maximum decrement ($8.1223 × 107)

Figure 5.13: 2D plane scan result - Primary direction: SV1, Secondary direction: SV11

Samples within the accepted decrement threshold (0.5%,1.0% or 2.0%) are indicated in color. Samples with
objective function value smaller than this threshold but still larger than the maximum decrement threshold
(0.6%,1.1% or 2.1%) are indicated in black. The extremapoints found for 1D exploration along each singular
vector are indicated by the red circles. These form the vertices of the 2-polytope.
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(a) 0.5% accepted decrement ($8.2550 × 107)
0.6% maximum decrement ($8.2467 × 107)

(b) 1.0% accepted decrement ($8.2136 × 107)
1.1% maximum decrement ($8.2052 × 107)

(c) (Part 1) 2.0% accepted decrement ($8.1306 × 107)
3.0% maximum decrement ($8.0476 × 107)

Figure 5.14: 2D plane scan result - Primary direction: SV4, Secondary direction: SV2
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Figure 5.15: (Part 2) 2.0% accepted decrement ($8.1306× 107)
3.0% maximum decrement ($8.0476× 107)

Figure 5.16: 0.5% accepted decrement ($8.2550× 107)
0.6% maximum decrement ($8.2467× 107)
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(a) 1.0% accepted decrement ($8.2136 × 107)
1.1% maximum decrement ($8.2052 × 107)

(b) 2.0% accepted decrement ($8.1306 × 107)
2.1% maximum decrement ($8.1223 × 107)

Figure 5.17: 2D plane scan result - Primary direction: SV5, Secondary direction: SV28
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Figures 5.10-5.17 lead to a few observations:

1. For plane scan results with 0.5% & 1.0% decrement relative to the optimum NPV, the inscribed 2-ellipsoid
is entirely inside the feasible region. More notably even with just 4 points on the feasible region boundary,
the 2-polytope (in each result) represents a reasonably accurate convex approximation of the 2D feasible
region. For the 2.0% decrement case, the feasible region is clearly non-convex and sampling 4 points on
the boundary is insufficient to capture this non-convexity. As a consequence, the 2-polytope in each result
and the 2-ellipsoid from the P4S2 result (figure 5.14c) include non-feasible samples.

2. Since the centre for each inscribed 2-ellipsoid is fixed beforehand (as the optimum/exploration origin), the
ellipsoid size is much smaller relative to the 2-polytope.

3. The arrow in figure 5.14c indicates that the feasible region is discontinuous. The disconnected region was
identified only because exploration was performed till a rather large decrement (3.0%).

4. Figure 5.15 indicates that for the target function value decrement (3.0%) and singular vector direction
(−SV2), a large exploration distance is required in the log transformed space before controls in the regular
space change sufficiently. This relates back to the large magnitude of controls in the log transformed space.
This result also suggests that it is sensible to impose a termination condition for exploration based on the
minimum accepted change in controls in the regular space for an exploration step in the log transformed
space.

Figure 5.18: Semi-axis lengths of each d-ellipsoid for different decrement thresholds (scaling = 0)

Figure 5.18 indicates that larger accepted decrements from the optimum NPV result in longer ellipsoid
semi-axis lengths. This result is similar to figure 5.9 where it was observed that larger decrements from the
optimum NPV result in longer 1-dimensional exploration distances.
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5.4 Validation

For a pair of singular vectors, a plane scan presents function value information along a 2-dimensional plane in
d-dimensional control vector space. However, as seen in section 5.3, this information can be used to visual-
ize the 2-ellipsoid’s fit in the feasible region for that plane alone. (Recall, each 2-ellipsoid is a 2-dimensional
cross-section of the d-CSC-MVIE) To test the fit quality of the d-CSC-MVIE as a whole, uniformly distributed
samples are generated in this ellipsoid’s interior using the algorithm detailed in Dezert et al. [8]. A second
approach involving sample generation on the d-CSC-MVIE’s surface is also tested. For this, the samples gener-
ated in the ellipsoid interior are projected to its surface - thereby maximizing the distance of each sample from
the optimum coordinate at the ellipsoid centre. The mathematics of sample projection and results of testing
the two sample generation approaches on a 3-ellipsoid are included in appendix A2.6.

In the context of this thesis, the fit quality is just a ratio that compares the number of feasible samples to
the total number of samples. Each sample counts as one function evaluation and represents a unique control
vector coordinate in d-dimensional space.

5.4.1 Ellipsoid generation

With 1-dimensional exploration, the three NPV decrement thresholds (0.5%, 1.0%, 2.0%) result in a total of
three sets of 2× d extremapoints. For the purpose of validation, each set of extremapoints is used to generate
three unique d-ellipsoids which include:

1. A d-CSC-MVIE with scaling coefficient = 0
2. A d-CSC-MVIE with scaling coefficient = 1
3. A d-dimensional minimum volume enclosing ellipsoid or d-MVEE (Khachiyan (1996) [28])

Each d-CSC-MVIE is generated with the ellipsoid fitting workflow described in chapter 4. Using a non-zero
scaling coefficient (algorithm A2.19) produces a more conservative ellipsoid fit as seen in figure 5.19. The Mat-
lab implementation of the Khachiyan algorithm sourced from Moshtagh (2006) [34] is used. The Khachiyan
algorithm generates a d-MVEE that envelopes/encloses all 2× d extremapoints and is included here primarily
to serve as the baseline for ellipsoid fit quality. A comparison of ellipsoid fitting with a 2-dimensional MVIE
(maximum volume inscribed ellipsoid) and 2-MVEE is provided in appendix A2.5.

Three sets of 2× d extremapoints with three d-ellipsoids generated per set results in a total of nine unique
d-ellipsoids. Each d-ellipsoid represents an approximation of the feasible region and serves as an input to the
sample generation stage.

