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ABSTRACT Continual model learning for nonlinear dynamic systems, such as autonomous robots, presents
several challenges. First, it tends to be computationally expensive as the amount of data collected by the robot
quickly grows in time. Second, the model accuracy is impaired when data from repetitive motions prevail in
the training set and outweigh scarcer samples that also capture interesting properties of the system. It is not
known in advance which samples will be useful for model learning. Therefore, effective methods need to
be employed to select informative training samples from the continuous data stream collected by the robot.
Existing literature does not give any guidelines as to which of the available sample-selection methods are
suitable for such a task. In this paper, we compare five sample-selection methods, including a novel method
using the model prediction error. We integrate these methods into a model learning framework based on
symbolic regression, which allows for learning accurate models in the form of analytic equations. Unlike
the currently popular data-hungry deep learning methods, symbolic regression is able to build models even
from very small training data sets. We demonstrate the approach on two real robots: the TurtleBot mobile
robot and the Parrot Bebop drone. The results show that an accurate model can be constructed even from
training sets as small as 24 samples. Informed sample-selection techniques based on prediction error and
model variance clearly outperform uninformed methods, such as sequential or random selection.

INDEX TERMS Machine learning, system identification, robot control, genetic algorithms, symbolic
regression.

I. INTRODUCTION
To effectively control nonlinear dynamic systems, such as
autonomous robots, one needs accurate models. These mod-
els can be learned and adapted by using data samples that
the robot continuously collects during its deployment. As the
amount of such data quickly grows with time, using all the
collected samples for model learning soon becomes compu-
tationally infeasible, and a subset of data must be selected.
However, not all data samples are equally important, and it is
not known a priori which samples will be useful and which
not. This problem is compounded by the presence of data
samples from repetitive motions, which are typical for most
tasks in robotics. Such data do not contain any additional
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information, and without precautions, they outweigh the rel-
atively small amount of other informative samples.

Data samples for model learning can be chosen in an
uninformed way or in an informed way. Most prominent
among the uninformed approaches are the recursive methods
[1], [2] used in classical system identification. They process
data sequentially, use every sample only once to update the
model parameters and then throw it away. This makes them
data-inefficient and unable to address the issue with repetitive
samples. Another widely used uninformed approach is the
random selection of training samples [3], [4], which also does
not solve the problem with repetitive samples.

Informed methods usually work with a set of models.
A typical representative of this class is the variance approach
[5]. The key idea of this method is that the most informa-
tive sample is the one that causes the largest disagreement
among the models found. Related methods have also been
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developed in the field of active learning [3], known mostly
for applications in classification [6]–[8], but also applied to
regression [9]–[11]. Active learning starts with a small num-
ber of labeled training samples and then iteratively requests
labels for additional samples. The labels are obtained from an
oracle, often a human expert, which makes labeling expen-
sive. In model learning, the labels are the measured system
outputs. The problem here is that the output for an arbitrary
sample cannot be obtained from a real dynamic system, as the
system would have to be brought to the required state, which
is often undesired or impossible.

An alternative to the approaches that require a set ofmodels
are methods that do not rely on the learned models’ outputs.
A representative of these methods is the problem domain
coverage [3]. This approach iteratively adds new samples to
evenly cover the problem domain, thus saving the computa-
tional costs of learning multiple models.

In addition to the informed methods based on the model
variance [5] and on the domain coverage [3], we propose a
novel approach based on the model prediction error. In con-
trast to the variance method, the new sample added to the
training set is the one with the highest error averaged over the
current set of models. The motivation is to deal with cases
when the set of models yields a low variance for a given
sample, but the models’ outputs on that sample are all wrong.
Such a sample would be disregarded by the variance method,
though it is clearly worth adding to the training data set. This
happens, for example, in case the function (model) sought
has some unexpected property on a small part of its domain,
which has not been covered by the samples from the previous
iterations. Contrary to the variance method, the prediction
error method can also work with a single model.

