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Abstract - To verify the aircraft position provided
by Automatic Dependent Surveillance-Broadcast (ADS-
B) transponders, multilateration (MLAT) technique
incorporates time difference of arrival (TDOA) mea-
surements at multiple ground-based receivers to esti-
mate the corresponding distances between those and
the aircraft. This approach requires precise time syn-
chronization among receivers that can not always be
guaranteed. Alternatively, received signal strength
(RSS) measurements can be utilized to derive these dis-
tances. In this paper, crowdsourced RSS measurements
from 43 receivers were used to construct parameterized
signal propagation models that capture the relationship
between RSS and distance. The quality of these models
was evaluated by examination of model parameter and
estimated distance errors in both 2D and 3D. The results
show that at most 26.3% of available RSS measurements
could be represented by the models given the cut-off cri-
teria for model parameter errors. Moreover, the models
with higher parameter errors demonstrated poor abil-
ity to capture RSS measurements at greater distances.
The localization errors in MLAT with TDOA were com-
pared to MLAT with RSS where the later resulted in
more accurate position estimation in cases where the
receiver clocks were not synchronized. However, MLAT
with TDOA generally produced significantly more accu-
rate position estimation given the reliable timestamps of
signal arrival. The assessment of localization accuracy
using crowdsourced data resulted in root mean square
errors of 118.1 meters in MLAT with TDOA and 9858.6
meters in MLAT with RSS in 2D, representing the best
results obtained.

I. INTRODUCTION

In the recent years, a significant shift in air traffic surveil-
lance methods occurred through the integration of Au-
tomatic Dependent Surveillance-Broadcast (ADS-B) as
an enhancement of traditional radar systems [1]. ADS-B
employs an onboard transponder to broadcast real-time
information about aircraft position without the need for
interrogation from the ground. This technology enhances

surveillance capabilities of air traffic control (ATC) as well
as improves situational awareness of aircraft pilots through
integrated systems such as Traffic Collision Avoidance
System (TCAS) and Traffic Information Service-Broadcast
(TIS-B). While ADS-B provides highly accurate position
data, the occasional instances of intentional or unintentional
signal manipulation occur in forms of message jamming,
injection and interception [2]. To ensure redundancy and
enhance reliability of ADS-B position data, multilateration
(MLAT) technique is used as an additional layer of aircraft
position verification [3].

In MLAT, the position of the aircraft is determined by
analyzing the time difference of arrival (TDOA) of the
signal at multiple ground-based receivers. The precision of
TDOA measurements, and consequently, the localization
accuracy, depends on the synchronization of receiver clocks
which presents challenges in practical applications. The
Global Positioning System (GPS) can facilitate nanosecond
time accuracy, but is not a scalable solution as it requires
additional hardware at each receiver [4]. For the receivers
in close proximity, a physical link or reference transpon-
der can be used. Although this option is reasonable for
surface applications, en-route surveillance requires multi-
ple reference transponders due to line of sight constraints,
increasing the complexity and the cost of the system [5].

Additional complication in MLAT arises from the geo-
metric arrangement of the receivers that influence geometric
dilution of precision (GDOP). The GDOP value indicates
how well-conditioned the set of MLAT equations used to
estimate the position is. The lowest GDOP occurs when
the transmitter is positioned within the perimeter outlined
by receivers that are sufficiently distanced from one an-
other [6]. As the separation between the pair of receivers
narrows or the configuration of receivers becomes more
linear relative to the transmitter, GDOP related MLAT
errors increase [7].

In response to challenges posed by MLAT with TDOA,
distance estimation using Received Signal Strength (RSS)
has gained attention. RSS is a common feature found in
the majority of wireless devices, thus does not require addi-
tional hardware and does not have a considerable impact on
the local power consumption [8]. The distances between
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transmitter and receiver required by MLAT equations are
usually derived through signal propagation models that
relate distance to the attenuation of a signal as it travels
through a medium [9]. This relationship is often described
with the properties of transmitter and receiver, environ-
mental conditions and signal noise. It has been previously
demonstrated, that RSS measurements are inherently sus-
ceptible to various environmental factors [10]. Additional
complication in RSS-based localization is the variation
between theoretical and measurement-based RSS levels
depending on the transmitter and receiver properties [11].
This challenge becomes even more prominent when the
properties are unknown.

This paper aims to determine the level of aircraft localiza-
tion accuracy that can be achieved using RSS measurements
gathered from low-cost receivers with unknown properties.
The data from 43 receivers shown in Fig.1 was acquired
from the OpenSky Network [12]. The majority of receivers
in this network are RTL-SDR (Software-Defined Radio
using Realtek RTL2832U chipset) which is the most com-
mon low-cost receiver that allows users to process ADS-B
messages. Theoretically, RTL-SDR equipment is capable
of achieving time synchronization accuracy sufficient for
MLAT with TDOA [13]. However, the location and time
synchronization can not be guaranteed for non-verified
receivers that comprise about 80% of the network [14].
Moreover, the reference for RSS measurements from each
receiver is also unknown.

Fig. 1. Map of OpenSky receiver locations.

Further, this paper elaborates on feasibility of MLAT
with RSS by exploring the potential number of aircraft that
can be localized using crowdsourced RSS measurements.
Additionally, the achievable level of localization accuracy
using RSS-based MLAT was investigated. This was accom-
plished by construction of logarithmic propagation models

that describe RSS-distance relationship for each pair of
aircraft and receiver present in the OpenSky Network data
set. The assessment of model quality was implemented
through examination of model-derived distance accuracy
and errors in model parameters. This allowed elimination
of RSS measurements from faulty transmitters and re-
ceivers. Moreover, the sensitivity of localization accuracy
to model parameter errors was evaluated for three groups
of models with various error cut-off criteria. Finally, the
aircraft locations were estimated using MLAT with TDOA
and RSS to compare the results in terms of achievable
localization accuracy of both methods.

The following content of this paper presents previous
work related to the topic in Section II. The methodology of
model implementation and subsequent analysis is provided
in Section III. The results, summarized in Section IV,
are followed by the discussion in Section V. Lastly, the
conclusions and recommendations are outlined in Section
VI.

II. RELATED WORK

A. Limitations of RSS

The RSS, typically measured in decibel, can vary depending
on the characteristics of transmitter and receiver as well as
environmental conditions [10]. On the transmitter side, the
strength of the signal depends on the hardware employed to
generate and amplify the signal. At the receiver, the RSS
depends on its sensitivity as well as data processing compo-
nents. Recommendations for reliable RSS measurements
include use of isotropic antennas and measurement calibra-
tion [15]. However, ADS-B antennas are often designed
with specific radiation patterns to optimize coverage in the
desired direction. Moreover, measurement calibration is
challenging when the reference for RSS measurements in
unknown.

As for the factors related to the environment, RSS mea-
surements are susceptible to signal fading, interference,
multipath effect and electromagnetic noise from other de-
vices nearby [10]. It is practically impossible to account for
all of these, especially, in networks with multiple receivers.
It was previously shown that variations in RSS exist even
in ideal, controlled environments [16]. For these reasons,
it is considered that using RSS is not an optimal choice for
localization purposes [11].

B. Signal propagation models

The attenuation of the signal over the distance is usually
described with signal propagation models [9]. In context
of aircraft localization, Friis free space model and Log-
Distance Path Loss model (LDPL) are widely applied. In
Friis free space model, the decrease in received power
follows an inverse square decay over the distance. This
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relationship is given by Eq.1, where 𝑃𝑡 and 𝑃𝑟 are power
transmitted and received,𝐺𝑡 and𝐺𝑟 are gains of transmitter
and receiver antennas, 𝑑 is the distance between them and
𝜆 is signal wavelength.

𝑃𝑟

𝑃𝑡

= 𝐺𝑡𝐺𝑟

(
𝜆

4𝜋𝑑

)2

(1)

A more generalized model that accounts for propagation
environment is LDPL given by Eq.2, where 𝑃𝐿 is path loss,
𝑑0 is close-in reference distance, 𝑛 is path loss exponent
and 𝑑 is the distance between transmitter and receiver.

𝑃𝐿 = 𝑃𝐿 (𝑑0) + 10𝑛𝑙𝑜𝑔10

(
𝑑

𝑑0

)
(2)

The equation above can be extended with the term X𝜎

to account for random variations in signal power due to
disturbances on the propagation path. This is known as
Log-normal shadowing model where X𝜎 is modelled as
a zero-mean Gaussian distributed random variable with
standard deviation 𝜎. In reality, the noise in ADS-B sig-
nal is comprised not only by Gaussian noise, but also by
thermal effects as well as outliers caused by undetected
garbling [17]. Accounting for these noise sources requires
additional monitoring and processing which, in turn, in-
creases complexity of the model.

In general, experiments show a good agreement of ADS-
B signal RSS measurements with LDPL model given a
complete knowledge of transmitter and receiver proper-
ties [18]. In cases when these properties are unknown,
previous studies suggest that measurement-based models
can be derived. In these models, the unknown terms in
equations above can be replaced by parameters that are
estimated using the available RSS measurements. The
terms in Eq.1 that remain constant during the transmission
can be replaced by one parameter resulting in an equation
that directly relates RSS to distance [19]. Similarly, the
path loss and path loss exponent terms in Eq.2 can be
replaced with two individual parameters [20].

Other signal propagation models are available, but not
considered in the scope of this paper mainly due to the
lack of previous research in context of aircraft localization.
Models that were shown to be limited by distance range or
transmitter and receiver heights are also not applicable [21].

C. MLAT with RSS

In MLAT with RSS, the distance derived from signal
propagation model defines the radius of the circle (in 2D)
or the sphere (in 3D) around the receiver. The position of
the transmitter is then found at the intersection of these
circles or spheres. This localization method offers relative
simplicity, thus implementation cost, compared to MLAT
with TDOA [22]. However, the application of MLAT with

RSS has not been widely explored in outdoor applications
mainly due to inherent limitations of RSS discussed in
previous sections.

In indoor applications, it has been demonstrated that the
localization error of RSS-based MLAT increases as the
spatial scale of the considered area expands [23]. This
phenomenon is attributed to more pronounced effects of
multipath and interference within greater areas. Further-
more, the localization error increases in line with the noise
present in the signal [24].

Similar to MLAT with TDOA, the least-squares (LS)
algorithm is commonly used for the solution of RSS-based
MLAT problems. The primary objective of LS algorithm
is to minimize the sum of the squares of the residuals
between observed and estimated values. In previous indoor
studies, solution of MLAT with RSS using LS algorithm
demonstrated a significant increase of localization accuracy
compared to the direct solution [24, 25]. However, no
research on its implementation in outdoor environments
was found.

III. METHODOLOGY

A. Data

The data set used for the analysis was acquired from the
OpenSky Network in csv format. This data set contains
4892103 transmissions recorded during one hour and in-
cludes the following:

• Transmission ID: identifier of signal transmission by
unique aircraft at one instance of time.

• Server timestamp: time of the server in seconds.
• Aircraft number: unique number of the aircraft.
• Aircraft position: WGS84 longitude and latitude in

decimal degrees and geometric height in meters.
• Receiver number: unique number of the receiver.
• Receiver position: WGS84 longitude and latitude in

decimal degrees and height in meters.
• Timestamp: measured by the receiver in nanoseconds

at the time of signal arrival.
• RSS: measured by the receiver in decibel.