(a) 0.5% accepted decrement ($8.2550 × 107)
0.6% maximum decrement ($8.2467 × 107)

Scaling coefficient = 0

(b) 0.5% accepted decrement ($8.2550 × 107)
0.6% maximum decrement ($8.2467 × 107)
Scaling coefficient = 1, 2-MVEE included

Figure 5.19: 2D plane scan result - Primary direction: SV4, Secondary direction: SV2
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Uniformly distributed samples are generated in the interior of all nine d-ellipsoids. Surface sample generation
is performed specifically for the three d-CSC-MVIEs with the scaling coefficient set as zero. This results in a
total of 12 tests where 104 samples are generated per test. (1.2× 105 samples in total)

5.4.2 Results

Figure 5.20: (Part 1) Ellipsoid fit results

Observations for (interior) sample generation with the d-CSC-MVIE and d-MVEE are presented first. Figure
5.20 broadens the observations in section 5.3 regarding the fit quality of a 2-ellipsoid within its 2D feasible
region to the d-dimensional context.

1. For a 0.5% and 1.0% decrement relative to the optimum NPV, nearly all (∼ 95%) the samples generated
in the corresponding four d-CSC-MVIEs are feasible. For the two d-CSC-MVIEs associated with the
2.0% decrement threshold, the number of feasible samples decreases. This is because the feasible region
boundary (as seen in figure 5.14c - in the 2-dimensional P4S2 plane scan) is now non-convex and sampling
just 2 × d extremapoints is insufficient to capture the non-convexity. Consequently non-feasible regions
are admitted in each d-CSC-MVIE and the percentage of feasible samples decreases.

2. Setting the scaling coefficient as 1 results in a smaller ellipsoid as seen in figure 5.19. While the percent-
age of feasible samples is larger at each decrement threshold, a non-zero scaling coefficient decreases the
number of feasible strategies admitted in each d-CSC-MVIE.

3. The number of feasible samples for each d-MVEE is < 50%. This is because the Khachiyan algorithm
produces a d-MVEE that envelopes or “rounds” the d-polytope comprised of a set of 2×d extremapoints.
(This is presented in figure 5.19b in the two dimensional context) The extremapoints also uniquely de-
termine the centre, axis lengths and axis orientations of this d-MVEE. In contrast, the ellipsoid fitting
workflow in this thesis (chapter 4) produces a d-CSC-MVIE that is both centred at the optimum coordi-
nate and has its cross-sections constrained by subsets of this d-polytope’s vertices. This relative lack of
constraints results in each d-MVEE admitting substantial non-feasible regions.
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Figure 5.21: (Part 2) Ellipsoid fit results

The green dashed line in figure 5.21 indicates the number of feasible samples for each d-CSC-MVIE when
sample generation is performed on the surface - which as can be seen is only marginally lesser.

Although resulting in a poor fit quality, it should be noted that the Khachiyan algorithm is versatile as
it can generate an enclosing ellipsoid with as little as d + 1 points. Moreover, an MVEE can also enclose a
randomly generated set of points. In comparison, for the CSC-MVIE ellipsoid fitting approach, it is essential
that the distance from the exploration origin to each extremapoint is represented as a linear combination of an
m-sized subset of singular vectors (where m is the dimension of the cross-sectional constraint polytope). This
means a d-CSC-MVIE cannot be used if random sampling is performed since representation of constraints in a
lower dimensional space would not be possible.
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Chapter 6

Conclusions and Recommendations

6.1 Summary and conclusions

The goal of this thesis was to investigate methods to characterize feasible sets of control strategies for reservoir
oil recovery. The availability of such a set of strategies can provide operators with flexibility to meet multiple
objectives and constraints and also the potential to adapt to changing circumstances without deviating from the
main (economic) objective. The main challenge posed by reservoir control problems is that the dimensionality
of the problems (the number of controls) may be very large, in the order of hundreds controls.

The multiple ellipsoid based sampling (MEBS) approach in Zamora-Sillero et al. (2011) [44] was initially
investigated. A few limitations were identified regarding the application of this approach to reservoir problems:

1. Ellipsoid expansion/contraction is based on uniform (random) sampling which while certainly thorough
is inefficient in the context of a high dimensional non-convex feasible region.

2. The feasible samples generated by the MEBS workflow (rather than the enclosing ellipsoids) are used to
characterize the feasible region. An ellipsoid enclosing a set of feasible samples can itself include non-
feasible regions. Each ellipsoid serves only as a “container” for a subset of feasible samples found.

A precise characterization of the feasible region through MEBS while ideal is not computationally tractable
for the reservoir case. Analysis of the MEBS approach did however lead to the idea that the feasible region can
be approximately characterized with an ellipsoid.

For many reservoir optimization problems the objective function in the neighborhood of the optimum can
be described as a nearly flat (ridge or plateau shaped) region within which the objective function value hardly
decreases. To find a set of control strategies that characterizes such a region an ensemble-based optimization
approach is investigated where the BFGS scheme iteratively builds up information about the curvature of the
objective function space around one, possibly local, optimal solution. The main conclusions of the optimization
step are as follows:

1. An optimal control strategy that maximizes the objective function was found. ($ 8.2965× 107)
2. Due to its approximate nature, the norm of the EnOpt gradient vector never truly reaches zero.
3. The use of strong Wolfe line search ensures that the BFGS Hessian is positive definite at each iterate.

However, testing for the “curvature” condition with an EnOpt gradient is computationally expensive since
the gradient must be computed at multiple trial iterates of the line search in one optimization iteration.

4. The number of BFGS updates (62) exceeds the number of controls in the reservoir model (d = 40). This
indicates the BFGS Hessian has sufficiently resolved curvature of the objective function space around the
optimum.

The second step investigated in this thesis is the exploration of the objective function space around the op-
timum. The null space of the Hessian matrix as characterized by its singular vectors provides search directions
that are explored using a line search. The boundary of the feasible region is sampled at 2 × d extremapoints
(end points of each line search). The main findings of the exploration step are as follows:

1. Each extremapoint represents a unique control strategy but with an identical objective function value.
2. The singular values of the BFGS Hessian do not provide a provide a good indication of the explorable

distance in the feasible region along the corresponding singular vector directions.

