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1. Effective problem solving using 
discrete event simulation 

 

1.1 The use of models in problem solving 

 Problem owners need a good insight into their systems to be able to make 

decisions for improving or changing the systems. They gather this insight 

using models of the current systems and of possible alternatives. Any models 

that problem owners use in their process of problem solving are reduced 

representations of reality. Ackoff (1962) states that the process of problem 

solving consists of two phases. In the first phase the problem or issue 

encountered in a system is analyzed based on a model of the current system. 

This model is used to identify a variety of potential solutions to improve the 

system and thus reduce or remove the problem, or address the issue. In the 

second phase the solutions are represented by models. These models are 

evaluated and judged on a set of performance indicators identified by the 

problem owners, which are often compared to the values of the same 

performance indicators obtained by studying the model of the current system. 

The outcome of the second phase is one selected solution that is applied to 

the existing system to result in a new system that no longer presents the 

observed problem.  

 The complete process of problem solving as identified by Ackoff consists 

of six sequential steps. These six steps are (after Ackoff, 1962): 

Phase one: 

1. formulating the problem 

2. constructing the model 

3. analysis with the model 

Phase two: 

4. deriving solutions from the model 

5. analyzing solutions and selecting a solution to be implemented 

6. implementing the solution 

 The process of problem solving is aimed at finding a solution that best fits 

the requirements of the problem owners. Usually, problem owners can easily 

define a set of possible solutions for a problem, but comparing the different 

solutions is difficult due to the lack of insight into the potential results. 

Therefore, Ackoff introduces and uses models to represent the original system 

and potential solutions. The models of the different variants of the system will 

be compared by the problem owners, so they can make a decision which 

solution to implement in reality. The problem owners will judge the quality of 

solutions on performance indicators that can be obtained from their models. It 

is important within the process of problem solving that the models of the 
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problem situation and the solutions provide the same set of performance 

indicators. In practice, one model of the current situation is constructed, which 

is adjusted to analyze the alternatives. In this way the models provide the 

same performance indicators, and solutions can be compared objectively. The 

level of success of using models in problem solving can be defined by the 

ability of problem owners to base their decisions on the performance 

indicators obtained by studying the models. These performance indicators can 

be quantitative, but also qualitative judgments by the problem owner or by 

experts. 

 Identifying the best solution for a certain system requires that all solutions 

are identified and modeled. Developing models of all solutions for real-world 

problems is impossible. Simon (1969) introduces the concept of bounded 

rationality for the complex multi-actor process of problem solving, 

acknowledging the fact that it is impossible to see the complete solution 

space.   

 Models do not reflect the complete system with all its aspects, but rather 

they are an abstraction that is applied to include only those aspects of the 

system that are important for the solving of the problem. Mitroff and Sagasti 

(1973) extend Ackoff’s process of problem solving by defining the use of 

several types of models to support problem solving. The first type of models is 

the conceptual model in which the structure, concepts and boundaries of the 

system are defined. The second type of models is the empirical model. 

Empirical models are used to represent the system within the structure, 

concepts and boundaries of the conceptual model, to provide insight for the 

problem owners into that particular system configuration. Sol (1982) adds that 

a conceptual model defines the language that is used to instantiate the 

empirical models and the conceptual model defines the view that model 

developers apply to represent the system using empirical models. The 

distinction between a conceptual and an empirical model is important, 

because choices for the conceptual model might limit the scope of the 

empirical model. During the process of problem solving the conceptual model 

is used to describe the structure and concepts for all empirical models that 

represent current and possible future systems.   

 

An example of the use of different empirical models in problem solving is the 
following situation: a computer hardware factory produces boxed computers at a 
fixed interval. These boxes need to be sealed by a sealing machine. The number of 
boxes to be produced will increase in the coming year and therefore the operation 
manager of the factory foresees a problem in the sealing department. Boxes arrive 
via a conveyor belt, are sealed by a machine, continue on a conveyor belt, are 
placed on pallets after which a forklift truck delivers the pallets to the warehouse. If a 
pallet is full, a box has to wait for a new pallet. If the second conveyor is full, the 
sealing machine cannot continue. One operator moves between the two sealing 
machines, replaces pallets once a forklift moves a full pallet away, and repairs the 
sealing machines if they break down.  
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A conceptual model that abstracts the above description into the objects in the 
system and the flow of the boxes through the system is given in Figure 1.1. 
 

 

 

Figure 1.1: Conceptual model of problem system 

 

 

Figure 1.2: Empirical model of problem system; layout drawing 

Figure 1.2 shows a drawing of the system. In this empirical model several elements 
have not been modeled, for example the sensors on the conveyor belts and the 
equipment to put the sealed boxes on top of the pallet. Figure 1.3 is a model using a 
spreadsheet to calculate the expected throughput and utilization of the sealing 
machines, assuming that the factory is operating 5 days a week for 16 hours a day.  

 

Figure 1.3: Empirical model of problem system; spreadsheet calculation 

These two empirical models show the same system, but each of the models gives 
the problem owners a different type of insight into the operation of the system and 
what they can expect if they invest extensions or alternative solutions. 

 



1.2 Research scope: Problem solving support by discrete event simulation  

4 

 Figure 1.4 is a representation of the process of problem solving, derived 

from the work of Ackoff (1962), Simon (1969) and Sol (1982). This figure 

clearly shows the two phases introduced by Ackoff (1962), i.e. first analyze 

before developing models of alternative solutions. The iteration loops of 

Simon (1969) are also included in the problem solving cycle and consist of 

validating the empirical model and models of alternative solutions using a 

consistency check between alternative solutions and the conceptual model, 

and ex ante and ex post evaluations of solutions. Finally, Figure 1.4 shows 

that the analysis of the problem system is based on empirical models 

developed from a conceptual model as described by Sol (1982). A distinction 

is made in the figure between process steps that result in new models and 

steps that are performed for checking and evaluating the models or systems. 

The first type of steps are represented with uni-directional arrows, the latter 

type of steps with bi-directional arrows. 

 
Figure 1.4: Process of problem solving derived from  

Ackoff (1962), Simon (1969) and Sol (1982) 

 

1.2 Research scope: Problem solving support by discrete event 

simulation 

 The process as represented in Figure 1.4 is generic and can be supported 

by different types of conceptual and empirical models. Conceptual models 

provide the generic structure and boundaries of the system as it will be 

studied, and can for instance be represented by a set of processes and 

objects that are considered to be important to address the problem or issue. 

These can be described using e.g., text, object models and flow charts. 

Empirical models represent the system or solution and can be represented 

using many different types of models. Examples of quantitative empirical 

models are mathematical equations or spreadsheets, for example to be able 

to calculate cost and turnover of a system. These models are static 

representations of the system, showing one moment or state of the system. 
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Within this research we focus on problem solving supported by dynamic 

empirical representations of the system, and more particularly “discrete-event” 

simulation models. 

 Simulation models are models that are not just a fixed representation of 

the system at one moment in time, but rather they show the system in 

“operation” Simulation models are commonly applied in systems where static 

calculations using spreadsheets or queuing theory are insufficient. Standard 

queuing theory or spreadsheet calculations cannot be applied, and solutions 

tend to be non-linear. Simulation models allow us to show the effects of 

interactions over a time period and thus enable problem owners to gather 

insight into the dynamic aspects of their system.  

 Simulation models can be developed using different formalisms (Zeigler et 

al, 2000; Vangheluwe and Vansteenkiste, 1997). The most common types of 

formalisms are continuous simulation and discrete event simulation. In 

continuous simulation the state changes of the system are calculated by 

solving a set of differential equations over time. In discrete event simulation 

the state changes of the system take place at fixed moments in time. 

 

A simulation model of the sealing department of the computer factory will 
provide additional insights into the system that did not appear in the models of 
Figure 1.2 or Figure 1.3. If the forklift is delivering the pallet, the conveyor belt 
and the sealing machine might have to halt. At the same moment an operator 
could be working on a breakdown at the second sealing machine. Figure 1.5 
is a drawing of a possible state of the system at a random moment during the 
week. The static empirical models of Figure 1.2 or Figure 1.3 do not give any 
insight into these possible states of the system. Depending on the distance 
the forklift has to travel or the breakdown interval of the machines this 
particular state could occur frequently and thus the performance of the factory 
will not be as high as concluded based on the spreadsheet model of this 
system.  

Stoppage due to lack
of pallet space

Stoppage due to lack
of conveyor space

Forklift left for
delivery of pallet

Out of order,
operator repairs  

Figure 1.5: Empirical model of problem system; possible state during 
operation 

Applying simulation models in problem solving will improve the insight of the 
problem owners into the system, but it might also lead to an evaluation of 
more alternative solutions. For example, after having seen a run of the 
simulation model, the travel distance of the forklift becomes important as well 
as the breakdown interval of the machines. New solutions can include new 
layouts, more buffer spaces between the machines and the pallets, and the 
allocation of priorities to the operator. 
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 Discrete event simulation enables model developers to represent the 

behavior of a system and its elements over time, to include randomness and 

variance, and to calculate performance indicators that take into account the 

effect of time and variance. The suitability of discrete event simulation in 

problem solving can be summarized as follows (Shannon, 1975; Law and 

Kelton, 1999; Banks, 1999; Kelton et al, 2003). Discrete event simulation 

provides us with: 

• the ability to explicitly model the dynamic behavior of a system over 

time, and thereby gaining insights into the way the system functions; 

• the ability to obtain quantitative results from running the simulation 

model, both for the current situation and for potential future situations; 

• the ability to visualize a system during its operation to observe 

bottlenecks or shortcomings; 

• the ability to visualize the effects of different courses of actions for a 

system by observing adjusted operations; 

• the ability to imitate a system even though the data is incomplete; 

imitation is achieved by a reduction in complexity or by using 

assumptions with regards to data; 

• the ability to communicate the working of the system to different actors 

involved; 

• the ability to include stochastic effects in the models and in the 

calculated performance indicators. 

 

1.3 Elements of a discrete event simulation model 

The models presented in the example of the computer factory are empirical 

models that are based on an abstraction of reality. This abstraction excludes 

certain types of equipment, such as the sensors at the conveyor belt. In 

dynamic models, like simulation models, the processes in the system are an 

important part of the model. Also, not all processes that can be identified in 

reality will be included in the models; some of these processes will be left out 

(abstraction) or simplified, which is called reduction in simulation modeling. 

One of the processes for which reduction was applied in the simulation model 

is the coffee break of the operator, another is the process of feeding the seal 

machine with new tape. 

 The abstractions that apply to empirical models, both the abstraction in 

scope or equipment and the abstraction in processes, are described in the 

conceptual models. A conceptual model describes how the system will be 

represented and what parts of the system will be left out of the simulation 

study. In the conceptual model the system is often divided into smaller parts 

that have relations and together represent the complete system. We follow 

Flood and Carson (1988) who define a system as “an assembly of elements 

related in an organized whole” (p7). According to Flood and Carson an 

“element may be anything that is discernible by a noun or a noun phrase that 
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all informed observers would agree exists” (p7). The “organized whole” 

contains a set of relations that these entities have with each other (Sol, 1982). 

The relations can be static dependencies or dynamic interactions which affect 

the behavior of the system. The different elements in a system will be 

identified by decomposition of the system. 

 In so-called discrete-event simulation that provides a representation a 

system with a focus on the logical and physical flows, the processes and the 

elements are instantiated in a simulation model to represent the system 

dynamically. The descriptions of the elements and the processes in a 

simulation model are static, until the processes are triggered and executed. 

The simulation model will take its dynamic behavior from the system in a 

simulation environment. A simulation environment is a set of one or more 

applications that support the model developer in instantiating a simulation 

model to represent a system and to execute the processes for a defined time 

frame (Nance, 1993). A simulation environment will control the clock in the 

simulation model and trigger events as discrete scheduled events for the 

duration of the simulation experiment. 

 

Figure 1.6 shows a static representation of the processes of the simulation of 
the sealing department at a computer factory. This simulation model was 
developed in the simulation environment Arena which provides a flow chart 
approach to describe the processes in the system. During a simulation run, 
the model will show the state of the system at exact moments in time, for 
example the number underneath the first process “Transport via conveyor to 
machine” will show the number of boxes present in that process.  

 

 

Figure 1.6: Representation of empirical model for processes of problem 
system in simulation environment Arena 

Figure 1.7 shows a static representation of the elements in the system. In the 
top of the figure there is a picture of the equipment, at the bottom a definition 
of the elements with their capacity and the failures that apply to the seal 
machines. During execution of the simulation model the top of the figure will 
be comparable to Figure 1.5 and thus represent the exact state of the system 
at a discrete event.  
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Figure 1.7: Representation of empirical model for elements of problem 
system in simulation environment Arena 

At the end of the simulation run, statistics can be gathered comparable to the 
spreadsheet of Figure 1.3. The difference is that the pure spreadsheet data is 
a calculated prediction which does not include stoppages, breakdowns or 
blockages. All these system characteristics that can influence the outcome 
are, however, reflected in the calculated performance indicators after running 
the simulation model. 

 

Figure 1.6 and Figure 1.7 are screen dumps of a simulation model developed 

in the simulation environment Arena (Bapat and Sturrock; 2003). Examples of 

other popular discrete event simulation environments are eM-Plant (Heinicke 

and Hickman; 2000), Witness (Mehta; 1999), Promodel (Harrell and Price; 

2003), Enterprise Dynamics (Britals, 2008) and Automod (Rohrer, 2003). 

These simulation environments are generic and can be applied in many 

domains. We will refer to these as generic simulation environments. 

 The simulation environments provide certain elements to compose a 

simulation model. All simulation environments use different names to refer to 

these elements. For example, Arena and Witness use “modules”, eM-Plants 

uses “objects”, Enterprise Dynamics uses “atoms” and Automod and 

Promodel use “elements”. We will refer to these elements in a simulation 

environment as model constructs, these are the elements in a simulation 

environment that are used to compose a simulation model.  

  Model constructs are instantiated in the simulation model to represent 

elements of the system. An element of the conceptual model can be defined 

by one or more model constructs. The model constructs in the generic 

simulation environments provide generic representations of system elements, 

thus in most cases the elements that are defined in the conceptual model will 

be represented by a collection of model constructs that together provide a 

valid representation of the element in the real system (Birtwistle, 1979; 

Pegden et al, 1990; Balci and Nance, 1992; Banks, 2000). Each model 
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construct can be parameterized in a certain way, and thus two instances of a 

model construct can represent different system elements with (slightly) 

different properties or behavior.  

 

1.4 Applying discrete event simulation models for problem solving 

In this research, we follow Shannon (1975) with regard to his definition of the 

process of using simulation models in problem solving: “the process of 

designing a model of a concrete system and conducting experiments with this 

model in order to understand the behaviour of a concrete system and/or to 

evaluate various strategies for the operation of the system.” (p.2). 

 Discrete event simulation studies follow the process of problem solving as 

it is described in Figure 1.4. Figure 1.8 is a specification for problem solving 

using discrete event simulation environments based on the process 

descriptions of Shannon (1975), Banks (1999) and Kelton et al (2003). This 

process is a more detailed description than the one given in Figure 1.4 and 

pays more attention to the development of conceptual and simulation models 

and the analyses that are performed with the simulation models. Following 

Ackoff, the process of performing a simulation study to support problem 

solving can also be separated into two phases. The first phase, above the 

dotted line in Figure 1.8, provides an analysis to the problem system using a 

valid model of the problem system, and the second phase, below the dotted 

line in Figure 1.8, evaluates solutions using simulation models of alternative 

systems.  

 The conceptualization process resulting in a conceptual model as shown in 

Figure 1.4 is performed for a simulation study in three process steps as shown 

in Figure 1.8: “Problem description”, “Define conceptual model” and “Select 

model constructs to represent system elements”. The conceptual model 

contains a clear boundary with the model environment to limit the need for 

quantitative data for the empirical model. Of course the boundaries should be 

so wide that the problem can be solved with the simulation study, but not 

much wider. The result of this process step is a structured overview of 

elements and processes of the system that will be included in the simulation 

model to be developed. This overview uses the terminology of the domain to 

enable the problem owner to understand the way the model developer has 

abstracted knowledge from the system. Model developers will make choices 

as to how to represent the system elements with model constructs depending 

on their knowledge of the simulation environment, their affinity with the 

problem domain and the input of the problem owner. The element definitions 

in the terminology of the domain are translated to the applicable model 

constructs of the generic simulation environment in the next process step, 

which is part of the so-called specification of the simulation model. 
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Problem
description

Define conceptual
model

Select model

constructs to
represent system

elements

Instantiate

simulation model
for problem

system

Verify and validate

simulation model
for problem

system

Data
problem

system

Analyse outcome
of simulation

model

Simulation
model verified &

validated?

No, simulation model outcome not valid

Define solution for
analysed outcome

Instantiate
simulation model

for identified

solution

Yes, outcome simulation
model is comparable to

problem system

Data

solution

system

Verify and validate
simulation model

for identified

solution

Analyse outcome
of simulation

model for

identified solution

Simulation
model verified &

validated?

Problem owner

gathered sufficient

insight?

No, simulation model outcome not valid

Yes, outcome simulation

model is understandable

No, Problem owner requests
more insight, thus more

solution systems  
Figure 1.8: Process of a simulation study based on process descriptions 

of Shannon (1975), Banks (1999) and Kelton et al (2003) 

 The simulation model can be instantiated based on data gathered from the 

system and its elements using model constructs, therefore the incoming 

information “data problem system” at the top of Figure 1.8. The instantiation of 

the simulation model should be a straightforward process, because all the 

thinking and defining activities have been performed for the development of 

the conceptual models. The process of instantiating is thus the 

parameterization of the model constructs. 

 Verification of a simulation model is an activity in which the conceptual 

model is compared with its representation provided by a simulation model. 

Model developers evaluate whether the model has been derived correctly 

from the conceptual model during the verification process step. This process 

step enables modelers to find programming or parameterization errors made 

during model development.  

 During validation in a simulation study, the simulation model is compared 

with the real system to see whether the simulation model is a valid 

representation of the system. Significant differences in the outcome or 

behavior of the simulation model, or expectations of the problem owners that 

have not been met, hint at errors of the model developer in the translation of 
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the system to the simulation environment or to inconsistencies or flaws in data 

used to instantiate the simulation model. 

 The process “Analyze outcome of simulation model” prepares for the 

design of alternative solutions, and it triggers the process “Define solution for 

analyzed outcome” to try to find alternatives for the system to overcome or 

reduce the observed issues.  

 The identified solution should then be instantiated in the simulation model 

to enable further analysis and a (statistical) comparison between the original 

model and the solution. From Figure 1.4 it can be seen that the models of the 

solution systems are usually based on the same conceptual model. The 

process step “Instantiate simulation model for identified solution” will therefore 

result in a simulation model that can be compared to the original simulation 

model. The simulation model of the solution system can be a brand new 

simulation model, but most often the solution model will be based on the 

original simulation model, and it only includes some additional or different 

model constructs or it even contains the same model constructs but with 

different parameter values. 

 After the simulation model of the solution has been verified the problem 

owner can use the outcome to gather insight and judge the effects of the 

proposed solution. Once sufficient insight is gathered the simulation study will 

be finished. Otherwise more solutions for the problem might be defined so 

these can be evaluated using simulation models, until the problem owner has 

gathered the insight necessary for the process of problem solving. 

 

1.5 Common challenges in simulation studies 

 Even though there are clearly advantages and benefits of using simulation 

models, many problem owners are not fully satisfied with the simulation 

studies (Robinson and Pidd, 1998). These problem owners cannot base their 

decisions on the outcome of the simulation study. Effectiveness of a 

simulation study is roughly defined as the closeness of the gathered insight 

and required insight of the problem owner. The gathered insight is all of the 

insight the problem owner gained during the simulation study regarding the 

problem system and possible solutions. The required insight is the insight that 

the problem owner, before the study, expected to gain using the simulation 

study to be able to successfully perform the process of problem solving and 

solution selection. A small gap between the provided insight and the required 

insight means an effective simulation study. Law and McComas (1989) state 

that problem owners often do not know what to expect from a simulation 

study, so in these simulation studies it is difficult to determine the required 

insight of the problem owner. Nevertheless effectiveness of a simulation study 

can be evaluated by interviewing the problem owners and identifying whether 

the gathered insight was sufficient to satisfy their needs. 
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 Robinson and Pidd (1998) carried out interviews among providers and 

users of simulation models. They conclude that the main reason for not using 

discrete event simulation models in problem solving is uncertainty as to 

whether the investment into developing a simulation model and gathering 

valid data will result in enough “added value” for the problem owners. Often 

problem owners find out that the effort they have spent on the simulation 

study, both in time and money, does not result in the insights they need to 

support their process of problem solving.  

 Problem owners gain most insight from an analysis of the performed 

simulation experiments of solution systems. If a problem owner encounters 

insufficient insight at the end of a simulation study, then this is mostly a result 

of insufficient analysis of possible solutions. The problem owners claim a lack 

of experiments, a lack of performance indicators and a lack of trust that the 

simulation model represents their problem correctly. Insufficient results 

presented to the problem owner is caused by projects that are finished before 

the problem owner captures the insight. Many internal and external factors 

cause simulation studies to be finished before the problem owners are 

completely satisfied. The available budget, expectations of the problem 

owners and operating as a team are common causes for failure in many 

technical projects, including simulation studies. Robinson and Pidd (1998) 

observed three reasons why problem owners perceive a gap between the 

required insight and the gained insight, i.e. ineffective simulation studies. 

One, difficulties to handle the unlimited freedom in modeling by 

model developer: the generic simulation environments offer, with their 

generic model constructs, a lot of freedom how a model developer represents 

a system. The model developer has to select the model constructs that can be 

used to represent a system, and configure and combine these model 

constructs in such a way that the system is correctly modeled. A small part of 

the system will be modeled by a large number of many generic model 

constructs. The model developer will make multiple decisions and perform a 

lot of actions until the model is as he envisions the best representation of the 

system. Mistakes can be made in every decision and every action performed. 

Further, a minor change to the problem system may require remodeling 

several system elements, using generic model constructs in an alternative 

way. 

Two, model developers need to be experts in multiple areas: model 

developers should be multifunctional persons. In each of the activities 

mentioned in Figure 1.8 the model developer needs to apply a different 

technical skill, ranging from conceptualization to computer engineering and 

from database knowledge for data generation to statistics for output analysis. 

Further, the model developer needs to be an advanced consultant who can 

explain to the problem owner the scope of the simulation study and extract 

from the problem owner all kinds of system specific characteristics. Finally, 
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the model developer needs to be an expert on the domain to be able to speak 

the language of the problem owner. The basic skills can be learned at 

university, but the diversity of the model development work requires training 

and experience. Skills commonly found to be lacking in model developers are 

those dealing with statistics, conceptual modeling and implementation skills 

(Law and McComas, 1989; Keller et al, 1991; Sadowski and Grabau, 2000). 

Insufficient statistical skills cause model developers generate incorrect 

outcome or make ungrounded conclusions. Conceptual modeling is difficult for 

model developers who are not an expert in the problem system. Setting 

boundaries to the system requires insight and experience in a problem 

system. Implementation skills are required to make a valid translation to 

model constructs. System elements can be instantiated in simulation models 

in different ways and using a certain translation can limit the experiments that 

can be performed or require system functionality to be added. 

Three, model developers do not speak the language of the problem 

owner: the problem owner and model developer defined in the conceptual 

models the scope of the simulation study. The model developer cannot be the 

person who knows everything about the system, especially at the start of the 

simulation study, therefore he depends heavily on the information provided by 

the problem owner. The model developer often has the intention to generalize 

the system elements to the model constructs available in the simulation 

environment he is working with. The conceptual models will then be 

composed out of generic objects as a “resource” or a “queue” while the 

problem owner speaks in words such as “forklift” and “high-speed stack 

crane”. The ‘language mismatch’ applies to all activities in the simulation 

study, but mainly to the initial scope of the problem system. Misinterpretation 

will lead in later activities to rework and extension of the scope. Fixing the 

issues caused by the ‘language mismatch’ will consume a lot of time, and can 

result in the fact that one or more of the solution systems cannot be modeled 

during the time allowed for the simulation study. When some experiments 

cannot be performed, the problem owner cannot achieve the insight 

requested.  

 The three causes of the perceived gap between required insight and 

achieved insight using simulation models discussed above often make it often 

difficult for the model developers to adjust a simulation model for a solution 

system (Robinson and Pidd, 1998). If simulation environments were less 

generic, model developers would have less modeling freedom. The generality 

of these simulation environments is seen as a strength by advanced model 

developers (Robinson and Pidd, 1998). Advanced model developers are fully 

aware of the generic simulation environment and like the generality, because 

this allows them to model a system exactly according to their preferences.  

 Less advanced model developers do not need full control and full power 

over the way they represent a system in a simulation model. These less 
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advanced model developers have difficulties with the large gap between the 

conceptual model of a problem system and the model constructs of generic 

simulation environments. The large gap requires the translations of elements 

of conceptual models into a combination of model constructs. Model 

developers would not have this problem if the model constructs of the 

simulation environment were more specific. Instead of instantiating a 

simulation model from model constructs like a resource or a queue the model 

developers should be able to instantiate a model from problem domain 

specific model constructs. As a result the translation from concept to model 

construct will be less difficult and the model developer will be able to adjust 

the simulation model more easily to run additional experiments to satisfy the 

problem owner. 

 

1.6 Domain specific extensions to enable model adjustability 

 Model developers would be better supported if they could instantiate their 

simulation models using domain specific model constructs, for example a 

doctor with his skills and specific statistics rather than a default resource. The 

model developer would even be better supported with a complete set of model 

constructs for his/her domain. This would be a dedicated set of model 

constructs for problem domains with model constructs only for sub-systems of 

the specific domain. Examples of sets of model constructs specifically 

designed for a domain are model constructs to simulate train networks that 

implement domain specific elements such as rails and stations and model 

constructs to simulate ship movements in harbors using model constructs to 

represent water canals and locks (Pater and Teunisse, 1997). 

 The sets of specific model constructs that Pater and Teunisse (1997) refer 

to are extensions of a generic simulation environment. In this research an 

extension of a generic simulation environment for a specific domain is called a 

“domain specific extension of a simulation environment” abbreviated to 

“domain specific extension”. A domain specific extension restricts model 

developers to implementing simulation models of a specific domain, based on 

a conceptual model of that domain. The domain specific extension consists of 

model constructs that can be directly derived from the elements of the 

conceptual model. A model developer no longer needs to make a translation 

from the conceptual elements to the model constructs and the model 

developer also does not have to compose several model constructs to 

represent one system element.  

 The domain specific model constructs enable the model developer to 

instantiate the simulation model more easily. The parameterization of the 

model constructs enables the model developer to make changes to the 

simulation model to represent solution systems. A domain specific extension 

reduces the freedom of the model developer, but the advanced model 
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constructs also reduce the complexity of the instantiation of a simulation 

model. Adhering to Kasputis and Ng (2000), it is believed that these 

reductions enable less advanced model developers to make valid simulation 

models of the problem system in a shorter time span.  

 Problem owners gather insight by analyzing the outcome of simulation 

experiments, viewing animation or evaluating input parameters of model 

constructs. The focus of the research presented here is the effect of domain 

specific extensions for simulation environments in a simulation study. If 

problem owners gather more insight into the problem and solution systems 

without extending the duration of a simulation study, then the simulation study 

is more effective. Faster development of a valid simulation model that is easily 

adjusted to support for analysis of solution systems will increase the insight a 

problem owner gains during the simulation study. The problem owner will 

better understand the outcome of the simulation model and more solution 

systems will be analyzed. As a result the effectiveness of a simulation study 

performed using a domain specific extension will be higher than the 

effectiveness of a similar study performed using a generic simulation 

environment.  

 Domain specific extensions seem to be the best way of performing a 

simulation study and of providing effective support to problem owners. 

Nevertheless, a lot of model developers prefer to use generic model 

constructs, instead of domain specific model constructs in the same 

simulation environment. One remark often made is that domain specific model 

constructs can only be applied in limited situations, because the model 

constructs limit the flexibility of the model developer (Sol, 1982; Page and 

Opper, 1999; Kasputis and Ng, 2000; Barton et al, 2003; Diamond et al, 

2003). 

 

1.7 Research questions and approach 

 This research is based on the assumption that simulation studies where 

the challenges defined by Pitt and Robinson have been overcome are more 

effective than traditional simulation studies, and that the use of domain 

specific extensions in a simulation study will help to overcome these 

challenges. The larger effectiveness of the simulation study using the domain 

specific extensions is expected to result from better insight into the behavior of 

the system and possible solutions. This insight will be mainly gathered by 

analyzing the behavior and outcome of different simulation models.  

 The central research question is therefore: 

How can domain specific extensions for a simulation 

environment improve the effectiveness of simulation 

studies? 
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 Simulation studies are performed in all kinds of organizations to answer a 

wide variety of questions. Often the success of a simulation study depends on 

the political situation within an organization and the priority the project 

receives from the involved stakeholders (Robinson and Pidd, 1998). The 

focus of this research is not the success of simulation studies and the results 

of a simulation study, for example dollars saved or production process 

improvements. The focus of this research is how to enable model developers 

to better support problem owners with a simulation study that uses domain 

specific extension for simulation environments. Hereby the three causes of 

Robinson and Pidd (1998) are leading to generic attention areas: handle 

unlimited modeling freedom, model developers need to cover multiple 

expertises and language mismatch needs to be resolved. 

 The idea of domain specific extensions is not totally new and it has been 

applied in several studies. However, the reported low percentage of success 

has not convinced the community of simulation model developers to adapt the 

approach of domain specific extensions to its current best practice. The best 

practice consists mainly of some technical features in the common of the shelf 

simulation environments. The model developers require more support to 

ensure they can execute a simulation study using domain specific extensions. 

The development of these extensions requires the multidisciplinary of the 

model developer to the extreme to ensure a usable extension for a simulation 

environment is available. Therefore this research aims to deliver support for 

the development of domain specific extensions for simulation environments 

that can be applied for successful simulation studies.  

 The use of the solution in development of the domain specific extensions 

should enable model developers to perform their simulation studies in the 

environment they are accustomed to, it should make the process steps they 

have to perform simpler and it should enable the model developers to extend 

the use of simulation models in a specific domain. The verification of these 

possible increased effects of the use of domain specific extension for 

simulation environments results in research questions around the ability to 

define a generic solution that is applicable in different common of the shelf 

simulation environments, ability to improve the process of performing a 

simulation study and the ability to reuse the domain specific extension beyond 

the initial simulation study in a domain. 

Research question 2A relates to the difficulties to handle the unlimited 

freedom in modeling by model developer: 

What constructs and design approach will enable that 

domain specific extensions can be defined independent of 

the generic simulation environment in such a way that the 

model developer is supported, but not limited to one way of 

representing a system element? 
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Research question 2B relates to the challenge that model developers need to 

be experts in multiple areas:  

What methodologies, approaches and techniques can be 

offered to a model developer to support the use of domain 

specific extensions in the activities of a simulation study? 

Research question 2C relates to the challenge that model developers do not 

speak the language of the problem owner: 

How can be ensured that the domain specific extension 

gets the model developer closer to the language of the 

problem owner? 

 The starting point for answering the research questions will be the current 

state of expertise in the field of discrete event simulation. This will be a 

mixture of the latest state of simulation research as published at conferences 

and what commercial parties offer in simulation environments and in their 

consultancy best practices. We follow Cresswell (2003) who suggests to use 

case studies as these are research instruments to “explore in depth a 

program, an event, an activity, a process, or one or more individuals” (p15). 

Figure 1.9 demonstrates how this starting point for our research and the use 

of case studies reflects within the inductive research approach described by 

Sol (1982).  

 
Figure 1.9: Research approach following Sol (1982) 

 The next step is that we apply the knowledge in case studies with real 

problem owners for qualitative analysis and set up a laboratory experiment 

with a fictive simulation study for a quantitative analysis as part of “Use of 

domain specific extensions” in Figure 1.9. The combination of the two sets of 

studies will cover the disadvantages that both types of studies carry (Yin, 

2003; Cresswell 2003). The disadvantage of the qualitative analysis is that 

comparison of the simulation study in a traditional way is not possible. The 

disadvantage of the laboratory settings will be that no real problem owner can 
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participate and thus the difficulty of communicating, interpretation and 

resolving the conflicts can not be part of the observations.  

The observations of the simulation studies and the quantitative analysis 

will be used to refine theory. This refining will be done in several steps, 

initially by translating the observations to benefits and risks for domain 

specific extensions, followed by the definition of requirements for domain 

specific extensions that will enable mitigating the risks and enlarging the 

observed benefits. With all gathered knowledge and experiences we will then 

construct a theory to support development for domain specific extensions. 

We follow Yin (2003) who introduces case study as 1) the research 

element to cover empirical inquiries in their environment when the contextual 

conditions cannot be deliberately divorced from the research topic and 2) the 

case study will deliver more than data points, but will be used to refine the 

theory and thus the use of case studies is a comprehensive research 

strategy. The case studies will all cover the global research question, and all 

individual focus on one of the three sub questions: handle unlimited freedom; 

support use of domain specific extensions; bridge the gap with the language 

of the problem owner. In that way we can evaluate whether the theory that we 

define answers the sub research questions and achieves the overall objective 

to make simulation studies more effective. 

 

1.8 Outline of the research 

 The research starts with an analysis of existing domain specific extensions 

for simulation environments (chapter 2). The knowledge gathered from this 

analysis will be applied as basis for participative case studies (Yin, 2003) in 

which domain specific extensions will be developed and used to support 

problem owners, in their specific domains, and with their specific processes of 

problem solving (chapter 3). These case studies are expected to confirm the 

encountered pitfalls and perceived disadvantage of using a domain specific 

extension that limit model developers in developing simulation models.  

 Secondly, several laboratory experiments will be performed to compare the 

use of a generic simulation environment with a domain specific extension 

(chapter 4). It is expected that these experiments will show that a domain 

specific extension has advantages over a generic simulation environment. It is 

also expected that using domain specific extensions in this manner will 

highlight the disadvantages that model developers encounter when using a 

domain specific extension for the first time. Observation and surveys of 

participants in the laboratory experiments and the case studies will be used to 

provide an overview of advantages that can be achieved and of 

disadvantages that restrict and prevent model developers from achieving all 

the possible benefits of using a domain specific extension. The outcome of the 

laboratory experiment and case studies will be used to define a new concept 
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and guidelines for domain specific extensions for simulation environments 

(chapter 5). 

 This new concept and guidelines will be applied to develop new domain 

specific extensions and these environments will be used in simulation studies 

in different domains. All three simulation studies described in chapter 6, 7 and 

8 will be used to show the applicability of the concepts and guidelines of 

domain specific extensions for simulation environments. In addition each of 

the simulation studies focuses on one of the research questions of research 

challenge 2. In chapter 6 it will be evaluated whether several simulation 

environments can be used for the same domain specific extension for supply 

chains. In chapter 7 a management game of a container terminal design will 

be supported by automatic tools to verify whether the model developers can 

be supported in the simulation study process and in chapter 8 the same 

domain specific extension for simulation environments will be applied to a 

wide range of simulation studies at Nestlé production facilities. 

 The findings of the simulation studies in chapter 6, 7 and 8 are combined 

in chapter 9 to identify whether the solution for domain specific extensions for 

simulation environments is feasible. Specifically this chapter will provide 

feedback to the requirements for a solution identified in the beginning of 

chapter 5. This will lead to answer of the research question and research 

challenges. 

 

 
Figure 1.10: Outline of thesis 
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2 Domain specific extensions of simulation 

environments 

2.1 Domain Specific Extensions; definitions and terminology 

 Domain specific extensions of simulation environments have existed for 

several years (Pater and Teunisse, 1997; Baker, 1997). A domain specific 

extension consists of model constructs that represent a system element of the 

targeted domain. Model constructs are elements in a simulation environment 

or simulation language that represent a part of the system, and that can be 

instantiated and parameterized in a simulation model for specific use. Model 

constructs are domain specific if they are a member of a set that is meant to 

build simulation models for a specific problem domain. The choice whether a 

set of model constructs is indeed specific for a certain domain is quite 

arbitrary and can ultimately only be decided by the simulation model 

developer. Thus a set of model constructs can be domain specific to one 

person, while another model developer in the same domain might not be able 

to instantiate  certain elements based on the set of model constructs 

successfully for a simulation study in that domain.  

 A simulation model will be instantiated according to the system 

abstractions as defined in the conceptual models. Shannon (1975) defined 

several activities as part of a simulation study, e.g. conduct experiments, 

understand the current system, and evaluate strategies for alternative 

systems. These activities are carried out using a simulation environment. A 

simulation environment is a (set of) computer application(s) that enables 

modellers to specify a simulation model and conduct experiments with the 

simulation model. A simulation environment uses a certain simulation 

language and a simulation formalism to enable the modeler to instantiate the 

simulation model. The notion of a simulation formalism points to the formal 

meta-model in which a broad class of models can be described (Zeigler et al 

2000; Vangheluwe and De Lara, 2002). Popular formalisms are DESS 

(Differential Equation System Specification, Zeigler et al 2000) for continuous 

modeling and DEVS (Discrete Event System Specification, Zeigler et al 2000)  

for discrete-event modeling. Formalisms that build on DESS are e.g., 

differential equations, System Dynamics (Forrester, 1999), and Bond Graphs 

(Cellier, 1992). Extensions of DEVS are e.g., the process interaction 

formalism (Nance, 1993) and the event scheduling formalism. In simulation 

environments, these meta-models are made more specific by providing a 

simulation language that builds on the simulation formalism, and that 

provides a set of model constructs to the modeler. Many of these simulation 

languages are programming languages, early examples are SIMULA (Dahl 

and Nygaard, 1966) with DEMOS (Birtwistle, 1979), GPSS (Schriber, 1974), 
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SIMAN (Pegden, 1990), and Simscript II (Kiviat, 1966). A good overview is 

provided in Nance (1993). With the increased power of computers and 

graphics, and to avoid programming, graphical modeling environments were 

created for simulation on top of the simulation languages. These are also 

referred to as drag-and-drop environments or grab-and-glue environments 

(Paul, 2002; Eldabi et al., 2003). Many of the popular general-purpose 

simulation environments are of this type. Swain (2007) lists over 50 

commercial simulation environments. Rockwell Automation (2007) provides 

an overview of the most mentioned commercial simulation environments at 

the WSC conference of 2006. These include the simulation environments that 

will be discussed in this thesis: Arena (Kelton, Sadowski, and Sadowski, 2002; 

Bapat and Sturrock, 2003), ProModel (Harrell and Price, 2003), AutoMod 

(Rohrer, 2003), Extend (Krahl, 2003), SIMUL8 (Haige and Paige, 2004), eM-

Plant and its predecessor Simple++ (Kalasky and Levasseur, 1997), and 

Enterprise Dynamics (Britals, 2008). Even the Java-based AnyLogic 

simulation environment (XJ Technologies, 2005) uses the drag-and-drop 

metaphor to enable users to create their simulation models. The library of 

components in these general purpose simulation environments from which the 

simulation model is assembled contains the model constructs. We refer to 

these basic model constructs as “generic”, because the developers of the 

simulation environments aim at generic use so that all kinds of systems can 

be represented with the model constructs. Almost all simulation environments 

allow users to develop extensions to their generic model constructs (Valentin 

and Verbraeck, 2007). In this context we define an extension as a coherent 

set of model constructs aimed to represent a system or systems in a particular 

domain. 

 How a simulation study is carried out was shown in figure 1.8. The first 

steps are to define the conceptual model, select the model constructs and to 

instantiate the simulation model in the chosen simulation environment. 

Conceptual modeling involves abstraction of the system into generic 

classes of elements instead of a full listing of the element instances. As Van 

Gigch (1991, p. 19) states it: “In the usual sense to abstract means to isolate 

certain characteristics from others. It also refers to an action of the mind, a 

mode of inquiry which seeks to generalize (i.e., to consider lower-level 

statements from a metalevel perspective and to extract their common 

features).” In the process of defining the conceptual model, the model 

developer decomposes the system into system elements. Decomposition of 

a system is to separate the system into smaller elements that contain a 

coherent part of the functionalities of the system with their relations. As Sage 

and Armstrong (2000, p.7) state it: “Because large-scale systems are 

inherently complex in the sense of being comprised of many subsystems, 

systems often can be better understood by organizing their parts into groups 

based on function or some other organizing principle. Often systems are 



  2 Domain specific extensions of simulation environments 

   23  

organized into hierarchies”. The first step is to decompose the system into 

system elements. The second step is a translation of the system elements to 

the model constructs of the simulation environment, i.e. selecting the suitable 

model constructs to represent each individual system element and their 

relations. The final step is to compose the simulation model from the selected 

model constructs. Composition of a simulation model is to combine several 

model constructs to represent the system elements and, ultimately, the entire 

system under consideration. The composition of the model constructs will also 

enforce the relations between the system elements to be included in the 

simulation model. In most simulation environments, this is the “glue” part of 

the grab-and-glue approach (Eldabi et al 2003; Eldabi et al 2004). The 

decomposition and composition steps to develop a simulation model are 

shown in Figure 2.1. This figure also shows that the simulation model is 

composed from a selection of the available model constructs. A limited 

number of the model constructs that are part of the simulation environment is 

often sufficient to compose the simulation model to represent the system.  

 
Figure 2.1: Decomposition of a system and composition of a  

simulation model 
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Figure 2.2: Decomposition of a system and composition of a  
simulation model using domain specific model constructs 

 Domain specific model constructs are developed by assembling one or 

more model constructs of the generic simulation environment. Each model 

construct of a domain specific extension is based on a composition of model 

constructs of the generic simulation environment. The selection of model 

constructs to represent the system elements is now a different process, 

because the set of model constructs is different. Figure 2.2 shows how a 



  2 Domain specific extensions of simulation environments 

   25  

model developer can now select directly from the domain specific model 

constructs. Figure 2.3 and Figure 2.4 show the different ways of representing 

a system element in a simulation model using the example from the previous 

chapter. 

 There are several other differences between the generic and domain 

specific model constructs besides the hidden complexity. In Figure 2.3 the 

low-level process flow is shown in terms of the generic model environment 

(create, process, dispose), not in terms of something a problem owner would 

understand. In Figure 2.4 an icon is used of an operator with a tool as a 

representation, which can be much easier understood by a stakeholder in the 

problem domain. This visualization enables the model developer to assess the 

structure of the simulation model more quickly, and the problem owner will 

directly recognize the system element.  

 Another important difference between the model with the generic and 

domain specific model construct is the ability to make changes to the 

representation of the system element. When using generic model constructs, 

a different parameterization of the system element, for example a shorter 

processing time, might require changes in several of the generic model 

constructs that are used to represent the system element. The model 

developer also needs to know in which of the model constructs to make the 

change for the correct parameterization. When using domain specific model 

constructs, however, parameters are displayed only once and recognizable 

(non simulation-specific) terms can be used. Finally, the generic model 

constructs have parameters that are not applicable for the representation of 

the system element. All these additional parameters might confuse model 

developers and complicate the process of instantiating the simulation model. 

In the model constructs of a domain specific extension, only those parameters 

are shown that are expected to be changed by the modeler. 

The system of the sealing department, introduced in the previous chapter, 
includes the handling of breakdowns of the sealing machines. Figure 2.3 and 
Figure 2.4 are both a part of the simulation model representing the system 
element “Breakdown process”. In Figure 2.3 the system element is 
instantiated using three different model constructs of the generic simulation 
environment Arena. In Figure 2.4 the same system element is instantiated 
using one domain specific model construct of a domain specific extension for 
modelling of factories. 

 

Figure 2.3: Implementation of system element “Breakdown process” 
using generic model constructs “create”, “process” and “dispose” 
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The domain specific extension for computer factories extends the generic 

simulation environment Arena. The model construct “Breakdown process” 

uses, internally, the same generic model constructs as shown in Figure 2.3. 

The generic model constructs shown in the circle in Figure 2.4 are used to 

compose the domain specific model construct “Breakdown process” by the 

developer of the domain specific extension “Computer Factory”. In this case, 

the two ways of representing the system element will thus result in exactly the 

same output of the simulation model. 

 

Figure 2.4: Implementation of system element “Breakdown process” 
using one domain specific model construct, which automatically 

instantiates all required generic model constructs 

 

2.2 Representation of system elements in a domain specific extension 

2.2.1 Decomposition, abstraction, and generalization 

 The model constructs of a domain specific extension are representations 

of system elements in a domain. In order to make the extensions applicable in 

multiple simulation studies, the system elements that are represented in a 

domain specific extension should not be the result of decomposing and 

abstracting only one system. In a simulation study that uses a generic 

simulation environment, the particular system that is studied is decomposed, 

identifying individual instances of parts in the system (see top part of Figure 

2.5). In Figure 2.5, a further abstraction results in the following set of system 

elements: hexagon, cross, ellipse, square and circle (bottom of Figure 2.5).  

 The set of system elements identified in different systems within the same 

domain can vary. In Figure 2.6 (top), the decomposition of three systems 

results in 15 different system elements. A closer look at these 15 system 

elements shows us that they are not completely different. For example, the 

decomposition resulted in three system elements that appear to be triangles. 

The differences between these three systems elements, in addition to size 

and position that had already been turned into properties, is the rotation. The 

system elements with commonalities, e.g. the three triangles, can be further 

generalized to one system element that can be configured via parameters. In 

abstraction and generalization commonalities are identified in different system 
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elements to allow these different system elements to be represented by one 

system element. We reserve the term abstraction to the process of 

identifying the system elements based on a set of instances. In object 

orientation, this process is equivalent to defining object classes. We use the 

term generalization to the process of reducing the set of system elements 

further by further parameterization of system element properties. This is 

equivalent to defining superclasses in object orientation and applying the 

inheritance relation. The result of the generalization process depends on the 

trade-offs made by the modeler between many system elements with a few 

parameters versus few system elements with many parameters.  

 
Figure 2.5: System decomposition and abstraction of a system 

A possible generalization of the 15 system elements of the decomposition of 

three systems in Figure 2.6 is the depicted set of 7 system elements. By 

adding a parameter “number of vertexes”, the hexagon, square and triangle 

could be further generalized into a system element called polygon. Taking this 

to the extreme, one system element called shape, with a large number of 

parameters, could be sufficient to model all three systems of Figure 2.6. 

System elements identified in domain

System 3System 2System 1

System 

abstraction

Elements of system 1

System 

abstraction

Elements of system 2

System 

abstraction

Elements of system 3

Domain generalization

 
Figure 2.6: Domain generalization 
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2.2.2 System abstraction 

 Simulation studies require a level of abstraction of the system that 

depends on the goal of the simulation study. In a factory problem, for 

instance, abstraction can be applied to the processes and the equipment, see 

chapter 1. Abstraction of the equipment is performed by identifying classes of 

equipment, and generalizing into more common classes where appropriate, 

thus obtaining fewer system elements or more common system elements. 

Abstraction of the processes is performed by leaving out process rules and 

process details and thus obtaining combined system elements representing 

process steps. 

 The decomposition into the types of system elements is often done using 

two different views of a system. The first view for decomposition is that 

comprising equipment and infrastructure or objects. We follow Pollacia and 

Delcambre (1997) and we will refer to this decomposition view as “object 

oriented decomposition”. The second view for decomposition is that 

comprising services or activities or processes. We will refer to this 

decomposition view as “process oriented decomposition”. 

 An example of a domain specific extension that matches the two systems 

views for decomposition is “Contact Center” based on the generic simulation 

environment Arena (Bapat and Sturrock, 2003). The domain specific 

extension Contact Center aims at the modelling of call centers. The system 

elements identified using the object oriented decomposition are “agent” and 

“telephone line”. The system elements originating from the process oriented 

decomposition are processes like “handling a call by an agent”, “routing 

decision” and “handling queue priorities”. The two types of model constructs 

enable the model developer to experiment with changes to the processes and 

to the objects. 

 
Figure 2.7: Call center agents with different characteristics  

for handling calls 

 Figure 2.7 and Figure 2.8 are two screen dumps of simulation models 

instantiated with the domain specific extension Contact Center. Figure 2.7 
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shows the operators handling incoming calls. All operators on the right hand 

side of the screen dump are instances of the abstracted system element 

“agent”. Each of the agents is further characterized by the setting of certain 

parameters. Figure 2.8 shows the process flow of handling calls in a call 

center depending on the origin and call attributes. Further detail could be 

achieved by dividing one or more of the flows into sub flows to make 

additional distinction between calls in the call center. 

 
Figure 2.8: Process steps for handling calls 

 

2.3 Design process for domain specific extensions 

 Figure 1.8 in chapter 1 showed the generic process of a simulation study. 

How to perform simulation studies was described as the first generic 

simulation environments became available (Birtwistle, 1979; Shannon, 1975). 

There is, however, much less literature available on how to carry out the 

process of developing domain specific extensions. In this section we give 

some guidelines based on the available literature. These guidelines will be 

used to develop domain specific extensions for the case studies (chapter 3) 

and laboratory experiments (chapter 4).  

2.3.1 Generic simulation environments 

 Most generic simulation environments have features to develop domain 

specific model constructs. They provide ways of combining a set of simulation 

model constructs into an advanced model construct. Two examples are 

shown in Figure 2.9 and Figure 2.10 for the generic simulation environments 

Witness and Enterprise Dynamics. These examples show that the 

development of a model construct is done with just one mouse click. Other 

examples are the generic simulation environment Arena, which allows for the 

development of advanced custom model constructs (Rockwell Software, 

2000), and eM-Plant, in which software is built in a hierarchical manner using 

so-called frames (Kalasky and Levasseur, 1997). Examples of the use of both 

these simulation environments will be given in subsequent chapters.    
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Figure 2.9: Menu for duplicating 

existing model constructs in  

Enterprise Dynamics 

 

Figure 2.10: User-interface to 

develop a model construct out of 

a part of a simulation model in 

Witness 

 In our opinion the aim of a domain specific extension for a simulation 

environment is to ease simulation model development of different systems, by 

providing more than the ability to combine and reuse model constructs of 

previous simulation studies carried out in a domain. A domain specific 

extension is a set of system elements to be simulated in a particular domain. 

In that sense, its potential application base is less than that offered by generic 

simulation environments. Although the “technical” way a model construct is 

developed is important, we should also look at the process by which model 

constructs can be developed by model developers to make a simulation 

model in a domain. Manuals of generic simulation environments do not 

address this issue; they focus – understandably – on the technical issues. 

 

2.3.2 Process descriptions in literature 

 Research in the field of object oriented simulation models has paid 

attention to the use of model constructs to assemble a simulation model. 

Several researchers have built on the use of object orientation in software 

engineering and its suitability for simulation. Jacobs (2005) and Tyszer (1999) 

applied object orientation, but they mainly focus on its use to develop a new 

simulation environment, not to represent systems in a specific domain. An 

object oriented simulation method has been described by Hill (1996). He 

evaluated software engineering approaches and adjusted and combined them 

into one approach for defining object oriented simulation models. He suggests 

an approach in three phases which he calls M2PO. In the first phase object 

classes are identified and, for all classes, the dynamics and object life cycle 

are defined. In the second phase, system specific elements are added and in 
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the third phase the collaboration between objects is included. After the third 

phase the objects can be implemented in an object oriented simulation 

environment.  

 The approach described by Hill (1996) focuses on object oriented models 

for only one system. He considers the need to adjust simulation models to 

carry out additional experiments, but his approach is not aimed at designing 

simulation objects for domain wide applicability. Therefore the approach that 

he describes does not fit in its current version as a prescription for the 

development of a domain specific extension, because the model constructs of 

these environments need to be flexibly applicable to cover the wide range of 

demands for more experiments that problem owners demonstrate. 

 Zobrist and Leonard (1997) give several descriptions of object oriented 

simulation software, frameworks and methods. In that book, Kim and Ang 

(1997) present a framework, which builds on DEVS (Zeigler, 2000), in which 

they apply five principles: 1. Functions may be reused in the development of 

models (function abstraction); 2. Data may be reused in the development of 

models (data abstraction); 3. Models may be reused in the construction of 

composite models which in turn are reused as components of higher level 

composite models (composition); 4. Models may be reused in the 

development of new models that are slightly different from old ones 

(inheritance); 5. Models may be reused in a variety of applications (use of 

libraries). We will see these principles back in later chapters. 

 Pater and Teunisse (1997) have developed a domain specific extension for 

cargo rail networks. In their article they generalize the approach they used to 

design a domain specific extension. The first step of the process they 

described is an analysis of requirements of the problem owners for the type of 

information they are interested in, by identifying the system elements using 

object oriented decomposition in their domain. In this case the authors 

abstracted the system objects on a very high level, leading to constructs such 

as a “pipe” and a “node”. Secondly, they applied process oriented 

decomposition to define processes to be part of their simulation models. In 

their case of rail cargo transport, they identified e.g., safety mechanisms and 

traffic control requirements. All model constructs are at quite a high level of 

abstraction. The implemented model constructs of the domain specific 

extension are then extended with additional objects and processes whenever 

these are required in later studies. Pater and Teunisse (1997) refer to their 

process of abstraction, generalization and decomposition as a top-down 

approach. 

 

2.3.3 Developing domain specific extensions 

 We combine the top-down approach of Pater and Teunisse (1997), the 

notions of Kim and Ang (1997), and the object oriented approach of Hill 
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(1996). We can outline an approach for the development of domain specific 

extensions. In this approach we will decompose a system in an object 

oriented and a process oriented manner. The steps of this approach for 

development of domain specific extensions are shown in Figure 2.11. The 

approach is a first draft and therefore the steps are suggestions and not 

prescriptive.  

 
Figure 2.11: Developing a domain specific extension 

 

Step 1. Object oriented and process oriented decomposition and 

abstraction. The development of a domain specific extension should take into 

account observations of not just one individual system, but preferably several 

systems, to get a more complete picture of the domain. The decomposition 

and abstraction should be carried out for both the objects and the processes 

that can be identified in these systems. Pollacia and Delcambre (1997) call 

this object flow modeling. 

 In this first step of the development of a set of model constructs, the 

problem domain should be decomposed to identify those system elements 

that could be turned into model constructs later. Object oriented 

decomposition and abstraction will result in a set of system elements. Hill 

(1996) uses UML class diagrams for his object-oriented decomposition and 

abstraction. The description of each object class should include attributes and 

behavior, because this will enable model developers to understand what is 

included in the model constructs that will be based on the decomposed 

system element. 

 Process oriented decomposition and abstraction will result in process 

descriptions that can be derived from informal system descriptions. The result 

will be small process descriptions relating to one or more system elements 

identified with the object oriented decomposition. The overall result of the 

decomposition and abstraction will be a set of system elements. 

Step 2. Generalize system elements. Generalization should be applied to 

the identified system elements to reduce the number of system elements and 

reach a manageable and understandable number of model constructs. The 



  2 Domain specific extensions of simulation environments 

   33  

definition of these model constructs should be extended with parameters to 

enable modelling of different systems using the model constructs that 

represent different system elements as suggested by Kim and Ang (1997). 

Step 3. Instantiate system elements as domain specific model 

constructs. The generalized system elements should be translated into a 

domain specific model construct in a certain simulation environment or 

simulation language. Each domain specific model construct is a composition 

of generic model constructs, which represents a system element and uses 

parameterization.  

 The top-down approach suggested by Pater and Teunisse (1997) is 

applied by first instantiating model constructs as abstract elements. Once a 

first version of all model constructs is implemented, the model constructs can 

be extended with details. The process of adding the details is represented in 

Figure 2.11 by the arrow “Extend model constructs with more detail”. The 

details could include additional functionalities, but also an improved user-

interface, visualization of the state of the model construct, or performance 

indicators.  

Step 4. Verify domain specific model constructs. Tests should be 

performed to make sure that the created model constructs are behaving as 

the developers expect, i.e. verification. These tests are performed by 

modeling one or more systems that allow a model construct to be tested, and 

studying the input-output behavior of the model construct. If the test is not 

successful, the developers should make adjustments to the model construct. 

These adjustments can be an alternative combination of underlying generic 

model constructs, alternative parameter settings, or alternative calculations of 

performance indicators by the model construct. 

Step 5. Instantiate simulation model using domain specific model 

constructs. The model constructs should be used to implement a simulation 

model once all model constructs are verified and have the desired level of 

detail. At this moment the simulation study can be performed as described in 

Figure 1.8. 

 

2.4 Advantages of using a domain specific extension 

 Using a domain specific extension in a simulation study does not 

necessarily change the activities in a simulation study. We hypothesized in 

chapter 1 that a simulation study using domain specific extensions will be 

more effective than one without. The improvement in effectiveness is 

expected to take place in all of the activities of a simulation study, as will be 

discussed below. 

Activity 1. Problem description & define conceptual model: the activity of 

conceptualization of the original system is inevitable, but the availability of a 
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domain specific extension will facilitate the conceptualization. The 

conceptualization does not need to be done from scratch, but can start from 

observing which of the system elements of the domain specific extensions are 

applicable to the specific system. In many cases, the object classes and 

process descriptions that have been used to create the domain specific 

extension can be reused to conceptualize the system at hand. 

Activity 2. Select model constructs: as the model constructs of the domain 

specific extension have a clear relationship with the system elements 

identified in the problem domain, the conceptual model is structured according 

to the model constructs of the domain specific extension. Figure 2.1 shows 

that in traditional simulations, a conceptual model is translated from the 

system elements via instances of generic model constructs to the simulation 

model. Figure 2.2 shows that the translation using a domain specific extension 

does not involve generic model constructs, but only the model constructs of 

the domain specific extension. 

Activity 3. Data collection: this activity is not shown in Figure 1.8, because 

the description is focused at the steps of the model developer. Data collection 

is easier for domain specific model constructs than for traditional simulation 

modeling activities. The data to be collected is determined by the parameters 

of the domain specific model constructs, where the model constructs are 

nicely mapped onto system elements. This reduces discussion and confusion 

regarding the type and format of the data needed. Furthermore, data 

gathering can begin directly at the start of a project, and does not have to be 

postponed until insight is gathered about the type of data that is required. 

Activity 4. Instantiate simulation model for original system: fewer model 

constructs need to be used, thanks to the hiding of complexity (Kasputis and 

Ng, 2000; Altiok, 2001). Traditionally, model coding of a system element 

normally involves many model constructs of a generic simulation environment, 

but each system element can now be modelled by one model construct of the 

domain specific extension. An example is shown in Figure 2.3 and Figure 2.4.  

Activity 5. Verify and validate simulation model for original system: 

detailed testing of complex logic is needed in traditional simulation modeling. 

When we assume that the developer of a model construct of a domain specific 

extension has performed sufficient testing before handing over it to the model 

developer (step 4 in the method), a model developer does not need to test the 

model construct of a domain specific extension anymore in detail. This is 

comparable to a model developer instantiating a model construct in a generic 

simulation environment, where the developer also does not test whether that 

construct works correctly (Baker, 1997). 

Activity 6. Analyze output of simulation model: the output of domain 

specific model constructs is usually standardized. Therefore, in each 

simulation model using the constructs, the same type of data will be produced, 

thanks to the definition of performance indicators in the model constructs. 

Often, problem owners in a domain are interested in the same type of 

performance indicators, even though they are part of different systems. 
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Activity 7. Define solution for analyzed output: identifying possible 

solutions based on the output will be similar to a normal study, but an 

additional source for new solutions will be provided by the parameterization of 

model constructs. The system element representation of generic model 

constructs keeps the implementation of possible changes hidden for the 

modeler, though. The analysts can directly see the possible changes to the 

parameterization of the domain specific model construct. 

Activity 8. Instantiate simulation model for identified solution: the user 

interface enables model developers to adjust a simulation model more easily 

and therefore carry out simulation experiments of system alternatives easier 

(Pater and Teunisse, 1997; Altiok et al, 2001). 

Activity 9. Verify and validate simulation model for identified solution: 

this is faster for the same reasons that apply to the verification of the 

simulation model for the original system. 

Activity 10. Analyze output of simulation model for identified solution: 

faster for the same reasons mentioned for the project step “analyze output of 

the simulation model”.  

 

2.5 Risks of using a domain specific extension mentioned in literature 

Unfortunately, the use of domain specific extensions has not always resulted 

in effective simulation studies in practice. Simulation practitioners have 

mentioned several risks they encountered while using or trying to use model 

constructs of domain specific extensions within simulation studies, see for 

example: (Sol, 1982; Balci, 1997; Pater and Teunisse, 1997; Page and Opper, 

1999; Davis et al, 2000; Kasputis and Ng, 2000; Banks et al, 2001; Diamond 

et al, 2002; Barton et al, 2003). We have allocated the risks mentioned in 

literature to the activities of a simulation study (Figure 1.8). As for activities 3 

‘Data Collection’ no risks were mentioned in literature, the data collection 

activity is not mentioned in the overview below. 

Activity 1. Problem description & define conceptual model: the use of a 

domain specific extension can limit the scope of the model developer. Model 

developers tend to consider only the capabilities of the model constructs of 

the domain specific extension. This can restrict the problem description and 

therefore not match all the requirements of the problem owner (Sol, 1982). 

Activity 2. Select model constructs: according to Balci (1997), model 

developers have limited trust in model constructs of domain specific extension 

and thus less trust in the simulation models developed using these model 

constructs; as a result they will not select domain specific model constructs to 

compose a simulation model. Kasputis and Ng (2000) describe how a model 

developer might not have insight into whether a domain specific extension is 

suitable for representing a particular system and thus decide not to use 

domain specific model constructs that actually might be suitable. On the other 

hand, Pater and Teunisse (1997) describe examples of model developers that 
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overestimated the functionalities provided by a model construct of a domain 

specific extension and used model constructs that were not suited to 

represent a system element. 

Activity 3. Data collection: No risks are documented regarding data 

collection when model developers use domain specific extensions. 

Activity 4. Instantiate simulation model for original system: Barton et al 

(2003) indicate that model developers do not always understand the model 

constructs of domain specific extensions. Model developers do not know how 

to parameterize the model construct, how to interface the model construct with 

other model constructs or what the state variables of the model constructs 

mean in the real system. This results in simulation models that have an 

incorrect representations of system elements or an ill-defined state of the 

model construct. 

Activity 5. Verify and validate simulation model for original system: 

verification and validation of a simulation model can take more time when 

using domain specific model constructs, because the model developers have 

either instantiated the wrong model constructs or parameterized the model 

constructs incorrectly. The model constructs are a black box to the model 

developer, thus identifying what has been done wrong by a model developer 

is hard to identify (Diamond et al, 2002). 

Activity 6. Analyze output of simulation model: the model constructs 

calculate performance indicators that the developers of the domain specific 

extension find useful. Problem owners might be interested in more or different 

performance indicators for a system, ones that are not included in the domain 

specific extension (Diamond et al, 2002; Barton et al, 2003). 

Activity 7. Define solution for analyzed output: the capabilities of the 

model constructs influence the type of experiments that the model developers 

will consider. The model developers are restricted by the model constructs in 

their thinking and their modeling (Sol, 1982; Page and Opper, 1999; Kasputis 

and Ng, 2000; Barton et al, 2003; Diamond et al, 2003). 

Activity 8. Instantiate simulation model for identified solution: when 

solutions are defined that can not directly be modeled using the model 

constructs, an adjustment of the model constructs of the domain specific 

extension might be required. The availability of the developer of the domain 

specific extension, the structure of the model constructs or the concepts 

applied in the design of the model constructs might make it difficult or 

impossible to model these solutions (Davis et al, 2000).  

Activity 9. Verify and validate simulation model for identified solution: 

the same risks apply as during the verification and validation of the simulation 

model of the original system. 
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Activity 10. Analyze output of simulation model for identified solution: 

the same risks apply as during analysis of the output of the simulation model 

of the original system. 

 These risks are encountered in situations where a domain specific 

extension was already available for the system to be simulated. However, only 

a very small set of domain specific extensions is available and according to 

Page and Opper (1999) and Barton et al (2003), designing and developing a 

domain specific extension that can be used by other model developers is a 

difficult and time consuming investment. 

 In general, the encountered risks are caused by a lack of understanding of 

the model developers regarding the usability of (model constructs in) the 

domain specific extension, and by the limited flexibility of the model 

constructs. In several cases reported in literature, the simulation practitioners 

found ways to handle the risks. In general, the fact that these risks occur 

might lead to simulation studies that do not provide sufficient insight for 

problem owners. The occurrences of these risks have two causes. First, 

model developers do not use domain specific extensions and keep carrying 

out simulation studies in the old way, which is a lost opportunity of capitalizing 

on the advantages mentioned in section 2.4. Second, model developers that 

use the domain specific extension cannot produce valid answers for the model 

developers.  

 

2.6 Conclusion 

 Although domain specific extensions clearly have added value, model 

developers are hesitant to use domain specific extensions because of several 

risks that apply when using them in practice. Providing solutions to overcome 

these risks will be an important step towards acceptance of domain specific 

extensions by simulation model developers. Not much literature about domain 

specific extensions is available, however, and the advantages and risks are 

still poorly understood. In order to get a better understanding of the 

advantages and disadvantages of the use of domain specific extensions, we 

will carry out a number of case studies in the next chapter using a common-of-

the-shelf simulation environment that allows for the creation of domain specific 

extensions. These case studies lead to a rich list of advantages and risks that 

will form a basis to provide solutions that can deal with the risks. 
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3 A qualitative analysis in 

domain specific extensions 

3.1 Introduction 

 It was shown in chapter 2 that model developers observed a number of 

risks when using domain specific extensions, which prevent them from using 

such extensions. An analysis of the limited amount of publications on this 

matter shows that the main causes are a lack of trust in the model constructs 

of the extensions and perceived difficulties with the maintainability or 

adjustability of a domain specific extension. Further, model developers are 

unclear as to whether using domain specific extensions will provide more 

benefits than using model constructs of generic simulation environments, and 

therefore, the developers are reluctant to take the time required to get to know 

a domain specific extension and to use this environment instead of a generic 

simulation environment with which they are familiar.  

