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ON THE GENERATION OF LONG-PERIOD SECOND-ORDER
FREE-WAVES DUE TO CHANGES IN

THE BOTTOM PROFILE*

By

Bernard MOLIN**

ABSTRACT

At first-order of approximation a sea-state consists of sinusoidal com-
ponents with periods ranging from a few seconds to about 20 seconds, but
a second-order analysis shows the co-existence of long-period components
(appearing at the difference frequencies), which may be associated with
such phenomena as surf-beats or harbor resonance.

Considering the simple bidimensional case of two regular waves super-
posed with close frequencies, it is questioned how the accompanying long
wave is modified when some irregularity of the bottom profile occurs. As-
suming the waterdepth to be constant upstream and downstream the bottom
irregularity, the first-order components to behave as deepwater waves, and
the second-order long wave to obey shallow-water theory, the problem is
solved analytically or numerically in a number of cases. The decomposition
of the second-order wave into a locked wave (accompanying the first-order
waves and propagating at the group velocity) and free waves is clearly
made, and it is shown that transfers of energy may occur between the
first-order waves and the second-order free waves.

Last the case of shallower waterdepth (when first-order waves cannot
be considered deep-water waves any more) is considered, and some approxi-
mate solutions are given.

INTRODUCTION

Phenomena such as slow-drift motion, surf-beats, or harbor resonance,
indicate the presence of low-frequency components within a wave system.
Correlations between offshore sea-states and seiches in sheltered bays or
harbors [1] suggest that such low-frequency waves can escape the wave-
system and propagate independently.

It is conjectured here that this low-frequency phenomenon consists of
second-order waves (in the wave-amplitude) appearing at the difference-
frequencies of the individual components of the wave-spectrum. These
second-order waves consist of "locked-waves" (or "bound-waves") accom-
panying the first-order waves and propagating at the group velocities, and
of "free-waves" traveling independently.

* Received on February 26, 1982.
** Ocean Engineering Division, On Sabbatical Leave from Institut Francais du Petrole.
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It is with the emission of these second-order free-waves that we are
dealing here, when changes in the bottom profile occur. We neglect other
phenomena such as higher-order interaction or bottom friction. As a
further simplification we restrict ourselves to the case of two-dimensional
waves propagating over a cylindrical bottom. Also the derivations pres-
ented here are obtained for the case of two regular waves superposed.
However they may easily be extended to the case of irregular waves defined

by a given spectrum [3].
In a first paragraph we derive the expression of the second-order locked-

wave!. It appears that we can distinguish different wave-length/waterdepth
regimes for the first-order and second-order waves. In particular if the
difference-frequency is small enough, there exists a range of waterdepths
for which the first-order waves be considered deep-water waves and the
second-order ones shallow-water waves. As this assumption considerably
simplifies the problem, it will be used throughout most of this paper.
Eventhough the consequent results may be restricted in so far as the
values of wave-frequencies and waterdepths, they do apply to cases of
practical interest. Moreover we may expect some of the results to remain
qualitatively valid in other configurations.

The second paragraph is devoted to energy flux considerations. It
appears that transfers of energy between first-order waves (through a third-
order decrease or increase of their amplitudes) and second-order waves

are possible.
In the third paragraph governing equations for the second-order free-

waves are established when the bottom profile presents some irregularities.
Two cases are considered: undulating bottom for which a resonant effect
may occur, and sloping bottom. Some numerical results are presented.

I. SECOND-ORDER LOCKED-WAVES

We make the usual assumptions of perfect fluid and irrotational motion.
The flow is described by a velocity potential 0(x, y, t) expressed as a power
series of a perturbation parameter e identified with the wave-steepness:

0(xyt)=e00)(xyt)d-e20(2)(xyt)±

The governing equations for are:

( 1)

-in the fluid: JO= 0 h(x)<y <79(x, t) ( 2)

-at the bottom: = 0 - h(x) ( 3 )

-at the free-surface 72(x, t):

( 4)pg7) p

y=
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( 5 )

Eliminating 7) one obtains

11 + 07, (I70)2 +0!.0-F20,00+0,0=0 ( 6 )

at y = )2(x, t)

Assuming 0 equal to its Taylor development between y=0 and y= 72(x, t)
the free-surface condition may be expressed at y=0 to yield:

first-order 0q) + gck" =0 ( 7 )

asecond-order g0;,2) +72") ( C) + g0,(;))+ (170"))2= 0 ( 8 )
ay

a
at

etc.