The third step investigated in this thesis is the characterization of the identified set of extremapoints. Ini-
tially, this thesis considered the use of a d-MVEE based on the Khachiyan algorithm [28] to enclose the 2 × d
extremapoints - as a direct approximation of the feasible region. Tests on 2D plane scans (figure 5.19b) indi-
cated however that even a 2-MVEE would certainly include non-feasible regions. As an alternative, a d-MVIE
was considered, which is an ellipsoid inscribed entirely within the d-polytope comprised of 2× d extremapoints.
However, it was observed that the number of constraints (d-polytope facets) scaled exponentially in relation to
the number of dimensions. As a result, this approach became computationally intractable.
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We therefore propose as a solution, a d-CSC-MVIE or d-dimensional cross-section constrained maximum
volume inscribed ellipsoid fitting workflow. This workflow based in convex optimization [19] [20] generates
an inscribed ellipsoid that is centred at the optimum and offers some flexibility in terms of control strategies,
while ensuring the objective function value is still mostly above a specified threshold. By constraining only
cross-sections, the number of constraints is made tractable and the flexibility of a d-MVIE in fixing the centre
coordinate is preserved. This workflow represents a combination of ideas presented in Director & Hatchel (1977)
[9] and Karl et. al. (1994) [27].

Validation testing (figure 5.21) found ∼ 95% of samples to lie above the function value threshold till a 1.0%
decrement from the optimum NPV. By using a d-CSC-MVIE and therefore limiting consideration to the imme-
diate vicinity of the optimum, the requirement for extensive function evaluations in exploration is sidestepped.
Though it should be noted, better exploration will result in a larger number of strategies admitted in the d-
CSC-MVIE.

Finally, the proposed workflow was demonstrated on a small-size reservoir optimization problem containing
5 wells. A set of optimal control strategies for the 5 wells could be obtained suggesting a continuum of fairly
different strategies indicating the scope for significant flexibility.

6.2 Recommendations

1. In this thesis a deterministic problem was considered. In reality one cannot assume that any single reservoir
model will provide exact predictions, that is, predictions that exactly match results obtained from the true
reservoir. The uncertainty in subsurface geology can be represented by an ensemble of geological models.
Optimization of the expected objective function is often referred to as robust optimization. Follow-up work
should consider methods to characterize the expected objective function space in an efficient manner.

2. It was observed that the singular values of the Hessian (as estimated from ensemble optimization with the
BFGS scheme) do not provide a good indication of the extent of the feasible region along the corresponding
singular vector directions. Consequently, the Hessian estimation step may not be necessary. This can be
investigated further. Use of adjoint gradients could for example help verify the result obtained with
ensemble gradients.

3. This thesis provides a method that characterizes a set of feasible strategies defined by a limit in the
decrease in the objective function value relative to the optimum. However, more research is needed to
exploit this (ellipsoidal) solution set in order to identify solutions (i.e., control strategies) that optimize
additional objectives (e.g., short term production targets). Furthermore, it is desirable to identify solutions
that provide the flexibility for an operator to switch operating strategies midway during production if
circumstances demand it.

4. Alternative approaches that deal with the problem of flexibility in operating strategy have been proposed
in the past (e.g., Van Essen et al. (2009) [39]). A more complete comparison of such approaches with the
one proposed in this thesis would be valuable.

5. The computational complexity of the CSC-MVIE algorithm (appendix A2.19) is yet to be assessed, partic-
ularly as a function of the choice in m and d. The scaling coefficient which allows for a more conservative
ellipsoid fit is uniquely configurable for each of the dC2 2-planes. Tuning this coefficient on a per plane
basis may result in a larger number of feasible strategies being admitted in the d-CSC-MVIE.

6. Controls in the log transformed space associated with controls at bounds in the regular space attain large
magnitudes. This is a hindrance to exploration since only few controls actually undergo change. Imposing
a temporal correlation with a moving average or with time series smoothing should be investigated as this
can prevent any one control from becoming excessively large. Alternatively, imposing upper/lower bounds
on the optimal control vector in the log transformed space prior to exploration should also be investigated.
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Appendix A1

Optimization

A1.1 Mathematics of the Rosenbrock function

The generalized Rosenbrock equation for d-dimensional input vector x is:

J(x) =

d−1∑
i=1

100(xi+1 − x2i )2 + (1− xi)2 (A1.1)

The optimum coordinate for is always a d-dimensional vector of ones where the function value is 0.

A1.1.1 Analytical gradient computation

The d× 1 gradient vector when d > 2 is computed as:

∂J

∂x1
= 400x31 − 400x1x2 + 2x1 − 2

∂J

∂xd
= −200x2d−1 + 200xd

for i ∈ {2, · · · , d− 1}
∂J

∂xi
= 202xi − 2 + 400x3i − 400xixi+1 − 200x2i−1

end for

(A1.2)

A1.1.2 Analytical Hessian computation

The d× d Hessian matrix when d > 2 is computed as:

∂2J

∂x21
= 1200x21 − 400x2 + 2

∂2J

∂x1∂x2
= −400x1

∂2J

∂xd∂xd−1
= −400xd−1

∂2J

∂x2d
= 200

for i ∈ {2, · · · , d− 1}
for j ∈ {1, · · · , d}

if j < i− 1,
∂2J

∂xi∂xj
=0

if j = i− 1,
∂2J

∂xi∂xj
=− 400xi−1

if j = i,
∂2J

∂xi∂xj
=1200x2i − 400xi+1 + 202

if j = i+ 1,
∂2J

∂xi∂xj
=− 400xi

if j > i+ 1,
∂2J

∂xi∂xj
=0

end for

end for

(A1.3)

When d = 2, the for loop structures can be ignored in both gradient and Hessian computation.
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A1.2 Trial Step Length Calculation

The process of calculating the trial step length for the steepest ascent (Reservoir case) and steepest descent
(Rosenbrock model) algorithms are presented below:

If the second derivatives of a d-dimensional objective function J are bounded and continuous, a truncated
Taylor series expansion can be used to express the change in function value arising due to step α along a search
direction pk in terms of derivatives:

J(uk + αpk) ≈ J(uk) + α(∇J(uk))Tpk +O(‖∆u‖2), (A1.4)

where ∇J(uk) is the d×1 gradient vector. Ignoring the error term O(‖∆u‖2), the first order approximation
of the above equation becomes:

J(uk + αpk) = J(uk) + α(∇J(uk))Tpk. (A1.5)

Since uk + αpk is the coordinate at iteration k + 1, equation A1.5 can be rewritten as:

Jk+1 = Jk + α(∇J(uk))Tpk. (A1.6)

The product (∇J(uk))Tpk in A1.5 is the directional derivative. This represents the first order approximation
derived change in function value along direction pk for a given step length. Knowing this, it is possible to
calculate a trial step length by limiting the acceptable change in objective function value. If Jk+1 − Jk = ∆J ,
one can impose:

∆J 6 cslo Jk, (A1.7)

which becomes,

αslo(∇J(uk))Tpk 6 cslo Jk. (A1.8)

Therefore, the trial step length αslo is calculated as:

αslo 6
cslo Jk

(∇J(uk))Tpk
. (A1.9)

Alternatively, a restriction can be imposed on the maximum change in the norm of the control vector uk.