To compare the above approaches to sample selection,
we introduce a framework using symbolic regression (SR) for
model learning. SR has proven to be suitable for modeling
nonlinear system dynamics even from very small data sets
[12]. The advantage of using SR is that it constructs parsimo-
nious models in the form of analytic equations, which facil-
itates their use within other algorithms. Symbolic regression
allows to optionally incorporate prior knowledge in themodel
construction process by specifying the set of elementary func-
tions that can be used to build the analytic models. In addition
to its data efficiency, SR also requires fewer parameters to
build an accurate model when compared to alternative meth-
ods such as deep neural networks [4], [13]–[15]. As SR can be
time-consuming for large data sets, selecting a suitable small
training set makes it very well usable in practice.

This paper makes the following two main contributions:
• We present a comparative study of five methods for
selecting data samples from a larger sample collection
recorded during the robot deployment. Such a compar-
ison has been so far missing in the literature. Three
informed and two uninformed methods are evaluated
within the SR framework on data both from a simulated
and a real mobile robot TurtleBot 2, and on data from a
real drone Parrot Bebop 2.

• Anew sample-selectionmethod is introduced. It is based
on adding samples that yield the largest model predic-
tion error. The practical merit of the proposed method
is demonstrated in an experiment with the real mobile
robot.

The rest of the paper is organized as follows. The model
learning framework is described in Section II. Sections III
and IV present the experimental results and Section V con-
cludes the paper.

II. METHODS
Section II-A first defines the nonlinear dynamic model con-
sidered and introduces the theoretical background of sym-
bolic regression. The model learning procedure is explained
in Section II-B and the sample-selection methods evaluated
in this paper are described in Section II-C.

A. NONLINEAR DYNAMIC SYSTEM MODEL
The dynamic system model is described in discrete time by
the following nonlinear difference equation:

xk+1 = f(xk ,uk ) (1)

with n-dimensional state xk = (x1k , x
2
k , . . . , x

n
k )
> and m-

dimensional input uk = (u1k , u
2
k , . . . , u

m
k )
>, where k denotes

the discrete time step. While the actual process can be
stochastic (e.g., when the sensor readings are corrupted by
noise), in this paper, we construct a deterministic model.

For model learning, we define the model f(xk ,uk ) as a
vector of models f j(xk ,uk ), each producing a prediction of
a single state variable x jk+1, with j = 1, . . . , n:

f(xk ,uk ) =
(
f 1(xk ,uk ), f 2(xk ,uk ), . . . , f n(xk ,uk )

)>
.

(2)

In the sequel, we drop the superscripts to simplify the nota-
tion. The generic term f (xk ,uk ) corresponds to a model of a
single state variable, while the model of the whole system is
denoted by f(xk ,uk ). Similarly, xk refers to a single generic
state variable, whereas xk represents the full state vector.
To find a concise model of the nonlinear system dynamics,

we use a variant of SR called Single Node Genetic Program-
ming (SNGP) [16]. It forms the model f (xk ,uk ) for each
state variable as a linear combination of evolved nonlinear
functions fi(xk ,uk ):

f (xk ,uk ) = β0 +
nf∑
i=1

βifi(xk ,uk ). (3)

The SNGP algorithm builds the functions fi(xk ,uk ), called
features, from a user-defined set of elementary functions
F . The features are represented as directed acyclic graphs
and evolved using standard evolutionary operations such as
mutation. The function set can be broad to let SR choose the
appropriate functions, but the user can also specify a narrower
set of elementary functions to speed up the evolution by utiliz-
ing prior knowledge about the system. The evolution is driven
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by the minimization of the mean-square error calculated over
the training data set. The coefficients β are estimated by
least squares. To avoid over-fitting, the complexity of the
regression model is limited by two parameters: the number
of features nf and the maximum feature depth d .
We assume that the states are measured, but the method

also applies to input–output models of the form yk+1 =
g(yk , yk−1, . . . ,uk ,uk−1, . . .), where the state is represented
by the vector of past inputs and outputs [17].