Given the WGS84 longitudes (𝜆) and latitudes (𝜙), the
coordinates of aircraft and receivers on Cartesian plane
(𝑥, 𝑦, 𝑧) were found through transformation given by Eqs.3
where 𝑅 is the radius of the Earth, ℎ is the height above the
surface and 𝑒2 is squared eccentricity defined by semi-major
and semi-minor axes.

𝑥 = (𝑅(𝜙) + ℎ) cos(𝜙) cos(𝜆)
𝑦 = (𝑅(𝜙) + ℎ) cos(𝜙) sin(𝜆)
𝑧 = (𝑅(𝜙) (1 − 𝑒2) + ℎ) sin(𝜙)

(3)

The Euclidean distances in 3D between aircraft and
receivers were then found using Eq.4 where (𝑥𝑎,𝑦𝑎,𝑧𝑎) and

5



(𝑥𝑠 ,𝑦𝑠 ,𝑧𝑠) are positions of aircraft and receiver, respectively.
For 2D distances, 𝑧 terms in Eq.4 were neglected.

𝑑 =

√︃
(𝑥𝑎 − 𝑥𝑟 )2 + (𝑦𝑎 − 𝑦𝑟 )2 + (𝑧𝑎 − 𝑧𝑟 )2 (4)

B. Logarithmic models

The models relating RSS to distance between aircraft and
receiver were constructed on the basis of signal propagation
models described in the previous section. The logarithmic
model given by Eq.5 was constructed by fusion of Eq.1
and Eq,2 and replacement of unknown terms with param-
eters. Here, parameter 𝛼 was introduced to replace the
constant terms, such as transmitter and receiver properties
independent from distance, while parameter 𝛽 scales the
distance-dependent loss.

𝑅𝑆𝑆 = 𝛼 − 10 · 𝛽 · 𝑙𝑜𝑔10 (𝑑) (5)

With the intention to express the distance in terms of
RSS, the resulting model is given by Eq.6 with distance 𝑑

in meters and RSS in decibel.

𝑑 = 10

(
𝛼 − RSS

10𝛽

)
(6)

The model given by Eq.6 was constructed for each
aircraft-receiver pair individually. To find parameters 𝛼

and 𝛽 that represent the pair, measurements were split into
training and testing subsets in proportion 80-20. Aircraft-
receiver pairs with more than 100 transmissions were
considered to ensure availability of an adequate number of
measurements for training and testing of the model. The
models were trained using the training subset data only.
Later, generalization of each model was evaluated using
the testing subset. This was done by calculating the root
mean square error (RMSE) given by Eq.7 where 𝑑𝑖 are the
model-predicted distances, 𝑑𝑖 are the actual distances and
𝑁 is the number measurements.

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑑𝑖 − 𝑑𝑖)2 (7)

The consistency between RMSE of training and testing
subsets was evaluated in order to assess model performance
on previously unseen data. Further, the uncertainties of
model parameters 𝛼 and 𝛽 were examined by computing
relative standard error (RSE) given by Eq.8 where 𝜎�̄� is
the standard deviation of the estimated parameter �̄�.

𝑅𝑆𝐸 �̄� =
𝜎�̄�

|�̄� | × 100 (8)

Generally, low RSE percentage indicates lower uncer-
tainty of estimated parameters. In previous studies, the

cut-off point for RSE classifying parameter estimate as
reliable varies between 10% and 20% [26]. Therefore,
the sensitivity of localization accuracy to RSE cut-off was
examined for values 15%, 10% and 5%.

C. MLAT with TDOA and RSS

In multilateration (MLAT), the hyperbolic curves are used
to determine the position of the transmitter. MLAT re-
quires at least three receivers to determine 2D position
of the aircraft. With less than three receivers, multiple
locations can satisfy the distance measurements resulting
in an ambiguous solution [27]. Similarly, four or more
receivers are needed to determine 3D position. It should
be noted that in 3D MLAT, ground based receivers do
not provide sufficient elevation angle diversity needed to
resolve the vertical component of GDOP, leading to higher
position errors [5].

Due to the line of sight constraint of MLAT, the mea-
surements received from beyond line of sight distance were
discarded. These measurements were identified through
theoretical line of sight given by Eq.9 where 𝑅 is the radius
of the Earth and ℎ𝑎 and ℎ𝑟 are heights of aircraft and
receiver, respectively, in meters.

𝑑𝐿𝑂𝑆 =

√︃
2𝑅ℎ𝑎 + ℎ𝑎

2 +
√︃

2𝑅ℎ𝑟 + ℎ𝑟
2 (9)

In presence of three receivers (𝑖, 𝑗 and 𝑘) with known co-
ordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), MLAT equations are given by Eqs.10
where 𝑑 is the distance to corresponding receiver, 𝑡 is
the timestamp at corresponding receiver and 𝑐 is signal
propagation speed equal to 299792458 m/s.

𝑑𝑖 =
√︁
(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2

𝑑 𝑗 =

√︃
(𝑥 − 𝑥 𝑗 )2 + (𝑦 − 𝑦 𝑗 )2

𝑑𝑘 =
√︁
(𝑥 − 𝑥𝑘)2 + (𝑦 − 𝑦𝑘)2

𝑑𝑖 − 𝑑 𝑗 = (𝑡𝑖 − 𝑡 𝑗 )𝑐
𝑑𝑖 − 𝑑𝑘 = (𝑡𝑖 − 𝑡𝑘)𝑐
𝑑 𝑗 − 𝑑𝑘 = (𝑡 𝑗 − 𝑡𝑘)𝑐

(10)

With n receivers present at the instance of transmission,
the number of equations in the resulting MLAT system is
given by Eq.11.

𝑛!
2!(𝑛 − 2)! (11)

Unlike in MLAT with TDOA, MLAT with RSS does
not consider differences between receivers. Therefore, the
resulting system is given by the first three equations in
Eqs.10. With 𝑛 receivers, this system contains 𝑛 equations.

The solutions of MLAT equations were found using LS
algorithm. Due to the non-linear nature of the problem, LS
requires an initial guess for the location of the transmitter.
The midpoint of receivers in view for each transmission
instance was computed as the mean of their coordinates
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and used as an initial guess. The solution accuracy was
evaluated with RMSE given by Eq.12 where (𝑥𝑖 ,𝑦𝑖) is
estimated position of the aircraft and (𝑥𝑖 ,𝑦𝑖) is true position.

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑥𝑖)2 + ( �̂�𝑖 − 𝑦𝑖)2 (12)

As location and time synchronization of the OpenSky
Network receivers can not be verified, the data contains
faulty timestamps that result in MLAT with TDOA solution
converging to the wrong position. With respect to the
presence of faulty solutions, the results were evaluated
using RMSE for the range of best solutions found. The
results were demonstrated for 100%, 80% and 60% of best
solutions.

IV. RESULTS

A. Available data and RSS-distance models

From the initial data set, 0.06% were received from beyond
theoretical line of sight distance and were discarded. Ad-
ditionally, 3806 aircraft-receiver pairs were discarded due
to insufficient number of RSS measurements available for
model implementation. With the remaining 4888988 trans-
missions, logarithmic models representing RSS-distance
relationships between each aircraft-receiver pair was con-
structed. An example of the model for receiver 663 with
aircraft 2731 is shown in Fig.2.

Fig. 2. Distribution of RSS measurements (blue) and
logarithmic model (orange) for receiver 663 with air-
craft 2731.

From Fig.2, it is clear that most of RSS measurements for
this aircraft-receiver pair could be captured by the model
quite accurately. This was reflected by the RSE of model
parameters which are RSE𝛼=2.8% and RSE𝛽=3.6% for
the case in Fig.2. However, the model becomes less repre-
sentative of an actual RSS distribution as the RSE value

increases. The examples of RSS distribution with resulting
logarithmic model for various RSE cut-off values for one
aircraft can be found in Appendix A. It was established
that models with RSE values of more than 15% were not
representative due to the poor quality of RSS measure-
ment recorded for the specific aircraft-receiver pairs. The
numbers of transmissions satisfying the RSE cut-off values
along with the number of unique aircraft, receivers and
aircraft-receiver pairs are shown in Table I.

Table I. Number of transmissions in models with various
RSE cut-off values for 2D and 3D analysis.

Transmissions Aircraft Receivers Pairs
2D(15%) 1284452 550 39 2763
2D(10%) 875409 401 38 1811
2D(5%) 120276 83 29 277
3D(15%) 493671 314 39 1955
3D(10%) 271870 209 36 1180
3D(5%) 8451 13 20 58

As evident from Table I, at most 550 aircraft could be
localized in 2D (314 of which also in 3D) given the RSE
cut-off criteria selected. Further, the number of aircraft that
are possible to localize decreases with RSE cut-off value
as less aircraft-receiver pairs satisfying model parameter
error criteria are available. Overall, 26.3% and 10.1% of
all transmissions in the initial data set were accounted for
in 2D and 3D, respectively, for the highest RSE cut-off
value.

B. Model generalization and overall accuracy

The ability of the model to adapt to previously unobserved
data or its capacity for generalization was evaluated with
RMSE of the training and testing subsets. This assessment
was performed across various RSE cut-off values in order
to investigate the influence of more refined models on the
RMSE of predicted distances.

The distribution of 2D distance RMSE in training and
testing subsets for each RSE cut-off group is shown in Fig.3.
As evident from the figure, the median RMSE values for
both training and testing subsets demonstrate consistency
among all RSE cut-off groups. This suggests that the
models maintain a stable level of predictive accuracy when
confronted with previously unobserved data.

Moreover, the lower RSE cut-off values are indicative of
regularity in more accurate distance prediction across all
models. This is reflected in the number of outliers present
in each group shown in Fig.3. None of the models with
RSE cut-off of 5% resulted in significantly higher predicted
distance RMSE compared to other models in this group.
As the RSE cut-off increases to 10% and 15%, the number
of outlier models rises to 27 and 40, respectively.
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Fig. 3. RMSE distribution in training and testing
subsets with RSE cut-off of 15%, 10% and 5% (2D).

The distribution of 3D distance RMSE showed higher
regularity of accurate distance prediction resulting in none,
19 and 30 outliers in corresponding RSE cut-off groups.

The overall accuracy of the model-derived distances was
evaluated with RMSE for the models within RSE ranges
of 0-5%, 5-10% and 10-15%. The RMSE of the model-
derived distances in 2D was found at roughly 34, 35.5 and
36 kilometers for models with RSE within the respective
range. In 3D, the RMSE of model-derived distances was
roughly 35.5, 36.5 and 36.5 kilometers, accordingly.

C. Model-derived distance errors

An accurate estimation of the distance between the aircraft
and all receivers in view is necessary for its position esti-
mation. However, the RMSE of model-derived distances
found at roughly 35 kilometers in the previous section is
not fully representative of model accuracy as the distance
between one aircraft and multiple receivers varies. In other
words, if the signal is received from the shorter distance,
the model prediction results in smaller RMSE regardless of
how well the model was able to capture the relationship be-
tween RSS and distance. Therefore, RSE is a crucial metric
considered along with RMSE to evaluate the uncertainty
of model-derived distances.