If

uk+1 = uk + αpk, (A1.10)

Then,

uk+1 − uk = ∆u = αpk. (A1.11)

One can impose the requirement that,

‖∆u‖ 6 cslc ‖uk‖ , (A1.12)

Which is equivalent to,

αslc ‖pk‖ 6 cslc ‖uk‖ . (A1.13)

Therefore, the trial step length αslc is calculated as:

αslc 6
cslc ‖uk‖
‖pk‖

. (A1.14)

The most restrictive step length is finally chosen as:

α = min(αslo, αslc). (A1.15)

In the regular Rosenbrock model where steepest descent optimization is demonstrated, cslo = −0.25 and
cslc = 0.1. The negative sign indicates the function value should decrease along the search direction. For the
reservoir case, cslo = 0.1 and cslc = 1.0
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A1.3 Validating the BFGS implementation

Before implementing the BFGS scheme on the reservoir model it is sensible to test if the implementation works
correctly on a simpler toy model. The Rosenbrock function is computationally inexpensive to evaluate - this
fact combined with the ready availability of analytical first and second order derivative information make it
ideal in validating the BFGS scheme.

(a) Regular 2D Rosenbrock (b) Inverted 2D Rosenbrock

Figure A1.1: Surface plot of the 2D Rosenbrock function

A1.3.1 Initial optimizer settings

Initial coordinate (−1.3, 1.4)
Max iterations 10000

Absolute function value 10−16

Gradient norm 10−12

Table A1.1: Common criteria - Last two entries indicate stopping conditions

Inner iterations 100
Contraction factor 0.5

Table A1.2: Armijo backtracking line search settings

Wolfe c1 10−4

Wolfe c2 0.9
Wolfe iterations 5
Zoom iterations 50
Trial step length 1

Table A1.3: Strong Wolfe line search settings

48



Quantifying the ranges of feasible control strategies for reservoir lifecycle optimization

A1.3.2 Validation on 2D Rosenbrock function (Steepest Descent)

The results for optimization using steepest descent are provided first. This serves as the baseline in optimization
performance. Armijo backtracking line search is used and inner iterations represent the number of times
backtracking (step length contraction) is performed until an acceptable length is found. The characteristic
zig-zag optimization path in the Rosenbrock valley can also be observed.

(a) (b)

(c) (d)

Figure A1.2: Steepest descent results

Optimization Iterations 10000
Function Evaluations 136091
Gradient Evaluations 10000
Final function value 4.2751× 10−10

Final gradient norm 3.3764× 10−5

Stopping Criteria Met? NO

Table A1.4: Steepest descent results
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A1.3.3 Validation on 2D Rosenbrock function (Quasi-Newton)

(a) (b)

(c) (d)

Optimization Iterations 37
Function Evaluations 125
Gradient Evaluations 101
Final function value 1.5529× 10−22

Final gradient norm 5.3747× 10−10

Stopping Criteria Met? YES

Table A1.5: Quasi-Newton results - 2D Rosenbrock

Comparing tables A1.4 and A1.5, quasi-newton optimization requires almost 3 orders of magnitude fewer func-
tion evaluations to find the optimum. A1.3d presents the matrix eigen value test where the BFGS Hessian is
always positive definite - regardless of the analytical Hessian. This follows from the nature of the BFGS update.
(Nocedal & Wright (2006) [36]) The two Hessians are also nearly identical at the last optimization iteration.

HBFGS =

[
801.7217 −399.8517
−399.8517 199.9210

]
HAnalytical =

[
802 −400
−400 200

]
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A1.3.4 Validation on inverted 2D Rosenbrock function (Quasi-Newton)

(a)
(b)

(c) (d)

Optimization Iterations 37
Function Evaluations 125
Gradient Evaluations 101
Final function value −1.5529× 10−22

Final gradient norm 5.3747× 10−10

Stopping Criteria Met? YES

Table A1.6: Quasi-Newton results - Inverted 2D Rosenbrock

The inverted Rosenbrock function is defined mathematically by adding a negative sign to each: objective
function value, gradient and Hessian result. The main goal of this test is to verify that sign conventions have
been followed appropriately from the perspective of a maximization problem. Below, the matrix negative signs
are flipped since the BFGS Hessian is positive definite while the analytical Hessian is negative definite.

HBFGS =

[
801.7217 −399.8517
−399.8517 199.9210

]
HAnalytical =

[
−802 400
400 −200

]
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A1.3.5 40D Rosenbrock function

The goal of this test is to generate a BFGS Hessian whose singular vectors can be used to explore the Rosenbrock
function’s feasible region. The explorable distances with singular vectors from this BFGS Hessian are compared
against explorable distances using singular vectors directly from the analytical Hessian at the optimum. The
initial coordinate is a random 40D vector - generated in MATLAB with the Mersenne Twister random number
generator: rng(0,’twister’)

(a) (b)

(c)

Optimization Iterations 310
Function Evaluations 687
Gradient Evaluations 653
Final function value 6.9444× 10−17

Final gradient norm 3.5475× 10−7

Stopping Criteria Met? YES

Table A1.7: Quasi-Newton results - 40D Rosenbrock
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Explorable distances - 40D Rosenbrock case

As with optimization, exploration was first validated on the Rosenbrock function. Figure A1.6 presents explo-
ration results with the analytical and BFGS Hessian in the 40D Rosenbrock case (from the optimum coordinate).