B. MODEL LEARNING FRAMEWORK
During its deployment, the system (robot) continuously col-
lects samples in the form sk = (xk ,uk , xk+1)>. The data
samples are stored in a buffer from which a subset of samples
for training is selected. To evaluate the performance of the
method and its ability to generalize, a small portion of the
collected samples is diverted to the test set instead of becom-
ing a part of the buffer. There are different ways how the test
samples can be selected, e.g., by periodically or randomly
choosing new samples for the test set to maintain a user-
specified ratio between the buffer and test set size.

SR is run periodically on the training data set selected from
the buffer to find the state transition function of the system.
As outlined in Section II-A, symbolic regression constructs
a model for each state variable individually. In the following
text, we describe the learning procedure for a generic state
variable. Sample selection is also performed per state vari-
able, i.e., each variable has its own instance of the training
set and the buffer.

An overview of the method is presented in Algorithm 1.
The algorithm starts with an initial training data set composed
of a small number of samples n0. There are various ways how
to choose the initial samples. For example, they can be chosen
randomly among the samples available in the buffer. In this
paper, we apply a sequential approach, starting with the first
n0 samples in the buffer.

The method builds the models iteratively, where by an
iteration, we denote the process of constructing nr analytic
models and choosing a set of ns samples from the buffer
to be added to the training data set. A small value of ns
yields fine-grained sample selection and will be used when
aiming at small but highly informative training data sets on
which SR can be run often and with low computational costs
per run. Larger values of ns allow the training set size to
grow faster, where SR will be run less often, but with higher
computational costs per run.

In each iteration, symbolic regression runs in nr identically
configured instances to find models fitting the training data.
Since evolution is guided by a distinct sequence of random
numbers in each of the runs r , we obtain nr different analytic
models fr (xk ,uk ). The model f ∗ with the lowest root-mean-
square error (RMSE) of the one-step-ahead prediction on the
test set is chosen as the final model for that iteration. The
set of nr models also serves to determine the informative
samples, as described in Sections II-C1 and II-C3.

The iterative process terminates once a given stopping
criterion is met or once the maximum number of iterations ni
is reached. For example, the stopping criterion can be based
on a threshold on the error measures or on the performance
of the system on a given control task.

Algorithm 1Model Learning With Sample Selection
Input: sample-selection method, Buffer , TestSet , n0, ns, ni
i← 0
TrainingSet ← Sn0 (first n0 samples in Buffer)
Buffer ← Buffer \ Sn0
repeat

i← i+ 1
for each state variable do

run nr instances of SR to construct models fr
f ∗← fr with the lowest RMSE on TestSet
S ← ns samples from Buffer ,

chosen by the sample-selection method
TrainingSet ← TrainingSet ∪ S
Buffer ← Buffer \ S

end for
until i = ni or termination condition on model quality is
met

C. SAMPLE-SELECTION METHODS
Sample selection is important to efficiently construct accurate
models. The following text presents three informed sample-
selection methods, followed by two uninformed methods
used as a baseline for the performance analysis.

1) MAXIMUM VARIANCE
A common state-of-the-art informed sample-selection
method is based on themaximum variance between themodel
outputs [3], [5], [18]. For a given training set, nr models are
generated and the outputs of these models are calculated for
all data samples in the buffer. The data samples with the
highest variance in model outputs are added to the training
set. The method is based on the hypothesis that the samples
with the highest variance come from a subset of the problem
domain that is not sufficiently represented in the current
training set. Including such samples is expected to improve
the model consistency and accuracy.

2) MAXIMUM OUTPUT DOMAIN COVERAGE
In this approach, the training set is constructed by iteratively
adding samples from the buffer to cover the output domain as
well as possible. For each sample in the buffer, the method
calculates its distance in the output space to all samples in
the current training set and stores the minimum of these dis-
tances. The buffer sample with the largest minimum distance
is added to the training set.

A similar approach has been used in [3] for the input
domain. The approach to cover the output domain instead of
the input domain is advantageous because it circumvents the
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issues connected to the normalization of the input space com-
ponents. Unlike the maximum variance approach, the max-
imum output domain coverage method does not need any
models to be built for sample selection and therefore, it is
computationally less demanding.