Obviously other boundary conditions are needed in order to fully determine
0. We shall consider those later.

Let us write now the first-order potential corresponding to the super-
position of two regular waves:

a,g cosh k,(y+h) sin (k,x wit+ 0,)
6 ah cosh k,h

chg cosh k2(y+h) .sin (k2xw2t+ ( 9 )
w2 cosh k,h

04= gk, tanh k,h co= gk, tanh kh

where the waterdepth h is assumed to be constant.
Then at first-order the free-surface elevation writes:

Er/ " a, cos (k,x w,t+ 0 ,)+ a, cos (k2x akt+ 02) (10)

From (8) one may see that the second-order potential appears at angular
frequencies 2w 2w2, coi+w, and CO -CO, In particular the free-surface equa-
tion for the second-order potential at angular frequency w, w, writes:

0;;) + = (P (2) +Q(2)) sin [(k, k)x+(Oli -CO2)t-1-01 -021 (11)

where

1E2P(2)= a,a,gz
2 [

14

w, cosh 2k,h w, cosh 2k,h

kik,E2Q(2)= - a,a2g2 (co, (02)(1+ tanh k,h tanh k,h) (13)

so that a solution to (2), (3), (8) is:

(12)

g

1



F(x) f pOtOzdy '(17)

4

where the bar denotes, the time-average:
F (x) may be developped as a power series in v.,

F (x) = E2 F (2),(X)+ s' F (3) (x) F (4) (x) + (18)'

For two regular waves traveling together in deep water Fm writes-:

0(2)

(cot g(k pk2) tanh (k, k2)h cosh (k,kz)h
p(2)± Q(2) cosh (k1k2)(Y + (14)

)(sin [(kk)x (co, co,)t +,0 012]

From now on We asslune oh> o), and we write:

4co= co, co, 4w>0
4k = kik2 Ak >0

From (14) it appears that if tlw <co the second-order potential decrease§
much more slowly than the first-order one with the depth. Thus as the
wave-system moves from deep water toward shore we can distinguish
different configurations:

The waterdepth is deep both for the first-order and secon&orde?
waves. Then 0(2) simplifies into:

E20 (2) a, a,,wie"Y sin (zIkx Jag + dB) (15)

'The waterdepth is deep for the first-order waves but intermediate
for the second-order ones:

t2Ø(2)_ 2a1a2w1w24ca cosh dk(y h) (4kx Aug+ JO) (16)
40 - gk tanh 4/eh cosh dkh

If 4k/k,<0.1 the waterdepth will become shallow for 0(2) 'while it,
may still be considered deep for 0(d)' . This is the case for instance of two
waves with periods 7.7 and 8 seconds trarling in 50 meters waterdepth:
The period of the associated beat is 200 seconds.

Eventhough this case is limited to very small values of Al k, and to
a narrow range of waterdepth it provides an easily handalable frame when
one considers the modification of the wave-system over a bottom irregu-,
larity: first-order waves remain unperturbed while second-order low-
frequency ones are governed by shallow-water equations., This is the case
that we consider in paragraph DI.

4

IL ENERGY FLUX CONSIDERATIONS

Be F (x) the time-average of energy-flux at abscissa It writes,:

4

h)

sin

x.

=



(21)
v-(1

5

Pe)(0P)OT)Iy=o +[c° _pC1)((Pdyl
(4)

where

(2(i)c) F0(1)2 ± 2))
2

Considerations on the Third-Order Potential

Due to the time-averaging we need only take account of the com-
ponents appearing at pulsations co, and co,.

It is wellknown that the third-order approximation of the velocity
potential appears as a correction to the wave-number so that:

0= a1g-e(k1+2k12 '" sin I(k1+c2k12))x w1t + Oi]
WI

azg ek=+"'.=' sin f(k2-1-62k)x w,t+ 02] (22)
coz

2a1a2w,o7zico cosh 4k(y+ h) sin (Jkx _Rut+ JO+ 0(e)
.162+ gzlk tanh 4kh cosh zikh

where the other third-order terms appear at pulsations different from co,

or to,. (Under our assumption of deepwater approximation for 0, 0'2'
appears only at the difference-frequency iw.)