Hereby, the importance of low RSE of model parameters
for accurate position estimation is demonstrated in Fig.4
that shows true and model-derived distances between air-
craft 1180 and two receivers: 147 and 632. It is evident
that model-derived distances in the top figure are more
representative of true distances compared to the bottom
figure. This is reflected in lower RSE values of the model:
RSE𝛼=1.6% and RSE𝛽=1.7% with receiver 147 in con-
trast with RSE𝛼=7.8% and RSE𝛽=8.0% with receiver 632.
However, due to the fact that RSS measurements were
received from larger distances by receiver 147 compared to
receiver 632, the RMSE of model-derived distances in top

figure resulted in 22866 meters compared to 7874 meters
in bottom figure.

Fig. 4. True and model-derived distances between
aircraft 1180 and receiver 147 (top) and receiver 632
(bottom) over the time when RSS measurements were
observed.

Further, the importance of RSE in model-derived dis-
tance accuracy follows from the definition of RSE that
is given by the ratio between standard deviation of the
parameter and the parameter itself. Table II summarizes
the median of estimated parameters and mean standard
deviation of the models with various RSE cut-off values.
It is evident that the values of both parameters along with
their standard deviation generally increase with the increase
of RSE cut-off.

Table II. Median and standard deviation of estimated
parameters �̄� and 𝛽 in subsets with various RSE cut-off
values.

RSE Med(�̄�) 𝜎�̄� Med(𝛽) 𝜎𝛽

<15% 1445.4 190.2 27.7 3.7
<10% 1249.4 106.5 23.8 2.1
<5% 1061.3 44.7 19.8 0.9
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Based on the observed behavior of the curve defined by
Eq.6, the model demonstrates pronounced tendency to lin-
earity with the increase of parameters 𝛼 and 𝛽. This can be
inspected in the detailed case presented in Appendix B that
shows the models and model-derived distances for various
RSE cut-off values. The case presented demonstrates the
correlation between RSE of model parameters and RMSE
of model-derived distances for the models within similar
distance range. It is clear that distance errors increase along
with the model parameter errors. Furthermore, the ability
of the model to capture RSS measurements recorded from
larger distances decreases significantly with the increase
of parameter RSE due to pronounced tendency to linearity.
In other words, the model becomes close to linear as model
parameters increase which, in turn, causes the model to
neglect the RSS measurements from larger distances.

D. Localization accuracy and RSE of model parameters

Hereby, the results of localization using MLAT with TDOA
and MLAT with RSS are discussed with respect to different
RSE cut-off groups. To begin with, the RMSE of 2D
localization results for each RSE cut-off group are presented
in Table III. Due to presence of various not synchronized
receivers in the network, all results of MLAT with TDOA
are not representative of its general accuracy. Therefore,
Table III also demonstrates the RMSE for 80% and 60% of
best results obtained using both methods.

Table III. RMSE in meters of 2D localization results
using MLAT with TDOA and MLAT with RSS for 60,
80 and 100% of best results in various RSE cut-off
groups.

RSE <5% <10% <15%
60% 1783.4 1649.6 1594.7

TDOA 80% 16707.5 12189.8 11981.6
100% 2091969.3 1952153.2 1911096.8
60% 29439.5 30284.4 31839.7

RSS 80% 40222.4 41236.4 43866.1
100% 68299.1 69613.3 76868.3

It is clear that MLAT with TDOA generally facilitates
much higher localization accuracy compared to MLAT
with RSS. However, in cases when one or more receiver
clocks are not synchronized MLAT with TDOA results in
unreasonable errors that are shown as 100% of all results in
Table III. Consecutive decrease of accuracy along with RSE
cut-off value is attributed to smaller number of receivers
available at the moment of each transmission.

Furthermore, MLAT with RSS produced slightly more
accurate results when models with lower RSE cut-off values
were considered. This trend, evident from Table III, is
supported by Fig.5 that shows 2D localization results for

aircraft 2834 with RSE cut-offs of 5% in the top figure and
10% in the bottom figure. The differences between these
figures were attributed to the receivers number 133 and
257. The RSE values for these aircraft-receiver pairs were
found at RSE𝛼=6.9%, RSE𝛽=7.4% for receiver 133 and
RSE𝛼=8.0%, RSE𝛽=8.3% for receiver 257. Therefore, the
measurements from these receivers were not considered
in MLAT with RSS using models with RSE<5%. As a
result, the erroneous cluster of estimated locations in the
right side of bottom figure was not evaluated.

Fig. 5. 2D localization results for aircraft 2834 using
MLAT with TDOA (blue) and MLAT with RSS (orange)
based on the models with RSE<5% (top) and RSE<10%
(bottom).

This in turn leads to lower RMSE of MLAT with RSS
which was found at approximately 31.3 kilometers in the
top figure in contrast to 33.4 kilometers in the bottom
figure for 80% of best solutions. Notably, the timestamp
measurements from receivers 133 and 257, along with some
of the remaining receivers, were also inaccurate. Therefore,
elimination of these receivers resulted in improved MLAT
with TDOA accuracy with RMSE values found at 49.1 and
55.0 kilometers accordingly.
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E. Localization accuracy in 2D and 3D

The results of 2D localization summarized above demon-
strated the trend for improved accuracy of MLAT with RSS
using models with smaller RSE cut-off values. A similar
trend was observed in 3D localization results. The RMSE
values of MLAT with TDOA and MLAT with RSS in 3D
for each RSE cut-off group are summarized in Table IV.

Table IV. RMSE in meters of 3D localization results
using MLAT with TDOA and MLAT with RSS for 60,
80 and 100% of best results in various RSE cut-off
groups.

RSE <5% <10% <15%
60% 13475.3 11638.2 9356.8

TDOA 80% 21917.1 20426.0 18113.9
100% 3710335.1 3773518.2 3613642.0
60% 33825.8 34991.3 35444.1

RSS 80% 40720.7 43604.1 43965.8
100% 59509.1 62851.1 63040.6

As anticipated, MLAT with TDOA in 3D shows much
higher localization errors compared to 2D due to inability
to resolve the altitude component. In contrast, MLAT
with RSS in 3D demonstrated lower RMSE values for all
results considered. The errors of 2D and 3D MLAT with
RSS are comparable when 80% of best estimations are
considered. However, RMSE increases as more accurate
models are evaluated resulting in approximately 29.4 and
33.8 kilometers error in 2D and 3D for the lowest RSE
cut-off group.

The comparison of localization results between 2D and
3D is shown on the example of the aircraft number 672
in Fig.6. In this case, comparable RMSE of MLAT with
TDOA in 2D (top) and 3D (bottom) was found at 39.7
and 39.9 kilometers accordingly. Notably, MLAT with
RSS demonstrated higher accuracy with RMSE of 28.8
kilometers in 2D and 31.1 kilometers in 3D. Such poor per-
formance of MLAT with TDOA is again related to receiver
synchronization issues. Along with those, higher errors in
2D MLAT are likely related to geometric arrangement of
receivers 147 and 632 that are situated within 50 meters of
one another. Such arrangement results in poor geometry
that, in turn, affects the accuracy of MLAT. The effect of
poor geometry is more pronounced in 2D MLAT where
measurements from three receivers are considered. If two
out of three receivers are situated in close proximity, high
localization errors occur as in the case of the top figure in
Fig.6. From the results obtained, it is unclear whether poor
geometry has comparable influence on MLAT with RSS.

Fig. 6. Localization results for aircraft 672 using MLAT
with TDOA (blue) and MLAT with RSS (orange) in 2D
(top) and 3D (bottom).

F. Tracking performance

The results demonstrated in Fig.5 and Fig.6 considered
two cases when receivers were not synchronized. However,
in presence of reliable timestamps, MLAT with TDOA
demonstrated significantly higher accuracy compared to
MLAT with RSS. This is reflected in localization errors
when 80% or less of the best results are considered. In
line with precise position estimation, MLAT with TDOA
showed much better tracking performance as shown in both
cases in Fig.7. Notably, the RSE of model parameters had
little to no influence on these results. In the top figure, the
average RSE𝛼 and RSE𝛽 among all models were found at
8.8% and 8.9%, respectively, while in the bottom figure
these values were 4.8% and 5.1%. Similar to model-derived
distances, the localization RMSE in cases shown in Fig.7
should be accounted relative to the distance between aircraft
and receivers which is much larger in the top figure. The
RMSE of MLAT with RSS for aircraft 2845 (top) and
2804 (bottom) were found at 63.0 and 26.8 kilometers,
respectively. Meanwhile, the MLAT with TDOA resulted
in RMSE of 1383.4 and 140.1 meters.
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Fig. 7. Tracking performance of MLAT with TDOA
(blue) compared to MLAT with RSS (orange) for air-
craft 2845 (top) and aircraft 2804 (bottom).

Overall, the most accurate result of MLAT with RSS in
2D and 3D among all RSE cut-off groups was found with
RMSE of 9858.6 and 12034.4 meters. For MLAT with
TDOA, these values were 118.1 and 205.8 meters.

V. DISCUSSION

A. Feasibility

The feasibility of RSS-based MLAT using crowdsourced
measurements attributes to the quality of available RSS
measurements and their processing. The results demon-
strated that at most 550 aircraft could be localized in 2D
using the RSS-distance models with the highest RSE cut-
off value of 15%. This quantity accounts for 34.3% of all
aircraft registered in the OpenSky Network data set. Mean-
while, the main reason behind poor quality of the models
is related to erroneous RSS measurements, some aircraft
were not observed long enough by multiple receivers in
order to construct the model. Therefore, the number of
aircraft possible to localize would be higher provided the
data set which is not limited to one hour of observation.

As for the data processing, the solution of MLAT with
RSS is less computationally expensive compared to MLAT
with TDOA [22]. This is crucial in large receiver networks
where the receivers are located in relatively close proxim-
ity. With four receivers in view on average during one
transmission, the resulting system of equations in MLAT
with TDOA contains six equations while MLAT with RSS
requires four. As the number of receivers in view and equa-
tions in RSS-based MLAT increases to 11 (the maximum
number of receivers observed in one transmission), MLAT
with TDOA requires 55 equations to be solved. This makes
MLAT with RSS computationally more feasible.

The last remark regarding the feasibility of MLAT with
RSS attributes its applicability. As the low-cost receivers
are widely available and do not require additional hardware
or elaborate processing of measurements, MLAT with RSS
can provide a reasonable approximation of aircraft position
in remote areas without an appropriate infrastructure. This
would facilitate not only more extensive coverage, but also
availability of data for further research.

B. Logarithmic models

The models of RSS-distance relationship employed in this
paper are in logarithmic form. Although it is a common
practice to use models of this form to describe signal
propagation, other model structures can be applicable
given the quality of measurements. It is possible that
using polynomial or exponential model would result in
more accurate representation of RSS-distance relationship.
Furthermore, the variations in RSS measurements can be
captured in more detail using non-parametric models. In
presence of large quantity of faulty RSS measurements,
it is unclear whether capturing these in more detail can
possibly result in more accurate localization.