3) MAXIMUM PREDICTION ERROR (PERMIT)
In addition to the two previous informed sample-selection
methods, we propose a novel method that selects the sam-
ples on which the analytic models yield on average the
largest error. In the sequel, we will refer to our method by
its acronym PERMIT (Prediction ERror method for Model
ImprovemenT).

The selection procedure is performed for each state vari-
able individually. The models fr (x`,u`), r = 1, 2, . . . , nr , are
used to calculate the output for all samples s` in the buffer.
We select the sample s`∗ that yields the largest prediction
error averaged over the set of nr models:

`∗ = arg max
`∈{1,...,N }

1
nr

nr∑
r=1

(fr (x`,u`)− z`)2 , (4)

whereN is the current buffer size and nr ≥ 1. Recall that each
sample s` has the form (xk ,uk , xk+1)>. The term z` in (4)
refers to the component of xk+1 corresponding to themodeled
variable.

In contrast to the variance method, which requires a set
of models to calculate the variance, PERMIT can select new
training samples using only a single model. However, aver-
aging over a set of models improves the method’s robustness.

4) SEQUENTIAL ADDITION
A common uninformed sample-selection approach is to build
the model from samples added in the order as they are logged
[2]. The most straightforward implementation of this method
is using the queue data structure. During the operation of the
system, the recorded data samples are added at the tail of the
queue. New samples for model learning are taken from the
queue head. Therefore, the data in the buffer are processed in
the first-in, first-out (FIFO) manner.

5) RANDOM APPROACH
This approach selects the samples at random. The training
samples are drawn from the buffer with a uniform probability.
This method has been used as a reference also in [3]. While
the method works well for buffers with a majority of informa-
tive samples, its performance degrades if the available data
samples have been recorded mostly from repetitive motions
and rich data form only a small portion of the collected data
set.

D. COMPUTATIONAL COMPLEXITY
The computational complexity of symbolic regression grows
linearly with the number of samples. The complexity of

the sample-selection method grows linearly with the buffer
size and also linearly with the number of parameters in the
analytic model.

To provide an idea on the actual computation time, we have
measured the time needed to finish a single SR run for differ-
ent sample sizes. We have used a standard laptop computer
with a CPU Intel Core i7-4610M (3.00 GHz) and 16 GB
of RAM, running the computation on a single core. Con-
sider a problem with a three-dimensional state and a two-
dimensional input, such as the mobile robot described in
Section III. The time used by SR to find amodel of the system
is approximately 28 seconds for a training set of 20 samples,
75 seconds for a training set of 100 samples, and 240 sec-
onds for a training set of 500 samples. The sample-selection
method itself takes a negligible amount of time (< 50ms)
for nr = 10 models and buffers containing thousands of
samples. The advantage of using a suitable sample-selection
method to reduce the number of training samples is therefore
substantial.

E. DISCUSSION AND LIMITATIONS
We consider a scenario in which the system (robot) performs
a given task, e.g., transporting objects between specified
locations, and we can not alter its behavior in any way. Often,
this leads to unevenly covered state and input domains. The
majority of samples span a small subset of the state and
input domain and only a small portion of samples are spread
across other parts of the domain. A different situation would
arise if we had full control over the system operation and
we could design a task yielding samples evenly and densely
covering the state and input space. These two scenarios
are closely related to the classical exploration-exploitation
dilemma.While the first scenario corresponds to exploitation,
the second one represents exploration. We focus in this paper
on the first scenario, which is characteristic for the operation
in regular task execution. The strength of the informative
sample selection manifests in particular in that case, as the
choice of the right samples is crucial for the modeling perfor-
mance.

The proposed method is designed to work with any sys-
tem and does not make any prior assumptions. The only
requirement is that the dynamics are excited during the task
execution in at least a small portion of the collected data sam-
ples (approx. 10–20%, depending on the task). This ensures
a training data set sufficiently rich in informative samples
capturing the properties of the system. It is generally satisfied
for highly dynamic tasks (rapid motions of robots), but it
may not be satisfied for stationary tasks (e.g., a quadcopter
hovering above a fixed location), in the absence of external
disturbances.