 We carried out two case studies in which we developed a domain specific 

extension, to observe whether we would encounter these risks and whether 

the risks cause more problems than benefits. We will use the theory and 

concepts described in chapter 2 and use the simulation environment eM-Plant 

for our case studies to obtain a close match between the object oriented 

decomposition and the hierarchical object modeling present in eM-Plant. 

 The domains of the case studies had the potential that more simulation 

studies could be carried out, which made us decide to invest in the 

development of domain specific extensions. The first domain for which a 

domain specific extension was developed and applied concerned the 

modeling of advanced control techniques for Automatic Guided Vehicles 

(AGVs). The domain specific extension was used to develop simulation 

models in a project for underground transportation of cargo around 

Amsterdam Airport Schiphol, abbreviated to OLS (Ondergronds Logistiek 

Systeem = Underground Logistic System). Simulation models have been used 

in this project to evaluate hundreds of different designs for terminals for 

loading and unloading of the AGVs (Verbraeck et al, 1998b; Verbraeck et al, 

1999; Van der Heijden et al, 2002; Versteegt, 2004). 

 The second domain concerned the modeling of passengers at airports. 

Simulation models have been developed using a domain specific extension to 

model movement and activities of passengers in airports. These simulation 

models have provided support for problem solving in three projects. The 

studies looked at passenger terminals at Amsterdam Airport Schiphol (NL) 

and John F. Kennedy in New York, USA at different levels of detail (Blom and 

Korf, 2000; De Witt-Hamer, 1999; Valentin, 2002). 
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 The simulation studies described in this chapter were all carried out using 

just a domain specific extension. These systems have not been modeled 

simultaneously using model constructs of a generic simulation environment. 

The simulation studies therefore did not result in a comparison between using 

a domain specific extension and using a generic simulation environment, but 

rather insight was gathered into the use of domain specific extensions in real, 

large scale simulation studies that are expected to benefit most from the use 

of domain specific extensions. The outcome of this chapter should be a 

confirmation of the expected benefits and encountering of risks. The 

simulation studies were also expected to provide some insights in how the 

risks were avoided or mitigated once they were encountered to make 

simulation studies with domain specific extensions even more effective. 

Chapter 4 describes a number of laboratory experiments in which the same 

problem is addressed with generic simulation environments and domain 

specific extensions, and provides a comparison. 

 

3.2 Exploratory case study 1: OLS design of terminals 

3.2.1 Introduction OLS-project 

 The fast growing traffic on the Dutch roads is seen as a rapidly increasing 

problem for efficient and on-time transportation of goods. The Dutch 

government fears that traffic delays will reduce the competitive value of the 

Netherlands as a logistics and transportation country. As a possible solution it 

is promoting the use of new transportation technology (CTT, 1997). The 

transportation of flowers worldwide via the flower auction at Aalsmeer is an 

example where the Netherlands acts as a transit country. Flowers from all 

over the world are brought into Aalsmeer by air (or by rail or truck), and, after 

auctioning, often exported the same day by airplane (or by rail or truck). The 

transportation process between Amsterdam Airport Schiphol and flower 

auction of Aalsmeer, which is now done by truck, is vital for the auction, 

because flowers that miss the airplane have to wait an extra day. These 

flowers will be worthless and cannot be exported. The risks of delays with 

transportation by truck are increasing, therefore an alternative transportation 

mode that will provide higher reliability is necessary. 

 In 1997 the Dutch government started research into the use of Automatic 

Guided Vehicles (AGVs) to transport goods, mainly flowers, between the 

flower auction of Aalsmeer, different terminals at Amsterdam Airport Schiphol 

and a brand new rail terminal in Hoofddorp. This project should result in a 

transportation system capable of handling 3.5 million tons of cargo per year in 

2020, using a tunnel system, see Figure 3.1. These AGVs should replace 

truck movements, reducing pressure on traffic and increasing the time window 

for handling flowers at the auction. This project is called OLS-Schiphol, 

whereby OLS stands for Underground Logistic System. 
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Figure 3.1: AGVs moving through tunnels underneath the airport  

(CTT, 1997) 

 In the original design of the OLS-Schiphol, the terminals of the OLS-

Schiphol were connected by a tunnel system of up to 20 km (CTT, 1997). 200 

to 400 AGVs were designed to be used to transport the goods. Figure 3.2 

shows the most likely route of the design in 1997 and the main alternative with 

a dotted line. Deciding which of the many possible different layouts to use was 

one of the many topics that needed to be dealt with in the OLS project. The 

transportation system of AGVs should consist of state of the art techniques for 

vehicles, tunnel constructions, control mechanisms and loading and unloading 

equipment. Each of these techniques had a wide range of alternatives and 

each possible decision has effects on the logistic and economic performance 

of the system in one way or the other. Simulation models were thought of as 

being able to provide answers to the questions of the system designers 

regarding the scale of the system and detailed control of the AGVs at small 

transit terminals. 

 

Figure 3.2: Map of the routes between Amsterdam Airport Schiphol,  

Flower Auction Aalsmeer and Rail Terminal Hoofddorp (CTT, 1997) 
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3.2.2 Object oriented and process oriented decomposition 

 The OLS was a new and not yet existing system. Therefore, knowledge 

about existing AGV-systems and early designs for the OLS were used as 

system representations to enable decomposition into object-oriented and 

process-oriented system elements. In addition, expert sessions with designers 

of the AGVs and the logistic terminals were carried out to obtain additional 

information.  

 These different studies and information sources resulted in the following 

system elements using object oriented decomposition: 

• AGV: vehicle moving around to pick up and drop of loads; 

• Load: unit of materials to be moved by an AGV; 

• Track: imaginary line between two points followed by an AGV to get 

from one place to another; 

• Dock: machine that enables the movement of a load to or from an 

AGV; 

• Dock place: physical configuration of a dock with one or more tracks for 

AGVs;  

• Parking spot: physical configuration of one or more tracks that provides 

spots where AGVs wait for a new task, for example to pick up a load; 

• Terminal: area consisting of one or more dock places and parking 

spots, which are connected by tracks to enable parking, loading and 

unloading of AGVs. 

 The process oriented decomposition resulted in 6 main processes, 

represented in Figure 3.3 to Figure 3.8. Figure 3.3 shows the process that is 

carried out for a load. Figure 3.4 shows the main tasks that are performed by 

an AGV. Figure 3.5 and Figure 3.6 are functionalities for allocating the scarce 

resources, e.g., AGVs and docks, to the entities that require these resources, 

e.g., loads. Figure 3.7 and Figure 3.8 show in more detail how the AGVs 

move safely over the available tracks.  

 

Load arrives in

terminal

Load waits for an

AGV

Load is loaded on

AGV

Load is moved by

AGV

Load is unloaded

from AGV

Load arrives at

destination

 

Figure 3.3: Process of a load 

 

AGV waits for
assignment

AGV picks up load
AGV moves to
unload location

AGV unloads load

 

Figure 3.4: Process of an AGV  
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Request for dock

arrives from load

or AGV

Determine list of

suitable docks

Select dock to go

to

Inform request

object (load or

AGV) about

selected dock  

Figure 3.5: Process of allocating a load or AGV to a dock 

 

Request for AGV
arrives from load

Determine list of
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Figure 3.6: Process of allocating an AGV to a load 
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Figure 3.7: Process of an AGV driving 
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track

AGV moves over

track

 

Figure 3.8: Process of an AGV moving over tracks 

 

 The safe distance between AGVs, as mentioned in Figure 3.7, was 

measured in the final system using sensors and a collision avoidance 

mechanism. The collision avoidance mechanism consisted of semaphores 

that restrict the use of tracks by AGVs (Lindeijer, 2003). Figure 3.8 shows how 

an AGV claims one or more semaphores before starting to move over a track. 

The system of claiming semaphores to gain permission to move is defined by 

the TRACES-concept (Transport Control Engineering System) for concurrent 

use of infrastructure (Evers and Koppes, 1996).  

 

3.2.3 Existing domain specific extensions 

 Several generic simulation environments provide extensions for the 

domain of transportation systems with AGVs. We evaluated the suitability of 

domain specific extensions of the generic simulation environments Arena, eM-

Plant and Automod. The key issue in this evaluation was whether the 

TRACES-concept (Evers and Koppes, 1996) could be implemented in 

addition to the track layout.  

 The domain specific extensions of the simulation environment Arena and 

Automod take care of safety mechanism internally. It is possible to interact 

with the safety mechanisms, but the TRACES concept can not easily be 

developed in a reusable model construct. The only way to overcome this is to 

use lower level constructs in these simulation environments, and not use the 

AGV systems that are provided. The generic simulation environment eM-Plant 
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allows model developers to add TRACES logic, but only if it is directly linked 

to infrastructure, so every infrastructure has one semaphore. This way of 

handling the TRACES semaphores was not acceptable, given that several 

tracks might overlap and use the same semaphore for safety. In addition, the 

domain specific extension of eM-Plant did not allow vehicles to accelerate and 

decelerate, but assumed that vehicles had a constant speed. For this project it 

was concluded that it would be more difficult to adjust the existing model 

constructs of the domain specific extensions than to develop a new set of 

domain specific model constructs.  

 

3.2.4 New domain specific extension 

 Based on the identified system elements a new domain specific extension 

was developed for the OLS project. The number of model constructs that were 

part of this domain specific extension increased during the process of 

implementation and carrying out simulation experiments. Figure 3.9 and 

Figure 3.11 give an overview of the model constructs that represent system 

elements obtained from an object oriented and a process oriented 

decomposition.  

 

 

Figure 3.9: Model constructs that represent decomposed constructs 

 

 The thick lines in Figure 3.9 are added to show the relation with the objects 

identified for this domain. The first row of model constructs contains the load 

(first icon), the AGV (second icon) and the track (next four icons). The track 

model construct is further used in all model constructs to create parts of the 

layout of a terminal. The model constructs without any thick lines are 

compositions of tracks, for example a merger of two tracks into one track. The 

second row contains docks in different versions. The dock variants are 

composition of the basic dock configuration including one or more tracks to 

represent places where AGVs can temporarily wait for the dock to become 

available, see an example of the details in Figure 3.13. The last two rows 

contain more composed parts of a terminal, i.e. the parking (large P in icon) 
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and complete terminal layouts (remaining icons). The parking objects are 

composed of tracks with additional logic for parking. Some of the terminals of 

the bottom two rows are shown in more detail in Figure 3.14. 

 The system elements in the design of a terminal were not individual tracks, 

but layouts of a part of the terminal that were composed of several tracks, for 

example the configuration of the dock including the curves leaving the main 

track. This piece of layout was on its turn composed of several domain 

specific model constructs and made available as one new model construct. 

Figure 3.10 shows the composition of a specific dock with tracks, using 

several domain specific model constructs. Similar compositions have been 

made for other docks, parking spots, parts of terminals, and even whole 

terminals. As a result the set of model constructs of the domain specific 

extension grew quite large, as is shown in Figure 3.9. 

 
Figure 3.10: Composition of model construct  

"Side dock next to main track" 

 The AGVs and loads that use the infrastructure were controlled and 

managed by other model constructs. During the process oriented 

decomposition (Figure 3.3 - Figure 3.8) the allocation and safety mechanisms 

used in the AGV systems were identified, and these functionalities were 

implemented in different model constructs for the levels of control. Figure 3.11 

shows the model constructs developed to represent the processes. The 

interaction between different model constructs represents the process as 

identified at page 43. For example, the model constructs in Figure 3.11 at the 

first row with a box around them are used for the process of an AGV moving 

safely over tracks (process in Figure 3.8). 

 

 

Figure 3.11: Model constructs that represent decomposed functionalities 



3.2 Exploratory case study 1: OLS design of terminals  

46 

 The processes were implemented in several ways. The allocation 

mechanisms and decision processes (see Figure 3.5 and Figure 3.6) were 

implemented as model constructs that make a match between the available 

resources and the requests. These model constructs are called “managers” 

and handle the allocation in the parking or the docks. For example, the 

terminal manager decides whether an empty AGV should be loaded with a 

waiting cargo, should stay at a parking spot, or should leave the terminal. 

Depending on the layout and size of the terminal, these managers make 

different types of decisions and use alternative information in their decision 

logic.  

 The AGV driving process, e.g., to determine their speed given their 

allowed distance, was divided into two model constructs. One model construct 

had the functionalities for calculating the distance, based on modeled sensor 

readings and permissions given by the TRACES safety concept, and one 

model construct had the functionalities to determine the new speed. Both of 

these model constructs were integrated into the model construct AGV and 

were dedicated to representing the required AGV behavior within this project. 

In the course of the project the way of handling these processes was 

changed, requiring coding adjustments in the process model constructs. 

 The last process, the process where AGVs gather access to new tracks 

based on their route (Figure 3.8), was modeled using a scripting language to 

define the steps that AGVs carry out. The scripting language enables flexibility 

when defining routes in the system, while still taking into account the required 

safety. An example of such a script that is part of the crossing shown in Figure 

3.12 is given in Table 3.1. This script enables an AGV to move safely from left 

to right over the crossing. More about the implementation of TRACES in this 

domain specific extension can be found in Verbraeck et al (1998a) and Van 

der Heijden et al (2002). 

 

 

Script LR Comments 

Insist SX 

 

Exec AX 

 

Exec XB 

 

Free SX 

Claim ticket for 

crossing 

Drive from left to 

centre 

Drive from centre to 

right 

Free ticket SX 

Table 3.1: Script for an AGV to 

move over the crossing in  

Figure 3.12 from left to right. 

 

Figure 3.12: Crossing with 

scripts
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3.2.5 Simulation study design of terminal layouts considering vehicle 

movement  

Problem 

 Two simulation studies regarding the OLS system were carried out 

simultaneously. The first simulation study considered the complete system 

and applied optimization for the number of vehicles, the number of terminals 

and the effects of alternative forecasts for load patterns (Ebben, 2001). The 

second simulation study focused on the detailed behavior of AGVs, collision 

avoidance and routing, mainly within one terminal for loading and unloading of 

vehicles. Only the simulation study concerning the detailed behavior of AGVs 

within terminals used the domain specific extension discussed in this chapter.  

 Terminal layouts were designed according to several concepts for loading 

and unloading, parking and routing. Vehicle designs under consideration used 

various ways for loading and unloading the cargo. The different vehicle 

designs required specific concepts for docking to enable efficient handling of 

cargo and efficient use of the vehicles (Pielage, 2005). The variant layouts for 

docks are shown in Figure 3.13. The differences between the layouts were, 

e.g. the position of the vehicle, the direction for leaving the dock and the ability 

to park vehicles while another vehicle is being loaded or unloaded. The 

concepts for docking resulted in various possible layouts for docks in the 

terminal, alternative positions for vehicles to stop and routes towards and from 

docks.  

 

 
Figure 3.13: Dock variants with their Dutch names  

(Verbraeck et al, 1998b, p14) 

 

 The terminal designs differed in the docking concept used and in the way 

vehicles were parked and routed. Four of the many concepts of terminal 

designs that were available and that were evaluated using one or more 

simulation models are shown in Figure 3.14.  
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 The evaluation of the terminal concept was the key issue in this simulation 

study. Depending on the concept an alternative safety mechanism, a number 

of docks and parking spots and the overall number of vehicles allowed in the 

terminal were evaluated.  

 

 

Figure 3.14: Different possible layouts of terminals  

that have been evaluated 

 

Project approach 

 A traditional simulation study starts with evaluation of the original system 

and then defines alternatives (see figure 1.8). Because this study was about a 

new to be built system, it started with available alternatives that had to be 

tested. The solution systems were configurations of the terminal for many 

concepts of which four are shown in Figure 3.14. The evaluation of the 

feasibility of a terminal design was carried out in two steps. The first step was 

an experiment using a scenario of one peak hour in which a high number of 

AGVs arrive at the terminal to load and/or unload.  

 Successful terminal designs were further optimized with scenarios of the 

expected load pattern for a full day pattern of arriving and departing vehicles 

according to the 30th busiest day in the year 2015. This full day pattern 

included an early morning peak or a late afternoon peak. A good terminal 

layout should succeed in handling all loading and unloading AGVs in a 

reasonable time, partly during off-peak hours. The simulation experiments 

with the layouts provided insight into different distances for vehicles to travel, 

the ability to use parking spots, the number of crossing vehicles at a terminal 

and the utilization of docking places. 

 

Simulation models of terminal layouts considering vehicle movement 

 Model constructs of the new domain specific extension were used to 

implement simulation models of terminals. These simulation models were 
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used to perform experiments to evaluate possible terminal designs. Figure 

3.14 provides an overview of four successful terminal layouts that were used 

in experiments with full day scenarios. The terminal layouts have different 

shapes, different numbers and types of docks, different numbers and types of 

parking places, and a different control logic. The initial simulation models were 

easily instantiated once the model constructs with the layouts of the terminals 

were available, because the rest of the simulation model contained only a 

generator of vehicles, a track where vehicles were waiting to enter the 

terminal in addition to the model construct representing the terminal with its 

layout and control. 

 

Verification and validation 

 The simulation models were verified by making a detailed evaluation of 

individual vehicles in the terminal. All events of an individual vehicle were 

observed to check that the vehicle was accelerating and decelerating at the 

right moments, claimed the right set of TRACES-semaphores and received 

the correct allocations from the terminal manager.  

 For verification, we mainly based ourselves on the animation of the 

simulation model. Each infrastructure model construct had an animation that 

showed exactly where the vehicles were. The model construct vehicle 

changed color depending on its state and it was easy to verify whether the 

vehicles received the correct state, i.e. accelerate or decelerate at the right 

moments. 

 Validation using data from a real system was not possible, because there 

was no real system. We performed validation sessions with experts of control 

systems and experts on the design of terminals to evaluate the correctness of 

the simulation models and the model constructs. 

 

Experiments 

With every terminal layout two experiments were carried out, one, a peak hour 

check and two, a full day experiment. The analysis of the output results of the 

experiments triggered several types of adjustments to the terminal design to 

try to improve the performance and check the sensitivity of the design to 

changes. A couple of the adjustments to the terminal designs dealt with: 

• The number of vehicles allowed at the same time within the terminal. If 

too many vehicles were allowed in the terminal, congestion took place, 

the average speed of the vehicles dropped due to the applied safety 

mechanisms.  

• “Smarter” TRACES scripts. Most terminal concepts (especially 1 and 4) 

were extended with additional TRACES scripts to improve the 
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throughput and enable vehicles to keep a higher average speed in the 

terminal. 

• Process duration for loading or unloading AGV at dock. Various 

process durations were evaluated to see the effects of the docking time 

to the overall throughput.  

• Required time for communication between AGVs and control systems. 

Anticipating on a slow communication process between the AGVs and 

the control system resulted in a more reliable system when actual 

communication times varied stochastically.  

 Initially the simulation models of alternative terminal layouts and their 

configurations provided just output of the number of AGVs that were loaded 

and unloaded and the average time AGVs stayed in the terminal. The output 

of these initial simulation models triggered requests for insight in many other 

system performance indicators. These system performance indicators were 

included in the simulation model by instantiating new model constructs and by 

adjusting existing model constructs. Examples of performance indicators that 

were added after the initial simulation experiments were: use of batteries, 

number of accelerations and decelerations in the terminal, time an AGV was 

waiting for a dock and utilizations of docks, dock places and parking spots.  

 

Results of the simulation study terminal layouts considering vehicle movement 

 The experiments that were performed using the simulation models were 

based on a wide range of assumptions for vehicles, docks and load patterns. 

Most design options within the OLS project were completely open at the time 

that the simulation models were developed, because the design teams were 

just beginning to evaluate the possibilities. The simulation models that were 

used answered the question which terminal variant performed best, but the 

output of the evaluations of designs did not lead to a choice for a terminal due 

to the many assumptions that had been made for the model constructs of the 

domain specific extension. Therefore, the result of the simulation study was 

not a simple suggestion to use one terminal design, instead it was a set of 

design guidelines that should be considered in the final design of the 

terminals. This advice was supported by tables and graphs gathered from the 

performance indicators of all the experiments. Analyses of the experiments 

resulted in more than 30 guidelines for designers of terminals in the OLS 

system. The most important guidelines for the design of a terminal are listed 

below; additional guidelines can be found in Verbraeck et al (1998b) 

• Avoid the AGVs crossing the main traffic route while entering or leaving 

a dock; 

• Enable AGVs to be loaded and unloaded at the same dock to improve 

AGV throughput in the terminal; 
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• Provide parking spots very close to a dock to improve the throughput of 

the terminal and utilization of the docks; 

• Enable AGVs to make turns in the terminal in as many places as 

possible to achieve short terminal times in wide terminals. 

 The main advice for the terminal layout was to design a terminal that 

avoids crossing traffic, that spreads the traffic over the space of the terminal 

as much as possible, and that provides a “slow” and a “fast” track, where the 

slow track is a side track used by vehicles that wait for their docking operation.  

 The following graphs, Figure 3.15, Figure 3.16 and Figure 3.17, are some 

examples of the data that was generated and automatically combined into an 

Excel sheet to visualize the system performance. Figure 3.15 shows the 

distances AGVs drive against the time they stay in the terminal. Figure 3.16 

shows the average number of accelerations and decelerations by the AGVs 

for each hour of the day (important for battery usage). Figure 3.17 shows the 

waiting time for loads before leaving the terminal during a day, clearly showing 

two peaks times at the terminal. 
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Figure 3.15: Relation between 

the terminal time and the driven 

distance of each AGV 
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Figure 3.16: Number of times 

AGVs accelerate or decelerate 

during a day 
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Figure 3.17: Time a load waits before leaving the terminal during a day 
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Observations simulation study terminal layouts considering vehicle movement 

 This simulation project provided insight into the problem owners in the 

design of vehicles, docks, terminals and allocation mechanisms. De Vos 

Burchart, one of the problem owners, stated in Van der Heijden et al (2002, 

p.19): “One of overall goals in this project was to show the feasibility of an 

AGV based solution…. The contribution of the simulation group was essential 

to analyze the logistical performance of the system…. Simulation was 

extremely helpful in developing and testing our new control system.” The 

satisfaction of problem owners is achieved thanks to the wide range of 

simulation experiments that could be carried out to evaluate terminal designs, 

control mechanism and allocation mechanisms.  

 De Vos Burchart confirmed that the simulation study was extremely 

helpful; however, several of the questions of problem owners, which were 

posed after the first publication of results (Verbraeck et al, 1998b), have not 

been answered. The most important questions that arose, after the report was 

published were the following: 

• What would be the effect of an advanced or centralized allocation 

mechanism that links AGVs to certain docks, parking places or loads? 

• Can alternative TRACES safety scripts improve the performance of 

terminal layouts that were not efficient?  

• How will the terminal perform when it is integrated in the complete OLS 

system? 

• What effects will adjustments of size, radius or acceleration of the AGV 

have on terminal layouts and performance? 

• What relations exist between communication time, docking time, 

capacity of the terminal and number of parking spots or docking 

places? 

 These additional experiments could not be carried out, due to the time 

required for each experiment. Even though the model constructs of the 

domain specific extension would enable some experiments to be carried out 

fairly easy, other experiments would require more effort and some could not 

be implemented due to early design decisions taken during the development 

of the domain specific extension.  

 The simulation experiments have been used for evaluating and improving 

the control system of the individual vehicles and for empty vehicle 

management. In 2002 the research for the OLS ended, because the financial 

risks for the investments in building the OLS-Schiphol were considered to be 

too high (Van der Meer, 2002). 
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3.2.6 Observations on domain specific extension in case OLS terminal 

design 

 We made the following observations by linking this simulation study to the 

activities of Figure 1.8 and the expected benefits and potential risks of using 

domain specific model constructs listed in chapter 2: 

Activity 1. Problem description & define conceptual model: the expected 

benefits and potential risks for conceptualization mentioned in chapter 2 were 

not observed in the use of the domain specific extension for AGVs, because 

the domain specific extension was developed specifically for this simulation 

study and problem description. 

Activity 2. Select model constructs: each of the docks, parking spots and 

terminal designs were implemented as a model construct of the domain 

specific extension. The benefit of easier selection of model constructs was 

encountered in the simulation studies, because the translation of system 

elements to low level model constructs was not necessary. When someone 

designed a new piece of infrastructure the model construct to represent this 

system element could be composed from already available model constructs 

such as the track, dock and parking spot.  

 Unfortunately, for the control model constructs, composing a model 

construct from lower level domain specific model constructs was not possible. 

For example, the terminal manager was redesigned several times to make it 

suitable for the terminal layouts and configurations. The risk identified by 

Davis et al (2000) that system elements can not always be represented by 

existing model constructs in a domain specific extension was encountered 

during this activity. In chapter 2 we added this potential risk to activity 8 

“Instantiate simulation model for identified solution”, but this case study 

showed that the risk was also encountered if a domain specific extension is 

developed specifically for a simulation study. 

Activity 3. Data collection: the benefit of a known format did not apply to this 

case study, because the format required by the domain specific model 

constructs was adjusted and changed as the implementation of the model 

constructs progressed, just as it occurs in a normal simulation study where the 

need for data is not known beforehand. As a result the data gathering for this 

simulation study could not start directly at the start of the project, but was 

postponed until sufficient insight was gathered into the type of data that was 

required. 

Activity 4. Instantiate simulation model for original system: the simulation 

models clearly contained fewer model constructs and were quite easy to 

develop initially. The composition of the layouts of the terminals was easy and 

fast, the TRACES-semaphores could easily be added and the initial versions 

of the TRACES-scripts for the vehicles were quickly defined. Once more 

difficulties arose regarding the model constructs that represented automatic 

management systems, but that was more due to the lack of availability of 

certain domain specific model constructs as mentioned for activity 2, than to 

the development of the simulation model. 
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 The initial set of simulation models was instantiated by the developers of 

the domain specific extension. These developers understood the capabilities 

of the domain specific model constructs fully, and knew what to do when 

errors were observed during the test runs. Some additional simulation experts 

joined the project team later to instantiate simulation models of alternative 

layouts of terminals and docks. These model developers had not participated 

in the development of the domain specific model constructs and they had 

quite some difficulties when it came to understanding the full concept and the 

way it was represented by the model constructs. This was partially caused by 

the lack of example models and the fact that only technical detail 

documentation was available. The result was that the new model developers 

had difficulties with parameterization of the model constructs, which was also 

caused by a lack of simple interfaces and contextual help for the model 

constructs. 

Activity 5. Verify and validate simulation model for original system: the 

initial simulation models were tested by the developers of the domain specific 

extension to test the model constructs. No formal testing was done before the 

simulation models were instantiated. Thus the benefit of reduced verification 

requirements because the model construct had already been tested did not 

apply. In the validation of the simulation models the visualization of the 

system, automatically provided by the model constructs, proved its added 

value. The visualization of the vehicles could be observed and analyzed at 

levels of composition, enabling us to view the visualization of the complete 

model, and simultaneously a visualization of for example an individual dock 

with the movement of vehicles around it. 

 Unfortunately, the benefit that calculations to support the statistics that 

problem owners are interested in are already available inside the model 

constructs did not apply in our case. The verification and validation sessions 

triggered what type of statistics were required and which ones should be 

added. Luckily these statistics could be added to the model constructs quite 

easily and were automatically shown the next time the simulation model was 

run. 

 The potential risk mentioned in literature of time consuming model 

adjustments after verification, has partially been encountered. There were 

quite some adjustments to be made, but because the model developers also 

developed the domain specific model constructs, they knew exactly how to 

tackle the differences that were observed during verification and validation 

sessions. 

Activity 6. Analyze output of simulation model: we extensively used the 

benefit of standardizing the output of model constructs. Each model construct 

calculated some statistics and these were all combined and analyzed using 

one dedicated Excel sheet. This ability saved a lot of time for collecting and 

visualizing the statistics originating from several simulation models and thus 

clearly was a benefit.  
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 The potential risk of lack of performance indicators was mitigated by 

adding extra performance indicators. Step wise the number of performance 

indicators was extended in the model constructs and thereby automatically 

included in the simulation runs. 

Activity 7. Define solution for analyzed output: the model constructs had 

few user interfaces that were exposed to the modeler. The generic simulation 

environment does not allow for easy user interface development and thus this 

was left out of the model constructs. The benefit of receiving triggers for 

solutions by observing parameters was thus not observed. In addition, the 

problem owners and system experts who generated the majority of the 

alternatives had never seen the parameters of the model constructs. 

Therefore this benefit was not observed in this case study. 

Activity 8. Instantiate simulation model for identified solution: a large set 

of experiments was carried out, because the model constructs of the domain 

specific extension enabled the model developers to: 

• easily represent the infrastructure for the terminals, based on available 

model constructs, like the many alternative dock places and parking 

spots; 

• easily compare the output of the simulation models, because each 

model construct provides the same type of statistical information, which 

was prepared as a standardized report; 

• easily visualize the model, thanks to the detailed visualization included 

in all model constructs; 

• easily apply different control mechanisms to safeguard terminal 

designs using instances of script model construct to represent the 

TRACES safety mechanism. 

 The benefit of parameterization did not apply during some of the 

experiments. The list of unanswered questions that was mentioned before, 

was partly caused by insufficient parameterization of the model constructs. 

For example, changing the diameter of a curve has effects on the safety 

controls and on the overall layout of a terminal. This change therefore still 

required several changes within the model construct. This difficulty would 

certainly have been observed when the simulation model would have been 

composed of generic model constructs, but this does not justify that the use of 

domain specific extension did not result in this expected benefit. 

 Changing the simulation model for some of the experiments also resulted 

in errors during the run of the experiment. Model constructs of the domain 

specific extension depended on each other in unexpected ways even though 

an object-oriented approach was used in decomposing the system. 

Activity 9. Verify and validate simulation model for identified solution: 

the same expected benefits and potential risks applied as for activity 5: 

verification and validation of the simulation model for the original system. 
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Activity 10. Analyze output of simulation model for identified solution: 

the same expected benefits and potential risks applied as for activity 6: 

analyze output of the simulation model for the original system. 

 

3.3 Exploratory case study 2: passengers at airports 

3.3.1 Introduction: domain specific extension for passengers at airports 

 Simulation models are used by Amsterdam Airport Schiphol to support 

decision making processes with respect to extending and redesigning its 

passenger terminal. This case study project used a domain specific extension 

with model constructs for passengers at airports to avoid the need for 

simulation models to be developed from scratch in subsequent studies. This 

domain specific extension was developed based on experiences gained in an 

earlier project at the airport and described by Babeliowsky (1997) and 

Gatersleben and Weij (1999).  

 This section contains a description of the domain specific extension for 

passengers at airports and the use of this extension in three different 

simulation studies. Two of these studies were carried out at Amsterdam 

Airport Schiphol regarding an increase in passenger numbers, and a new 

check-in procedures for the airline KLM. The third simulation study was done 

at JFK airport in New York for analyzing the capacity of new check-in facilities. 

 

3.3.2 Object oriented and process oriented decomposition 

 Airports all over the world have similar infrastructure and passengers go 

through similar processes at these airports. People move from an origin 

(either the airplane or the entrance of the terminal) through hallways, 

concourses and lounges towards a destination (either the airplane or the exit 

of the terminal) and before they reach their destination they participate in 

several processes, e.g. checking in, passport check, shopping, visiting 

restaurants and lounges, collecting luggage, and boarding. The activities that 

people perform at airports are reasonably standard, it is easy to generalize the 

systems behavior at different airports to a set of basic processes. However, 

airports have different ways of handling these processes, thus one needs to 

be able to parameterize and extend the basic processes to cover many 

alternatives. For example, at Amsterdam Airport Schiphol, the check-in 

process for a flight with a European carrier within Europe has fewer security 

issues, and thus requires less time and resources, than a check-in process for 

a flight to the United States. 

 People at airports use the infrastructure available within an airport for their 

various processes and to travel from their origin to their destination in the 

terminal. Arends (1999) made an overview of the infrastructure system 

elements that he regarded to be important within a simulation study of 

passenger flows in airports. He also performed a generalization of the 
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decomposed infrastructure objects. All system elements he identified were 

location dependent, and described an area at the airport where a certain 

function was performed. Examples are a check-in counter, a hallway, a gate, 

a seat and a shop. These system elements have been generalized further to 

one top-level model construct which he called an area. An area is a location 

where one or more passengers stay for a certain time, and sometimes carry 

out a certain activity. After this time the passengers try to move to the next 

area. The time for staying in the area depends on the type of infrastructure, 

the activity, and passenger characteristics. For example, in a hallway the 

staying time depends on the distance to walk, the number of other passengers 

in the area and the direction in which they are walking, and on the used 

surface (cart or not; family) and walking speed of the passenger. For a seat 

area as part of a gate area, a passenger will stay in a seat until a signal 

sounds that the boarding of a flight starts. In each of these areas the capacity 

is limited and thus each area can become a bottleneck for the processes at 

the airport when the number of passengers rises.  

 In the same way Arends (1999) has applied object oriented decomposition 

to identify types of people present at an airport. He made a detailed list of 

types of people, which he generalized to passengers, meet-greeters and 

personnel. Further he observed that people who are alone behave differently 

than people who are in pairs or groups. For example, a group of five co-

travelers wait for each other after the passport check, take the same route, go 

to the same restaurant and arrive at the boarding at the same moment. 

Therefore passengers, meet-greeters and personnel are further generalized to 

groups. 

 By applying process oriented decomposition Arends (1999) identified 

system elements regarding the movement of people and the allocation of 

areas to flights or airlines. The process flow of people moving in the airport is 

divided into a detailed flow from area to area and a higher level flow from 

origin via intermediary destinations to a final destination. Further process 

flows were defined for the movement within areas, regarding the adjustment 

of capacity, and for the determination of the time spent in the area by people. 

Finally, the process oriented decomposition shows how the available capacity 

within the airport, provided by the areas, is allocated to different airlines and 

specific flights. These allocation mechanisms are also seen as specific 

processes. 

 The process of people entering and leaving an area is shown in Figure 

3.18. The process is the same for all areas and it is assumed that this process 

applies for airports all over the world, as this is a basic and very generic 

description. The process of a group can be further specified depending on the 

type of area. For example, a passenger in a check-in area will have a staying 

time that depends on the speed of the check-in process, while if this 
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passenger is in a shopping area the staying time is a combination of the 

attraction of the shop and the spare time of the passenger.  

 

 

Figure 3.18: Process flow people 

 

 The destinations of a group, as referred to in Figure 3.18, depend on the 

purpose and moment of arrival of the group. Passengers that arrive by car 

and leave by airplane will perform process steps like check-in, go through 

passport check, security check and boarding an airplane. Some of these 

passengers might also have to check-in luggage, and some might have a 

Schengen2 or national flight, which means that they do not have to go through 

customs. Passengers who arrive by airplane and transfer to another flight 

have a different process. Business class passengers behave differently from 

economy class passengers; individual passengers differ from families and 

larger groups. Therefore, the process for passengers at an airport can be 

different for each individual passenger at each airport. Decomposition of this 

process resulted in a set of process steps, of which some are shown in Table 

3.2. 

 

Table 3.2: Example process steps for routing behavior of passengers at 

airport 

Process step Description 

Arrive Entering airport 

Board airplane Leaving the airport via an airplane 

Check of boarding 

card 

Showing the boarding card to stewardess, often prior to 

enter restricted areas or airplane 

Check of passport Showing the passport to security employees, often 

prior to enter or leave restricted areas 

Check-in for flight Checking-in for a flight and optionally dropping off 

luggage 

Enter gate Moving to the gate where the passengers will depart 

 

                                             
2
  The Schengen agreement is a treaty dating from 1985 between European countries which eliminates all internal 

border controls between them. 
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 The passengers need to go to a certain area for each of the process steps. 

For example, the passengers need to select a check-in counter based on their 

airline or flight when they arrive, or the correct gate from where to board their 

airplane. The passengers receive information regarding their destinations from 

information providing objects such as monitors containing gate information. 

 

3.3.3 Existing domain specific extensions 

 At the start of the project, two domain specific extensions were available 

for modeling passenger behavior at airports, ‘IBM Journey Manager’ (Bitault, 

1997; Snowdon et al, 1998) and ‘PaxSim’ (Joustra and van Dijk, 2002). Both 

are extensions of the generic simulation environment Arena. These two 

domain specific extensions applied decomposition using the object oriented 

view. Some examples of model constructs available in those two domain 

specific extensions are a check-in counter, a gate and a security check. 

Between these main model constructs the passengers move freely and 

unrestricted. This does not fit with the concept of areas, because passengers 

can meet bottlenecks and queues anywhere at an airport. 

 The process for passengers is also too fixed. Passengers in these models 

go as quickly as possible to the gate, while normally passengers who arrive 

early at an airport spend some time hanging around and enjoying the shops or 

restaurants. No modeling concepts are offered in these domain specific 

extensions to represent flexible passenger processes, therefore these 

environments could not be used for the particular purposes of our simulation 

studies. 

 

3.3.4 New domain specific extension 

 A new domain specific extension was developed for passengers at 

airports. This new domain specific extension includes model constructs to 

represent areas and a variety of processes for passengers. The model 

constructs of this domain specific extension were implemented in the generic 

simulation environment eM-Plant. The system elements that were identified 

during system decomposition by Arends (1999) were implemented using an 

inheritance structure. In this way the top-down implementation steps as 

suggested by Pater and Teunisse (1997) were performed. 

 The process steps regarding the detailed process of passengers in an 

area, see Figure 3.18, were implemented as functionalities of an area. The 

process steps regarding the directions of passengers at an airport, see Table 

3.2, were implemented separately from the areas to keep the process of 

passengers flexible and easily adjustable. This separation of routing of 

passengers and use of areas by groups of passengers enables the use of 

areas by passengers with a different flow, for example departing and arriving 

passengers who use the same hallways.  
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 The areas were developed into a structure with several variants of an Area 

that are inherited from the generic model construct called Area. The 

differences between the variants regard one or more of the following features 

and functionalities of the model construct: visualization, performance 

measurements, prioritizing of passengers, capacity and availability, 

determining the time a group will stay in the area and the restrictions for 

groups to enter. For example, a “check-in-counter area” calculates the time a 

group stays in the area for the check-in process using a statistical distribution 

that takes group properties as parameters, and in a “hallway area” the time a 

group stays is calculated using the walking speed of the group or passenger 

and the utilization of the area at the moment of entering. An overview of the 

most common Area model constructs is provided in Figure 3.19.  

 

Figure 3.19: Model constructs to represent system elements of Areas 

 

 Each area in the inheritance structure provides a representation of one 

system element of an airport. Often standard combinations of two or more 

areas can be identified at airports. For example, the combination of a sitting 

area and a boarding check area can represent a system element “gate”. A 

system element gate is represented by a model construct called 

‘ComposeArea’ where the required areas (in this example sitting area and 

boarding check) are combined. In the model construct ‘ComposeArea’ the 

individual behavior of the underlying areas is not changed, but additional 

statistics and hierarchical animation on the higher level are included. A 

GateArea can then be inherited from the ComposeArea. These model 

constructs increase the ease of model development by depicting repeated and 

recognizable parts of the infrastructure. 

 One of the assumptions in this domain specific extension is that each 

group can behave differently when going through the terminal at the airport. 

This assumption was implemented in the domain specific extension using 

functionalities for advanced passenger generation and scripting. Scripts 

describe the sequence and type of activities of passengers. The advanced 

passenger generation was implemented by a model construct that determines 

the number of passengers in the group, the speed of the group and many 

other passenger specific parameters. For example, a group that consists of 
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one individual experienced business traveler behaves differently than a group 

that consists of a family with three young children going on holiday. The 

routing behavior of these groups was represented in a script applying the 

decomposed functionalities mentioned in Table 3.2. Each script statement 

was a process that the group needs to perform somewhere at the airport and 

a combination of these script statements determines the routing of a group. 

Table 3.3 shows a simple example script of a group of passengers departing 

by an airplane. This script shows the sequence of processes for this departing 

group. 

Table 3.3: Example of a simple script for a group departing by plane 

Script statement: Argument(s): 

Check-in Choose area based on flight number 

Shopping Choose area(s) based on interests and time 

left for shopping 

Wait in gate for 

boarding 

Choose area based on flight number 

Enter airplane  

 

3.3.5 Cases where domain specific extension for airports is applied 

 The model constructs of the domain specific extension for passengers at 

airports were used in different simulation studies. Three different systems will 

be described that have been modeled using these model constructs. The 

three systems deal with different parts of airports and also with different levels 

of abstraction for the areas where passengers stay.  

 The first simulation study involved modeling the complete terminal at 

Amsterdam Airport Schiphol to evaluate passenger processes at a growth rate 

of 40% for the number passengers. Amsterdam Airport Schiphol aims to keep 

all their passengers within one terminal building and simulation models are 

used to evaluate different scenarios for extension (Arends, 1999). The second 

simulation study in which the model constructs of the domain specific 

extension were applied was the challenge from the KLM to divide their 

passengers better over their different check-in counters. Simulation should 

show the effect of different allocation mechanisms without reducing the 

passengers’ freedom to check-in at any location of KLM designated check-in 

counters (De Witt-Hamer, 1999). The third simulation study handled the 

completely new check-in process at a renovated terminal building for 

international traffic at JFK in New York. The simulation study included 

determination of the desired number of check-in counters in this terminal and 

an evaluation of different ways to allocate check-in counters to airlines. 

(Heijman, 1999; Blom and Korf, 2000; Valentin et al, 2003a). 
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3.3.6 First simulation study: One Terminal Concept at Amsterdam Airport 

Schiphol  

Problem 

 Amsterdam Airport Schiphol is an expanding airport that combines all its 

activities in one terminal building. The management of Amsterdam Airport 

Schiphol prefers to keep the one terminal concept when accommodating the 

increasing number of passengers. However, the growth in the number of 

passengers will have effects on passenger logistics, therefore airport 

management wanted insight into the allocation of processes to available 

infrastructure and the configuration of the terminal. Simulation models were 

constructed to show the effects of and Amsterdam Airport Schiphol’s ability to 

handle the expected growth in the coming 20 years for the following design 

issues that the airport management was dealing with: 

• physical separation of passengers of international and Schengen 

flights. 

• determination of locations of shops and entertainment areas. 

• new technologies for passport checks, such as biometric scans. 

• using different floors for certain passengers in the terminal building. 

• enlarge areas where passengers stay. 

• personnel allocation for customs and passport check. 

• personnel allocation for check-in and boarding. 

• allocation of flights and airlines to check-in counters, gates and reclaim 

belts. 

 

Simulation model One Terminal Concept at Amsterdam Airport Schiphol 

 Insight into the effects of all considered issues required a wide range of 

experiments with the simulation models. In this project, first a simulation 

model was built for the current system. This simulation model was validated 

with parameter settings taken from two different days. The validated 

simulation model was used to evaluate effects of alternatives and growth. The 

simulation model consisted of over 1500 instances of different domain specific 

model constructs representing areas and processes to accommodate 

passengers using this infrastructure.  

 The top overview of the whole airport terminal building is shown in Figure 

3.20. The second more detailed level of one of the piers of the terminal is 

shown in Figure 3.21. The pier is composed of single areas, like WalkAreas 

and ConveyorAreas, and composed areas like a Gate-Area, which on its turn 

is a composed area representing a waiting area, a security check and the 

boarding process. 
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Figure 3.20: Model overview of 

Amsterdam Airport Schiphol 

 

Figure 3.21: F-pier of Amsterdam 

Airport Schiphol 

 

 The modeled infrastructure was used by different types of groups that 

represent different types of passengers and visitors, as was explained before. 

The data used to define the unique specifications and behavior of groups was 

based on actual flight schedules and an analysis performed for the project in 

1997 (Babeliowsky, 1999). The actual flight schedules that were applied to the 

simulation model were those for Friday 30th of April 2000, an average day with 

an average flight pattern, and Friday 2nd of July 2000, one of the busiest days 

in the year.  

 The insight for the management of Amsterdam Airport Schiphol was 

created by visualizations and statistical output generated by the simulation 

model. Visualization provided in the simulation model consisted of changing 

colors of the areas triggered by the utilization of the area. The more highly an 

area was utilized, the darker the color that represented the area, rating from 

light green to dark red. The statistical outputs were calculations of 

performance indicators included in each area in the simulation model. As the 

model contained more than 1500 areas, this resulted in a lot of detailed 

statistics. The main performance indicators that were used for analysis of the 

behavior at the terminal were: 

• total time passengers waited, shopped or walked per flight; 

• length of queues at the passport checks for departing passengers; 

• length of queues for the central security boot at the different piers for 

departing passengers; 

• number of passengers that were in one of the main halls at the same 

moment; 

• percentage of passengers that missed their flight. 

 

Verification and validation 

 The validation process of the simulation model consisted of verifying and 

validating the model constructs and the total simulation model. This study was 

the first study to be carried out using the model constructs of the domain 

specific extension for passengers at airports. Each new model construct was 
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tested for a short time in a small simulation model. The model construct was 

instantiated in the large simulation model of Amsterdam Airport Schiphol once 

the model construct had shown valid behavior in the small simulation model. 

 The second step for validation was to compare output of the model with 

measurements of the days under investigation. For validation, we counted the 

number of passengers and measured times for a large set of performance 

indicators during a full day at the airport. Afterwards we compared the 

measured data to the output of the simulation model for that day and we found 

several differences. After discussing the differences with experts at the airport, 

we concluded that the differences had to do with the following uncertainties 

regarding available input data: 

• moment of arriving of passengers at the check-in process; 

• the size of a group influences the handling times for the check-in 

process; 

• the length of the queue influences handling times for the passport 

check; 

• moment of arriving of passengers at the gate; 

• activities of transfer passengers during their stay at the airport; 

• airline companies use a specific capacity for the check-in process. 

 We concluded after consultation with the experts at Amsterdam Airport 

Schiphol that the simulation model was valid for experimentation. 

 

Experiments 

 Evaluation of the output of the simulation models for future flight schedules 

showed that problems could be expected regarding the number of security 

checks that need to be carried out at different gates all over the airport and 

the queues that would result from an expected lower number of available 

security agents. One of the possible solutions that we evaluated using the 

developed simulation model was to combine the passport check and security 

for all departing passengers. The changes that needed to be made for 

experiments with this alternative control were an alternative model construct 

‘gate’ and instantiate additional model constructs in the simulation model to 

represent the security check. These changes in infrastructure were easily 

performed, thanks to the structure of the simulation model and the existence 

of suitable model constructs. 

 The new simulation model with a security check directly after the passport 

check was evaluated with different number of passengers for the two 

evaluated days. Table 3.4 shows one of the main distinctive outputs of these 

experiments, the waiting time of passengers in front of the passport and 

security check. Figure 3.22 is a graph that zooms in at the value for security of 
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the south location and plots the average waiting time for groups of passengers 

(in seconds) against the hour of the day (0 – 24).   

 

Table 3.4: Maximum waiting time for groups of passengers in minutes 

Increase in number of 
passengers 

0% 10% 20% 30% 40% 50% 

Location Process 

West Passport 7.3 7.8 7.4 7.6 9.0 8.7 

West Security 0.6 0.9 0.9 0.9 1.0 1.0 

Central Passport 7.6 7.9 8.4 9.0 9.1 9.7 

Central Security 1.0 1.0 1.0 1.1 1.0 1.2 

South Security 3.5 3.8 3.8 4.0 4.2 4.2 
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Figure 3.22: Waiting time of passenger at security filter in South 

 

Results of the simulation study One Terminal Concept at Amsterdam Airport 

Schiphol 

 The output of the simulation experiments (Arends, 1999) showed that the 

waiting time of passengers at the different halls was within limits. The 

maximum queue time of 8 minutes was comparable with the current queue 

time. The merge of the passport and security check resulted in faster handling 

at the gate, therefore no extension of the number of gates was necessary and 

thus advanced infrastructure investments like more gates or double floor piers 

were not further evaluated.  
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Observations simulation study One Terminal Concept at Amsterdam Airport 

Schiphol 

 Thanks to the hierarchical concept and strong relation between system 

elements and model constructs, the first simulation model that was 

instantiated using the model constructs was developed in less than one day. 

This model included shortest path walking for passengers between 

destinations, scripts for passengers and allocation of flights to check-in 

counters and gates. We expected that the model development would go faster 

if model constructs were used, but less than one day was much faster than 

expected.  

 The first presentation of the simulation model to the problem owners 

triggered a lot of new questions, which could be answered using other model 

constructs to replace existing ones in the model. However, these model 

constructs were not available at the time, so in the next phase of the project 

the development of model constructs and the experimentation with the large 

simulation model went hand in hand. Time pressure resulted in many model 

constructs that were only tested and validated as part of the large simulation 

model. Every time that errors or problems were observed with the new model 

constructs this delayed the modeling process, and also frustrated the model 

developers who became more skeptical regarding the use of the domain 

specific extension. 

 Additional difficulties that the model developers faced were the growing set 

of model constructs. A tendency existed in the project to compose a new 

model construct for each alternative process. For example, only one type of 

check-in counter area was available in the domain specific extension that was 

used to compose the initial simulation model. Over time the domain specific 

extension was extended with versions that represented check-in counter 

areas for groups, versions using statistical distributions, versions using 

conditions for determining the handling time, versions including rules for 

changing capacity based on the number of passengers in queue, versions 

including rules for changing capacity based on the queue time, versions 

making distinctions for different types of luggage, and versions that combines 

several of the above behavior, e.g. statistical distributions and capacity 

changes. In addition the model developers included check-in counter model 

constructs that were pre-configured for the different terminals at Amsterdam 

Airport Schiphol, to reduce the parameter settings that needed to be done 

when a model construct was instantiated into the simulation model. Especially 

the combinations of features made the number of model constructs grow 

considerably, but also decreased the ease of maintenance as the same 
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behavior was implemented in different building blocks without a proper 

inheritance3. 

 The model developers also came across a lack of data regarding future 

situations. The model constructs expected complete flight schedules as input 

data. The flight schedules should include the number of passengers, the 

location of the check-in counters used, and the gate for boarding each flight. 

This information was available for current situations, but not for (far) future 

scenarios. The model developers tried to make custom flight schedules, but 

that turned out to be more difficult than initially suspected, and led to double 

booked gates and check-in counters that were not used at all, where others 

had long waiting times. In reality, a careful planning process is carried out to 

make these allocations. The simulation model with the generated flight 

schedule showed passengers queuing very long and missing their flight, due 

to an impossible flight schedule. The model developers had a hard time 

creating valid simulation runs for future scenarios. 

 Finally, the model developers and problem owners had difficulties with 

understanding what was happening exactly in the simulation model. The 

visualization provided in the areas, i.e. changing colors, was not sufficient, 

while the performance indicators of each individual area were too detailed. 

The problem owners were interested in performance indicators like “how 

many passengers are too late for their flight” or “what is the minimum transfer 

time” but instead they received performance at a much lower level: 

“passengers have been waiting between 06:00 and 07:00 on average 0.03 

seconds to enter WalkArea C24x5right1.” And this example output was 

duplicated over 1500*24 times as each area model construct in the simulation 

model provided this output for each hour of the day. 

 

3.3.7 Second simulation study: KLM check-in allocation  

Problem 

 KLM and partners use the check-in and baggage drop off counters in one 

of the three check-in halls at Amsterdam Airport Schiphol. Within this check-in 

hall KLM is free to allocate flights over the available check-in and baggage 

drop off counters. KLM allows every passenger to check-in at any available 

counter, but the monitors with check-in information show a dedicated location 

to spread the passengers equally over the different check-in counters to 

accommodate fast and easy handling of passengers. The allocation of flights 

over different check-in counters using the monitors has effects on the service 

levels for passengers of KLM flights. In 2000 the allocation of flights was 

                                             
3
  The fact that certain aspects of different building blocks were changed in the same way to create children in the 

inheritance tree could only be solved with code duplication in eM-Plant. Multiple inheritance or aspect-oriented 
programming could have (partially) solved the issue, but is not available in this generic simulation environment. 
Furthermore, this would lead to a new inheritance tree of features, that was not foreseen in the abstraction and 
generalization of the system elements. It will be shown later how this issue was addressed in other studies.  
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performed based on the available time before a flight leaves. The question 

from KLM was whether alternative allocation mechanisms would improve the 

service level and reduce the costs of operations. This question was answered 

using discrete event simulation for the situation in 2000 and for future 

scenarios with more electronic check-in facilities. 

 

Simulation model KLM check-in allocation 

 A simulation model was developed using the model constructs of the 

domain specific extension for passenger movements at airports. Specific 

model constructs were developed to match the system description of KLM. 

The set of model constructs of the airport domain specific extension was 

reduced to ease development, adjustment and use of the simulation model for 

this particular simulation study. The specification of model constructs for KLM 

concerned mainly visualization of the output of the check-in counters using 

graphs and animation of groups moving through the simulation model.  

 

 

Figure 3.23: Simulation model of KLM check-in counters 

 The new model constructs were instantiated to develop a simulation model 

of the check-in area of KLM, see Figure 3.23. The bottom of the figure shows 

the entrance of the check-in hall and the arrow at the top indicates the walking 

direction for the passengers towards the passport check. The passengers 

enter the simulation model at the moment they enter the arrival hall and they 

leave the system when they start queuing for the passport check. The queuing 

process for the passport check, the ticket offices and passengers that walk 

through the check-in hall but do not use the facilities are not included in this 

simulation model. 

 KLM used a scheduling tool that determines the number of active 

operators in a check-in row, based on the flight schedule and additional 
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parameters like the expected percentage of passengers using electronic 

check-in and requiring just a baggage drop-off. The scheduling rules were 

translated to rules in the simulation model based on queue length. Every time 

the queue became longer than a certain number of passengers, an additional 

operator was requested to serve at one of the counters in a check-in row. 

 

Verification and validation 

 The first processes of a simulation study, i.e. model development, 

verification and validation and analysis of the current system, were done as a 

group process. The group consisted of a developer of the domain specific 

extension who instantiated the simulation model, the user of the simulation 

model who would do all simulation experiments for evaluating the solution 

space, a domain expert that acted as problem owner on behalf of the KLM, 

and a facilitator. 

 The user of the simulation model and the problem owner made sure that 

during the model development process all desired input parameters for the 

model constructs were available. The problem owner used a face validation 

process to the instantiated simulation model during a group meeting. This 

face-validity was satisfactory and when the real data was compared with the 

output of the simulation model they judged that the simulation model was valid 

and ready to be used for experimenting to find alternatives in the solution 

space. 

 

Experimentation 

 The simulation model was fed with historical data of passenger arrivals. 

The results showed that queues appeared at different locations during the 

day. Experiments were designed with different mechanisms to allocate 

personnel to check-in counters, and to inform passengers where they should 

check-in during the day. In the morning passengers arrived closer to the 

departure time of their flights, and thus a higher number of passengers use 

the last-moment check-in counters, while passengers for afternoon flights 

arrived well in advance. Different simulation experiments showed that the 

optimal service level would be reached by sending passengers that arrive 

between one and two hours in advance of their flights to go to check-in rows 

10, 11 and 16 in the morning until 10 o’clock, and in the afternoon check-in 

rows 10 and 11 should be dedicated to check-in for flights up to 3 hours in 

advance. De Witt-Hamer (1999) describes many additional experiments that 

were carried out in 2000, for instance a number of scenarios with high e-ticket 

use by passengers. 
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Results of the simulation study KLM check-in allocation 

 The model building group sessions resulted in a valid simulation model 

that the KLM could use for additional experimentation. The experiments that 

KLM performed further (Wit-Hamer, 1999) provided new allocation 

mechanisms and resulted in a more sophisticated planning mechanism. The 

outputs of the simulation experiments and the new allocation mechanisms 

were adopted by the operational check-in department and have resulted in 

new allocations and scheduling of the check-in counters for KLM at 

Amsterdam Airport Schiphol. 

Observations simulation study KLM check-in allocation 

 The possibility to compose KLM-specific model constructs made it very 

easy to carry out this simulation study. Instantiating the model constructs 

created a system representation directly, with representative animation and 

easy to understand performance indicators. In addition, experiments could be 

performed by straightforward parameterization of the input variables of the 

instantiated model constructs.  

 

3.3.8 Third simulation study: Check-in counters at JFK Terminal 4  

Problem 

 International terminal 4 at JFK airport in New York was completely 

reconstructed in the period of 1996 to early 2001, see Figure 3.24. The 

management of this terminal had opportunities to increase the number of 

flights from this terminal significantly by welcoming new airlines at the terminal 

after the construction period. The extension of the number of flights departing 

from the terminal would have effects on the expected service levels, mainly at 

the check-in processes at the terminal. A simulation study was carried out to 

evaluate the service level at the check-in area to consider possible future 

scenarios for growth in the number of departing flights.  

 

 

Figure 3.24: Artist impression of the building of JFK International 

Terminal (Heijman, 1999) 
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Simulation model check-in counters at JFK Terminal 4 

 The simulation model was instantiated from model constructs of the 

domain specific extension for passengers at airports. The scope of the 

simulation model is marked by the box in the middle of Figure 3.25. The 

check-in hall at terminal 4 was represented by areas for the check-in process 

and walk areas. The walk areas allowed passenger to move from the entrance 

of the check-in hall to the check-in counter and out of the check-in hall 

towards the gates and the shops.  

 
 

Figure 3.25: Map of level 2 of terminal 4 (Blom and Korf, 2000) 

 

 Check-in times differ considerably between different airlines. Handling time 

measurements were carried out for all different airlines. The processing times 

were lumped together on destination, based on these measurements, see 

Table 3.5. 

 

Table 3.5: Processing times passengers check-in counters 

Destination Domestic 
USA 

Europe Far East South 
America 

Other 

Processing time 
(min, mean, 
max) 

2 min.;  
2½ min.;  

3 min. 

2½ min.;  
3 min.;  

3½ min. 

2½ min.;  
3½ min.;  

4 min. 

3 min.;  
3½ min.; 4½ 

min 

3 min.;  
4½ min.;  

6 min. 

 

 The scripts to describe the processes of the passengers were kept simple 

and consisted of only four steps: “arrive at the airport”; “check-in”; “say 

goodbye”; “leave to the secured area”. The passengers could arrive at several 

entrances to the terminal. 70% of the passengers in the model arrived through 

the main entrances (see Figure 3.25), with 30 percent arriving by the JFK 

monorail system and then coming down the stairs. Business class passengers 
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were expected to arrive 30 minutes to 2 hours in advance of flight departure, 

economy passengers to arrive between 1 hour and 4.5 hours in advance. 

These passenger arrival times were based on measurements and 

questionnaires. Additional questionnaires among airlines that fly from this 

terminal showed that the patterns for economy and business class 

passengers apply for all airlines. 

 The flight schedules that were used in the base scenario were constructed 

based on projections for future growth and consisted only of predictions for 

airlines currently operating from the terminal. Four additional scenarios were 

created, each with an increasing number of new flights departing from 

terminal 4.  

 The domain specific extension was extended with a model construct for 

this system to allocate available check-in counters to departing flights, in line 

with the specific situation at this terminal. This allocation was also used to 

direct passengers to the correct check-in counter. This model construct took 

restrictions in the infrastructure into account and decided how many check-in 

counters would have to be available for the check-in process for a flight. The 

decisions of this model construct were based on the priority of airlines and the 

expected number of business and economy passengers to check-in. 

 

Verification and validation 

 The verification and validation activities that were performed for this 

simulation model were restricted to a number of tests with extreme input 

parameters. Examples of the extreme input parameters that we used were a 

low number of check-in counters and a high number of passengers on a 

selected flight (Valentin, 2002).  

 

Experiments  

 The first simulation runs showed that the planned check-in counters would 

not be sufficient for the expected increase in the number of flights. Changes in 

the allocation mechanism for allocating check-in counters to airlines resulted 

in an improvement of the waiting times, but still resulted in long queues. 

Alternatives that were evaluated included an increase in the number of check-

in counters.  

 

Results simulation check-in counters at JFK Terminal 4 

 Based on the output of this simulation study the management of Terminal 

4 at JFK decided to increase the number of check-in counters and to do 

additional research into how they would allocate the available check-in 

counters to the airlines in the future.  
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Observations simulation study check-in counters at JFK Terminal 4 

 The simulation study provided the insights that the problem owners of the 

terminal were lacking. The model development using the model constructs 

also went well; however, there were some minor problems. This simulation 

study started with the domain specific extension that was tested and enriched 

during the two previous simulation studies mentioned. In these studies new 

model constructs were added to the simulation environment and this made the 

number of available model constructs larger. As a result, the model 

developers now had difficulty selecting the best model constructs to represent 

their system elements.  

 Another encountered risk was that the layout of the terminal showed 8 

rows of check-in counters. Several airlines would share facilities in one check-

in row. The processes at the individual counters could easily be represented 

by the available model constructs, but in this case no control was initially 

available to open or close additional check-in counters when needed, or to 

pick passengers from a shared queue. It actually required quite some time to 

develop the dedicated model constructs for these controls, and the use of the 

domain specific extension might have been equally or less effective than a 

simulation study using a generic simulation environment. 

 Finally, it turned out that using the domain specific extensions had a steep 

learning curve, and it took the simulation experts with quite some airport 

knowledge a lot of time to understand the way the model constructs should be 

used (Valentin, 2002). 

 

3.3.9 Observations simulation studies domain passengers at airports using 

domain specific extension 

 Based on the activities of Figure 1.8 and the expected benefits and 

potential risks outlined in chapter 2, we learned the following from the three 

experiments using the domain specific extension for airports. 

Activity 1. Problem description & define conceptual model: the problem 

descriptions in the three airport simulation studies were independent of the 

capabilities and available model constructs in the domain specific extension. 

In the first simulation study, a basic domain specific extension was available. 

In the other two simulation studies it was known beforehand that additional 

model constructs were required. 

Activity 2. Select model constructs: for each of the three simulation studies, 

the model developers could select the model constructs based on the 

decomposition of the original system, because the model constructs and 

system elements were similar. The model developers did not need to make a 

translation from system element to a variety of model constructs. 

 Another benefit was that the different domain specific model constructs 

represented were part of an inheritance structure. The selection of the correct 
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model construct could be made based on functionalities that were related to 

the inheritance tree of the domain specific extension. The existence of this 

tree made it easier to select the correct model construct, although the set of 

model constructs was quite large in the end. 

 One of the newly observed risks was that model developers instantiated a 

new model construct as soon as they thought that a system element was 

slightly different from the offered model constructs in the domain specific 

extension. 

 Some of the system elements were represented by the wrong model 

constructs, due to the large set of model constructs available to represent 

check in areas and other areas that were available. The structure of the 

domain specific extension and inheritance helped in selecting, but did not 

prevent model developers from selecting the wrong model construct.  

Activity 3. Data collection: the data collection was a large issue for the first 

simulation study, as there was no information regarding the flight schedule for 

2020 on the level that we needed for the simulation study. The participants in 

the KLM check-in simulation study were informed during the first session, so 

in the second session they brought all the data that was required. In this 

simulation study there was a clearly defined benefit from using predefined 

data requests. 

Activity 4. Instantiate simulation model for original system: the initial 

simulation model for all three simulation studies was developed rather easily 

and fast. The benefit of faster model development was clearly observed. The 

problem owners had insight directly and directly started to make suggestions 

on how to improve the simulation model. In a normal simulation study the 

problem owners would not have that much insight into the model and would 

not interact in the model development phase, but thanks to the model 

constructs the model was understandable and the problem owners recognized 

the layout from their maps.  

 The risk for correctly configuring the model constructs was encountered for 

the model constructs that generated new groups of passengers or triggered 

new destinations in the airports, such as the model constructs used to 

represent information screens for guiding the groups of passengers through 

the infrastructure. These model constructs required quite some data that was 

related to the flight plan, but not as obvious as a map of the airport or duration 

for a process. With some additional training and a demonstration in a small 

simulation model, the model developers sufficiently understood the 

importance of these model constructs and could configure the model 

constructs for the logical routing of passengers. 

Activity 5. Verify and validate simulation model for original system: there 

was insufficient testing of the first version of the library of model constructs, 

and this resulted in several issues during verification process of the simulation 

study for Amsterdam Airport Schiphol. The fact that the model developers 

were testing the model constructs instead of their simulation model caused a 
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reduction of trust in the quality of the model constructs with the problem 

owners. 

 The model developers did not allow time for full testing and in two 

situations started to make their own adjustments to the model constructs at 

moments that errors were observed during the model development. Once the 

model constructs were completed the simulation model still behaved 

differently, because adjustments to the model constructs in the domain 

specific extension no longer had an effect on the model constructs 

instantiated in the simulation environment. This risk was mainly encountered 

due to the openness of the simulation environment used, allowing the model 

developer to change the logic of the domain specific model constructs.  

Activity 6. Analyze output of simulation model: the model developers had 

the possibility to define a large amount of areas, a lot of group types, and 

different kinds of mechanisms to manage passengers and flights. Each of the 

model constructs that was used to represent the behavior of these system 

elements also collected a bunch of statistics. The model developers were 

overwhelmed by the amount of information that the system produced and it 

took them a lot of time to find out how to handle the data.  

Activity 7. Define solution for analyzed output: the solutions that were 

defined were prepared, and confirmed by the analysis of the output data. The 

benefit of the parameters of the model constructs was not really confirmed, 

but the feared risk of limiting the model developers has not been encountered 

during the simulation study. 