C. Error metrics

The accuracy of RSS-based MLAT is mainly dependent
on the quality of propagation models constructed. The
approach selected for model quality evaluation was an ex-
amination of RSE in the resulting model parameters. It was
demonstrated that RSE cut-off value of 20% recommended
by previous studies [26] is too large for quality evaluation
of the model specific to this research. Various models with
RSE values larger than 10% were not representative of
the actual RSS measurement distribution mainly due to
the poor quality of measurements themselves. Although
RSE was shown to be effective in evaluation of how well
the models fit the available RSS measurements, it became
less useful in presence of faulty transmitters or receivers
resulting in highly linear models. Consequently, the corre-
lation between larger RSE of model parameters and model
linearity was established.
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The second error metric used in the analysis was RMSE
of model-predicted distances and model-estimated posi-
tions. As in the last case presented, the localization error
of MLAT with RSS increased along with the spatial scale
of the area considered. Therefore, the RMSE values are
higher in situations when the aircraft are at greater dis-
tances from receivers. This observation is in line with
the previous studies [23]. To be more representative in
comparison between different cases, RMSE values can be
normalized by mean, standard deviation or interquartile
range of the measurements. However, an absolute scale
of localization errors considered in this paper would be
obscured by normalization.

D. Overall localization accuracy

The poor localization accuracy of MLAT with RSS com-
pared to MLAT with TDOA has already been suggested
by the previous research [11]. The results obtained in this
paper confirmed that RSS-based MLAT is significantly
less accurate compared to the time-based method. Nev-
ertheless, MLAT with RSS demonstrated a comparable
localization accuracy level in 2D and 3D which was not
the case in MLAT with TDOA that is significantly less
precise in 3D. This is attributed to more complex geometric
properties of hyperboloids in 3D as well as number of
receivers in view. While the availability of smaller number
of receivers in groups with lower model parameter errors
clearly reduced the accuracy of MLAT with TDOA, MLAT
with RSS demonstrated an accuracy improvement by about
two kilometers between highest and lowest error groups.
The hyperbolic nature of MLAT with TDOA is generally
more sensitive to small number of receivers compared to
quadratic MLAT with RSS. However, both are influenced
by the geometric arrangement of receivers. From the results
obtained, the extent of receiver geometry contribution in
MLAT with RSS is unclear.

Lastly, the tracking performance of both localization
methods was compared indicating a significantly better
performance of MLAT with TDOA. Given the reliable
receiver timestamp measurements, the track of the aircraft
was reconstructed with the accuracy up to 118.1 meters.
Not only the overall accuracy of MLAT with RSS was
worse, but also the tracking ability. While the reasonable
estimation of aircraft position could be obtained, it was
practically impossible to reconstruct the track of the aircraft
given the dispersed nature of solutions.

VI. CONCLUSION AND RECOMMENDATIONS

The aim of this paper was to investigate the level of local-
ization accuracy that can be achieved using crowdsourced
RSS measurements. These were used to construct param-
eterized propagation models that capture RSS-distance

relationship of each individual pair of aircraft and receiver
in the OpenSky Network data. Results demonstrated that
only a fraction of measurements could be accurately repre-
sented by this model facilitating the analysis of 26.3% of
all transmissions. This rather low quantity was attributed
to the poor quality of available measurements that emerges
in high model parameter errors with faulty transmitters or
receivers.

Further, this paper set a baseline for the research in
RSS-based MLAT by demonstrating the method for model
application for localization purposes. The results showed
comparable or improved accuracy of MLAT with RSS
to MLAT with TDOA in cases when receivers were not
synchronized. However, the general performance of MLAT
with RSS was significantly less accurate in presence of
reliable receiver timestamps for time-based MLAT. The
evaluation of RSS-based MLAT error sensitivity to model
parameter errors showed a minor reduction in localiza-
tion error when more accurate models were considered.
This suggests that the localization accuracy can be fur-
ther improved by using RSS measurements from reliable
transmitter-receiver pairs only or by measurement calibra-
tion. The most accurate results obtained in this paper were
found with RMSE of 118.1 and 9858.6 meters in 2D MLAT
with TDOA and RSS, respectively.

The recommendations for further research are related
to the method of model implementation and quality of
available data. For the models with low parameter errors,
further investigation into random RSS variations or noise
in RSS measurements can be implemented. It is possible,
that better representation of RSS-distance relationship can
be obtained by filtering, smoothing or complete removal of
outliers in the available RSS measurements. Additionally,
the influence of receiver geometry on the accuracy of MLAT
with RSS can be examined to compare the localization
accuracy degradation to that observed in MLAT with
TDOA. Lastly, the methodology of this research can be
applied on data from receivers with known properties,
reference for RSS measurements and verified locations to
investigate the achievable level of localization accuracy in
scenario with less uncertainties.
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APPENDIX

A. Distribution of RSS measurements (blue) and logarithmic models (orange) for aircraft 2731 with receivers
663, 460 and 10.

(a) Receiver 663:
RSE𝛼=2.9%, RSE𝛽=3.1%

(b) Receiver 460:
RSE𝛼=5.0%, RSE𝛽=5.4%

(c) Receiver 632:
RSE𝛼=10.3%, RSE𝛽=10.6%
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B. RSS-distance models (left) and model-derived distances (right) for aircraft 163 with receivers 147, 598 and 663.

(a) Receiver 147: RMSE = 35815 m, 𝛼 = 777.4, 𝛽= 13.9, RSE𝛼=1.9%, RSE𝛽=2.0%.

(b) Receiver 598: RMSE = 37666 m, 𝛼 = 979.5, 𝛽= 18.0, RSE𝛼=5.0%, RSE𝛽=5.2%.

(c) Receiver 663: RMSE = 41545 m, 𝛼 = 1815.6, 𝛽= 34.0, RSE𝛼=10.4%, RSE𝛽=10.6%.
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1
Introduction

In the recent years, a significant shift in air traffic surveillance methods occurred, with
Automatic Dependent Surveillance-Broadcast (ADS-B) emerging as a promising alternative
to traditional radar systems. ADS-B employs the onboard transponder to broadcast the real-
time information without a need for the interrogation from the ground. The advantages of such
system include an improved precision in tracking, broader coverage through satellite network
and reduced operational and maintenance cost. As the momentum behind adopting ADS-B
as a primary surveillance tool increases, it highlights the need to explore and enhance its lo-
calization capabilities.

The system that has fully integrated the use of ADS-B is the Advanced SurfaceMovement
Guidance and Control System (A-SMGCS) that provides services for approach and ground
surveillance in airports with high level of accuracy [1]. The A-SMGCS utilizes the multilatera-
tion (MLAT) technique that allows aircraft localization by measuring Time Difference of Arrival
(TDOA) of signals received by multiple ground-based receivers. The precision of A-SMGCS
is ensured by the strategic placement of ground receivers around the surface of the airport
and time synchronization assurance. This highlights the main disadvantages of MLAT when
employed in a less regulated setting such as en-route surveillance. Among these, the time
synchronization between the receivers is a major issue for TDOA-based localization. Although
the GPS allows synchronization with high accuracy, it requires additional equipment or use of
the advanced synchronization protocols [2]. It is also not available during the GPS outages.
Another issue arises from the geometric arrangements of the receivers [3]. To facilitate an
accurate TDOA-based localization, the receivers have to be sufficiently distanced from one
another and enclose the transmitter with their perimeter.

The exploration of integrating the received signal strength (RSS) measurements from
ADS-B signals has gained attention in response to challenges posed by MLAT limitations.
The RSS provides a valuable insight into the signal propagation characteristics, allowing for
localization in non-line-of-sight conditions and the mitigation of receiver geometry-related chal-
lenges. Moreover, RSS does not depend on time alleviating the synchronization concerns. Yet
the RSS measurements are inherently susceptible to environmental factors, including fading,
interference and multipath effect. For this reason, it is considered that RSS alone is a bad
choice for localization purposes [4]. However, the state-of-art studies suggest that given a
good quality of RSS data and the knowledge of propagation parameters, the RSS-based lo-
calization accuracy can be significantly improved.

19



Due to the reduction of RSS with distance, the networks for RSS-based localization have
to contain a large number of receivers to allow a good coverage of a wide area. An example
of such network is LocaRDS, an open reference data set that contains ADS-B data recorded
from crowdsourced receivers by the OpenSky Network [5]. The distribution of LocaRDS re-
ceivers and the recorded data are shown in 1.1. Although such networks provide coverage
in areas where traditional surveillance systems might have a limited reach, the diversity of re-
ceiver characteristics and the potential for biased data collection must be carefully managed
to maintain the reliability.

Figure 1.1: LocaRDS receivers (orange) and aircraft positions (black). Adapted from [5].

The main objective of this thesis is to determine whether the use of crowdsourced RSS
data is feasible in localization context. In addition, the research aims to compare the differ-
ence in localization errors between traditional MLAT technique and RSS-based methods. The
central question of this thesis is therefore:

How can crowdsourced measurements of received signal strength improve the
accuracy of aircraft localization?

To answer this question, this thesis will focus on the reliability of the crowdsourced data,
applicability of signal propagation models and localization accuracy of TDOA- and RSS-based
methods. In this report, the exploratory phase results of the thesis are presented and include
the establishment of the data set that can be used for further investigation.

The following content of this report is divided in four chapters. Chapter 2 presents the
literature review on topics related to enhancing aircraft MLAT using RSS. In chapter 3, the
research proposal is drawn along with methodology and planning. In chapter 4, the preliminary
results are presented. Lastly, this report is concluded in chapter 5.
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2
Literature review

The literature review aims to provide a comprehensive overview of prior studies on topics
related to enhancing aircraft multilateration using received signal strength. First, the theory
relevant to signal propagation is summarized in section 2.1. With the knowledge of the theory,
signal propagation models applicable for aircraft localization purposes are presented in sec-
tion 2.2. Section 2.3 deals with the specifics of ADS-B signals and their potential limitations.
After, localization methods and algorithms that can be applied to ADS-B signals are discussed
in sections 2.4 and 2.5 respectively. The last section 2.6 outlines the most crucial findings of
this literature review.

2.1. Signal propagation theory
The simplest form of radio wave propagation is known as free-space propagation. It is a

particular case of line-of-sight (LOS) propagation, when signal takes a direct path to travel be-
tween the transmitter and receiver, unobstructed by obstacles. The theoretical LOS distance
that depends solely on the heights of the transmitter ℎ𝑡 and receiver ℎ𝑟 is given by equation
2.1.

𝑑𝐿𝑂𝑆 = √2 ∗ ℎ𝑡 ∗ 𝑅 + ℎ𝑡2 +√2 ∗ ℎ𝑟 ∗ 𝑅 + ℎ𝑟2 (2.1)

However, in presence of buildings, vegetation and ground proximity, signal propagation
consists of reflection, diffraction and scattering that lead to signal fading that occurs on a small-
or a large-scale. In addition, received signals are always susceptible to unwanted fluctuations
and disturbances known as noise. These processes are briefly discussed in this section.

2.1.1. Small-scale fading
Small-scale fading, also known as fast fading, refers to rapid variations in amplitude and

phase of the signal over a short period of time or distance. It is caused by interference of two or
more signal versions that travel different paths to the receiver. For static objects, small-scale
fading is an entirely spatial phenomenon called multipath effect, whereas for moving objects,
each of the multiple paths experiences an apparent shift in frequency.