Finally, we assume that the buffer does not contain a large
amount of corrupted data (outliers). We have empirically
evaluated that the method is robust to a small number of
erroneous records (less than 10%) present in the training set.
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FIGURE 1. Mobile robot: a) schematic, b) photo of the TurtleBot used in
the experiments.

III. MOBILE ROBOT EXPERIMENTS
We have chosen a mobile robot as a suitable benchmark
for our method. We have carried out experiments both in
simulations and with a real mobile robot TurtleBot 2.

A. SYSTEM DESCRIPTION
We consider a two-wheeled mobile robot shown in Fig. 1. Its
model is described by the state vector x = (xpos, ypos, φ)>,
where xpos and ypos are the position coordinates of the robot
and φ is its heading. The forward velocity vf and the angular
velocity va are the control inputs, forming the input vector
u = (vf , va)>.

The theoretical continuous-time model of the mobile robot
is:

ẋpos = vf cos(φ),

ẏpos = vf sin(φ),

φ̇ = va, (5)

neglecting the dynamics caused by the robot’s inertia and
actuators. This model is only used for simulations in
Section III-E. In our experiments, the inputs are limited to
the domain vf ∈ [0, 0.3]m · s−1 and va ∈ [−1, 1] rad · s−1,
which substantiates the use of the sampling period Ts = 0.2 s.

B. DATA COLLECTION
The data sets both in simulations and in the experiments with
the real robot are composed of short sequences such as mov-
ing forward with the maximal forward velocity, turning on
the spot with the maximal angular velocity, turning in a circle
with the maximal forward and angular velocity, or waiting on
the spot for a new command. Approximately 20% of the data
are sequences with random inputs within the domain for vf
and va. The first two thirds in each of these sequences form
the buffer (a total of 500 samples), while the last third enters
the test set (250 samples).

The data samples have the following form:

sk = (xpos,k , ypos,k , φk , vf ,k , va,k , xpos,k+1, ypos,k+1, φk+1),

(6)

where k denotes the time step, see (1). Odometry measure-
ments were used to record the samples in the experiments
with the real robot.

C. MODEL LEARNING
The model learning algorithm starts with a training data set of
n0 = 5 first samples in the buffer. The initial training data set
is identical for all three state variables. The aim is to select
a small subset of training data that will capture the robot’s
dynamics as accurately as possible. In each iteration, nr = 50
analytic models are constructed. At the end of each iteration,
we add ns = 1 sample to the training set. We limit the
number of iterations to ni = 50. We have deliberately chosen
extremely low values of the parameters n0 and ns to show that
even very small data sets can serve to build accuratemodels of
the robot. In practice, higher values of these parameters could
be used to reduce the number of initial iterations in which we
do not yet expect the models to be sufficiently accurate.

The analytic models were constructed by using SNGPwith
up to nf = 10 features having a maximum depth of d = 7.
The set of elementary functions for symbolic regression was
F = {×,+,−, sin, cos, square, cube}.
We have evaluated the five sample-selection methods

described in Section II-C. We use the one-step-ahead RMSE
calculated on the test data set to evaluate the quality of the
analytic models found by SR in each iteration. It compares
the output of the model fr (xk ,uk ) with the known next state
component for the given variable xk+1, which is stored with
the test sample. Median RMSE values are calculated over all
nr models in each iteration. Due to the randomness factor
in SR, the sample-selection process is stochastic. Therefore,
the results shown represent one particular realization of a
stochastic process. Using 50 repetitions of the experiment,
we have empirically validated that these results are represen-
tative for the performance of the methods.