Activity 8. Instantiate simulation model for identified solution: the 

simulation models could be instantiated and parameterized for the new 

simulation experiments. Unfortunately, the main set of experiments of the first 

simulation study required a lot of additional data to be defined, mainly a valid 

plan for flights and use of gates. Such a plan was not available and thus was it 

very hard to perform the experiments for the future situation. This is not 

caused by a potential risk of use of domain specific extensions, it would also 

have occurred in a simulation study where only generic model constructs 

would have been used. 

Activity 9. Verify and validate simulation model for identified solution: 

the same expected benefits and potential risks applied as for the verification 

and validation of the simulation model for the original system. 

Activity 10. Analyze output of simulation model for identified solution: 

the same expected benefits and potential risks applied as for the analyze 

output of the simulation model for the original system. 

 

3.4 Benefits and risks in the case studies 

 The simulation studies that were carried out in the two domains provided 

us with new insights into the effects of using a domain specific extension to 

compose simulation models. First of all we enjoyed many of the expected 

benefits that were predicted in literature (chapter 2). The simulation studies 



3.4 Benefits and risks in the case studies  

76 

were performed correctly and the problem owners were satisfied with the 

result.  

 The use of model constructs of the domain specific extension was not a 

complete victory. The concepts and approach helped with developing model 

constructs for a domain specific extension, but we encountered still most of 

the risks that we had identified from literature. We could mitigate most of the 

risks reasonable easily, because we were prepared for them, but the time and 

effort spent to mitigate the encountered risk in the simulation study could 

better have been used to improve the quality of the insight generated for the 

problem owner by the simulation study.  

 A summarizing overview of the benefits and risks that were introduced in 

chapter 2 and whether or not they were observed in the simulation studies in 

the domain is provided in Table 3.6. If “No” is filled in for a potential benefit it 

means that in the case studies for this domain we did not observe effects of 

the expected benefit. This is not negative, but points out that the case study 

has the potential of being even more effective. Potential risks that we did not 

observe during the execution of the case study (“No” in the table) probably did 

not occur and thus that the potential risk has been avoided by the way the 

domain specific extension was designed, structured and used.  

 In Table 3.6 we also describe the effect of the benefit or encountered risk 

to the simulation study. The effects of the benefit are described in relation to 

carrying out the same simulation study using model constructs of a generic 

simulation environment. The effects of encountering the risks are mainly the 

way that the risk has been mitigated. 

 

Table 3.6: Summary of benefits and risks in the case studies 

Expected benefits and potential risks Observed 
in case  
AGVs 

Observed 
in case  
Airports 

Activity 1. Problem description & define conceptual model 

Benefit 1.1: conceptualize system elements with 
model constructs in mind 
- faster conceptualization 
- conceptualization is better prepared for model 
instantiation 

Not 
applicable 

Yes 

Risk 1.1: scope of model developer is limited by model 
constructs 

Not 
applicable 

No 

Activity 2. Select model constructs 

Benefit 2.1: no translation between system elements 
and model constructs 
- reduction of complexity 

Yes Yes 
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Activity 2. Select model constructs 

Risk 2.1: lack of trust results in no motivation to use 
domain specific extension 
- talk to model developers to explain potential benefits 
- show use of model constructs in other project 

No Yes 

Risk 2.2: lack of insight in model constructs results in 
ignore domain specific extension 

Not 
applicable 

Not 
applicable 

Risk 2.3: use of model constructs that are not suited 
for representation of system elements 
- training of model developers 
- include additional terminology in interface of model 
construct 

No Yes 

Activity 3. Data collection 

Benefit 3.1: collection of predefined input data No No 

Activity 4. Instantiate simulation model for original system 

Benefit 4.1: less model constructs used 
- simulation model is instantiated faster 
- simulation model seem better understandable 

Yes Yes 

Risk 4.1: model developers do not understand model 
construct 
- training of model developers how to use model 
construct 

Yes Yes 

Risk 4.2: model developers do not know how to 
parameterize model construct 
- training of model developers how to use model 
construct 
- additional terminology in interface of model construct 

Yes Yes 

Risk 4.3: difficult to compose simulation model, 
because model constructs are not available 
- create additional model constructs to satisfy need in 
simulation study 

Yes Yes 

Activity 5. Verify and validate simulation model for original system 

Benefit 5.1: no more detailed testing 
- reduction of time spend by model developer 

No No 

Benefit 5.2: easily gathering validation data 
- reduction of time spend for data gathering 

Not 
applicable 

Yes 

Benefit 5.3: structured and standardized performance 
indicators 
- easier gaining insight in performance of a system 

No Yes 

Risk 5.1: mistakes of model developer are hard to 
overcome 
- training of model developers how model constructs 
were meant to be used 
- spend extra time to verify simulation model 

Yes Yes 

(continued at next page) 
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Activity 5. Verify and validate simulation model for original system 

Risk 5.2: model developers know something is wrong, 
but cannot identify what to do about it 
- training of model developers how to interpret results 
- extra performance indicators and animation in model 
constructs 

No Yes 

Activity 6. Analyze output of simulation model 

Benefit 6.1: structured and standardized performance 
indicators 
- easier gaining insight in performance of a system 

Yes Yes 

Risk 6.1: model constructs do not provide 
performance indicators problem owner desired 
- extend model constructs with extra performance 
indicators 

Yes Yes 

Activity 7. Define solution for analyzed output 

Benefit 7.1: model developers are triggered to find 
new solutions by parameters 
- more insight gained thanks to more experiments 

No Yes 

Risk 7.1: model developers are triggered to find new 
solutions by parameters 

Yes Yes 

Risk 7.2: model developers are limited by parameters 
and model constructs 
- extend model constructs with extra input parameters 

Yes Yes 

Activity 8. Instantiate simulation model for identified solution 

Benefit 8.1: easy adjustment of model thanks to user 
interfaces of model constructs 
- easier to prepare simulation model for 
experimentation 

Not 
applicable 

Yes 

Risk 8.1: solution is identified that can not be 
represented by model constructs 
- Ignore possible solution 
- extend model constructs and set of model constructs 

Yes Yes 

Risk 8.2: adjustments of model constructs required to 
represent solution are time consuming 
- spend required time to fix model 

Yes Yes 

 

 The mentioned expected benefit and potential risks were not applicable for 

the AGV project for activity 1 “problem description & define conceptual 

model”, because the model constructs had not been developed when the 

simulation study started. In the simulation studies of the passengers at airport 

the model constructs were already available, but model developers demanded 

additional model constructs instead of limiting the conceptual models. 

 The risks resulting in ignoring the domain specific extension in activity 2 

“select model constructs” were not encountered in these simulation studies, 
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because the model developers were forced in these simulation studies to use 

the domain specific extension. They could not ignore the domain specific 

model constructs and received additional explanations until they were 

convinced that the domain specific extension was the best way to carry out 

the simulation studies. 

 The OLS system and the future terminal at JFK did not exist at the time of 

the simulation studies. Therefore it was not possible to collect validation data 

and thus the benefit of easily gathering validation data did not apply to the 

domain specific extension for AGVs. In the simulation studies for the 

passengers at Amsterdam Airport Schiphol and the KLM the validation could 

be collected and in those studies the benefit regarding validation was 

observed. 

 The benefit of easy adjustments thanks to the interface of model 

constructs did not apply to the use of the model constructs of the domain 

specific extensions of the AGVs. The models could easily be adjusted, but the 

model constructs did not have a user interface. The changes were made 

directly in the logic or the attributes, not via a dedicated user interface. The 

model constructs of the domain specific extension for airports were extended 

with user interfaces. In the simulation studies using these model constructs 

the benefit was applicable and observed. 

 The risk of ‘Model developers are triggered to find new solutions by 

parameters’ is special, because to this encountered risk no counter actions 

have been carried out. The reason is that this risk is encountered after the 

experimentation and solution finding is finished.  

 

3.4.1 New benefits and unexpected risks 

 We made more observations during the case studies that can be 

generalized to additional benefits of using domain specific extensions in a 

simulation study. These benefits had similar effects as the expected benefits 

identified in chapter 2. We also encountered some unexpected risks. These 

risks have been mitigated by extra activities. The new benefits, the 

unexpected risks and their respective effects and activities to mitigate them 

are listed in Table 3.7. 

 For the new benefit 8.2 and 8.4 in activity 8 “Instantiate simulation model 

for identified solution” we have to give a remark: “Partly” because these 

benefits applied in the majority of the changes that were made to the 

infrastructure of the AGV terminals or the areas in the airport. Unfortunately, 

these benefits did not apply to the model constructs for controls or processes. 

The model constructs as developed in the domain specific extension did not 

allow for composition of a control or process system and the model constructs 

could not be replaced easily, because other instantiated model constructs 
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were connected and depended on the originally instantiated model constructs. 

Thus, we observed benefits, but not as consistently as expected. 

 

Table 3.7: New benefits and unexpected risks of use of domain specific 
extensions in simulation studies 

New benefits and encountered risks Observed  
in case 
AGVs 

Observed 
in case  
Airports 

Activity 1. Problem description & define conceptual model 

No additional benefits or risks have been observed for this activity 

Activity 2. Select model constructs 

New benefit 2.2: compose model constructs from 
developed domain specific model constructs to 
represent system elements 
- more flexibility during model development 
- easier to develop models 

Yes Yes 

New benefit 2.3: easy selection of model construct 
thanks to structure of domain specific extension 
- faster model development 

No Yes 

New risk 2.4: system elements can not be 
represented by model constructs 
- develop very specific model constructs 

Yes Yes 

New risk 2.5: compose model constructs from 
developed domain specific model constructs only 
applied for infrastructure system elements 
- develop very specific model constructs 

Yes Yes 

New risk 2.6: model developers can adjust internal 
logic of model constructs 
- Change internal logic back to original state 

No Yes 

Activity 3. Data collection 

No additional benefits or risks have been observed for this activity 

Activity 4. Instantiate simulation model for original system 

New benefit 4.2: model development faster and easier Yes Yes 

New benefit 4.3: model development by simulation 
novices 
- simulation model can be developed by persons who 
are no simulation experts 

Yes Yes 

New risk 4.4: difficult to compose simulation model by 
person other than developer(s) domain specific 
extension 
- training by developer of domain specific extension 

Yes Yes 
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Activity 5. Verify and validate simulation model for original system 

New benefit 5.4: semi-automatic reporting of 
performance indicators 
- easier to gain insight in performance indicators 
- easier to report on performance indicators of 
simulation model 

Yes Yes 

New benefit 5.5: observe animation at different levels 
of the composition: high level and at individual model 
construct 
- easier to gain insight in system 
- possible to gain top-down insight in system 

Yes Yes 

Activity 6. Analyze output of simulation model 

New benefit 6.2: semi-automatic reporting of 
performance indicators 
- easier to gain insight in performance indicators 
- easier to report on performance indicators of 
simulation model 

Yes Yes 

Activity 7. Define solution for analyzed output 

No additional benefits or risks have been observed for this activity 

Activity 8. Instantiate simulation model for identified solution 

New benefit 8.2: easy adjustment of model thanks to 
replacement of model constructs 
- faster preparation of simulation model for 
experimentation 

Partly Partly 

New benefit 8.3: easy visualization thanks to 
incorporation of visualization in model constructs 
- faster model development 

Yes Yes 

New benefit 8.4: composition of new model constructs 
enabled new solutions to be evaluated 
- flexibility in performing simulation experiments and 
thus more insight in system 

Partly Partly 

New risk 8.3: replacement of model constructs causes 
errors in model constructs that were linked or 
connected. 
- spend required time to fix model 

Yes No 
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4 Testing domain specific extensions in a 

laboratory setting 

4.1 Introduction 

 The use of model constructs of a domain specific extension in case studies 

have shown that participants encountered some of the known and new risks. 

The observations also resulted in conclusions regarding the advantages of 

using model constructs of a domain specific extension instead of using model 

constructs of a generic simulation environment. The case studies have been 

executed using the model constructs of new developed domain specific 

extensions. The case studies do not prove that they were more effective than 

if the simulation studies would have been carried out using model constructs 

of a generic simulation environment, for the simple reason that the size and 

availability of experts to carry out the simulation study did not allow to perform 

the case studies in two ways.  

 To date, very little research has been published that compares the use of 

domain specific extensions with the use of model constructs of generic 

simulation environments for problem solving. This type of research is provides 

additional insight to answer the question regarding why model developers do 

not use domain specific extensions. Three laboratory experiments, in which 

80 novices and experts in simulation used simulation models to answer 

questions for a public transportation case, are described in this chapter. The 

simulation models were developed using either a domain specific extension or 

a generic simulation environment, so that a comparison could be made 

between the two types of model constructs. 

 The results of this comparison will be a first confirmation of the mentioned 

risks and provide the first insight into the causes and ways to mitigate these 

risks during a simulation study. The laboratory experiments have been 

simplified compared to a real-life simulation study, but because of these 

simplifications we can better identify the existence of risks described in 

literature and their causes. In this chapter we describe the main findings of the 

laboratory experiments. The full detailed analysis of the laboratory 

experiments has been described in a number of papers (Kolfschoten et al, 

2006; Kolfschoten et al, 2010; Valentin et al, 2003a; Valentin et al, 2003b). 

 

4.1.1 Model development for problem solving 

 The laboratory experiments that are described in this chapter investigate 

the difference between using generic and domain specific extensions on the 

effectiveness of a simulation study. In the laboratory experiments we measure 

how much of the required insight for the problem owner is provided by the 
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model developers. The effectiveness of the simulation studies carried out with 

domain specific or generic simulation environments is the gap between the 

requirements of the problem owners and the insight that the model developers 

provide during the laboratory experiments. 

 In the laboratory experiments the model developers had several ways to 

provide insight to problem owners. In the first laboratory experiment we only 

focused on the number of simulation experiments they could perform. In the 

second and third laboratory experiment the model developers had the 

freedom to provide insight in the way they considered best. In the second and 

third laboratory experiments the model developers had total modeling freedom 

for animation, level of detail, and types of performance indicators.  

 The objective measurement in the laboratory experiments was the 

“number of questions answered with required quality”, see the block on the 

right of Figure 4.1. In the first laboratory experiment the answers were 

provided as quantitative output of simulation experiments, in the second and 

third laboratory experiment the model developers also used other ways to 

answer the questions. The simulation experiments in the second and third 

laboratory experiment dealt with parameter settings, policy change, and 

influences in values of data input and sensitivity analysis to values of 

performance indicators. 

 

 

Figure 4.1: Causal diagram of problem solving with simulation models 

 

 The open blocks with their causal relations in Figure 4.1 are the 

intermediary steps the model developer had to take during the problem 

solving process. The diagram shows the relation between understanding a 

simulation model and the answers provided to the questions of the problem 

owners. Based on Pater and Teunisse (1997) and Diamond et al (2002) it is 

assumed that having fewer actions will improve the understandability of the 

simulation model. The improved understandability will reduce the amount of 

time that needs to be spent performing a simulation experiment.  
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 The main variable that was varied in each of the laboratory experiments 

was the domain specificity of the simulation environment that the model 

developers were using. The system used in the laboratory experiments was 

public transportation using light rail. This system can be modeled using a 

generic simulation environment that takes into account resource allocation, or 

using a domain specific extension, designed for systems that fit the problem 

domain rail networks and passengers. The domain specific extension was 

specifically developed for the laboratory experiments. The questions of the 

problem owners within the laboratory experiments were taken into account 

when the model constructs for the domain specific extension were developed.  

 In the causal diagram (Figure 4.1) it is shown that the match between 

model constructs and the problem has an effect on the number of actions to 

be carried out. The model developers need to make adjustments to the model 

constructs if a system element can not be modeled with the provided 

implementation. This requires a lot of insight into the internal working of the 

model construct and quite some time to gather this insight and make the 

changes. Adjusting a model construct of an existing domain specific extension 

requires detailed insight into the way the model constructs of the simulation 

environment are implemented. It was in this case not possible to find 

volunteers with enough time and competences and skills in the field of 

discrete event simulation.  

 The three causal blocks at the left-hand side of Figure 4.1 are the variables 

that were varied between the three laboratory experiments. “Experience of 

simulation model developer” was evaluated using novices for the first and 

second laboratory experiment and experts for the third laboratory experiment. 

The participating novices were engineering students that had followed 

courses on discrete event simulation and the participating experts were 

professionals working full-time for a simulation vendor, each of whom had at 

least 5 years of professional experience.  

 The level of “Complexity of question from problem owners” and the 

“Quality level desired by problem owners” varied from simple and predefined 

in the first laboratory experiment to complete and open for the model 

developers in the third laboratory experiment. This was achieved by providing 

participants with different assignments. In the first laboratory experiment the 

participants received a valid simulation model that needed to be adjusted for 

several pre-defined simulation experiments. In the second and third 

experiment the participants started with an empty model. The assignment for 

the participants of the second laboratory experiments was to design a 

simulation model that would be usable for experimentation and in the third 

laboratory experiment the participants had to design an optimal layout for the 

rail network. 
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 The ‘+’ and ‘-‘ signs for the relations in the causal diagram were obtained 

using the following assumptions, to be confirmed by the laboratory 

experiments. In the laboratory experiments we will refer to causal relations as 

described in Table 4.1 and taken from Figure 4.1. 

 

Table 4.1: List of causal relations 

ID Relation Explanation 

1 Experience ->  
Number of actions 

A more experienced model developer will be able to 
achieve the same result with fewer actions. 

2 Complexity ->  
Number of actions 

A more complex question will require more actions 
to represent the system in a model. 

3 Quality level desired 
-> Number of actions 

A higher level of quality required by the problem 
owner requires more actions of a model developer. 

4 Domain specificity ->  
Number of actions 

Instantiating a model using a domain specific 
extension requires fewer actions of the model 
developers than using a generic environment. 

5 Match model 
constructs -> 
Number of actions 

If the model constructs match the requirements, the 
model developer does not need to change and 
adjust the model constructs. If the model constructs 
do not match, the model developer has to perform 
more actions. 

6 Number of actions -> 
understand model 
constructs 

If more actions are required to develop a model, 
then this makes it more difficult to understand how 
model constructs in the simulation model represent 
parts of the system. 

7 Number of actions -> 
understand model 
structure 

If more actions are required to develop a model, 
then this makes it more difficult to understand the 
model structure. 

8 Domain specificity -> 
understand structure 

When instantiating a model using a domain specific 
extension, it costs less effort to understand the 
structure of the model. 

9 Understand model 
construct -> time 
spent 

Better understanding of the model constructs result 
in less time spent for an experiment 

10 Understand structure 
->  
time spent 

Better understanding of the simulation model 
structure results in less time spent for an 
experiment 

11 Time spent ->  
Number questions 

Less time spent to carry out an experiment enables 
the model developer to carry out more experiments 
and thus answer more questions of the problem 
owner. 
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4.1.2 Case used in laboratory experiments 

 The case study applied in the laboratory experiments was based on a 

master thesis project at Delft University of Technology by Brandt (1999). This 

master project concerned the analysis of possible vehicles, cost calculations, 

design of the route and analysis of logistical performances using simulation 

models. The case study is described in the block text below in the same way it 

was described to all participants in the three laboratory experiments. This 

introductory description was extended with information and specific questions 

that were different for each of the three laboratory experiments. In the first 

laboratory experiment the questions of the problem owners were formulated in 

the form of precisely defined simulation experiments that the participants had 

to perform. In the second laboratory experiment the participants had to 

compose a valid simulation model that represented the 2010 situation and a 

fixed timetable for the vehicles. Participants in the third laboratory experiment 

received the assignment to come up with an optimal solution for the situations 

in 2015 and 2020 given three possible vehicle vendors. 

 

Over the last years new metropolitan areas have evolved in the area between The 

Hague Central Station (CS) and the VINEX location Ypenburg. A completely new ‘city’ 

has been developed in Ypenburg and in the area between the highway and the Central 

Station a lot of new office space has been created. Due to these building activities the 

throughput levels on the existing transport infrastructure have increased and the result is 

that traffic jams occur each morning and evening and parking a car is becoming 

increasingly challenging. An alternative to the car can be provided by high quality 

automated mass-transportation systems. The policy makers of The Hague looked at 

various alternatives for automatic transportation by monorail which they liked. 

In 1999 the SkyShuttle project started to investigate the added value and necessary 

investment required for a high quality mass transport system. This system should be 

equipped to handle 15,000 people per a day of which 70% will travel during peak hours. 

The consultant companies Advanced Netherlands Transport (ANT) and Bohemen 

Beheer BV have designed some routes. The map of the area with the most likely route, 

according to the involved transportation experts is shown in Figure 4.2. The yellow 

stations will be the first to be implemented, the red stations are future extensions 

expected to be completed in 2015 and 2020.  

At these different stations the number of passengers fluctuates over time. In the morning 

the main flows will go from Central Station to Brinkhorst (the major office centre) and 

from Ypenburg to either Central Station or to Brinkhorst. In the evening the main 

passenger flows will be in the opposite direction. Besides commuter traffic, leisure 

related traffic to HTS and GAVI
4
 and business related traffic to the Brinkhorst is expected 

to use the same infrastructure.  

The rough calculations performed by the SkyShuttle project team showed possible 

benefits. The next step identified by the project team was to provide some additional 

sources of information regarding the feasibility of the monorail concept. They identified 

simulation as the methodology that should be used to do this, as simulation can be used 

to model logistic flows and to visualize them. 

                                             
4
 HTS = Shopping mall ; GAVI = new soccer stadium of ADO Den Haag 
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The project team wants you to carry out a very short simulation study to provide some 

data and a good visualization. Unfortunately due to competitors in the project, bad 

planning and some other excuses, the simulation study is required to provide some 

results fast.  

The map of the expected route between The Hague and Ypenburg is shown in Figure 

4.2. A completely new and advanced automatic transportation system is dealt with in this 

case study. Although the route is fixed, a lot of design choices are still open and these 

need to be evaluated using simulation. Some of the choices are: 

• type of vehicle, monorail versus cable mover, large versus small vehicles, fast 

versus slow 

• number of vehicles 

• daily pattern of the vehicles 

• number of platforms at stations 

• number of tracks between stations 

 

 
Figure 4.2: Expected route for the SkyShuttle transportation system 

 

All these choices need to be evaluated for a large range of assumptions, one sub-set of 

assumptions that need to be varied to give a complete overview of the situation is: arrival 

pattern of passengers, origin-destination of passengers, effects of new offices on leisure 

activities in the region, effects of linking the new system to present public transportation 

(bus and train) systems. 

 

4.1.3 Domain specific extension for rail networks 

 No domain specific extension was available to implement monorail / light 

rail networks and to observe performance indicators for individual passengers. 

Therefore a new simulation environment was developed for passengers in rail 

networks, based on the problem description of Brandt (1999) and simulation 

studies of rail networks for passengers (Hooghiemstra and Teunisse, 1998).  

 The systems that were evaluated in the simulation studies of Brandt (1998) 

and Hooghiemstra and Teunisse (1998) were decomposed, as described in 

section 2.4, using the object oriented decomposition and process oriented 



  4 Testing domain specific extensions in a laboratory setting 

   89  

decomposition. The object oriented decomposition resulted in the system 

elements station, platform, track, vehicle and passenger. The process 

oriented decomposition provided process flows for the entities vehicle and 

passenger. The identified system elements were all translated into domain 

specific model constructs. These domain specific model constructs have been 

composed using generic model constructs of the simulation environment 

Arena. 

 

Model constructs to represent infrastructure  

 The physical network consists of three model constructs; track, station and 

platform. The configuration of these model constructs can be retrieved directly 

from the drawing of the system. Changing the configuration is not difficult 

thanks to the domain specific interface of the model constructs; an example is 

shown in Figure 4.3. A simulation model of an example network using the 

infrastructure model constructs of the domain specific extension is given in 

Figure 4.4. 

 
Figure 4.3: Model construct "Track"  

with visualization and interface for parameters 

 

 

 

Figure 4.4: Screen dump of the physical network in a simulation model 
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 The model construct “Station” is an implementation of a connection 

between two or more tracks. The “Station” provides one or more platforms 

where passengers can get into or out of vehicles. Several processes take 

place at the platform. Among these processes are ‘passenger waits for a 

vehicle’, ‘passenger enters vehicle through a door, ‘vehicle stops and leaves’ 

and ‘vehicle enables passengers to leave’ when they arrive at the platform of 

their destination station.  

 The model construct “Track” connects the stations in the network. Tracks 

can be of the type single or dual direction. Single direction means that 

vehicles can move only from one start station to the end of the track. Dual 

direction means that a security system is included so that vehicles can move 

in both directions along a track. The network in Figure 4.4 shows single tracks 

between all instances of the station model construct. 

 

Model constructs to control passenger and vehicle entities 

 The two types of entity, ‘passenger’ and ‘vehicle’, have their own control 

mechanisms. These control mechanisms describe the process of the entities 

and their use of the infrastructure, i.e. tracks and stations. The process of the 

passenger is represented in Figure 4.5 and instantiated in the model construct 

“PassengerControl”.  

 

Generation of 

passenger
Arrive at station

Wait for vehicle at 

platform

Enter vehicle if 
destination is 

correct and place 

available

Wait till vehicle 
arrives at 

destination statoin

Leave vehicle 
through door

Destroy 
passenger after 

saving statistics

 

Figure 4.5: Abstract representation of the process of passenger entity 

 

 The process of the vehicle entity is shown in Figure 4.6. This process is 

implemented and managed by the model construct “VehicleControl”. The 

figure shows only the main process steps.  
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Trigger for vehicle 
to start; vehicle 

moves from 
“storage”

Move to first 
station

Stop at designated 
platform

Open doors so 
passengers can 
leave and enter

Close doors when 
moment of leaving 

has arrived

Move over track to 
next station

Save statistics of 
trip; vehicle moves 

to “storage”

no

Vehicle has 
next 

destination

yes

 

Figure 4.6: Abstract representation of the process of vehicle entity 

 

Validation of the domain specific extension 

 The model constructs of the domain specific extension were verified and 

validated by instantiating several small simulation models of imaginary 

situations and one simulation model of a real problem system. The small 

simulation models showed that the model constructs worked as expected. 

Passengers reached their final destinations and vehicles waited for other 

vehicles to clear platforms and pick up available passengers (Valentin et al, 

2003a).  

 The real-life simulation model represented the same system Brandt (1999) 

studied. The same input parameters were used to validate the behavior of all 

the model constructs in a model. Brandt identified the number of travelled 

kilometers of vehicles and passengers and utilization of vehicles as main 

performance indicators. The simulation model developed using the domain 

specific extension for rail networks showed the same values with a 95% 

confidence interval for these performance indicators. 

 

4.2 First laboratory experiment: experimenting with an existing 

simulation model 

4.2.1 Set up of the first laboratory experiment 

 The first of the three laboratory experiments can be seen as a follow up of 

the initial study performed by Brandt (1999). Simulation experts had already 

developed simulation models, using the domain specific and generic 

simulation environment, and the participants had to perform different 

simulation experiments using these models. The required list of experiments 

was predefined by the problem owner. The simulation study will be effective 

for the problem owner if all desired experiments are performed. The 

proposition for this laboratory experiment is: 
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Simulation novices who use a simulation model composed of 

domain specific model constructs perform more simulation 

experiments than simulation novices who use a simulation model 

composed of model constructs of a generic simulation environment. 

 In Figure 4.7 circles are drawn around the main items in the causal 

diagram that are evaluated during the first laboratory experiment. The 

participants have to understand the simulation model, i.e. the structure and 

the interface, and with an understanding of the model they can answer 

questions from the problem owners that deal with either the type of vehicles or 

with the infrastructure of stations and tracks. The participants were allocated 

to the domain specific extension or the generic simulation environment at 

random.  

 
Figure 4.7: Focus of the first laboratory experiment 

 

 The participants of this laboratory experiment were 30 full-time students 

from the Faculty of Technology, Policy and Management of Delft University of 

Technology in their third and final year of their bachelor degree, or in the first 

year of their master degree. All these students had received a basic education 

in the use of Arena (a 160 hours course) and they had carried out a small 

simulation project (80 hours course). With only educational experience these 

participants can be called novices in simulation modeling. The laboratory 

experiment took 6 hours, including preparations and filling in the final 

questionnaire.  

 The group of participants was randomly divided into two groups. 

Participants of one group used simulation models that were constructed using 

model constructs of the domain specific extension for rail networks. The 

second group used simulation models that were constructed using model 

constructs of the generic simulation environment Arena. Neutral observers 

evaluated both models to check whether the simulation models were good 

and understandable (Valentin et al, 2003a).  
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 The participants received documentation about how the simulation models 

worked and where changes could be made. This was described in two 

different documents, because the individual participants received specific 

support documentation based on the simulation environment they used.  

 All participants received the same set of requests for additional simulation 

experiments after approximately two hours of learning how the simulation 

model worked (Table 4.2). The last two columns in the table are performance 

indicators of the simulation model. The participants of the laboratory 

experiment had to fill in these performance indicates after they finished the 

simulation experiment. The first assignment consisted of 15 different 

simulation experiments all concerning adjustments to vehicle behavior. The 

second assignment consisted of 15 simulation experiments that focused on 

adjustments to the infrastructure. 

 

Table 4.2: Part of the 15 simulation experiments to be performed by 

laboratory participants for the first set of assignments 

Description Average 
waiting  

Max. 
delay 
vehicle  

Change the type of vehicle from Hovair to the monorail of Siemens with 
one carriage (similar intervals for starting from CS, different timetable) 

  

Change the type of vehicle from Hovair to the monorail of Siemens with 
two carriages (similar intervals for starting from CS, different timetable) 

  

The Hovair vehicle will move each 10 minutes, in addition extra vehicles 
will be used during peak hours. Morning peak hours are from 8 till 10, 
afternoon peak hours are from 17 till 19. These extra vehicles will 
consist of two carriages and move each 5 minutes.  

  

 

 The participants finished their laboratory experiment by filling in a 

questionnaire that was used to evaluate their level of satisfaction. The 

questionnaire was also used to observe the other relations of the causal 

diagram (Figure 4.1).  

 

4.2.2 Insights gathered, based on output of the first laboratory experiment 

Observations during the experiment 

 A separate modeling assignment based on the Arena modeling exam of 

2001 showed that the 30 participants of the first laboratory experiment could 

be divided into two types of participants. 22 participants scored good, between 

25 and 35 points out of 40 available points for the assignment, and 8 

participants scored low, between 15 and 25 points. Participants were 

assigned randomly to work with the domain specific or generic simulation 

environment, taking into consideration the score of the modeling assignment 

to ensure even spread of high and low performers.  
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 The participants started with 2 hours of learning to use simulation models 

of public transportation in their simulation environment. The individuals 

working with the generic simulation environment used the opportunity to ask a 

lot of questions regarding the simulation model. These questions covered 

topics such as how to make certain adjustments, what the meaning was of 

various things in the simulation model, and why certain model constructs in 

the generic simulation environment were used. The participants using the 

simulation model developed in the domain specific extension asked only a 

couple of questions. They read the material and started immediately to make 

step-by-step adjustments to the example simulation models using the 

example assignment. 

 The participants were all very motivated. They behaved as if they were 

competing as groups to use the alternative systems. As a result all students 

worked as hard and well as possible to tackle as many possible experiments 

even though the participants with the generic simulation environment soon 

noticed that the participants with domain specific extension moved faster 

through the experiments. 

 

Prescribed simulation experiments 

 The first set of simulation experiments that the participants received dealt 

with the selection of the kind of vehicles to be used on the transport system. 

This meant that the participants had to perform simulation experiments with 

more vehicles, larger vehicles or faster vehicles. The changes they had to 

make to develop simulation models that could be used for these simulation 

experiments were comparable to the changes they made during the first 

example assignment. The participants could easily repeat their actions, 

because they recognized the steps they needed to do to adjust the simulation 

model for the experiments. 

 The forms where participants logged the output of their experiment showed 

that it did not matter for the participants with good Arena skills whether they 

used the domain specific or the generic simulation environment for these first 

set of assignments. The participants with good modeling skills succeeded in 

running between 9 and 12 simulation experiments with valid results. This 

comparable number of simulation experiments can be explained by the small 

number of actions the participants needed to carry out for changing the 

simulation models. The experiments to be performed were also highly 

repetitive, for 15 simulation experiments two or three very similar adjustments 

to the simulation model needed to be made.  

 The use of the domain specific or generic simulation environment showed 

a clearer difference for the participants with low modeling skills. The 

participants with low modeling skills who had to use the domain specific 

extension performed 6 to 10 valid simulation experiments. The other 
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participants with low modeling skills using the basic simulation environment 

performed no more than 3 valid simulation experiments, most none at all. The 

reason was that these participants could not find where to make the changes 

and therefore began looking at the detailed logic of the simulation model. 

Evaluating the logic of the simulation model made it difficult for the 

participants to find the parameters required to adjust. The participants using a 

simulation model in the domain specific extension did not have to understand 

the detailed logic inside the domain specific model constructs. They could 

adjust the parameters in the user-interfaces of the model constructs. 

 In the second set of simulation experiments the participants had to adjust 

the infrastructure, i.e. add extra stations with platforms and tracks. The 

participant had 2 hours for several simulation experiments regarding 

alternative layouts of tracks and stations. After 2 hours the difference between 

generic and domain specific was clear. The participants with the generic 

simulation environment were still making changes to the simulation model for 

the first simulation experiment. The participants with the domain specific 

extension had performed 4 to 8 valid simulation experiments. The number of 

valid performed experiments was not as high as in the first set of experiments, 

because they made several mistakes while changing their models: 

• they carried out no verification or validation after they made the 

changes to the simulation model and thus they did not observe 

deadlocks of waiting trains; 

• they forgot to enter some data values. The adjustments that had to be 

made for the second set of simulation experiments concerned the 

model constructs of infrastructure and control, because a new station 

implied a new timetable for the vehicles. 

 The participants using the domain specific extension still had sufficient 

time to adjust their simulation models and to correct their mistakes once they 

realized the shortcomings of their first experiments.  

 

Observations based on the questionnaire 

 The participants finalized their activities for the laboratory experiment by 

filling in a questionnaire to evaluate whether they felt satisfied with the 

correctness and validity of their simulation results. The participants had to 

score 7 statements on a scale from 1 to 5. A score of 1 indicated that they 

completely disagreed with a statement while a score of 5 indicated that they 

completely agreed.  

 We can assume that the participants of the laboratory experiments were a 

random sample of the group of inexperienced simulation users. The 

participants were randomly allocated either to use the domain specific 

extension or the generic simulation environment. As a result, we are allowed 

to combine the variances of the answers of the questionnaire of the two 
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groups to one value (McClave et al, 2000). With the combined variance of the 

sample we can apply a t-test with 28 degrees of freedom.  

 The outcome of the questionnaire for the two different groups is shown in 

Table 4.3. In this table no distinction is made for type of participant regarding 

skill level. The columns “mean” refer to the mean value the participants of 

domain specific or generic provided. The variances are the variances of the 

set of answers provided by the participants for domain specific or generic. The 

value is bold if the t-test (99% certainty, 28 degrees of freedom) showed that 

the participants using the domain specific extension agreed more with the 

item in the questionnaire than the participants using the generic simulation 

environment. 

 

Table 4.3: Outcome of the first laboratory experiment 

 Description Mean Variances T0.01 

28df 

N domain specific = 16 ; N generic = 14 
1 = completely disagree; 5 = completely agree 

spec
-ific 

gen-
eric 

spec
-ific 

gen-
eric 

 

1 The adjusted simulation models are technically 
correct representations of the system 4.1 3.5 0.5 0.6 2.2 

2 The adjusted simulation models are valid 
representations of the system 3.9 3.4 0.5 0.5 1.9 

3 Use of the other simulation environment would have 
resulted in a lower number of executed experiments 3.9 1.9 2.3 0.8 4.3 

4 The used simulation environment is suitable for 
modeling a rail network 4.4 2.1 0.2 1.2 7.5 

5 The simulation model developed in the used 
simulation environment was easy to understand 4.3 2.0 0.6 0.8 7.4 

6 The simulation model developed in the used 
simulation environment was easy to maintain 3.9 1.9 0.5 0.6 7.3 

7 The simulation model developed in the used 
simulation environment was easy to extend 3.7 1.6 0.6 0.8 6.8 

 Both groups of participants agreed with the first and second statement. 

These findings are not surprising given that we observed that the participants 

were working hard and were proud of the work they had carried out.  

 The participants only worked with one of the two simulation environments, 

but they could see what the others were doing, they heard each other’s 

questions and during the lunch they chatted together and compared their 

progress. Based on this informal exchange of information and ideas the 

participants had a perception about the applicability of the other simulation 

environment for the assignments used in this laboratory experiment. 

Statements 3 and 4 show that the participants with the domain specific 

extension preferred their environment above the generic simulation 

environment and the participants with the generic simulation environments 

envied the others, supported by the t-values of 4.3 and 7.5.  
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 Most likely the preference for the simulation environment is partly based on 

the usability, maintainability and extendibility of the simulation model for 

experimentation. A significant difference can be observed between the 

participants given the domain specific extensions to use and those given 

generic simulation environments. Understanding the simulation model of the 

domain specific extension was much easier than understanding the simulation 

model based on the generic simulation environment according to statement 5. 

Increased understandability resulted in better maintainability and better 

maintainability enabled easy extendibility of the simulation model for the 

experiments.  

 

4.2.3 Conclusions from first laboratory experiment 

 Based on the analysis of the observations made during the laboratory 

experiment and the questionnaire results, we can conclude that performing 

simulation experiments using a simulation model developed with domain 

specific model constructs is easier than using a simulation model based on a 

generic simulation environment (Kolfschoten et al, 2006). The observations of 

the laboratory experiment show that this qualified advantage is achieved as a 

result of perceived higher understandability, easier maintainability and 

extendibility of the simulation model. This enabled the participants with the 

domain specific extensions to ask for less support, as is seen by the fact that 

there were almost no questions from these participants, and to work faster, 

and thus perform relatively more simulation experiments. Further, the 

understandability of the domain specific extension enabled participants with 

low modeling skills to still be able to perform a number of simulation 

experiments and provide insight to problem owners.  

 Some risks of using domain specific extensions were also encountered. 

The novices had too much trust and faith in the simulation model developed 

with the domain specific extension, so they forgot important steps of a 

simulation study, mainly verification and validation of the model. 

 Participants that used the simulation model developed in the domain 

specific extension carried out more valid simulation experiments, mainly in the 

second set of assignments. This view is strengthened by the results of the 

questionnaire and thus the proposition of this laboratory experiment can be 

accepted: 

 

Simulation novices that use a simulation model composed of 

domain specific model constructs perform more simulation 

experiments than simulation novices that use a simulation model 

composed of model constructs of a generic simulation environment. 
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 From the causal diagram on page 92 one can see that the first laboratory 

experiment focuses on the complexity of the questions, the domain specificity 

and the effects with respect to understanding the simulation model. The 

questionnaire confirmed that domain specificity reduces the effort required to 

understand the simulation model (causal relation 8). This causal relation is 

thus negative as expected. The observations showed that more complex 

questions result in more actions (causal relation 2) and that the larger number 

of actions that needed to be carried out for the second set of laboratory 

experiments made the model understanding less (causal relations 6 and 7). 

The importance of the understanding is also observed in the differences 

between the first set of experiments, i.e. experiments for vehicle configuration, 

and the second set of experiments, i.e. new stations. In the second set of 

experiments more actions had to be carried out resulting in less 

understanding of the model constructs and structure (causal relations 6 and 

7). 

 

4.3 Second laboratory experiment: creating simulation models from 

scratch 

4.3.1 Set up of the second laboratory experiment 

 In the second laboratory experiment participants were asked to develop a 

full simulation model from scratch. The same problem situation and simulation 

environments were provided for the participants of this laboratory experiment. 

The insight that the problem owner required was defined as open ended. The 

participants did not have to perform a fixed set of experiments or deliver a 

certain animation of the system in operation. The participants had to make an 

educated guess as to what information would be sufficient for the problem 

owner.  

 The participants had the task to develop a valid simulation model within 8 

hours. In this laboratory experiment it was key to finish in time. After these 8 

hours an evaluation was done on how much insight the model developer 

provided to the problem owner and whether that covered all the items the 

problem owner requested. Possibly participants would be finished in less time 

and be able to provide the insight for the problem owner earlier. Therefore 

effectiveness was interpreted as “better and faster”, resulting in the following 

proposition for the second laboratory experiment: 

 

Simulation novices can develop a simulation model better and 

faster using model constructs from a domain specific extension for 

future simulation experiments than simulation novices that must 

develop a simulation model composed of model constructs from a 

generic simulation environment. 
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 ‘Faster’ was evaluated by comparing the moments the students claimed to 

be ready or, if they had not finished in 8 hours, by the participants making an 

educated guess regarding how much more time was needed. ‘Better’ was 

evaluated by observing the ability of the simulation models made by the 

participants to provide insight into the questions of the SkyShuttle problem 

owners (see the case description on page 87).  

 

 
Figure 4.8: Focus of the second laboratory experiment 

 

 The participants had only one question to answer, but depending on the 

domain specificity they have to carry out a number of actions. The main 

measurement in this laboratory experiment was whether the simulation 

novices succeeded in building a valid model and performing a simulation 

experiment. Once the model developers could perform a valid simulation 

experiment they were done, therefore in Figure 4.8 a circle is drawn around 

the time spent and not around the number of questions answered. 

 This laboratory experiment was done by 16 students of the Faculty of 

Technology, Policy and Management of Delft University of Technology. All the 

students had received a basic education comparable to the participants in the 

first laboratory experiment. In addition, the students had been trained for 12 

weeks in advanced simulation model development. 

 The participants randomly received the domain specific or generic 

simulation environment. All the participants received documentation about the 

concepts that could be used for building the simulation models. These 

concepts formed the basis of the model constructs from the domain specific 

extension, but it was made clear to all participants that the conceptual model 

was just an overview and they could reduce or expand the model concepts as 

much as they felt appropriate. The individual participants using model 

constructs from the domain specific extension received some extra material 

about the background and technical implementation of the available model 
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constructs. The time that the participants needed to study this material was 

included as part of the 8 hours allowed for the complete laboratory 

experiment. 

 At the end of the laboratory experiment the students were required to 

provide a set of deliverables: 

• a simulation model based on the provided simulation environment, 

• a document that explained the chosen level of abstraction and the 

boundaries used for the simulation models, 

• a filled in questionnaire regarding their satisfaction with using the 

assigned simulation environment and their expectations of the model 

development assignment, 

• a log-file registering their activities of the 8 hours. 

 Two simulation experts with several years of experience evaluated the 

models and documents, mainly the simulation model and the explanatory 

document (Valentin et al, 2003b). These experts were expected to judge the 

simulation model on clarity, structure, ease of maintenance and ease of 

extension. Further they were required to judge the completeness of the 

simulation model and to see whether the participants had implemented their 

assumptions that were described in the explanatory document.  

 The expectation at the beginning of the second laboratory experiment was 

that the proposition at the beginning of this section would be accepted. This 

expectation was based on the following additional expected observations: 

• the simulation models based on the model constructs of the domain 

specific extension will contain more details than the models of the 

generic simulation environment, 

• the participants using the domain specific extension will be more 

positive about the quality of their simulation models, compared to the 

model developers using the generic simulation environment, 

• the participants using the domain specific extension will assume they 

have better met the problem owner’s needs regarding visualization, 

performance indicators and preparation for future experiments, 

compared to the model developers using the generic simulation 

environment, 

• the participants using the domain specific extension will agree more 

with the statement that they have had enough time compared to the 

model developers using the generic simulation environment. 
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4.3.2 Insight gathered, based on the second laboratory experiment 

 The participants made less progress with the simulation study than 

expected (Valentin et al, 2003a). Only one participant claimed to have 

finished. He provided a simulation model and several simulation experiments 

that showed the validity of the model within the period of 8 hours. All the other 

participants ran out of time for the laboratory experiment before they were 

finished. Therefore, the original plan to evaluate the final simulation models 

and judge their quality could not be carried out as planned. The time log could 

not be used either, because the participants logged that they only carried out 

the task “model development”. Nevertheless the simulation models handed in 

were analyzed, but we focused more on what was lacking rather than on what 

accomplished. Below, a description is given, per type of observation of what 

was learned from this laboratory experiment. 

 

Observation during the performance of the experiment 

 The participants using model constructs of the domain specific extension 

started with reading the provided documents to help them understand the 

functionality of the available model constructs. Once they felt confident about 

their knowledge regarding how to use the model constructs, the participants 

started to develop a simulation model. Their actions consisted mainly of 

quickly instantiating their model using the model constructs, and then entering 

data for all the parameters of the model constructs. The participants 

immediately tried to run their simulation model after they had instantiated the 

complete simulation model using all the available data. This showed that they 

had faith in the model constructs of the simulation environment and trusted 

the model constructs to work flawless. Unfortunately, the participants received 

error messages relating to typing errors and missing instances of model 

constructs. Solving these error messages took them a large amount of time.  

 The participants using the domain specific extension started to validate the 

simulation model, when their model was finally compiled and seemed to run. 

Validating the simulation model took them more time than they expected, 

mainly because the data for passenger arrival lead to a highly unstable 

system, which meant that selecting vehicle types and the timetable was a 

hard task. Some of the students carried out as many as 15 different simulation 

experiments just to have an idea of whether their simulation run was valid.  

 When trying to solve the modeling errors the participants made verbal 

remarks to express their frustration and to keep up their spirits. Some of their 

remarks are given below. The remarks show that, even though the 

participants made progress, they did not fully understand what was 

happening. 
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• “This is nice, something is moving. I do not know what, but it is 

moving”. 

• “I have defined that vehicles stop for 2 minutes, but what the **** is 

‘minimum stop time’? I do not understand anything of these model 

constructs”. 

• “The fast vehicles are running over the slow vehicles on the same 

track”. 

 

 The participants who used the model constructs of the generic simulation 

environment started with refreshing their knowledge on suitable model 

constructs of the simulation environment. They frequently used the help-files 

and basic modeling examples provided by the generic simulation 

environment. Based on these small training models they decided how to use 

the generic model constructs, but their lack of a broad modeling experience 

prevented them from making fast progress in model development. Each new 

functionality they added to the simulation model was tested and made valid, to 

make sure that they would not have the problem of composing a complete 

simulation model and being incapable solving errors from the simulation 

environment. 

 The approach of the participants using the generic simulation environment 

seemed good, but some quotes show that they were surprised that the 

participants using domain specific extensions were much faster: 

• participant with domain specific: “How can you increase the speed of 

your run?” participant with generic: “Are you already finished then?” 

• participant with domain specific: “I have a problem, I would like my 

animated vehicles to move exactly following the line” participant with 

generic: “That’s your problem? My model is not running and I do not 

expect it to run at all” 

• “I have reduced the system so that passengers only move from left to 

right” 

• “I have reduced a lot already, but I should have reduced it so that I 

have no more than one station in the system” 

 

Observations made by the simulation experts 

 The two simulation experts who had to evaluate the simulation models and 

the provided documents of the participants had a reasonably simple job. They 

looked at the models and judged whether the models were complete, i.e. that 

they contained a minimum set of functionalities at a reasonable level of detail. 

The simulation experts took into account the documentation of the participants 

that described what kind of abstraction and limitations they had applied.  
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 The conclusion of the simulation experts was that the simulation models of 

the participants using model constructs from the domain specific extension 

were almost finished and that these participants were already working on the 

experimentation. 

 The participants who used the model constructs of the generic simulation 

environment Arena had not progressed as far as the participants using 

domain specific extension within their 8-hour time frame according to the 

simulation experts. Based on the simulation models that the participants made 

it was concluded that they used a very structured approach, starting with a 

small simulation model and extending it with new functionalities. The final 

simulation models included one or more moving vehicles and a first attempt at 

passenger generation. In the documentation the participants stated that they 

were almost finished, but the observing simulation experts judged that the 

participants would need to do more to enable all required experiments to be 

performed with the model. 

 

Observations based on the questionnaire 

 The questionnaire filled in by the participants of the second laboratory 

experiment has a limited value. The number of participants in the experiment 

was small and thus the number of respondents to the questionnaire was also 

low. Table 4.4 summarizes a few of the most important statements and the 

average scored opinion of the participants. Even though there was a small 

number of participants, we could carry out a t-test for comparing the two 

groups, using 14 degrees of freedom. 

 The outcome of the questionnaire for the two different groups is shown in 

Table 4.4. In this table no distinction is made for type of participant regarding 

skill level. The columns “mean” refer to the mean value the participants of 

domain specific or generic provided. The variances are the variances of the 

set of answers provided by the participants for domain specific or generic. The 

t-value was calculated using the variance of the complete sample, weighted 

for 9 domain specific participants and 7 generic participants. The value is bold 

if the t-test showed that the participants using the domain specific extension 

agreed more with the statement than the participants using the generic 

simulation environment or the other way around. 

 Statements one to five in the questionnaire dealt with satisfaction of the 

participants with the simulation model they developed. The average scores of 

the participants using model constructs from the domain specific extension for 

these statements ranged from 2.4 to 3.1 on a 5 point scale. This means that 

on average the participants were not satisfied with the quality of their work. 

These participants thought that the validation of their simulation model and the 

availability of performance indicators could be improved. The average scores 

of the participants using model constructs from the generic simulation 
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environment were even lower for these five statements. The average score of 

these participants is not higher than 2.0, meaning that the participants were 

dissatisfied with the model development, validity, and visualization.  

 The sixth statement in Table 4.4 shows that the participants using the 

generic simulation environment unanimously agreed that there was not 

enough time to develop the simulation model. Some of the participants using 

the domain specific extension felt that 8 hours was enough for this task.  

 Statements 7, 8 and 9 provide information about the understandability and 

future adjustability of the simulation model. The participants using the domain 

specific extension again agreed more on this than the participants using the 

generic simulation environments. The latter assume that problem owners can 

understand their model reasonably well, but they see extendibility and 

maintainability as a problem.  

Table 4.4: Outcome of the second laboratory experiment 

 Description Mean Variances  T0.01 
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N domain specific = 9 ; N generic = 7 
1 = completely disagree; 5 = completely agree 
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The simulation model is technically 
correct / verified 3.4 1.9 0.6 0.8 3.5 

2 The simulation model is a valid 
representation of the system 2.4 1.3 0.3  0.1 5.5 

3 The used level of abstraction was 
correct to answer the questions of the 
problem owners 3.0 2.0 0.5 0.4 3.0 

4 The visualization of the simulation 
model meets the problem owner’s 
needs 3.1 1.0 0.8  0.0 6.1 

5 The performance indicators of the 
simulation model meet the problem 
owner’s needs 2.8 1.1 0.6 0.4 4.7 
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 Not enough time was provided for 

model development 
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The simulation models developed are 
easy to understand by problem owners 3.1 3.0 0.7 1.0 0.2 

8 The simulation models developed are 
easy to maintain for later simulation 
studies 3.4 1.0 0.5 0.1 8.7 

9 The simulation models developed are 
easy to extend for later simulation 
studies 3.2 1.4 0.4 0.1 7.2 

 

4.3.3 Conclusions from the second laboratory experiment 

 This laboratory experiment showed that, for novice simulation model 

developers, the development of a simulation model using model constructs of 

a domain specific extension is easier and faster than the development of a 
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similar simulation model using the model constructs of a generic simulation 

environment. The participants using domain specific extensions achieved 

more, built better simulation models, were more confident about their model, 

and carried out more evaluations to improve the quality of their simulation 

model within the available 8 hours. Thus the proposition for this laboratory 

experiment (see page 98) can not be rejected.  

 Even though the participants using the domain specific extension achieved 

better results, it was interesting how they reached their results. Their 

approach of: “first we implement everything and enter all the data; then we 

test” showed a high confidence in the power and user-friendliness of the 

domain specific extension. They expected error messages during the 

development process to tell them that they were making mistakes. This 

confidence cost these participants a lot of time as they had to deal later with 

the mistakes they made. Support from model development and a list of 

frequently made mistakes in addition to the available documentation, might 

have helped these participants. 

 The participants who were using the domain specific extension got closer 

to completion of the simulation model. The causal relation between domain 

specificity and number of actions (causal relation 4 in Table 4.1 and Figure 

4.1) showed that we expected that fewer actions should be carried out. This 

relation turned out to be true for model development. The participants that 

were using the domain specific experiments needed much fewer steps to 

instantiate their first simulation model. However, these participants used a lot 

of time to check the simulation model and to try to validate it completely. Even 

though fewer actions were required, the understanding of the model 

constructs in the simulation model was not better (causal relation 6 in Table 

4.1 and Figure 4.1). Only after the participants had gathered sufficient 

understanding of the simulation model, the simulation experiment could be 

completed. 

 

4.4 Third laboratory experiment: performing a simulation study 

4.4.1 Set up of the third laboratory experiment 

 The participants in the first and second laboratory experiment were 

novices. None of them had extensive experience in developing a simulation 

model or performing a simulation study. Their lack of experience with model 

reduction and their lack of knowledge of the generic simulation environment 

used, resulted in difficulties with implementing and recognizing the error 

messages of the simulation environment. Experience with using simulation 

models and a generic simulation environment may affect how a model 

developer uses a domain specific extension. Professional simulation experts 

with a good working knowledge of the generic simulation environment Arena 

performed the third laboratory experiment. The assignment for the experts 
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was to carry out a complete simulation study in which the simulation model 

had to be built from scratch, using either the domain specific or the generic 

simulation environment. The quality of the simulation model was evaluated by 

showing the output of the case study to real problem owners.  

 Eight employees from the company Rockwell Software, the vendor of the 

generic simulation environment Arena that was used in the laboratory 

experiments, participated in the experiment. All of the participating simulation 

experts had been working for at least 5 years in simulation, some of them for 

20 years. The group consisted of developers of the core code of the 

simulation environment, developers of commercial domain specific 

extensions, and consultants that use the generic simulation environment in 

commercial projects. The eight simulation experts were divided into four pairs: 

• developers of simulation software with more than 15 years of 

experience and a PhD in computer science. 

• expert users with ± 10 years of experience. 

• developers of commercial domain specific extensions as extensions of 

the generic simulation environment with ± 7 years experience. 

• junior simulation consultants with ± 3 years of experience in simulation 

projects. 

 Randomly one person of the pair carried out the simulation study with the 

generic simulation environment. The other person of the pair received the 

domain specific extension including available documentation and example 

models. The participants were given a maximum of 8 hours to develop their 

model and to run any number of experiments they assumed to be necessary. 

The experiments were meant to demonstrate the validity of the simulation 

models and to provide the optimal solution for the design of SkyShuttle. None 

of the participants was able to participate in one session of 8 hours, due to 

other planned activities, so they divided the 8 hours of the laboratory 

experiment over a period of three days.  

 At the end of the laboratory experiment the participants were expected to 

provide a set of deliverables: 

• a simulation model based on the simulation environment assigned. 

• a  presentation that could be used to provide insight into the optimum 

system configuration to the problem owners at the Municipality of The 

Hague. 

• a filled in questionnaire about their satisfaction with using the 

simulation environment assigned to them and their expectations of 

successful applying the simulation model for (future) problem solving. 

• a log-file describing their simulation study activities of the 8-hour 

period. 
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 The deliverables were important to evaluate the performance of the 

participants. This evaluation was carried out in three steps. The first step dealt 

with problem owners in the SkyShuttle project. Problem owners needed to feel 

supported by the simulation expert, based on model output, visualization, 

experiments and useful model abstractions. The second step was to judge the 

quality of the simulation model, on level of detail, completeness, model 

structure and ease of adjustment using simulation experts. The third step was 

to evaluate the questionnaire and log files created by the participants. 

 The project did not have real problem owners to carry out the evaluation, 

because the case in the laboratory experiment was adapted from the original 

study of Brandt (1999). However, the problem owners of the initial study that 

triggered this set-up for the laboratory experiment and 2 experts drawn from 

the field of transportation who had used simulation models in their projects 

were willing to participate as problem owners. A list of more than 50 items, 

that are important to problem owners in the field of transportation, was 

designed and the problem owners set the priority for these items, leading to 

15 items with the highest priority for the problem owners. A similar evaluation 

was planned for the simulation experts, who were expected to prioritize a 

large list of items and score the top 15 items for the final simulation models of 

each of the participants. The lists of criteria for problem owners and simulation 

experts were developed together with R. Sadowski from Rockwell Software 

(Valentin and Sadowski, 2003). 

 It was expected that the evaluations by the problem owners would show 

that the problem owners gathered more insight from the simulation studies 

carried out using the domain specific extension. The gap for the requested 

insight of problem owners would be smaller, and might even disappear 

completely if the model developers provided all the insight the problem 

owners requested. The existence of the gap between provided and required 

insight was defined as the effectiveness of the simulation study. Therefore, 

the proposition for the third laboratory experiment was: 

The effectiveness of the described simulation study is larger when 

simulation experts use model constructs from a domain specific 

extension than simulation experts that use model constructs from a 

generic simulation environment. 

 This proposition is almost the same as the accepted propositions for the 

two laboratory experiments using novices. The main difference that was 

expected between the laboratory experiments with novices and experts was 

that in this experiment the participants using the domain specific extension 

would all succeed to build their model within the 8 hour time frame, and would 

be able to perform several simulation experiments. Secondly, the participants 

using the generic simulation environment would make their simulation models 
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at a higher level of abstraction. The similarity between the second and third 

laboratory experiment result in a focus on the causal relation between the 

experience of simulation model developers and the number of actions they 

have to carry out, and as a result the time spent on the simulation study 

(Figure 4.9). 

 

 
Figure 4.9: Focus of the third laboratory experiment 

 

4.4.2 Insight gathered, based on the third laboratory experiment 

 It was expected that all the participants would easily finish the complete 

simulation study. Surprisingly only two participants, both using the model 

constructs of the domain specific extension, succeeded in performing several 

simulation experiments and providing output. However, the two simulation 

experts felt they needed to carry out many more experiments to reach an 

economically feasible system design and therefore they did not hand in their 

presentation. As a result the evaluation by problem owners did not take place. 

 

Observations during the laboratory experiment 

 Notes were made during the laboratory experiment regarding the model 

building process and the simulation models produced. Even though the 

participants were all working in their own office, the processes the experts 

used to carry out the simulation study and the positive and negative results 

were remarkably similar. The solutions varied in details, but in general the 

same process was applied by the simulation experts, with similar problems 

arising during the laboratory experiment.  

 In the second laboratory experiment, both the experts and the novices 

used model constructs from the domain specific extension to build their 

complete simulation model based on the available data. The experts had the 

same problems as the novices. Error messages and invalid behavior was 
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observed while they tested their model after the complete model instantiation. 

However, the way the experts solved their problems differed from those of the 

novices. The novices mainly went further into the manual and, at random, 

made adjustments to the data entry trying to find a solution. The novices 

expected the model constructs to be correct and assumed their data was 

entered incorrectly. The experts were more convinced about their own work 

and blamed the model constructs of the domain specific extension. They 

applied reverse engineering to see where something went wrong in the model 

constructs of the domain specific extension so they could try to take counter 

actions using generic model constructs taken from the simulation environment 

Arena.  

• The experts used the debugger of the Arena simulation software and 

scanned, at the lowest implementation level, the processes carried out 

within the model constructs of the domain specific extension.  

• The experts analyzed the functionality of a model construct by back tracing 

its internal code. The simulation software allows model developers to see 

parts of the code of a model construct, even though the simulation experts 

did not have the source code.  

• The experts practiced with example models to understand the process of 

using the model constructs of the domain specific extension. Testing of the 

example models using the provided example assignments taught the 

experts what influences different variables in the user-interface of the 

model constructs have on the output of the simulation model.  

 The experts using generic model constructs tried to develop a perfect and 

broadly applicable simulation model, while the experts using domain specific 

model constructs struggled with their error messages and deadlocks. The list 

of possible experiments in the problem description and the provided 

conceptual models triggered them to try to develop a simulation model that 

could be easily adjusted to model all the issues mentioned. Unfortunately, 

time pressure meant that the experts were not able to achieve this level of 

perfection. Even with their years of experience they made mistakes similar to 

the novices. 

 

Outcome of the questionnaire and talks after the expert experiment 

 This laboratory experiment was carried out by eight persons, not sufficient 

to use statistical techniques to accept or reject the proposition of page 108. In 

the evaluation of this laboratory experiment the questionnaires were used as 

triggers for a group evaluation with all the eight participating simulation 

experts. Table 4.3 shows the outcome of the questionnaire, but no t-test is 

carried out due to the small number of participants.  

 All simulation expert participants were satisfied with their work. The 

participating simulation experts that had been using the domain specific 
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extension were satisfied that, with their limited knowledge of the domain 

specific model constructs, they had succeeded in developing a working model 

and some of them even provided usable model output. In the discussion 

afterwards it became clear that the experts had more difficulty learning how to 

work with the domain specific extension than expected from the previous 

laboratory experiments with the novices. The experts even required more time 

and material than the novices, as their skepticism regarding the domain 

specific extensions was much higher than that of the novices. The simulation 

experts indicated that they would be able to increase productivity and would 

be able to obtain better results, if they would be using the domain specific 

extension for a second time. The experts using the generic simulation 

environment were convinced that they had reached the maximum achievable 

within the time frame. During the discussion session, the main discussion of 

these experts was around other approaches such as starting at a higher level 

of abstraction, reducing data, or ignoring some of the requested experiments.  

Table 4.5: Outcome of the third laboratory experiment 

 Description Mean Variances  

N domain specific = 4 ; N generic = 4 
1 = completely disagree; 5 = completely agree 
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The simulation model is technically 
correct / verified 3.8 1.3 0.5 0.5 

2 The simulation model is a valid 
representation of the system 3.3 1.3 0.5  0.5 

3 The used level of abstraction was 
correct to answer the questions of the 
problem owners 4.0 3.3 0.8 0.5 

4 The visualization of the simulation 
model meets the problem owner’s 
needs 3.5 1.0 0.6  0.0 

5 The performance indicators of the 
simulation model meet the problem 
owner’s needs 4.3 1.0 0.5 0.0 
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model development 

4.8 5.0 0.5 0.0 
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The simulation models developed are 
easy to understand by problem owners 3.8 3.0 0.5 0.8 

8 The simulation models developed are 
easy to maintain for later simulation 
studies 3.5 2.5 0.6 0.6 

9 The simulation models developed are 
easy to extend for later simulation 
studies 3.8 3.0 0.5 0.0 

 

 The answers to the questionnaire showed that all the experts assumed 

that their simulation model, finished or not, fitted the problem. They were all 

convinced that the level of abstraction and data was appropriate for providing 

verified and valid simulation models.  



  4 Testing domain specific extensions in a laboratory setting 

   111  

 The expected satisfaction of the problem owners of the SkyShuttle project 

regarding the presented results of the simulation study was scored low by the 

simulation experts. The participants using the generic simulation environment 

argued that visualization and performance indicators could be made much 

better, but they did not have time to do this. The participants using the model 

constructs from the domain specific extension were slightly more positive 

about the visualization and performance indicators within their simulation 

model. None of the participants expected the problem owner to be fully 

satisfied with the insights provided by the simulation experiments. 

 The questions in the questionnaires regarding the time limits and use of 

additional time were not as relevant as expected, because none of the expert 

participants was close to finishing the project. One of the participants using 

the domain specific extension claimed “With the experience I have right now, I 

could do the project in two hours. I just lost too much time trying to understand 

what was going on.” The other users of the domain specific extension agreed. 

The experts using the domain specific extension admitted that they did not 

trust the model constructs when the first error messages appeared. The extra 

work to gather the knowledge they required consumed all the available time, 

but provided them with the knowledge and trust necessary to use the domain 

specific extension in future projects. 

 The experts using the model constructs from the domain specific extension 

were convinced that their simulation model could be used to provide answers 

to most of the questions of future problem owners. The experts using the 

generic simulation environment had the same opinion, but they made the 

reservation that quite some time would be needed to finish their simulation 

model and implement the missing functionalities before future problem owners 

would be satisfied. 

 Overall the work of the simulation experts using the generic simulation 

environment confirmed the difficult nature of simulation projects. Even though 

these experts had years of experience, the expected results were not 

achieved in time. Too much detail, alternative interpretations of the problem 

description and an underestimation of the complexity of the process resulted 

in implementation problems and difficulties in carrying out the required 

experiments.  

 The participants using model constructs from the domain specific 

extension added that the domain specific extension was not as 

understandable as they expected. The error messages and mysterious 

deadlocks caused them severe problems. They reacted positively to the idea 

of providing something like a Frequently-Asked-Question list to help users 

deal with common problems. The simulation experts also complained that 

they did not have the source-code, so when they encountered problems, they 
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could not check the source code of the model constructs of the domain 

specific extension.  

 

Conclusions of the third laboratory experiment 

 This laboratory experiment showed that, for simulation experts, developing 

a simulation model using a domain specific extension is easier and faster than 

developing a similar simulation model using model constructs from a generic 

simulation environment. However, simulation experts require higher 

investments in time and training before they are convinced of the quality of 

model constructs developed by someone else. The barrier that simulation 

experts have to overcome before they are confident enough to trust model 

constructs of domain specific extensions is higher than that for novices. After 

working with the domain specific extension for several hours the experts 

gained the necessary trust and confidence. Using this trust and confidence, 

the simulation experts produced more and better simulation models, they 

were more confident about their models and they carried out more simulation 

experiments to improve the system design for the SkyShuttle problem owners 

within the available 8 hours. Thus the proposition for this laboratory 

experiment cannot be rejected.  

 Probably the most important observation of this laboratory experiment is 

that the experts using model constructs from a domain specific extension had 

to overcome a high level of mistrust in the model constructs before they could 

begin to use them comfortably. Simulation experts need to be fully convinced 

of the technical superiority of the simulation environment and the applicability 

of the model constructs to the problem before they feel happy to use the 

domain specific extension. If experts do not fully trust a domain specific 

extension they will complain about the implementation of the concepts, 

instead of assuming that they might be mistaken.  