The complete derivation of and k2) is a tedious task the result of

F(2)(x)= f

szF("(x)= pg2 +
4 co, (02

(19)

As a result of the time-averaging it is easy to show that if (01#2(02
(we still assume co,>0),) F°' is zero.

Our intention here is to establish a relationship between F(x) and the
waterdepth. That means that we have to carry the derivation up to fourth-
order in and thus develop the velocity potential up to third-order. We
assume the waterdepth to be deep for the first-order waves and intermediate
for the second-order ones.

As a matter of fact F(x) writes:

F(4)(x)=-F p(0;')0,(:)+0;2)(Pf +C3)(Andy

P")(OP)0.(;) 119,7")2(0P)0.(.1,),+0',)C1)iv=0 (20)

-
)

+
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which may be found in [2]. However we need not explicit them as:

toci)0Tdy I pg,[ ai'kp)
111 4 wiki

and

pC"OT dy pg[
4 k, E2k2

so that:

cewiki2)dy") 1 pgi
4

and expressions (23) and (25) cancel each other. Since op) equals zero it
appears that F4(x) does not depend on the third-order potential (under
our assumptions of constant waterdepth and deep-water approximation of
the first-order waves).

As we are interested in the relationship between F'" and the water-
depth we carry out the computation of the energy flux only for those terms
where 0(`) appears, which yields:

What is going to happen now if the waves encounter a bottom ir-
regularity through which the waterdepth changes from h, to hi?? The
change in value of FT) is an indication that something has happened, that
is the second-order waves have diffracted.

Far away from the disturbance we may assume that the emitted waves
consist of free-waves traveling upstream and downstream with wave-num-
bers kJL and k, given by:

4w2 gk, tanh (29)
4w2= tanh

The corresponding velocity potentials write:

aw)
(23)

w,k,

+
k

a22`.°2 (24)
+ eh42)

cew+ 2 2 2 (25)

F(4)(x)=F ,4)(x) aPT) =0 (26)
ah

e4F ,4)(x)= pB(2)(hyziwr
4

Likh -1-tanh Zikhl (27)
L cosh2 dkh

pa,a,,,B(2)(h)4w(w,+w)

where

13(')(h) - 2a1a2a),wzko (28)
do)? gzIk tanh 4kh

eiLhL

Rh,

=
+



cm= AA cosh kAy-FhL) sin (k,x+ Jad±so,L)
" cosh k4L12,

cosh k,,R(y R)Ok),= A sin (k,Rx Jag °JR)
- cosh k,h,

To carry out the expression of the fourth-order energy flux associated
to --FOL. or 0+02, one realizes that, due to the occurrence in 0(4, 0';',
and 0") of same pulsations but different wave-numbers, one has to consider
the x-average of F(4) as well, in which case it writes:

upstream:

so that we may expect the extra-terms to compensate for the difference
between Fe; and 114;,.

If h<hL that seems a likely possibility since F e) is a decreasing func-
tion of h. However an inconsistency appears if h,>h,.

This inconsistency stems from the fact that we have omitted the third-
order waves which occur from interaction between the first-order waves
and the second-order perturbations of the free-surface kinematics in the
vicinity of the bottom irregularity. Third-order free-waves at pulsations
w, and co, are emitted which result into an increase or a decrease of the
first-order wave amplitudes. Only through this process can we equal the
energy fluxes upstream and downstream the bottom irregularity. (This
should also remove the inconsistency of having expressed F"' as an x-
average.

As a consequence we may conceive that eventhough hn=h,, variations
in the bottom profile may cause emission of second-order free-waves, the
energy which they carry away being compensated by a third-order decrease
of the wave-amplitudes.

III. APPLICATION OF SHALLOW-WATER THEORY

In this paragraph we make the assumption of deepwater waves for
the first-order and shallow-water waves for the second-order, that is:

both k1h>1 and 4kh <1

Practically it is sufficient that and 4k12... 0.3.
It is easy to draw the consequence that the emitted free-waves are

A (2)2=F,Y) +P 1M ptiFL

downstream:

[kJLhL +tanh k hi, I (31)
cosh' k4LAL

F = F4 ± F ± pA
4

4( or
k .