D. CONTROL TASK
In addition to the RMSE measure, we evaluate the perfor-
mance of the analytic models on a control task. The robot
has to reach the reference (goal) state xr from a given initial
state x0 as fast as possible. Fuzzy V-iteration is employed
to find an approximation of the V-function in a model-based
reinforcement learning (RL) scheme. The description of the
RL algorithm is beyond the scope of this paper; for details,
please refer to [19]. We set the discount factor γ to 0.99.
The reward function is equal to zero if the robot is within
±0.01m in xpos, ±0.01m in ypos, and ±0.02 rad in φ from
the reference state xr . Otherwise, the reward is−1. This leads
to minimum-time optimal control from an initial pose to the
specified neighborhood of the goal pose.

An analytic model f ∗ with the lowest RMSE on the test
data set is selected for each variable in each iteration to
be used within RL. For the control task, we limit the state
domain to xpos ∈ [0, 1]m, ypos ∈ [0, 1]m, and φ ∈
(−π, π] rad. We set the reference state to the center: xr =
(xpos,r , ypos,r , φr )> = (0.5, 0.5, 0)>. The control input is
selected from a set of 11 values spanning evenly the range
vf ∈ [0, 0.2]m · s−1 and from 21 values spanning evenly the
range va ∈ [−0.5, 0.5] rad · s−1.

14152 VOLUME 9, 2021



E. Derner et al.: Selecting Informative Data Samples for Model Learning Through Symbolic Regression

TABLE 1. Comparison of the sample-selection methods on All variables in the experiments with the mobile robot. The RMSE median and the RMSE
spread Are averaged over All iterations of the sample-selection procedure. The RMSE spread Is calculated as the difference between the maximum and
minimum error among the models in each iteration.

We introduce two control performance measures. The
mean distance from the reference state is calculated as the
mean of the Euclidean distances between (xpos,k , ypos,k )> and
(xpos,r , ypos,r )> for all steps k = 1, 2, . . . , nk . Furthermore,
it is averaged over all experiments executed from various
initial states. This measure captures the underlying goal to
transit from the initial state to the reference state as efficiently
as possible. In addition, the mean error in the final state is cal-
culated as themean Euclidean distance between the final state
xnk and the reference state xr , averaged over experiments
from all initial states. Note that the latter measure includes
the robot heading φ and the error for φ is normalized to the
same range as for xpos and ypos.

To evaluate the control task, we start the simulation exper-
iments from a grid of 64 initial states spanning the state
domain. The duration of each simulation is 20 seconds,
which corresponds to nk = 100 steps (excluding the initial
state). In the case of the real robot, the control task is exe-
cuted every five iterations from four initial states (0, 0, 0)>,
(0.1, 0.9, 0)>, (0.8, 0.8, 0)>, and (0.8, 0.2, 0)>.

E. SIMULATION RESULTS
At first, we have performed a set of simulation experiments.
We simulate the mobile robot by applying the fourth-order
Runge-Kutta integration method [20] to the equations of
motion (5). Note that the simulationmodel does not constitute
a part of our method; it only serves to generate the data
samples.

Table 1 summarizes the results in two quantitative mea-
sures: the mean of the median RMSE and the mean difference
between the RMSE of the best and the worst model in each
iteration. The median RMSE is calculated over nr = 50
models in each iteration and both measures are averaged
over all iterations. These measures allow for evaluating how
accurate models can the sample-selection methods construct
from small data sets. All the sample-selection methods would
converge to models of the same accuracy when using all
samples from the buffer.

FIGURE 2. Evaluation of the sample-selection methods for modeling all
variables in the experiment with the simulated mobile robot. The number
of training samples starts at five in the first iteration and increases by one
in each iteration.

The results in Table 1 and in Fig. 2 show that the informa-
tive sample-selectionmethods allow for constructing accurate
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FIGURE 3. Evaluation of the control task executions performed with the
simulated mobile robot.

analytic models using substantially fewer training samples
as compared to the sequential and random approach. While
the PERMIT method and the variance method have simi-
lar overall performance, they both slightly outperform the
maximum output domain coverage method. Note that all
methods start with the initial training set composed of only
the first five samples in the buffer, resulting in highly over-
fitted models yielding large errors on the test set. Therefore,
the mean values in Table 1 may appear relatively large, which
is induced by the large errors in the first iterations. However,
the generalization ability of the models constructed using the
informed sample-selection methods rapidly improves with
the increasing size of the training set, as illustrated in Fig. 2.
For instance, the median RMSE for xpos drops to approx.
0.1m with 16 training samples (12th iteration) and further to
approx. 0.01m with 20 training samples (16th iteration) for
the PERMIT method and for the variance method.