 The participants using model constructs from the generic simulation 

environment wanted to show off their expertise with Arena. They were 

convinced of the quality of their generic simulation skills so they did not want 

to abstract too much. However, this approach resulted in no solution at all 

within the time constraints of the experiment. 

 The causal relation between experts, domain specificity and 

understandability of the simulation model was unexpected. Experts in 

simulation models that were working with the generic simulation environment 

had a high level of understanding of their simulation model. The 

understanding of the experts using the domain specific extension was much 

lower. These experts tried to understand, but this took them a lot of additional 

actions and steps. The number of actions should be divided into the actions 

required for composing the model and the actions for validating the model. 

The number of actions required to compose a model using a domain specific 
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extension is the same for simulation experts and novices, but the number of 

actions required for validation is much higher for simulation experts, because 

the simulation experts tend to doubt the validity of the model constructs of the 

domain specific extension. 

 Kolfschoten et al (2006) explain that the difficulty that experts have with 

model constructs is due to the way they handle observations of a system and 

mentally build their own cognitive scheme. They explain, using cognitive load 

theory, the advantages of building blocks and the difficulty that (simulation) 

experts have, because they have to put aside their normal way of working and 

adapt to the concepts enforced by the model constructs. Novices such as the 

participants in the first and second laboratory experiment do not have this 

expertise and thus are more easily able to adapt to the concepts of the 

domain specific extension. 

 

4.5 Overall conclusions drawn from laboratory experiments 

 The laboratory experiments showed that model developers using a domain 

specific extension achieved more results within the given time than model 

developers that started with a generic simulation environment and the same 

time limit. ‘More results’ refers to more experiments carried out in laboratory 

experiment 1 or simulation models that are closer to being used for 

experimentation in laboratory experiments 2 and 3. The model developers 

using model constructs from a domain specific extension provided more 

simulation experiments, delivered simulation models that were better 

understandable and extendable, and were more satisfied about the usability 

and quality of their work. Further, the model developers expect that they 

would need less time to carry out a subsequent simulation study now that they 

had a good working knowledge of the domain specific extension. 

 The outcome of the laboratory experiments taught us that the importance 

of a model developer’s understanding of the model constructs had been 

underestimated. The different participants in the laboratory experiments 

taught us that the type of documentation and training given before using a 

domain specific extension should be tailored to fit the type of simulation model 

developer. Experts need to be convinced that the model constructs of the 

domain specific extension are valid before letting them work with a domain 

specific extension. The main thing that these technical experts wanted, was 

insight into the inner working of the model constructs of the domain specific 

extension. The novices, who had fewer prejudices to overcome, could start 

working directly with the model constructs, but they needed to be managed 

more within the modeling process. A structured process for using a domain 

specific extension for developing a simulation model might be very helpful to 

overcome these problems. Clear support, example solutions in the case of 

errors, and a Frequently Asked Question list are also needed. 
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 In the laboratory experiments all activities of a simulation study, as 

described in figure 1.7 were carried out. The laboratory experiments also 

showed us that the participants experienced most of the advantages and 

encountered some of the risks that were identified in sections 2.4 and 2.5 for 

each of the activities. The main differences we observed were for the actions 

carried out for the verification and validation activity. The novices in the first 

laboratory experiment were quite optimistic about the quality of their models, 

so they mainly ignored this activity. The advantage of a simplified verification 

and validation process resulted in a higher risk of not performing this activity. 

 The laboratory experiments did not confirm all risks mentioned in literature. 

The only documented risk encountered during the laboratory experiments was 

found in the activity “instantiate simulation model” where it turned out that 

participants did not fully understand the model constructs. This resulted in a 

longer process to address modeling mistakes. 
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5 Domain specific extensions realized by 
simulation building blocks 

5.1 Introduction 

 Chapter 2 described what domain specific extensions are and what steps 

should be taken to develop domain specific extensions. We then developed 

new domain specific extensions for automatic guided vehicles and 

passengers in airports (chapter 3). Additionally, laboratory experiments 

comparing generic simulation environments and domain specific extensions 

were carried out in chapter 4. In chapter 3 we observed successful simulation 

studies due to the flexibility that domain specific extensions offer. The 

flexibility provided mechanisms to deal with the new requirements and the 

demands for insight of problem owners and model developers. We also 

observed that the effectiveness of simulation studies with domain specific 

extensions improves if we avoid more of the identified risks. In the case 

studies presented in chapter 3 we still encountered some of the known risks, 

but we succeeded in overcoming these without any real problems. We should 

also be able to avoid the new risks we encountered during the case studies in 

chapter 3 using the knowledge we gained during the case studies. In chapter 

4 we learned that domain specific extensions are more effective than generic 

simulation environments, but that (expert) model developers have difficulties 

using a new domain specific extension. 

 The findings in literature and observations from chapter 3 and 4 enabled 

us to answer the research question introduced in chapter 1 positively: 

Yes, the effectiveness of a simulation study increases 

when the simulation models are instantiated using model 

constructs of a domain specific extension for a simulation 

environment. 

 However, this answer comes with a big reservation. The results of the 

laboratory experiments and the simulation studies were positive: But during 

the experiments the developers of the domain specific extension were 

available to provide support to the participants. We doubt that the simulation 

studies described in chapter 3 would have finished as successful if the 

developers of the model constructs had not actively participated and helped 

the participants during the simulation studies. 

 The encountered risks were overcome by spending more time and effort 

on the simulation study. Most of these risks have been known for a long time 

and have been identified in literature (see chapter 2). The way we carried out 

the design process of the domain specific model constructs reduced the effect 

of the risks, but was not sufficient to avoid the risks completely during the 

simulation study. Time, money and goodwill are lost when carrying out a 
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simulation study when one needs to mitigate risks. The simulation studies with 

the domain specific extension were therefore not as effective as they could 

have been. It will never be possible to create domain specific extensions that 

are fully satisfactory for a simulation study, but improvements to the concept 

and design approach of domain specific extensions and the training of model 

developers will reduce the chance of encountering a risk, and they will support 

the model developer in mitigating these risks more easily. The things we 

learned during the case studies that help us to avoid and overcome risks can 

be translated to requirements for domain specific extensions of simulation 

studies. These requirements for domain specific extensions will be derived in 

section 5.2. 

 The requirements for domain specific extensions cannot be met by just 

using the concept and design guidelines described in chapter 2. Extensions 

and changes to the concept and design guidelines need to be made to 

improve the domain specific extensions. The suggested changes and 

extensions will be described in section 5.3. A more detailed description of four 

types of changes and extensions will be provided in the last four sections of 

this chapter: 

• An improved concept of model constructs with structure and interfaces 

to interact with other model constructs of domain specific extensions 

(section 5.4). 

• Tools and instruments that are part of a domain specific extension to 

automate the activities the model developers have to perform (section 

5.5). 

• Training and documentation materials to support a model developer to 

work independent from the developer of the domain specific extension 

(section 5.6). 

• A design approach to support developers of domain specific extensions 

to design and implement model according to the new concept (section 

5.7). 

The chapter concludes with section 5.8, which provides an introduction into 

the testing case studies of chapters 6 to 8. 

 

5.2 Requirements for domain specific extensions 

 We observed in the case studies of chapter 3 all the expected benefits and 

this demonstrated the usefulness of domain specific extensions. We even 

succeeded during the simulation studies in overcoming most of the risks of 

using domain specific extensions during the simulation studies. The risks that 

were still encountered during the simulation studies in chapter 3 were caused 

by a domain specific extension that was not fully suited for modeling the 

system, and not by properties of the domain specific extensions themselves. 

We believe that the risks could have been avoided completely during the 
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simulation study, if the domain specific extensions had been of even better 

quality. Quality improvement for a domain specific extension can be realized if 

the developers make sure that their domain specific extension matches the 

requirements listed in Table 5.1, which is based on the risks described in 

Table 3.7. These were based on the positive and negative observations of 

using domain specific extensions in the AGV case and the Airports case. The 

relationships between the requirements and the positive experiences gained 

during the case studies of chapter 3 are explained below.  

 

Table 5.1: Potential risks of using domain specific extensions in a 
simulation study and requirements to mitigate these risks 

Potential risk of using a domain 
specific extension in a simulation 

study 

Requirements for a  
domain specific extension (DSE) 

Activity 1. Problem description & define conceptual model 

Risk 1.1: scope of model developer 
is limited by model constructs 

Requirement 6: Model constructs 
should be understandable for model 
developers 

Activity 2. Select model constructs 

Risk 2.1: lack of trust results in no 
motivation to use domain specific 
extension 

Requirement 1: DSE should show 
added value for model developers 
compared to use of model constructs of 
generic simulation environments 

Risk 2.2: lack of insight in model 
constructs results in ignore domain 
specific extension 

Requirement 6: Model constructs 
should be understandable for model 
developers 

Risk 2.3: use of model constructs 
that are not suited for representation 
of system elements 

Requirement 2: Use of model constructs 
of DSE should be clear and well defined 
so model developers know when and 
how to use the model constructs 

Risk 2.4: system elements cannot 
be represented by model constructs 

Requirement 3: System elements that 
seem to be exceptional for the domain 
represented by the DSE should not 
become model constructs 

Risk 2.5: compose model constructs 
from developed domain specific 
model constructs only applied for 
infrastructure system elements 

Requirement 4: The infrastructure and 
physical elements should be represented 
by model constructs separated from the 
model constructs for control or 
management  

Risk 2.6: model developers can 
adjust internal logic of model 
constructs 

Requirement 5: Internal logic of model 
constructs of DSE should be closed or 
accessible depending on type of model 
developer 

(continued at next page) 
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Activity 3. Data collection 

No risks identified 

Activity 4. Instantiate simulation model for problem system 

Risk 4.1: model developers do not 
understand model construct 

Requirement 6: Model constructs 
should be understandable for model 
developers Risk 4.2: model developers do not 

know how to parameterize model 
construct 

Risk 4.3: difficult to compose 
simulation model, because model 
constructs are not available 

Requirement 7: DSE should be an 
extendible set of model constructs 

Risk 4.4: difficult to compose 
simulation model by person other 
than developer(s) domain specific 
extension 

Requirement 6: Model constructs 
should be understandable for model 
developers 

Activity 5. Verify and validate simulation model for original system 

Risk 5.1: mistakes of model 
developer are hard to overcome 

Requirement 8: Behavior of model 
construct should be understandable and 
verifiable Risk 5.2: model developers know 

something is wrong, but cannot 
identify what to do about it 

Activity 6. Analyze output of simulation model 

Risk 6.1: model constructs do not 
provide performance indicators 
problem owner desired 

Requirement 7: DSE should be an 
extendible set of model constructs 

Activity 7. Define solution for analyzed output 

Risk 7.1: model developers are 
triggered to find new solutions by 
parameters 

Requirement 2: Use of model constructs 
of DSE should be clear and well defined 
so model developers know when and 
how to use the model constructs 

Risk 7.2: model developers are 
limited by parameters and model 
constructs 

Requirement 7: DSE should be an 
extendible set of model constructs 

Activity 8. Instantiate simulation model for identified solution 

Risk 8.1: solution is identified that 
cannot be represented by model 
constructs 

Requirement 7: DSE should be an 
extendible set of model constructs 

Risk 8.2: adjustments of model 
constructs required to represent 
solution are time consuming 

Requirement 9: Model constructs 
should be individually parameterizable 

Risk 8.3: replacement of model 
constructs causes errors in model 
constructs that were linked or 
connected 

Requirement 9: Model constructs 
should be individually parameterizable 
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 Satisfying requirement 1 helps model developers and problem owners to 

predict the benefits of using domain specific model constructs. Understanding 

the potential advantages will probably reduce reluctance to use a domain 

specific extension. The benefits of using a domain specific extension can be 

determined from experience gained in earlier studies using the same domain 

specific extension.  

 Requirement 2 implies that model developers who understand the 

capabilities and limitations of model constructs will be better able to select the 

correct model construct to represent an element of a system. The problem of 

selecting the correct model construct was satisfied by custom training during 

the simulation studies described in chapter 3. Additional support was provided 

at points where the model developers ‘got stuck’. Improving the support and 

training should avoid this risk without the personal interventions of chapter 3.  

 We observed in the case studies for the airport, that the number of model 

constructs increased for every new part of an airport to be modeled. The 

consequence was that a lot of model constructs were part of the domain 

specific extension, but had only one instance in the simulation studies. The 

action of extending the set of model constructs was performed to overcome 

the risk that a system element was not represented as a model construct. The 

enthusiasm of the developer of the domain specific extension led in the case 

studies to large sets of model constructs after only a small number of 

simulation studies. Therefore requirement 3 states that not every missing 

model construct should directly result in a new model construct in the domain 

specific extension. The aim of this requirement is to improve maintainability 

and use of the domain specific extension in subsequent simulation studies. 

 The AGV infrastructure in the simulation study described in chapter 3 was 

modeled using different hierarchical layers. Model constructs for the control of 

the AGVs and the allocation of AGVs and Loads to infrastructure were 

separated. The attempted separation of the infrastructure from the control and 

management enabled experimentation for just the infrastructure or just the 

control. Similar types of experiments can be identified in any system: either 

adjust the number of resources, infrastructure or physical elements in the 

system, or adjust the way the resources, infrastructure or physical elements 

are controlled and managed. Requirement 4 implies that separation in 

classes of model constructs helps to achieve the flexibility required for 

experimentation. 

 The model developers who used the domain specific extension for airports 

were confronted with error messages that parameters were wrong. These 

model developers decided to adjust the code of the model constructs instead 

of adjusting the parameters in the simulation model. The effect was that the 

model constructs provided incorrect behavior and thus were no longer valid 
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system representations. Requirement 5 indicates that model developers 

should be protected against such events. 

 We observed in the case studies that the development of a simulation 

model by the developers of the model construct went much faster and easier 

than model development by other persons. The model developers who were 

not involved in the development of the domain specific model constructs had 

start-up problems. The difficulties that model developers encountered during 

model development need to be reduced in such a way that model developers 

can carry out their work independently. Being able to understand the model 

constructs, as mentioned in requirement 6, is an important first step. 

 In the explanation for requirement 3 we state that not every system 

element should be directly transferred into a new model construct. However, it 

is also impossible to know the complete composition and size of the required 

set of model constructs in advance. Change is a given and therefore new 

model constructs will have to be added to the domain specific extension. 

Adding new model constructs should be possible without damaging the 

capabilities of the current model constructs and should not invalidate 

simulation models that have already been developed using the domain 

specific extension. The extendibility mentioned in requirement 7 of the set of 

model construct is thus the ability to add or adjust model constructs of a 

domain specific extension. 

 One of the main advantages of domain specific extensions is that a model 

developer does not need to verify and validate the behavior of the model 

construct during the verification phase. He or she can safely assume that the 

model construct is working as defined and described. The laboratory 

experiments showed that the expert simulation model developers first blamed 

the set of model constructs and then secondly, started searching for mistakes 

in their own simulation model that used the model constructs. The possibility 

of verifying that the model constructs are technically correct will reduce this 

problem, and give us requirement 8. 

 Model constructs represent a part of a system. These system parts are 

different in each system, and also for the same system in different situations. 

Requirement 9 enables the model developer to configure the model 

constructs in the simulation model to create an accurate representation of the 

system, without the model developer needing to know technical details about 

the inner structure of the model construct or the simulation environment. 

 

5.3 Types of changes and extensions for domain specific extensions 

The requirements for domain specific extensions can be satisfied in different 

ways. For example, requirement 6 “Model constructs should be 

understandable for model developers” can be achieved by training the model 

developer, by simplifying the model constructs, or by automating the process 
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of simulation model development so the model developer requires less 

understanding to use the model constructs. In addition each of these three 

solutions can be achieved in different ways and using different instruments. 

For example, the training of the model developer could be performed via a 

user manual, via assignments, using example models or by providing training 

videos for a specific model construct. Simplifying the model construct can be 

achieved via user interfacing, structural improvements, or better use of 

terminology. The automation of the process could be done by selecting the 

model construct out of a set, by automatic instantiation of the model construct 

in the simulation model or by automatic parameterization using information 

from a specific data source.  

 The example of how to tackle requirement 6 shows that there is not a 

single approach to satisfy the requirements. The case studies showed the 

effectiveness of activities to mitigate risks. We believe that the concept and 

guidelines described in chapter 2 can be improved to accommodate the 

actions required to mitigate risks before the risks occur. We set out, in Table 

5.2, a list of changes and extensions to the concept of domain specific 

extensions that can be used to avoid the potential risks to be found during 

simulation studies.  

 
Table 5.2: Changes to concepts and design guidelines of domain 
specific extensions to avoid risks 

Requirement for domain specific 
extensions 

Changes to concepts and 
guidelines for domain specific 

extensions as described in chapter 
2 

Requirement 1: DSE should show 
added value for model developers 
compared to use of model constructs 
of generic simulation environments 

Additional documentation and 
example models; clear overview of 
capabilities and limitations of domain 
specific extensions 

Requirement 2: Use of model 
constructs of DSE should be clear 
and well defined so model developers 
know when and how to use the model 
constructs 

Additional documentation and 
example models; use terminology of 
domain 

Requirement 3: System elements 
that seem to be exceptional for the 
domain represented by the DSE 
should not become model constructs 

Structure of model constructs to 
enable exchange with generic model 
constructs of simulation environment; 
improvement to process to identify 
required model constructs in domain 
specific extension 

Requirement 4: The infrastructure 
and physical elements should be 
represented by model constructs 
separated from the model constructs 
for control or management 

Structure of model constructs to 
enable composition of predefined 
parts of model constructs.  

(continued at next page) 
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Requirement for domain specific 
extensions 

Changes to concepts and 
guidelines for domain specific 

extensions as described in chapter 
2 

Requirement 5: Internal logic of 
model constructs of DSE should be 
closed or accessible depending on 
type of model developer 

Interfacing for model constructs to 
stop model developers of diving into 
internal logic 

Requirement 6: Model constructs 
should be understandable for model 
developers 

Training of model construct 
applicability; simplification of structure 
of model constructs; automate 
selection and parameterization of 
model constructs in simulation model 

Requirement 7: DSE should be an 
extendible set of model constructs 

Structure of model constructs to 
enable composition of predefined 
parts of model constructs; Structure of 
model constructs to enable exchange 
and/or co-operation with generic 
model constructs of simulation 
environment; Structure of model 
constructs to enable composition of 
predefined parts of model constructs 

Requirement 8: Behavior of model 
construct should be understandable 
and verifiable 

Example models including model 
construct; simple process description 
of using model construct together with 
other model constructs; documented 
specifications how model construct 
should perform under certain 
conditions; animation representing 
state of model construct in simulation 
model 

Requirement 9: Model constructs 
should be individually 
parameterizable 

User interface to model constructs 

 

5.4 Simulation building blocks 

5.4.1 Definition of simulation building blocks 

 Thus far we defined model constructs only as parts of a simulation 

environment. The domain specific model constructs that we introduced and 

used in chapters 2, 3 and 4, were developed using the ability provided by 

generic simulation environments to group generic model constructs. The 

result was a new model construct that could be instantiated in a simulation 

model to represent a system element. An analysis of the observations taught 

us that the concept of domain specific model constructs can make more 
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contributions to the effectiveness of simulation studies than the grouped 

generic model constructs can offer.  

 In this section we introduce a different structure and architecture for 

domain specific model constructs. The improvements in structure will allow 

changes in the model constructs to be made. The model constructs of domain 

specific extensions that follow this new structure and architecture will have the 

same advantages in simulation studies as we discovered in chapters 3 and 4. 

Model developers will be able to develop their simulation models faster, they 

will need less detailed programming and can more easily prepare their 

simulation model for new experiments. We will further refer to model 

constructs as the constructs of simulation environments that have been 

designed according to the principles of chapter 2. The constructs of domain 

specific extensions that follow the new structure and architecture will be called 

simulation building blocks. Simulation building blocks are extensions of 

model constructs of generic simulation environments, similar to the domain 

specific model constructs, but they have a structure that is expected to enable 

their use in future simulation studies in a better way and mitigate the risks 

encountered in the case studies of chapter 3. As simulation building blocks 

are extensions of generic model constructs, the simulation building blocks fit 

at exactly the same spot in Figure 2.2 at the position of model constructs P, Q, 

R & S. 

 Simulation building blocks are a product of the research of the BETADE-

research program, a 5-year research program at Delft University of 

Technology that aimed at defining, specifying and using building blocks in 

different modeling domains, including geo-information, web-services and 

discrete event simulation (Verbraeck, 2002). The BETADE-research group 

provided the following definition for a building block: “A building block is a self-

contained, interoperable, reusable and replaceable unit, encapsulating its 

internal structure and providing useful services or functionality to its 

environment through precisely defined interfaces.” (Verbraeck et al, 2002, 

p23). 

 The term self-contained in the above definition of a building block refers 

to the use of local information and local processes. Information within a 

building block represents the state of the building block and affects its 

behavior with respect to external events. This information is used for the 

processes and functions the building block performs. Once a building block 

receives an external event to execute a function, it can do this using the 

information and process descriptions that are part of the building block. For 

simulation building blocks this means that the building block keeps track of its 

own attributes and has all the knowledge and capabilities required to express 

the behavior of the system element it represents. We enable this by storing 

data locally in the simulation building block and dividing the functionality and 

services within a simulation building block over different elements, each with 

their own part of the system element’s representation. These elements of 
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simulation building blocks will be referred to as building block elements and 

they provide the internal structure of the building blocks. 

 Interoperable means that the building block has to cooperate with other 

building blocks. This might seem to be contradictory to self-contained, but a 

simulation model cannot consist of just one super building block. System 

elements are represented by different simulation building blocks. These 

system elements together form the system to be simulated. These system 

elements in reality exchange information and entities, and the same has to 

occur between simulation building blocks. However, due to the self-

containment of simulation building blocks, the way simulation building blocks 

are interoperable needs to follow certain rules, i.e. by precisely defined 

interfaces. The ability to be interoperable starts from the idea that simulation 

building blocks are part of a set. This set consists of a family of building blocks 

which are composed of the same type of building block elements, e.g. the 

‘area’ in the airport case study of chapter 3. The set of simulation building 

blocks consists of building blocks representing infrastructure and building 

blocks for control or management. The simulation building blocks for control 

are represented as a process description and use pointers to infrastructure 

building blocks, in order to be interoperable with simulation building blocks for 

infrastructure or physical elements. 

 Reusability for a simulation building block means that the simulation 

building blocks are instantiated more than once in a simulation model, or the 

simulation building block is instantiated in simulation models used in several 

simulation studies. When a simulation building block is reused in a simulation 

model several times, it is especially necessary to be able to parameterize the 

simulation building block according to the properties and behavior of the 

system elements it represents. Internal reuse is also achieved by the use of 

building block elements within a simulation building block, which enables 

flexibility and the ability to extend the set of building blocks with new building 

block elements instead of directly developing new building blocks. 

 A building block is replaceable if it can be removed from a system and 

another building block can take its place in the system. The system should still 

work after the change. For example, replacing a CPU in a computer by a 

newer model will give the result that the computer is still capable of executing 

the same software, but it can do it faster. The same applies for simulation 

building blocks. Replacing one simulation building block by another building 

block is a type of experimenting to evaluate system alternatives. The 

replaceability is achieved via the family of simulation building blocks that 

operate together with other simulation building blocks via standardized 

interfaces. Of course the replaceability is only possible between carefully 

designed sets of building blocks that have the same interface and a similar 

function. When looking at the CPU example: only a CPU of the same family 

and with the same pin structure can potentially replace the original CPU. 
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 Encapsulating its internal structure means that the model developer 

does not need to know what is inside a simulation building block. The internal 

working of a simulation building block is shown to the outside world by 

expressing the state of the simulation building block. The user interface will be 

the only thing the model developer will observe, but this can vary depending 

on the type of model developer, e.g. allow expert users a peek inside. 

 Building blocks are part of a system for a number of reasons: these are the 

useful services or functionality that the building block provides to a system. 

Each simulation building block in a simulation model should add something to 

the overall system representation; otherwise it can be left out. In addition, the 

services a simulation building block provides is to other building blocks in the 

system. A separation can be made between the type of services and 

functionality and how they are allocated to simulation building blocks, because 

no simulation building block in a domain specific extension provides all the 

services and functionalities of the system. Several services or functionalities 

will be offered by building block elements inside the simulation building block. 

In some cases the desired service or functionality can only be realized by the 

model developer by integrating the building block with model constructs of the 

generic simulation environment 

 Building blocks encapsulate their internal structure and are self-contained, 

yet they provide services to other building blocks and are interoperable. This 

means that somehow they exchange information. Therefore, building blocks 

have precisely defined interfaces. A building block contains several types of 

precisely defined interfaces for different purposes. These purposes are 

exchange of information and entities with other building blocks, 

parameterization by the model developer and collection of statistics at the end 

of the simulation run. A part of the statistics and external representation of the 

simulation building block is also realized via an interface for visualization and 

animation. 

 The BETADE research group described the use of building blocks in the 

following way: “A building block may be customized in order to match the 

specific requirements of the environment in which it is ‘plugged’ or used.” 

(Verbraeck et al, 2002, p23). This means, for the use of domain specific 

extensions, that building blocks are instantiated into a simulation model and 

within the simulation model the simulation building blocks will be 

parameterized to represent a system element.  

 The BETADE research group defined building block as widely applicable, 

beyond the use of a single domain like software engineering, data 

management or simulation. Barros et al (2004) summarize the difference 

between component based software development and component based 

simulation. They conclude that a simulation component or building block 

behaves differently than a software component, due to level of abstraction and 

modeled system representation. Nevertheless, they conclude that concepts 
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like separation of concerns, interfacing and product line engineering can also 

be applicable for the development of components for simulation. 

 

5.4.2 The way that simulation building blocks achieve ‘self-contained’  

Data locally stored 

 The characteristic of a building block that it is self-contained relates to 

information belonging to the simulation building block. The state of a 

simulation building block is defined as the values of all its attributes 

(sometimes called state variables). Examples of these attributes are the 

current destination or the current speed of an AGV. The attributes of a 

simulation building block will vary over time. The AGV will change destination 

and speed regularly. In most generic simulation environments, the speed 

attribute of a vehicle can be changed by any model construct. Freely changing 

the attributes of other building blocks often results in unexplainable behavior 

and difficulties with verifying and validating a simulation model. Therefore it is 

important that a simulation building block only changes its own attributes. For 

example, a control simulation building block should send a message to an 

AGV if the control simulation building block has decided that the destination of 

the AGV needs to change, instead of directly overwriting the destination in the 

AGV building block. 

 

Simulation Building Block Guideline 1: data belonging to a building block 

should not be written by other building blocks directly, but only via defined 

interfaces. 

 

Use of building block elements 

 The ’self-contained’ characteristic does not just deal with the need for 

shielded attributes of the simulation building blocks to resemble their state, it 

also applies to the functions or processes within building blocks. For example, 

the area model construct in the airport case study (chapter 3) had at least the 

following functions: resource limitation to entering passengers; prioritization of 

passengers queuing for the area; determination of duration passengers 

remain in area; collecting of statistics of passenger in area; providing a 

relation to other areas for using shortest path algorithm. ‘At least’ is used 

because the advanced areas contained mechanisms to e.g., represent 

conveyor belts, to adjust the capacity of resources in time and the ability to 

trigger changes of attributes for passengers.  

Each combination of functionalities results in a new model construct to 

represent an area according to the specific requirements of the system. An 

example of an area with several functionalities is the check-in area, i.e. the 

area where passengers hand over their luggage and receive a boarding pass. 

The functions of this area are a priority mechanism for queuing passengers, a 

calculation for the duration of the processes depending on the attributes of a 
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passenger, a mechanism to change attributes of passengers at the counter, 

and a mechanism to change operator availability depending on queue size or 

allocated flights. At different airports the check-in areas were slightly different 

and thus different model constructs were developed of the check-in areas 

resulting in a large set of variants. 

 The issue with the variants used to model constructs has also been 

encountered in component development in software engineering. Software 

component developers overcome the large sets of variants by applying the 

concept of Product Line Engineering (Weis and Lai, 1999). In this concept the 

functionalities of components are divided over smaller objects. One of these 

objects contains the core of the component that will be the same for all variant 

components. The other objects are adjusted to represent the different 

variants. Figure 5.1 shows, on the left side, three software components, 

before Product Line Engineering is applied. In these three components you 

can observe three objects (triangle, circle and diamond). The circle object is 

the core of the component, the triangle and diamond objects are variants for 

respectively function X and function Y. Product Line Engineering enables us 

to find the commonality in the component variants and combine them. Figure 

5.1 shows, at the right side, the same three software components, but now the 

engineering concept is applied and maintenance and usability is focused on 

the core of the component and its smaller objects that provide the variations. 

 

Figure 5.1: Product Line Engineering; find commonality in alternative 

components 

 The concept of Product Line Engineering can be applied for each 

simulation building block, where one or more functionalities can be observed 

as a functional variant. Product Line Engineering is worth applying if variants 

can be implemented by smaller elements to represent a slightly different 

behavior. The check-in counter model construct is a good example of such a 

future simulation building block as it has specific functionalities for the queuing 

mechanism, processing, resource availability and passenger state changes, 

where other area building blocks have different implementations for these 

same functionalities. We model these functional variants as specific objects, 
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which will be a part of the simulation building blocks. We will refer to these 

specific objects as building block elements.  

 The simulation building block will consist of one of the instances of building 

block elements for each functionality in this example. The building block 

elements might vary for building blocks in functionality and some might not 

even be available. In the example of Figure 5.2 the simulation building block 

with the circle as core will be instantiated with one of the triangle and one of 

the diamond building block elements. The model developer can thus make a 

decision for one of the available building block elements for each functionality.  

 

Figure 5.2: 3 model constructs versus 1 Simulation building block with a 

circle core and 6 building block elements to represent system elements. 

 The use of building block elements enlarges the number of system 

elements that can be represented by the domain specific extension. Figure 

5.2 shows that originally only 3 model constructs were available, and thus only 

3 representations of the system elements were available. With 6 building 

block elements the model developer can now represent 9 (3 triangle * 3 

diamond) system elements.  

 

Simulation Building Block Guideline 2: a simulation building block consists of a 

core and building block elements to represent functions and services. 

 

 The building block elements that are part of a simulation building block will 

vary with each domain specific extension. However, we encountered in all 

simulation studies we were involved in the need for resourcing behaviour, the 

requirement for statistics and the need to handle errors in the execution. 

Based on the experience we gained in simulation studies we envision that the 

building block elements listed in Table 5.3 are likely to return in many 

simulation building blocks. These common building block elements provide 

extra richness to the concept of simulation building blocks compared to model 
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constructs and are identified to help the design of the simulation building block 

and its building block elements. 

Table 5.3: Building block elements expected in simulation building 
blocks 

Building block 
element 

Description 

Statistics Building block element to calculate statistics like resource 
utilization, waiting time and process duration of functions 
and services provided by the simulation building block. 

Error handling Building block element to handle errors based on wrong or 
inconsistent input, or based on a wrong or inconsistent 
state. 

Resource 
definition 

Definition of the availability and capacity of the resource 
represented by the simulation building block. 

Evaluate 
capacity 
availability 

Building block element to check whether a resource of the 
building block currently has enough free capacity. 

Claim capacity Building block element to claim capacity of the resource of 
the simulation building block. This building block element 
also can include queueing and/or storing functionalities. 

Carry out 
process 

Building block element to trigger the simulation building 
block to perform an allocated function or service. The 
process can be executed for a certain (random) duration or 
until a certain state is reached. 

Release 
capacity 

Building block element to release capacity that earlier has 
been claimed by a process to ensure execution of service or 
function. 

Animation Building block element to animate the state of the simulation 
building block, possibly including one or more of the 
statistics of the simulation building block. 

 

 The building block elements that are described in Table 5.3 can use a 

variety of attributes of the simulation building blocks to perform each function 

or service. The attributes used, and the information to be exchanged in these 

building block elements, are available within the simulation building block. A 

developer of simulation building blocks might decide to introduce a reduction 

of data exchange of building block elements as described in Simulation 

Building Block Guideline 1, i.e. data exchange requires the use of defined 

interfaces. However, this will strongly reduce the understandability of the inner 

logic of the building block element and is therefore seen as an unnecessary 

overhead. 

Simulation Building Block Guideline 3: data belonging to a building block 

element can be accessed by other building blocks elements of that building 

block without using the interfaces of the simulation building block. 
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5.4.3 The way that simulation building blocks achieve ‘interoperable’ 

Set of simulation building blocks 

 The IEEE (1990) defines interoperability as “the ability of two or more 

systems or components to exchange information and to use the information 

that has been exchanged.” The components that the IEEE talks about are 

software components instantiated in a software application, but the definition 

also applies if we replace software component by simulation building block or 

building block element. The ability of simulation building blocks to exchange 

information only applies for simulation building blocks that belong together, i.e. 

simulation building block members of a domain specific extension. The set of 

simulation building blocks in a domain specific extension can be structured 

according to different views.  

 One view is the identification of families of simulation building block. We 

define a family as a set of simulation building blocks that all represent a type 

of system element. The areas in the airport case study are examples of 

simulation building blocks that can be structured as a family. The use of 

families is to support the simulation model developer in understanding the 

replaceability of a simulation building block by another simulation building 

block from the same family. 

 Another view on the structure of simulation building blocks is the difference 

between infrastructure or physical building blocks and control or management 

building blocks. The infrastructure and physical building blocks represent the 

system elements that deal with the processing and handling of entities, while 

the control and management building blocks deal with the allocation of entities 

to infrastructure or physical building blocks or triggers when physical building 

blocks should start or stop processes. 

 The third view of the structure is the view of fixed control or control using 

process steps. Within a system a distinction can be made between control or 

management systems that can be modeled as process steps in a fixed order, 

or by a much more flexible solution where the process can be defined 

stepwise. For example, the allocation of AGVs to a dock was, in the case 

study in chapter 3, a fixed sequence, while the actual claiming of tracks to 

drive on was defined in a process sequence using scripts. 

 

Family of building blocks with building block elements 

 The areas in the domain specific extension for airports are a clear example 

of a family of simulation building blocks. The simulation model was configured 

by instantiation of various members of the area family, for example the 

walking area, the conveyor, the shop, the boarding area and the check-in 

counter. Possibly several other families can also form part of the simulation 

environment. For example, a second family in the domain specific extension 

for airports could be the building blocks implementing mechanisms of 

allocating airlines to check-in counters, a set of building blocks that was 

developed for the simulation study at JFK Terminal 4. 
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 The simulation building blocks that belong to a family will have mostly the 

same types of building block elements. Figure 5.3 shows 3 simulation building 

blocks based on the simulation building block introduced in Figure 5.2. Exactly 

as shown in Figure 5.2, the building blocks of that family share one or more 

types of building block elements and further have variants to a basic simple 

version of building block elements. Figure 5.3 shows a part of an example 

domain specific extension consisting of one family of simulation building 

blocks and  building block elements based on the Product Line Engineering 

example of Figure 5.2. Families are to structure the available simulation 

building blocks to support the model developer. Families can be organized in 

any way that the model developer and the future users feel comfortable with. 

 

 
Figure 5.3: Family of simulation building block extended of figure 5.2 

 

Simulation Building Block Guideline 4: system elements that appear in 

different variants and processes in a system can be organized in families of 

building blocks and building block elements. 

 

Building blocks for infrastructure and building blocks for control 

 Two types of experiments are often performed in simulation studies to 

improve system performance. The first option is to extend the availability of 

resources, the second option is to improve the way that resources are used: 

by resources we mean things such as machines, vehicles or people. We refer 

to these items as infrastructure or physical elements of the systems. The 

infrastructure or physical elements carry out processes for other elements in 

the system. For example, the AGVs perform a process for a Load or an Area 

performs a process for a Passenger.  

 The processes, services and functions performed by physical elements or 

infrastructure are determined by control or management functions in the 
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system. For example, a management system allocates which Load an AGV 

will transport. Simultaneously a control system makes sure that the AGV can 

safely move over a Track. The control system triggers when the AGV can start 

driving, and the AGV notifies the control mechanism when it reaches the end 

of the provided Track.  

 Figure 5.4 shows the structure of control and infrastructure building blocks 

in generic terms. The infrastructure simulation building blocks will be triggered 

and provide feedback to the control simulation building block. The introduction 

of these two types of simulation building blocks, control and infrastructure, 

support the model developer in performing simulation experiments to vary the 

availability of infrastructure and to adjust the control of the infrastructure, see 

also Saanen (2004) and Versteegt (2004) who further describe the use of 

control and infrastructure dedicated building blocks.  

 

Infrastructure

simulation

building block

Control

simulation

building block

triggers

activity

notifies

status change

 

Figure 5.4: Simulation building blocks 

 that separate the control and infrastructure 

 

Simulation Building Block Guideline 5: building blocks are of different types, it 

is common to have separate building blocks for infrastructure and for control. 

 

Process description for control simulation building blocks 

 The way the infrastructure is controlled and managed is in each system 

different. Therefore simulation building blocks need to have a way of flexible 

control by other simulation building blocks. A part of the required flexibility in 

control will be achieved via building block elements within control building 

blocks. The scripts in the AGV case study provided an alternative way for 

controlling the infrastructure. The control consisted of a sequence of 

processes instead of control that consisted of one model construct. This 

approach resulted in more flexibility for the control of AGVs, and the ability to 

model control matching to every possible layout of tracks.  

 In the AGV case study flexibility was achieved by a scripting language that 

was hard to maintain and limited in configuration. The different script 

statements can be seen as individual simulation building blocks consisting of 
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the building block elements like interaction, statistics, error handling and one 

or more building block elements for the actual process and control to the 

infrastructure. Table 5.4 shows a fragment of an actual script and Figure 5.5 

shows how this script could be instantiated in a simulation model using 

different control simulation building blocks. 

 

Script LR Comments 

Insist SX 

Exec AX 

Exec XB 

Free SX 

Claim ticket for crossing 

Drive from left to center 

Drive from center to right 

Free ticket SX 

Table 5.4: Script of AGVs in table 

 

 

Insist SX Exec AX Exec XB Free SX

 

Figure 5.5: Script of AGVs using 

simulation building blocks

 

Simulation Building Block Guideline 6: complex control mechanisms should be 

represented using control building blocks linked together to represent a flow. 

 

Pointers between simulation building blocks 

 Interoperable means that the building blocks work together and exchange 

information. The building blocks that are instantiated in the simulation model 

can only interact if they are aware of each other’s existence. The simulation 

environments offer several technical ways to achieve such awareness, i.e. to 

know that other building blocks exist in the simulation model and what their 

names or identifiers are. The easiest way is to point to the other building 

blocks via their name. This process was applied to the simulation models 

within the AGV case study and resulted in several errors so that model 

constructs were not available or did not receive the correct name. We learned 

that the awareness of other model constructs should be flexible and not fixed 

in the design of the model construct.  

 We introduced flexibility in defining the pointer to other building blocks in 

the airport case studies. For example, in the model construct to allocate flights 

to a check-in area we listed the check-in areas using a pointer. These 

parameters were verified and error messages were generated if the pointer 

was invalid. In this way awareness of other model constructs was easier to 

obtain, check and update.  

 Awareness of the simulation building blocks can be achieved via pointers, 

but it is very time consuming to set the pointers of each building block to point 

to other building blocks it might interact with. An alternative approach is to use 

one instance of a specific building block that contains pointers to all building 

blocks in the model. This mechanism can be compared to a naming function 

in software engineering. 

Simulation Building Block Guideline 7: building blocks should be aware of 

each other’s existence within a range of applicability. 
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5.4.4 The way that simulation building blocks achieve ‘reusable unit’ 

 The reuse of a simulation building block will be improved by the use of 

building block elements. A simulation building block that exactly fits system A 

does not need to be a good match for system B, even though the domain is 

the same. The reuse of simulation building blocks is less of an issue, because 

the building block that was a good match in system A can be updated to 

match system B via adjustment, replacement or alternative parameterization 

of one of the building block elements in the simulation building block, see also 

Simulation Building Block Guideline 2.  

 

5.4.5 The way that simulation building blocks achieve ‘replaceable unit’ 

Family of building blocks 

Replacing a simulation building block in a simulation model can be easily 

achieved for building blocks that are part of the same set. A check-in counter 

in the simulation study of the airports could easily be replaced by a check-in 

counter with another function or the waiting area could be replaced by a 

shopping area to entertain passengers during waiting.  

 Replacing of elements in the simulation model can be achieved by using 

simulation building blocks from the same family or by replacing building block 

elements in the instantiated simulation building blocks. This works exactly as 

defined in Simulation Building Block Guideline 4. 

Extend set with new building block elements 

 The use of building block elements also improves our ability to extend the 

set of building blocks. In cases where a model developer cannot find a 

matching building block to represent alternative behavior in the system, then a 

new building block element can resolve the problem. The domain specific 

extension will include the new building block element and the model developer 

can then develop simulation models with new simulation building blocks that 

were not considered in the original design of the domain specific extension.  

Simulation Building Block Guideline 8: extension of a domain specific 

extension can be achieved by introducing new building block elements for 

existing simulation building blocks. 

 

Standardized interfaces 

 Replacing building blocks in a simulation model is not a direct result of 

using families of building blocks, it is due to the building blocks having the 

same interface within the family. By interface we mean the way building 

blocks interact with other building blocks. If a control building block expects a 

check-in area to send triggers and receive notifications in a certain way, then 

it is important that a building block that can replace the original check-in area 

handles the same type of interaction via the same interfaces. This interface is 

the way that building blocks receive triggers to do things. Standardized 
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interfaces to enable replaceablity applies for building block elements in exactly 

the same manner as for simulation building blocks, because building block 

elements should also be replaced without any complexity for the model 

developer. 

 

Simulation Building Block Guideline 9: simulation building blocks and building 

block elements of the same family follow the same interface requirements. 

 

5.4.6 The way that simulation building blocks achieve ‘encapsulating its 

internal structure’ 

Hide inner working 

The internal structure of simulation building blocks and its underlying building 

block elements are hidden behind a user interface to the simulation building 

block in which the model developer enters the values for parameters. This 

user interface completely hides the inner code and prevents the model 

developer seeing what is inside or even tampering with the logic of the 

simulation building block or building block elements inside.  

Simulation Building Block Guideline 10: simulation building blocks hide their 

inner working. 

 

Limitations depending on type of model developer 

We observed during the laboratory experiments that experts want to 

understand the inner workings of the set of model constructs and see what is 

hidden behind the interface. We also observed that the developers of domain 

specific extension made improvements in the model constructs instantiated in 

the simulation in the case study of the AGVs. We conclude from these two 

observations that the user interface is a good way to hide the inner working, 

but that, depending on the type of model developer, a way to observe the 

inner working of the building blocks might be desired. Especially in the 

development of the simulation building blocks and building block elements 

advanced developers will want to test and verify a block by evaluating the 

detailed logic of the simulation building block or the building block element.  

 

Simulation Building Block Guideline 11: advanced model developers have to 

be able to unhide the inner logic and see how the processes and attributes 

are implemented. 
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5.4.7 The way that simulation building blocks achieve ‘providing useful 

services or functionality’ 

Simulation building block elements 

The services and functionalities that simulation building blocks provide are 

represented by building block elements. A simulation building block can have 

several building block elements for the different services or functionalities it 

provides. This follows from Simulation Building Block Guideline 2. 

Integrate with model constructs of generic simulation environment 

The service or functionality that should be represented by a simulation 

building block can be exceptional compared to the common representation of 

the system element in the domain. In systems were a system element needs 

to be represented that is exceptional for the type of systems in a domain, then 

it might not be worth extending the domain specific extension with new 

building block elements. An alternative approach to Simulation Building Block 

Guideline 8 is to instantiate the desired functionality of the building block via 

custom model constructs of the generic simulation environment.  

The breakdown process of the computer factory consists of three building block 

elements: “Generate a breakdown”, “Call an operator”, “Solve the breakdown”. 

Sufficient building block elements have been developed for the sub-process of “Call 

an operator” and “Solve the breakdown”, but in one factory a machine is in use that 

generates breakdowns every 24 hours but only if more than 200 boxes have been 

closed in the past hour and only if preventive maintenance has taken place more than 

3 hours ago. Figure 5.6 shows the simulation building block “Breakdown process” 

instantiated using 4 generic model constructs to represent the very specific building 

block element. 

 

Figure 5.6: “Breakdown process” using several generic model constructs for 
the building block element “Generate breakdown” 

 

 Applying building block elements for functionalities reduces the chance to 

encounter the risk of developing building blocks to represent exceptional 

system elements, but still there is a risk that the developers of the simulation 

building blocks and building block elements will spend their time on a building 

block representing an exceptional system element that is not required in other 

simulation models. These exceptional system elements can much better be 

represented by one or more generic model constructs instead of a dedicated 

domain specific simulation building block. We suggest, therefore, that a model 

developer should have the possibility to use generic model constructs to 

represent a certain system element or part of a system element. The block 
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below and Figure 5.6 show an example of a simulation building block that 

requires one of the building block elements to be represented by generic 

model constructs. The discussion above results in Simulation Building Block 

Guideline 12.  

 

Simulation Building Block Guideline 12: system elements should be 

represented by building block elements that can be extended with custom 

instantiations of model constructs of a generic simulation environment. 

 

An alternative approach is to enable simulation building blocks to interact with 

model constructs of the generic simulation environment. This approach will be 

mainly applied to the control building blocks represented in a process 

description according to Simulation Building Block Guideline 6. Figure 5.7 

provides an example of simulation building blocks from a domain specific 

extension (rectangle with thin border) with model constructs of the generic 

simulation environment (shapes with thick 3D-border). The ability to interact 

with the generic model constructs of the simulation environment gives the 

result that the domain specific extension really is an extension to the 

simulation environment and not a partial replacement. 

 
Figure 5.7: Simulation building blocks and generic model constructs 

integrated 

 

The difference with Simulation Building Block Guideline 12 is that in Figure 5.7 

the building blocks and generic model constructs jointly are composed into the 

model and that without the combination the simulation model will not work. In 

Simulation Building Block Guideline 12 the assumption is that the simulation 

building block can work without the generic model constructs, but that the 

generic model constructs represent a specific or exceptional variant that is not 

worth the development of a building block element as part of the domain 

specific extension. 

 

Simulation Building Block Guideline 13: a building block can connect to model 

constructs of a generic simulation environment. 
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5.4.8 The way that simulation building blocks achieve ‘precisely defined 

interfaces’ 

Different interfaces of simulation building blocks 

A simulation building block contains interfaces that serve different aims, 

during model development, during the simulation run and during the analysis 

of the simulation experiments. The interface with the simulation model 

developer, mainly during model development, is used to support 

understanding of the possible use of the simulation building block and to 

enable the model developer to easily parameterize the simulation building 

block. The interfaces used during the simulation run are interfaces to other 

simulation building blocks, used to exchange information and to trigger 

functions and processes in the other building blocks in the simulation model. 

Finally, the interfaces for analysis are used by the analyst during the 

execution of the simulation run and after the simulation run has been 

completed. The interface is a visualization of a selected subset of the state of 

the simulation building block during the simulation run. The interface contains 

reporting of statistics after the simulation run is completed, gathered from the 

state of the simulation building block during the run.  

 We first describe the interface used by the model developer for 

parameterization, which is usually built using the features of the generic 

simulation environments to offer dialogs and hide the inner working of the 

building block, see also Simulation Building Block Guideline 10 and 11. 

Secondly, we describe how simulation building blocks should exchange 

information. This is mainly an approach to be followed by the developer of the 

domain specific extension, because most generic simulation environments do 

not force this on the developers. This also follows Simulation Building Block 

Guideline 1, i.e. that exchange between building blocks should go via their 

interfaces, and Simulation Building Block Guideline 9, i.e. that building blocks 

of the same family follow the same defined interfaces. Thirdly, we describe 

how the information on performance indicators can be visualized or reported 

to the model user. 

 

User interface parameter settings  

 In chapter 2 we showed the differences between interfaces of generic 

model constructs (Figure 2.5) and the interface of a domain specific model 

construct (Figure 2.6). Simulation building blocks require a similar 

parameterization to represent a system element of a specific system, see 

Figure 5.8.  

 The user interface has to contain fields in which the model developer can 

enter e.g., the parameters or statistical distributions for processes, the 

availability of resources, or the initial state of a simulation building block. The 

values that the model developer enters in the user interface of the simulation 

building block will be used during the simulation run and for the initialization of 

the simulation building block. The model developer does not need to make 
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adjustments in one or more places of the underlying code thanks to the user 

interface, but can rely on the simulation building block to use the values 

entered in this user interface.  

 

 
Figure 5.8: User interface for a simulation building block 

 

Simulation Building Block Guideline 14: the model developer has to adjust the 

parameters of a simulation building block via a user interface. 

 

 The user interface has an additional advantage that the developers of the 

simulation building block should use. In a generic model construct the user 

interfaces are kept generic. For example, a process model construct uses the 

term “Process duration” while the process model construct refers to the 

process used to repair a breakdown. Figure 5.8 shows that the simulation 

building block can use the text “Process duration repair breakdown” to clarify 

what process parameter is entered. Terminology in the user interface clarifies 

the use and capabilities of the simulation building block within a domain and 

supports the model developer and helps him/her to make correct choices for 

configuring the building blocks in a simulation model.  

 

Simulation Building Block Guideline 15: use of domain terminology in the user 

interface provides insight in the suitability of a building block for a certain 

purpose and the meaning of its parameters. 

 

 Model developers will use the user interface of the simulation building 

block to enter their data. When they are feeding their data into the simulation 

building block, a check can be performed automatically to verify the 

correctness of the parameters. The simulation building block can provide 

warnings or error messages to the model developer if a parameter of the 



5.4 Simulation building blocks  

140 

simulation building block is not within a valid range. For example, the interval 

breakdown should always have a positive value in the interface in Figure 5.8. 

 

Simulation Building Block Guideline 16: parameters in a user interface of a 

simulation building block have to be checked for validity of the values. 

 

 The parameters that a model developer uses to configure an instance of a 

simulation building block in a simulation model will differ between projects. In 

some projects with a domain specific extension all parameters will be custom 

defined, in another simulation study it is sufficient to work with average values 

from the domain. For example, the walking speed of passengers in an airport 

can be varied in each simulation study, but in some studies it could be 

sufficient to take an average value such as 4.5 km/hr. If the developer of the 

simulation building block has already put in a default value (for example 4.5 

km/hr.) then the development of a simulation model is easier for a model 

developer. 

 

Simulation Building Block Guideline 17: parameters in a user interface of a 

simulation building block should have default values whenever possible. 

 

 Documentation is an important instrument which model developers must 

study to understand how a simulation building block should be used. 

However, model developers will usually not spend hours reading a user 

manual. They need to have easy access to relevant support and explanations 

that link to the simulation building block on which they are working. The 

simulation building block in Figure 5.8 offers this easy access to support and 

documentation via a help button in the user interface. Pressing the help button 

should return information that explains, for the model developer, how to use 

the simulation building block. This information could be, for example, a page 

number from the user manual, a window, or a web page. 

 

Simulation Building Block Guideline 18: The user interface of a simulation 

building block should provide support for the model developer. 

 

 The building block elements that represent functions and services of the 

simulation building block are hidden for the model developer within the 

simulation building block. Different technical solutions can be used to enable 

the model developer to change building block elements depending on the 

generic simulation environment used, but whatever technical option the 

generic simulation environment offers, the model developer will have to make 

these changes via the user interface. In the user interface of the simulation 

building block the user can select the appropriate building block elements and 

set their parameters correctly. The user interface is thus not only used for 
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parameters of the simulation building block, but also for changing parameters 

of the underlying building block elements. 

 

Simulation Building Block Guideline 19: The user interface of a simulation 

building block can be used by model developers to select building block 

elements and set their parameters. 

 

Interaction using designed interfaces 

 Handling interaction between building blocks is one of the main features 

required to successfully replace simulation building blocks in a simulation 

model. A building block in a simulation model cannot be replaced by another 

building block if the two building blocks use different ways of interacting with 

the rest of the building blocks in the simulation model. Figure 5.9 is a 

schematic representation of the interaction issue as it appeared in the AGV 

case study. On the left hand side the interaction between different model 

constructs of the Terminal Manager (star at bottom) is shown. In the right 

picture an alternative Terminal Manager model construct is used, which needs 

another type of interaction by one of the surrounding building blocks. The 

model construct can thus not be replaced without changing the interactions 

with other model constructs. 

 

Original model construct Alternative model construct

X

 
Figure 5.9: Unstructured interaction model constructs 

 

 In software development (Meyer, 1997; Szyperski, 2001; Atkinson et al, 

2001) this issue with interaction has been tackled in two steps. The major step 

is to create awareness during the development of the software applications. 

Software developers force themselves to make sure that their components 

can follow a structure that has been agreed with all the developers. This way 

of developing software components is known as Design By Contract or, 

Programming By Contract (Jézéquel and Meyer, 1997; Atkinson et al, 2001). 

The second step is the use of development environments and languages that 

force the use of well-defined interfaces.  
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Figure 5.10: Structured interface for simulation building block 

 

 The effect of these interfaces is shown in Figure 5.10. Other simulation 

building blocks no longer interact with something inside the model construct, 

but send their trigger, request, entity, or event to the interface of the simulation 

building block. The simulation building block will redistribute the received 

object internally to the appropriate building block element. The original 

building block on the left hand side in Figure 5.10 can be replaced by an 

alternative building block (right hand side of Figure 5.10) without any changes 

to the other simulation building blocks in the simulation model.  

 In Figure 5.10 only one interface remains and all interaction is managed 

via the small bar above the star or triangle. The important thing is that all the 

building blocks in the family follow the same interface, it does not mean that 

this is the only point of entry for the building block. The interface can easily be 

distributed over two or three different locations, but the more points of entry 

are available, the larger the chance that developers of the simulation building 

block will ignore the defined interface and try to connect directly, therefore we 

suggest to work with one point of entry. 

Simulation Building Block Guideline 20: a simulation building block has a 

defined interface that receives triggers, requests, entities, or events from other 

simulation building blocks in the simulation model and redistributes these 

internally.  

 

 The interfaces have an additional function besides redistributing. They can 

also be used to check the state of a simulation building block before carrying 

out the logic associated with that trigger. For example, an AGV cannot receive 

the trigger “pick up load” if it is currently in maintenance. Another check that 

the interface can perform is to capture triggers that are not supposed to be 

received at all by a simulation building block. For example, the model 

developer may have made some errors with the pointers result that a repair 

man has to pick up a load. The interface of the repair man is not prepared for 

the trigger “pick up load” and thus the event is cancelled and a runtime error 

message is provided to the model developer. 

Simulation Building Block Guideline 21: the interface of a simulation building 

block contains evaluations of the state of the trigger and the building block to 

determine whether the building block can handle the trigger.  
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User interface visualization 

The last type of interfacing of a simulation building block is the interfacing it 

provides to the analyst to allow them to evaluate the behavior of the model. 

This interface is used during the simulation run or afterwards to visualize the 

states and key performance indicators.  

 Visualization during the simulation run can be provided by animation 

elements that are part of the simulation building block. Figure 5.11 shows 

animation using a set of pictures. Depending on the state of the simulation 

building block a different picture is shown. Other options are counters and 

texts that show, for example, the number of entities sealed at the building 

block or the number of breakdowns that occur. The important thing is that all 

these animation elements are provided to the model developer at the moment 

that the simulation building block is instantiated. Once again, different 

simulation environments will implement this in different ways, but independent 

of the simulation environment, the simulation building block should already 

contain the visualization definitions. 

 

 
Figure 5.11: Four status visualizations of the seal machine:  
available, sealing a box, break down, repairing a breakdown 

 

Simulation Building Block Guideline 22: a simulation building block contains 

pictures, texts, numbers and other elements to support visualization of the 

state, and the key performance indicators during the simulation run. 

 

5.5 Additional tools for domain specific extensions 

 The use of simulation building blocks in simulation projects standardizes 

the way the simulation models represents a system in a certain domain. The 

simulation building blocks will also collect statistics in a standardized way. The 

standardization of the simulation building blocks in a domain specific 

extension enables the automation of the steps a model developer has to 

perform.  

 The complete process of performing a simulation study is shown in Figure 

1.8. The following steps are part of this process and can be supported by 

automation and additional support tools on top of the set of simulation building 

blocks and the generic simulation environment: 
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• Model development by instantiating model constructs 

• Set parameters of the model constructs according to system data 

• Verify logic and data entry of simulation model before running 

• Run simulation experiment 

• Analyze output of the simulation model 

 

5.5.1 Model development by instantiating model constructs 

 The simulation building blocks can be automatically instantiated by an 

application. The possible automatic development from, e.g., a Visio drawing 

by a tool that instantiates the building blocks at the correct location into the 

simulation model is shown in Figure 5.12. 

 
Figure 5.12: Automatic model instantiation 

 

5.5.2 Set parameters of the model constructs according to system data 

 Instantiating simulation building blocks is a one-time activity in model 

development. The main effort is the parameterization of the building blocks to 

represent slightly different systems. Simulation Building Block Guideline 14 

describes how parameters of a simulation building block can be set via a 

customized user interface. Standardization of the interface for multiple 

building blocks in a simulation model enables us to define a common user 

interface covering the complete simulation model.  

 This simulation model interface can be provided in different ways, for 

example a spreadsheet or a database application. An example spreadsheet 

interface that enables the model developer to set parameters of multiple 

simulation building blocks in the simulation model is shown in Figure 5.13.  
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Figure 5.13: Example parameter setting instrument: spreadsheet enables 

adjusting all parameters of the simulation building blocks 

 

5.5.3 Verify logic, data entry and syntaxes of simulation model before 

running 

 The generic simulation environments contain instruments to evaluate 

whether the syntax of a simulation model is correct. These instruments 

provide the model developer with feedback if parts of the model are not 

configured correctly, but they only check the basic features of a model like the 

number of parenthesis or whether all referred names are defined. The 

laboratory experiment clearly showed us that these checks are not sufficient. 

The generic simulation environment will provide feedback to model 

developers if something is wrong in the simulation model, but this occurs in a 

context that is aimed at the advanced model developer using the generic 

model constructs. A model developer with limited knowledge of the generic 

simulation environment often find it difficult to interpret generic error 

messages.  

 Model developers that use simulation building blocks need feedback that 

takes into account the building blocks level of abstraction. Figure 5.14 shows 

an example of feedback that could be provided if a process building block 

refers to an operator building block that is not instantiated in the simulation 

model. This instrument supports the model developer in parameterizing 

simulation building blocks (requirement 10) in the way that it is intended 

(requirement 2 and 6). 
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Figure 5.14: Example of result of automatic model check  

Figure 5.14 is a customized message generated by the domain specific 

extension before the simulation run. In a generic simulation environment a 

model developer has infinite options as to how to model and represent a 

system. If a model developer starts using domain specific building blocks, 

then he or she no longer has infinite options. The structure of the simulation 

building blocks and the design decisions made by the developer of the set of 

building blocks limit the number of options. This limitation can be used to 

verify whether a model developer has followed the rules for the set of 

simulation building blocks.  

5.5.4 Analyze output of the simulation model  

 Simulation models that are composed using a domain specific extension 

are easier to adjust. The case studies showed that ease of adjustment leads 

to a larger numbers of experiments being performed in the simulation study. 

Each of these experiments needs to be analyzed to determine the problem 

solution direction or the feasibility of a solution. Problem owners are not 

interested in viewing the statistics of one model construct or one type of 

statistics. They would like to see an appropriate combination of performance 

indicators, all generated and fed by different model constructs instantiated in 

the simulation model. In a support tool the total outcome representation of the 

simulation building blocks can be combined and thus better support the 

problem owner. Developing such an interface for an individual simulation 

model is a lot of work, but developing a generic solution based on the 

simulation building blocks of the domain specific simulation extension is an 

investment that can be spread over different simulation projects and thus be 

more cost effective. Further, a specific building block element can easily be 

used to gather and, in a structured way, provide the statistics to an interface. 

An example is shown in Figure 5.15, where an Excel sheet is fed with the 

output data of a domain specific extension. 

 
Figure 5.15: Example Excel sheet with output data of simulation run 
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5.6 Support and documentation for domain specific extensions 

 Developing a simulation model of a system is a complex activity. We do 

not expect that we ever will be able to develop a domain specific extension 

that will make the work so easy that model developers can perform this work 

without training or support. In the laboratory experiments we noticed that the 

training provided to the novices and the experts was sufficient to get them 

started, but not sufficient to let them solve all problems they encountered. We 

also noticed in the laboratory experiments that the experts wanted to find out 

more about the technical background of the model, while the novices did not 

have the background knowledge to do so. We concluded that the two types of 

model developers require different types of support to work comfortably with a 

domain specific extension. 

 The laboratory experiments showed that documentation is necessary: 

however, model developers will only read the manual if they get stuck or have 

questions about how to deal with certain system elements. When this 

happens they will not start reading the manual at page 1 and carefully read 

every page, instead they scan the document to find the section about their 

building block. There the model developer expects to find a clear explanation 

of the issue at hand, assumptions for the building block, and a small but clear 

example.  

 The documentation of the domain specific extension and the model 

constructs provided for the laboratory experiment focused mainly on providing 

an explanation of the input parameters. The difficulty that model developers 

encountered when attempting to solve their problems showed that this 

explanation was not sufficient. Model developers and potential users of the 

domain specific simulation should be provided with information that explains 

when to use the domain specific extension (applicability) and why the 

behavior of the simulation building blocks in a simulation model can be trusted 

(trustworthiness). Using the information for applicability and trustworthiness 

the model developers can decide whether a domain specific extension is 

suited for their purpose and whether they have faith that the domain specific 

extension will result in a valid simulation model.  

 The next step is to start using the domain specific extension. Model 

developers require support and documentation for this process, mainly 

covering individual simulation building blocks and building block elements in 

the domain specific extension to illustrate usability.  

 

5.6.1 Support and documentation to illustrate applicability 

A model developer who is considering using a domain specific extension and 

its simulation building blocks to represent a system needs to be able to verify 

whether the domain specific extension is suited for the type of systems that 

he/she wants to simulate. Developers of a domain specific extension do not 

aim to produce a product that can be used by every model developer for any 
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kind of systems. The developers model a domain specific extension and its 

simulation building block for a certain scope of systems. A good description of 

the scope is a first step to providing good documentation, but more support 

and documentation needs to be provided for the use by (future) model 

developers. This information should at least contain the following: 

• Description of the scope of models that can be developed with the 

simulation building blocks of the domain specific extension. 

• Overview of possible simulation experiments that are likely to be 

performed in the domain and that are supported by parameterization of 

the simulation building blocks or by instantiating new or different 

building block elements. 

• Description of the level of detail of models that can be developed with 

the simulation building blocks. 

• Outline of the assumptions that were made when building the domain 

specific extension, by defining the structure of the simulation building 

blocks. 

• Overview of performance indicators that are generated by a simulation 

building block. 

• Descriptions of small simulation models that show specific uses of the 

simulation building blocks. 

• Example models developed using the simulation building blocks. 

• Overview of expected influence of input parameters on the 

performance indicators, which explains the potential effect of the input 

parameters on the building block’s performance. 

 

5.6.2 Support and documentation to illustrate trustworthiness 

Trust in a domain specific extension is hard to achieve and good 

documentation will only go part of the way to achieve it. Trust in a domain 

specific extension will be achieved by developers having faith in an extension 

and word of mouth advertisement by other users. Nevertheless, the 

trustworthiness of a domain specific extension can be influenced by providing 

documents and models that reflect the following items:  

• Outcomes of experiments with small example simulation models. 

• Descriptions of verification and validation steps to evaluate the 

behavior of the simulation building blocks and building block elements. 

• List of model developers or problem owners that have used the domain 

specific extension. 

• Success stories that explain why the model developers or problem 

owners used the domain specific extension. 

• Background of the developers and designers of the domain specific 

extension. 
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5.6.3 Support and documentation to illustrate usability  

The final type of support required is to help model developers who selected a 

domain specific extension to start using the simulation building blocks and the 

building block elements in the correct way. Below we list a number of points 

that should be addressed by the developers of a domain specific extension to 

help model developers to work with their domain specific extension: 

• Process descriptions should show the model developer how to 

develop a simulation model with the simulation building blocks of the 

domain specific extension. 

• Description of when to use which of the available building blocks 

elements for system elements. 

• Description of the simulation building blocks which includes a 

description of the possible use, parameterization and performance 

indicators. 

• Overview of warnings and errors that can be generated by the domain 

specific extension during the model development or experimentation 

with the simulation model; each error should contain suggestions how 

to solve the problem causing the error. 

• Set of verification experiments with small simulation models to observe 

different system behavior using the same simulation building blocks. 

 The documentation provided with a simulation building block should enable 

a model developer to know when and how to use this simulation building block 

in a simulation model. The available documentation of a simulation building 

block is often used as reference material once a model developer cannot find 

out what to do with a building block or which building block to use to represent 

a system. This documentation of individual simulation building blocks should 

therefore be well structured, easy to understand and answer potential 

questions of the model developer adequately. 

 Also in other problem domains people are struggling to develop sufficient 

user documentation for building blocks. In the domain of software engineering 

several initiatives exist to define the minimum requirements for documentation 

of a software component. The aim of these attempts is to achieve 

standardization in documentation, to promote exchangeability, clarity and 

transferability of software components between different software developers 

(Verbraeck, 2002).  