Multipath effect is more pronounced in the environments with reflective surfaces, such as
urban areas and indoors, but should also be considered when the receiver is elevated above
the ground level as shown in figure 2.1(a). Propagation in multiple paths results in frequency
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modulation due to Doppler shifts, time dispersion caused by propagation delays and rapid
changes of signal strength [6]. Although the attenuation of the signal can be constructive and
destructive in terms of received signal strength, the latter is dominant in presence of multipath.
Therefore, signal detection probability decreases in presence of multipath effect [7].

(a) Multipath geometry (b) Doppler shift geometry

Figure 2.1: Small-scale fading mechanisms.

Doppler shift is an apparent change in signal frequency that occurs when the transmitter
is in motion relative to the receiver as shown in figure 2.1(b). The frequency of received signal
increases or decreases compared to the transmitted frequency depending on the direction
and speed of movement which, in turn, causes variations in the power of the received signal
within a certain bandwidth. Monitoring these frequency shifts allows to obtain the trajectory of
moving vehicles such as aircraft [8], but significantly lacks accuracy in determining its exact
position. However, positioning accuracy can be improved given the additional knowledge of
Doppler rate and time delay [9].

2.1.2. Large-scale fading
Large-scale fading, also known as slow fading or shadowing, is the reduction of signal

strength with the increase of distance between the transmitter and receiver. Higher frequency
signals are more susceptible to large-scale fading due to their shorter wavelengths. In prac-
tice, signal attenuation can be mathematically described by path loss models that account for
distance along with other parameters relevant in context of signal propagation (see chapter
2.2).

2.1.3. Noise
In addition to fading, signal propagation is susceptible to unwanted fluctuations and distur-

bances knows as signal noise. The noise present in the signal is quantified by Signal-to-Noise
Ratio (SNR) which is the ratio between power of signal and power of noise. When the exact
power measurements are not available, SNR is the ratio between mean and standard devi-
ation of received signal strength. In context of localization, knowledge of SNR can alleviate
the effect of noise specifically in case when the received signal strength is low [10]. In signal
propagation models, such as log-normal shadowing, noise is often assumed to be Gaussian
- a statistical noise with normal distribution. However, it was shown that, in reality, the noise
in ADS-B received signals is not purely Gaussian, but is comprised of the Gaussian noise,
flicker noise caused by thermal and propagation effects as well as outliers caused by unde-
tected garbling of signals [11].

Moreover, weather conditions can also introduce the additional sources of noise and in-
terference to the signal. Due to the dynamic nature, unsteady weather conditions take part
in signal degradation especially in presence of wind gusts and precipitation [12]. Although
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demonstrating minor contribution, the effects of precipitation are not only excluded from com-
mon signal propagation models, but were also shown to be underestimated in the conventional
rain attenuation model. Lastly, SNR notably decreases along with received signal strength
during snowfall [13].

2.2. Signal propagation models
The reduction of signal strength as it propagates through a medium over the distance is

known as path loss (PL), thus the models that relate signal strength to distance are referred to
as path loss models. In this section, models applicable to aircraft localization are discussed.

2.2.1. Log-distance path loss model
Log-distance path loss model (LDPL) suggests an inverse logarithmic or power law re-

lationship between signal strength and distance [6]. The path loss in decibel is described by
equation 2.2 where 𝑛 is the path loss exponent, 𝑑0 is the close-in reference distance deter-
mined from measurements and 𝑑 is the distance between transmitter and receiver.

𝑃𝐿(𝑑) = 𝑃𝐿(𝑑0) + 10𝑛 log10(
𝑑
𝑑0
) (2.2)

The path loss exponent 𝑛 expresses the rate at which the PL increases with distance
and depends on the propagation environment (see table 2.1). A measurement based model
for the received signal strength can be derived from LDPL in equation 2.2 [14]. In this model,
the constants such as transmitter power 𝑃𝑡 and antenna gains 𝐶 are combined into received
signal strength at close-in distance 𝑅𝑆𝑆(𝑑0) as shown in eqtheseuation 2.3.

𝑅𝑆𝑆(𝑑) = 𝑃𝑡 − 𝑃𝐿(𝑑) − 𝐶 = 𝑅𝑆𝑆(𝑑0) − 10𝑛 log10(
𝑑
𝑑0
) (2.3)

Table 2.1: Path loss exponent 𝑛 for different environments. Adapted from [6].

Environment Path loss exponent 𝑛
Free space 2

Urban area cellular radio 2.7 to 3.5
Shadowed urban cellular radio 3 to 5

In building line-of-sight 1.6 to 1.8
Obstructed in buildings 4 to 6
Obstructed in factories 2 to 3

Experiments show a good agreement of ADS-B signal measurements with the path loss
model given a complete knowledge of transmitter and receiver properties [15]. Although the
airframe blockage of the signal is observed during the maneuvers, the measurements ob-
served right after them comply well with the model.

2.2.2. Log-normal shadowing
Log-normal shadowing model is an expansion of LDPL model that accounts for random

variations in signal power at equal distance from observer due to disturbances on the propaga-
tion path. The shadowing model is given by equation 2.4 where 𝑋𝜎 is a zero-mean Gaussian
distributed random variable in decibel with standard deviation 𝜎.
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𝑃𝐿(𝑑) = 𝑃𝐿(𝑑0) + 10𝑛 log10(
𝑑
𝑑0
)+𝑋𝜎 (2.4)

2.2.3. Friis free space model
In situations where the transmitter and receiver have unobstructed line-of-sight (LOS)

path between them, Friis free space model predicts that the decrease in received power or
signal strength obeys the power law, namely, inverse square decay [6]. The relation of received
power 𝑃𝑟 to transmitted power 𝑃𝑡 in Watt is defined by equation 2.5 where 𝐺𝑟 and 𝐺𝑡 are the
gains of transmitter and receiver antennas, 𝜆 is the wavelength in meters and 𝑑 is the distance
between transmitter and receiver, also in meters.

𝑃𝑟
𝑃𝑡
= 𝐺𝑡𝐺𝑟(

𝜆
4𝜋𝑑)

2

(2.5)

Similarly to LDPL, the measurement based model for the RSS can be derived from Friis
free space model. The terms in equation 2.5 that remain constant during the transmission
(antenna parameters, wavelength and relatively constant transmission power) can be replaced
by parameter 𝑘 [16]. Expressed in decibel, the signal strength at the receiver 𝐿𝑟 is given by
equation 2.6.

𝐿𝑟 = 𝑘 − 20 log10 𝑑 (2.6)

2.2.4. Two ray ground reflection model
Two ray ground reflection model given by equation 2.7 is an extension of Friis free space

model that accounts for multipath effect by integrating heights of transmitter ℎ𝑡 and receiver
ℎ𝑟. The model is more suitable in presence of a strong ground reflection component such as
smooth reflective surfaces and small angles of transmission.

𝑃𝑟
𝑃𝑡
= 𝐺𝑡𝐺𝑟

ℎ𝑡2ℎ𝑟2

𝑑4 (2.7)

It should be noted that at distances 𝑑 >>√ℎ𝑡ℎ𝑟, the received signal power decreases with
distance more rapidly than in the free space model. This critical distance is given by equation
2.8.

𝑑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 4
ℎ𝑡ℎ𝑟
𝜆 (2.8)

2.2.5. Hata-Okumura model
Hata-Okumura model for path loss estimation was developed for application in urban and

suburban environments. The model is given by equation 2.9 where path loss depends on fre-
quency 𝑓, receiver antenna height ℎ𝑡 and terrain characteristics factor 𝐶.

𝑃𝐿(𝑑) = 69.55 + 26.16 log(𝑓) − 13.82 log(ℎ𝑡) − 𝐶 + (44.9 − 6.55 log(ℎ𝑡)) − 5.4 (2.9)

Although the model is widely applied as a planning tool for wireless systems, it might not
be applicable for aircraft localization as it is only accurate within certain ranges. The applica-
tion ranges of Hata-Okumura model include frequency range of 150MHz-1.92GHz, distance
range of 1-100km and transmitting antenna heights of 30-100m [17].
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2.3. Automatic Dependent Surveillance - Broadcast
Automatic Dependent Surveillance–Broadcast (ADS–B) is a surveillance technology that

combines GPS positioning, avionics and ground infrastructure to facilitate accurate aircraft
surveillance. In other words, an aircraft determines its position and velocity and periodically
broadcasts this information with no surveillance interrogation required. In addition to its role in
airport and en-route Air Traffic Control, ADS-B is an integrated part of onboard systems such
as Traffic Collision Avoidance System (TCAS) and Traffic Information Services - Broadcast
(TIS-B). Full system architecture of ADS-B is shown in figure 2.2.

ADS-B messages are transmitted through 1090ES standard data link, that is a Mode S
Extended Squitter transponder that operates on 1090 MHz frequency. This channel is also uti-
lized for interrogations and responses of Mode S and related Mode A and C systems (ground
surveillance radars) that account for the majority of 1090ES traffic. In high-density airspaces,
ADS-B message quality degradation and loss are caused by collision in random access chan-
nel [18].

Figure 2.2: ADS-B system components. Adapted from [19].

2.3.1. ADS-B message
ADS-B frame is 112 bits long as shown in figure 2.3. First, 5 bit long downlink format indi-

cates the type of message and is set to 17 (or 10001 in binary) for ES messages. Later, 3 bits
indicate Mode S transponder capability. This is followed by a 24 bit long unique transponder
code or ICAO aircraft address. Then, the actual ADS-B data or message takes 56 bits and
includes identification, position, velocity, urgency code and quality level. Last 24 bits of parity
are used by receivers for transmission error detection.

Figure 2.3: ADS-B 1090ES message format. Adapted from [19].

ADS-B messages are not encrypted, thus can be received and interpreted by anyone in
possession of appropriate receiving equipment. This results in the potential for malicious ex-
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ploitation, such as message interception, injection and jamming, that pose significant security
issues which are actively addressed by present day research [19]. On the other hand, open
access to ADS-B messages allows the development and improvement of aircraft localization
methods.

2.3.2. Research data content and limitations
The data employed in this thesis is LocaRDS, an open reference data set that contains

ADS-B data recorded from crowdsourced receivers by the OpenSky Network [5]. For local-
ization purposes, the Euclidean distances between transmitters and receivers can be derived
from WGS84 longitudes (𝜆), latitudes (𝜙) and heights (ℎ) in LocaRDS through transformation
to Cartesian coordinates given by equations 2.10.

𝑥 = (𝑅(𝜙) + ℎ)𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜆)
𝑦 = (𝑅(𝜙) + ℎ)𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜆) (2.10)
𝑧 = (𝑅(𝜙)(1 − 𝑒2) + ℎ)𝑠𝑖𝑛(𝜙)

In this transformation, the radius of curvature in prime vertical 𝑅(𝜙) is given by equa-
tion 2.11 with semi-major and semi-minor axes of WGS84 ellipsoid 𝑎 = 6378137 m and 𝑏 =
6356752.314245 m, respectively.

𝑅(𝜙) = 𝑎
√1 − 𝑒2𝑠𝑖𝑛2(𝜙)

(2.11)

𝑒2 = 1 − 𝑏
2

𝑎2
With transformed coordinates of the aircraft with subscript 𝑎 and receiver with subscript

𝑟, the Euclidean distance between them is given by equation 2.12.