The results of the control task simulations are presented
in Fig. 3. After a few initial iterations, the informed sample-
selection methods clearly outperform the sequential and ran-
dom method. The random method reaches an acceptable
performance around the 30th iteration, but its performance in
the following iterations oscillates. In contrast, the informed
methods steadily construct well-performing models. Note
that the performance of the sequential approach is very poor.
This is because the first 54 samples in the buffer do not
contain information that would help to improve the accuracy
of the model. Such a situation is encountered in many real
scenarios.

F. RESULTS WITH THE REAL MOBILE ROBOT
We have performed lab experiments with TurtleBot 2, see
Fig. 1b. The robot has collected the data samples as described

FIGURE 4. Evaluation of the sample-selection methods for modeling all
variables in the experiment with the real mobile robot. The number of
training samples starts at five in the first iteration and increases by one in
each iteration.

in Section III-B, yielding 500 samples in the buffer and
250 samples in the test set.

The quality of the models measured by RMSE on the
test data set throughout the execution of the model learning
algorithm is shown in Fig. 4 and the quantitative results
are summarized in Table 1. Similar conclusions as for the
simulated mobile robot can be drawn. The PERMIT method
and the variance method perform the best, followed by the
coverage method. The informed sample-selection methods
substantially outperform the sequential and random method.

Measures of the control task performance are shown
in Fig. 5. On the control task with the real mobile robot,
the PERMIT method is among the fastest ones to achieve
a good performance. The variance method performs also
very well, followed by the coverage method. The random
method only achieves an acceptable performance at the end
of the experiment, using 54 training samples. The sequential
method performs the worst.
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FIGURE 5. Evaluation of the control task executions performed with the
real mobile robot.

FIGURE 6. Execution of the control task performed on the real robot with
an analytic model trained on a data set of only 24 data samples, selected
by the PERMIT method. The plot shows the trajectory of the robot (solid
black circles) with its orientation (red markers). The reference state is
marked by a green cross.

An example of the control task execution on the real robot
is shown in Fig. 6. The RL controller is based on an analytic
model trained on only 24 data samples, which were selected
by the PERMIT method. The results show that the model
constructed by the proposed method allows to build an RL-
based controller that performs the control task well. The lab
experiment is captured in the video attachment, also available
at our GitHub repository.1

IV. DRONE EXPERIMENTS
We have selected the Parrot Bebop 2 drone to demonstrate the
performance of the method on higher-dimensional problems.

A. SYSTEM DESCRIPTION
The output variables are the translational velocities vx , vy,
and vz (measured by the OptiTrack motion-capture system
in the fixed world frame) and the body angles θ , ϕ and ψ ,

1https://github.com/erik-derner/sample-selection/blob/master/TurtleBot_
ModelLearning.mp4

FIGURE 7. Parrot Bebop Drone: a) schematic, b) photo of the quadcopter
used in the experiments.

denoting the pitch, roll, and yaw, respectively. The drone is
controlled by θc, ϕc, ωc, vzc , which denote the desired roll,
pitch, yaw rate, and vertical velocity, respectively. Fig. 7
shows a schematic and a photo of the drone.

In the experiments, we use the sampling period Ts =
0.05 s. We have chosen a smaller sampling period than for
the mobile robot in order to capture the faster movement of
the drone.

B. DATA COLLECTION
We have collected 1722 data samples by teleoperating the
drone to follow a given trajectory. This data set was divided
into a training set and a test set in the ratio 2:1 by moving
every third sample to the test set.