 We analyzed three proposals for defining software components to judge 

their ability to also describe simulation model components. The analyzed 

proposals were the Web Service Description Language (WSDL) 

(www.daml.org/services/), a specification standard for business components 

developed by a working group of the German “Gesellschaft für Informatik” 
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(www.fachkomponenten.de) and an approach developed by Heisel and 

Souquières (2004). 

 The Web Service Description Language (WSDL) is designed 

(www.w3.org/TR/wsdl) to facilitate the use of services over the web. The goal 

of the WSDL is to provide better, unambiguous meanings of services and to 

support re-use of services or components by others, where the context of this 

re-use is not known in advance. The description of a web-service comprises 

three parts:  

• the service profile for advertising and discovering services; it answers the 

question “What does the service require of the user(s), or other agents, and 

what does it provide for them?” 

• the process model, which gives a detailed description of a service's 

operation, and answers the question “How does it work?” 

• the grounding, which provides details of how to interoperate with a service, 

via messages, and answers the question “How is it used?” 

 In 1999, the working group “Component Oriented Business Application 

Systems” within the German “Gesellschaft für Informatik” started to develop a 

standard specification for business components (www.fachkomponenten.de). 

The result of this working group is a description of a business component, 

structured using seven levels. The purpose of business components is to 

support business processes. The marketing level describes business-

organizational features of the business component and technical initial 

conditions. The task level contains the purpose of the business component 

and the tasks that it automates or supports. The functional terms of the 

business domain are explained on the terminology level. The quality level 

describes non-functional properties and quality features, and their 

corresponding measurement units and methods. The relationships between 

the services of the components and the cooperation with other components 

are specified on the coordination level. The behavioral level contains 

invariants and pre- and post-conditions. Finally, the interface level describes 

the different views of business components, services, parameters, data types 

and failure reports, as well as service signatures and assignment to business 

tasks. 

 Heisel and Souquières (2004) have developed a specification structure for 

software components that covers the functional aspects of such components. 

This structure is aimed at supporting those making the decision whether two 

components can be interfaced or not. The description of a software 

component consists of the specification of its export (supplied) interfaces, its 

import (required) interfaces, a usage protocol relating the export interfaces, 

and a relation between export and import interfaces. That relation states 

which export service relies on which import services. 
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 None of the three descriptors fits completely with the need for simulation 

building blocks, but a combination of the documented work of all three 

workgroups has resulted in the list of items that can be used to describe of a 

simulation building block: 

 

Name: a clear and representative name that enables model developers to 

grasp its intended purpose. 

Objective: description why the building block should be part of the model. This 

could be to provide an overview of experiments that can be performed with 

models that are composed using the simulation building block.  

Purpose: a natural language description of the building block should include a 

rough sketch of its functional behavior and thus of the function that the 

simulation model building block can fulfill in a simulation model. 

Underlying assumptions: the underlying assumptions identify when a building 

block can be used and when it cannot be used. For example, if a traffic 

building block assumes that no blocking of crossings will occur, the simulation 

building block should not be used for situations where blocking plays a central 

role. The assumptions are often closely related to the overall objective of the 

building block.  

Validation: validation and verification are one of the key issues when building 

and using a simulation model (Balci, 1997). Model validation makes sense 

only in the context of a specific purpose of the model and of the question to be 

answered using the model. Hence, using a simulation building block that is 

valid in a certain context does not guarantee that this building block is valid in 

another context. Therefore the validation item will have to show an overview 

of testing models and parameters that have been used to validate the 

behavior and representation of the simulation model component. Furthermore, 

case studies and problem descriptions that show the successful and 

unsuccessful use of the building block may be valuable. 

Input and output ports including associated signatures: this is the technical 

interface description as identified in all software structures. It provides an 

overview of the triggers or messages the simulation building block can receive 

and will send to other building blocks. The associated signatures are an 

overview of the function or process started when something enters through an 

input port. 

Parameterization: Which values of the component can/must be parameterized 

by the model developer? Parameterization information should also include the 

allowed ranges of values for parameterized attributes. Most often the model 

developer can parameterize the behavior and attributes of a simulation model 

component through a user interface of the simulation environment. 

Expected effects of changes to parameters: the influence of parameterizable 

values should be clear to the simulation model developer. 

Visualization / performance indicators: output generated by the simulation 

building block that provides insight into the behavior and state of the 
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component. Visualization mainly refers to insight during the simulation run. 

Examples of visualization are a console with messages or animations. 

Description of the functionality: model developers will not use a simulation 

building block unless the behavior of the building block is absolutely clear to 

them. Model developers run the risk of inconsistencies in their model, different 

use of resources, different levels of abstraction, or a process flow that does 

not represent their system. For software components, pre and post conditions 

and usage protocols suffice, but in simulation model components, the 

functional behavior should be described in detail, preferably using a 

standardized and formalized description, like, for example, the DEVS-

framework (Zeigler et al., 2000).  

Illustrations of how it works: to support a faster decision whether or not to use 

a simulation building block, and an easier integration of a simulation building 

block into a composed model, the description of the functionality should be 

complemented by example models using the component, training material, or 

animation movies. 

 

 Examples provided to help the modeler should be small simulation models, 

preferably of a fictive and simplified system. The simulation model should be 

composed of a limited number of simulation building blocks, so it is easy to 

see the effects of an individual simulation building block on the overall system. 

These small models can also be used for demonstrating the effects of 

parameter settings to modelers. Assignments can be defined that use the 

original model as a starting point for adjustments to the settings of the 

parameters of the simulation building block. These assignments should 

preferably also provide outcomes of the adjusted model and an explanation of 

the alternative behavior of the simulation model. The box below shows an 

example for the domain specific extension “Computer factory”, which was 

introduced in chapter 2. 

Example model “Breakdowns”. The simulation model shown in Figure 5.16 shows one 

sealing machine, a breakdown process and an operator. The sealing machine is waiting for 

computers in boxes, but in this simulation model the arrival of boxes is not included. 

Nevertheless the sealing machine has a breakdown every 24 hours, represented by the 

simulation building block “Breakdown process”. This building block will request an operator 

“Theo” to repair the machine. The operator requires on average 30 minutes to repair the 

machine. The output (right side of Figure 5.16) shows that after 240 hours there were 5.84 

hours when the operator worked to solve machine breakdowns. 

 

Figure 5.16: Implementation of simulation building block “Breakdown Process” 



  5 Domain specific extensions realized by simulation building blocks 

   153  

 

Training assignment for model “Breakdowns”. Adjust the interval between breakdowns 

from an average of 24 hours to an average of 12 hours. The expected result is that much 

more time is spent on fixing breakdowns and that the number of breakdowns increases. Even 

though the decrease is only 50%, the number of breakdowns will not double, due to the time 

required to fix the breakdown. Figure 5.17 shows the change that should have been made in 

this assignment with the outcome of the simulation model. 

 
Figure 5.17: Adjusted simulation model with output of training assignment  

“Breakdown Process” 

 

5.7 Design approach for improved domain specific extensions 

 In section 2.3.3 we introduced some steps for the development of a 

domain specific extension. We observed during the simulation studies, 

described in chapter 3, that we needed to extend the set of model constructs, 

to extend the performance indicators in the model constructs and to adjust the 

terminology to match the understanding of the model developers in the 

domains. In other words: we designed a set of model constructs that was not 

sufficiently linked to the domain, because system elements and important 

information were missing.  

 The initial phase of the design of the domain specific extension did not 

receive sufficient attention, and as a result we did not describe all required 

system elements. In this section we provide a design approach that pays 

more attention to setting the scope of the domain specific extension, which 

hopefully results in a set of simulation building blocks that better match the 

expectations of the problem owners in the domain.  

 In addition, the design approach introduced in section 2.3.3 was based on 

model constructs and not the concept of simulation building blocks. Therefore 

the design approach for development of domain specific extensions is 

extended with considerations regarding the simulation building block 

guidelines (section 5.4), the development of additional tools (section 5.5) and 

activities to result in documentation and support for model developers (section 

5.6). 
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5.7.1 Roles 

 Developing a domain specific extension requires insight into a problem 

domain. The extension should not just be focused on one particular system, 

but on multiple systems. Developing a domain specific extension requires 

advanced knowledge of the field of simulation and of the selected generic 

simulation environment. Knowledge of the field of simulation is needed to 

support experiments, to enable analysis, and to provide validation. Advanced 

knowledge of the generic simulation environment is needed to develop 

simulation building blocks that are sufficiently parameterized.  

 It is very rare that a person knows everything about a domain and is also a 

simulation expert. Except for these rare cases we suggest that a team of 

experts should be formed, with different roles, to design a domain specific 

extension. One or more roles could be performed by one person, but we think 

that the quality of the final domain specific extension will be better if each role 

is performed by a different person, and some roles even by several persons. 

The roles that we have identified in the design of a domain specific extension 

are: 

• Domain expert / problem owner: this role provides knowledge of the 

domain and a vision of the future demands for the simulation study to 

define the type of simulation models and experiments to be carried out. 

• Model developer: this role will be performed by the users of the domain 

specific extension to develop a simulation model and to perform 

experiments with the simulation model. The knowledge of these persons 

can range from “have heard about simulation” to “have experience 

performing simulation studies”. In the laboratory experiment we found that 

both types of persons could use the simulation environment and that they 

needed different kinds of support. 

• developer domain specific extension: this role will design the domain 

specific extension, implement the individual simulation building blocks and 

write the documentation about the building blocks and support tools of the 

domain specific extension. 

• tester domain specific extension: this role will use the developed domain 

specific extension and the support tools and evaluate whether the 

functionalities mentioned in the documentation can be achieved. The tester 

will do this by developing small simulation models of representative 

systems in the domain. 

 

5.7.2 Process steps and milestones 

 In Figure 2.11 is a process described to develop a domain specific 

extension. This process helped us to execute the case studies in chapter 3, 

but the input of our lessons learned and the identification of simulation 
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building blocks, use of additional tools and improvements to the support and 

documentation enable us to improve the process and define a prescriptive 

design approach for the development of domain specific extensions.  

 In this design approach the main focus is on the specification of the 

simulation building blocks. The extra attention in the design is aimed at 

avoiding that the implemented simulation building blocks and building block 

elements cannot represent the necessary system elements for the simulation 

studies. The design approach also includes the development of additional 

tools for model development, model parameterization, model verification and 

output representation to complete the domain specific extension. Finally, the 

domain specific extension should provide the support and documentation as 

described in the previous section. 

 

 

Figure 5.18: Overall process development domain specific extension 
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 The overall process of designing a domain specific extension is shown in 

Figure 5.18. On the left we show the type of information that is provided by 

domain experts and problem owners. The process steps in the middle of this 

figure are carried out by either the developer or the tester of the domain 

specific simulation. These process steps then result in the products shown on 

the right of Figure 5.18. 

 This design approach described in Figure 5.18 does not describe how the 

problem owner or domain expert gathers the material they feed into the 

design process. This will depend on the size of the group of domain experts 

and their availability. A very efficient way is to bring all the problem owners 

together and let them provide their system knowledge. This could be done 

using a GDR session (De Vreede, 1995), but interviews or literature research 

into the problem domain can also be used to gather sufficient information to 

design a flexible domain specific extension. In this the ‘example systems’ are 

not existing sets of simulation models, but common domain knowledge the 

team is aware of and systems that should be suited to be simulated with the 

domain specific extension.  

 The first step in Figure 5.18 is ‘Specification’. We concluded in section 5.2 

that an extension of this process is needed to help developers design a 

domain specific extension that matches the structure of simulation building 

blocks. This process step is further explained in Figure 5.19 and is an 

improvement to step 1 (Object oriented and process oriented decomposition 

and abstraction) and step 2 (Generalize system elements) as introduced in 

the initial approach for development of domain specific extensions in section 

2.3.3.  

 The other process steps in the design of a domain specific extension are 

fundamental to the development of a domain specific extension. They are 

listed below: 

• ‘Implementation of simulation building blocks and building block 

elements’ is the process step to instantiate the building blocks as an 

extension to a generic simulation environment, based on the provided 

specification. Replaces step 3 (Instantiate system elements as domain 

specific model constructs) of section 2.3.3. 

• ‘User documentation’ can be written while the simulation building 

blocks are being implemented. Extra step introduced to enable the 

development of support and user material as introduced in section 5.6. 

• ‘Test using small models’ is the development of small models by a 

tester and the use of experiments to validate the behavior of the 

separate simulation building blocks. These models are used by the 

model developers to help them to understand how to use simulation 

building blocks (requirement 2 and 6). The model developers can also 

use these models to verify the exact behavior of simulation building 
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blocks (requirement 8). This was covered in step 4 (verify domain 

specific model constructs) of section 2.3.3, but add more activities and 

details of verifications to be performed. 

• ‘Test using large models’ is the instantiation of the simulation building 

blocks and building block elements by a tester to represent the 

example case studies. These models can be used to demonstrate the 

capabilities of the building blocks in a full simulation study (requirement 

1). This is an extra activity to increase the trustworthiness of the 

simulation building blocks. In section 2.3.3 this was not considered yet. 

• ‘Development of generic output reports’ results in reports for the model 

developer that provide all the data that the model developer might need 

to evaluate their simulated system. This activity is added to support the 

development of additional tools as introduced in section 5.5. 

• ‘Training model developers’ can be a formal training, or a self-study 

project in which the model developer uses the domain specific 

extension to gain understanding and trust in the provided simulation 

building blocks. This training satisfies requirements 2 and 6. Possibly a 

more technical training can be provided as well to train model 

developers in how to handle new building blocks and building block 

elements. This is an extension to support model developers as 

suggested in section 5.6. 

 

5.7.3 Conceptualization and specification for a domain specific extension 

 The conceptualization and specification of a domain specific extension can 

be divided into four parts as is shown in Figure 5.19. ‘Determine scope’ deals 

with describing what the simulation models that will be instantiated using the 

simulation building blocks can represent. ‘Decompose problem domain’ is the 

decomposition of different systems of the problem domain into sub-systems 

and system elements, using the constructs view and functionalities view 

introduced in chapter 2. ‘Design building blocks’ is the transformation of 

system elements into building blocks, where some system elements might be 

combined or ignored to support flexible yet easy use. ‘Design building block 

elements’ is the final phase of the specification and is focused on to a more 

technical level, like providing a user-interface, and interfaces between building 

blocks. 

 Each of these phases of the specification is decomposed into process 

steps. The order of these process steps is the preferred order to develop the 

specification, but as any design process, the actual execution will be highly 

iterative and returning to earlier phases while design is going on. In the first 

phase (determine scope) the main information from the domain experts will be 

used. The problem domain is limited to a set of problems to be modeled. This 

set of problems will influence the selection of example systems that is used for 
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developing the domain specific extension. The aim of the example systems is 

to verify whether design decisions donot limit the model developer to make 

simulation models of the selected example systems. Model developers should 

be possible to construct simulation model of each of the selected example 

systems as much as possible using the simulation building blocks that will be 

developed in the domain specific extension. Therefore the descriptions of 

these example systems will be “requirements” for future design decisions. The 

developers of the domain specific extensions should evaluate in each design 

step whether they can still fulfill the requirements of the example systems. For 

example, an example system in the domain of passengers at airports could be 

the case study of KLM check-in. In this case study the type of passengers was 

important, thus one of the key-input parameters to be defined in the phase 

‘Determine Scope’ should be “type of passenger” as was expected that similar 

processes apply to airports worldwide. 
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Figure 5.19: Conceptualization & specification for domain specific 

extension 

 The phase ‘Decompose Problem Domain’ is similar to the process steps 1 

‘Object oriented and process oriented decomposition and abstraction’ and 2 

‘Generalize system elements’ of the design approach introduced in section 

2.3. The difference with the design approach described in chapter 2 is that the 

generalization is performed separately for the two views, i.e. the object 

oriented and process oriented view.  
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 The specification phase ‘Design building blocks’ is the phase in which the 

objects that have been decomposed and generalized are allocated to 

simulation building blocks. Some of these objects will be simulation building 

blocks, others will be allocated as a functionality for one of the other 

simulation building blocks. The result of this phase strongly depends on the 

types of experiments that are foreseen and the importance of the objects that 

have been identified using the two different views on decomposition. Some of 

the trade-offs have to do with the actual decision whether to make something 

into a simulation building block or to allocate it as a functionality.  

 Finally, the specification of the domain specific extension focuses on the 

technical aspects. We have mentioned the importance of the interfaces of the 

simulation building blocks to enable the simulation building blocks to interact 

correctly. We also identified the need for the usability of building block 

elements to enhance their flexibility for model developers. How these two 

concepts are incorporated into the simulation building blocks and the domain 

specific extension depends partly on the selected generic simulation 

environment. A domain specific extension developed as an extension of a 

JAVA based simulation environment can use more of these software 

engineering concepts than a domain specific extension that is developed on 

top of procedural simulation environments like Arena or Witness.  

 

5.8 Case studies to apply domain specific extensions 

 Section 5.4 (Simulation building blocks), section 5.5 (Additional tools for 

domain specific extensions), section 5.6 (Support and documentation for 

domain specific extensions) and section 5.7 (Design approach for improved 

domain specific extensions) describe the contribution of this dissertation to the 

field of discrete event simulation. This chapter provides concepts and 

approaches to overcome problems with simulation studies observed in 

literature, laboratory experiments, and case studies. In the laboratory 

experiments in chapter 4 we showed that domain specific extensions are 

more effective in simulation studies than generic simulation environments. In 

the following chapters (6, 7 and 8) we will show domain specific extensions 

that apply this contribution and see the effects in simulation studies that are 

performed based on the suggestions formulated in this chapter. Most 

important is that the domain specific extensions contain simulation building 

blocks and building block elements implemented using a generic simulation 

environment and following the simulation building blocks guidelines introduced 

in section 5.4. Further the domain specific extensions contain additional tools 

to support the model developer in creating simulation models and perform 

experiments according to the ideas described in sdection 5.5. The model 

developers and problem owners are supported with training and user 

documentation as mentioned in section 5.6. These domain specific extensions 

with their simulation building blocks, additional tools and support material are 

developed according to the design approach described in section 5.7.  
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 The domain specific extensions described in the following chapters have 

resulted in successful simulation studies that have been performed fast and 

easy, benefiting from the concept of the simulation building blocks. We do not 

describe the simulation studies in detail, but focus mainly on the design of the 

domain specific extension, i.e. on the result of following the design approach 

and the 22 Simulation Building Block Guidelines. The development of the 

different domain specific extensions have been team efforts in which we were 

highly involved, in the execution of the simulation studies we have occupied 

the backseat and observed the execution and use by model developers. The 

observations are organized per case study and in chapter 9 they are 

combined to overall conclusions of the research contribution for domain 

specific extensions containing simulation building blocks, additional tools and  

documentation and support. 

 

5.8.1 Case study for supply chains described in chapter 6 

 The first domain specific extension is for the domain of supply chains 

which will be used to prove that the design guidelines can be applied in 

different generic simulation environments (chapter 6). This case study 

answers research question 2A related to the difficulties to handle the unlimited 

freedom in modeling by the model developer: 

What constructs and design approach will enable that 

domain specific extensions can be defined independent of 

the generic simulation environment in such a way that the 

model developer is supported, but not limited to one way of 

representing a system element? 

 This case study will focus on the flexibility of simulation building blocks and 

building block elements to easily change the behavior of a system in a supply 

chain using existing mechanisms as well as customized mechanisms that 

were not part of the domain specific extension.  

 

5.8.2 Case study for container terminals described in chapter 7 

 The second domain specific extension deals with the design of container 

terminals, where the focus of the case studies was to provide fast and easy 

insights into the suitability of a terminal design (chapter 7). This case study 

mainly addresses research question 2B related to the challenge that model 

developers need to be experts in multiple areas:  

What methodologies, approaches and techniques can be 

offered to a model developer to support the use of domain 

specific extensions in the activities of a simulation study?  

 The simulation building blocks represent a high level of abstraction and the 

domain specific extension contains additional tools to enable the model 

developers to quickly develop simulation models automatically from drawings 
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and database entries. The model developer can thus focus on the analysis of 

the automatically generated output. In this case study the complete process of 

a simulation study with a domain specific simulation extension (section 5.5) is 

automated. 

 

5.8.3 Case study for Nestlé production facilities described in chapter 8 

The case studies of the supply chains and container terminals have been 

mainly applied as a proof of concept. Though the problem was real, the 

problem owners were not. Therefore the third case study focuses on real 

problems with real problem owners who really need answers from a 

simulation study (chapter 8). The third case study explains how a dozen 

different simulation studies have been performed using a domain specific 

extension for Nestlé’s production facilities. This case study gives insight in all 

aspects of the theory introduced in this chapter, and mainly answers research 

question 2C related to the challenge that model developers do not speak the 

language of the problem owner: 

How can be ensured that the domain specific extension 

gets the model developer closer to the language of the 

problem owner? 

The Nestlé case is an ideal case study to demonstrate how the language gap 

was closed by using a domain specific extension, and how developments in 

the domain were translated into further development of the domain specific 

extension. 

 

5.8.4 Way of describing the case studies 

 The three cases studies in chapter 6, 7 and 8 are all described in a similar 

way. Each case study has a short introduction of the domain that the domain 

specific extension should support, and it explains the reason why a domain 

specific extension should be developed. The case studies have all been 

selected for the fact that the domain specific extensions have been used 

several times and thus they needed to be adjusted and improved. Each case 

study focuses first on the initial development, by describing the team that 

developed the initial specification (scope, problem domain, define building 

blocks and define building block elements) following figure 5.19. All three case 

studies have hundreds of pages of documentation that elaborate on the 

specification, the implementation, and the user information of the domain 

specific extension. In this thesis only the key concepts, building blocks and 

their interfaces are described to provide a feeling for the design of the domain 

specific extension. 

 The implementation focuses first on the generic simulation environment 

that was used, followed by a description of the additional tools that have been 

developed and the (user) support that was provided by documentation and 
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training material. Again, this is not a complete account of all available 

documents, but an overview to show what was available for users and 

simulation experts who continued the development in later stages of the life 

cycle of the domain specific extensions.  

 The result of the development and testing of the domain specific extension 

are briefly discussed by evaluating the 22 Simulation Building Block 

Guidelines. In the evaluation of these guidelines, the extensions of the domain 

specific extensions are described as well.  

 Each case study section ends with a short description of the simulation 

studies performed with the domain specific extension and observations about 

the success or failure of the domain specific extension to support and 

enhance the simulation study. 

 

5.8.5 Additional case studies not described in detail 

 In addition to the three main case studies, many more simulation studies 

using domain specific extensions were carried out. The most important of 

these simulation studies are described in appendix 1. The appendix provides 

an overview and short description of the domains and cases that were 

performed in the period of 2002 to 2007, but which are not discussed in detail 

in this thesis. In each of these cases a domain specific extensions has been 

developed and used in at least one simulation study within that domain. These 

cases are only briefly described.  
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6 Application to supply chains 

6.1 Why develop a domain specific extension? 

 Supply chains are an important part of how organizations worldwide add 

value to products via storage, transfer and assembly. The costs related to 

activities in the supply chain, e.g. transport, procurement and storage can 

have a significant impact on the cost of the final product. In addition the 

availability and demand of products changes over time, resulting in alternative 

patterns of purchases and sales within the supply chain. The structuring of a 

supply chain, i.e. selection and cooperation between organizations, needs to 

be adapted to keep costs low and to optimize interaction between supply-

chain partners (Boyson et al, 1999). 

 Current supply chains use real time exchange of data via internet and 

email. A customer can order his product via websites of different retailers and 

easily evaluate their offers to buy the same product from the cheapest retailer. 

Retailers on their turn also use the spot market, retrieving their stock 

replenishments from whoever provides the product at the lowest price. The 

key characteristics of a spot market are the placing of orders with different 

suppliers and the use of short term contracts (Cooper et al, 1997). The 

competition in this market is on price and availability of product. The actors 

have different mechanisms to manage their price and product availability for 

customers. Verbraeck (2004) describes how simulation models can be used 

to evaluate mechanisms for supply chain management and to help companies 

to decide on a mechanism for order generating, pricing and offer selection. 

 In a supply chain the actors exchange information. The key information 

exchanges are requests for quotations (RFQs) that an actor sends to several 

actors that are able to deliver the requested product(s). These actors will 

return a quote including price and delivery date. The actor that requested the 

product(s) will select which of the quotes of the supplying actors matches its 

requirements in the best way. The selected actor will receive an order to 

deliver the product(s) according to the conditions in the quote. The delivering 

actor will send a commitment, the products and a bill to get paid. This 

complete process, in particular between a customer and a supplier, is shown 

in Figure 6.1. All actors that participate in the supply chain will have their own 

way of handling the incoming messages, for example, a supplier might decide 

not to react to customers who are farther away than 2000 km. How the actors 

react to the messages and how they generate their own messages are key 

elements to represent in a simulation models of supply chains.  

 Simulation models are often used to design the structure of the supply 

chain and to evaluate alternatives like order size, order moments, use of 

external organizations and reaction times to demand. Supply chains have 

become an important topic with the ability of customers and organizations to 

easily shop worldwide and select the best product and delivery methods for 
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their requirements. Organizations that try to (re)design their supply chain 

network have different choices and mechanisms to react to demand. This 

requires models that can easily be adjusted and that can handle large 

amounts of data in combination with management decisions of allocation 

mechanisms to be used. 

 

 
Figure 6.1: Process interaction between customer and supplier  

(Van der Hee, 2002) 

 

 The complexity of a supply chain network in combination with the vast 

amount of possibilities and information triggered the use of simulations. Van 

der Hee (2002) used a domain specific extension to define a set of supply 

chain teaching cases at the R.H. Smith Business School of the University of 

Maryland in the USA to illustrate different concepts of supply chains to the 

students. The simulation models that supported the teaching cases needed to 

be configurable and extendable by MBA students without any further training 

in the simulation environment, comparable with the complexity of the 

laboratory experiment described in chapter 4  

 A second use of the domain specific extension has been to evaluate the 

supply chain processes for turbine spare parts of the engines of the F101 

fighter jet of the USA Department of Defense (Tewoldeberhan, 2005; Jacobs, 

2005) where the focus was on regenerating the supply chain based on real 

time data. 

 

6.2 Initial team to develop domain specific extension 

 The use of simulation models for supply chains has been one of the key 

research topics at the Supply Chain department of the R.H. Smith Business 

school of UMD. They have been supported by simulation modeling experts 

from Delft University of Technology (TU Delft) to jointly develop the domain 

specific extension. Jointly experts from these organizations have performed 

the specification of the simulation building blocks and the implementation in 

different simulation environments (Corver, 2001; Van der Hee, 2002; 

Tewoldeberhan, 2005; Jacobs, 2005; Van Houten, 2007). 
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 The role of model developers was initially performed by the developers of 

the domain specific extensions themselves. The initial models were used by 

the supply chain experts to run the experiments. 

 

6.3 Specification of domain specific extension 

6.3.1 Scope 

 The scope of the simulation models is defined as different actors working 

together in a supply chain. The actors are generally defined as customers, 

retailers, distribution centers, manufacturers and suppliers. The scope of the 

supply chain can contain the whole chain from raw material until final product, 

but the actor concept also allows a focus on a part of the supply chain where 

the supplier provides semi finished products.  

The interaction between the actors is in essence described in Figure 6.1. An 

actor needs a supplier for a product and the supplier provides that product 

given certain conditions are met. The potential complexity of the information 

exchange and the physical good exchange are endless and have been part of 

the initial scope of the design of the simulation building blocks. 

 The experiments, performance indicators and input parameters have also 

been strongly limited. The focus of the project was to support the teaching 

cases and thus enable experimentation with supply chain concepts such as 

make-to-order, make-to-stock, bull whip-effect and JIT-delivery (Van der Hee, 

2002). 

 

6.3.2 Problem domain 

 Defining the problem domain was a further identification of the processes 

and functionalities of the actors to be simulated in the scope of the domain 

specific extension. This resulted in a more precise definition of the types of 

interaction that the actors had. Based on the interaction patterns, we split an 

actor into a logical and a physical actor. The logical actor keeps track of stock, 

puts requests to other actors and keeps track of the reservations placed by 

other actors. The physical actor is responsible for preparing the goods (e.g. 

the manufacturer that requires a couple of days to make an order to the 

specification of the customer) and keeps the physical stock. The interaction 

also includes a yellow page object that is aware of the different actors in the 

system and knows which goods the actor offers. In this way the actors can 

easily identify other actors that are probably suited for their business needs.  

 Another example of identified new objects to handle the scope of the 

actors was the introduction of a transport actor that enabled the transport of 

goods from one actor to another actor. 
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6.3.3 Building blocks 

 The scope of the actors, the extension of the initial actors with the yellow 

pages and the transport actor were good a preparation for the set of building 

blocks. The separation in a logical and physical actor resulted in three families 

of building blocks: 1) logical actors; 2) physical actors; 3) support actor like 

yellow pages and transport actor.  

 

6.3.4 Building block elements 

 The building block elements definition of the logical and the physical actor 

also came to life reasonably simple. Each process step in the interaction 

scheme of Figure 6.1 resulted in a building block element, because for each of 

the interaction steps alternative implementations had been defined as part of 

the experiments in the scoping and the configuration of the key input 

parameters. The way an actor handles an incoming document or message 

defines its way of acting, and turns the overall behavior of the actor into e.g., 

make-to-order or make-to-stock. For example, a building block element was 

defined for the functionality ‘determine to reorder’. In a make-to-stock concept 

the ‘determine to reorder’-building block element analyzes the quantity still in 

stock, while the make-to-order concept was represented by a building block 

with a ‘determine to reorder’-building block element that keeps track of the 

incoming orders. 

 The logical actor and the physical actor received different building block 

elements to represent their functionalities in the process of ordering. For 

example the logical actor client, retailer, distribution center and manufacturer 

all possess the building block elements ‘order generator’ and ‘yellow page 

selector’ among many others. In Table 6.1 these two building block elements 

are listed with a number of their alternatives. The other building block 

elements and their (implemented) variants are well described by Corver 

(2001) and Van der Hee (2002). 
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Table 6.1: Example of functions and possible building block elements to 
represent behavior logical manufacturer 

 

6.4 Implementation 

6.4.1 Extension of simulation environment 

 A special aspect of this domain specific extension is that the building 

blocks and building block elements have been implemented by different 

developers in three different generic simulation environments. The 

implementation in the generic simulation environment eM-Plant was the first 

completed version, developed to enable validation of the concept of the 

building blocks and the use of building block elements to represent the 

information flow in supply chains (Corver, 2001). The second implementation 

was in the generic simulation environment Arena, aimed at use by none 

modeling experts of the R.H. Smith school to increase their knowledge of the 

concepts of supply chains with practical tools (Van der Hee, 2002). The third 

implementation was based on Java objects in the DSOL library, aimed at 

distributed modeling of large and distributed supply chain networks 

(Tewoldeberhan, 2005; Jacobs, 2005; Van Houten, 2007).  

 

Development in eM-Plant 

 The strong point of the domain specific extension in eM-Plant was the 

ability to apply object oriented programming for the simulation building blocks, 

but offer the model developer to overrule defined inheritance and freely read 

and write attributes of other objects. As a result the building blocks and the 

building block elements could rapidly be developed and the design made by 

Function Building block 
elements 

Description 

Order 
generator 

Standard Generate a new order for materials or products at regular 
times for a constant quantity. 

Periodic Generate a new order for materials or products at regular 
times, but the quantity differs per period of the year. 

Continuous Generate a new order for materials or products at the 
moment that the stock quantity is below an identified level. 

Customer Generate a new order for materials or products without 
looking at any stock levels, just according to a random 
distribution for a time between requests. 

EOQ Generate a new order for materials or products, depending 
on calculations for the economic order quantity that is 
repeated once every couple of months. 

Yellow 
pages 
selector 

Standard Make a shortlist of potential suppliers for desired materials or 
products. 

Distance Make a shortlist of potential suppliers for desired materials or 
products that are a maximum distance from the requesting 
actor. 

Type of Actor Make a shortlist of potential suppliers for desired materials or 
products that are of a certain type of actor. 
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Corver (2001) could be implemented in a straightforward way. The 

disadvantage of the generic simulation environment eM-Plant was mainly the 

availability of licenses that hindered the use of the domain specific extension 

beyond pilot stage, for example to support the teaching cases. 

 

 
Figure 6.2: Families of building blocks in eM-Plant 

 

 
Figure 6.3: Information for the Physical Actor (DC) (Corver 2001, p51) 

 The implemented simulation building blocks were combined in a specific 

Supply Chain toolbar as an extension to the generic modules in the simulation 

environment eM-Plant, see Figure 6.2. Each building block contained a user 

interface where the parameters of the building block and the selection of the 

available building block elements could be set by the model developer. Figure 

6.3 is a screenshot of the simulation building block Distribution Center, the 

physical actor configured for a model of a supply chain in the USA. 

 The model developer using the domain specific extension in eM-Plant has 

the opportunity to bypass the user interface and manually adjust the 

mechanism in the building block by replacing a building block element or even 

override the logic of a specific method in the building block. Figure 6.4 shows 
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the inside of the manufacturer building block with its default building block 

elements that a model developer could adjust. 

 

 
Figure 6.4: Building block elements in simulation building block  

based on eM-Plant  

 

 The status of the actors in the simulation model was maintained using 

variables only available within the building block or the related building block 

elements. Orders, RFQs and other information exchange were modeled via 

entities that contained attributes such as their origin, product type and 

amount. Gathering information from one or more different actors was handled 

via method calls via predefined interfaces and the information was stored 

within one or more entities that kept track of the status of an order (Corver, 

2001). The information exchange between building blocks was always 

organized via a ‘mail box’ within the building block to enable flexibility of 

exchange of building block elements and not to reprogram the inner-working 

of different building blocks. Figure 6.5 shows the conceptual working of the 

post box in the building blocks of eM-Plant. 

Method receive 
trigger

If BBE=1 then

  Call X
Elseif BBE=2 then

  Call Y
Else

  Show Error
 

Figure 6.5: Logic in a method of eM-Plant to determine which building 
block element to trigger 
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Development in Arena 

 The main challenge of the domain specific extension using the generic 

simulation environment Arena was the flow concept that Arena applies and 

the lack of data types and data structures (Van der Hee, 2002). The concept 

of a building block that exists of several sub building block elements with 

object references as applied in the domain specific extensions developed in 

eM-Plant was not available in Arena. The solution was found in defining 

building blocks and separate building block elements that are connected by 

the model developer. Figure 6.6 shows at the right hand side an instantiated 

building block of a logical manufacturer and the triangles illustrate the need to 

link required building block elements, which can be dragged from the library at 

the left-hand side and connected to the triangles. In Figure 6.6 two building 

block elements have already been connected; the others still have to be done. 

 
Figure 6.6: Building block elements in Domain specific extension based 

on Arena 

 

 The model developer has the option to select from all individual building 

block elements that exist, for example the top row in Figure 6.6 shows four 

different order generators implemented in the domain specific extension. Each 

of these building block elements have their own features and parameterization 

capability (see Figure 6.7), which at the same time protects the model 

developer from messing with the underlying logic and information. 

 As said before, one of the main challenges in the development of the 

domain specific extension on top of Arena was the lack of data structures. All 

information exchange had to be managed by entities that were sent back and 

forth between building block elements where the status had to be monitored 

using numbers (Arena has no strings). This made tracking difficult, but also 
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resulted in blocking of opportunities for model developers to enhance the 

functionality of building block elements with user defined logic developed with 

Arena generic model constructs. 

 

      
Figure 6.7: User interface for parameterization of two different order 

generator building block elements. 

 The implementation of the exchange of entities between building blocks 

and building block elements was achieved by defining dedicated stations 

where the entities arrive. The entities then follow one or more decisions based 

on their attribute values to be routed to the correct building block element. 

Figure 6.8 shows a part of the mechanism for a logical supplier actor. The left 

block evaluates which building block element has to be called. The bottom-

right part evaluates which internal function of the simulation building block has 

to be called. If an entity arrives that does not match any of the defined building 

block element interface specifications then an error will be generated to warn 

the model developer of incorrectly defined message exchange between 

actors. 

 
Figure 6.8: Internal logic in Arena to determine which  

building block element to trigger 
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Development in DSOL 

 The challenge in the case study for the USA Department of Defense was 

that information should be kept local to actors, and not be globally available in 

the model, due to the fact that the models needed to be distributed over the 

Web (Jacobs, 2005). The models should be easy to distribute to participants 

in worldwide locations and should run on computers, laptops and even PDAs 

that cannot install complete simulation environments like eM-Plant or Arena. 

The model of the supply chain should therefore not be one monolithic 

simulation model, but each actor (or group of actors) should be separate. In 

addition, the models of the supply chains should be predictive, but also 

represent actual events in history and forecast from there. Therefore, the 

domain specific extensions that have been developed on top of eM-Plant and 

Arena could not be applied as these generic simulation environments are not 

capable of retrieving a base situation from external sources (Jacobs, 2005).  

The solution was found in the use of a new Java-based simulation engine 

that could be extended with the designed building blocks and the processes of 

the logical actors. The simulation objects of the DSOL library developed in 

Java have been designed especially to accommodate the capability of 

separate compositions of simulation building blocks connected into a 

simulation model with one combined simulation clock. The implemented 

building blocks worked much like the eM-Plant building blocks, using object 

oriented concepts, but their way of exchanging information was monitored in a 

more strict manner. 

 The use of both history and forecasting was implemented by two 

alternative instances of algorithms for the simulation building block elements. 

For example, the order request generation element of the logical actors either 

used information from historic data files, or prediction algorithms with 

economic order quantity. 

 Jacobs (2005) describes how the simulation model data is retrieved via a 

database connection, and results in instantiation of objects specific for the 

modeling of this supply chain as a DoDTrader and a Base, which are 

specifications of the building blocks Yellow Pages and Customer. The 

simulation models that use the domain specific extension on top of DSOL are 

composed using databases that contain structural information on the actors. 

 The result of the use of the domain specific extension on top of DSOL with 

the appropriate data sources is a simulation model that can be instantiated via 

any web browser or via a specific viewer application. The Java program will 

instantiate a map and use information from the specific databases to 

instantiate actors on their geographical locations.  

 

6.4.2 Additional tools 

 The domain specific extensions developed using the generic simulation 

environments eM-Plant and DSOL have not reached beyond the state of 

proof-of-concept. The domain specific extension developed using Arena has 
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been used for all kinds of experiments and several developed simulation 

models. A large effort has therefore been put in developing additional tools. 

One to support the model development (mainly to overcome the labor-

intensive job to instantiate all building block elements) and one to enable 

analyzing the outcome of the simulation model and to easily perform cross 

checks of the performance of all actors. 

 The model development in Arena has been supported by a Visual Basic 

application called “Builder Tool”. This allows a new actor to be added by 

selecting from pull down lists which building block elements are included. The 

actor will then be instantiated in the simulation model including all the selected 

building block elements. Figure 6.9 shows an example configuration of a new 

retailer with the name ‘New York’ that will be added to the simulation model 

with only standard building block elements for each function. 

 
Figure 6.9: Tool of domain specific extension to instantiate logical actor 

in simulation model 

 The statistics of the simulation models developed in Arena have been 

collected in an MS Access database, developed especially to create reports of 

the performance of individual actors and compare the actors over time with 

each other. The main focus of the reports developed in the MS Access 

database was on the stock levels of the actors and on comparing out-of-stock 

moments based on parameterization of the building block elements of an 

actor in the supply chain (van der Hee, 2002). Figure 6.10 provides an 

example of a part of the report that can be produced by the MS Access 

database after the executed simulation model had run to completion. 
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Figure 6.10: Example report generated in MS Access after simulation 

model run of domain specific extension 

 

6.4.3 Support to users 

 The support to the users of the domain specific extensions developed in 

eM-Plant and DSOL has been limited, as it was just a proof-of-concept. The 

support to gain confidence in the building blocks and improving the 

applicability for a simulation study was not necessary for this reason, as the 

aim of the development and the use was to find out whether the building 

blocks could be used at all. Furthermore, the designer of the building blocks 

and the building block elements was the main user of the implemented 

domain specific extension in eM-Plant, thus fully aware of what was possible 

and which building block or building block element should be used in a 

particular scenario. 

 The domain specific extension developed in Arena has been used in 

classes of students at the R.H. Smith School of Business of the University of 

Maryland. The students who worked with the teaching cases developed in 

Arena also did not need a lot of convincing that the simulation building blocks 

were suited for their problems. They primarily needed support to understand 

how to interpret the results of the experiments and configure the building block 

and building block elements to improve the supply chain system. Their basic 

knowledge consisted of supply chain concepts. In two additional classes they 

learned how to interpret the effects of using supply chain concepts on the 

outcome of the simulation models. In these two classes they also received a 

demonstration how to make adjustments and use the additional tools to easily 

configure their simulation models to represent the desired system. 
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 All students received a CD that contained example models, the additional 

tools and documentation about the building blocks and the building block 

elements. Step-wise they were guided through assignments using existing 

simulation models. The final course assignment was to optimize an existing 

supply chain by setting parameters and selecting the most appropriate 

building block elements. All this support material was sufficient to get the 

students working and perform the necessary experiments. 

 

6.5 Use of Simulation Building Block Guidelines 

 This sub-section uses examples of the building blocks and building block 

elements from the three developed domain specific extensions. The design of 

the building blocks and the building block elements have based on the same 

conceptual model for all three implementations. Only the technical 

implementation differ. The main technical details are already described in 

section 6.4.1, therefore the Simulation Building Block Guidelines are only 

illustrated with examples of one of the domain specific extensions. The fact 

that the other environments are not mentioned does not mean that the 

guideline does not apply for the other environments as well, unless explicitly 

mentioned. 

 

Guidelines related to self-contained building blocks 

Simulation Building Block Guideline 1: data belonging to a building block 

should not be accessed by other building blocks directly, but only via defined 

interfaces. 

 Each of the actor building blocks contained its own information and state of 

its orders. For example, if a customer logical actor wants price information of a 

product from a retailer, it sends the retailer a request for quotation (RFQ). 

Figure 6.1 shows the complete set of messages exchanged between a logical 

customer actor and a logical retailer actor. Figure 6.8 shows how the 

interaction is technically achieved in Arena. 

 The messages shown in Figure 6.1 are the only way to exchange 

information in the domain specific extension. Similar interaction exists 

between retailers and distribution centers, between distribution centers and 

manufacturers and between manufacturers and supplier actors. None of the 

actors can retrieve information of another actor without the actor actively 

sending that information via a message. 

 

Simulation Building Block Guideline 2: a simulation building block consists of a 

core and building block elements to represent functions and services. 

 Logical actors and physical actors have different functions. Logical actors 

are dealing with inventory levels, reservations of customers and price 

determination. The physical actor is concerned with the physical products that 

belong to an order, e.g. order picking, physical storage and the physical 

manufacturing process. Each of these functions is represented by a building 
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block element. Figure 6.6 shows all the building block elements that are 

required to represent the services of a logical manufacturer.  

 

Simulation Building Block Guideline 3: data belonging to a building block 

element can be accessed by other building blocks elements of that building 

block without using the interfaces of the simulation building block. 

 The inventory level of an actor is kept by the building block element 

‘Inventory’ of the logical actors. This building block element contains 

information of the current number of items in stock, expected deliveries of 

incoming stock and committed supply of products. This information is 

evaluated by building block elements like the order generation, i.e. generate a 

new order if the inventory is below a certain level, or the order commit, i.e. 

commit an order if stock is in place.  

 In the eM-Plant implementation this information is structured as separated 

object variables, e.g. Actor.Inventory.ProductY.Stock or 

Actor.Inventory.ProductY.ExpectedDelivery. 

 

Guidelines related to interoperability of building blocks 

Simulation Building Block Guideline 4: system elements that appear in 

different variants and processes in a system are represented by a family of 

building blocks and building block elements. 

 The logical actors belong to the same family, for example the difference 

between a manufacturer logical actor and a distribution center logical actor is 

the existence of the building block element ‘manufacture’, which triggers the 

physical manufacturing process. In the implementation in the generic 

simulation environment Arena, the building block elements for the logical and 

physical actors have been combined in one library, but the families of the 

building block elements can still be recognized thanks to the naming and 

shape of the building block elements.  

 
Figure 6.11: Families of building block elements of logical actors 



  6 Application to supply chains 

   177  

Figure 6.11 shows the implementation of the building block elements with their 

family naming in Arena. The first five icons starting with ‘ORG’ are the building 

block elements for order generation, the two icons at the second row starting 

with ‘YPS’ are part of the family of Yellow Page building block elements and 

the three building block elements at the bottom of Figure 6.11 starting with 

‘QUO’ are icons of the building block element ‘Quote’ as the reply to a request 

for quotation. 

 

Simulation Building Block Guideline 5: building blocks are of different types, 

most common to have building blocks for infrastructure and for control. 

 The infrastructure in the domain specific extension is represented by the 

physical actors. The control is provided by the logical actors and its building 

block elements. The logical actor exchanges information with other logical 

actors until an order is accepted or manufacturing is triggered. The logical 

actor will then trigger the process that is part of sending a physical shipment 

or starting a manufacturing process at the physical actor. The physical actor 

will return a message to the logical actor when an order has been shipped or 

received or when the manufacturing process is finished.  

 

Simulation Building Block Guideline 6: complex control mechanisms should be 

represented using control building blocks linked together to represent a flow. 

 The control processes in the domain specific extension for the supply 

chain are reduced to individual steps. The sequence of an order is not 

adjustable, and there is one process for handling orders as shown in Figure 

6.1. How each step is handled is flexible using the building block elements. 

We decided not to use process representation for the control processes, 

because the type of experiments did not suggest a need to change the 

sequence in the order handling process.  

 

Simulation Building Block Guideline 7: building blocks should be aware of 

each other’s existence within a range of applicability. 

 Building blocks are linked in the implemented simulation models in 

different ways. The first is a fixed link between building blocks that are part of 

the simulation model. The second are real-time links between building blocks, 

depending on the state of the simulation model.  

 Examples of the fixed links are the connections between a logical actor 

and a physical actor, which is defined in the user interface of the building 

block, see Figure 6.3 where the physical distribution center in Salt Lake is 

connected to the logical distribution center ‘Salt Lake’. A second example is 

the structure of the yellow pages object. One of the variants of the yellow 

page book is locally organized, whereby the logical actor registers itself to a 

local yellow pages building block, instead of to a globally organized yellow 

pages building block.  
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 Examples of real-time links between building blocks are the negotiation 

and the execution of an order. Via the yellow pages, Request-For-Quotation 

and order placement, two or more actors are connected to exchange goods. 

The real-time link is a one-time connection not to be reused automatically 

because of the market situation in the supply chain.  

 

Guidelines related to replaceable unit of building blocks 

Simulation Building Block Guideline 8: extension of a domain specific 

extension can be achieved by introducing new building block elements for 

existing simulation building blocks. 

 Table 6.1 contains building block elements that have been identified by 

Corver (2001) as part of the domain specific extension to accommodate the 

type of experiments foreseen. Figure 6.11 shows that only a couple of these 

building block elements have been implemented in the domain specific 

extension on top of Arena. The developer of the domain specific extension 

can easily duplicate one of the existing building block elements and make the 

necessary adjustments to represent the missing building block elements. Van 

der Hee (2002) decided due to time constraints and the content of the 

teaching cases, that the development of the additional building block elements 

was not necessary. He provided sufficient technical descriptions to enable an 

experienced user of the generic simulation environment Arena to develop the 

extension of the domain specific extension in the same way that he extended 

the domain specific extension to contain the set of building block elements it 

currently contains. 

 

Simulation Building Block Guideline 9: simulation building blocks and building 

block elements of the same family follow the same interface requirements. 

 The concept of interfaces illustrated in Figure 6.5 for the simulation 

environment eM-Plant and Figure 6.8 for the simulation environment Arena is 

applied for all building blocks and building block elements. The coding is kept 

the same for building block elements of the same type, thus the order 

generators ‘Standard’ and ‘EOQ’ use the same code numbers to refer the 

method call or entity to the correct functionality.  

 

Guidelines related to encapsulating internal structure of building blocks 

Simulation Building Block Guideline 10: simulation building blocks hide inner 

working. 

 The inner working of the building blocks in the domain specific extension 

developed in eM-Plant are hidden, but not made unavailable for the model 

developer, as can be seen in Figure 6.3 with the button ‘Open’ for ‘Open 

structure of the object’ to view the building block elements and even the 

methods of the building block elements. 
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 The inner working of the building blocks in the simulation environment 

Arena has been hidden better than in eM-Plant. There is no way that a regular 

model developer can see what occurs within the building blocks. 

 

Simulation Building Block Guideline 11: advanced model developers have to 

be able to unhide the inner logic and see how the processes and attributes 

are implemented. 

 The same text as mentioned for Simulation Building Block Guideline 10 

could be used to explain how this guideline is achieved. In eM-Plant the model 

developer is discouraged, but can have a look. In Arena no option is available 

as the user interface of simulation building blocks developed in the simulation 

environment Arena cannot be overridden to show the internal code. 

Demonstrating the inner working of simulation models developed in the 

simulation environment Arena is done via documentation and process flows 

(Van der Hee, 2002). 

 

Guidelines related to providing useful services or functionality of building 

blocks 

Simulation Building Block Guideline 12: system elements should be 

represented by building block elements that can be extended with custom 

instantiations of model constructs of a generic simulation environment. 

 The building block elements in the Arena simulation environment could 

easily be connected with generic model constructs of this generic simulation 

environment, for example via the connection between the building block and 

the building block element. However, the entities that are sent over that 

connection are coded in a certain way and their attributes have values that are 

focusing on a particular function. There is a large risk that a model developer 

adds generic model constructs which alter the status of the entity. The 

building block element is then no longer capable of handling the function as 

intended. Furthermore, the additional tools that have been developed around 

the domain specific extension on top of Arena might not function due to the 

extra model constructs.  

 The advice is therefore not to tamper with generic model constructs in the 

domain specific extension developed in Arena. The disadvantage of lack of 

flexibility for the model developer should be matched by the flexibility to 

replace building block elements or to extend the set of building block 

elements. 

 

Simulation Building Block Guideline 13: a building block can connect to model 

constructs of a generic simulation environment. 

 The same applies for this guideline as for Simulation Building Block 

Guideline 12. 
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Guidelines related to precisely defined interfaces for building blocks 

Simulation Building Block Guideline 14: the model developer has to adjust the 

parameters of a simulation building block via a user interface. 

 Figure 6.3 and Figure 6.7 show examples of parameterization of the 

building blocks or building block elements in the simulation environments eM-

Plant and Arena. These user interfaces are made available to the 

parameterization of all building blocks and building block elements in the 

domain specific extensions. 

 

Simulation Building Block Guideline 15: use of domain terminology in the user 

interface provides insight in the suitability of a building block for a certain 

purpose and the meaning of its parameters. 

 The user interfaces shown in Figure 6.3 and Figure 6.7 are dedicated for 

the domain specific extension and contain a textual explanation of what the 

value represents. In addition it is described in detail in the user manual of the 

domain specific extension on top of Arena what the effect of changing values 

is (van der Hee, 2001). For example, increasing the quantity for evaluating the 

stock in the building block ‘Order Generation’ will result in higher safety stock 

and thus a lower probability of an out-of-stock event. 

 

Simulation Building Block Guideline 16: parameters in a user interface of a 

simulation building block have to be checked for validity of the values. 

 At the moment that the OK button is pressed in the user interface of the 

simulation building blocks, checks are performed for the values entered in the 

fields. For example, in the implementation in eM-Plant it is evaluated whether 

the pointer of a logic actor to a physical actor is valid and in the 

implementation of Arena it is verified whether the name of an actor is unique. 

The logical actors further contain checks that e.g., the initial stock levels and 

the reorder points have positive values. 

 

Simulation Building Block Guideline 17: parameters in a user interface of a 

simulation building block should have default values whenever possible. 

 Simulation studies in the domain of supply chains are performed for a wide 

range of systems. It is impossible to define valid and logical default values. In 

a supply chain for computer parts the order sizes and delivery times are 

completely different than in a supply chain for airplane engines. Nevertheless, 

the user interfaces are equipped with default values. The default values in the 

simulation building blocks are not to show possible valid values, but to show 

that values should be filled in and to avoid that the simulation model will return 

errors caused by faulty data entry.  
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Simulation Building Block Guideline 18: The user interface of a simulation 

building block should provide support for the model developer. 

 The description of the parameter in the user interfaces of the building 

blocks and building block elements is made as self-explanatory as possible. 

Additional explanations of each individual parameter are described in the user 

documentation of the domain specific extension on top of Arena in case the 

self-explanatory parameter description is insufficient. The users of the eM-

Plant simulation environment have to do without, as no time has been spent 

on additional user documentation. 

 

Simulation Building Block Guideline 19: The user interface of a simulation 

building block can be used by model developers to select building block 

elements and set their parameters. 

 The selection of the building block elements is differently handled in each 

simulation environment. Figure 6.6 shows for Arena how a model developer 

instantiates the simulation building block into the simulation model, in this 

case a logical manufacturer. One-by-one the required building block elements 

have to be added in the Arena case. 

 The model developer in the eM-Plant environment can use the drop down 

list in the user interface (Figure 6.3) or manually replace building block 

elements within the building block (Figure 6.4) by removing the existing 

building block element and instantiating a building block element from the 

library of the same family. 

 

Simulation Building Block Guideline 20: a simulation building block has a 

defined interface that receives triggers, requests, entities, or events from other 

simulation building blocks in the simulation model and redistributes these 

internally.  

 Figure 6.5 and Figure 6.8 demonstrate how this is handled in eM-Plant and 

Arena via mail boxes. 

 

Simulation Building Block Guideline 21: the interface of a simulation building 

block contains evaluations of the state of the trigger and the building block to 

determine whether the building block can handle the trigger.  

 Figure 6.8 shows that an error will be generated if a simulation building 

block or a building block element receives an incoming entity that triggers 

functionality that is not applicable for the simulation building block. Similar 

checks are also performed if triggers or messages are received at moments 

that the simulation building block or building block element is not expecting it 

given the state.  
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Some examples are: 

• Receive a quote when no request for quotation is send 

• Receive a quote from a logical actor to whom no request for quotation 

is send 

• Receive a notification from a physical actor that an order is received 

when no order was placed 

• Receive a bill when no order was placed 

 In both simulation environments these checks are implemented in similar 

ways. 

 

Simulation Building Block Guideline 22: a simulation building block contains 

pictures, numbers and other elements to support visualization of the state and 

key performance indicators during simulation run. 

 The supply chain building blocks implemented in Arena have been 

provided with animation details to visualize the state of the logical actor. 

Figure 6.12 shows for example information related to the duration of certain 

activities, the financial situation of the actor and stock levels. More information 

is available regarding the state of the logical actor, but that would overload the 

visualization. Therefore this information is all exported to a dedicated MS 

Access database that collects and manages all events and statistics in the 

system. 

 
Figure 6.12: Visualization items of logical actor 

 

6.6 Simulation studies performed 

6.6.1 Fictive computer supply chain 

 Corver (2001) demonstrated the applicability of the domain specific 

extension using a fictive computer supply chain with world-wide suppliers and 
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manufacturers providing products to customers in the USA and Australia. This 

same case study has been used by Van der Hee (2002) as an example model 

in Arena. The product manufactured in the fictive supply chain is a PC. The 

manufacturing process is mainly an assembly activity from a keyboard, 

monitor, casing, mouse and speakers, which can be provided by one or more 

suppliers. The manufacturer assembles the PCs for USA or Australia 

according to the so-called Bill of Materials. In the example, there are two 

different manufacturers. Both manufacturers can provide PCs for the USA, but 

only the manufacturer in Taipei can manufacture PCs for Australia. In the 

concept there are three distribution centers. The distribution centers in Salt 

Lake City and Frankfort serve the US market. The third distribution center, in 

Alice Springs, serves the Australian market. In the concept, customers place 

orders only at one of the retailers. Figure 6.13 shows the actors that 

participate in the fictive computer supply chain and the potential flows of 

products.  

 

 
Figure 6.13: Layout of fictive computer supply chain (Corver, 2001) 

 

 The suppliers of raw materials (left actors in Figure 6.13) provide different 

components that are used by the manufacturers in Mexico City and Taipei 

(second set of actors in Figure 6.13). The different suppliers provide different 

materials. The materials that suppliers need for their production process is 
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kept outside the scope of this fictive supply chain. The manufacturers produce 

and assemble the physical products from the suppliers and their products are 

transported to the distribution centers (set one from the right). The distribution 

centers send the physical computers that they receive to retailers and retailers 

finally get purchase orders from customers in their neighborhood. In this 

supply chain it is not possible to skip actors, e.g. there is no direct delivery 

from manufacturer to retailers possible.  

 All actors can have product in stock and will place requests for quotations 

and finally orders to providers down the supply chain if they run out of stock. If 

an actor cannot satisfy an order, then a backorder will be placed and as soon 

as the stock is replaced the pending backorders will be satisfied. 

 Figure 6.14 shows the building blocks of the domain specific extension of 

eM-Plant with at the background the building blocks instantiated in a 

simulation model and situated across the USA with the manufacturer, 

distribution center and retailer.  

 

 
Figure 6.14: Supply chain actors placed on the world map (Corver, 2001, 

p50) 

 

 The aim of the simulation model was to prove the concept of handling 

logical and physical actors with their different sub-processes to represent 

particular behavior. The instantiation of the building blocks according to the 

case description and behavior of the logical actors to the limited scope proved 

suitable.  
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 Corver (2001) demonstrated the applicability via different configurations 

and roles of the actors in the simulation model. One example was a simulation 

experiment in which the manufacturer in Mexico City was closed for one 

complete year. During this year Taipei has to supply to the distribution center 

in Australia and has to satisfy the full requirements of the distribution centers 

in the USA. Taipei consequently has to deal with backorders, because the 

production facilities are running full time.  

 

6.6.2 Simulation models for teaching at R.H. Smith Business School  

 The domain specific extension for supply chains in Arena was used to 

develop a set of demonstration models and teaching cases. The 

demonstration models were used to show the effect of decisions and policies. 

For these teaching examples, the same fictive computer supply chain has 

been modeled as described in Figure 6.13.  

 The teaching cases were not just demonstration models, but they 

encouraged the students to perform an analysis and experiment with the basic 

situation. Three different teaching cases asked the students to come up with 

the best possible policy and settings. The first teaching case regarded a 

simple optimization and parameter setting of an already existing supply chain. 

The second teaching case regarded a certain change in demand and required 

the students to lessen the bullwhip effect in the chain, and the third teaching 

case asked the students to handle uncertainty in demand with either a 

distribution center or direct ordering at the manufacturer. A part of the simplest 

teaching case is shown in Figure 6.15. 

 

Assignment 1: Connect Inc. 

Joe is a manager at Connect Inc, a business telephone manufacturer. He’s looking into ways 
to improve his fill rate’s on customer orders (or reducing stockouts), while at the same time 
lowering inventory levels.  

He has asked you, the business analyst, to make an analysis of his supply chain and present 
a number of solutions to his problems. Where possible, he wants the improvements clarified 
with numbers. 

 

Figure 6.15: Fragment of a teaching case (Van der Hee, 2001a, p14) 



6.6 Simulation studies performed  

186 

 The teaching cases were based on descriptions of supply chain cases 

provided by the teaching staff of R.H. Smith Business School. The teaching 

staff had expectations for the simulation model behavior for each of the 

teaching cases, mainly based on theoretical knowledge. The input data and 

complexity of the case has been adjusted until the desired behavior was 

represented by the simulation model in different configurations and with 

different selections of decision algorithms for actors in the supply chain. 

 The teaching cases provided directions for the students to the type of 

experiments they could do, but the teaching cases were open ended by 

design and provided students with opportunity to experiment themselves.  

 The demonstration models and the teaching cases have been used in a 

course for the MBA-program of the R.H. Smith Business School, University of 

Maryland, USA 20 groups of 2 to 3 students analyzed the outcome of the 

simulation models and improved the models by adjusting the parameter 

settings for ordering and storage, as well as by changing policies. The result 

and learning effect was satisfactory according to the teachers of the supply 

chain course (Van der Hee, 2001; Verbraeck, 2004). 

  

6.6.3 Simulation study for Department of Defense of the turbine engines of 

the F101 

 The Department of Defense (USA) has a complex supply chain to provide 

maintenance parts for their airplanes and helicopters that are in active service 

worldwide. The parts of an airplane are stored at dozens of places worldwide 

at intermediary distribution centers, and in some cases an order is placed to 

the manufacturer who is also organized globally. The supply chain experts of 

the Department of Defense thought that a reduction of their storage cost and 

the number of out-of-stock events should be possible, if they would have 

better knowledge of their current requirements and the possibility of 

transferring maintenance parts through their network (Jacobs, 2005).  

 A proof of concept project has been carried out for simulating the supply 

chain of the Low-Pressure Turbine for F101 engines focusing on 25 parts of 

the engine. One of the requirements of the study was that the information of 

the supply chain should be spread over the internet and only limited 

information can be provided and responded to, due to security and safety. The 

information of the current situation should be reproduced and information from 

different sources should be collected and reproduced in a simulation model of 

the supply chain. Based on this information a simulation model should run to 

provide insight when a certain part could be available and how many parts 

should be stored for the coming period of time at the different locations 

worldwide. 

 The simulation model of the turbine engines of the F101 is developed as a 

Java program based on the DSOL simulation engine that will instantiate a 

world map and use information from the specific databases to instantiate 

actors on geographical locations at the world map. This world map and certain 

parts of the information available at actors that the user of the simulation 
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model is permitted to view can be accessed via a web browser or applet as 

shown in Figure 6.16.  

 The order information that is used in the simulation model is also retrieved 

from the available data sources and result in actual transaction and 

information exchange between the actors, for example the animated airplanes 

moving from the manufacturer to a base in mid USA (Figure 6.16). 

 

 
Figure 6.16: Viewer of simulation model F101 supply chain  

(Verbraeck, 2004) 

 

 The system was evaluated by representing the system in two phases, first 

the modeling of the current activities in the supply chain based on historical 

information. Secondly it was verified whether the simulation model represents 

similar behavior as visible in historic data files. Evaluation by experts of the 

Department of Defense supply chains showed that the future behavior was in 

line with the expectations based on the historical data files. 

 The involved actors of the Department of Defense were impressed by the 

possibilities of simulation and identified future extensions of the use of real-

time management of supply chains with simulation models. However, the 

complexity of gathering the data in this minor proof-of-concept project and the 

required exchange between different actors turned out to be a time consuming 

factor (Verbraeck, 2004).  

 



6.7 Observations during simulation studies  

188 

6.7 Observations during simulation studies 

 The main observation from the simulation studies performed with the 

different implemented domain specific extensions is that the design of building 

blocks and building block elements is not hindered by the generic simulation 

environment in which the building blocks will be implemented. In all three 

generic simulation environments the developers succeeded of getting the 

building block and the basic building block elements running according to the 

Simulation Building Block Guidelines identified in chapter 5.  

 

6.7.1 Observations regarding design approach and implementation 

 A positive observation was the capability of designing a consistent domain 

specific extension, starting from a problem domain description. A negative 

observation was that the initial design of the domain specific extension was 

not easy to apply for real-time simulations based on a historic starting point, 

which was necessary for the simulation study for the Department of Defense. 

This type of use is not very common in the domain of discrete event 

simulation and the standard simulation environments are not prepared to 

provide these kinds of services. Nevertheless, this type of experiment should 

have been included in the definition of the scope and the problem domain of 

this domain specific extension. Including the experiment might have provided 

some additional requirements for the design of the building blocks. Another 

negative technical observation was that Arena as a generic simulation 

environment was not able to handle more complex data types needed to 

simulate supply chains (Van der Hee, 2002). 

 

6.7.2 Observations regarding additional tools 

 No observations are available of additional tools for the domain specific 

extensions in eM-Plant and DSOL as no additional tools have been built. The 

users of these domain specific extensions also had no complaints about the 

absence of additional tools. The comments for the additional tools developed 

for the domain specific extension developed with Arena are both positive and 

negative.  

 Positive is that the MS Access database collected the needed data and 

enabled the students to make comparisons, but it could have been even 

better if the MS Access database would have contained more reporting 

instruments that would have helped the students of the teaching cases to 

focus on the important data and more easily derive conclusions. 

 Positive about the VB-Program that supported the model development was 

that it helped to quickly instantiate a new actor with all of its building block 

elements. Negative about this tool was that it only worked for the initial 

instantiation. Once the actor building block with its building block element was 

in the simulation model, the VB-Program could not help with adjusting. 

Furthermore, the development of the VB-program started from the observation 
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that creating the building blocks and the building block element structure in 

Arena was time consuming.  

 

6.7.3 Observations regarding provided support 

 Positive about the support was the wide availability of support material for 

model developers and model users for the implementation in the Arena 

environment. Positive was also the direct availability of live experts for the 

domain specific extensions for eM-Plant and DSOL, although that kind of 

support would not be available as soon as the domain specific extensions 

would have been handed over to other model developers. 

 A possible improvement could be the limited integration of the support 

material with the building blocks. Now all the documentation was provided on 

a separate CD that model developers could access, while the information 

could be integrated with the Arena simulation building blocks using the 

development of a help file. 

 

6.7.4 Observations regarding applying building block concepts and 

guidelines 

 The observations for the capabilities of the domain specific extension are 

structured via the characteristics of a building block as defined by Verbraeck 

et al (2002) in Table 6.2: Characteristics of building block in Supply Chain 

case study. 

Table 6.2: Characteristics of building block in Supply Chain case study 

Self-Contained Positive data locally stored & use of building block 
elements and alternatives for functions. 

Interoperable Positive families of building blocks enable the 
exchange of building block elements. 