R tanh k,
j

(32)
cosh' le,h,

7

k,h> 3

(30)



shallow-water waves as well

.

,h)?' w2 h _ 04)h2 (4kh)2

g (COI + coz)2hg- ' 4k ,h

so that hi< 4k

Aint 71.
V 0

.1

11,

Rt. _

iBuo cosh Jk(y h)
cosh ilkh e

Ay!, cosh k(y h,) Rx
cosh h,

AFL cosh k ,,(y h,,)kJL
cosh k 4L1 L e

(33)

The waterdepth is assumed to be constant for x< XL Or x> x, with
corresponding values hi, and h,.

As a consequence of our assumptions the first-order waves are unaf-
fected by the change in waterdepth, so that we need only consider the
diffraction problem for the second-order waves.

Since locked-waves and free-waves appear at the same pulsation 4as
we make use of complex notation (from now on we drop the e2)

ø2= {co(x,. y)e-'41 (34)

so=c9L+9F., (35)

The problem in ç writes:

Soxx can:=0 h(x)y0
Jc0299-1-g9--12a,azw,(0210)ei"x` y =

w y = h() (36)

',(p= cor.(hR)- f -.9FR x>xR,
, 9L(hL)± 90FL X<X.

where

AFT? C (37)

AFL E C

As a matter of fact the decomposition (35) makes sense only for x>
X: or -x< xi In the interval [xi xj, we can arbitrarily 'decompose SO into- R

8

+

0

+ = 0

E



two components so that they match coF and 01at XL ,and ,x,..
For instance we can take:

cosh -11z(Y + h(x))
FL.,= jAh(x))

cosh zIkh(x) e

In this case coL satisfies the non-homogeneous free-surface condition
but not any more Laplace condition, nor of course the bottom condition.

If -= h,=h, we can take:

ot.,___,_iB(ht) cosh Jk(y ho)

ecosh LIkh,,

Here only the bottom condition remains to be fulfilled.
In the following we shall make use of either one of the potentials soz,j

or soL, The problem in ,cDF 'writes:

with

cDFXs+ 'N'yy= Lxx W LY

jw2i 0 F.+ gpFu= Q.

4 hx9Fx + chi,y= h. Lx

ç 0 F.r= RS F

so F x 41 e

io = leso p x>
sop's= ik,Lw x< x

Undulating Bottom

h(x) y

y=o
y= h()
x>
.x..<

(39),

(40)

(41)

Application of linear shallow-water theory yields the following Nue,:
tion in

40' a92,4, 0) ± l[h(x)co F.(x, 0)]
ax

h) So Ly(x, I

9

(38)

=

co:

=
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In this section we assume the bottom profile given by:

h(x)= ha a sin Ax >0

xL=

Furthermore we assume a <h and 1k so that kl< 1.
Since h = ho, we take soL=c0

40,.= irnho cosh Jk(y+h0) prJ,
cosh Jkh

B(ho)Jkei"-'

yo,(x, h(x))2-: iB(ho)Jk2a sin Axe'-"'

Neglecting the term hxso, in (41) we obtain the approximate equation:

leco = (f cos Ax+ ig sin Ax)e'-" (46)

where

f= B(11)Jk,1
ha

(47)
g= - B(h0)Jk2

ho

The general solution of which writes:

= e +r,e e-jo
k 0-1.4

(10 tp, q2 k s

1 1 pi= jk p,= 4k= -2(f + g) q2= -2(f - g)

which upon identification with (37) in x and x yields:

i[ qi sin x(111k0)-F (12 sin x,(p, k)1
ki()) kjo(p2 kJ)

(48)
A,= i[- q' sin x,(1.1,-1- sin x(p,±k d()]

kakli+ km) l'e4o(p2+k,a0)

For 2= Jle+ k we obtain a large amplification due to a resonant effect.

If 2=Jkk, A,, remains bounded and An I behaves as

2 ho
1 a B(ho)Jkx, (49)

so that the amplitude of the downstream free-wave increases linearly with
X.

{44)

,(x, h(x))=
.(45)

+ r
k2j0

A+ A+

AF,?