𝑑 = √(𝑥𝑎 − 𝑥𝑟)2 + (𝑦𝑎 − 𝑦𝑟)2 + (𝑧𝑎 − 𝑧𝑟)2 (2.12)

Besides WGS84 coordinates of transmitters and receivers, LocaRDS provides receiver
and server timestamps and received signal strength measurements. Full description of data
can be found in Appendix A. The limited accuracy of this data is attributed to the equipment
and data processing utilized by contributors of OpenSky Network.

RTL-SDR (Software-Defined Radio using Realtek RTL2832U chipset) is the most com-
mon affordable hardware that allows users to receive and process ADS-B messages. There
are multiple software options for message decoding (dump1090, RTL1090, SDRSharp) that
provide tracking data and map visualizations. To allow reliable readings of ADS-B messages,
hardware and software settings have to be appropriately configured. These include config-
uration of central frequency, sample rate, gain, as well as automatic gain control and noise
filtering if allowed by the software.

The central issue in localization based on crowdsourced data is verification of receiver
location and time synchronization. It is important to note, that these can not be guaranteed for
the majority of non-verified receivers that comprise about 80 percent of all registered receivers
in LocaRDS [5]. In theory, RTL-SDR equipment can achieve synchronization accuracy of 100
nanoseconds that corresponds to localization error of 30 meters [20]. In addition to hardware
settings and Mode S implementation, the intentional data breaches, software bugs, environ-
mental noise and transponder misconfiguration were identified as potential causes for erro-
neous measurements received by OpenSky Network [14].
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2.4. Localization methods
In general, localization methods can be divided in two groups as shown in figure 2.4.

Range-based localization relies on the distancemeasurements between nodeswhereas range-
free localization utilizes information about connectivity of the nodes. Range-based localization
methods are preferred whenever an accurate distancemeasurement or estimation is available,
as these generally provide higher level of accuracy compared to range-free techniques [21].

Figure 2.4: Taxonomy of localization methods.

Further division of range-based methods originates from the nature of measurements.
AOA provides directional information about the transmitter, but does not directly measure
distance. It is usually used in conjunction with other methods due to its limitations in angle
ambiguity and range. On the contrary, TOA and TDOA are directly related to the distance,
whereas RSS can be related to distance through signal propagation model. In the scope of
this thesis, distance-based methods will be further discussed in this section.

2.4.1. TOA/TDOA: Time of Arrival and Time Difference of Arrival
TOA measures the absolute time it takes for signal to travel from transmitter to the re-

ceiver, while TDOA measures the time difference of arrival at multiple receiving points. TDOA
based methods are usually more accurate compared to ones utilizing TOA [22]. Primarily, er-
rors in both methods arise from the fact the accurate clock synchronization between receivers
is problematic. A comparable accuracy of TOA and TDOA methods can be achieved provided
time synchronization or elimination of measurements with faulty timestamps [23]. Time for
synchronization is usually sourced from GPS that, provided good reception, allows up to 9
nanosecond synchronization in receivers, which in turn corresponds to localization accuracy
of 30 meters. GPS time synchronization is limited to LOS propagation between GPS and the
receiver and can not be guaranteed during GPS outages. Other options include more so-
phisticated synchronization methods such as Network Time Protocol (NTP), Precision Time
Protocol (PTP) and Pulse-per-Second (PPS) signals [2]. It is important to note, that receivers
often require additional hardware for the purpose of time synchronization, which comes at
additional cost. While synchronization is usually attributed to as a number one concern in
time-based localization, there are other considerations that include sample rate and geomet-
ric dilution of precision.

Sample rate set by the receiver is another factor that can influence TDOA localization
accuracy. For ADS-B signals, a sample rate of 2.048 Msps is commonly used. Although
increasing sample rate comes with finer temporal resolution that allows better measurement
of time differences, it also increases computational load and noise impact, as the variations
between successive samples become increasingly related to noise rather than to variations in
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the signal. It was shown that along with frequency content and SNR, the estimation algorithm
should also be considered in terms of chosen sample rate [24].

Lastly, TDOA-based localization is dependent on geometric dilution of precision (GDOP)
that is a measure of localization error that originates from geometric arrangement of transmitter
relative to the receivers. It is computed using positional and timing uncertainties. A low GDOP
value indicates low uncertainty that is defined by two factors: the transmitter location and
relative position of receivers. The lowest GDOP is achieved when the transmitter is located
within the perimeter outlined by receivers as shown in figure 2.5(a) and the localization error
increases significantly when the transmitter moves outside this perimeter [3].

(a) Transmitter within the perimeter outlined by receivers.
Adapted from [3].

(b) Linear configuration of transmitter and receivers. Adapted
from [25].

Figure 2.5: Geometry considerations for TDOA-based localization accuracy.

As for the relative position of receivers, better accuracy is achieved when receivers are
spread in a specific manner. In the scenario with three receivers that form a triangle, config-
uring the receivers in equilateral triangle results in the lowest GDOP, whereas the accuracy
decreases when the triangle gets skewed [3]. The critical case of such skewness is linear con-
figuration of transmitter and receivers as shown in figure 2.5(b) that results in high localization
errors [25]. Moreover, the localization error increases in line with the time measurement error.

2.4.2. RSSI: Received Signal Strength Indicator
Received signal strength indicator (RSSI) is an indication of the power present in the

received signal measured in decibel. The RSS measurements may vary based on the envi-
ronmental conditions and characteristics of both transmitters and receivers [26]. Factors that
influence RSS measurements are:

• Transmitter related factors: antenna characteristics, hardware (signal generators and
amplifiers), power output.

• Receiver related factors: receiver sensitivity, antenna characteristics, data processing
components (filters, amplifiers), bandwidth configuration.

• Environment related factors: multipath propagation, signal fading, signal interference.

It was shown that RSS variations are present even in an ideal scenario that accounts
for equipment and environmental uncertainties [27]. Good practice recommendations include
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calibration of RSS measurements to overcome offsets in power-to-RSS functions and use of
isotropic antennas [28]. It is clear that these recommendations are not applicable in the set-
ting where receiver properties are varying or unknown. Therefore, RSS-based localization in
a real environment and using standard receivers was pronounced to be inaccurate [4]. How-
ever, what makes RSS an attractive feature for localization purposes is that it does not rely on
time measurements, eliminating the need for clock synchronization as well as making it more
robust to multipath effect.

2.5. Localization algorithms
In this section, localization algorithms that employ TDOA and RSS measurements are

explored. First, a technique for TDOA-based positioning known asmultilateration is introduced
along with its limitations and applicable algorithms. Then, basic RSSI-based algorithms are
presented. Lastly, more advanced algorithms that can potentially combine both methods are
discussed.

2.5.1. Multilateration
In multilateration (MLAT), the hyperbolic curves are used to determine the position of the

transmitter. The geometry of transmitter-receiver network is illustrated in figure 2.6. Theo-
retically, MLAT requires at least three receivers to determine the 2D position of an aircraft,
while four receivers are needed to resolve it in 3D. However, in most cases the receivers are
ground based and do not provide sufficient elevation angle diversity needed to resolve vertical
component of GDOP [29]. Therefore, the 2D position is usually derived through MLAT, while
the altitude is obtained directly from ADS-B message.

Figure 2.6: Geometry of multilateration. Adapted from [30].

In presence of three receivers, the hyperbolic curves are constructed to satisfy the dis-
tances to 𝑖𝑡ℎ, 𝑗𝑡ℎ and 𝑘𝑡ℎ receivers with known coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) as given by equations
2.13.

⎧⎪
⎨⎪⎩

𝑑𝑖 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2

𝑑𝑗 = √(𝑥 − 𝑥𝑗)2 + (𝑦 − 𝑦𝑗)2 + (𝑧 − 𝑧𝑗)2

𝑑𝑘 = √(𝑥 − 𝑥𝑘)2 + (𝑦 − 𝑦𝑘)2 + (𝑧 − 𝑧𝑘)2
(2.13)
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These distances are further related to TDOA between pairs of receivers as follows from
equations 2.14 with the speed of light 𝑐 equal to 299792458 m/s.

{
𝑑𝑖 − 𝑑𝑗 = 𝑇𝐷𝑂𝐴𝑖,𝑗 ∗ 𝑐
𝑑𝑗 − 𝑑𝑘 = 𝑇𝐷𝑂𝐴𝑗,𝑘 ∗ 𝑐
𝑑𝑖 − 𝑑𝑘 = 𝑇𝐷𝑂𝐴𝑖,𝑘 ∗ 𝑐

(2.14)

The multilateration equations can be solved for the unknown coordinates of the aircraft
(𝑥, 𝑦, 𝑧) using least squares method with the initial guess being the midpoint of receiver coor-
dinates.

The extended version of MLAT that employs a network of synchronized receivers to cover
large geographic areas is known as Wide Area Multilateration (WAM). Such systems pro-
vide equivalent or higher level of service compared to traditional secondary surveillance radar
(SSR) systems, but the localization accuracy relies on LOS propagation [29]. Also, the ac-
curacy of MLAT is inherited from the limitations of TDOA discussed in the previous chapter.
While, in theory, these can be attributed using RSS measurements, the relationship between
distance and TDOA is more direct in nature compared to RSS that requires additional mod-
elling thus comes with its own uncertainty. Therefore, time-based methods are preferred for
accurate MLAT due to their direct relationship with distance.

2.5.2. RSSI-based algorithms
Using RSS measurements, the distance between transmitter and receiver can be com-

puted using one of the signal propagation models (see chapter 2.2). Knowledge of the dis-
tance allows position estimation through direct computation algorithms, such as Min-Max and
Weighted Centroid. It should be noted that these algorithms lack localization accuracy due
to their simplicity and require measurements from multiple sensors distributed in a specific
geometry.

Min-Max
Min-Max algorithm is based on simple geometry, where the bounding square with side

length of 2d is drawn around each sensor based on measured RSS. The estimation of trans-
mitter position is then the center of quadrilateral formed by intersection of these squares as
shown in figure 2.7. Although Min-Max algorithm offers simplicity and robustness, it is highly
sensitive to the geometry of the receivers. It has been shown that receivers have to be placed
at the edges of the network and, ideally, be uniformly distributed to overcome considerable
errors [31], which might be impractical in large and erratic networks.

Figure 2.7: The Min-Max algorithm. Adapted from [32].
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Weighted Centroid
In Weighted Centroid Localization (WCL) algorithm, each 𝑖𝑡ℎ receiver is assigned the

weight given by the inverse of the distance as 𝑤𝑖 =
1
𝑑𝑖
. The location of the transmitter is then

the sum of receiver coordinates multiplied by normalized weight factor𝑊𝑖. Although, the accu-
racy of localization increases in line with increasing number of receivers and measurements,
the method is prone to high errors primarily due to inaccurate distance estimation by simple
signal propagation models [33]. A more sophisticated method, WCL based on Least Square
(WCLLS), proposes an additional weighting parameter 𝑘 that is obtained experimentally and
has shown significant localization accuracy improvement in the setting of ten receivers com-
pared to standard WCL algorithm [34].

2.5.3. Advanced RSSI-based algorithms
In this section, advanced RSSI-based algorithms are discussed. In addition to greater

localization accuracy, there are theoretical ways to apply these algorithms to TDOA measure-
ments. However, these will not be applicable in the scope of this thesis due to numerous
uncertainties, absence of solid background and implementation complexity.