To be 
improved 

division between infrastructure and control 

Reusable Positive design of building blocks applied in three 
different generic simulation environments, 
and actor structure applied to all actors in the 
supply chain. 

Replaceable Positive extended sets of replaceable building block 
elements. 

Encapsulating its 
internal structure 

Positive eM-Plant building blocks were closed, yet an 
expert could open and improve them. 

Negative Arena building block elements completely 
closed and no capability of extending with 
generic model constructs. 

Providing useful 
services  

Positive building block element for all defined 
functionalities of actor in supply chain. 

Precisely defined 
interfaces 

Positive structure of building block and building block 
element enabled replacing of building block 
elements without risk. 
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 It turned out in all three domain specific extensions that the developers are 

capable of extending the set of simulation building blocks and building block 

elements with additional predefined functionalities. Unfortunately, in this case 

study we did not have the opportunity to apply the building blocks of the 

domain specific extension to a real-life simulation study rather than a teaching 

case or a proof of concept. Therefore, this case study does not demonstrate 

that the building blocks or the building block elements have the required 

flexibility to be extended beyond the original designs of Corver (2001). On the 

other hand, there is no reason to assume that the building blocks and the 

building block elements cannot handle this flexibility, especially when 

observing the extended set of close-to-real-life supply chain concepts that are 

represented in the teaching cases by Van der Hee (2001).  

 

6.8 Overview observations case study Supply Chain 

6.8.1 Observed of benefits 

 The simulation studies that were performed confirmed the benefits that 

were noted in chapter 2 and 3. Overall, the simulation studies were performed 

correctly. Table 3.6 provides a similar summarizing overview as presented in 

chapter 3 tables 3.6 and 3.7 regarding only the benefits.  

 Overall all benefits have been achieved, but the benefits have not been 

shown in all simulation studies, because the development has been different 

depending on the generic simulation environment. For example, the benefit 

‘semi-automatic reporting of performance indicators’ is only achieved by the 

Arena implementation thanks to the MS Access database implemented as an 

additional tool (Van der Hee, 2002). 
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Table 6.3: Summary of benefits observed in case study Supply Chain 

Process step 
Expected benefits as mentioned in chapter 2 and 3 

Observation 
supply 
chains 

Activity 1: Problem description & define conceptual model 
Benefit 1.1: conceptualize system elements with model constructs 
in mind 

Yes 

Activity 2: Select model constructs 
Benefit 2.1: no translation between system elements and model 
constructs 

Yes 

Benefit 2.2: compose model constructs from developed domain 
specific model constructs to represent system elements 

Yes 

Benefit 2.3: easy selection of model construct thanks to structure 
of domain specific extension 

Yes 

Activity 3: Data collection 
Benefit 3.1: collection of predefined input data Yes 

Activity 4: Instantiate simulation model for original system 
Benefit 4.1: less model constructs used Yes 
Benefit 4.2: model development faster and easier Yes 
Benefit 4.3: model development by simulation novices Yes 

Activity 5: Verify and validate simulation model for original system 

Benefit 5.1: no more detailed testing Yes 

Benefit 5.2: easily gathering validation data Yes 

Benefit 5.3: structured and standardized performance 
indicators 

Yes 

Benefit 5.4: semi-automatic reporting of performance indicators Yes 

Benefit 5.5: observe animation at different levels of the 
composition: high level and at individual model construct 

Yes 

Activity 6: Analyze output of simulation model 

Benefit 6.1: structured and standardized performance indicators Yes 

Benefit 6.2: semi-automatic reporting of performance indicators Yes 

Activity 7: Define solution for analyzed outcome 

Benefit 7.1: model developers are triggered to find new solutions 
by parameters 

Yes 

Activity 8: Instantiate simulation model for identified solution 

Benefit 8.1: easy adjustment of model thanks to user interfaces of 
model constructs 

Yes 

Benefit 8.2: easy adjustment of model thanks to replacement of 
model constructs 

Yes 

Benefit 8.3: easy visualization thanks to incorporation of 
visualization in model constructs 

Yes 

Benefit 8.4: composition of new model constructs enabled new 
solutions to be evaluated 

Yes 
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6.8.2 Observed of risks in Supply Chain 

 The simulation studies that were performed in the different simulation 

studies also provided confirmation about the capability of the domain specific 

extension to mitigate the risks that have been identified in chapter 2 and 3. 

Thanks to the Simulation Building Block Guidelines and the design approach 

of chapter 5 we seemed to have mitigated most of the risks described in 

chapters 2 and 3.  

 Table 6.4 provides a similar summarizing overview as presented in chapter 

3, tables 3.6 and 3.7 regarding only the risks. Potential risks that we have 

mitigated during the execution of the case study (“No” in the table) did not 

occur and the potential risk has most probably been avoided by the way the 

domain specific extension was designed, structured and used.  

 

Table 6.4: Summary of risks observed in case study 

Process step 
Potential risks as mentioned in chapter 2 and 3 

Observation 
supply 
chains 

Activity 1: Problem description & define conceptual model 
Risk 1.1: scope of model developer is limited by model constructs No 

Activity 2: Select model constructs 
Risk 2.1: lack of trust results in no motivation to use domain 
specific extension 

No 

Risk 2.2: lack of insight in model constructs results in ignore 
domain specific extension 

No 

Risk 2.3: use of model constructs that are not suited for 
representation of system elements 

No 

Risk 2.4: system elements can not be represented by model 
constructs 

No 

Risk 2.5: compose model constructs from developed domain 
specific model constructs only applied for infrastructure system 
elements 

No 

Risk 2.6: model developers can adjust internal logic of model 
constructs 

No 

Activity 3: Data collection 
No risks defined in chapter 2 or 3 

Activity 4: Instantiate simulation model for original system 
Risk 4.1: model developers do not understand model construct No 
Risk 4.2: model developers do not know how to parameterize 
model construct 

No 

Risk 4.3: difficult to compose simulation model, because model 
constructs are not available 

No 

Risk 4.4: difficult to compose simulation model by person other 
than developer(s) domain specific extension 

No 
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Activity 5: Verify and validate simulation model for original system 
Risk 5.1: mistakes of model developer are hard to overcome No 
Risk 5.2: model developers know something is wrong, but cannot 
identify what to do about it 

No 

Activity 6: Analyze outcome of simulation model 
Risk 6.1: model constructs do not provide performance indicators 
problem owner desired 

No 

Activity 7: Define solution for analyzed outcome 
Risk 7.1: model developers are triggered to find new solutions by 
parameters 

No 

Risk 7.2: model developers are limited by parameters and model 
constructs 

Partly 

Activity 8: Instantiate simulation model for identified solution 

Risk 8.1: solution is identified that cannot be represented by model 
constructs 

No 

Risk 8.2: adjustments of model constructs required to represent 
solution are time consuming 

No 

Risk 8.3: replacement of model constructs causes errors in model 
constructs that were linked or connected. 

Partly 

 

 The risks encountered by the domain specific extensions for supply chains 

do not apply to all implementations. The risk ‘system elements cannot be 

represented by model constructs’ and ‘model developers are limited by 

parameters and model constructs’ existed in eM-Plant and the DSOL 

implementation as a result of the scoping. Not all designed building blocks 

have been implemented and thus not all systems could be represented 

(Corver, 2001; Tewoldeberhan, 2005). The risk ‘model developers can adjust 

internal logic of model constructs’ only applied for the eM-Plant 

implementation, whereby sufficient warnings in the user interface were 

included to make sure a model developer was aware of the risks of his/her 

actions (Corver, 2001).  

 The risk ‘replacement of model constructs causes errors in model 

constructs that were linked or connected’ appeared in supply chain teaching 

cases with Arena when the model developers included a mixture of building 

block elements for the concept ‘make-to-order’ and ‘make-to-stock’. Several 

building block elements needed to be replaced to change from one to another 

concept.  
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7 Application to container terminals 

  

7.1 Why develop a domain specific extension? 

 The planning and design of infrastructures, such as railroads, business 

parks and utility networks, is a complex task due to a large number of 

interrelated design parameters and mutually dependent public and private 

stakeholders. Possible stakeholders such as local, regional and national 

public authorities, infrastructure operators, (potential) customers, logistical, 

transportation and shipping companies, residents and environmental 

associations, constitute an inter-organizational network. (De Bruijn and Ten 

Heuvelhof, 2000). The actors are mutually dependent, but will most likely have 

different perceptions, interests, values and objectives. As a consequence, the 

optimization of technical, economic and logistical values will strongly be 

inhibited by conflicting interests, political and external boundaries and 

strategic stakeholder behavior.  

 Visualization and simulation can contribute to the initial design phase of 

complex infrastructures. Visualizations of a system, such as sketches or 

layouts, and simulation models, expressing a system’s dynamic 

characteristics, communicate the complexity of the system, show the 

consequences of options and place a design in its future environment. 

Important questions can be raised however, on how collaborative visualization 

and simulation can be embedded in an inter-organizational network and a 

multi-actor negotiation process. Can visualization and simulation contribute to 

the quality and progress of negotiation for instance by facilitating the 

development of mutual understanding or a shared vision? In that case, what 

are the specific requirements and guidelines for using visualization-simulation 

tools in an inter-organizational context? What interactive procedures, 

programs and ground rules may guide such a collaborative vision 

development? (Mayer et al, 2004) 

 To answer the aforementioned research question a gaming-simulation 

(Duke, 1980) was developed using the planning and design of a fictitious but 

realistic inland container terminal as the topic of the game. In the gaming-

simulation ‘Containers Adrift’ the participants play the role of stakeholders 

(Mayet et al, 2004). They explore and negotiate a container terminal design 

whereby all stakeholders are in principle in favor of the container terminal, but 

only if certain conditions regarding either economic scale, noise production, 

sight disruption or passing trucks are met. The stakeholders are supported 

during the game by a visualization-simulation tool that provides them the 

opportunity to evaluate different designs of the container terminal and observe 

the results for key parameters like operational profit, truck movements, initial 

investment, noise and CO2 production. The basis of the visualization-

simulation tool is a domain specific extension consisting of simulation building 
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blocks that are used to create and automatically execute a simulation model 

based on the design and choices of the stakeholders regarding the container 

terminal.  

 The aim of the visualization-simulation tool was to enable the participants 

to evaluate effects of design characteristics of the important elements for a 

terminal design such as its location, the quays, roads, ships, trucks, cranes 

and containers (Du, 2002a; Bockstael et al, 2003; Mayer et al, 2004). The 

visualization-simulation tool should provide quantified indicators for the 

performance, which were used by the stakeholders in the negotiation during 

the game. Therefore the complete cycle of the design and parameterization, 

model development, model run and evaluating the results of the simulation 

model should be within time boundaries of 15 minutes, otherwise the game-

participants would not have sufficient patience to use the results in their 

negotiations.  

 

7.2 Initial team to develop domain specific extension 

 The domain expertise for the container terminal was delivered by the game 

designers who defined the scope of the game for the design of the container 

terminal. They tried to be realistic, but also aware of the complexity to design 

a game with ten different stakeholders who all should have the opportunity to 

express their position (Van Kempen et al, 2002). The team of game designers 

and the game development team were experts from the TU Delft (Bockstael et 

al, 2003; Mayer et al, 2004). 

 

7.3 Specification of domain specific extension 

7.3.1 Scope 

 The scope of the visualization-simulation tool, and thus of the domain 

specific extension was defined by the background of the game situation: A 

new inland container terminal where containers where stored and picked up 

and delivered by trucks or vessels (Van Kempen et al, 2002). Inside the 

container terminal the transport was handled by special vehicles that were 

dedicated for the terminal and cranes that lifted the containers in and out of 

the vessels. The experiments that should be performed were mainly to 

support the game participants in making decisions on the capability of the 

container terminal. The decisions provided in the game design that had to be 

supported by the visualization-simulation tool were the following: 

• Size of the storage location (square meters and height) 

• Number and type of customers (resulting in truck movements and 

storage occupancy) 

• Vessel size and pattern 

• Number of dedicated container terminal vehicles 

• Number of cranes for loading/unloading vessels 
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 The participants in the game had some additional decisions that they 

needed to make, but these were not supported by the visualization-simulation 

tool. The main decision was the location of the terminal, close to the city or 

close to a nature park. Even though the selection of the location did not affect 

the outcome of the visualization-simulation tool, the decision was mainly 

based on the outcome of the tool concerning performance indicators as noise 

and CO2 production (Bockstael et al, 2003).  

 Other performance indicators that the participants used (or decided to 

ignore depending on their role in the game) in their negotiations were: initial 

investment, operational profit and the number of jobs (Bockstael et al, 2003). 

These performance indicators were helpful for the negotiation, but to improve 

the design of the terminal (and thus enlarge the profit or reduce the 

investment) the participants required insights in turnaround times of vessels 

and utilization of storage space, cranes and trucks. 

 The game design and the limitation of the duration of the game also put 

some types of experiments clearly out of scope of the visualization-simulation 

tool. Examples are the ability to change to process of handling a container in 

the container terminal, selection of storage space in the terminal and priority 

settings in vessel and customer handling. Whenever participants came with 

the question whether the visualization-simulation tool could provide any 

insights resulting from adjusting these mechanisms, the answer was that they 

should identify this as a possible gain for the design and steer the negotiation 

towards future research. 

7.3.2 Problem domain 

 An inland container terminal consists of objects that are used for the 

transport of containers. The containers are delivered and picked up using 

trucks or vessels and moved by cranes and forklifts at the terminal area. The 

additional objects for an inland container terminal are a quay, storage space 

and roads where forklifts move around. The processes that occur in an inland 

container terminal and the decisions that are made in the terminal are 

described in special building blocks and more detailed building block elements 

for dedicated processes (Du, 2002a).  

 The advanced processes in a container terminal are evaluations such as: 

where is a container terminal stored, which containers are leaving in a vessel 

and which sequence is used in loading the vessel. These evaluations are 

important in a realistic and technical representation of a container terminal, 

but the simulation models as part of a game for initial design of a container 

terminal do not require advanced algorithms. The order and sequence can be 

determined by following a first in-first out strategy, resulting in relatively simple 

processes.  

7.3.3 Building blocks 

 The building blocks that have been defined in the domain specific 

extension are a larger set than what the designer of the container terminal 

encounters (Du, 2002a). Table 7.1 shows the building blocks that form the 
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physical container terminal that the model developer instantiates in the VISIO 

drawing tool. These building blocks contain the physical representation and 

the mechanisms to claim and release the physical availability of another 

object, i.e. the storage space is occupied by containers and the ship quay is 

occupied by one or more vessels. 

 In addition to the physical elements that are drawn at a fixed position of the 

terminal layout are the movable entities, i.e. the trucks, vessels and internal 

vehicles. These are designed as a building block together with their control 

mechanism that determines what activities the movable entity should perform.  

 The last set of building blocks are at the boundary of the system, the 

companies that generate containers to be transported and the harbor, the 

location where vessels arrive or depart from. 

 

Table 7.1: Building blocks in VISIO drawing with their description 

Building 

block 

Picture in VISIO Description 

Storage 

 

Location where containers are stored. 

ShipQuay 

 

Location where cranes are placed and 

vessels board until they are loaded / 

unloaded by the available cranes. 

Road 

 

Infrastructure used by the internal 

vehicles to transport containers from the 

storage to the quay or the truck parking 

spot. 

Crane  

 

Equipment to load or unload containers 

from the internal vehicles to the vessels. 

Parkingspot 

 

Location where containers are loaded or 

unloaded from trucks by the internal 

vehicles.  
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7.3.4 Building block elements 

 The domain specific extension for container terminals contains no variance 

in building block elements within a building block. Each building block has only 

one way of performing its functionality. However, certain building block 

elements are applied in different building blocks of the domain specific 

extension. 

 The physical building blocks shown in Table 7.1 all contain a building block 

element to claim their capacity, to release their capacity and to gather 

statistics to be reported to the dedicated Excel report (see page 204).  

 Further building block elements that are defined in this domain specific 

extension are mainly used to structure the functionality of the building blocks 

(Du, 2002a). For example, the building block ‘Company’ consists of four 

building block elements: Create container to be picked up by truck; create 

container to be picked up in harbor; handle container arriving at company by 

truck; handle container arriving at harbor by vessel. The structuring of the 

building block along the lines of this structure helps the development, 

interfacing and debugging, but does not have any further added value to 

support future extension and development of the domain specific extension. 

The main reason for this simplification was the clear starting point that no 

variations for building block elements were to be used by the game 

participants.  

 

7.4 Implementation 

 The development of this domain specific extension focused on the 

requirement to be able to perform the complete simulation and evaluation 

process with the visualization-simulation tool within 15 minutes by game 

participants. The implementation therefore focuses mainly on the capability of 

automating the model development, and to run and experiment based on a 

solid set of building blocks that represent the behavior of system elements of 

a container terminal (Valentin et al, 2002).  

 

7.4.1 Extension of simulation environment 

 The selected generic simulation environment was Arena, with as the main 

reason the ability to automate model development via Visual Basic coding 

from an external application. An additional reason was the ability to develop 

simulation building blocks that were completely closed, to avoid that game 

participants would be able to alter the functions of the system and thus alter 

the basis of the game negotiations. 

 The processes in the simulation building blocks are triggered by a 

container entity created by the Company building block. This entity further 

follows the fixed modeled steps of transport via truck to the terminal, storage 

in the terminal, move to a vessel, transport by vessel to harbor or the other 

way around. The container entity is active at all times and executes the 

functions of claiming and releasing the physical resources. Inside the Arena 
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building blocks no ‘supervisor’ functionalities are developed and the logic in 

the claim building block elements is all ‘first come, first serve’.  

 The container entity is routed between the different physical resources via 

‘mail box’ routing identified with specific codes. For example, code 11.4 is for 

claiming the container crane to leave the vessel, code 11.5 for the unload 

process by the container crane and code 11.6 for releasing the container 

crane (Valentin et al, 2002).  

 

Table 7.2: Building blocks in VISIO and ARENA with status 
representation 

Building 

block 

Picture in 

VISIO 

Representation in simulation model  

Storage 

 
 

ShipQuay 

  

Road 

 

 

Crane  

  

Parkingspot 
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 The building blocks implemented in Arena automatically contain a user 

interface for the parameter setting and a visualization of their state. The user 

interface and the location of the visualization of the building block are filled via 

the automatic model generation tool (see next section) and the model 

developer does not need to pay attention to set the parameters or review the 

status. Even though there is no need for it, the user interface and the 

visualization are provided with the terminology used within the game to 

enhance the ability to understand the model if game participants are 

interested. Table 7.2 contains the visual representation of the physical 

building blocks earlier on described in Table 7.1. The representation in the 

simulation model shows the state of the physical resource, for example with 

numbers to indicate the available storage capacity and with colors to show the 

state of the container crane. 

 

7.4.2 Additional tools 

 The domain specific extension consists of building blocks, the ability to 

translate a VISIO drawing into a simulation model, and an Excel interface that 

contains all performance indicators of the Inland Container Terminal. The 

building blocks of the physical elements of the container terminal are 

implemented in the drawing tool VISIO and the simulation environment 

ARENA. Figure 7.1 shows the technical sequence in the domain specific 

extension. A drawing of the terminal is made in VISIO and additional data of 

customer information is added to a MS Access database. The drawing and 

data are integrated into an Arena simulation model. The simulation run is 

performed and results are published in an Excel spreadsheet. In the 

remainder of the section a brief description of the different elements is 

provided. The full design can be found in Valentin et al (2002). 
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Figure 7.1: Cooperation between four tools 
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Model generation 

 The building blocks that represent infrastructure objects of a container 

terminal are represented in a VISIO drawing template and in an ARENA 

simulation template. The participants in the game make drawings using the 

VISIO objects. Their position and configuration are used to instantiate the 

represented building block in the simulation model. Table 7.2 shows the 

physical building blocks in both the drawing in VISIO and the simulation model 

in ARENA. The use of the drawing building blocks in VISIO can result in 

drawings of an inland container terminal such as shown in Figure 7.2.  

 

 
Figure 7.2: Example drawing of container terminal based on  

building blocks in VISIO 

 

 Within VISIO a Visual Basic (VB) program was developed that allowed the 

simulation model to be generated based on the drawing made. The VB-

program analyzed all drawing elements in the VISIO drawing and registered 

which elements were based on the building blocks made available in VISIO to 

create the container terminal, i.e. the elements shown in Table 7.2. The 

registration included different attributes depending on the building block. For 

example, the ‘container storage’ registered the square meters and the height, 

the ‘ship quay’ registered the length and the ‘crane’ included the connections 

to the road network. 

 The VB-program followed by instantiating a new blank Arena model and 

instantiated in that model the building blocks for the physical system elements 

obtained from the VISIO drawing. This was followed by instantiating several 

building blocks for the transport, such as the trucks and the vessels. Finally 

the generation of the companies was done, and the simulation model was 

complete. 
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Model data entering 

 The VISIO drawing contains the configuration of the container terminal for 

the physical elements, but more data is required. For example, the number of 

trucks, the arrival times of vessels, and the companies that are supported by 

the container terminal. This information is all combined in an MS Access 

database in which the game participants can indicate their preferences. Figure 

7.3 shows the selection the game participants can make between large or 

small vessels.  

 

 
Figure 7.3: Access database for data entry,  

example vessel configuration  

 

 The information from the MS Access database is subsequently loaded into 

the instantiated simulation model via a VB-program similar to the program 

mentioned for the model generation. This VB-program copies all data of the 

MS Access database into the correct parameters fields of the respective 

simulation building blocks in the simulation model. The game participants do 

not need to perform any further manual activity to transfer the data into the 

simulation model. 

 

Model execution 

 The game participants have two VB-programs for execution of the 

simulation model. One variant puts the Arena simulation model in the front of 

the screen and shows the visualization of the simulation building blocks filled 

with all the data from the MS Access database. While time proceeds the game 

participants can keep track of the state of the container elements and will see 

the trucks and internal vehicles drive around on the layout of the container 

terminal. The game participants will also see the visualization of the container 

cranes, the storage and the quay. Based on the visualization, they can decide 

whether their design seems feasible or whether it is a bad solution for the 

considered companies. 
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 The other variant for model execution is a hidden execution. The VB-

program executes the simulation model in the background and generates at 

the end of the simulation run all information required for the reporting in 

separate text files. The game participants do not see any progress of running 

the simulation model, but after 1 to 3 minutes they receive a message that the 

data is ready to be imported in the Excel reporting tool for analysis.  

 

Model outcome reporting 

 The building blocks in the Arena simulation model provide functionalities to 

represent behavior of an inland container terminal and collect data for various 

performance indicators. The participants of this game need to evaluate 

different performance indicators, which are based on economics, logistics and 

environmental issues to reach consensus on one or two designs for the 

container terminal. The wide variety in performance indicators is needed to 

support the different roles in the game. For example, environmentalists are 

mainly interested in the noise and emission levels, while future customers of 

the inland terminal checked the throughput times provided. Further topics like 

queue length and utilization are included to support the participants in making 

suggestions for improvement of the terminal. Figure 7.4 shows a part of the 

Excel interface, representing the performance indicator for investments that 

are required for the design of the inland container terminal at the designated 

position. 

 
Figure 7.4: Excel interface showing  

performance indicators for investments 
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 The data required for the reporting tool is automatically generated by the 

building blocks in the simulation model and stored in text files. A VB-program 

is triggered after the simulation model is executed to open a new instance of a 

template designed for the reporting. One by one the text files are read into the 

Excel sheet and their data is added to the appropriate sheets to calculate the 

performance indicators such as investment, cost, profit and utilization. The 

Excel template is also prepared with one overall A4 sheet showing all key 

parameters that are primarily used by the game participants during their 

negotiations. 

 

7.4.3 Support to users 

 In the first hour of the game, the game participants receive an introduction 

in the game objectives, the different stakeholders, and the capabilities of the 

visualization-simulation tool. This explanation is accompanied by a quick 

demo of the complete process from an initial drawing in VISIO to the final 

report in Excel (Van Kempen et al, 2002).  

 Depending on the size of the group of game participants, between two and 

four workstations were set-up with a laptop, projector and paper support 

material where game participants together could design and evaluate 

container terminals. Each station contained all the necessary software and a 

couple of example drawings with simulation models (like Figure 7.2). In the 

first game each station was managed by a teaching assistant who knew the 

technical challenges and could guide the game participants around these 

problems. This teaching assistant also gave additional explanation on the spot 

about what the game participants saw on the screen during the simulation run.  

 The experiences gathered during the first game have been used to finalize 

a user manual and a ‘cheat’-sheet with the most common questions and 

explanations (Du, 2002b). The provided documentation and the attitude of the 

game participants to try themselves was a reason to reduce the on-site 

support and change to on-demand support. An expert was available during 

the following games to answer questions that popped-up regarding the use of 

the visualization-simulation tool and detailed questions (mainly about 

performance indicators in the Excel reporting).  

 

7.5 Use of Simulation Building Block Guidelines 

 The Simulation Building Block Guidelines have been created mainly to 

allow future changes to the simulation building blocks and to make extensions 

to the domain specific extension. The domain specific extension as basis of 

the visualization-simulation tool that has been used by the game participants 

has not been changed since the first version of the game, with the exception 

of fixing a couple of minor bugs. The main upgrades have been carried out for 

the VB-programs to enhance the ability to automatically generate the 

simulation model with the correct data and produce a valid report for the 
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simulation run. Therefore, several Simulation Building Block Guidelines have 

not been followed for the development of this domain specific extension.  

 

Guidelines related to self-contained building blocks 

Simulation Building Block Guideline 1: data belonging to a building block 

should not be accessed by other building blocks directly, but only via defined 

interfaces. 

 The whole process is triggered by a container. The container accesses the 

information of the physical elements in the simulation model and is proceeding 

in the predetermined sequence, thus following the defined interfaces. 

 

Simulation Building Block Guideline 2: a simulation building block consists of a 

core and building block elements to represent functions and services. 

 See the remark in section 7.3.4 regarding building block elements being 

hardly used, other than to structure the inner working of the building blocks. 

 

Simulation Building Block Guideline 3: data belonging to a building block 

element can be accessed by other building blocks elements of that building 

block without using the interfaces of the simulation building block. 

 Building block elements are only used for structuring of the inner working 

of the building blocks in this domain specific extension. Therefore data did not 

belong to a specific building block element, but to the building block itself. For 

the communication and data exchange between building blocks the regular 

mail box system was used, see more in Simulation Building Block Guideline 9. 

 

Guidelines related to interoperability of building blocks 

Simulation Building Block Guideline 4: system elements that appear in 

different variants and processes in a system are represented by a family of 

building blocks and building block elements. 

 Some of the building blocks could be seen as ‘belonging to a family’, i.e. 

the physical building blocks used in VISIO and Arena (see Table 7.2), but no 

other families of building blocks have been defined. In line with the decision to 

keep the process simple and steady, no alternatives of building block 

elements are provided.  

 

Simulation Building Block Guideline 5: building blocks are of different types, 

most common to have building blocks for infrastructure and for control. 

 The building blocks representing the physical infrastructure are listed, but 

they also include the functionality of claiming and releasing the resources, 

thus the control. In the type of experiments performed during the game, no 

advanced control was necessary, therefore it was decided in the design of the 

building blocks not to follow this guideline. 
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Simulation Building Block Guideline 6: complex control mechanisms should be 

represented using control building blocks linked together to represent a flow. 

 The level of abstraction in the container terminal was not sufficient to justify 

separate control building blocks that represent the process flow of a container. 

It was decided not to follow this guideline for the design of the building blocks. 

 

Simulation Building Block Guideline 7: building blocks should be aware of 

each other’s existence within a range of applicability. 

 In the simulation models interfaces were defined via the network of roads 

between the storages, parking spot and the container cranes. These were all 

defined in the VISIO drawing and automatically exported to the road-

simulation building block. The internal vehicles used this information to 

transport a container, but no further flexible links were used.  

 

Guidelines related to replaceable unit of building blocks 

Simulation Building Block Guideline 8: extension of a domain specific 

extension can be achieved by introducing new building block elements for 

existing simulation building blocks. 

 Extending the amount of simulation building blocks within the domain 

specific extension was explicitly out of scope for the game. Sometimes game 

participants had additional questions for further research, which were not 

accommodated by the available building blocks or automatic model 

generation in the visualization-simulation tool. In these cases, the game 

participants received the reply that they should address the request in their 

negotiations as further research. 

 

Simulation Building Block Guideline 9: simulation building blocks and building 

block elements of the same family follow the same interface requirements. 

 Each building block worked with the concept of ‘mail box’ to route the 

container entity and enable monitoring of its status. Each building block had 

its own code, because the building blocks could not replace each other’s 

functions. For example, a storage location could not represent the functionality 

of the parking spot.  

 

Guidelines related to encapsulating internal structure of building blocks 

Simulation Building Block Guideline 10: simulation building blocks hide inner 

working. 

 One of the reasons to select Arena as the generic simulation environment 

is that model developers cannot interfere with the building blocks, except their 

parameterization. In this domain specific extension hiding the inner working 

has been taken a step further, as the building block do not have any 
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connectors where generic modules can be connected and the standard game 

participant will not view the simulation model any more than a couple of 

minutes to see a simulation model run. The game participants cannot make 

adjustments to the simulation model in the simulation environment and they 

cannot change the functionality of a building block. 

 

Simulation Building Block Guideline 11: advanced model developers have to 

be able to unhide the inner logic and see how the processes and attributes 

are implemented. 

 This option has not been provided to the model developers. See 

Simulation Building Block Guideline 10 for further explanation. 

 

Guidelines related to providing useful services or functionality of building 

blocks 

Simulation Building Block Guideline 12: system elements should be 

represented by building block elements that can be extended with custom 

instantiations of model constructs of a generic simulation environment. 

 This option has not been provided to the model developers. See 

Simulation Building Block Guideline 10 for further explanation. 

 

Simulation Building Block Guideline 13: a building block can connect to model 

constructs of a generic simulation environment. 

 This option has not been provided to the model developers. See 

Simulation Building Block Guideline 10 for further explanation. 

 

Guidelines related to precisely defined interfaces for building blocks 

Simulation Building Block Guideline 14: the model developer has to adjust the 

parameters of a simulation building block via a user interface. 

 Each simulation building block has a user interface for parameter settings, 

but the game participants will not use the interfaces. They will use the drawing 

capability in VISIO or the database settings in the MS Access database 

(Figure 7.3). This can be seen as a dedicated user interface, though. 

 

Simulation Building Block Guideline 15: use of domain terminology in the user 

interface provides insight in the suitability of a building block for a certain 

purpose and the meaning of its parameters. 

 The automatic model generation that is used in the visualization-simulation 

tool works the other way around than the Simulation Building Block Guideline 

suggests. If the VISIO drawing does not contain any of the following building 

blocks (road, storage, parking spot, crane or quay) the VB-program gives an 

error claiming that the drawing is incomplete. If all five types of building blocks 

are instantiated at least once in the drawing, the VB-program will make sure 
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that all information is set into the simulation model to result in a verified 

simulation model (Valentin et al, 2002).  

 The same applies for data entry in the MS Access database, if no trucks 

are available or no companies are selected, the simulation model will not be 

populated with data, but the game participant will be informed of his/her 

omission. 

 

Simulation Building Block Guideline 16: parameters in a user interface of a 

simulation building block have to be checked for validity of the values. 

 The MS Access database contains field controls to check that valid data is 

entered. The VISIO drawing is limited to the building blocks provided in the 

stencil in VISIO.  

 

Simulation Building Block Guideline 17: parameters in a user interface of a 

simulation building block should have default values whenever possible. 

 Again, because we are working with data from the MS Access database 

that is checked for logical values, absence of this Simulation Building Block 

Guideline does not result in any trouble for the game participants. 

 

Simulation Building Block Guideline 18: The user interface of a simulation 

building block should provide support for the model developer. 

 The game participants do not need support in developing the simulation 

model or setting the parameters of the building block, they need support in 

making a drawing in VISIO. With the example at the beginning of the game 

and the familiarity of most game participants with VISIO, this Simulation 

Building Block Guideline is matched.  

 

Simulation Building Block Guideline 19: The user interface of a simulation 

building block can be used by model developers to select building block 

elements and set their parameters. 

 This Simulation Building Block Guideline is not applicable, because 

building blocks are completely fixed and do not contain alternative building 

block elements. 

 

Simulation Building Block Guideline 20: a simulation building block has a 

defined interface that receives triggers, requests, entities, or events from other 

simulation building blocks in the simulation model and redistributes these 

internally. 

 This Simulation Building Block Guideline is handled by the coding for the 

status monitoring of the container entity. 

 



7.6 Simulation studies performed  

210 

 

Simulation Building Block Guideline 21: the interface of a simulation building 

block contains evaluations of the state of the trigger and the building block to 

determine whether the building block can handle the trigger.  

 The status monitoring is used mainly for debugging purposes during the 

development of the domain specific extension and its building blocks. With 

completely closed building blocks and the automatic model generation the 

Simulation Building Block Guideline is no longer is applicable for the case 

study. 

 

Simulation Building Block Guideline 22: a simulation building block contains 

pictures, numbers and other elements to support visualization of the state and 

key performance indicators during simulation run. 

 The Arena building block screenshots in Table 7.2 show the visualization 

the game participant can see during the model run, but in the visualization-

simulation tool the need for these interfaces is not as large as in other 

simulation studies. The reason is that the game participants mainly ran the 

simulation model without animation. They directly received the outcome of 

their design in the Excel sheet and thus usually skipped the phase of 

observing the model animation. 

 

7.6 Simulation studies performed 

 In the designed game, 10 different actors have 8 hours to come up with a 

design of an inland container terminal. The challenge of the participants was 

twofold, 1) design a terminal that all participants agree on and 2) design a 

process for further negotiations and arrangements. The participants in the 

game had different aims for the container terminal regarding size, location and 

safety. On purpose some of the potential desires could not be satisfied with 

the visualization-simulation tool, for example, the visualization-simulation tool 

does not include the cost of moving the current garbage retrieval side of the 

municipality, which is at the location where the container terminal has t obe 

built, to another location. If the participants stumbled on this or similar issues 

during their design process, they had to address this in their future process of 

negotiation and arrangements (Bockstael et al, 2003).  

 The participants in the game had four workstations available for all 

participants, independent of the stakeholder they were representing. At the 

workstations the participants could work on the design of the inland container 

terminal. In each game the use of the tool was slightly different as the game 

participants were free to organize themselves as they thought to be best 

suited. In most games the participants decided to divide themselves in three 

groups with representatives of each of the available teams, one group 

discussing the future process, one group developing a terminal as large as 

possible and one group developing an environmentally friendly solution. The 

groups came together to discuss their progress and show their intermediate 
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results at different moments during the game. The participants often had their 

first terminal design that made some profit after one hour and from then 

onwards they worked on optimizing the design according to their desires, e.g. 

increase the size or eliminate some types of customers, aiming at profit 

optimization. 

 The game has been used in different settings. Initially, the game has been 

played in three gaming-simulation sessions with 77 participants, who were 

students who signed up for a voluntary part of a course in the TU Delft’s 

Technology, Policy and Management third year curriculum. Secondly we 

played the gaming-simulation three times with 20 to 30 MBA-course 

managers and thirdly the game has been played with 65 students again from 

the Faculty of Technology, Policy and Management at TU Delft. These 

sessions have been evaluated using questionnaires and external observers 

(Bockstael et al, 2003). In total the management game has been played for 

more than 20 times by bachelor students, students in MBA courses and 

experts in process management. 

 The participants in the game needed only a little bit of support in explaining 

what performance indicators meant and what conclusions they could draw 

from the results in the Excel interface. They succeeded with very limited 

training in building their own terminal, export the configuration to the 

simulation environment Arena and perform simulation experiments. They 

worked their way through the results in the Excel interface and from there they 

evaluated their design and identified possible improvements. Every 

experiment was performed after some discussion between the different 

stakeholders about the suitability of an experiment. For example, if the 

participants analyzed that the storage space should be enlarged, then they 

first had a discussion where the extension should be located, including the 

height and the shape of the storage. Once the discussion was finalized, the 

design was adjusted in their VISIO drawing and a new simulation run was 

performed.  

 The types of experiments that the participants in the game performed were 

all along the lines of the capabilities of the visualization-simulation tool. 

Experiments that were not supported, for example evaluating an alternative 

lock at the entrance of the port, were scheduled for further analysis in the next 

phase of the decision making process. As a result the experiments performed 

with the visualization-simulation tool aligned perfectly with the interface 

capabilities in the VISIO drawing or the database.  

 In all the performed games the participants, none of them simulation 

experts, succeeded in developing two or three different terminal designs that 

they would like to enhance in further evaluations. In most of the gaming 

sessions the participants had time to improve their design and increase the 

expected profit. In games where they did not succeed in optimizing, this was 

mainly caused by extensive discussion before they started to use the 

visualization-simulation tool. 
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7.7 Observations during simulation studies 

 The initial game session have been evaluated extensively (Bockstael et al, 

2003). Empirical data were gathered through: (1) observation of the group 

work during the game; (2) plenary debriefing after each game; (3) a written 

questionnaire filled out by the participants shortly after the game; (4) a written 

response by the participants to a few open questions. The evaluation of the 

visualization-simulation tool and the game sessions focused on three main 

aspects: (1) the role of the visualization-simulation tool in an inter-

organizational decision-making process; (2) the generation of some specific 

requirements for using such a tool; (3) some suggestions for refining the game 

and the visualization-simulation tool for real life systems. The evaluation 

criteria regarding the visualization tool and the gaming-simulation were 

generally derived from notions on infrastructure design in inter-organizational 

settings.  

 Bockstael et al (2003) and Mayer et al (2004) describe the results of the 

questionnaires and observations mainly from the process management 

viewpoint. They focus on the function of the visualization-simulation tool as 

part of the game and the design of the game to teach students the interaction 

and use of quantified data in a complex multi-actor design process. They 

show that the students in majority found the visualization-simulation tool 

helpful and that they could add quantified performance indicators to 

discussions in an early stage of the design process. 

 Valentin et al (2002) conclude that the use of the visualization-simulation 

tool showed that the use of simulation does not need to be something to be 

postponed until the final design phase. The participants in the game could 

easily and quickly make a representation of their idea and evaluate the 

effects, due to the support of the complete model development cycle (Figure 

7.1). Without the automatic model development and collection of performance 

indicators the simulation model would not have been of any use in the design 

phase, and without the building blocks of the domain specific extension for 

container inland terminals these tools could not have been developed.  

 

7.7.1 Observations regarding design approach and implementation 

 Every decision made during the design of the domain specific extension 

and its implementation in the simulation environment Arena was aimed to 

enable fast and easy model development. For example, all companies were 

located 20 kilometers from the container terminal resulting in fixed cost for 

transport of containers and no distinction between companies. This was just 

one of at least a dozen assumptions that were made in the design of the 

domain specific extension, as it was designed for this specific use only and 

not for evaluation of real inland container terminals.  
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7.7.2 Observations regarding additional tools 

 The additional tools have had their issues during the development process, 

mainly the automatic connectivity between VISIO, MS Access, Arena and 

Excel, but the second release was a good improvement. Many of the 

connectivity problems were resolved. The availability of the additional tools 

has been a key success of the domain specific extension and the success of 

the game. The additional tools made the simulation model into a magic black 

box that provided answers to the questions of the game participants regarding 

a design, exactly what the game needed. 

 

7.7.3 Observations regarding provided support 

 The game participants were not hindered by the lack of knowledge about 

the building blocks or the use of the domain specific extension. The game 

participants studied the support material, but mainly to use it as a judgment of 

the quality and the validity of the visualization-simulation tool. Given the scope 

of the game, the provided support was a good match. 

 

7.7.4 Observations regarding applying building block concept and guidelines 

 Even though the need to update and extend the set of building blocks in 

this case study did not occur, we still made observations regarding the 

Simulation Building Block Guidelines. The observations for the capabilities of 

the domain specific extension are structured using the characteristics of a 

building block as defined by Verbraeck et al (2002). 

Table 7.3: Characteristics of building blocks in Container Terminal game 

Self-Contained Positive the container stored the information and 
the outcome of decisions in the other 
blocks. 

Interoperable Positive centralized control versus individual 
physical elements and container kept 
information and pointers to actors. 

To be improved no family structure and no process 
description of the control elements, as 
both were seen as not necessary for the 
type of experiments. 

Reusable Positive the domain specific extension has been 
reused many times, although it always 
was to model the same system, but every 
time in a slightly different session with 
different users. 

(continued at next page) 
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Replaceable Not applicable the building blocks were not replaceable 

and no use of building block elements 

other than structuring. Furthermore there 

was no need to extend the set of building 

blocks or building block elements. 

Encapsulating 

its internal 

structure 

Positive the additional tools completely hide the 

simulation model, including the inner logic 

of the simulation building blocks. 

Providing 

useful services 

or functionality 

Positive the system of a container terminal was 

completely composed out of simulation 

building blocks. 

To be improved the simulation building blocks could not be 

extended or adjusted to provide additional 

services or functionalities. 

Precisely 

defined 

interfaces 

Positive parameters of the user interface were 

automatically defined and technical 

interfaces between the building blocks 

were correctly aligned. 

 

7.8 Overview observations 

7.8.1 Observed benefits in management game for container terminal 

 Table 7.4 provides a similar summarizing overview as presented in chapter 

3 tables 3.6 and 3.7, regarding only the benefits. Similar to in the tables in 

chapter 3: If “No” is filled in for a potential benefit it means that in the case 

studies for this domain we did not observe effects of the expected benefit. 

This is not negative, but points out that the case study has the potential of 

being even more effective.  

 The benefits for the domain specific extension ‘Container Adrift’ game 

range from a very explicit yes (‘Yes !’) to a ‘Partly’. The explicit ‘Yes !’ is a 

result of the ability to perform a complete model cycle in 15 minutes. The 

‘Partly’ is a result of the way the game participants used the visualization-

simulation game. The game participants could have a look at the visualization 

of the simulation model, but they hardly used the opportunity, as they 

preferred to directly use the overview of performance indicators provided via 

the additional tool in Excel (Valentin et al, 2002; Bockstael et al, 2003; Mayer 

et al, 2004).  
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Table 7.4: Summary of benefits observed in case study Container 
Terminal 

Process step 
Expected benefits as mentioned in chapter 2 and 3 

Observation 
container 

Activity 1: Problem description & define conceptual model 
Benefit 1.1: conceptualize system elements with model constructs 
in mind 

Yes 

Activity 2: Select model constructs 
Benefit 2.1: no translation between system elements and model 
constructs 

Yes 

Benefit 2.2: compose model constructs from developed domain 
specific model constructs to represent system elements 

Yes 

Benefit 2.3: easy selection of model construct thanks to structure 
of domain specific extension 

Yes 

Activity 3: Data collection 
Benefit 3.1: collection of predefined input data Yes 

Activity 4: Instantiate simulation model for original system 
Benefit 4.1: less model constructs used Yes 
Benefit 4.2: model development faster and easier Yes ! 
Benefit 4.3: model development by simulation novices Yes ! 

Activity 5: Verify and validate simulation model for original system 
Benefit 5.1: no more detailed testing Yes 
Benefit 5.2: easily gathering validation data Partly 
Benefit 5.3: structured and standardized performance indicators Yes 
Benefit 5.4: semi-automatic reporting of performance indicators Yes ! 
Benefit 5.5: observe animation at different levels of the 
composition: high level and at individual model construct 

Partly 

Activity 6: Analyze output of simulation model 
Benefit 6.1: structured and standardized performance indicators Yes 
Benefit 6.2: semi-automatic reporting of performance indicators Yes ! 

Activity 7: Define solution for analyzed outcome 
Benefit 7.1: model developers are triggered to find new solutions 
by parameters 

Partly 

Activity 8: Instantiate simulation model for identified solution 
Benefit 8.1: easy adjustment of model thanks to user interfaces of 
model constructs 

Yes 

Benefit 8.2: easy adjustment of model thanks to replacement of 
model constructs 

Yes 

Benefit 8.3: easy visualization thanks to incorporation of 
visualization in model constructs 

Partly 

Benefit 8.4: composition of new model constructs enabled new 
solutions to be evaluated 

No 

 

7.8.2 Observed risks in domain Container Terminals 

 The execution of the management game also provided some observations 

how the risks introduced in chapter 2 and 3 have been mitigated in the use 

and further development of the domain specific extension for container 



7.8 Overview observations  

216 

terminals. The Simulation Building Block Guidelines and design approach of 

chapter 5 enabled to avoid most of the risks described, especially the ones 

regarding time consuming execution, thanks to the many automated 

processes applied in this case study. 

 

Table 7.5: Summary of risks observed in case study Container Terminal 

Process step 
Potential risks as mentioned in chapter 2 and 3 

Observation 
container 

Activity 1: Problem description & define conceptual model 
Risk 1.1: scope of model developer is limited by model constructs Partly 

Activity 2: Select model constructs 
Risk 2.1: lack of trust results in no motivation to use domain 
specific extension 

No 

Risk 2.2: lack of insight in model constructs results in ignore 
domain specific extension 

No 

Risk 2.3: use of model constructs that are not suited for 
representation of system elements 

No 

Risk 2.4: system elements can not be represented by model 
constructs 

No 

Risk 2.5: compose model constructs from developed domain 
specific model constructs only applied for infrastructure system 
elements 

No 

Risk 2.6: model developers can adjust internal logic of model 
constructs 

No 

Activity 3: Data collection 
No risks defined in chapter 2 or 3 

Activity 4: Instantiate simulation model for original system 
Risk 4.1: model developers do not understand model construct No 
Risk 4.2: model developers do not know how to parameterize 
model construct 

No 

Risk 4.3: difficult to compose simulation model, because model 
constructs are not available 

Partly 

Risk 4.4: difficult to compose simulation model by person other 
than developer(s) domain specific extension 

No ! 

Activity 5: Verify and validate simulation model for original system 
Risk 5.1: mistakes of model developer are hard to overcome No 
Risk 5.2: model developers know something is wrong, but cannot 
identify what to do about it 

No 

Activity 6: Analyze outcome of simulation model 
Risk 6.1: model constructs do not provide performance indicators 
problem owner desired 

No 

Activity 7: Define solution for analyzed outcome 
Risk 7.1: model developers are triggered to find new solutions by 
parameters 

No 

Risk 7.2: model developers are limited by parameters and model 
constructs 

Partly 



  7 Application to container terminals 

   217  

 

Activity 8: Instantiate simulation model for identified solution 
Risk 8.1: solution is identified that cannot be represented by model 
constructs 

Partly 

Risk 8.2: adjustments of model constructs required to represent 
solution are time consuming 

No 

Risk 8.3: replacement of model constructs causes errors in model 
constructs that were linked or connected. 

No 

 

 The game participants in the game ‘Containers Adrift’ observed mainly 

risks that had to do with the scope of the visualization-simulation tool. The 

game had a broader scope than the capability of the visualization-simulation 

tool, therefore it was logical that game participants would have further 

questions. This game aspect was added on purpose, to teach the game 

participants that not everything can be known and decided in the first initial 

design, but that decisions on the container terminal might be postponed to 

later phases of the negotiations. These risks thus have been encountered, but 

on purpose as part of the game design; therefore the observation is marked 

with ‘Partly’. 
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8 Application to Nestlé production facilities 

  

8.1 Why develop a domain specific extension?  

 Nestlé produces food products worldwide. Their product range consists of 

many different types of products and includes milk powders, ice cream, 

yoghurt, chocolate, water, soup and pet food. The products are aimed at the 

top segment of the market, and are distributed in the wide region around the 

factory. Distribution is not limited to the country where the factory is located. 

The manufacturing processes used at Nestlé are aimed at producing a wide 

range of high quality products for an extensive range of customers.  

 Each Nestlé factory deals with different challenges, but in general the 

factories strive for high efficiency on the production and the packing lines, 

taking into account the need for effective and efficient changes when 

changing from one product to another within the production system. Improving 

the efficiency of a production cycle, for example by producing larger batch 

sizes, will have negative effects with respect to required storage space and 

product longevity. Further, Nestlé’s R&D departments are constantly inventing 

new products. These new products require alternative production process and 

different (new) packaging materials. More types of products, produced within 

one factory, with different package sizes results in factories where there is a 

high level of changeovers for products and packing lines.  

 The design of any new factory is based on the product mix expected to be 

produced once the factory is completed. However, new products or expansion 

plans lead to an adjusted product mix. Consequently, the factory management 

needs to find new and alternative means to meet the new production 

demands and market requirements. The factory management will stretch the 

production capabilities of their factory as much as they can, but eventually, 

investment in a factory might be required to meet the requirements of effective 

production of the increased product mix. Some of Nestlé’s factories are more 

than twenty years old and over time Nestlé has increased product throughput 

by 50 to 200% when compared to their original expected throughput. 

However, not all Nestlé’s investments in their factories have resulted in the 

efficiency and throughput improvements that management expected. 

 Nestlé process engineers have few tools they can use to evaluate whether 

their suggested improvements will pay-off before implementation, and result in 

the desired production capacity. To deal with this problem the process 

engineers were considering using simulation technology as a means to 

achieve three goals: 
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1) Improving the design of factory 

2) Supporting operational planning 

3) Improving and standardizing processes, and planning and testing 

product automation ideas before implementing changes on the factory 

floor 

 

 Nestlé’s different departments do not have sufficient workload to make 

hiring and educating full time simulation model developers economical. They 

have a quickly rotating team of process engineers who will use simulation 

tools for 1 month in a project at a factory and then for 7 or 8 months do 

something completely different. Educating these process engineers so that 

they can develop valid simulation models in such an environment would be a 

waste of their other talents and time. A domain specific extension specifically 

designed for Nestlé and its batch production technology that can be used by 

the process engineers would resolve this issue.  

 Nestlé started a couple of simulation projects in 2004 to evaluate the use 

of simulation tools and different generic simulation environments in the design 

of a factory. The ultimate goal was to enable the process engineers to 

construct a simulation model of a factory, to perform an analysis and provide 

suggestions for improvement. The simulation models should be able to be 

used by the operational planning departments and to interact with the SAP 

Globe ERP system and the PLCs of the physical equipment used in the 

factory. In 2005 Nestlé Nutrition selected Systems Navigator and Rockwell 

Software to use the Arena simulation environment to develop a domain 

specific extension.  

 

8.2 Initial team to develop the domain specific extension 

 The domain expertise for the initial domain specific extension was provided 

by a team of product engineers from the R&D center of Nestlé Nutrition. 

Together with simulation experts from Systems Navigator and automation 

engineers from Rockwell Software they defined the scope and problem 

domain for the domain specific extension.  

 The simulation experts of Systems Navigator completed the development 

of the set of simulation building blocks, including example simulation models 

and teaching material. The initial simulation studies have also been performed 

by simulation experts of Systems Navigator, supported by subject matter 

experts from Nestlé trained with the use of the domain specific extension. 

 

8.3 Specification of the domain specific extension 

8.3.1 Scope 

 The scoping of the domain specific extension was mainly based on the 

experience gained during two simulation studies, one for a fresh milk factory 

in Asia and another for a milk powder factory in Europe. These initial 
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simulation studies were performed to verify assumptions regarding the level of 

detail of the simulation models, the performance indicators, and the technical 

implementation. The conclusion of the simulation studies was that the 

following assumptions were valid to apply in the design of the domain specific 

extension:  

• Pipes are not a constraint for the production process, neither is the 

cleaning of these pieces of equipment. Given the complexity that of 

adding them to the simulation model and the lack of availability of the 

design of the piping network at the stage of the design of the 

production facility, it is better to keep them out of the simulation model. 

• The real factory has production and flow rates with a variance. The 

operators have the task to adjust the valves and monitor the equipment 

to keep the production rate as close as possible to an optimized rate. 

Optimized rate in this case means ‘optimized for the quality of the 

product’. The simulation models applied a constant flow rate per recipe 

and this provided sufficient insight into the overall production process. 

• The production process has a slowly increasing rate during the startup 

of the process for a certain recipe. The production of goods during this 

period of time is kept out of scope, only the quantity produced during 

stable running of the production is considered. The startup and the 

cleaning activities are represented by a fixed period of time that the 

equipment is not capable of producing. 

• Human resources are available and are not considered to be a 

bottleneck for the production process.  

• The performance indicators used in the simulation studies are sufficient 

for the scoping of the domain specific extension. 

• The generic concept of Arena tanks and flows is suited for the 

modeling of Nestlé production facilities.  

 

 The learning points of the simulation studies and the approved 

assumptions have been used by the simulation experts to further describe the 

scope and problem domain of the domain specific extension. Before the 

document that described these elements was presented to Nestlé, a 

workshop was organized to achieve further awareness and buy-in from 

Nestlé’s process engineers. In a workshop with 20 experts from the Nestlé 

Nutrition R&D center, Figure 8.1 was discussed. Some of these 20 experts 

had been involved in the initial simulation studies in 2004. In pairs of two the 

experts made adjustments to the drawings to point out experiments they 

would typically like to perform and what kind of feedback they expect from the 

simulation model to judge the suitability of the adjustments. 
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Figure 8.1: Example factory to trigger discussion on  

experiments and scope (Spruengli et al, 2005) 

 

 The results of the drawings were discussed with the full group. Spruengli et 

al (2005) describe the full listing of the identified experiments. Some example 

factors or variables of the experiments identified by the process engineers 

are: 

• Different quality levels of the fresh milk accepted by the trucks 

• Change the number of tanks for storage 

• Change the size of tanks 

• Change the rotation rate of the centrifuge 

• Different cleaning schemes of the centrifuge 

• Use of the skimmed milk storage, or direct flow towards evaporators 

• Change the maximum storage time of product in tanks 

• Recipes depending on evaporator production rates 
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• Using inline mixing before evaporator or even after storage in powder 

bins 

• Alignment of production scheme (and cleaning intervals) of evaporator 

with spray dryer 

• Dry powder storage in bins, totes or bags 

• Adapting the pack type settings of the filling machine 

• Varying the number of filling machines 

• Changing the production rate of filling machine 

 The process engineers typically followed the process of the production and 

identified the issues they are struggling with in each of the particular 

production departments. Spruengli et al (2005) have structured the types of 

experiments accordingly: 

• Experiments regarding number of equipment 

• Experiments regarding parameter settings of equipment 

• Experiments with process sequence and dependencies 

• Experiments with recipe and product scope 

• Experiments with planning and scheduling 

 The reporting that the process engineers expected could be structured 

according to the same lines, but it was important to notice that the priority of 

the performance indicators was in reverse order: 

• Quantity of product produced by the production facilities 

• Lead time of product in storage from first drop to empty storage 

• Production stoppages due to lack of product 

• Energy consumption for operating the factory 

• Fill rate of storage tanks 

• Utilization of equipment 

 Figure 8.1, which was used in the workshop to identify the experiments, 

resembles a small factory. Nevertheless, the experts in the workshop 

concluded that the experiments that they identified and the performance 

indicators that they claimed to be interested in were also applicable for larger 

factories. Whether a factory was producing 5 or 25 different recipes and 10 or 

150 different finished products results in differences for the complexity of the 

planning, but the questions that the factory management of large sites have 

are the same.  

The expertise of the process engineers resembled a broad overlap of 

areas within Nestlé production facilities. Some of the process engineers were 

mainly involved in the Nestlé Nutrition factories of the future, a greenfield 

concept with minimum intermediate storage and less dependency on fresh 

milk. Other process engineers were specialized in improving the production 

facilities of existing factories where they had to deal with a lot of existing 

equipment and processes. The combined knowledge provided a large list of 

experiments, with many overlaps (Spruengli et al, 2005). 
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8.3.2 Problem domain 

 The physical objects in the Nestlé production environments were mainly 

defined in the workshop with the process engineers to identify the scope in 

combination with the equipment for the initial simulation studies. The list of 

objects include milk intake station; fresh milk storage tank; centrifuging unit; 

inline mixing equipment; batch mixer; dissolver; evaporator; spray dryer; 

powder storage; powder filling machine; liquid filling machine; cleaning 

equipment. The objects were put in a hierarchy and the top of the hierarchy 

for all equipment, except for the cleaning equipment, is a piece of equipment 

that contain product (liquid or powder) that flows in and/or out. The most 

generic equipment in the top of the hierarchy are the storage silo or the 

powder bin. The full hierarchy of physical elements in Nestlé production 

facilities is described in Valentin et al (2005a). 

 The hierarchy of equipment could be extended much further than only the 

mentioned objects, but together with the process engineers of Nestlé it was 

decided to keep the following pieces of equipment out of scope of the object 

orientation: pipes, circuit stations, individual product addition mixers (e.g. 

inline sprayer for oil, honey or chocolate); storage tanks with specific 

functionalities, e.g. fermenters. The main argument was that if a system 

required this equipment to be included in the simulation model, the generic 

piece of equipment, i.e. a storage tank or a powder bin, can be used to 

represent these system elements with the addition of extra processes to 

represent the additional functionality to handle the product or recipe.  

 Nestlé organizes its factory according to a quantity of tonnage to be 

produced per recipe or per pack type. The equipment itself is not producing 

anything, unless an operator has an order to use the equipment to produce a 

certain quantity of a certain product according to a recipe configuration. The 

complexity of the system is therefore modeled by the processes of executing 

the order and not by the functionality of the equipment.  

 The processes consist of all the steps that need to be done to produce an 

order. The trigger for the process is an order coming from a production 

schedule or triggered by incoming trucks to deliver raw material that needs to 

be handled. The steps for an order to be performed are to select equipment to 

be used, claim equipment to avoid that several orders are mixed together, 

clean any remaining elements from the equipment from previous orders, fill 

the equipment with the product, stay in equipment as long as necessary to 

reach the desired quality, remove the product from equipment and possibly 

simultaneously evaporate some of the product, then release equipment for 

next order. The order might include several pieces of equipment in sequence 

to be executed, e.g. the example factory in Figure 8.1 had a sequence of 

centrifuging and evaporation, and an order might include parallel activities, 

e.g. the example factory in Figure 8.1 was active in parallel using the 

evaporator, inline mixing and spray dryer. 

 Figure 8.2, Figure 8.3 and Figure 8.4 show some alternative process flows 

used by Valentin et al (2005) to communicate with the process engineers of 
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Nestlé. Using these and other process flows the complexity and the individual 

sub-steps in the process flows have been identified. 

Intake raw

material

Store raw material

in silo

Produce raw

material to final

product

Fill final product in

SKU
Store SKU

 
Figure 8.2: Process decomposition of complete process in milk factory 

 

Truck arrives at

factory

Fill storage with
raw material from

truck

Empty truck

leaves factory

 
Figure 8.3: Process decomposition of milk intake process in Figure 8.2 

 

Select storage silo

for raw material

Wait until raw

material is

consumed for

production

Empty silo of raw

material for

production

 
Figure 8.4: Process decomposition of store raw milk process in Figure 

8.2 

 

8.3.3 Building blocks 

 The need for individual equipment and flexible process descriptions was 

realized by defining three sets of building blocks that together form the domain 

specific extension for Nestlé Nutrition production facilities. The three sets 

were: building blocks for equipment, building blocks for process descriptions 

and control logic, and building blocks with definitions of recipes and 

production plans.  

 The separation in three sets of simulation building blocks was a 

preparation for the experiments that based on Spruengli et al (2005) can be 

summarized: 

• Experiments regarding number of equipment and experiments 

regarding parameter settings of equipment are supported by the set of 

equipment building blocks. 

• Experiments with process sequence and dependencies are supported 

by the set of process building blocks and the experiments with recipe 

and product scope. 

• Experiments with planning and scheduling are supported by the 

definition building blocks. 

 The equipment building blocks were the elements identified in the 

workshop with the process engineers, but slightly more combined to reduce 

the set of building blocks. The key building block is the silo and in essence all 

equipment building blocks have been derived from this building block as 

already was defined by Valentin et al. (2005a) in the object hierarchy.  

 Figure 8.5 shows the physical interfaces that any type of equipment, 

whether a silo, an inline mixer or a spray dryer, encounters. These 
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interactions are handled by building block elements and the building block 

elements receive triggers from process building blocks which are shown in 

Figure 8.6. For example, the equipment ‘Silo’ has a building block element 

that generates triggers when the flow is stopped at the moment that nothing is 

entering or leaving the silo. The trigger is different if an incoming flow is 

stopped because the requested quantity is transferred or the maximum level 

of the silo is reached. 

EQUIPMENT

In flow

In flow

Out flow

Out flow

Drainage  
Figure 8.5: Example of physical interaction to a piece of equipment 

 

EQUIPMENT

claim/release
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claim/release
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flow in/out

Trigger
secondary process

Feedback claim /

release equipment

Feedback claim/

release valve

Trigger flow
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Trigger finished
secondary process

 
Figure 8.6: Logical interaction between piece of equipment and process 

description 

 The equipment will not perform any of the described activities of Figure 8.6 

via a process building block. Each of the process building blocks provides a 

specific trigger for a function of equipment. As a result the set of process 

building blocks consists of ‘claim equipment’, ‘release equipment’, ‘transfer 

flow’ and ‘clean equipment’. In addition some process building blocks have 

been defined to overrule the state of a piece of equipment, for example the 

process ‘assign level’ overrides the current level in a piece of equipment 
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(mainly silo) to a new value. The complete list of process building blocks can 

be found in Valentin et al (2005a).  

 The process building blocks are related to one or two pieces of equipment 

and focus on one activity. In the process descriptions defined in the problem 

domain (Figure 8.2), several processes are combined that can be observed in 

several factories, and that could help in reducing the complexity of the 

simulation model. Examples of these advanced processes are batch mixing, 

evaporating, and the selection process. These more advanced process 

building blocks link different pieces of equipment and different process steps 

as described in Figure 8.6. These advanced process building blocks have 

been identified, but due to time and budget constraints these were not 

detailed at the initial phase of the project. In 2007 the domain specific 

extension was stabilized and the budget was made available to extend the set 

of process building blocks with these advanced building blocks. Valentin et al 

(2007) describe the advanced process building blocks that primarily were a 

composition of the existing process building blocks with limited parameters. 

 The set of building block with its definitions for recipe and production 

schedule is mainly used to provide a standardized way of documenting the 

recipes and production schedules in the simulation model. The advantage is 

the ability to use the structure in the parameters of the process building blocks 

and standardize a user interface in an additional tool. The content of these 

definition building blocks is provided in Valentin et al (2007).  

8.3.4 Building block elements 

 The building blocks that contain product, such as silo, evaporator, spray 

dryer and centrifuge have a storage capacity and also contain physical 

building block elements to load or unload the product. These building block 

elements are called valves. The valves are necessary to enable processes to 

simultaneous handle in or out flows if it is permitted in the equipment. 

 The physical building block is composed out of physical and logical 

building block elements. The physical building block elements represent 

storage and incoming valves. The logical building block elements of the 

physical building block are the following: 

• Claim equipment => allocate the equipment for a specific order or 

recipe. 

• Release equipment => equipment is no longer in use. 

• Claim valve => allocate a valve for a product flow in or out of the 

equipment. 

• Release valve => earlier claimed valve is no longer in use. 

• Clean process => reset the state of the equipment after a certain time 

period has passed.  

• Statistics => collect data regarding quantity per recipe handled in 

equipment, time spent in a certain state (e.g. occupied or cleaning) and 

utilization of equipment, storage facility and available valves. 
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• Error generation => warning to model developer if equipment is asked 

to perform a process that cannot be performed due to its current state. 

For example an out flow while the storage does not have any content, a 

product flow in while the equipment is not claimed or a flow in for recipe 

X while the equipment is claimed to handle recipe Y. All these errors 

can be overridden with the parameters of the equipment to avoid that 

the simulation model stops for a permitted ‘error’. For example, recipe 

Y and X are different, but it is allowed to combine them together in the 

storage element. 

 The product containing building blocks also have building block elements 

that depend on the type of equipment. These building block elements have to 

do with the product handling of the equipment which is different for an 

evaporator or a centrifuge. The building block elements are: 

• flow in for quantity X => Enable product transfer into the storage 

element of the building block. This building block element does not 

apply for a truck offloading station. The batch mixer building block has 

a variant that handles different recipes before a state is provided to 

perform a flow out. The inline mixer building block has a building block 

element variant that enforces that the flow in is for several recipe 

ingredients simultaneously. 

• flow out for quantity Y => Enable product transfer out of the storage 

element of the building block. This building block element does not 

apply for a filling machine which produces SKUs at discrete time events 

and not a continuous flow. The batch mixer building block has a variant 

that checks whether the in-flow is finished. The evaporator, centrifuge 

and the spray dryer building blocks have a variant that also trigger the 

building block element ‘evaporize flow’. 

• evaporize flow => Enable a secondary flow for building block 

equipment such as spray dryer, centrifuge and evaporator. The 

secondary flow is always transported to a storage unit (variant applied 

for centrifuge), can be transported to a storage unit (variant applied for 

spray dryer) or is lost (variant applied for evaporator). 

 The building block equipment is kept simple, therefore each piece of 

equipment has only one building block element per physical functionality that 

it represents. No alternative building block elements are defined. In fact, most 

of the building block elements that are standard in each building block (e.g. 

claim equipment, release equipment and clean process) are exactly the same 

for all equipment building blocks. In the design of the building block elements 

the assumption is made that if a system element requires a representation 

that is not provided by the building block that the model developer should 

handle this with the capabilities of the process building blocks. 

 The process building blocks also have building block elements that are 

standard for each building block and building block elements that vary 

depending on the process building block. Each process building block 
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consists of at least three building block elements, which are standard in all 

process building blocks: 

• receive order => order enters the process building block and is 

registered to enable reporting and progress monitoring. 

• depart order => order departs the process building block and 

monitoring of time and number orders handled is updated. 

• statistics of order => report on the status of the process building block, 

like number orders still to be handled, number orders handled in total 

and processing time of orders.  