-(42)

(44



= Zit+

If previously we. had considered the bottom profile given by

h(x)= h0r' sin (2x+ (3)

we would have obtain for the potential amplitude of the transmitted free-
wave :

as x, increases.,

-XR

Taking advantage of linearity we may write the amplitude of the down-
stream potential as

AF,=_1 c12{a,(2, .-1)7 ,a(v) cos 4d1.4
2

+ ct,,,(2,. 0) .a(v) sin 21474

When x increases it is possible to derive the asymptotic behavior of
this expression,. One finally obtains:

Alo&-=
1 B(h0) Ak crweiv WI, -CIO) dv
2 ha

or

F - fl'kr q lasin x,(pk,),± 2 sm xil(p2 -10)1. (54

(53)

k,o(p 1 k
_

kikt2 kip)

A F = aaFR(2, 3)

11

On the other hand if A -=-Jk + one obtains the same resonant effect
for the reflected free-wave.

Bottom of General Shape

Let the waterdepth be described as,:

h(x)= ho-cr(x) (50)

where we still assume

h(x)= 11th fOr Ij xl> xre XL = - X,

ho,

(50) may be re-written:

XR

h= 110= 1J.- clA (cos Ax a(v) cos

+sin Ax J a(v) sin Avdv) (51)

J
(55)

ia[

f

(54)
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If we now assume the bottom profile a(x) to be described as a zero
mean, stationary signal with correlation length small as compared to x,
we obtain, squaring the modulus of A,:

ArnApR1 Mho) jk,
cr(P)a(P)el`P--)`"-"°)dttd2,

4 le, J XR - XR

so that:

' .132(k) zuexitso(Jk kin)
2 le,

(56)

where S. is the power spectrum of (r(x) (Fourier transform of its covari-
ance).

Thus in this case A,.., behaves as A./.x for large values of x.
Corresponding expressions for the reflected free-waves may be obtained

by replacing Jkk by Jk+k,,, in (55) and (56).

111-2. Sloping Bottom

kx)

We now assume h,,*h,. In this case co, is added to the locked-wave
potential defined as:

ii3(h(x)) cosh Jk(y+h(x))
cosh Jkh(x) e

(38)

Still assuming that shallow-water theory applies, and given that:

=0 y=h(x)
=(JkBihrB)e""
=[24khBi(h, B-Fk,Bhh)]e''' (57)

we obtain the following equation in co,:

coF

= Jklz(B+2hB)+i(hh.,B,,+h13,,+hkB)}e'-'"
co,.=ik,9 x=x±Jx (58)

c,F.r= ikILWF x= x,

J-

119Fxs+

= {



where we have made no hypothesis as far as the smallness of h, (other
than those inherent to shallow-water theory). Note that the radiation
condition is set some distance from XL or xi, due to the discontinuity of

)f.tr

Equation (58) is solved by finite differences.
(Obviously, due to the numerical scheme employed, it would have been

just as simple to solve directly for 9,,d- co,. However we have prefered to
do so by similarity to paragraph III-1).

Numerical Results
Since numerous parameters are involved numerical results are given

only as an illustration.
Two wave periods are selected: 8/1.04 and 8 seconds so that the period

of the associated beat is 200 seconds. It follows that the first-order waves
are deep-water waves for values of the waterdepth larger than 40 meters,
whereas the locked second-order wave is shallow for h smaller than 60
meters.

Both wave-amplitudes are assumed to be unity (one meter).
Figure 1 shows the potential amplitude of the second-order locked wave

(eq. (14)) and its proposed approximation (16). Underneath the energy-flux
variation from h= -00 is represented.

45(2
y.o
50.

25.

0

co 200 100 50 40 30

10 5 3

Figure 1. Variations of the potential amplitude of the second-order
locked-wave, and of the energy flux, with the waterdepth

20 15

eq.(14)

___--eq.(16)

.050 .075 H

-250.

(4) (4)FhF.

H im)

1.5.

13
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In order to check the numerical scheme it was first applied to the
case of the undulating bottom, and its results compared to the analytical
ones. Moreover the numerical scheme was run repeatedly for both second-
order locked potentials (Son and so). Corresponding results are shown on
figures 2 and 3.

Next the case of sloping bottom is considered. The waterdepth vari-
ation is supposed to be from 60 to 30, meters and different lengths of the
slope are considered.