(a) Exploration with analytical Hessian at optimum (b) Exploration with BFGS Hessian at optimum

Figure A1.6: Singular value magnitude vs. total explorable distance - 40D Rosenbrock case

In figure A1.6 singular value magnitudes are presented on the left (regular) Y-axis while explorable distances
for each singular vector are presented on the right Y-axis. The explorable distance for a given singular vector
is measured as the euclidean distance between its two extremapoints in regular Cartesian space. Exploration is
terminated when a function value of 104 is reached and the optimum itself has a function value of zero.

Compared to the more realistic reservoir case in section 5.2, the explorable distances for the 40D Rosenbrock
function are indeed inversely related to singular value magnitudes. This is clearly seen in exploration with the
analytical Hessian (figure A1.6a) where explorable distances increase near monotonically with decrease in sin-
gular value. Exploration with the BFGS Hessian (figure A1.6b) also produces a similar result but the trend is
not as clear.
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A1.4 Optimization With Log Transformed Controls

As described in section 2.3.1, the EnOpt gradient requires computing a perturbed ensemble of controls. The
non-linearity of the log transformed space poses a few challenges to this process and the attempts made in
developing a working optimizer are presented below.

Background

The TNO EnOpt workflow written in MATLAB is used by this thesis and the workflow is primarily intended
for optimization in the regular control space. For an input control vector ui the corresponding EnOpt gradient
vector gi can be computed as:

Figure A1.7: Gradient computation workflow for an input vector in regular control space. Numbers indicate
sequence of steps. The subscript “Regular” has been added to indicate computation in regular control space.

1. A control vector ui,Regular enters the function ComputeGradients() wherein it is passed to PerturbControls()
2. In PerturbControls(), an ensemble of perturbed control vectors is generated - as described in section

2.3.1 - and stored along the columns of matrix Ui,Regular - which is returned to ComputeGradients()

3. ComputeFunction() is then used to determine the objective function value of each ensemble member
which is stored in ji

4. With the initial control vector ui,Regular, perturbed ensemble of controls Ui,Regular and corresponding
objective function values in Ji and ji, the gradient is computed as described in equation 2.10.

5. The gradient vector gi,Regular is returned to the calling program

The above workflow serves as reference against which the log transformed workflow can be compared.

Impact of non-linearity on perturbations

As can be seen in figure 3.2, a small perturbation on a control in the log transformed space will result in near
zero change to the control in regular space - if it is near the bounds. A negligible perturbation typically trans-
lates to zero change in objective function value and results in zero gradient.

Wang et al. (2007) [42] identify this issue and suggest computing the perturbation size for a log transformed
control based on a fixed perturbation size to the regular control itself. This approach has been incorporated
into the TNO workflow and the updated sequence of steps for gradient computation are presented in figure A1.8
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Log transformed workflow

(a)

(b) Objective function evolution (c) Controls at iteration 38

Figure A1.8: An NPV of $8.0669 ×107 is reached at 38 iterations The same initial conditions are used as
described in section 5.1

1. A control vector ui,LogT enters the function ComputeGradients() wherein it is first converted to the
regular control space using inverseLogTransform() and is then passed to PerturbControls()

2. In PerturbControls(), an ensemble of perturbed control vectors is generated - as described in section
2.3.1 - and stored along the columns of matrix Ui,Regular - which is returned to ComputeGradients()

3. ComputeFunction() is now used to determine the objective function value of each ensemble member which
is stored in ji

4. At this point LogTransform() is used to convert each perturbed control vector back into the log trans-
formed space as Ui,LogT
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5. With the initial control vector ui,LogT, perturbed ensemble of controls Ui,LogT and corresponding objective
function values in Ji and ji, the gradient is computed (now with respect to the log transformed control
vector) as described in equation 2.10.

6. The gradient vector gi,LogT is returned to the calling program

By generating the perturbed ensemble directly in the regular control space the issue of perturbation non-
linearity is eliminated. It should be noted that the approach followed by this thesis perhaps deviates slightly
from Wang et al. (2007) [42] since they suggest using the regular space only to identify the size of the pertur-
bation for a log transformed control.

In practice, the optimization performance using this workflow was not satisfactory as:
1. Optimum NPV was poor and nearly all controls in the final few iterations were at bounds
2. Elements of the gradient vector corresponding to controls near bounds were often substantially larger in

magnitude relative to other elements.

While a Bang-Bang type solution is possible (Wang et al. (2007) [42]), neither behavior was observed when
testing optimization in regular control space. Investigating further the problem was identified as the spread in
values of a control across the log transformed ensemble - when that control is near bounds in regular space.

Explanation: When a control vector u is subjected to perturbation it is possible for a control ui, which is
near bounds to either become smaller than the lower bound umin or become larger than the upper bound umax.
In both cases, the control has to be reset to the lower or upper bounds respectively. Recall from section 3.2.1
that controls at bounds in the regular space become large in the log transformed space - reaching ±36.0437.
Since an ensemble of control vectors is generated - each with a unique perturbation - it is possible that the
same control in a second vector of the ensemble has been perturbed by a much smaller magnitude wherein such
a reset is not required - as it is still inside bounds. When the log transform is applied to the control vector
ensemble the control in the first ensemble vector attains a large magnitude while the same control in the second
vector is relatively smaller. Such an unnaturally large spread in values for a specific control across the control
vector ensemble results in the corresponding element of the gradient vector becoming very large magnitude wise
- which most likely results in the gradient becoming a poor search direction. To address this issue, the controls
in the perturbed ensemble Ui,Regular are heuristically limited to a minimum of 10−4 or maximum of 0.9999
prior to applying the log transform. These values lie within the bound constraints umin = 10−6 and umax = 1
specified in equation 2.2 and consequently the spread in values of a control across the log transformed ensemble
is reduced. The final log transformed workflow therefore becomes:

Figure A1.9: Except for the restricted perturbations, this workflow is identical to figure A1.8a. Refer to figure
5.1 for optimization results using this workflow
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Appendix A2

Inscribing an ellipsoid & validation

A2.1 Converting vertices in d-dimensions to vertices in m-dimensions

The vertices of each m-polytope needs to be defined. Recollect that singular vectors are used as search direc-
tions during exploration. With m selected singular vectors, only the subset of extremapoints in d-dimensional
space that lie in the span of these m vectors can be considered as vertices for the m-polytope. The remaining
extremapoints become unreachable with the chosen set of vectors.