Kalman Filters
Kalman filter (KF) is a recursive algorithm used to estimate the state of the system based

on a series of measurements. In localization context, it can be applied for interpolation of
corrupted RSSmeasurements and filtering out the extreme values. The standard KF describes
the state 𝑥𝑘 and RSS measurements 𝑦𝑘 via state transition matrix 𝐴 that relates a previous
state to the current and an observation matrix 𝐻. Given observation noises 𝑤𝑘 and 𝑢𝑘, the
standard KF is of the following form:

𝑥𝑘 = 𝐴 ⋅ 𝑥𝑘−1 +𝑤𝑘

𝑦𝑘 = 𝐻 ⋅ 𝑥𝑘 + 𝑢𝑘
The filtering is done by capturing the predicted dynamics through the signal propaga-

tion model of choice and iteratively correcting it based on the observed measurements. The
standard KF estimates are significantly more accurate compared to log-distance path loss
model especially for low RSS values [35]. It was also shown to be computationally efficient
due to its linear nature [36], which in turn highlights its main weakness as it is unable to cap-
ture nonlinearities in RSS measurements. In practice, one can overcome this using Extended
Kalman Filter (EKF) that linearizes measurement model using Taylor series expansion. How-
ever, given perfect knowledge of propagation model, EKF implementation was shown to have
minor impact on localization accuracy compared to KF [37].

Linear KF are rarely applied in TDOA-based localization due to the nonlinear relationship
between time difference measurements and transmitter position. Prior studies attempted to
construct TDOA-based algorithms for nonlinear KF, but these are limited by idealized geometry
setting and a small number of receivers [38] or lack of consideration of signal interference
effects [39].

Maximum Likelihood
Maximum Likelihood (ML) is an iterative optimization algorithm that aims to find the po-

sition that makes the RSS measurements most probable in line with the signal propagation
model. By maximizing the likelihood, the algorithm aims to minimize the difference between
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the expected and measured RSS values. As ML algorithm relies on the number of avail-
able RSS measurements, it is prone to high errors with insufficient number of receivers [32].
However, it was found to outperform all direct computation algorithms when the number of
receivers is larger than seven [40].

Implementation of ML algorithm with TDOA poses additional difficulties due to the nonlin-
ear nature of time delays when considering synchronization errors. Various authors suggest
highly complex solutions that involve integration of frequency difference of arrival (FDOA) [41]
or implementation of sophisticated optimization algorithms [42].

Fingerprinting
Fingerprinting relies on creating a database of RSS measuremor fingerprints (off-line

phase) and comparing observed RSS values with those stored in the database (on-line phase).
This approach offers significantly better positioning accuracy compared to path-loss models
alone [43].

In the off-line phase, the training database is usually created using historical data. The
size of the training database determines localization accuracy that increases given a greater
number of measurements. The trade-off between effort in database collection and localiza-
tion error is crucial in databases of less than 5000 fingerprints, whereas larger databases offer
only minimal improvement in accuracy [44]. For reduction of data collection workload, crowd-
sourced fingerprint data can be utilized with consideration of RSS measurement quality [45].
In the on-line phase, matching of observed RSS with fingerprints can be done using machine
learning algorithms, such as k-Nearest Neighbours, Support Vector Machines, Gradient Lift-
ing or Logistic Regression. It was shown that all algorithms have comparable performance
in terms of positioning accuracy with k-Nearest Neighbours producing slightly more accurate
results [44].

Although fingerprinting method mainly relates to RSS-based positioning, the state-of-art
research suggests that it can be implemented using TDOA. However, these algorithms require
additional data interpolation due to receiver synchronization issues thus making them compu-
tationally more complex [46]. It is also not clear whether TDOA fingerprinting localization error
is lower compared to TDOA-based multilateration.

Particle Filtering
Particle Filtering (PF), also known as Monte Carlo Localization (MCL), is a probabilistic

approach that represents probability distribution of transmitter location using series of weighted
samples and constantly updates these samples by prediction and filtering. The algorithm con-
tains five phases, namely: initialization, prediction, weight assignment, resampling and itera-
tion. Whereas the main concern regarding the algorithm addresses the accuracy of prediction,
its computational efficiency is addressed in resampling phase.

In the prediction phase, the movement of the particle is described by the motion model.
Althoughmanymodels developed for localization and tracking were described in literature [47],
they require better knowledge about the transmitter than is usually available. Also, accelera-
tion and turning characteristics of each moving transmitter can not be accurately captured by
a single motion model resulting in biased position estimation [48]. In the resampling phase, a
new set of particles is generated to restore the diversity of particles and avoid degeneracy that
occurs when a large computational effort is dedicated to update the particles with low weights.
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To ensure that particles with higher weights are repeatedly selected, the RSS likelihood can
be integrated in the resampling procedure [49]. A more sophisticated MCL Box Localization
algorithm [50] showed sampling efficiency improvement through construction of an optimal
sampling space. This space is constructed through RSS ranging similarly to the previously
discussed Min-Max algorithm.

Similarly to fingerprinting, PF is widely applied as a RSS-based method, but typically not
used as TDOA-based approach due to time synchronization issues and nonlinear relationships
in signal propagation. Motion models for TDOA-based systems need to consider complex fac-
tors such as target velocity and potential geometry changes. However, this complex approach
outperforms nonlinear Kalman filters under vast simplifications of motion model [51].

2.5.4. Hybrid algorithms
Various hybrid algorithms were proposed in prior research in order to employ benefits of

both TDOA and RSS measurements. As TDOA provides direct geometric information about
distances and RSS measurements offer information about the propagation characteristics, a
combination of both exploits the accuracy of TDOA while mitigating the impact of environmen-
tal variations through RSS. In addition, TDOA methods rely on LOS propagation, while RSS
measurements are affected by signal interference and the multipath effect, thus integration of
both can lead to more accurate localization in presence of limited LOS. It therefore becomes
clear that utilizing both measurements leads to better estimation of position [52].

The hybrid solution can be based on the selection of best distance estimation [53]. While
both distances are computed through TDOA estimator and log-normal shadowing model, the
latter is selected if measured RSS exceeds a certain threshold. The multilateration equation
is then expanded with Gaussian noise and the system can be solved for the unknown posi-
tion using ML algorithm. Although this approach increases localization accuracy compared to
TDOA alone, it is unclear what threshold of selected RSSmeasurements is suitable for uncon-
trolled or outdoor environments and whether the algorithm can be applied for longer ranges.

Another uncertainty regarding hybrid algorithms is caused by the lack of studies where
system properties such as transmitter and receiver settings are unknown [54]. What is clear,
is that the accuracy of hybrid approaches have similar to standard TDOA and RSS-based
methods dependency on the number of receivers and their geometry [55].

2.6. Literature review summary
This literature review presented two methods for aircraft localization, namely, TDOA- and

RSS-based. Each method was found to have numerous advantages along with the uncertain-
ties that have to be considered in terms of localization accuracy. In this chapter, the advan-
tages and disadvantages of each method are summarized with + and − symbols respectively.

TDOA-based multilateration is characterized by the following:

+ High localization accuracy.

− Relies on LOS propagation, susceptible to multipath effect otherwise.

− Requires time synchronization of receivers.

− Can not resolve vertical component of GDOP (altitude).
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The accuracy of RSS-based localization was shown to be strongly dependent on signal
propagation mechanisms. These can be captured using signal propagation models. In terms
of localization accuracy, RSS-based methods are characterized by the following:

− Strong dependence on signal fading mechanisms and noise.

+ More robust to multipath effect.

− Propagation models are limited to theoretical knowledge of the system.

+ Measurement based propagation models can be derived.

− RSS measurement quality is dependent on transmitter and receiver settings.

+ Does not require additional equipment for receiver synchronization.

In addition, various RSS-based localization algorithms were presented. The accuracy of
all algorithms depends on the number of receivers available. It was shown that implementation
of more sophisticated algorithms with TDOA is highly complex and it is unclear whether it
results in better estimation than with RSS. These algorithms are summarized in table 2.2 in
terms of their complexity, accuracy and algorithm-specific requirements.

Table 2.2: Overview of localization methods and algorithms.

Algorithm Method Complexity Accuracy Requirements
Min-Max RSS Low Low Regular distribution of receivers

Weighted Centroid RSS Low Low Sophisticated propagation model
Kalman Filters RSS High High Accurate measurement noise model

TDOA Very High - -
Maximum Likelihood RSS High High Sufficient number of receivers

TDOA Very High - -
Fingerprinting RSS High High Sufficient size of training database

TDOA Very high - -
Particle Filtering RSS High High Accurate motion model

TDOA Very high - -
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3
Research proposal

In this chapter, the contribution of this thesis is described. First, the gap in existing litera-
ture and earlier research is established in section 3.1. Consequently, the research objectives
are set in section 3.2 in order to minimize the established gap. Lastly, the research questions
are formulated and discussed in section 3.3.

3.1. Literature gap
The literature review presented in the previous chapter identified the main challenges of

RSS-based localization as strong dependence on signal fading and interference mechanisms
as well as on transmitter and receiver quality. It was established that some of these properties
can be captured by signal propagation models. However, the state-of-art models focus on
limited areas and their performance is evaluated mostly in the setting when the propagation
properties are preset or known. In addition, no comparison of localization accuracy between
different models was found.

Furthermore, only one study of the crowdsourced data employment for localization pur-
poses was referenced in the literature review. Although it is clear what challenges are faced
with RSS-based localization in general, it is yet to be determined how they can be managed
in presence of receiver characteristic diversity and biased data collection. This highlights the
gap in the existing knowledge of feasibility and implications related to the use of crowdsourced
RSS measurements.

3.2. Research objective
The main objective of this research is to determine whether the use of crowdsourced

RSS data is feasible in localization context. To fulfill the objective, this thesis will focus on the
reliability of the crowdsourced data and applicability of signal propagation models. In addition,
the research aims to compare the difference in localization errors between the traditional MLAT
technique and RSS-based methods.

3.3. Research questions
In line with the research objective, the central question of this thesis has been formulated

as follows:

How can crowdsourced measurements of received signal strength improve the
accuracy of aircraft localization?
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To answer the main research question, the following sub-questions will be addressed
through the actions presented in the flowchart below.

3.4. Planning
The entire work plan for this thesis was divided in three phases: exploratory, implemen-

tation and defense. The exploratory phase that includes actions presented under the first
research sub-question is completed with the submission of this report. The following imple-
mentation phase includes determination of model parameters, MLAT with time and RSS mea-
surements and fingerprinting. In the end of implementation phase, final report will be produced
in the form of scientific paper. A full weekly planning of this thesis including the completed ac-
tivities can be found in Appendix B.

3.5. Data processing
The LocaRDS subset 2 employed in this thesis was retrieved in csv format and consists of

28717685 measurements. Hereby, the methods of data processing employed are discussed.