Corresponding potential amplitudes of the transmitted and reflected
free-waves are shown on figure 4. It appears that the transmitted wave
always exceeds the reflected one. They turn out to be decreasing functions
of the slope, with some undulations superposed, the "wave-numbers" of the
oscillations being apparently equal to 4kk, for the transmitted wave
and Jk+ k, for the reflected wave.

For large values of the slope one obtains ,solutions close to those calcii-
lated for the case of a step-like change in waterdepth (see Appendix), even-
though in the limiting case shallow-water theory cannot be applied any
more.. This gives us some confort as far as the domain of validity of the
proposed model.

Figure 5 provides an illustration of the building-up of so, for a slope
length equal to 2000 meters.

The case of superposed bottom undulation is illustrated by figures 6
and 7. In this case the waterdepth is described as:

h=h,,-6(x+ x,)+ a sin 2h 3cR (59)

where tr takes the values 0; 2, and 4 meters.,

111-3. Shallower Water
The hypothesis of deep-water waves for the first-order components of

the wave-system has allowed us to simply calculate the amplitudes of
'emitted free-waves when some changes occur in the bottom profile. How-,
ever these amplitudes are disappointedly small, some millimeters for wave-
heights of the order of one meter. Obviously in order that the phenomenon
become physically appreciable, one has to move to shallower water, so
that the amplitude of the second-order locked wave increases substantially.
The drawback is that we have to take account of the modification of the
first-order wave system: refraction, and possibly diffraction.

We shall assume here that it is sufficient to take account of refraction
only. In such case a wave traveling from deep water exhibits some changes
in amplitude and wave-length, so that its potential may be described by:

a(h)g cosh k(h)(y + h) sin (c k(h)ds' wt) (60)
cosh k(h)h
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Figure 2. Illustration of the generation of the second-order free-waves
on an undulating bottom.
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Figure 3. Illustration of the generation of the second-order free-waves
on an undulating bottomResonant case.
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See. Append:5c
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Figure 4. Potential amplitudes of the transmitted and reflected
free waves due to a sloping bottom.

Figure 5 Illustration of the generation of the secondJorder
free-wave on a sloping bottom.
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2.

0

2. a = 4m

zm

=o

- 4m
-- a = 2m

a= o

------Ns

N,

1000 2000 3000 4000

Figure 6. Combination of undulating and sloping bottom.
Potential amplitude of the transmitted free-wave.

1000 2000 3000 4000

Figure 7. Combination of undulating and sloping bottom.
Potential amplitude of the reflected free-wave.

where

co' = gk(h) tanh k(h)h

a(h)=a(co) d(°")) = a(oo)V cosh' kh
C ,(h) kh + sinh kh cosh kh

being the group velocity.
Since this expression is only a zero-order approximation in h we shall

not consider the x-dependence of a and k in the derivation of the free-
surface equation (8). Then the second-order locked potential is obtained

17
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Figure 8. Potential amplitude of the transmitted free-wave due to

a bump, with variable downstream waterdepth.

tyi,17/ 77-77-7//1-1:.

10m,

Figure 9. Potential amplitude of the reflected free-wave clue to
a bump, with variable downstream waterdeptb.

from (14) where one takes account of the changes in amplitudes, wave-
numbers, and phase angles of the first-order waves.

As a numerical application we consider single bumps of sinusoidal
shapes with constant waterdepth upstream and downstream. First the
dependence upon the downstream waterdepth is illustrated (figures 8 and
9) with upstream waterdepth 60 meters and waterdepth at top of the bump
10 meters (still for the same 8/1.04 and 8 seconds waves with unit ampli-
tude). For a downstream waterdepth equal to 10 meters we obtain again

52100 1m
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Figure 10. Potential amplitude of the trans,nie,d free-wave due to
a bump, as a function of the bump height, for upstream
and downstream waterdepths equal to 60 meters.
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Figure 11. Potential amplitude of the transmitted free-wave due to
a bump, as a function of the bump height, for upstream
and downstream waterdepths equal to 30 meters.
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that the transmitted free-wave decreases in amplitude with increasing
bump-length. For downstream waterdepths larger than 10 meters we obtain
the interesting result that the maximum amplitude occurs for a non-zero
bump-length, so that the corresponding slope is rather mild, which is con-
sistent with the hypotheses. As before we observe that the reflected free-
wave is much smaller than the transmitted free-wave (figure 9).
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Next the effect of clearance at the top of the bump is investigated.
Corresponding results are plotted on figures 10 and 11, for equal upstream
and downstream waterdepths.