One may note the extremapoints are initially coordinates in d-dimensional space. These need to be repre-
sented in an m-dimensional space. The distance from the optimum to each extremapoint in d-dimensions can
be expressed as some linear combination of the singular vectors. For a chosen extremapoint a change of basis
matrix assigns each singular vector (out of d total vectors) a coefficient that indicates its contribution to this
distance. This way a distance can be expressed with singular vectors as components instead of Cartesian axes.

Since our consideration is limited to the extremapoints that lie in the space spanned by m singular vectors,
the coefficients for the d −m vectors will be zero. Amongst the remaining m coefficients, non-zero values will
be assigned only to those singular vectors along which the optimum was varied/perturbed during exploration
to obtain said extremapoint.

Since the singular vectors also serve as basis vectors in each m-dimensional space, the coefficients associated
with the singular vectors (that indicate their magnitude of contribution) directly become the coordinates of
the extremapoints. This way the extremapoint coordinates originally in d-dimensional space are reduced to a
unique set of m-tuple coordinates (singular vector magnitudes) in m-dimensional space.

(a) (b)

Figure A2.1: In this figure d = 3 and m = 2. Only four extremapoints lie in the span of singular vectors 1 &
2. The coordinates in A2.1b indicate the magnitude/distance by which the optimum must be varied along the
singular vector directions in order to reach the four extremapoints. The optimum (or exploration origin) is the
green circle at coordinate (0,0).

A2.2 Common centres with multiple ellipsoids

Let c be the centre of the complete d-ellipsoid that is located at some distance from the optimum f . Both these
vectors are coordinates in the d-dimensional space with standard basis. Starting with an initial assumption,
convex optimization iteratively updates the centre c. While the centre vector c is defined in the standard basis,
the m-polytope constraints are defined in the singular vector basis. Consequently, a change of basis is required
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to convert the centre vector to the alternate basis. In the experiments, the inverse of the singular vector matrix
(from the Hessian SVD at the optimum) is used as change of basis matrix.

This being known, a common centre vector csv can be defined in the d-dimensional space with singular
vector basis as:

csv = inverseSVMatrix*(c-f);

Motivation: Exploration is always performed away from the optimum. Due to this, it is convenient to define
the optimum as the origin for the d-dimensional space with singular vector basis. In relation to this origin/zero
coordinate, the location of the centre of the d-ellipsoid is to be identified. This is equivalent to identifying
the distance vector between the optimum and the d-ellipsoid’s centre. The components of a distance vector
contain the difference in coordinates between two points. The operation (c-f) reveals this distance vector in
the standard basis. This vector is transformed into the singular vector basis space using inverseSVMatrix.
This way the components of csv describe the coordinates of the centre relative to the origin (optimum) in terms
of singular vector axes (instead of regular Cartesian axes).

Recall that each ellipsoid cross-section (m-ellipsoid) is defined in an m-dimensional space spanned by a
subset of (m vectors out of) d total singular vectors. By this definition, the centre of each m-ellipsoid becomes
the appropriate subset of the components of vector csv.

Figure A2.2: Refer to figure 4.5. With d = 3 & m = 2, 3C2 = 3. In total three 2-ellipsoids are defined. The
coloured boxes around the components of csv indicate the centres of each 2-ellipsoid. The optimum vector f
is a constant while c is updated iteratively. As an example, csv1 indicates the centre coordinate along the first
singular vector.

An update to centre vector c over the course of optimization influences csv. A change in one component of
csv (the common centre vector) influences the centres of each m-ellipsoid that includes this component/singular
vector axis.

Note: Treated separately, the ideal ellipsoid centre can be determined in each m-dimensional space. This
allows for the largest m-dimensional ellipsoid to be inscribed within the m-polytope constraints for that space.
To inscribe an ellipsoid in d-dimensions the m-dimensional ellipsoid cross-sections cannot be treated in isola-
tion. The optimal centre vector strikes a compromise giving the largest inscribed ellipsoid in d-dimensions that
still stays within each of the dCm m-polytope constraints. In this context, it is acceptable if the individual
cross-sections of the d-dimensional ellipsoid are not necessarily the largest.

Alternatively, the d-ellipsoid centre can be defined in advance. Conservatively, any coordinate in the interior
of the convex hull of the extremapoints found during exploration can be selected. In the experiments, the
optimum coordinate f is chosen as the centre. As a result, csv = inverseSVMatrix*(f-f) is a zero vector.
This way, the centre of each m-ellipsoid is located at the origin of its m-space.

A2.3 Mathematical description of an ellipsoid

The derivation presented here is based on the text in [23] and [11].

A (closed) unit ball centered at the origin in d-dimensional space is represented by the set:

{y ∈ Rd | yTy 6 1} (A2.1)
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Let B be a d× d transformation matrix that is non-singular and positive definite (B ∈ Sn
++). An ellipsoid

is an affine transformation of the unit ball. The ellipsoid ε centered at c ∈ Rd can therefore be represented as:

ε = {By + c | yTy 6 1} (A2.2)

Changing the variable, if x = By + c then y = B−1(x− c)

ε = {x | (B−1(x− c))TB−1(x− c) 6 1} (A2.3)

ε = {x | (x− c)T (B−1)TB−1(x− c) 6 1} (A2.4)

ε = {x | (x− c)T (BBT )−1(x− c) 6 1} (A2.5)

ε = {x | (x− c)TQ−1(x− c) 6 1} (A2.6)

Where Q = BBT and A2.6 is the usual expression for an ellipsoid in matrix form. The ellipsoid axes lengths
and orientations can be extracted from Q by performing an SVD.

Q = UΛV (A2.7)

In equation A2.7, Q is expressed as the product of three matrices. Since Q is symmetric and positive definite,
V = UT . The columns of U known as singular vectors represent the axis orientations of the ellipsoid. Singular
values are sorted in ascending order in the diagonal matrix Λ. These relate to the semi-axis lengths as:

semi-axis lengthi =
1√

singular valuei
, i = 1, . . . , d (A2.8)

A2.4 Convex optimization formulation

The derivation presented here is based on the text in section 8.4.2 of [2]. The derivation assumes that both the
polytope and inscribed ellipsoid are defined in a d-dimensional space.