The models, constructed for each state variable, are in
the input–output form g(yk , yk−1, . . . ,uk ,uk−1, . . .), where
y denotes the vector of output variables and u are the con-
trol inputs. We use a first-order model for the translational
velocities vx , vy and a second-order model for all the other
variables.

C. MODEL LEARNING
The model learning algorithm starts with a training data set of
n0 = 5 first samples in the buffer. As there are 1148 samples
in the buffer, the aim is to select a small subset of data that
will capture the robot’s dynamics as well as possible. In each
iteration, nr = 10 analytic models are constructed for each
variable with the same SNGP configuration as for the mobile
robot. Only ns = 1 sample is added in each iteration to the
training data set for each variable. The number of iterations
is limited to ni = 25.

D. RESULTS
The performance of the five sample-selection methods of
Section II-C is shown in Fig. 8. The quantitative measures
are summarized in Table 2. All angles and their differences
have been wrapped to the domain (−π, π] rad.

The results show that for modeling vx , vy, and vz, the PER-
MIT method and the variance method achieve the best per-
formance. The coverage method and the random method are
slightly worse. The difference between the first two and the
latter twomethods increases for the variables θ , ϕ, andψ . The
sequential method performs the worst for all variables, which
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TABLE 2. Comparison of performance of the sample-selection methods on All variables in the experiment with the drone. The RMSE median and the
RMSE spread Are averaged over All iterations of the sample-selection procedure. The RMSE spread Is calculated as the difference between the maximum
and minimum error among the models in each iteration.

FIGURE 8. Evaluation of the sample-selection methods for modeling all variables in the experiment with the drone. The number of training
samples starts at five in the first iteration and increases by one in each iteration.

is due to the absence of a sufficient number of informative
samples at the beginning of the recorded sequence. On the
other hand, the whole buffer contains a larger amount of

informative samples than in the case of the mobile robot,
which makes the random method perform better compared to
the results in Section III. Overall, the results show that using
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informed sample selection allows SR to find accurate models
from small batches of data (20–25 samples) also on a higher-
dimensional problem.

V. CONCLUSION
The selection of training samples is essential to efficiently
construct accurate nonlinear dynamic models from the vast
amount of collected data. Not all data samples are equally
informative: some carry unique information about the system,
while others are redundant. To that end, we have proposed
an approach for constructing compact training data sets that
serve as an input to a model learning method. For model
learning, we have chosen symbolic regression thanks to its
ability to construct accurate models in the form of analytic
equations even from small data sets.

Sample-selection methods can be classified into unin-
formed and informed methods. As a baseline, we have
included two uninformed methods that select the training
samples sequentially and randomly. Informed methods in
contrast select the training samples based on predefined cri-
teria with the aim to capture the important properties of
the system and so to achieve a better modeling accuracy.
We have evaluated two state-of-the-art informed sample-
selection methods, based on the model variance and on the
output domain coverage. In addition, we have proposed a
novel sample-selectionmethod based on themodel prediction
error, called PERMIT.

We have evaluated themethods on data from three dynamic
systems: a simulated mobile robot, a real mobile robot Turtle-
Bot 2, and a real Parrot Bebop drone. All three informed
sample-selection techniques clearly outperform the two base-
line uninformed methods: they quickly select a small subset
of important samples from a large data buffer. While PER-
MIT and the variance method achieve the best performance,
the results of the coverage method are slightly worse in the
overall evaluation. For the PERMIT method, we have shown
that an analytic model found by symbolic regression on a
training data set with as few as 24 samples can already be used
to design a near-optimal RL controller for the real mobile
robot.

In our future work, we will conduct a real-world, long-term
autonomy experiment to evaluate how the sample-selection
methods perform in a setting where unexpected events can
occur, including data loss, sensor faults, etc. Even though the
proposed method is robust to a small number of outliers in the
training data set, the accuracy of the models will be affected
if the amount of erroneous data is too large. To address
this, we will also investigate methods for automated data set
maintenance, including removal of data samples that diminish
the accuracy of the models.
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