 The process building block has one or more building block elements that 

are activated between the building block elements ‘receive order’ and ‘depart 

order’. The building block elements between the ‘receive order’ and ‘depart 

order’ are comparable. The building block element of the process building 

block gives a ‘go’ to the selected equipment to execute the related function(s) 

of the equipment building block and its related building block element(s). After 

the process within the equipment building block element is finished the order 

returns to the process specific building block element for a wrap up process. 

Finally the order executes the ‘depart order’ building block elements and 

departs the process building block.  

 Figure 8.7 shows the generic sequence in a process building block. A 

typical example of this generic sequence is the process building block ‘Claim 

equipment’. The process specific building block element provides the order 

with the correct parameters to claim the equipment, i.e. equipment to be 

claimed, recipe to refer to and a code for routing (in this example code 1.01). 

The order will execute the logic of the building block element related to code 

1.01, i.e. building block element ‘Claim equipment’. Once the code of the 

building block element within the equipment building block is fully performed 

the order will be returned to the process specific building block element of the 

process building block ‘Claim equipment’. Here some statistics of the claim 

process will be registered and then the order will depart the process building 

block via the ‘depart order’ building block element. 
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Figure 8.7: Sequence of processes in Process building block 

 Figure 8.7 and the example of the process building block ‘Claim 

equipment’ are simple process building blocks. More complex process 

building blocks contain several process specific building block elements that 

are handled sequential and/or parallel by the order. The process building 

block ‘Transfer’ is an example of a complex process building block that 

triggers processes to be performed sequential and parallel. Sequential the 

order prepares the physical equipment of the source of the product to be able 

to send the product (call the building block element ‘claim valve’ with code 

1.10a) followed by preparing the physical equipment of the target of the 

product to be able to receive the product (call the building block element 

‘claim valve’ with code 1.10b). Parallel activities are the triggers of the process 

building block for the physical flow between the source and the target via the 

‘flow out’ and the ‘flow in’ building block elements of the equipment building 

blocks. 

 

8.4 Implementation 

8.4.1 Extension of simulation environment 

 The domain specific extension for Nestlé has been developed in the 

generic simulation environment Arena. The main reason is the fact that Arena 

is delivered by Rockwell Software, a company that is also responsible for a 

majority of the factory control software used by Nestlé. Nestlé thereby has the 

option to further integrate the simulation models with the factory control 

software by selecting the simulation environment that is provided by the same 

company.  

 The building blocks that are part of the Nestlé domain specific extension 

are divided into three sets. Figure 8.8 shows a part of the set of equipment 

building blocks and Figure 8.10 shows a part of the set of the process building 

blocks. The third set of building blocks relate to definitions and settings such 

as recipes and package types. Figure 8.8 and Figure 8.10 are not the initially 
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defined sets of building blocks, but they represent a part of the sets that were 

available in 2007. The set of equipment was initially developed for Nestlé 

Nutrition factories, and then extended with building blocks representing 

equipment used specifically in pet food factories (e.g. PetfoodMixer), coffee 

factories (e.g. Roaster) and ice cream and yoghurt factories (e.g. 

IceCreamFiller). These new building blocks follow the same principles 

described in Figure 8.5 and Figure 8.6. For example, the ‘Roaster’ building 

block contains all the same building block elements as the ‘Silo’ building 

block, except for determination of dedicated coffee process ‘aging’ in the 

roaster equipment.  

 Each of the equipment building blocks has a different visual representation 

that appears when the building block is instantiated in the simulation model. 

Figure 8.9 provides the example of the visual representation of the ‘Silo’ 

equipment building block. The bar inside the silo shows the relative filling 

grade of the storage building block element, the arrow shows the current flow 

direction (outgoing) and the numbers at the bottom give insight in the state of 

the building block regarding the current recipe, order and use. 

 

 
Figure 8.8: Part of set of equipment building blocks of Nestlé domain 

specific extension (Valentin, 2007) 
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Figure 8.9: Visual representation of equipment building block 'Silo' 

during simulation run 

 

 The set of process building blocks was extended by performing projects in 

other environments than Nestlé’s Nutrition sector. Process building blocks 

such as ‘Claim equipment’ and ‘Filling process’ are used in simulation models 

for all domains. In addition some processes were identified that are specific 

for domains at Nestlé. For example, the process building blocks 

‘PetfoodExtrusionProcess’ and ‘PetfoodMixProcess’ are specific for controlling 

the equipment building blocks ‘Extruder’ and ‘PetfoodMixer’, both of which are 

only applicable to pet food factories. 

  

 
Figure 8.10: Part of set of process building blocks of Nestlé domain 

specific extension (Valentin, 2007) 

 The initial design of the equipment building blocks included a hierarchy 

and inheritance structure. Arena does not allow these kinds of structuring and 

Arena also does not allow instantiation of building block elements as separate 

modules within a building block. The building block elements are therefore 

completely implemented within the building block and the user interface for 

parameter settings and visualization of the state of the building block element 

is an integral part of the user interface and visualization of the building block. 

The development of the physical building blocks was performed by first 
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implementing the ‘Silo’ building block with all its building block elements and 

then duplicating this building block to represent the other building blocks of 

Nestlé Nutrition, e.g. ‘evaporator’, ‘extruder’, ‘centrifuge’ and ‘in-line mixer’. In 

the same way the set of equipment building blocks was extended for the 

representation of system elements of pet food, coffee and ice cream.  

 Figure 8.7 and the explanation around the process building blocks and 

their building block elements already described the use of coded triggers for 

building block elements of the equipment building blocks. Within Arena this is 

technically realized by defining unique stations for the equipment building 

blocks, followed by a decision tree that indicates which of the codes of a 

building block element has to be executed, similar to the routing mechanism 

used for Supply Chains (see chapter 6).  

 The applied design principle was to keep the equipment building blocks as 

simple as possible. This also included the availability of data of the equipment 

building block that enabled representation of its state. The applied rule of 

thumb was that all the information that an operator can see at his/her screens 

to make decisions regarding the process should also be available to the 

process building blocks in the simulation model. Therefore, most of the data 

regarding the state of an equipment building block were made public. Arena 

has a special tool for easily identifying the correct pointer to a data reference 

of a piece of equipment, called the ‘Expression builder’. Figure 8.11 shows an 

example of the expression builder used to identify the data reference of the 

current recipe handled in a silo building block.  

 
Figure 8.11: Expression builder for reference of building block 
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The Nestlé process building blocks interact with the equipment building 

blocks and evaluate their state to make decisions, while the Arena generic 

modules were used for further evaluation and handling of the entities. For 

example, in Figure 8.12 we can see the process building blocks for selecting 

equipment. These building blocks use the set of PetFoodMixer building blocks 

and search for a PetFoodMixer that is not in use. Additionally, an Assign and 

Delay module of the generic simulation environment Arena were used to keep 

track of information in the system and schedule an event to select another 

mixer or the same mixer again. 

 
Figure 8.12: Mixture of building block processes and basic Arena 

modules in simulation model of pet food factory 

 The use of generic model constructs of the simulation environment Arena 

is also applied for exception handling when the simulation model should not 

give a user error, but handle the process accordingly. An example is a transfer 

from a source to a target that will trigger an error when the target is full and 

cannot handle any more quantity (see explanation underneath Figure 8.7). In 

the user interface of the process building block ‘Transfer’ the model developer 

has the option to stop the error from happening, and trigger a specific process 

in case the error occurs. The correct handling of the process of a full target 

destination is different in every factory, and even within factories the same 

trigger is handled in different ways depending on the state of the factory. For 

example, a trigger that a silo is full in a pet food factory in the UK can mean 

that the production is stopped, or if 95% of an order is completed it will 

indicate a need to start preparing the next order in a new silo. This variety of 

factory specific requirements cannot be implemented into building blocks of a 

domain specific extension, because the set of building blocks would grow 

exponentially with every new project. The concept we applied is shown in 

Figure 5.6 and as part of an actual simulation model of a Nestlé system in 

Figure 8.13. 
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Figure 8.13: Example simulation code how to handle  

unexpected stop of flow 

 

8.4.2 Additional tools 

 The domain specific extension for Nestlé’s production systems is extended 

with an additional tool to support the generation, data entry and analysis of 

the outcome of the simulation models. The additional tool is an interface that 

easily can be configured to match a specific simulation model. The tool 

contains links to the user interfaces of the simulation building blocks that are 

instantiated in the simulation model for the equipment and the definitions of 

recipes and production plans. The tool further contains a mechanism to import 

the reports from the simulation building blocks and combine the different 

details into one overall sheet easily providing answers to the main question 

whether the production plan could be completely produced and if not, what 

the problem is. The tool was easily adjustable for a specific project. The tool 

was developed as an Excel interface that represents data for one scenario 

and as a Scenario Navigator (Gast et al, 2008) database that represents data 

from the scenarios analyzed during the simulation model run.  
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Figure 8.14: Input examples via Scenario Navigator for simulation model  

 

 
Figure 8.15: Overview performance indicators via Scenario Navigator 

 The simulation model was interfaced via Scenario Navigator for input 

parameters, the collection of results and to trigger a planning algorithm. Input 

data for orders and availability of packing lines is shown in Figure 8.14. On the 

left hand side a list of scenarios is shown, each with its own data set of a 

performed or planned simulation. The key performance indicators of the 

selected scenario are shown in Figure 8.15. More detailed statistics can be 

viewed and evaluated by pressing buttons at the bottom of the screen. These 
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performance indicators are also available in reports and can be used to 

compare the results of different scenarios.  

 

 

 
Figure 8.16: Extension to define production plan for simulation 

experiments  

 The processes in the simulation models are triggered by a production plan. 

In the simulation studies it turned out to be quite a challenge to define a valid 

production plan for a factory that is not yet in operation. In the simulation 

studies, every time the same evaluations were made to define the production 

planning, therefore an initial attempt has been made for the pet food factory in 

Hungary to define a production planning system based on the production 

requirements and the factory capability as defined in the simulation model of 

the factory. Based on the initial tool, called a ‘plan-generator’, a VisualBasic 

program has been made as an extension to Scenario Navigator that is 

capable of defining a production plan for a Nestlé factory based on data entry 

of the simulation experiment. The integration of the ‘plan-generator’ with 

Scenario Navigator enables the production plan to be used directly into the 

simulation experiment and also to enable easy experimentation with 

alternative production plans.  

 The custom made extension is shown in Figure 8.16 with the example of a 

pet food factory in the UK. This application evaluates the orders allocated to 

packing lines and defines a sub optimal plan for the extruders to feed the 

packing lines. A planner can manually improve the planning for the extruders 
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after a simulation run and, via several iterations, improve the extruder plan 

and reduce stock outs for the filling lines. 

 

8.4.3 Support to users 

 The complete domain specific extension for Nestlé is much more than the 

three sets of building blocks discussed above. The domain specific extension 

was provided with extensive documentation for training and self-learning. A 

total of 75 small simulation models were developed to show the specific 

behavior of building blocks and combinations of building blocks. These range 

from a simulation model that shows how a quantity is transferred from one silo 

to another silo using the ‘Transfer’ process building block, to more complex 

situations like the selection of a silo to fill and empty the extruder process in a 

pet food factory. These small simulation models were used for several 

reasons: one, to test whether the building block is working correctly; two, to 

demonstrate that the building block is working; three, to demonstrate the 

possible use of building blocks in simulation models; four, as a teaching cases 

to introduce how to use the building blocks; and five, to test whether the 

building block still provides the agreed behavior after changes or extensions 

have been made to the building block or the set of building blocks. 

 The small simulation models have been described in the user manual of 

the Nestlé domain specific extension (Systems Navigator, 2007) together with 

the concept of building blocks and the user interface of all the building blocks 

for Nestlé. Version 2 (Systems Navigator, 2007) contains all the simulation 

building blocks and not only the initial sets for Nestlé Nutrition. The second 

version of the user manual has been part of a training package provided to 13 

Nestlé process engineers from different domains including background 

information, example simulation models and assignments based on the small 

simulation models.  

 

8.5 Use of building block guidelines 

 The previous case study described in chapter 7 aimed at quick model 

development with a very high level of abstraction. Realism and accuracy was 

not necessary in these simulation models and no adjustments were needed 

for the simulation building blocks of the domain specific extension to support 

different simulation studies. The requirements and the planned use by Nestlé 

is completely the opposite. The simulation models should contain a high level 

of accuracy and the simulation models should contain flexible logic, yet 

capable of handling complex decisions in the process of the system. Further 

the domain specific extension and its additional tools should be ready to be 

extended in any possible way: 

• New infrastructure => new pieces of equipment within Nestlé Nutrition, 

but also support for equipment of other Nestlé domains, e.g. coffee, pet 

food and ice cream. 
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• New processes => alternative ways of operating a factory by reducing 

intermediate storage, producing new types of products, producing 

according to different rules or regulations and producing products 

completely different than milk powder, e.g. pet food, coffee capsules or 

yoghurt ice cream. 

• Enhanced model development => Nestlé management assumed that 

every simulation model would be faster thanks to the gained 

experience, but more important due to the improvement of the set of 

building blocks and the additional tools. 

• Enhanced model statistics => the performance indicator requirements 

of the domain specific extension were based on the initial simulation 

models for Nestlé Nutrition factories. Especially the simulation models 

concerning the pet food production process brought in new 

requirements to be able to analyze the reasons why the production 

process got stuck before the end of the complete production cycle. 

• More model use => the simulation models were not only for greenfield 

systems, but also to improve existing systems and to provide 

suggestions for operational planning optimizations. 

• New users => within the Nestlé Nutrition research and development 

center a process engineer stays only a couple of years and participates 

in several projects of which only one or two include simulation 

modeling. Therefore, new process engineers get involved in the model 

development. However, the analysts only look at one simulation model 

as they are only interested to analyze the results of their own factory. 

Therefore every new simulation model that is developed is analyzed 

together with a new group of experts. 

• Enhance user friendliness => experiences gained in the model 

development of a simulation model and the analyses of the results via 

the additional tools had to lead to improvements of the user 

friendliness. For example, initially it was decided not to develop 

advanced process building blocks, in 2007 these advanced process 

building blocks have nevertheless been developed to replace the 

complete equipment selection by one simple process building block.  

 

Guidelines related to self-contained building blocks 

Simulation Building Block Guideline 1: data belonging to a building block 

should not be accessed by other building blocks directly, but only via defined 

interfaces. 

 The interface definition has been widened for the data availability of the 

equipment building blocks. Figure 8.11 shows how data could be retrieved via 

variables that are referred to anywhere in the simulation model logic, but the 

data is provided via a specific definition within the building block. Status data 

was thus available for the model developer outside the building block, 

because it was decided that the data exchange was open. 
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 On the other hand, data that was not provided to the model developer via 

the Arena Expression Builder was not available outside the simulation building 

block. As a result, most of the statistics of process building blocks or statistics 

regarding production blockades were unknown for the inexperienced model 

developer until they were produced in the standardized reports of Scenario 

Navigator. On purpose we mention ‘inexperienced model developer’, because 

within the generic simulation environment Arena no data can be hidden, thus 

anything can be obtained by experienced users who are familiar with the inner 

working of the simulation building block. 

 

Simulation Building Block Guideline 2: a simulation building block consists of a 

core and building block elements to represent functions and services. 

 The equipment building block and the process building block contain a lot 

of building block elements, which are structured and reused among the 

different building blocks. See the description in section 8.3.4. 

 

Simulation Building Block Guideline 3: data belonging to a building block 

element can be accessed by other building blocks elements of that building 

block without using the interfaces of the simulation building block. 

 The implementation of the building block elements in Arena is included in 

the building blocks, whereby the boundaries of the building block element are 

set by the developer of the building block with some color boxes and texts. In 

the logic itself is not possible to distinguish building block elements. State 

parameters that are defined within one building block element, for example 

the state of a valve in the physical equipment building block element, can be 

evaluated by all logical elements in the building block without using further 

interfaces. 

 

Guidelines related to interoperable of building blocks 

Simulation Building Block Guideline 4: system elements that appear in 

different variants and processes in a system are represented by a family of 

building blocks and building block elements. 

 The clearest use of families in the domain specific extension for Nestlé 

production facilities is the use of three different sets: equipment, processes 

and definitions. The set of equipment building blocks can be separated into 

two families: the equipment that contain product (liquid or powder, or coffee, 

or pet food, or ice cream) and the equipment that is used to clean, for 

example the ‘cleaning station’, the ‘tote-cleaner’ or the ‘truck cleaning station’.  

 The process building blocks are all part of the same family that apply the 

same base structure as demonstrated at Figure 8.6. This family can be 

divided in sub-families:  
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• logic process building blocks => process building blocks applicable for 

logic process steps such as ‘Claim Equipment’, ‘Release Equipment’ or 

‘Select Equipment’. 

• execute process building blocks => process building blocks that 

execute a process with one or more pieces of equipment, for example 

‘Transfer’, ‘Clean equipment’ or ‘Fill process’. 

• specialized execute process building blocks => process building blocks 

developed to perform specialized processes with specific equipment of 

Nestlé Nutrition or Nestlé Pet food. For example, ‘Evaporate process’, 

‘Pet food mix process’ and ‘Inline mix process’. 

 

Simulation Building Block Guideline 5: building blocks are of different types, 

most common to have building blocks for infrastructure and for control. 

 The infrastructure and control guideline has been applied as way of 

working from the start of the project. The concept of simple equipment 

controlled by detailed and advanced processes has been one of the points 

that were verified with the initial simulation studies. This concept has been 

applied in the design of the building blocks since the initial simulation studies, 

resulting in the three sets of building blocks; equipment, processes and 

definition. 

 The control within the simulation models has been further improved by 

supporting the process building blocks with the full availability of the generic 

modules of the Arena simulation environment.  

 

Simulation Building Block Guideline 6: complex control mechanisms should be 

represented using control building blocks linked together to represent a flow. 

 The need for this guideline already appeared in the discussion of the 

experiments with the process engineers (Spruengli et al, 2005). The process 

building blocks have one entry and two or more exits. The main aim of these 

connectors is to put the process building blocks in sequence and enable an 

order to be executed following the defined sequence. An example is shown in 

Figure 8.12 where several process building blocks are used in sequence to 

select which equipment to use regarding a mixing process.  

 

Simulation Building Block Guideline 7: building blocks should be aware of 

each other’s existence within a range of applicability. 

 The references to equipment between process building blocks and 

equipment building blocks is achieved in two different ways, both to be 

defined in the parameters of the process building blocks as shown in Figure 

8.17. The left user interface shown in Figure 8.17 represents a fixed link 

between the process building block and the equipment by referring to the 

name of the equipment selected from a pull down list with all equipment 

instantiated in the simulation model. Every entity that enters this process 
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building block will be triggered to perform a logic for a secondary process 

same equipment building block, in this example ‘Filling_Can_1’. 

 

  
Figure 8.17: User interfaces of process building block 'Claim equipment' 

(left=reference via fix name; right=reference via pointer) 

 

 The right user interface shown in Figure 8.17 uses a dynamic link where 

an order previously has received an attribute that contains a pointer to an 

equipment building block. Within the process block the order will be sent to 

execute the process to a previously assigned equipment building block of 

which the reference is stored in the pointer ‘Point_PackingLine’. The pointer 

could have been set in several ways, most common is the use of the process 

building block ‘Assign pointer’ in which a specific equipment is allocated to the 

pointer, or the use of the process building block ‘Select Equipment’ in which a 

suited piece of equipment is allocated based on conditions and a set of 

equipment. 

 

Guidelines related to replaceable unit of building blocks 

Simulation Building Block Guideline 8: extension of a domain specific 

extension can be achieved by introducing new building block elements for 

existing simulation building blocks. 

 The initial set of simulation building blocks for equipment focused only on 

Nestlé Nutrition. New building blocks that have been developed are for 

example the ‘extruder’, ‘grinder’ and ‘pet food mixer’ for pet food factories, the 

‘roaster’ for coffee factories and the ‘ice cream filler’ for ice cream factories. 

The new building blocks all have been duplicates of existing building blocks. 

For example, the ‘extruder’ is based on the ‘evaporator’ building block, with 

three adjusted building block elements. In case of the extruder it has been the 

ability to have multiple in-flows and the processing time before the out-flow 

could start.  

 The new process building blocks have been composed in the same way by 

copying existing process building blocks and adjusting the process specific 

building block or by adding more parallel or simultaneous process specific 

building blocks. 
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Simulation Building Block Guideline 9: simulation building blocks and building 

block elements of the same family follow the same interface requirements. 

 All equipment building blocks part of the family of ‘product containing’ have 

the same codes for calling building block elements. At page 230 an example 

is described of the ‘claim equipment’ building block element with code 1.01. 

Other building block element interface codes that are used are code 1.02 for 

the building block element ‘claim regulator’ and code 1.04 for building block 

element ‘flow in’. 

 

Guidelines related to encapsulating internal structure of building blocks 

Simulation Building Block Guideline 10: simulation building blocks hide inner 

working. 

 In simulation building blocks developed in Arena only the visual interface 

and the user interface are accessible for the model developer. The model 

developer can adjust the visual interface and set parameters in the user 

interface, but the model developer is not capable of viewing or adjusting the 

inner working of building blocks. This was a given after the selection of Arena 

as the generic simulation environment by Nestlé. 

 

Simulation Building Block Guideline 11: advanced model developers have to 

be able to unhide the inner logic and see how the processes and attributes 

are implemented. 

 This is not possible for model developers as described in Simulation 

Building Block Guideline 10, due to the selection of Arena. As a workaround 

the process building blocks have the ability to be linked to generic model 

constructs of Arena via the normal connectors (Figure 8.12) or for specific 

connectors used in exception processes (Figure 8.13).  

 Mainly the second option allows experts in Arena model development to 

change the state of equipment via generic model constructs and thus enable 

the process to be continued. In the support material simple examples are 

provided for the use of these exception codes. The simulation models 

developed by the experts of Systems Navigator show advanced use to enable 

the production processes to continue as described by the factory analysts. 

 

Guidelines related to providing useful services or functionality of building 

blocks 

Simulation Building Block Guideline 12: system elements should be 

represented by building block elements that can be extended with custom 

instantiations of model constructs of a generic simulation environment. 

 Figure 8.13 shows how the specific process building block element of the 

process building block ‘Transfer’ is extended with extra decision logic to 

handle an early stoppage of the transfer. Similar capabilities are applied to the 
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process building blocks ‘inline mix process’, the ‘extruder process’ and ‘truck 

offloading process’. 

 

Simulation Building Block Guideline 13: a building block can connect to model 

constructs of a generic simulation environment. 

 The process building blocks all contain standard Arena connectors to 

enable a process to be composed consisting of Nestlé process building blocks 

and Arena generic model constructs, for example Figure 8.12. The main 

reason is that the Nestlé simulation models need to contain quite some 

decision logic by applying reuse. Functionalities available in the generic model 

constructs of Arena do not need to be provided in Nestlé specific process 

building blocks. Therefore the simulation models of Nestlé systems commonly 

will be composed partially with Arena generic model constructs such as 

‘Assign’, ‘Decide’, ‘Dispose’ and ‘Delay’. 

 

Guidelines related to precisely defined interfaces for building blocks 

Simulation Building Block Guideline 14: the model developer has to adjust the 

parameters of a simulation building block via a user interface. 

 This guideline has been achieved by the development of an Excel template 

and a Scenario Navigator start database described in section 8.4 at page 235. 

Both the template of Excel and the start database of Scenario Navigator have 

been parameterized for several simulation studies to enable factory analyst to 

enter the data for the experiment and view the results of the performed 

experiment (Excel) or experiments (Scenario Navigator).  

 

Simulation Building Block Guideline 15: use of domain terminology in the user 

interface provides insight in the suitability of a building block for a certain 

purpose and the meaning of its parameters. 

 The suitability of the equipment building blocks was very clear for the 

Nestlé process engineers as they recognize the system element from its 

representation in the set of building blocks (Figure 8.8) and its visual 

representation in the simulation model (Figure 8.9).  

 The decision which process building block was to be used was more 

difficult for the model developers, as this required also a mentality change 

towards process preparation. The main example was the need to use the 

process building block ‘Claim equipment’ to enable the use of a piece of 

equipment for an order. The model developers have mainly been introduced 

to this concept via their training and through the error messages they received 

when they forgot a process step. Figure 8.18 shows an example of an error 

message that a model developer receives during run time because the 

equipment ‘Skimmed milk Silo 2’ has not been claimed to execute an order 

triggered by the process building block instantiated in the simulation model 

with the name ‘Transfer Milk’. 
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Figure 8.18: Error provided to support model developers in 

understanding model logic. 

 

Simulation Building Block Guideline 16: parameters in a user interface of a 

simulation building block have to be checked for validity of the values. 

 Checks for the parameters settings are mainly carried out for the values of 

the equipment building blocks. Examples are the checks on storage size and 

the maximum rate of a product flow via a valve which both should be real 

numbers larger than zero. Most parameters of the process building blocks are 

composed expressions based on attributes or references to the recipe 

configuration. Therefore, the checks whether the entered data is valid cannot 

be performed in the parameter setting of the user interface, but has to be 

verified during the execution of the simulation model.  

 

Simulation Building Block Guideline 17: parameters in a user interface of a 

simulation building block should have default values whenever possible. 

 The parameters in the equipment and process building blocks all have 

predefined values. The name of the building block is automatically defined, as 

is the identification of the valve and a default pointer to a piece of equipment. 

The equipment parameters like storage quantity and flow rate of the valves 

are also set with default values, but these are based on the initial simulation 

studies performed for Nestlé Nutrition. The values therefore are not the same 

for other facilities within the Nutrition department, and even less for facilities 

for ice cream, coffee or pet food.  

 Providing initial values mainly turned out to be useful for the small example 

simulation models, but for the real simulation studies, the values were invalid. 

Using the configuration of the Excel or Systems Navigator interface the initial 

parameter settings in the simulation model were overruled by values 

appropriate for the system to be represented. 

 

Simulation Building Block Guideline 18: The user interface of a simulation 

building block should provide support for the model developer. 

 The texts in the user interface have been chosen to reflect as much as 

possible the terminology applicable within Nestlé, but in some cases it turned 

out to be difficult to have a common term that reflects its purpose for process 

engineers of Nestlé Nutrition as well as process engineers of the coffee, ice 

cream and pet food departments. In equipment specific for a certain 



8.5 Use of building block guidelines  

246 

department, for example the ‘Pet food mixer’, the terminology has been 

agreed with the specific process engineers.  

 The main support for the user interface has been provided via the user 

manual (Valentin et al 2007). In this document each simulation building block 

is described with its user interface and for each parameter an explanation is 

given that matches the terminology of the domain. Whenever necessary, a 

specific explanation of a parameter is provided for multiple domains. 

 

Simulation Building Block Guideline 19: The user interface of a simulation 

building block can be used by model developers to select building block 

elements and set their parameters. 

 The building blocks of the Nestlé domain specific extension do not have 

the opportunity to have their building block elements replaced. The equipment 

building blocks are dedicated to a specific equipment and therefore replacing 

the building block element would mean to replace the physical building block 

(for example replace a evaporator by a spray dryer in a Nestlé Nutrition 

production facility).  

 The process building blocks consist of simple and more advanced building 

blocks. If the building block elements of the advanced building blocks do not 

match, then the advanced building block should be replaced by a combination 

of simple process building blocks with Arena generic model constructs.  

 

Simulation Building Block Guideline 20: a simulation building block has a 

defined interface that receives triggers, requests, entities, or events from other 

simulation building blocks in the simulation model and redistributes these 

internally. 

 The equipment building block uses the code determined by the process 

building block for the internal routing. The concept is similar as the routing 

mechanism used for supply chains (see chapter 6). The routing within the 

process building block is described in Figure 8.6, and an entity does not need 

a mechanism to redistribute the triggers internally in the process building 

block, because a sequence is used in combination with unique return labels. 

 

Simulation Building Block Guideline 21: the interface of a simulation building 

block contains evaluations of the state of the trigger and the building block to 

determine whether the building block can handle the trigger. 

 Figure 8.18 is the typical example of an error message that is provided to 

the model developer if an equipment building block is triggered to perform an 

activity that does not match with its state. Important parts of the error 

message are the name of the process building block where the trigger initiates 

and the name of the equipment building block where the error occurs. This 

helps the model developer in identifying whether the mistake is made in the 

process building block and points to the wrong equipment, or that the process 
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for the order is incomplete and he/she should first update the state of the 

equipment building block.  

 Similar error messages as in Figure 8.18 are provided if a process building 

block is demanding an activity that an equipment building block cannot 

perform. It is very unlikely for the model developer to receive these kinds of 

error messages, because almost all equipment building blocks have all the 

building block elements and can thus handle all triggers from process building 

blocks. An exception is if a trigger intended for a product containing building 

block is sent by accident to a building block of the family of cleaning building 

blocks.   

 

Simulation Building Block Guideline 22: a simulation building block contains 

pictures, numbers and other elements to support visualization of the state and 

key performance indicators during simulation run. 

 The visualization of an example equipment building block is provided in 

Figure 8.9. This screenshot shows the state of the equipment with some of its 

key performance indicators. The visualization of this building block is used for 

validating the simulation model, and for demonstrating the process to the 

involved stakeholders before diving into the details of the reports provided in 

Excel or Scenario Navigator. 

  

8.6 Simulation studies performed 

 The simulation building blocks and building block elements were applied in 

6 different projects at Nestlé Nutrition factories worldwide in the period of 

2005-2007. Simultaneously the set of building blocks were extended to handle 

the simulation of processes and equipment at Nestlé factories for pet food, ice 

cream, coffee and soups. The extended domain specific extension for Nestlé 

factories was then applied in another 9 projects worldwide in 2006 and 2007. 

Further, over the period of three years a total of 28 process engineers were 

trained to use the capabilities and details of the Nestlé domain extension to 

analyze and develop simulations for the different Nestlé departments. 

 Two out of the 15 simulation projects were selected as examples. The first 

one is an existing Nutrition factory that is extended with new equipment. This 

simulation study was one of the first to be executed with the domain specific 

extension. The second example is a huge pet food factory in the UK that has 

received enormous investments over the previous years, but evaluation of the 

results show that the business case of these investments is not achieved. Via 

minor investments and improvements of the weekly production plan the 

expected production quantities should be achieved. The pet food factory study 

was one of the latest of the 15 studies using the domain specific extension 

release of mid-2007, which included the advanced Scenario Navigator 

interfacing. The other simulation studies performed for Nestlé using the 

domain specific extension are briefly described at the end of this section. 

 



8.6 Simulation studies performed  

248 

8.6.1 Simulation study Milk factory in India – Roadmap investment coming 

years 

 In 2005 a Nestlé factory in India was in the process of extending its group 

of farmers who provide fresh milk. The milk gathered from the farmers is used 

to make coffee milk powder. The factory management foresees that 

transferring a wet mixture into dry powder will be challenging for the 

evaporation and drying process. More fresh milk will increase the potential 

capacity of the factory, but fresh milk needs to be standardized and handled 

within a specific time to maintain freshness and quality.  

 The management of the factory identified a set of potential investments 

that might prevent a bottleneck situation during drying and evaporation, but it 

did not know which of these investments will provide the best result for factory 

performance. More important, management did not know whether investment 

in, for example, an extra evaporator would not cause problems in another part 

of the factory, for example with the storage of skimmed milk, and thus only 

move the bottleneck within the production system. 

 A simulation study needed to be performed to evaluate the effect of 

different investments in the factories and to provide insight into a combination 

of possible results. Equipment must be included and excluded, and provided 

at different rates and configurations in the simulation models to allow the 

process engineers to determine the effects of seasonal changes in milk 

production and of shutting down parts of the production system to allow for 

maintenance. 

Truck handling Storage fresh 
milk

Centrifuge Storage 
standardized milk

Evaporation & 
Dry blowing

Thermising
fresh milk  

Figure 8.19: Overview equipment in simulation of Nestlé Nutrition 
factory 

 The scope of the simulation model was from the intake of fresh milk using 

trucks to the production of dry powder stored in totes. In between processes 

include temporary storage, centrifuges, mixing of product via inline batching 

processes and predicted bottlenecks at evaporators and/or blow drying 

systems. The equipment in the nutrition factory is shown in Figure 8.19, while 

an overview of the equipment in the part of the factory used for storage of 

standardized milk during the simulation run is shown in Figure 8.20. 
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Figure 8.20: Silos for milk standardization in Nestlé Nutrition factory 

 

 The validation of the factory simulation model was performed together with 

the process engineers and operation managers of the Indian factory. These 

persons were given a detailed explanation of the different steps and details 

implemented in the simulation model. Data was gathered about an actual 

week, and the statistics of the simulation model were used to make 

predictions for the number of trucks required, the levels of products in tanks 

and silos, and to determine when activities would start and stop. These 

predictions were validated by the process engineers and, with some 

exceptions for the assumptions made with respect to trucks in the system, 

these predictions were correct.  

 The results of the simulation model are stored in an Excel interface. This 

interface contains all the data regarding utilization, line efficiency and 

production figures, similar to the data used by the factory management. Two 

examples of information represented in the Excel interface are shown in 

Figure 8.21 and Figure 8.22. The graph of the trucks in the system clearly 

shows the daily, repeating, process of trucks arriving in a limited time slot and 

waiting for the limited resources for handling the trucks. The graph of the tons 

of milk shows the quantity of stock at a given time for all different types of 

tanks, ranging from fresh milk just out of the truck to the intermediate storage 

for the evaporation process. The capacity in the factory and the irregularities 

in fresh milk delivery cause some production days where the factory is almost 

empty, while on other days there is up to 250 tons of milk in stock in the 

factory. 
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Figure 8.21: Number of trucks in factory for emptying and cleaning 

 

 
Figure 8.22: Tonnage of milk and semi products in factory 

 

 The first set of experiments was used to identify whether an increase in 

intake of fresh milk, i.e. more trucks coming per day, will result in a problem. 

The results of these experiments clearly showed that additional investments 

needed to be made in fresh milk storage to handle the available milk, and in 

increasing the production to avoid that milk stays too long in the system and 

needs to be thrown away. 

 Simulation experiments were performed to study the effects of variations to 

the evaporation activities. The variants could be entered simply by selecting 

an alternative in the Excel interface. In the simulation model this resulted in 

enabling and disabling all equipment that is no longer used or applicable for 

this particular situation. A part of the interface that refers to these settings is 

shown in Figure 8.23. As part of the verification process all the experiments 

were run once to identify the technical and conceptual correctness of the 

scenario. Batley (2006) claims to have performed over 150 different 

experiments within one week to identify the best solution and to define an 
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investment roadmap for the coming years. These experiments included 

selecting the scenario of use of spray dryers in combination with the need for 

storage capacity, product changes and recipe extensions in both the lean and 

the flush season. 

 

 
Figure 8.23: Interface to change way of evaporating per production line 

 

8.6.2 Simulation study Pet food factory in UK – Extension and operational 

use 

 A pet food factory in the UK received over the past 25 years several 

investments, including several new machines to produce dry pet food that 

deliver products to approximately 30 filling machines. However, space of the 

factory is limited and the internal transport and production lines have become 

extremely complex. An example of the routing issues, designed by one of the 

analysts of the factory, who called this a ‘simple flow’, is shown in Figure 8.24. 

 All the new investments have increased the production capacity of the 

plant, but a couple of the packaging lines still work at a low efficiency rate. 

Logging of the factory machine data showed that this low efficiency was 

caused by a lack of available components which are produced by extruders, 

or by a temporary lack of ability to transfer a product from storage bins to the 

packing lines. The planners and operators had several potential solutions for 

these problems, these are listed below: 

• The planners could try to make a better match between production of 

components at extruders and packing at filling lines.  

• The selection of the storage location of components could take into 

account the need to use the filling lines efficiently.  

• The mechanism used to select components and to blend them in 

temporary storage could be changed. 

• The planning of extruders and packing lines after issues arise could be 

adjusted. 
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Figure 8.24: Simple process flow and routing in pet food factory 

 

 The decisions that need to be made are complex and require a lot of 

information about the current workload at the factory to understand and model 

future activities. The planners and operators currently use rules of thumb to 

manage their system and make operational decisions; especially when 

making an optimal fitting plan. This takes time, but only makes sense if it is 

updated with data on the latest state of the factory. The idea was to produce a 

simulation model of the factory, link this to the planning and use it to represent 

possible future situations to determine how to execute future plans. The 
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results can be used to improve any plans, or even better, can be included in 

an optimization algorithm to give a perfect plan for the coming day(s). 

 

 
Figure 8.25: Part of storage available in pet food factory 

 The simulation model for the pet food factory has been instantiated using 

specific additional simulation building blocks. Figure 8.25 shows a part of the 

equipment definition of the simulation model, with at the top of the screenshot 

the specific pet food building blocks ‘Extruder’ to produce the components of 

dry pet food to be mixed in the boxes. 

 The verification of this simulation model was performed by evaluating, 

order by order, which equipment was used in which order and for what 

duration. Given the complex system interaction and equipment allocation 

these steps were done together with an analyst from the factory and this thus 

linked verification and validation. The validation was performed in more detail 

by the factory analyst via face validity checks. He performed simulation 

experiments using more planning rules and sets, until he found that something 

was not working as expected. He then described what he observed in the 

simulation model and what he expected and improvements were made to the 

simulation model, mainly the process logic of handling exceptions when a 
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storage silo was out of stock. This process was repeated until no differences 

were observed anymore. 

 The simulation model was used for different analyses in the factory. The 

simulation model has been used regularly to perform experiments with 

different sets of production plans and different data sets. The outcome of 

these regular experiments triggered the management of the factory to perform 

additional experiments with the simulation model. The alternatives performed 

with the simulation model included for example (Batley, 2006): 

• A new product mix for dog food 

• The effect of adding an additional package line 

• The use of premixing for a specific packing line 

• The advantage/disadvantage of extra storage capacity after final mixing 

for some products 

• The advantage/disadvantage of adding additional routing from extruder 

to storage bins 

 

8.6.3 Other simulation studies performed with domain specific extension 

 The list of the simulation studies underneath describes the factory 

environments where the domain specific extension was applied. At several of 

the facilities two simulation studies have been performed, one at the initial 

design and one in a later stage of the design phase when technological 

developments had triggered additional improvements. An example is the first 

case study of the new nutrition factory in the USA that has been modeled in 

2004 and in 2007 with a completely different design as the initially defined 

UHT5 process was not feasible. 

 New factory Nutrition in USA – At this factory UHT and dry powder 

products are produced using a total of over 60 recipes, via one production 

line. The challenge is when the recipe changes and new ingredients have to 

come online while still keeping the production line running fast enough to feed 

the packaging lines. The simulation model was developed by consultants at 

Rockwell Automation together with process engineers from Nestlé USA. The 

simulation model has an interface via Excel for data input. Performance 

indicators are imported via standard Arena reporting 

 New factory pet food in Eastern Europe – This new factory will start 

production with dry products and 4 packaging lines and the components will 

be imported. Two years after go-live the factory will be extended with a 

dedicated extruder and storage bins. The main question was whether 

sufficient storage bins were budgeted for given the different product mixes. 

The simulation model was used by process engineers from Nestlé Purina 

Europe to analysis, using an interface in Excel and a reduced version of the 

plan generator similar to the application developed for the pet food factory in 

the UK. 

                                             
5
 UHT = Ultra-high-temperature; a specific way of processing dairy products to lengthen the expiration date. 
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 Extension factory pet food in Eastern Europe – This factory produces dry 

products and will extend current production using 2 extruders with 2 new 

extruders, a doubled storage capacity and it will expand the number of 

packing lines. The main question was whether it is feasible to produce 

components for storage units depending on the final packing line, or whether 

investments are required for expensive routing and blending equipment to 

feed the packing lines. The experiments were performed by the process 

engineers of Nestlé Purina Europe, together with planners of the factory. It 

concluded that with different product mixes, there was no need for investment 

in expensive routing equipment. 

 Dimensioning new factory halal baby food – The production of halal baby 

food requires dedicated production lines, storage units and packing lines that 

confirm to halal requirements. A simulation model was developed to identify 

what size would be required for a dedicated factory for baby food. The space 

required would need to be enough for 10 weeks of storage before the 

products can be packed into boxes and cans. During this period the products 

need to remain in temperature controlled environments in totes (dedicated 

containers of approximately 2 m3). The simulation model and interface were 

defined in such a way that it could be used for current evaluation of the 

required space, and for operational planning evaluation of the current factory. 

This factory has been redesigned fully when the management had decided 

not to support production of halal and non-halal products in one facility. The 

simulation experiments could all be defined within the provided Excel 

interface. 

 Extension factory pet food in Latin America – A factory producing dry 

products is to be extended with 2 sets of new extruders and to introduce 

intermediate storage for single product blends. A set of extruders allows 

factories to mix products directly and leads these products directly to the 

packing lines. The disadvantage is that if the packing line gets stuck the 

extruder stops. The new extruder should be a high performance extruder that 

can produce one type of product at high speed. The individual components 

are stored in bins and transferred via blending routes to the packing lines at 

the moment that sufficient amounts of all the types of components are in 

storage. The question to be answered with the simulation model was how 

many bins would be required for this situation. The initial design contained 20 

bins, which were reduced after the simulation analysis performed by process 

engineers of the factory to only 14. A later design was also evaluated and this 

design also reduced the number of silos required. 

 New pro-biotic powder factory – The products made by Nutrition factories 

worldwide use a very small percentage of pro-biotic ingredients in their semi-

finished product. This powder will be produced by a new factory that, because 

of the high quality requirements, is fully closed and maximally automated to 

avoid contamination. Using the domain specific extension, a simulation model 

was made by a process engineer from Nestlé Nutrition to represent the 

processes and filling of products into bags for worldwide transport. This 
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simulation model was intended to be used in a later stage for planning support 

and therefore contained all the planning and process delays for scheduling of 

processes, and for cleaning and sterilization processes. The resulting 

simulation model produces an evaluation of a detailed plan and can provide 

all required performance indicators of interest to the Nestlé factory 

management.  

 Planning improvement at a milk powder factory Asia – a milk powder 

factory in Asia has for the last few years been marked as a high performance 

factory, because they have succeeded in getting a high efficiency from their 

packing lines. However, because the market for their milk powder has grown, 

improving the efficiency of their dry blowing equipment would further improve 

the performance of this factory. Technically one of their dry blowers should be 

able to increase its average rate of production by 35%. Recently a large 

storage warehouse has been brought into use where the overflow from the dry 

blower can be stored. A simulation model was developed to be used by the 

planning department of the factory to analyze how changes in planning could 

improve the efficiency of the factory and avoid products remaining too long in 

the storage space. This simulation model contains an Excel interface for data 

entry, configuration of the plan and output representation to evaluate the 

success of the plan. 

 Planning improvement of ice cream factory in Switzerland – Nestlé 

produces several high quality ice cream brands in a specific factory in 

Switzerland. This specialized factory has, due to the broad range of products, 

a lot of change over times. It also faces a lot of unavailability of their filling 

lines due to lack of half products ready to be mixed (Valentin, 2007). A 

simulation model and Scenario Navigator interface have been developed with 

the latest domain specific extension. The Scenario Navigator interface 

consisted of the VB-program to define a production plan and a small 

optimization engine to further improve the production plan that was produced 

according to several parameters. The result of the combined use of the 

interface and the simulation model to perform the experiments enabled the 

factory planners to standardize the planning process and reach a 25% 

increase in the factory throughput during their peak season. 

 New production line for soup in Germany factory – The soup production is 

very similar to the production of milk powders. A simulation model including a 

planning module has been developed like the simulation development for the 

milk factory in Asia. The model and the interface enabled the process 

engineers to evaluate their initial design and on beforehand exclude some of 

the design alternatives even before they developed the blueprint of the 

factory. The factory is currently being built according to the outcome of the 

simulation model and the factory management has the intention to use the 

simulation model to support the operational planning department once the 

production line is fully in use. 
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8.7 Observations during simulation studies  

 The first simulation study showed the usability of the domain specific 

extension for Nestlé factories. The study was a straightforward investment 

evaluation, and the experiments helped to support decision making on future 

extensions. The second simulation study at the pet food factory showed that 

the building blocks can be used for another type of production, and for more 

detailed and complex processing rules. Therefore the main observation is that 

the domain specific extension for Nestlé production facilities is applicable 

across domains, extendable for new challenges and useable by process 

engineers with limited simulation knowledge.  

 The additional set of simulation studies performed by simulation experts in 

cooperation with Nestlé process engineers showed that the domain specific 

simulation extension could be used by different model developers, and that 

the resulting simulation models made for different types of factories for 

different types of analyses could be used by Nestlé process engineers. 

Interaction with Scenario Navigator made it possible to link the system to SAP 

Globe and to determine operational state information for the factory. The 

second main observation is thus that the simulation models not only are suited 

for initial investment decisions, but also can support operational planning with 

optimized production schedules. 

 

8.7.1 Observations regarding design approach and implementation 

 The design of the domain specific extension was a step wise approach 

whereby the full scope was not worked out in detail on beforehand. The focus 

in the early days of the project was on getting the first set of building blocks 

defined and working. The result was that with every new simulation model one 

or more adjustments were made to the domain specific extension to improve 

the building blocks, extend the scope, or fix problems. It was positive that the 

structure of the domain specific extension allowed all these changes. It was 

also positive that the management of Nestlé was supportive of the approach 

and the project as a whole.  

 It was less positive that changes to the domain specific extension 

sometimes had implications to past simulation models, where it was not 

always possible to change to the newest version. The applied workaround 

was the use of different versions of the domain specific extension for Nestlé. 

At some moment in time three different sets of simulation building blocks were 

available to support three different simulation studies. Once these different 

simulation studies were finished, the latest domain specific extension was 

used for further development. 

 

8.7.2 Observations regarding additional tools 

 The Excel interface and the Scenario Navigator database both helped the 

analysts in entering their data and retrieve the simulation results. The 

extension with the plan generator to develop a production schedule for the 
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simulation model also proved to be successful. A positive fact about the 

interfaces was that they were all based on the same template, thus for all 

simulation models the interfaces looked similar, which enabled recognition, 

yet they were focusing on specific needs of the analyst team of a certain 

simulation project. 

 

8.7.3 Observations regarding provided support 

 The training for learning to use the domain specific extension only worked 

in combination with a short Arena introduction. The Nestlé process engineers 

picked up the basics rather quickly and succeeded in carrying out their 

assignments successfully, but the step between the simple assignments and 

the free format end assignment was rather large. The step from the free 

format assignment to the development of a simulation model of a complete 

Nestlé production facility turned out to be even larger. The training did provide 

sufficient support, however, so that the Nestlé process engineers understood 

the concept, the background of the building blocks, and the reason why 

simulation experts asked certain questions during the modeling process.  

 The user manual and the small simulation models have therefore hardly 

been used by the process engineers, but mainly for validation purposes. 

Nevertheless, the user manual provided support in explaining the importance 

of parameters and to gain confidence that the simulation building blocks were 

not just a one-off project. 

 

8.7.4 Observations regarding applying the guidelines for simulation building 

blocks 

 The observations for the capability of the domain specific extension and to 

result in genuine simulation building blocks is structured via the characteristics 

of a building block as defined by Verbraeck et al (2002) in the table at the next 

page. 
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Table 8.1: Characteristics of building block in Nestlé case study 

Self-Contained Positive use of building block elements in several 
building blocks & data made available via 
the Arena expression builder. 

Interoperable Positive separation in infrastructure and processes & 
simple equipment building blocks in 
combination with flexible process building 
blocks. 

Reusable Positive applicability in several Nestlé domains. 
Replaceable Positive process building block flexibility & ability to 

implement complex processes with process 
building blocks and generic model 
constructs. 

To be 
improved 

hierarchy structure in equipment building 
blocks. 

Encapsulating its 
internal structure 

Positive hidden inner-working & good capability to 
extend with generic model constructs. 

Providing useful 
services or 
functionality 

Positive equipment could provide all required 
functionalities via flexible processes & 
processes extendable by new process 
building block elements. 

Precisely defined 
interfaces 

Positive user interfaces for parameters also available 
via additional tool & visualization 
representation includes key performance 
indicators, yet is recognizable by process 
engineers & technical structure for 
information exchange good organized via 
coding. 

 

8.8 Overview observations 

8.8.1 Observed benefits  

 The simulation studies that were performed in the domain of Nestlé’s 

production facilities were confirmation of the benefits that were noted in 

chapter 2 and 3. Overall, the simulation studies were performed correctly and 

the problem owners were satisfied with the output, resulting in new 

assignments and a scope growing from dairy to ice cream, coffee and pet 

food.  

 The only remark to be made to the achieved benefits is for benefit 4.3 

‘model development by simulation novices’. During the training of the domain 

specific extension the process engineers of Nestlé were capable to develop 

small simulation models, but the development of a simulation model of a 

complete Nestlé production facility was too much to ask. The main reason 

was that it required quite some modeling expertise to translate the production 

processes into a model and the use of the domain specific extension also 

required the use of generic Arena model constructs. 
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Table 8.2: Summary of benefits observed in case study Supply Chain 

Process step 
Expected benefits as mentioned in chapter 2 and 3 

Observation 
Nestlé  

Activity 1: Problem description & define conceptual model 

Benefit 1.1: conceptualize system elements with model constructs 
in mind 

Yes 

Activity 2: Select model constructs 

Benefit 2.1: no translation between system elements and model 
constructs 

Yes 

Benefit 2.2: compose model constructs from developed domain 
specific model constructs to represent system elements 

Yes 

Benefit 2.3: easy selection of model construct thanks to structure 
of domain specific extension 

Yes 

Activity 3: Data collection 

Benefit 3.1: collection of predefined input data Yes 

Activity 4: Instantiate simulation model for original system 

Benefit 4.1: less model constructs used Yes 

Benefit 4.2: model development faster and easier Yes 

Benefit 4.3: model development by simulation novices Partly 

Activity 5: Verify and validate simulation model for original system 

Benefit 5.1: no more detailed testing Yes 

Benefit 5.2: easily gathering validation data Yes 

Benefit 5.3: structured and standardized performance indicators Yes 

Benefit 5.4: semi-automatic reporting of performance indicators Yes 

Benefit 5.5: observe animation at different levels of the 
composition: high level and at individual model construct 

Yes 

Activity 6: Analyze output of simulation model 

Benefit 6.1: structured and standardized performance indicators Yes 

Benefit 6.2: semi-automatic reporting of performance indicators Yes 

Activity 7: Define solution for analyzed outcome 

Benefit 7.1: model developers are triggered to find new solutions 
by parameters 

Yes 

Activity 8: Instantiate simulation model for identified solution 

Benefit 8.1: easy adjustment of model thanks to user interfaces of 
model constructs 

Yes 

Benefit 8.2: easy adjustment of model thanks to replacement of 
model constructs 

Yes 

Benefit 8.3: easy visualization thanks to incorporation of 
visualization in model constructs 

Yes 

Benefit 8.4: composition of new model constructs enabled new 
solutions to be evaluated 

Yes 
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8.8.2 Observed risks 

 The simulation studies for Nestlé contained all complexity and time 

pressure that model developers and problem owners are used to. Even 

though, the observations show that almost all the risks identified in chapter 2 

and 3 have been mitigated by the guidelines and design approach of chapter 

5. Similar to in the tables in chapter 3, potential risks that we did not observe 

during the execution of any of the simulation studies within this case study 

(“No” in the table) probably did not occur and thus the potential risk has been 

mitigated by the way the domain specific extension was designed, structured 

and used.  

 

Table 8.3: Summary of risks observed in case studies 

Process step 

Potential risks as mentioned in chapter 2 and 3 

Observation 
Nestlé  

Activity 1: Problem description & define conceptual model 

Risk 1.1: scope of model developer is limited by model constructs No 

Activity 2: Select model constructs 

Risk 2.1: lack of trust results in no motivation to use domain 
specific extension 

No 

Risk 2.2: lack of insight in model constructs results in ignore 
domain specific extension 

No 

Risk 2.3: use of model constructs that are not suited for 
representation of system elements 

No 

Risk 2.4: system elements can not be represented by model 
constructs 

No 

Risk 2.5: compose model constructs from developed domain 
specific model constructs only applied for infrastructure system 
elements 

No 

Risk 2.6: model developers can adjust internal logic of model 
constructs 

No 

Activity 3: Data collection 

No risks defined in chapter 2 or 3 

Activity 4: Instantiate simulation model for original system 

Risk 4.1: model developers do not understand model construct No 

Risk 4.2: model developers do not know how to parameterize 
model construct 

No 

Risk 4.3: difficult to compose simulation model, because model 
constructs are not available 

Partly 

Risk 4.4: difficult to compose simulation model by person other 
than developer(s) domain specific extension 

Rarely 

(continued at next page)
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Activity 5: Verify and validate simulation model for original system 

Risk 5.1: mistakes of model developer are hard to overcome No 

Risk 5.2: model developers know something is wrong, but cannot 
identify what to do about it 

Partly 

Activity 6: Analyze outcome of simulation model 

Risk 6.1: model constructs do not provide performance indicators 
problem owner desired 

Partly 

Activity 7: Define solution for analyzed outcome 

Risk 7.1: model developers are triggered to find new solutions by 
parameters 

No 

Risk 7.2: model developers are limited by parameters and model 
constructs 

No 

Activity 8: Instantiate simulation model for identified solution 

Risk 8.1: solution is identified that cannot be represented by model 
constructs 

No 

Risk 8.2: adjustments of model constructs required to represent 
solution are time consuming 

No 

Risk 8.3: replacement of model constructs causes errors in model 
constructs that were linked or connected. 

No 

 

 The simulation models for Nestlé encountered several risks regarding the 

availability of model constructs and performance indicators, i.e. risks with 

‘Partly’. This reflects that the initial scope of the domain specific extension was 

on purpose not sufficient for all production facilities of Nestlé. The risk was 

thus observed that for example the pet food systems could not be 

represented. The solution was that the sets of simulation building blocks of the 

domain specific extension were extended with simulation building blocks for 

petfood. After the extension the domain specific extension could be used to 

represent the simulation model for the new sub-domain. The same applied to 

the required extensions for ice cream and coffee (Valentin et al, 2007).  

 Some of the simulation studies of Nestlé production facilities also observed 

the risk ‘difficult to compose simulation model by person other than 

developer(s) domain specific extension’. The simulation models have been 

developed mainly by simulation experts, either the developers of the domain 

specific extension or simulation experts closely contact to the developers of 

the domain specific extension. The reason was not that it was not possible to 

develop the simulation models without detailed knowledge of the simulation 

building blocks, but the process configuration of a Nestlé production facility 

contained quite some exceptions that had to be developed with a mixture of 

Nestlé process building blocks and Arena generic model constructs. The 

knowledge that simulation experts had about the inner working of the process 

building blocks made the development of the simulation model easier. In the 
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training attention was paid to this point, but 5 days was insufficient to teach 

the full scope of capabilities of Arena in combination with the Nestlé process 

building blocks (Valentin, 2007). 
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9 Epilogue 

9.1 Introduction 

 The completion of the three case studies described in chapter 6, 7 and 8 

provides us with observations for the theory proposed in chapter 5 for domain 

specific extensions. It was proposed to develop domain specific extensions 

using four elements: building blocks, design approach, additional tools and 

support and documentation. At the end of the case study chapters we already 

posed several remarks and conclusions regarding the observed benefits and 

encountered risks. In section 9.2 we combine these observations of the three 

case studies (Supply Chains, Container Terminals and Nestlé Production 

Facilities)6. In section 9.3 we provide a generalization of the observations in 

relation to the requirements for domain specific extensions stated in section 

5.2. In section 9.4 we translate the observations and generalizations of the 

case studies to answer the research questions identified in chapter 1. Finally 

in section 9.5 we look forward to points of interest for further investigation so 

we can further improve the theory, leading to continuous improvement of 

domain specific extensions in simulation studies. 

 

9.2 Combined observations of case studies 

9.2.1 Overall conclusions regarding benefits 

 In chapter 2 we introduced a set of benefits for the use of domain specific 

extensions (section 2.4; table 3.6). After the execution of the case studies in 

chapter 3 we extended the initial list of benefits with table 3.7. We listed 

whether we observed these benefits in the individual chapters of the testing 

case studies (sections 6.8.1, 7.8.1 & 8.8.1). Table 9.1 provides the 

observations of the three testing case studies together. In this table we clearly 

see that all benefits originating from literature (introduced in chapter 2) and 

possible benefits observed in the initial case studies (identified in chapter 3) 

have been encountered in all three testing cases, with the remark that some 

of the benefits for the case study container terminal have not been achieved 

on purpose. 

 We therefore conclude that the theories introduced in chapter 5 have 

enabled the testing case studies to be successful and that the theories enable 

to achieve the benefits expected to be achieved with the use of domain 

specific extensions in all activities of discrete event simulation studies. 

 

                                             
6
 We performed more simulation studies besides the three case studies described in chapter 6, 7 and 8 over the 

period of the research project. These case studies are briefly described in Appendix I. Whenever applicable a 
reference to these cases is included and the observations for these case studies are used as well. 
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Table 9.1: Summary of benefits observed in case studies 

Process step 
Expected advantages as mentioned in chapter 2 and 3 

Supply 
chains 

Contain
er 

Nestlé 

Activity 1: Problem description & define conceptual model 

Benefit 1.1: conceptualize system elements with model 
constructs in mind 

Yes Yes Yes 

Activity 2: Select model constructs 

Benefit 2.1: no translation between system elements and model 
constructs 

Yes Yes Yes 

Benefit 2.2: compose model constructs from developed domain 
specific model constructs to represent system elements 

Yes Yes Yes 

Benefit 2.3: easy selection of model construct thanks to 
structure of domain specific extension 

Yes Yes Yes 

Activity 3: Data collection 

Benefit 3.1: collection of predefined input data Yes Yes Yes 

Activity 4: Instantiate simulation model for original system 

Benefit 4.1: less model constructs used Yes Yes Yes 

Benefit 4.2: model development faster and easier Yes Yes ! Yes 

Benefit 4.3: model development by simulation novices Yes Yes ! Partly 

Activity 5: Verify and validate simulation model for original system 

Benefit 5.1: no more detailed testing Yes Yes Yes 

Benefit 5.2: easily gathering validation data Yes Partly Yes 

Benefit 5.3: structured and standardized performance indicators Yes Yes Yes 

Benefit 5.4: semi-automatic reporting of performance indicators Yes Yes ! Yes 

Benefit 5.5: observe animation at different levels of the 
composition: high level and at individual model construct 

Yes Partly Yes 

Activity 6: Analyze outcome of simulation model 

Benefit 6.1: structured and standardized performance indicators Yes Yes Yes 

Benefit 6.2: semi-automatic reporting of performance indicators Yes Yes ! Yes 

Activity 7: Define solution for analyzed outcome 

Benefit 7.1: model developers are triggered to find new 
solutions by parameters 

Yes Partly Yes 

Activity 8: Instantiate simulation model for identified solution 

Benefit 8.1: easy adjustment of model thanks to user interfaces 
of model constructs 

Yes Yes Yes 

Benefit 8.2: easy adjustment of model thanks to replacement of 
model constructs 

Yes Yes Yes 

Benefit 8.3: easy visualization thanks to incorporation of 
visualization in model constructs 

Yes Partly Yes 

Benefit 8.4: composition of new model constructs enabled new 
solutions to be evaluated 

Yes No Yes 

 

9.2.2 Overall conclusions regarding risks 

 In Table 9.2 we put the risks together from the different testing case 

studies. We can clearly see in our observations of these testing case studies 

that all risks have been mitigated in these simulation studies. Some of the 

risks mentioned in the table have been encountered during the execution of 

the case studies. These risks have to do with the decision to extend or not to 
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extend the domain specific extension with new model constructs, instead of 

making a complete domain specific extension at the start of the first simulation 

study.  

 The encountered risks for the testing case study of supply chains were 

caused by scope of the implementation which varied for the used generic 

simulation environment. The proof of concepts developed in the generic 

simulation environments of eM-Plant and D-SOL only contained the simulation 

building blocks which where necessary to demonstrate the concept. The 

teaching cases performed with the domain specific extension developed in 

Arena contained more simulation building blocks and building block elements 

to represent alternative system elements. Still, the scope was to support the 

teaching cases and the implemented scope did not contain all supply chain 

concepts that Corver (2000) defined.  

 The case study for container terminals aimed at providing a black box with 

limited features for designing and evaluating a container terminal in 15 

minutes. Given the time limit, there was no room for extensions or changes to 

simulation building blocks. Whenever the game participants encountered a 

limit of the system, they decided to park the option for further research and 

therefore the missing scope was no limitation to the progress of the game. 

 For the Nestlé case, it was decided with the management of Nestlé to 

develop the domain specific extension stepwise by adding new simulation 

building blocks with every new simulation study executed. Therefore, some of 

the risks (e.g., “1.2: system elements cannot be represented by model 

constructs”) have been encountered in some of the simulation studies for 

Nestlé, but these risks have been mitigated in follow-up studies to update the 

domain specific extension. 

 

Table 9.2: Summary of risks observed in testing case studies 

Process step 
Potential risks as mentioned in chapter 2 and 3 

Supply 
chains 

Contain
er 

Nestlé 

Activity 1: Problem description & define conceptual model 

Risk 1.1: scope of model developer is limited by model 
constructs 

No Partly No 

Activity 2: Select model constructs 

Risk 2.1: lack of trust results in no motivation to use domain 
specific extension 

No No No 

Risk 2.2: lack of insight in model constructs results in ignore 
domain specific extension 

No No No 

Risk 2.3: use of model constructs that are not suited for 
representation of system elements 

No No No 

Risk 2.4: system elements can not be represented by model 
constructs 

No No No 

Risk 2.5: compose model constructs from developed domain 
specific model constructs only applied for infrastructure system 
elements 

No No No 

Risk 2.6: model developers can adjust internal logic of model 
constructs 

No No No 

(continued at next page)
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Activity 3: Data collection 

No risks defined in chapter 2 or 3 

Activity 4: Instantiate simulation model for original system 

Risk 4.1: model developers do not understand model construct No No No 

Risk 4.2: model developers do not know how to parameterize 
model construct 

No No No 

Risk 4.3: difficult to compose simulation model, because model 
constructs are not available 

No Partly Partly 

Risk 4.4: difficult to compose simulation model by person other 
than developer(s) domain specific extension 

No No Rarely 

Activity 5: Verify and validate simulation model for original system 

Risk 5.1: mistakes of model developer are hard to overcome No No No 

Risk 5.2: model developers know something is wrong, but 
cannot identify what to do about it 

No No Partly 

Activity 6: Analyze outcome of simulation model 

Risk 6.1: model constructs do not provide performance 
indicators problem owner desired 

No No Partly 

Activity 7: Define solution for analyzed outcome 

Risk 7.1: model developers are triggered to find new solutions 
by parameters 

No No No 

Risk 7.2: model developers are limited by parameters and 
model constructs 

Partly Partly No 

Activity 8: Instantiate simulation model for identified solution 

Risk 8.1: solution is identified that can not be represented by 
model constructs 

No Partly No 

Risk 8.2: adjustments of model constructs required to represent 
solution are time consuming 

No No No 

Risk 8.3: replacement of model constructs causes errors in 
model constructs that were linked or connected. 

Partly No No 

 

9.3 Matching of requirements for domain specific extensions 

 In chapter 2 and 3 we already concluded that the use of domain specific 

extensions enables some of the activities for a simulation study to be 

performed faster, easier, less detailed etcetera resulting in the benefits listed 

in Table 3.6 and Table 3.7. We kept the activities in the simulation study the 

same, even though the actual actions within the activity in some cases have 

been reduced. Instead we focused in chapter 5 on providing concepts, 

guidelines, approaches and suggestions for tools to avoid the risks we 

observed. This resulted in the 9 requirements in section 5.2. In this section we 

explain how we satisfied the requirements and demonstrated this in the case 

studies of chapter 6, 7 and 8.  
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9.3.1 Matching the concept of simulation building blocks to the requirements 

 In section 5.4 we described the generic concept of building blocks 

(Verbraeck et al, 2002) and the translation of this concept to simulation 

building blocks with simulation building block elements. The 22 guidelines 

define what is expected of a simulation building block and what points a 

simulation model developer should pay attention to.  

 The main point of these guidelines is the introduction of the use of building 

block elements underlying the simulation building blocks. Building block 

elements enable that building blocks are self-contained, interoperable, 

reusable, replaceable, encapsulate their internal structure and provide a 

useful service via their interfaces. We borrowed concepts from software 

engineering such as product line engineering and interfacing to structure 

simulation building blocks and building block elements. We enriched this 

further with the capabilities of generic simulation environments regarding user 

interfacing and visualization. In addition, we reused the experience we 

gathered in the case studies of chapter 3, AGVs and passengers at airports, 

regarding infrastructure versus control mechanisms, building block families, 

and the use of terminology of the problem owner.  

 Table 9.3 shows how these concepts and guidelines worked out to match 

the requirements to domain specific extensions. The contribution of the 

requirement can be observed in all case studies. A typical example from one 

of the case studies of chapter 6, 7 or 8 is provided in the third column of Table 

9.3. 

 

Table 9.3: Contribution simulation building blocks to domain specific 
extensions 

Requirements for 
domain specific 
extensions 

Contribution simulation 
building blocks 

Example from case 
study 

Requirement 1: DSE 
should show added 
value for model 
developers compared 
to use of model 
constructs of generic 
simulation 
environments 

Model developers are 
supported by simulation 
building blocks as they are 
ready to use and 
recognizable model 
constructs. 