Since the transformation matrix B ∈ Sn
++, (as mentioned in A2.3) the volume of an ellipsoid is proportional

to the determinant of this matrix. The maximum volume ellipsoid can be found via the convex optimization
problem:

maximize: log det B

subject to: sup
‖y‖61

IC(By + c) 6 0 (A2.9)

Where IC is the indicator function for a convex set C

IC(x) =

{
0 for x ∈ C

+∞ for x /∈ C
(A2.10)

sup is the supremum of vector y that restricts it to within a unit ball and at most unit magnitude.

The optimization formulation stated in A2.9 is applicable to a general case. This thesis specifically considers
the problem of finding the maximum volume ellipsoid inscribed in a polytope where the polytope is represented
by a set of linear inequalities:

C = {x | aix 6 bi, i = 1, . . . , k} (A2.11)

k represents the number of inequalities. The polytope C consists of the set of all elements x for which these
linear inequalities hold. Each inequality defines a unique facet of the polytope. Equation A2.11 is known as the
H -polytope or half-space polytope representation - for more details refer to Glossary 15.1 in [24] & Theorem
2.49 in [45]. When inscribing a maximum volume ellipsoid in a polytope, only the set of elements x that lie in
the interior of both the ellipsoid and polytope are to be identified.
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Mathematically, the set of elements in the interior of an ellipsoid is represented by A2.2. Knowing this,
the constraint in A2.9 can be restructured to incorporate the polytope inequality from A2.11 in place of the
indicator function IC as:

sup
‖y‖61

IC(By + c) 6 0

⇐⇒ sup
‖y‖61

ai(By + c) 6 bi, i = 1, . . . , k
(A2.12)

⇐⇒ sup
‖y‖61

aiBy + aic 6 bi, i = 1, . . . , k (A2.13)

As per the discussions in [31] the term aiBy has maximum value when:

y =
(aiB)T

‖aiB‖
(A2.14)

This is because y has unit magnitude and is parallel to the vector aiB. Therefore y can be replaced as:

⇐⇒ aiB(aiB)T

‖aiB‖
+ aic 6 bi, i = 1, . . . , k (A2.15)

Which finally reduces to:
⇐⇒

∥∥BaT
i

∥∥+ aic 6 bi, i = 1, . . . , k (A2.16)

Using A2.16, we can reformulate A2.9 as:

Maximize log det B

Subject to
∥∥BaT

i

∥∥+ aic 6 bi, i = 1, . . . , k
(A2.17)

Which is the regular optimization formulation for inscribing a d-dimensional ellipsoid in a d-polytope. The
transformation matrix B and centre vector c are the optimization variables.

The main issue with this formulation is that the number of constraints scales exponentially in relation to
the number of dimensions d.

To keep the problem realistic this thesis proposes a slightly different optimization formulation where the
single d-polytope is replaced by dCm lower dimensional m-polytopes. (m refers to the size of the subset of
dimensions grouped together with m <= d) Some of the quirks relating to this formulation are presented below:

As mentioned in section 4.1, each m-polytope is defined in a unique m-dimensional space (m-space for short)
where m orthonormal singular vectors replace the Cartesian axes as basis vectors. Each m-polytope constrains
an m-dimensional cross-section of the complete d-dimensional ellipsoid. An m-dimensional cross-section is a
unique m-dimensional ellipsoid (or m-ellipsoid for short) that is comprised of a subset of the axes of the complete
d-ellipsoid.

Since the complete d-ellipsoid uses singular vector directions as axes orientations, each m-ellipsoid has axes
orientation parallel to the singular vector basis of its m-space. See figure 4.5 for more details. The consequence
of this definition is that the transformation matrix B in the alternate optimization formulation will be diagonal.
Recall from appendix A2.3 that an ellipsoid is an affine transformation of the unit ball. A transformation matrix
B defines the axis lengths and orientations of the ellipsoid. Any ellipsoid that has axis orientation parallel to
the coordinate axes (basis vectors) will have B as a diagonal matrix since the initial unit ball is only subjected
to an axis scaling transform and not rotation. The semi-axis lengths of such an ellipsoid are contained along
the diagonal of B.

Recall from appendix A2.2 that the centre vector for each m-ellipsoid is the subset of components of a
common centre vector defined for the complete d-ellipsoid. On a similar note, the semi-axis lengths for each
m-ellipsoid consist of the appropriate subset of the diagonal elements of matrix B. The choice of d-ellipsoid
axes included in each m-ellipsoid determines this subset of components.

Equation A2.8 expresses the relation between singular values and semi-axis lengths. With semi-axis lengths
in B and axis orientations (from the SVD of the Hessian at the optimum) in U , the matrix form Q of the
d-ellipsoid inscribed within dCm lower dimensional m-polytopes is obtained as:

Q := U(BBT )−1UT (A2.18)
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To be clear, unlike equation A2.7 where Q is already known, equation A2.18 defines Q as the product of
the matrices in the RHS. The operation (BBT )−1 converts the semi-axis length to singular values as shown in
equation A2.8. Intuitively, this equation is equivalent to re-associating the ellipsoid semi-axis lengths (obtained
from fitting lower dimensional cross-sections of the d-ellipsoid in dCm m-polytopes) with axis orientations that
are known beforehand. Determining Q is essential since the ellipsoid matrix form serves as the basis for random
sampling in the validation stage.

As seen with equation A2.11, linear inequalities define the facets of a polytope and are supplied as constraints
to the optimization formulation. With dCm different m-polytopes, the linear inequalities that define the facets
of each m-polytope need to be accounted for separately.

Tying all this together, the final optimization formulation becomes:

Maximize log det B

Subject to

csv = inverseSVMatrix× (c− f)

for j ∈ {1, . . . ,d C2}
kmax ← kj

A← Aj

b← bj

(SV1,SV2)← (2-plane)
j

Bj ←
[
B(SV1,SV1) 0

0 B(SV2,SV2)

]
cjsv ←

[
csv(SV1)
csv(SV2)

]
for i ∈ {1, . . . , kmax}

ai ← A(i, :)∥∥BjaT
i

∥∥+ scaling + aic
j
sv 6 bi

end for

end for

(A2.19)

The above formulation is defined specifically for the case where m = 2. This formulation has been imple-
mented and tested in MATLAB.

csv is the common centre vector defined with singular vector basis as mentioned in appendix A2.2. Index
variable j has a maximum value of dC2 and represents the number of unique two dimensional planes that can
be generated as pairwise combinations of the d total singular vectors.