As compared to those of the previous paragraph, the amplitudes of the
generated free-waves appear to be physically appreciable (10 to 20 cm for
1 m wave-amplitude).

A next step would be to treat the case of a beach. However in such
case more difficulties arise, as one has to set a waterdepth for breaking,
and a boundary condition for the second-order waves. Some computational
runs have shown that, depending upon the chosen answers, surf-beats quite
variable in amplitude could be generated.

CONCLUSION

When encountering changes in the bottom profile, a wave-system emits
second-order free-waves, appearing at the difference-frequencies of its indi-
vidual components. Refracting differently these long free-waves may enter
apparently sheltered bays or harbors.

In the simplistic approach proposed here we have been able to quantify
this phenomenon, by considering the two-dimensional problem, and assum-
ing the first-order waves to be unperturbed, or undergoing refraction only.
More work remains to be done, in order to solve the case of a beach and
to include three-dimensional effects, as edge-waves are likely to appear
along the shore.
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APPENDIX

Diffration of the Second-order Potential on a Step
In this section we assume the waterdepth to be deep for the first-order

waves and intermediate for the second-order ones.

We match at x=0 analytical expressions of the potential for x<0 and
x_.> O.

x<o: co- =s0L(k) + a; f e C
=1

cosh kaY +hi)
ecosh kodzi.

=cos kiL(y±hDekii.,

where

Jw =gk0, tanh
Jw2=gk,, tan
so,,(h,)= _ imo cosh zik(y+h,)

cosh zIkk

=coL(h) 4- bi e C

cosh lzR(Y±hR) titg0= e °Rx
cosh k,,,h,

g, = cos k,(y-Ehje-k,Rx

where

zlco2=gk tanh
4w2= glz, tan k,JhR i 1

Sol.(hn)= iB(hR) cosh zik(y + hR)
cosh Ali,

At x=0 the matching conditions write:

y <0
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-200

co_,--= 0

where we assume h,>h.
Thus the set of unknown coefficients (a,,- b,) minimizes:

F= a$(40- 40,-)(0 g)dY-+ 48 f ,)(co* , ,)dy
- hie -ha

+ r jL
where a. ;3, r are ponderation coefficients.

Expressing that partial derivatives of F with respect to (a,- b,) are
zero one obtains a set of 2N± 2 linear equations which are solved by clas-
sical techniques. (In the numerical resolution some accuracy problems
occurred, apparently due to the small values of kL, k,, as compared to kiL,
ki (i 1). This disagreeableness could be effectively overcome by imposing
a further constraint on the second derivative of co.)

Numerical Results
Again we consider two waves of periods 8/1.04 and 8 seconds, in water-

depths of 500, 200, 100, 60, 40, and 30 meters.
The different components of the second-order waves are illustrated on

figure 12. -
®
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Figure 12. Illustration of the different wave components for
a step-like change in waterdepth.

The Table 1 shows the obtained numerical results concerning the am-
plitudes at the free-surface of the reflected and transmitted potentials, and
the amount of energy which is carried away by the free-waves, as compared
to the loss in energy-flux due to the change in waterdepth.
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Table L Potential amplitudes of the different second-order component Waves,,
together with the amount of energy flux transferred to the free-waves

Nomenclature:
h L: waterdepth before the step
hR: waterdepth after the step

B(hL): potential amplitude of the locked-wave before the step
B(hR),: potential amplitude of the locked-wave after the step

I spF(hL)ly-o: potential amplitude of the reflected free-wave
y9F(hR)Iy=o: potential amplitude of the transmitted free-wave

FFI JF: energy flux transferred to the free-waves, as a ratio of the total loss

In all cases the transmitted free-wave appears to be larger than the
reflected free-wave, its amplitude being roughly equal to the difference in
amplitude of the locked-wave before and after the step.

It appears that only a small fraction of the loss in energy flu* is
transferred to the free-waves.
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