3.5.1. Outliers
Although the theoretical range of ADS-B transponder can exceed 250 NM or 463 km, it is

highly unlikely that a strong signal will be received over such distances. The aircraft-receiver
pairs with the separation distances larger than theoretical LOS were identified. In cases where
this distance exceeds LOS distance, the measurements are considered to be the outliers and
will not be used for further analysis.
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3.5.2. Regression models and coefficient of determination
The aim of the regression model is to find the best fitting curve that represents the rela-

tionship between variables. To examine this relationship, second order polynomial regression
model was constructed for each unique aircraft-receiver pair. In presence of regression model,
the coefficient of determination 𝑅2 is computed to examine how well the variability in the dis-
tance between the aircraft and the receiver can be explained by the variability in the RSS. The
calculation of 𝑅2 is given by equation 3.1 where residual sum of squares (RSS) is given by the
squared sum of differences in measured and predicted data, and total sum squares (TSS) is
given by the squared sum of differences in measured data and its mean. The 𝑅2 values vary
from 0 to 1 where the latter indicates that the regression model perfectly explains the variability
in distance based on the variability in RSS.

𝑅2 = 1 − 𝑅𝑆𝑆𝑇𝑆𝑆 = 1 −

𝑛
∑
𝑖=1
(𝑦𝑖 − �̂�)2

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦)2

(3.1)

3.5.3. Implementation phase
The remaining work of this thesis requires to identify the signal propagation model pa-

rameters that are representative for the crowdsourced data. This will be done by obtaining
parameters for measurement-based propagation model given by equation 2.6. Later, MLAT
will be implemented with the time measurements from LocaRDS and the distances obtained
through the model. The implementation of MLAT follows from equations 2.13 and 2.14. The
localization accuracy will be evaluated using the actual position given by LocaRDS.

The RSS fingerprinting algorithm discussed in the literature study was found to be the
most applicable in presence of large data sets. Given the knowledge of exact receiver lo-
cations and large set of RSS measurements, the applicability of the algorithm in context of
crowdsourced data will be examined and includes the following steps:
1. Random separation of available RSS measurements into observation and test data.
2. Assignment of known positions to RSS measurements in observation data.
3. Matching of observation data and test data by smallest distance.
4. Estimation of position of test data by weighted average of matches.

3.5.4. Software
The programming language used for this thesis is Python. The use of Python 3.11 is fa-

cilitated by Anaconda distribution. In context of data processing, the following Python libraries
are utilized:

• Pandas: dataset structuring and analysis.
• NumPy: algebraic calculations.
• SciPy: implementation of multilateration.
• Scikit-learn: statistical modeling and machine learning.
• Matplotlib: graphic figure production.

It is likely that other libraries or open source packages will be used throughout this thesis.
These might include GeoPandas for spatial data processing and Localization for verification
of multilateration results.
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3.5.5. Validation of results
The description of entire LocaRDS dataset employed in this thesis can be found in Ap-

pendix A. Due to the immense quantity of data points available, it was decided to limit the
exploratory phase of this thesis to a single subset in order to minimize the computational load.
The initial results were produced from subset 2. Assuming the same quality of data throughout
LocaRDS, the results of this thesis can be validated on any other available subset.
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4
Preliminary results

Preliminary results of this thesis were obtained using subset 2 of LocaRDS. Due to the
considerable size of this data set, the exploratory phase focused on data preprocessing that
included establishment of usable data set, elimination of outliers and construction of regression
models for each unique aircraft-receiver pair. This chapter presents the preliminary results in
sections 4.1 and 4.2 as well as discusses considerations for the remaining work in section 4.3.

4.1. Outliers
Based on the outlier criteria described in research proposal, 36123 outliers were iden-

tified. These account for 0.126% of all data points among 203 of total 317 receivers. The
distribution between receivers with more than 200 outliers is shown in figure 4.1.

Figure 4.1: Number of outliers per receiver.

The reasons for outlier presence include extended range of the receiver and erroneous
measurements. While the latter can be easily spotted as multiple inconsistent measurements
at abnormal distances, the transmission range can not be verified. Therefore, the measure-
ments obtained from beyond LOS calculated were not included in the further analysis.
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4.2. Regression models
The data set consists of 66942 unique aircraft-receiver pairs. The coefficient of determi-

nation 𝑅2 was calculated for each pair. The difference between high and low 𝑅2 values can be
observed in figure 4.2, whereas lower value indicates more chaotic distribution of measure-
ments. The threshold of 𝑅2 > 0.6 was selected for further analysis.

(a) Aircraft 1031 with receiver 590. (b) Aircraft 1031 with receiver 222.

Figure 4.2: Examples of high and low coefficient of determination 𝑅2 in regression models.

As the transmission power remains relatively constant, the aim was to identify whether
there are at least three receivers per aircraft that obtained the signal. In addition, only the
pairs with more than 50 available measurements were considered to ensure the proper fit of
regression model. These account for 49491 pairs in the data set. With these limitations, 409
aircraft combinations with more than three receivers were found. Based on the criteria, all
combinations were found to fall under the following categories:

• Good agreement models: the regression models have similar pattern or overlap.

• Good agreement for combination: the regression models might not have the similar
pattern, but are distributed in the manner appropriate for combination.

• Good agreement for parameters: the regression models have similar pattern, but are
spread over the distances.

• Poor agreement models: the models are not similar or are distributed in a chaotic man-
ner.

These are discussed further in this section. The models identified under first three cate-
gories of good agreement account for 326 out of 409 aircraft-receiver combinations. It should
be also noted, that for the majority of the aircraft only three receivers that comply with 𝑅2 >
0.6 could be found. The maximum number of receivers to comply with given criteria is nine.
With more than three receivers most of the regression models fall under good agreement for
combination or good agreement for parameters category.

Good agreement models
The examples of aircraft-receiver combinations that were identified as good agreement

models are given in figure 4.3. 69 out of 409 aircraft-receiver combinations were found in this
category. These measurement comply with the expectations of signal propagation models
which can be directly verified in the implementation phase of this thesis.
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(a) Aircraft 1934. (b) Aircraft 1511.

Figure 4.3: Examples of regression models with good agreement.

Good agreement for combination
In this category the measurements are limited by the receiver reception range. As can

be seen in figure 4.4, the distribution of measurements from various receivers complies with
the expectations of signal propagation model similarly to the previous category discussed. It
is therefore expected that combination of these measurements provides sufficient accuracy.
The total of 100 aircraft-receiver combinations were identified in this category.

(a) Aircraft 2062. (b) Aircraft 211.

Figure 4.4: Examples of regression models with good agreement for combination.

Good agreement for parameters
The last category good agreement is comprised by 157 regression model combinations

that have similar pattern, but are spread over the distances as shown in figure 4.5. This spread
can be attributed to the transmitter and receiver parameters that can be captured by signal
propagation models. Although these parameters can be estimated for each individual receiver,
this falls outside the scope of this thesis. Therefore, only the measurements that comply with
the expected model will be used for the remaining work.
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(a) Aircraft 979. (b) Aircraft 2015.

Figure 4.5: Examples of regression models with good agreement for parameters.

Poor agreement models
Lastly, the poor agreement models category includes themodels that are not similar or are

distributed in a chaotic manner. These account for 83 out of 409 aircraft-receiver combinations.
The examples of bad fit models are given in figure 4.6. Although it is not entirely clear why
such discrepancies between the regression models occur, these can most likely be attributed
to the faulty transmitter or receiver. In terms of the remaining work, the aircraft-receiver pairs
that were found to have a poor agreement will be discarded.

(a) Aircraft 505. (b) Aircraft 1040.

Figure 4.6: Examples of regression models with poor agreement.

4.3. Considerations for implementation phase
The remaining work of this thesis includes determination of propagation model parame-

ters, MLAT with time and RSS measurements and fingerprinting. The first two are straightfor-
ward and not going to be elaborated further. The consideration for fingerprinting implemen-
tation regards the data points available for the construction of training database. From the
figures presented in the previous section, it is clear that the message count per sensor varies
significantly. Also, some combinations of sensors include little number of RSSmeasurements.
Therefore, it should be later examined whether the training data set contains enough data
points for accurate localization based on the available RSS measurements.

The last remark considers two binary indicators of measurement quality, namely, aircraft
location and receiver location and synchronization accuracy, provided in LocaRDS data set.
No significant difference was observed with respect to these indicators during the exploratory
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phase. In contrast, various pairs of trusted aircraft and verified receivers produced inconsistent
RSS measurements. Therefore, the division in trusted and not trusted receivers and aircraft
will no longer be considered for RSS-based calculations.
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5
Conclusion

The aircraft localization based on the RSS measurements has not been actively ad-
dressed by the state-of-art studies. However, it is clear that use of RSS alleviates MLAT
synchronization and geometry-related limitations. It was established that the quality of RSS
measurements depends on the transmitter and receiver properties as well as on the environ-
mental factors. Unfortunately, transmitter and receiver properties are unknown in the context
of this thesis. However, these can be parameterized by the measurement-based signal prop-
agation model.

The exploratory phase of this thesis addressed the quality of crowdsourced RSS mea-
surement data. It was found that roughly 0.126% of all data was received from the distances
that extend beyond LOS. As it is impossible to verify the transmission range for each aircraft-
receiver pair, these measurements were not considered in the further analysis. The regression
models were constructed for the rest of the data to identify how well the variability in the RSS is
explained by the variability in the distance. 409 combinations of one aircraft and at least three
receivers were found to comply with the threshold of 𝑅2 > 0.6. Out of these, 83 combinations
produced the regression models that are not similar in nature or are chaotically distributed.
These discrepancies were attributed to the faulty transmitter or receiver. The remaining 326
combinations will be used for further work in this thesis that can be ultimately expanded on
the entire data set for validation of results.

The remaining work of this thesis includes determination of model parameters, MLAT with
time and RSS measurements and implementation of fingerprinting algorithm. For the latter, it
should be further established whether the combinations of aircraft-receiver with good quality
measurements have sufficient number of data points to facilitate an accurate RSS fingerprint-
based localization.
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A
LocaRDS data content

LocaRDS dataset consists of eight subsets, each containing one hour of data. In each
subset (see table A.1), numerous locations reported by ADS-B were verified based on the
timestamps provided by GPS-synchronized receivers.

Subset Data point count Verified count Receiver count GPS
1 28234130 1839760 318 45
2 28717685 1680956 317 45
3 28749671 1996987 318 44
4 28215712 1810382 317 43
5 26313445 1452447 314 41
6 27360671 540953 313 40
7 27514781 779524 313 39
8 27395507 1793618 309 42

Table A.1: LocaRDS data set attributes. Adapted from [5].

Each data point is contains the following information:

• Aircraft location: latitude and longitude (WGS84 coordinates in decimal degrees), baro-
metric altitude (in meters), geometric altitude (in meters).

• Receiver location: latitude and longitude (WGS84 coordinates in decimal degrees), height
(in meters).

• Receiver timestamp: time measured by the receiver since the beginning of recording at
the time of signal arrival (in nanoseconds).

• Server timestamp: time measured by the server since the beginning of recording at the
time when ADS-B position report was first observed (in seconds).

• Received signal strength: signal strength measured by the sensor (in decibel).

In addition, two binary indicators are provided:

• Aircraft location accuracy: location is known to have high quality (true), location is known
to have low quality (false), aircraft could not be verified (no indicator).

• Receiver location and synchronization accuracy: provided time stamp did not drift during
one hour of measurements and receiver location could be verified (true), otherwise (no
indicator).
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B
Planning

Figure B.1: Weekly planning (completed activities shaded in blue).
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