The value of kmax depends on the total number of facet defining inequality constraints specified for the
jth 2-plane. Each row of the matrix A (kmax × 2, where 2 is the constraint polytope dimension) and the
corresponding element of vector b (kmax × 1) define one facet of the jth 2-polytope. It is assumed that A and

b have been calculated beforehand for each 2-plane. The operation (SV1,SV2) ← (2-plane)
j

extracts the in-
dices of the two singular vectors that define the jth 2-plane. These singular vector indices are used to determine:

1. Bj - the subset of diagonal elements of the transformation matrix B
2. cjsv - the subset of components of the common centre vector csv

Both Bj (semi-axis lengths) and cjsv (centre vector) are only applicable to the relevant jth 2-ellipsoid. Lastly
a modified version of equation A2.17 is used (in the nested for) to test the fit of this jth 2-ellipsoid within its
2-polytope constraint. A scaling constant is introduced that can be set as a small non-negative value to ensure
a more conservative ellipsoid fit. (The effect on 2-ellipsoid size is seen in figure A2.4)
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A2.5 Playing with CVX

The CVX optimization package [19][20] is used for fitting the maximum volume inscribed ellipsoid (MVIE)
in a 2-polytope. Some results 1 are presented below where the effects of a pre-determined centre, diagonal
transformation matrix B and scaling can be observed on the MVIE axes lengths and orientation. (Note:
equation A2.17 is used here as the problem consists of inscribing a 2-ellipsoid in a 2-polytope) For comparison,
a minimum volume enclosing ellipsoid (MVEE) generated with the Khachiyan algorithm (Khachiyan (1996)
[28]) is displayed. The MATLAB implementation of this algorithm sourced from Moshtagh (2006) [34] is used.

(a) Optimizer decides axes lengths and orientation - Largest
ellipsoid possible

(b) Diagonal transformation matrix B is used - Largest axis
aligned ellipsoid

(c) Optimizer decides axes lengths and orientation - Largest
ellipsoid possible with centre fixed at (0.5,0)

(d) Diagonal transformation matrix B is used - Largest axis
aligned ellipsoid possible with centre fixed at (0.5,0)

Figure A2.3: Fit comparison: MVIE vs. MVEE

1 The MATLAB source code for this example is provided here: http://web.cvxr.com/cvx/examples/cvxbook/Ch08_geometric_
probs/html/max_vol_ellip_in_polyhedra.html
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(a) Optimizer decides axes lengths and orientation - Largest
ellipsoid possible

(b) Optimizer decides axes lengths and orientation - Largest
ellipsoid possible with scaling coefficient of 0.15

Figure A2.4: Introducing a scaling coefficient as seen in the nested for in A2.19 into A2.17 allows for a more
conservative ellipsoid fit

Since the MVEE algorithm encloses all vertices of the 2-polytope, the resultant 2-ellipsoid’s centre, axis
lengths and orientations are uniquely defined by these vertices. In the d-dimensional reservoir case, this implies
an MVEE can include non-feasible regions since only 2 × d vertices (extremapoints at the boundary of the
feasible region) are responsible for defining the ellipsoid.

A2.6 Validation: Sample generation on ellipsoid surface

For this approach the uniform distribution of points generated in the ellipsoid interior using the workflow and
code mentioned in [8] are projected to the ellipsoid surface. Recall the ellipsoid matrix equation:

(x− c)TQ−1(x− c) = 1 (A2.20)

The inequality has been replaced by an ‘equal to’ sign as all points (including x) should exist on the ellipsoid
surface.

Let y be a point in the ellipsoid interior, located at some distance from the centre c. By treating y as a
direction vector and c as the origin, a point can be obtained on the ellipsoid surface as long as the magnitude
of the direction vector is known. Let g be this magnitude. In that case, the point on the surface is (c + gy).
Substituting this term in equation A2.20 in place of x we have:

((c + gy)− c)TQ−1((c + gy)− c) = 1 (A2.21)

Which reduces to:

g2yTQ−1y = 1

g =

√
1

yTQ−1y

(A2.22)

As the ellipsoid is symmetric, a second point is obtained on the opposite side also on the ellipsoid surface
as (c− gy).

To be clear, the workflow mentioned in [8] gives a uniform distribution of points in the interior of the
ellipsoid. It is yet to be determined if the nature of the distribution of points on the ellipsoid surface is also
uniform.
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(a)

(b) Uniform distribution of points in the ellipsoid interior (c) Points projected on ellipsoid surface

//

Figure A2.5: Testing on the Rosenbrock function: Exploration was conducted from [1,1,1] - the true
optimum for the 3D Rosenbrock function. Exploration was terminated when a function value of 12 was reached.
The ellipsoid was inscribed using the algorithm presented in A2.19. (4000 points/ellipsoid)
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(a) Uniform distribution of points in the ellipsoid interior
(ellipsoid not shown for better point visibility)

(b) Points projected on ellipsoid surface

Figure A2.6: Similar to the previous image A2.5, exploration was conducted from [1.526,2.338,5.461] - an origin
chosen solely because of the resulting elongated ellipsoid. Exploration was terminated when a function value of
12 was reached. The uniformly distributed points in the ellipsoid interior are projected to the surface. Despite
the approximately 40:1 ratio between the longest and shortest axes lengths, the distribution of points in the
ellipsoid interior and on the ellipsoid surface remains visually uniform. (sampling density: 4000 points/ellipsoid)
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(a) Uniform distribution of points in the ellipsoid interior
(ellipsoid not shown for better point visibility)

(b) Points projected on ellipsoid surface

Figure A2.7: Similar to the previous image A2.6, the distribution of points in the ellipsoid interior and on the
ellipsoid surface remains visually uniform even with a reduced sampling density of 1000 points/ellipsoid.
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