Nestlé: simulation 
studies defaulted to 
being executed using 
DSE 

Requirement 2: Use 
of model constructs of 
DSE should be clear 
and well defined so 
model developers 
know when and how 
to use the model 
constructs 

Simulation building blocks in 
terminology of problem 
owner sorted in a family are 
easy to match to need of 
model developer, user 
interface provides further 
suggestions and support. 

Supply Chains: 
concept of modeling 
a supply chain 
translated to building 
block elements in 
structured families 

(continued at next page)
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Requirements for 
domain specific 
extensions 

Contribution simulation 
building blocks 

Example from case 
study 

Requirement 3: 
System elements that 
seem to be 
exceptional for the 
domain represented 
by the DSE should not 
become model 
constructs 

Building block elements 
enable definition of different 
simulation building blocks, 
and special interfaces of the 
simulation building block 
allow for using model 
constructs of generic 
simulation environment to 
incorporate specific logic and 
control whenever necessary 
in simulation model 

Nestlé: process 
description in 
simulation models 
composed of 
simulation building 
blocks and model 
constructs using the 
full strength and 
flexibility of the 
generic simulation 
environment 

Requirement 4: The 
infrastructure and 
physical elements 
should be represented 
by model constructs 
separated from the 
model constructs for 
control or 
management 

Apply specialization of 
simulation building blocks in 
representation of physical 
elements and process-like 
description, further 
supported by family structure 
of  building blocks 

Supply Chains: 
Logical and physical 
actors with different 
building block 
elements each 
represent part of the 
supply chain process 

Requirement 5: 
Internal logic of model 
constructs of DSE 
should be closed or 
accessible depending 
on type of model 
developer 

User interfaces provide 
ability to hide or show the 
inner logic. 

Supply Chain 
implementation in 
eM-Plant: model 
developer can 
override logic in 
building block 
elements 

Requirement 6: 
Model constructs 
should be 
understandable for 
model developers 

Apply terminology used in 
the domain and by problem 
owner. 

Nestlé: machines 
have different names 
for the icecream and 
petfood factory 

Requirement 7: DSE 
should be an 
extendible set of 
model constructs 

Functionalities, level of detail 
and scope of simulation 
building block can be 
adjusted by replacing 
building block element with a 
new building block element 
that better matches the 
requirement of the model 
developer 

Supply Chains: 
different variants of 
order generation 
building block 
element, to be 
extended in many 
different ways 
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Requirements for 
domain specific 
extensions 

Contribution simulation 
building blocks 

Example from case 
study 

Requirement 8: 
Behavior of model 
construct should be 
understandable and 
verifiable 

Simulation building block and 
building block element have 
visualization (animation and 
performance indicators) and 
parameters which can be 
observed in the model 

Supply Chains: large 
set of graphs and 
plots to show the 
status of the building 
block, which change 
when the model runs.  

Requirement 9: 
Model constructs 
should be individually 
parameterizable 

Simulation building blocks 
have a dedicated user 
interface for their parameters 

Container Terminals: 
each storage can 
have different 
stacking height for 
containers 

 

 In the development of the simulation building blocks and the building block 

elements according to the guidelines for the 11 different domains described in 

appendix I many similar choices have been made. The same types of building 

blocks were created, and also the same structure in parameter settings and 

visualization was observed.  

 

9.3.2 Additional tools for domain specific extensions matched to 

requirements 

 The simulation building blocks were an improvement in user friendliness to 

the model developer compared to the model constructs. Additional tools have 

been introduced to support the model developer in time consuming activities 

that can be automated. The additional tools focus on repetitive activities for 

model construction, parameterization of simulation building blocks and 

gathering output data into a useful report with performance indicators. 

 Especially the case study of the management game ‘Container Adrift’ 

proved that additional tools could support the model developer and model 

analyst much further. The additional tools have been applied to supply chains 

and Nestlé and some of the domain specific extensions in appendix I, but their 

effect has been less explicit. Nevertheless, the simulation studies at for 

example the Nestlé factories would have been completely different without the 

Excel interface or the ‘plan generator’ application in combination with Scenario 

Navigator, as these additional tools supported to keep model parameterization 

together with output results of a specific simulation experiment.  

 Only a couple of the requirements of section 5.2 apply to additional tools. 

Therefore Table 9.4 only shows the applicable requirements and how the use 

of additional tools support the requirement. An example is provided in the third 

column based on the case study of the container terminal, chapter 7, as this 

case study focused around the additional tools. 
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Table 9.4: Contribution additional tools to domain specific extensions 

Requirements for 
domain specific 
extensions 

Contribution additional 
tools 

Example from case 
study Container 
Terminals 

Requirement 1: DSE 
should show added 
value for model 
developers compared 
to use of model 
constructs of generic 
simulation 
environments 

Compose the simulation 
model automatically, set 
parameters and provide a 
specific report including all 
output data of the simulation 
model without user 
intervention 

Simulation model 
development, 
execution and 
evaluation of 
performance 
indicators could be 
performed by non-
experts within 15 
minutes. 

Requirement 2: Use 
of model constructs of 
DSE should be clear 
and well defined so 
model developers 
know when and how 
to use the model 
constructs 

Interface for 
parameterization and output 
report via Excel provides 
extra information and 
support material to model 
developer 

Customized Excel 
sheet with 
performance 
indicators contained 
additional controls to 
present model 
developers with 
potential risks in their 
design 

Requirement 9: 
Model constructs 
should be individually 
parameterizable 

Parameterization via 
additional tools such as 
database or Excel supports 
quick adjustment of all model 
constructs with new 
individual values 

Company information 
with all details could 
be easily included by 
number of clicks in 
database part of the 
container modeling 
solution. 

 

9.3.3 Support and documentation for domain specific extension matched to 

requirements 

 Support and documentation focuses on enabling the model developer to 

better understand the capabilities of the domain specific extension and to be 

able to apply the domain specific extension in a simulation study. The support 

is provided by example models, small models to demonstrate specific 

situations, by large models as show cases, and by training material. The 

documentation focuses on what elements of a simulation building block or 

building block element should be defined. This is to support the future users of 

the domain specific extension, but also the future developers who will add 

extra building block elements and simulation building blocks to the domain 

specific extension. 

 In the three case studies the support and documentation was provided in 

different ways. Training in the management game ‘Container Adrift’ was about 

the use of the visualization-simulation tool and not about the use of the 

simulation building blocks. Training for Nestlé was to prepare the process 

engineers for the questions from the simulation experts who were developing 
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the simulation models, and training of the students at the R.H. Smith Business 

School of the University of Maryland for the supply chain teaching cases was 

mainly about interpreting the results of the performed simulation models. In 

the end the documentation as described in chapter 5 according to the 

structure based on Heisel and Souquières (2004) was provided to the 

simulation model developers, but they usually decided not to use this material.  

 Nevertheless, the stakeholders in the simulation studies, e.g. the process 

engineers of Nestlé advising the factory management, would not have been 

so trusting if the extensive documentation would not have been present. They 

would have had doubts about the quality and the maturity of the domain 

specific extension. The question is whether the extensive documentation was 

necessary, in other words, would the example simulation models and 

testimonies of simulation studies with the domain specific extension have 

been sufficient? 

 Support and documentation is an important ingredient to ensure that the 

model developer understands and trusts the domain specific extension, and 

therefore all requirements of section 5.2 have an element of support and 

documentation, but in the case studies these topics have been covered by 

dedicated and customized training with hands-on contributions by one of the 

developers of the domain specific extension. Therefore Table 9.5 contains 

only the requirements where additional contributions were addressed, 

supported by an example of one of the three case studies. 

 

Table 9.5: Contribution documentation and support to domain specific 
extensions 

Requirements for 
domain specific 
extensions 

Contribution 
documentation and 
support 

Example from case 
study 

Requirement 1: DSE 
should show added 
value for model 
developers compared 
to use of model 
constructs of generic 
simulation 
environments 

Success stories of performed 
simulation projects with the 
domain specific extension. 

Nestlé: via the milk 
factories the idea of 
using simulation 
spread to petfood, 
coffee and icecream 

Requirement 6: 
Model constructs 
should be 
understandable for 
model developers 

Small simulation models that 
demonstrate one or two 
specific simulation building 
blocks or building block 
elements. 

Nestlé: Over 100 
different small 
simulation models 
have been 
developed, each 
containing less than 
10 simulation 
building blocks. 
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Requirements for 
domain specific 
extensions 

Contribution 
documentation and 
support 

Example from case 
study 

Requirement 8: 
Behavior of model 
construct should be 
understandable and 
verifiable 

Training material contains 
assignments with verified 
output and provided solution 
models. 

Supply Chains: 
specific assignments 
to understand the 
parameters and train 
interpretation of 
results. 

 

9.3.4 Design approach for improved domain specific extensions matched to 

requirements 

 The process to develop a domain specific extension was described in 

section 5.7 using Figure 5.18 and 5.19. The first figure provided an overview 

from initial design until the final handover to future model developers. The 

second figure provides details for the conceptualization and specification of 

the design of the simulation building blocks and the building block elements as 

part of the domain specific extension.  

 The main observation from the three case studies, supported by the cases 

in Appendix I, is that the structured approach of specification provides a good 

preparation for the implementation, either directly for the initial domain specific 

extension, or later for updates and extensions to the domain specific 

extension using the flexibility of composing building blocks out of building 

block elements. Also we learned that the design approach is suited for 

different implementations and that the design approach is thus independent of 

the future generic simulation environment that is going to be used to realize 

the domain specific extension.  

 Key element in the specification phase is the use of lists to verify that the 

designs can be realized and that the decision choices do not hinder the 

intended use of the domain specific extension too much. The case studies of 

supply chains and Nestlé demonstrate that simulation models can be used in 

different situations, i.e. real time gaming and production planning. No attention 

was paid in the design of simulation building blocks to potential usage for real-

time situations or to create a simulation model of the system from a 

predefined state. As these types of experiments were originally left out of 

scope of the domain specific extension, the realization of the new type of 

experiments was a bigger challenge, but still achievable by introducing new 

building block elements.  

 The design approach supports the developers to construct a domain 

specific extension that follows the simulation building block guidelines, 

provides additional tools, and that is well supported and documented. All of 

this is done in close cooperation with problem owners to ensure they 

recognize the building blocks and terminology. The requirements of section 

5.2 aimed at the products to be delivered, not to the design approach that 

supports smooth delivery. Table 9.6 shows the requirements that resulted in 



  9 Epilogue 

   275  

contributions for the design approach, with an example of one of the case 

studies of chapter 6 (Supply Chain) or 8 (Nestlé). 

 

Table 9.6: Contribution design approach to domain specific extensions 

Requirements for 
domain specific 
extensions 

Contribution design 
approach 

Example from case 
study 

Requirement 1: DSE 
should show added 
value for model 
developers compared 
to use of model 
constructs of generic 
simulation 
environments 

Conceptualization and 
specification of the domain 
specific extension is 
extremely important. The 
design approach pays 
attentions to the future 
experimentation and 
objective of simulation 
studies and includes checks 
in each design decision 

Nestlé: A list of 
experiments and 
variants has been 
defined in a 
workshop with over 
20 functional experts 
regarding their 
expectations of the 
simulation studies 

Requirement 3: 
System elements that 
seem to be 
exceptional for the 
domain represented 
by the DSE should not 
become model 
constructs 

Not everything can be 
implemented before the first 
simulation study is started. 
The building block elements 
should be kept open and by 
setting priorities in the design 
approach further 
implementation should be 
scheduled. 

Nestlé: Initially 
developed for milk 
products. A proof of 
concept has been 
performed for the 
petfood division, 
followed by an 
implementation plan 
for several years to 
develop petfood 
specific building 
blocks. 

Requirement 6: 
Model constructs 
should be 
understandable for 
model developers 

Discuss extensively with 
problem owners in domain to 
ensure terminology and 
problems are well covered in 
the simulation building 
blocks 

Supply Chains: A 
study has been 
performed by Corver 
to define concepts for 
modeling the supply 
chains based on 
literature study and 
experts at RH Smith 
business school. 

 

9.3.5 Match requirements and theory for domain specific extensions 

 Table 9.7 shows how the requirements are satisfied by the new theory 

described in chapter 5 and the table identifies whether this theory solution for 

the requirements can be observed in the case studies of chapters 6, 7 and 8. 

The solution directions (simulation building blocks; design approach; support 

simulation study execution; documentation) all contribute to match the defined 

requirements. The columns at the right hand side show whether the 

requirement of a domain specific extension has been successfully matched for 
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the extension developed in the case study. Some of the requirements have 

not been satisfied on purpose, due to the scope of the case study. This has 

been mentioned in the applicable situations. Overall our observation is that we 

covered all other requirements for the domain specific extensions. 

 

Table 9.7: Representation of requirements in theory and case studies 

Requirements for domain specific 
extensions 

Observations 

Supply 
Chain 

Container 
terminal 

Nestlé 

Requirement 1: DSE should show 
added value for model developers 
compared to use of model constructs 
of generic simulation environments 

Yes Yes Yes 

Requirement 2: Use of model 
constructs of DSE should be clear and 
well defined so model developers 
know when and how to use the model 
constructs 

Yes Yes Yes 

Requirement 3: System elements that 
seem to be exceptional for the domain 
represented by the DSE should not 
become model constructs 

Yes 

Exceptional 
system 

elements 
were not part 
of the game. 

Yes ! 

Requirement 4: The infrastructure 
and physical elements should be 
represented by model constructs 
separated from the model constructs 
for control or management 

Yes ! 

Yes,  
especially 

physical and 
logical split 

Yes ! 

Requirement 5: Internal logic of 
model constructs of DSE should be 
closed or accessible depending on 
type of model developer 

Yes, 
especially 
eM-Plant 

implement
ation 

Yes, 
 for inner 

working and 
structure 

parameters. 

Yes 

Requirement 6: Model constructs 
should be understandable for model 
developers 

Yes Yes Yes 

Requirement 7: DSE should be an 
extendible set of model constructs 

Yes Yes Yes 

Requirement 8: Behavior of model 
construct should be understandable 
and verifiable 

Yes Yes Yes 

Requirement 9: Model constructs 
should be individually parameterizable 

Yes Yes ! Yes ! 
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9.4 Answers to the research questions 

 In chapter 1 we introduced three research sub-questions to clarify how 

domain specific extensions can help a model developer to perform simulation 

studies without the simulation studies becoming ineffective. Based on 

Robinson and Pidd (1998) our research questions focused on: handle 

unlimited modeling freedom, support model developers to cover multiple fields 

of expertise, and resolve language mismatches. Chapter 5 describes four 

elements as an addition to the existing theory for domain specific extensions:  

1) the concept of simulation building blocks (section 5.4) 

2) the use of additional tools (section 5.5)  

3) the importance of support and documentation (section 5.6)  

4) the design approach (section 5.7)  

 These four elements have been applied in the case studies that have been 

executed as part of this research, which were described in detail in chapter 6, 

7 and 8 and at a high level in appendix 1. Each of the three case studies that 

was described in detail focuses on one of the points of Robinson and Pidd 

regarding ineffective simulation studies. “Unlimited modeling freedom” is 

covered primarily by the supply chain case study in chapter 6; “multiple fields 

of expertise” is covered primarily by the container terminal game in chapter 7; 

“language mismatch” is covered by the case studies of Nestlé production 

facilities in chapter 8.  

 Research question 2A was related to the difficulties to handle the unlimited 

modeling freedom by the model developer: 

What constructs and design approach will enable that 

domain specific extensions can be defined independent of 

the generic simulation environment in such a way that the 

model developer is supported, but not limited to one way of 

representing a system element? 

In the case study of the supply chains (chapter 6) we extensively worked 

with different building block elements to represent parts of the flow in the 

supply chain, for example different ways of determining an order for a 

supplier, or the decision process to manufacture more products. The case 

study, using the implementations in different generic simulation environments, 

showed that the concept of simulation building blocks and building block 

elements applies and can support model developers. The answer to the 

question is thus: 

Simulation building blocks and building block elements 

further supported by the guidelines of section 5.4 to ensure 

that the building blocks are self-contained, interoperable, 

reusable, replaceable, encapsulate their inner working, and 

provide useful services via precisely defined interfaces. 
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Research question 2B was related to the challenge that model developers 

need to be experts in multiple areas without them knowing all about a domain. 

The model developer cannot know everything and cannot have talent and 

skills to cover all areas, therefore the second question was:  

What methodologies, approaches and techniques can be 

offered to a model developer to support the use of domain 

specific extensions in the activities of a simulation study? 

In the case study of the container terminal it was shown that regular 

students without a deep knowledge of simulation or container terminals can 

be supported to perform a simulation study within 15 minutes and give an 

advice regarding the design of a container terminal, supported by quantitative 

and qualitative insights about the (logistical) performance of the designed 

container terminal. The key in achieving the 15 minute lead time was to 

automate as many actions in the activities of the simulation study as possible. 

The automation was achieved by a combination of structure in the input and 

data requirements, a structured simulation model and a structured 

representation of the output of the simulation model. The answer to research 

question 2B is therefore:  

Additional tools to automate activities of model developers 

like model initiation and parameterization of the simulation 

model, and the translation of output data into key 

information. 

 The final research question (2C) is related to the challenge that model 

developers do not speak the language of the problem owner. The model 

developer has different interpretations of the system, limited knowledge of the 

domain of the problem owner and is used to the generic terminology of the 

generic simulation environments, for example ‘resource’ or ‘queue’. In chapter 

1 the question has been formulated as: 

How can be ensured that the domain specific extension 

gets the model developer closer to the language of the 

problem owner? 

 The set of simulation studies at different Nestlé production facilities 

showed the ability to represent the system using the terminology that the 

people in the factory are used to work with. The growth of the set of building 

blocks showed also that it is feasible to extend the scope of a domain specific 

extension and that this results in new terminology. The concept of simulation 

building block elements allowed to easily compose new dedicated simulation 

building blocks, therefore the problem owners in icecream factories noticed in 

their simulation model an icecream-filler while the problem owners of the 

petfood factory had in their model a petfoodbox-filler. Two machines that 

conceptually performed the same activities, but to the people involved in the 

simulation studies the specific attention to ‘their’ vocabulary was very 
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important. The answer to research question 2C as has been discussed more 

elaborate in chapter 5 and applied successfully in different case studies, but 

mainly in the Nestlé case study, is: 

Use terminology of the problem owner in the simulation 

building blocks, example models and documentation. 

 With the answers to the three sub questions and the successful execution of 

the case studies described in chapter 6, 7 and 8 and appendix I, the initial 

research question can be answered: 

How can domain specific extensions for a simulation 

environment improve the effectiveness of simulation 

studies? 

 The answer to this question is: 

Perform simulation studies with models that are composed 

using domain specific extensions, by applying a structure 

using simulation building blocks and building block 

elements, include additional tools for automation, provide 

support and documentation for understanding via a 

design approach that focuses on conceptualization and 

specification. 

 

9.5 Further improvements and future research 

 Further improvements and future research regarding domain specific 

extensions can be seen in two directions. The first direction is to further 

improve the theory provided in chapter 5. At all four elements (concept of 

simulation building blocks, additional tools, support and documentation, and 

design approach) further improvements can be identified. Secondly, the 

availability of domain specific extensions enable a new way of carrying out 

simulation studies. The activities of a simulation study can be more focused, 

but also the new types of simulation studies can be defined. This section 

describes several of the potential research directions we have seen over the 

past years. 

 

9.5.1 Improvements to the concept of simulation building blocks 

 The concept of simulation building blocks and the building block elements 

have been described in chapter 5. In the case studies we encountered that 

the simulation building block guidelines are applied differently according to the 

scope and level of detail of the simulation models within a domain. We saw 

that the guidelines have been applied in the Container Terminals case study. 

On the other hand, in the case studies for Supply Chains and Nestlé 

production facilities, the guidelines were applied more strictly. The 

experiences of the case studies show that the developers of the domain 
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specific extension have an interpretation of the guidelines and apply trade-offs 

whether a guideline should be applied or not.  

 Another point of attention is that the model developer makes trade-offs 

within the scope of the domain whether to use the guideline. These trade-offs 

deal with the decision whether the guideline should be applied to all building 

blocks, or only to a specific family. An example of such a decision is 

simulation building block guideline 2, see the block underneath with the trade-

off explanation. Based on the experience of the performed case studies each 

simulation building block guideline can be extended in this way and further 

clarified to support the designers of domain specific extensions and their 

simulation building blocks. 

 

Simulation Building Block guideline 2: a simulation building block consists of a 

core and building block elements to represent functions and services.  

Trade-off explanation: In chapter 5 it has already been described that the 

simulation building block core can be coded with model constructs or the core 

can be represented by one or more building block elements. In the case 

studies described in chapter 6, 7 and 8, and in appendix 1, a rule of thumb 

has been applied to help in deciding between the core and the division over 

one or more building block elements. The rule of thumb consists of two parts. 

1) functions that can be identified for potentially more than one building block 

should be modeled as a building block element. For example, claim 

equipment or release equipment. 2) if variants for these functionalities are 

important for the problem owner and if they result in different building blocks, 

then these functionalities should be implemented as separate building block 

elements. If not, they could be modeled in the core of the building block. 

 

 The case studies performed in chapter 6, 7 and 8 were executed with 

domain specific extensions that have been developed on top of three different 

generic simulation environments: Arena, eM-Plant and DSOL. With the case 

study of the supply chain (chapter 6) we demonstrated that one design for 

simulation building blocks and building block elements successfully can be 

implemented in different generic simulation environments. But the 

implementation project showed that some environments are easier to extend 

than others. We have combined our experience in working with the different 

simulation environments for the development of simulation building blocks and 

listed some features in Table 9.8. This table contains features that we 

observed in only one or two of the simulation environments. This table is 

intended for developers and vendors of generic simulation environments to 

apply these best practices into their simulation environment, resulting in the 

best generic simulation environment for the development of domain specific 

extensions. 
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Table 9.8: Features observed in one or two generic simulation 
environments 

Feature Generic 

sim. env. 

Observed benefit that could also be realized in 

other simulation environments 

(Partial) 

inheritance 

objects 

eM-Plant Ability to define a structure of objects, reusing parts 

of the functionality of superclasses, and 

possibilities for partial extension. 

Composition of 

model 

constructs in 

model 

constructs 

eM-Plant Model constructs defined in the object library can 

be composed out of other model constructs. This 

enables the concept of building blocks composed 

out of building block elements. 

Available data 

types 

eM-Plant 

& DSOL 

Availability of data types such as numbers, strings, 

tables, lists and possible new data types specific 

for the domain specific extension. 

Visualization 

capabilities of 

state and 

performance 

indicators 

Arena The simulation building blocks that are instantiated 

into the simulation model automatically contain a 

state drawing, performance indicators and 

representation of parameter settings, which also 

scale when the model users zooms in or out. 

Layered 

visualization 

eM-Plant The model developer has the opportunity to hide 

and show specific elements of the visualization of 

the building blocks, however, elements that are 

hidden at lower level, cannot be shown at a higher 

level of abstraction. 

Capability of 

running via the 

web 

DSOL Simulation models developed in the DSOL 

environment can be accessed via any web browser 

and be executed and analyzed worldwide. 

Programming 

interface with 

MS Office 

products 

Arena The additional tools developed for the container 

game are all programmed in Visual Basic and 

could be realized thanks to the complete 

integration of Visual Basic in the Arena simulation 

environment. This included model generation, 

parameter setting, model execution and reporting 

of performance indicators. 

Capability of 

separate 

simulation 

models with one 

common clock 

DSOL The system elements are represented by several 

simulation models, divided over different 

computers, that all use the same central clock 

mechanism. 

Routing of 

entities via 

stations 

Arena Entities with all their attributes are sent from station 

to station, where at each station, the correct code 

can be executed, based on the state of the 

attributes of the entity that resides in the mailbox. 
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Feature Generic 

sim. env. 

Observed benefit that could also be realized in 

other simulation environments 

Connect model 

constructs in 

flow 

Arena The Nestlé process building blocks were fluently 

connected via connector interfaces that enable the 

representation of a flow analogous to how process 

engineers use their flow schemes of the production 

mechanism. 

Debugging 

capability 

eM-Plant 

& DSOL 

While the simulation model is in debug mode, the 

code can be viewed exactly as it is programmed, it 

can be executed step wise, and it is possible to set 

breakpoints and return to breakpoints. 

Building block 

changes during 

simulation run 

mode 

eM-Plant While the simulation model is running, it is possible 

for expert model developers to temporarily stop the 

clock, adjust the simulation model logic and 

continue. This change can also be applied to the 

simulation building blocks that are instantiated in 

the simulation model. Especially during the system 

testing of the simulation building blocks for initial 

development this feature is very helpful for 

developers. 

 

9.5.2 Improvement to additional tools 

 The additional tools defined in chapter 5 are simulation model instantiation, 

model parameterization, model verification and analysis of the model output. 

In the container game all these types of tools have been developed from 

scratch. The domain specific extension for Nestlé production facilities included 

with the Excel sheet only the parameterization and the output analysis. All of 

these tools have been developed from scratch as well, even though the 

simulation building blocks of the domain specific extension were both 

implemented using the generic simulation environment Arena. 

 The parameter interface of simulation building blocks developed in Arena 

all have the same structure, therefore it should be feasible to have a 

standardized approach of filling the parameters. The same applies for the 

output of the simulation model that is defined in text files. A standard reusable 

approach should be available to handle the output of simulation building 

blocks. 

 The standardized approach should contain a way of handling the output of 

simulation building blocks and the best way to represent it. Some experience 

was gained within the Nestlé simulation studies with combining and 

abstracting performance indicators. On the other hand, the lack of combining 

and abstracting was one of the major concerns in the teaching cases in the 

supply chain (Van der Hee, 2002). The definition of additional tools could lead 

to a better standardization and conceptually match better with the use of the 

data and analysis on behalf of the problem owners. 
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9.5.3 Improvement to support and documentation 

 In all of the three key domain specific extensions of chapter 6, 7 and 8, a 

lot of effort was put to the documentation of the individual simulation building 

blocks. This documentation contained the functionality of the individual 

simulation building blocks, a detailed description of their parameters, the 

visualization, the performance indicators and additional background 

information. 

 In the training sessions provided to model developers and users of the 

different domain specific extensions, the model developers received sufficient 

explanations with the functionality descriptions of the simulation building 

blocks. With that knowledge they successfully applied the building blocks in 

training assignments. They hardly ever paid attention to the other descriptions 

of the simulation building blocks and just started working. Further research is 

needed to develop a more targeted documentation, support, and training 

sessions, and thus a more efficient investment in the domain specific 

extension. 

 

9.5.4 Improvement to the design approach for domain specific extensions 

 If the simulation building block guidelines are extended with trade-offs, 

then these trade-offs will enhance the design approach for domain specific 

extensions, especially when the trade-offs contain enhanced mitigations for 

the list of risks that have been identified. The trade-offs and the use of the 

simulation building blocks guidelines can then become an integrated part of 

the design approach. The advantage of an integrated design approach is that 

the designer has a step-wise approach, including a descriptions of workshops 

and intermediate documents, which help the complete design team and 

problem owner to understand the process, the need of contribution and the 

risks involved in insufficient participation by making undesired trade-offs. 

 

9.5.5 New possibilities simulation and challenges using domain specific 

extensions 

 The domain specific extensions that have been developed in the case 

studies enabled fast and easy model development, partially automatic setting 

of the parameters and in two cases complete automatic model instantiation, 

i.e. container game from VISIO drawings (chapter 7) and airport baggage 

systems from AutoCAD drawings (appendix 1). These structured simulation 

models allow for some new possibilities, beyond the used of default problem 

solving as described in section 1.2.  

 The first experiences of using simulation models developed with domain 

specific extensions for other purposes than the intended simulation study for 

problem solving and alternative experimentation were observed in the case 

studies of OLS (control of hardware from simulation, section 3.3), supply chain 

(use of real time data, section 6.6), container design (applicability in a 
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management game, chapter 7), Nestlé production facilities (operational 

planning optimization and generation of PLC logic, section 8.6) and baggage 

handling at airports (test control software via simulation, appendix 1) possibly 

automatic model development.  

 The potential of these topics can be enormous in reducing the cycle of 

investments and the quality of the operational performance of the investment. 

However, each of these topics for further use of simulation models has its own 

challenges. The potential and the main challenges that have been observed 

during the execution of the case studies are briefly discussed as ongoing 

follow up research. 

 

Possibility of using real time data 

 The potential of real time data in simulation models is that an actual 

situation can be reviewed in the model and to have an accurate starting point 

to predict what the system will look like when extrapolated from its current 

situation. In the supply chain case study this resulted in a model that included 

simulated events as well as actual events. Jacobs (2005) describes some 

concepts regarding the generic simulation environment how to handle this. 

Likely also some (additional) simulation building block guidelines are required 

to incorporate this in the domain specific extension. 

 

Possibility of using PLC linking 

Saanen (2004) describes how the process of readying an automated 

container terminal for production is performed, and the enormous challenges 

the developers have with the testing the PLC code. He describes how 

simulation models could be used to test the PLC code by interfacing between 

the simulation software and the PLC software. The OLS project (chapter 3) 

and the baggage handling at airport (appendix) are case studies that helped 

Saanen in the integration and testing. 

 

Possibility of supporting games with simulation 

 In the management game ‘Container Adrift’ the visualization-simulation tool 

is used to support the negotiations around a terminal design. This enabled the 

stakeholders to have discussion about the content besides discussion about 

the processes. Applying simulation models in this way increases the quality of 

the discussion. The challenge for the game participants is not to lose 

themselves in the details offered by the tool. Van Houten (2007) has used this 

idea and the supply chain simulation building blocks to develop a design 

approach for games. Some specific building block elements could be defined 

to enhance the process of game development. 
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Appendix 1: Additional cases with 

domain specific extensions 

 Domain specific extensions have been developed for several more 

domains in the period from 2002 to 2007 than only the domain for supply 

chains (chapter 6), container terminals (chapter 7) and Nestlé production 

facilities (chapter 8). The domain specific extensions were designed according 

to the design approach described in section 5.7, the guidelines for simulation 

building blocks described in section 5.4 and the use of additional tools and 

support to model developers as mentioned in section 5.5 and 5.6.  

 The author of this thesis has participated in the development and use of 

these domain specific extensions, and therefore he assured the use of the 

guidelines and approaches as mentioned. However, the domain specific 

extensions have not been used as extensive as the three examples described 

in the main text. The use has been limited to only one simulation study or the 

model development has only been performed by the developer of the domain 

specific extension. Nevertheless, the case studies describe the wide 

applicability of the concept, guidelines and design approach and therefore 

they have been included in this appendix. 

 

Appendix 1.1 Passengers at airport, once more 

 In section 3.3 we described three simulation studies of passengers at 

airports. In those simulation studies the number of model constructs rapidly 

extended due to small differences in functionality of model constructs. In these 

simulations there also were difficulties with the modeling of the allocation 

algorithms to allocate scarce resources such as gates or check-in counters to 

flights.  

 We redeveloped the domain specific extension in the simulation 

environment eM-Plant with the theory described in chapter 5 and the 

knowledge encountered in the three simulation studies of passengers at 

airports described in section 3.3. In the new domain specific extension, more 

attention was put to functionalities of system elements that were differing or 

shared between the system elements.  

 The infrastructure represented by an ‘Area’ has been modeled by several 

building block elements representing tasks like ‘Allow passenger to enter 

area’, ‘Manage capacity in area’ or ‘Determine process duration in area’. 

These types of building block elements went through several implementations 

resulting in more flexibility in representing an area, and easier changes in the 

simulation models (Valentin, 2002). 

 The use of building block elements also improved the flexibility of using 

specific algorithms. The first simulation study performed with the new domain 

specific extension for passengers in airports regarded the planning and 
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managing of personnel at the security and passport checks at Amsterdam 

Airport Schiphol (Visser, 2000). The model developers required a specific 

algorithm of allocating personnel to the areas for passport checks or security 

checks. Visser solved this by extending the domain specific extension with 

new building block elements to change the capacity of an area based on an 

external trigger and a building block element to dynamically reroute 

passengers that were queuing. 

 The second simulation study with the improved domain specific extension 

for passengers at airports also included the development of new building 

block elements. Kuiper (2001) describes a research project together with the 

Airport Research Center (www.arc-aachen.de) for the evacuation of 

passengers from an airport in case of emergencies. He extended the areas 

with a building block element that represents an alarm or intercom message 

that informs all passengers to leave the airport as soon as possible. The new 

building block elements in the domain specific extension enabled simulations 

to represent different alarming mechanisms and to study the effects of 

alternative emergency exits in an airport building. Kuiper used the new 

building block elements (Figure Appendix.1) in simulation models of different 

airports to prove their applicability. 

 

 
Figure Appendix.1: New building block elements added to the domain 

specific extension for passengers in airports  
(Kuiper, 2001, p78) 

 

Appendix 1.2 Baggage handling at airports 

 Baggage systems become an essential element in the quality that an 

airport provides to its customers. Just a single conveyor belt and manually 

sorting of baggage is not possible, due to operational costs and available time 

between arrival of passenger and departure of a plane. Airports require from 

vendors to have a simulation study that proofs that their design will be able to 

handle the daily peaks. 

 Many vendors have invested in new mechanisms of transporting baggage, 

other than using conveyor belts. Systems like automatic vehicles or magnetic 

steered carts require high investments and thus a trade-off between flexibility 

and investment. The investment in overcapacity can be reduced by smart 

control mechanisms and just in time arrival of vehicles for transporting 
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baggage. This can only be achieved with advanced management of the 

operations in the baggage area. 

 A team of simulation experts and baggage experts worked together at the 

development of a domain specific extension for modeling of baggage 

systems. The input from the experts of the TU Delft was generic simulation 

knowledge, experts of TBA provided mainly knowledge of simulating baggage 

systems and experts of the Airport Research Center provided knowledge of 

animating and drawing baggage systems using AutoCAD.  

 The challenge in this domain specific extension was to develop a set of 

building blocks in the simulation environment eM-Plant including all 

infrastructure and control of the infrastructure as well as a set of building 

blocks in AutoCAD to easily translate a drawing to a simulation model for 

analysis. The simulation model after the analysis should then be translated 

back to the AutoCAD drawing for 3D animation and finalizing engineering 

activities. 

 Another expected use of the domain specific extension is the use of 

different layers for infrastructure, control and management, which allows 

interfacing with real-time objects. This should be a follow up of the successful 

exchange between simulation model and reality as demonstrated in the 

simulation project for the OLS (section 3.2).  

 This domain specific extension consists of different types of transportation, 

among them conveyors, automatic vehicles and magnetic transponders. The 

simulation building blocks are composed from a range of building block 

elements to enable easy development of new pieces of infrastructure, e.g. a 

new type of vehicle or a new crossing between conveyors.  

 
Figure Appendix.2: Representation of baggage handling system as 

drawing and simulation model (www.arc-aachen.de) 

 The interaction between AutoCAD and eM-Plant worked out as expected 

thanks to the same definition of building blocks in the AutoCAD environment 

as in the eM-Plant object libraries. As a result a simulation model can be 

converted to an AutoCAD drawing and an AutoCAD drawing can be converted 

to a simulation model. This interaction is shown in Figure Appendix.2. At the 

left hand side the AutoCAD drawing is shown of baggage handling system in 

Greece and at the right hand side the instantiated simulation model of this 
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system. Changes that are made in the AutoCAD drawing via the dedicated 

user interface (shown also in Figure Appendix.2) will automatically result in 

changes to the simulation model. 

 The interaction between simulation models and the control software of 

physical baggage equipment has not been realized in a real life case, but has 

been performed in smaller laboratory settings in which several conveyors 

belts were controlled via a simulation model. Rengelink and Saanen (2002) 

describe how they test PLC logic via the simulation model by replacing the 

control of the simulation by external PLC logic. 

 Besides the project for testing of PLC logic (Rengelink and Saanen, 2002) 

the domain specific extension for baggage handling has been applied at 

several airports. Among them are the airport of Athens (Greece) and the 

Moscow-Sheremetyevo Airport (Russia) (www.arc-aachen.de). 

 

Appendix 1.3 Business processes for shared service centers 

 The UK government is in progress of introducing shared service centers 

for back office activities like human resources, finance and procurement. The 

aim of introducing the shared service centers is to standardize procedures, 

reduce the number of employees involved by 67% and improve throughput. 

These aims will be achieved by introducing administrative tools and by 

restructuring departments and task allocations. Discrete event simulation is 

used to support in defining the required number of employees, the size of 

work teams and provide qualitative information of lead times and pieces of 

work in progress (Turner, 2006). 

 The design of the shared service centers is performed in 8 cycles, 

representing different tasks within the back offices. The first step is a new 

design of the processes in the shared service center. The second step is to 

develop a simulation model of this process and finally to perform simulation 

experiments to determine the size of work teams and required skills of 

employees by varying task allocations.  

 Simulation models of cycle 1 and 2 of the design of the shared service 

have been developed with model constructs of the generic simulation 

environment. These simulation models represented the system as designed, 

but had the disadvantage that, due to the available model constructs, there 

were quite some differences between the VISIO design and the process flow 

in the simulation model.  

 In the domain specific extension for the container terminals we designed 

building blocks in VISIO and in the simulation environment (chapter 7). In this 

domain specific extension the exchange should not be for equipment, but 

process related. The challenge is that the process in a VISIO chart represents 

different levels and that these different levels result in combined and grouped 

statistics. 
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Figure Appendix.3: Part of design (left) and simulation model (right) of 

cycle 3. 

 

 Therefore, a domain specific extension was developed that matched with 

the VISIO drawings and could represent the work teams easily (Systems 

Navigator, 2006). Figure Appendix.3 shows at the left hand side the VISIO 

drawing of a part of the design of cycle 3. At the right hand side is the 

simulation model instantiated using model constructs of the new domain 

specific extension. 

 The use of the domain specific extension resulted in more effective 

development of the simulation models of the other cycles. The models have 

been developed in a quarter of the time and the problem owners can compare 

the simulation models better with the initial design process drawings in VISIO.  

 

Appendix 1.4 Emergency rooms in Hospitals UK 

 Hospitals in the UK are enforced by the NHS (National Health Service) to 

provide the appropriate care to patients that enter into the emergency within a 

certain time limit. The difficulty in providing the appropriate care within the 

time boundaries is to avoid underutilization of doctors, nurses and spaces and 

still be capable of handling the variability of arrivals of patients. Discrete event 

simulation is an increasingly popular tool to provide insight into the quality 

regarding waiting times a hospital offers. 

 The processes in hospitals are often modeled by a standard flow of 

patients that try to seize doctors, nurses and spaces to enforce that they 

receive the needed care. In reality the doctors determine when a patient is 

taken care of and doctors will reply differently to requests of patients with 

different needs and different waiting time. The longer a patient is waiting, the 

higher its priority will become. The basic model constructs of generic 

simulation environments are not suited to handle the priority and active 

doctors without additional allocation mechanisms. We have designed a 

domain specific extension that consists of simulation building blocks that can 

handle these priority mechanisms and active doctors (Hay et al, 2006).  

 Hospitals are forced by regulation to work in the same way. Further 

doctors have worked for years on standardization of processes to be able to 

help patients the best way. Therefore, hospitals seem one of the most likely 

fields to apply a domain specific extension. 
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 The domain specific extension has been used for modeling four different 

hospitals in the UK. They used the simulation model to analyze the allocation 

of patients in 2006. The set of simulation building blocks is implemented in the 

generic simulation environment Arena together with an Excel sheet that allows 

setting of parameters, creation of doctors and nurses, validate data entry and 

provide output performance indicators. Figure Appendix.4 shows the 

parameter setting and ability to create new doctors in the system. Figure 

Appendix.5 shows the occupancy of the available doctors over time (Hospital 

Navigator, 2007). 

 

 
Figure Appendix.4: Set doctor availability in simulation model  

(Hospital Navigator, 2007 p86) 

 

 
Figure Appendix.5: Output of doctor availability and occupancy during 

simulation run (Hospital Navigator, 2007, p91) 

 

 The designed simulation building blocks have also been implemented in 

the simulation environment DSOL (Jacobs, 2005). Bajnath and Bani Hashemi 

(2007) describe how they reused the concept of Hay et al (2006). They 
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developed a domain specific extension with the DSOL library. A small fictive 

emergency room was instantiated using the simulation building blocks. The 

domain specific environment was extended with an interface for setting 

parameters and analyzing results as part of an applet. Figure Appendix.6 

shows this applet running via Internet Explorer (www.hospitalnavigator.com; 

visited 22-03-2007).  

 
Figure Appendix.6: Applet with interface to DSOL simulation model of 

hospital 

Appendix 1.5 Waterways and vessels 

 The design of a new canal in France between Paris and Belgium was the 

trigger of the development for a domain specific extension for the modeling of 

vessels and waterways. The new canal should consist of 6 to 10 locks, but the 

size and location between the locks was not known yet. Together with 

maritime experts of Sogreah we have defined infrastructure and processes of 

vessels.  

 This domain specific extension has been the first where the Scenario 

Navigator software has been applied for full control over the configuration of 

the simulation model, extension of the simulation model and gather results of 

the different simulation studies. 

 A couple of the domain specific building blocks to represent system 

elements of infrastructure are waterway, bridge, tunnel and lock. The 

processes defined are the mechanism of priority in a lock or underneath a 

bridge and reservation of positions in a lock (Systems Navigator, 2005). 

 The domain specific extension has in addition been applied for simulation 

studies of the locks near Grave (NL) and an improvement of the canal “Du 

Rhône à Sète” (FR). These two additional simulation studies required small 
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extensions to the domain specific extension. A new simulation building block 

representing two parallel locks has been composed out of existing building 

block elements for the locks near Grave (NL) and additional building block 

elements have been developed for the generation of vessels that use the 

canal “Du Rhône à Sète”. 
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Figure Appendix.7: Effective comparison of simulation experiments of 

waterways using Scenario Navigator (Valentin et al, 2005a, p1582) 

 

 The simulation building blocks have been prepared to be filled with data 

via the application Scenario Navigator, which enables easy parameterization 

and optimization for a large set of simulation experiments as well as multiple 

simultaneous users involved in the simulation studies for the design of the 

waterways. Figure Appendix.7 shows the use of Scenario Navigator and 

simulation models developed using the domain specific extension for 

waterways (Valentin et al, 2005a). 

 

Appendix 1.6 Reorganizing police services to match reaction times 

 Politicians in the Netherlands have put requirements to the reaction times 

of police services. A police officer should be able to respond within a certain 

time frame to an assignment, but also finish the paperwork correctly. Several 

police departments in the eastern part of the Netherlands have joined forces 

to be more certain of their capabilities of replying to calls of residents in their 

area and to be able to reduce the number of individual police officers they 

need to hire.  

 A domain specific extension has been developed to represent police 

officers with their schedules, availability and skills. An interface has been 
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developed to allocate the correct number of police officers to each individual 

area and to filter incoming calls from their historical database. The 

development of the domain specific extension was worthwhile, even though 

only one simulation study was performed. The adjustments to the simulation 

model that were enabled by the simulation building blocks and the 

parameterization instrument were performed much easier than with a 

simulation model instantiated with generic model constructs. Also the 

representation of statistics was better thanks to the building block element that 

collected the statistics of the individual police officers. Figure Appendix.8 

shows one of the allocations of police officers to the three sub-areas and the 

organization of offices instantiated in a simulation model. 

 

 
Figure Appendix.8: Simulation model allocation police officers to areas 

 The experiments that have been performed included applying new 

technology to provide process improvements and relocating police officers. 

Thanks to the simulation experiments the police department had insight in the 

suitability of different configurations and which additional technologies were 

worth investing (De Vreede et al, 2002) 

 

Appendix 1.7 International banking ABN AMRO 

 Globalization offers advantages to banks, thanks to companies that 

perform international business. However, the globalization also results that 

banks have to deal with more competitors. The ABN AMRO triggered an 

investigation whether it would be worthwhile to centralize some of their 

payment activities from offices all over the world to a large dedicated office in 

the Netherlands. Ayad and Sol (2002) describe issues that the bank has to 

consider like local regulation and IT-architecture. Ayad and Sol defined 

together with ABN AMRO several possible allocations of tasks and logistical 

flows that are required to evaluate 
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Figure Appendix.9: Visualization interaction local and centralized bank 

organization (Ayad and Valentin, 2001, p2) 

 Simulation has been used to evaluate the possible allocations of tasks in 

the international network of the ABN AMRO. Figure Appendix.9 shows an 

example simulation model that resembles the map of Europe with local offices 

in France and London and the interaction with the centralized office in 

Amsterdam. The figure of a man represents a personal visit of someone to a 

local brand of the ABN AMRO bank. Instantiating building block elements 

inside the simulation building blocks of the bank offices enabled allocation of 

tasks to the local or centralized office (Ayad and Valentin, 2001). 

 

Appendix 1.8 Mail delivery Sandd 

 Sandd is one of the new companies active at the Dutch mail market. They 

are specialized in delivery to advertisement material and magazines. Since 

2000 the company has been growing fast and captured the second spot of the 

Dutch post market. The growth has led in 2005 to loss of quality and 

increases in cost. Sandd has been looking for an instrument to help them in 

their operational planning and redesign of their activities to be able to cope 

better with the variability in workload. This instrument should also allow them 

to predict the future and possible bottlenecks that might arise. 

 Together with a team of analysts of Boer and Croon Young Executives 

(www.BCYE.nl) and Sandd we have developed a domain specific extension 

containing building blocks that represent the processes of post sorting and 

transportation. The domain specific extension also contains simulation 

building blocks that represent employees and equipment that is used for 

sorting. Figure Appendix.10 shows the processes of post sorting in the central 

hall and the types of equipment used for the sorting.  
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Figure Appendix.10: Post sorting hall of Sandd 

 

 The domain specific extension uses Excel sheets for setting parameters of 

the building blocks and representing output statistics. Scenario Navigator 

technology is applied to enable that the simulation models can be used by 

managers in the sales department, the sorting hall, or the decentralized 

depots to perform experiments with the expected workloads or possible new 

customers (Riesenkamp et al, 2007). 
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Summary 

Discrete event simulation modeling is for many years already a successful 

instrument to support problem owners in getting more insight into their 

problem domain and possible solutions. Eventhough its success, there are 

also some pitfalls around the use of discrete event simulation. These pitfalls 

can be summarized around three topics: 1) the model developer has 

difficulties to handle the unlimited freedom in modeling; 2) model developers 

need to be experts in multiple areas including programming, statistics and 

general consultancy; 3) model developers do not speak the language of the 

problem owner as a model developer cannot specialize as much into one 

domain. The effect is that simulation studies take much longer then problem 

owners expect and that the problem owners do not receive the amount of 

insight requested.  

A resolution is found in the use of domain specific extensions to the use of 

generic simulation environments. Domain specific extensions consist of model 

construct that represent system elements at the level of abstraction that the 

problem owner is familiar with. These extensions enable the simulation model 

developer to create simulation models in a generic simulation environment like 

Arena or eM-plant, but do not require the model developer to work out all the 

detailed bits and pieces that are normally part of a simulation model. The 

model developer does not use model constructs with generic names as 

‘queue’ and ‘resource’, nor will the model developer compose the simulation 

model with processes as ‘wait’ or ‘claim’. The model developer can use model 

constructs that represent system elements in the level of generalization the 

problem owner is used to. For example, ‘AGV’, ‘check-in counter’ or ‘ship 

quay’. As a result the model developer and the problem owner easily speak 

the same language. Secondly, the model constructs require less technical 

skills from the model developer and thirdly it reduces the options from the 

model developer and guides him/her in the direction for composing a 

simulation model that represents the system of the problem owner.  

In literature the use of domain specificity has been seen as an enormous 

advantage, especially to support the model developer in faster composing the 

simulation models, but on the other hand the number of domain specific 

extensions is limited. The same literature also refers to a wide range of risks 

of using domain specific extensions and discussions with simulation experts 

confirm the occurrences of these risks in practical case studies.  

This research aimed at finding solutions to the risks of using domain 

specific extensions in discrete event simulation studies. The applied approach 

has been inductive research via case studies, supported by literature search 

and laboratory experiments. 
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Initially two case studies have been performed based on the best 

knowledge available for the development and use of domain specific 

extensions in discrete event simulation studies. These case studies dealt with 

an underground logistics system and passengers at Amsterdam Airport 

Schiphol and JFK International in New York. In both domains a new domain 

specific extension has been developed, including a wide range of model 

constructs that represented system elements that were recognizable parts of 

the system. With these model constructs several simulation models have 

been created as part of performed simulation studies. The simulation studies 

in both domains demonstrated that benefits can be achieved with domain 

specific extensions that are developed for the domains of AGVs and 

passengers at airports. However, the case studies also demonstrate that there 

are a couple of risks that come up when using model constructs from a 

domain specific extension. We identified new benefits and we had to mitigate 

new risks in addition to the expected benefits and the predicted risks 

originating from literature for the use of domain specific extensions in discrete 

event simulation studies. 

Besides the use of domain specific extensions in real life simulation 

studies we also performed laboratory experiments in which we compared the 

use of domain specific extensions versus the use of only model constructs of 

generic simulation environments. The laboratory experiments have been 

performed with novices (participants without any practical experience in the 

field of simulation) and experts (participants who were simulation 

professionals with at least several years experience) in the field of discrete 

event simulation. In several laboratory experiments the different participants 

had to make adjustments to existing simulation models to enable new 

experiments, the participants had to develop simulation models from scratch 

and the participants had to execute a miniature simulation study. The novice 

participants that worked with the domain specific extension were better 

capable to reach the results within the limited time compared to the novices 

that worked with the generic simulation environment. Further, it was surprising 

to notice how much difficulties the simulation experts had to work with the 

model constructs provided by the domain specific extension. The novices 

were well supported by the domain specificity of the model constructs, while 

the experts wanted to see the details behind the domain model constructs and 

felt limited by the domain specific extension. 

The observations from the case studies and the laboratory experiments 

are used to define requirements for a successful domain specific extension. 

These requirements are translated to a theory that a domain specific 

extension is more than a collection of model constructs. The contribution of 

this dissertation provides four elements that help to ensure the expected 

benefits and mitigate the identified risks. These four elements are: 
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• Domain specific extension should consist of simulation building blocks 

and building block elements that match 22 guidelines. 

• Additional tools should be available to support data entry, model 

development and/or output evaluation and comparison. 

• The simulation building blocks and building block elements should be 

well documented and supported by small examples to enable the model 

developer to feel comfortable with the domain specific extension. 

• A design approach needs to be followed that allocates time to the 

activities for conceptualization and specification. 

 The concept of simulation building blocks and building block elements are 

retrieved from research that has been performed in the domain of software 

engineering. The 22 defined guidelines help to structure simulation building 

blocks and to improve their reusability by composing the simulation building 

blocks out of building block elements. Further the guidelines help the 

developers of simulation building blocks to provide flexible interfaces and user 

interfaces so model developers can set parameters of the building blocks.  

 The additional tools automate some of the activities a model developer has 

to perform in a simulation study. One of the benefits of the use of domain 

specific extensions has been that statistics is all included in the simulation 

building block. This inclusion results in a lot of detailed data gathered during 

the execution of the simulation model, but a model developer cannot handle 

all this information unless it is structured and summarized. Additional tools 

help to combine the information and enable the model developer to do faster 

more experiments that all provide quality insights into the system. 

 The experts in the laboratory experiments dived into the details of the model 

constructs of the domain specific extension. They did not have the trust that 

the model constructs preformed correctly. In the simulation studies performed 

with the AGVs and at the airports similar observations have been made. 

Therefore the domain specific extension should provide a lot of documentation 

and support to enable model developers not only to use the model constructs, 

but more important to trust the domain specific model constructs. 

 The domain specific extension is with the introduction of simulation building 

blocks, the use of additional tools and the documentation and support material 

much more than just a set of domain specific model constructs developed 

using a generic simulation environment. Therefore, the approach to design 

and develop a domain specific extension as it is proposed based on literature 

studies has been extended, deepened and improved to better support the 

developers of domain specific extension to follow the guidelines and result in 

a successful, reusable domain specific extension. 

 The contribution to the theory of domain specific discrete event simulation 

(concept of simulation building blocks, additional tools, documentation and 

support and a design approach) have been applied in a dozen different case 
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studies. We picked out three that are most representative to demonstrate how 

the theory is applied, but more important the result of applying the contributed 

theory in the execution of simulation studies using a domain specific extension 

of simulation building blocks including additional tools and documentation and 

support. The three case studies are: 

• Information flows for supply chains; especially focus on the use of the 

design approach and demonstrate the capability to develop the same 

simulation building blocks independent of generic simulation 

environment 

• Container terminal simulations in 15 minutes; especially focus to the 

capability of automating simulation model development and output 

reporting to enable a design for a container terminal to be developed in 

15 minutes and provide an extensive documentation of the output of 

financial and logistical performance indicators 

• Nestlé production facilities; especially the use of the simulation building 

blocks in challenging simulation studies that change scope and require 

extension of the capabilities of the building blocks that are part of the 

domain specific extension 

 The evaluation of these case studies led to the conclusion that domain 

specific extensions improve the effectiveness of simulation studies, but that 

the development of such a domain specific extension should follow the 

guidelines and design approach. Further some additional research is 

suggested in different areas. We list some possible enhancements to generic 

simulation environments to better support the development of domain specific 

extensions. We suggest to investigate the possibilities of new use of 

simulation models developed using domain specific extensions and we 

suggest improvements to the design approach to support developers in trade 

offs to be made during the design of simulation building blocks. 
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Samenvatting 

Simulatie is al jaren een succesvol instrument dat probleemeigenaren 

ondersteunt in het verkrijgen van inzicht voor mogelijke oplossingen in hun 

probleemgebied. Ondanks successen rond het gebruik van discreet event 

simulatie zijn er valkuilen die modelleurs vaak tegen komen. Deze valkuilen 

kunnen worden samengevat rond 3 onderwerpen: 1) de modelbouwer heeft 

moeite met de ongelimiteerde vrijheid in de modelbouw; 2) de modelbouwer 

moet expert zijn in meerdere gebieden, onder andere programmeren, 

statistiek en algemene consultancy; 3) de modelbouwer spreekt niet de 

specifieke taal van de probleemeigenaar, want een modelbouwer kan zich 

niet specialiseren in een domein. Het effect van deze valkuilen die 

modelbouwers moeten ontwijken is dat simulatiestudies langer duren dan wat 

probleem-\eigenaren verwachten en dat de probleemeigenaren niet het inzicht 

krijgen dat ze nodig hebben. 

Het gebruik van domeinspecifieke uitbreidingen van bestaande generieke 

simulatieomgevingen levert hier een oplossing voor. Domeinspecifieke 

uitbreidingen bestaan uit modelconstructen die een systeem representeren op 

het abstractie niveau waar de probleemeigenaar gewend is in te werken. 

Deze uitbreidingen stellen de simuatiemodelbouwer in staat om 

simulatiemodeleln te bouwen in generieke simulatieomgevingen zoals Arena 

of eM-Plant, maar de modelbouwers hoeven zich niet te buigen over de 

technische details die normaal een onderdeel zijn van simulatiemodellen. De 

modelbouwer gebuikt geen modelconstructuen met generieke namen zoals 

‘wachtrij’ en ‘resource’, en ook zal de modelbouwer geen generieke 

processen in het model opnemen zoals ‘wacht’ of ‘claim’. De modelbouwer 

kan modelconstructen gebruiken die systeemelementen representeren op het 

niveau van generalisatie dat de probleemeigenaar gewenst is. Bijvoorbeeld, 

‘AGV’, ‘check-in counter’ of ‘scheepskade’. Allereerst kunnen de 

probleemeigenaar en de modelbouwer dankzij de domeinspecificiteit gebruik 

maken van dezelfde taal, ten tweede hoeft de modelbouwer minder 

technische kennis te hebben en ten derde vermindert het gebruik van 

modelconstructen van domeinspecifieke uitbreidingen de opties van de 

modelbouwer en stuurt het de modelbouwer bij het bouwen van het 

simulatiemodel dat het systeem van de probleemeigenaar representeert. 

In de literatuur wordt het gebruik van domeinspecificiteit gezien als een 

groot voordeel, met name om de modelbouwer te ondersteunen om sneller de 

simulatiemodellen te ontwikkelen, maar aan de andere kant is het gebruik van 

het aantal domeinspecifieke uitbreidingen beperkt. Dezelfde literatuur verwijst 

ook naar de diverse risico’s die het gebruik van domeinspecifieke 

uitbreidingen met zich meebrengen. Deze risico’s zijn is bevestigd in 
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gesprekken met simulatieexperts die de risico’s herkennen in hun eigen 

simulatiestudies. 

 Dit onderzoek richt zich op het vinden van oplossingen voor de risico’s 

van het gebruik van domeinspecifieke uitbreidingen in simulatiestudies. In dit 

onderzoek is gebruik gemaakt van inductief research met behulp van case 

studies, ondersteunt door literatuuronderzoek en laboratorium-experimenten. 

Initieel zijn twee casestudies uitgevoerd op bases van de best beschikbare 

kennis voor de ontwikkeling en gebruik van domeinspecifieke uitbreidingen in 

simulatiestudies. Deze casestudies hadden betrekking op een ondergronds 

logistiek systeem en passagiers op Amsterdam Airport Schiphol en JFK 

International in New York. In beide domeinen is een nieuwe domeinspecifieke 

uitbreiding ontwikkeld, inclusief een variëteit aan modelconstructen die 

herkenbare systeemelementen representeerden. Met deze modelconstructen 

zijn verscheidene simulatiemodellen gebouwd als onderdeel van de 

uitgevoerde simulatiestudies. De simulatiestudies in beide domeinen hebben 

aangetoond dat de verwachte resultaten behaald kunnen worden met 

domeinspecifieke uitbreidingen die zijn ontwikkeld voor de domeinen van 

respectievelijk AGVs en passagiers op luchthavens. Echter, de case studies 

hebben ook getoond dat er risico’s zijn bij het gebruik van domeinspecifieke 

uitbreidingen. We hebben nieuwe risico’s en aanvullende voordelen 

geïdentificeerd in aanvulling op de verwachte voordelen en de voorspelde 

risico’s op basis van de literatuur over het gebruik van domeinspecifieke 

uitbreidingen in simulatiestudies. 

Naast het gebruik van de domeinspecifieke uitbreidingen in 

simulatiestudies zijn ook laboratorium experimenten gedaan waarin we keken 

wat het verschil is tussen het gebruik van een domein specifieke uitbreiding 

en het gebruik van alleen maar een generieke simulatieomgeving. De 

laboratoriumexperimenten zijn uitgevoerd met beginners (deelnemers zonder 

enige praktijkervaring met simulatiestudies) en simulatieexperts (deelnemers 

die minstens enige jaren professioneel simulatiestudies uitvoeren). In de 

laboratoriumexperimenten moesten de deelnemers aanpassingen maken aan 

bestaande simulatiemodellen om nieuwe experimenten mogelijk te maken, de 

deelnemers moesten simulatiemodellen maken vanaf nul en deelnemers 

moesten een mini simulatiestudie uitvoeren. De beginners die werkte met de 

domeinspecifieke uitbreiding waren beter in staat om resultaten te verzamelen 

met de kort beschikbare tijd vergeleken met de beginners die werkten met de 

generieke simulatieomgevingen. Daarnaast was het verrassend hoe moeilijk 

de simulatieexperts het hadden om te werken met de modelconstructen van 

de domeinspecifieke uitbreiding. De beginners voelden zich goed ondersteunt 

door de domeinspecifieke modelconstructen, terwijl de experts de details 

achter de domeinspecifieke modelconstructen wilden zien en zich gelimiteerd 

voelden door het gebruik van de domeinspecifieke uitbreiding. 
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De observaties van de casestudies en de laboratoriumexperimenten zijn 

gebruikt voor het samenstellen van eisen voor een succesvolle domein-

specifieke uitbreiding. Deze eisen zijn vertaald naar een theorie dat een 

domeinspecifieke uitbreiding meer is dan alleen maar een collectie van 

modelconstructen. De theorie beschreven in deze dissertatie is verdeeld over 

vier onderwerpen: 

• Domeinspecifieke uitbreiding moet bestaan uit simulatiebouwstenen en 

bouwsteenelementen die 22 richtlijnen volgen. 

• Aanvullende applicaties moeten beschikbaar zijn ter ondersteuning van 

data invoer, modelbouw en/of resultaatevaluatie en resultaatvergelijking. 

• De simulatiebouwstenen en bouwsteenelementen moeten uitgebreid 

beschreven zijn en ondersteund worden door kleine voorbeeldmodellen 

die de modelbouwer een comfortabel gevoel geven voor gebruik van de 

domeinspecifieke uitbreiding. 

• Een ontwerpaanpak moet gevolgd worden die veel tijd besteed aan de 

activiteiten voor conceptualisatie en specificatie. 

 Het concept van simulatiebouwsteneen en bouwsteenelementen is 

gebaseerd op onderzoek in het gebied van software engineering. De 22 

gedefinieerde richtlijnen helpen om simulatiebouwstenen te structeren en 

verbeteren de herbruikbaarheid door het samenstellen van simulatiebouw-

stenen op basis van bouwsteenelementen. Daarnaast helpen de richtlijnen de 

ontwikkelaars van simulatiebouwstenen in het maken van een flexibele 

interface en gebruikersinterfaces zodat modelbouwers parameters van de 

bouwstenen kunnen instellen. 

 De aanvullende applicaties automatiseren enkele van de activiteiten die een 

modelbouwer moet uitvoeren tijdens een simulatiestudie. Een van de 

voordelen van het gebruik van domeinspecifieke uitbreidingen is dat 

statistieken al onderdeel zijn van de simulatiebouwstenen. Dat betekent dat 

automatisch veel gedetailleerde informatie beschikbaar is na de uitvoer van 

een simulatiemodel, maar een modelbouwer kan niets met al deze informatie 

tenzij het wordt gestructureerd en samengevat. Aanvullende applicaties 

helpen om deze informatie te combineren en ondersteunen de modelbouwer 

om sneller experimenten uit te voeren die inzichten geven in het systeem. 

 De expertdeelnemers van de laboratoriumexperimenten doken in de details 

van de modelconstructen van de domeinspecifieke uitbreiding. Zij hadden niet 

het vertrouwen dat de modelconstructen correct werkten. Vergelijkbare 

observaties zijn gemaakt in de simulatiestudies met de AGVs en de 

luchthavens. Om dit te voorkomen moet de domeinspecifieke uitbreiding veel 

documentatie en ondersteuning bieden aan de modelbouwers, niet alleen 

over het gebruik van de modelconstructen, maar nog belangrijker over het 

vertrouwen dat de modelbouwer mag hebben in de modelconstructen. 
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 De domeinspecifieke uitbreiding is met de introductie van de simulatie-

bouwstenen, het gebruik van aanvullende applicaties en het documentatie- en 

supportmateriaal veel meer dan alleen maar een set van domeinspecifieke 

modelconstructen ontwikkelt in een generieke simulatieomgeving. Daarom is 

de ontwerpaanpak die is geïntroduceerd op basis van literatuuronderzoek 

uitgebreid, uitgediept en verbreed om de ontwikkelaars van domeinspecifieke 

uitbreidingen beter te ondersteunen om de simulatie bouwsteen richtlijnen te 

kunnen volgen en te kunnen resulteren in een herbruikbare domeinspecifieke 

uitbreiding. 

 De bijdrage aan de theorie van domeinspecifieke uitbreidingen (concept van 

simulatie bouwstenen, aanvullende applicaties, documentatie en support en 

een ontwerpaanpak) is toegepast in een dozijn verschillende casestudies. We 

hebben drie casestudies geselecteerd die het meest representatief zijn om te 

demonstreren hoe de theorie is toegepast en om te laten zien wat het 

resultaat is als deze theorie wordt toegepast in simulatiestudies met behulp 

van domeinspecifieke uitbreidingen van simulatiebouwstenen inclusief 

aanvullende applicaties en documentatie en support. De drie case studies 

zijn: 

• Informatie voorziening voor supply chains; met name focus op het 

gebruik van de ontwerpaanpak en aantonen dat het mogelijk is om 

simulatiebouwstenen te maken ongeacht de generieke 

simulatieomgeving waarin de bouwstenen worden geïmplementeerd. 

• Containerterminalsimulatie in 15 minuten; met name focus op de 

mogelijkheid om door automatische simulatiemodel ontwikkeling en 

automatische aggregatie van simulatiemodel data een containerterminal 

te ontwerpen in 15 minuten en uitgebreid de resultaten te documenteren 

van de financiële en logistieke kengetallen. 

• Nestlé productiefaciliteiten; met name het gebruik van 

simulatiebouwstenen in simulatiestudies die door wijzigingen resulteren 

in uitbreidingen van de bouwstenen die onderdeel zijn van de domein-

specifieke uitbreiding. 

De evaluatie van deze casestudies heeft geleid tot de conclusie dat domein-

specifieke uitbreidingen de effectiviteit van simulatiestudies verbeteren, maar 

dat de ontwikkeling van deze domeinspecifieke uitbreiding wel gedaan moet 

worden volgens de ontwerpaanpak en rekening houdend met de richtlijnen. Er 

is aanvullend onderzoek geïdentificeerd ijn verschillende onderwerpen. We 

adviseren verbeteringen voor de generieke simulatie-omgevingen met 

betrekking tot ontwikkeling van domein-specifieke uitbreidingen. We adviseren 

ook om te onderzoeken naar alternatief gebruik van simulatiemodellen 

ontwikkeld met domeinspecifieke uitbreidingen en we adviseren onderzoek 

naar verbeteringen van de ontwerpaanpak om ontwikkelaars van 

simulatiebouwstenen beter te ondersteunen in het maken van ontwerpkeuzes. 
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