

Effective simulation studies
using domain specific simulation building blocks

Edwin Valentin

Effective simulation studies
using domain specific simulation building blocks

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van Rector Magnificus prof. ir. K.C.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 19 april 2011 om 15.00 uur

door

Edwin Cristiaan VALENTIN

Baccalaureus logistiek en economie

geboren te Delft

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. H.G. Sol

Prof. dr. ir. A. Verbraeck

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof. dr. H.G. Sol, Technische Universiteit Delft, promotor

Prof. dr. ir. A. Verbraeck, Technische Universiteit Delft, promotor

Prof. dr. N.M. van Dijk, Universiteit van Amsterdam

Prof. dr. ir. L.A. Tavasszy, Technische Universiteit Delft

Prof. dr. ir. W.A.H. Thissen, Technische Universiteit Delft

Prof. dr.ir. J.G.A.J van der Vorst, Universiteit Wageningen

Dr. I. Wenzler, Technische Universiteit Delft

Prof. dr. F.M.T. Brazier, Technische Universiteit Delft, reservelid

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, Den Haag

Valentin, Edwin Cristiaan

Effective simulation studies using domain specific simulation building blocks

Proefschrift Delft. – Met Index, lit. opg., Nederlandse samenvatting

Trefw.: discrete event simulation, building blocks, modeling

Cover illustration: Edwin Valentin

Printing: Gildeprint Drukkerijen

English editor: Miranda Aldham-Breary

Copyright ©2011 by E.C. Valentin

All rights reserved worldwide No part of this thesis may be copied or sold

without the written permission of the author.

 i

Preface and Acknowledgements

 In the past 13 years that I have been working in the domain of simulation

modeling I have discussed the challenges in the field with a lot of people with

a wide variety of background. To mention two extremes: With my friends I

mainly spoke about the use of providing insight in queues, resulting in

practical jokes were my advice was requested to help selecting the best

queue at our local supermarket. Just as practical, but more interesting were

the discussions with real life problem owners. “Are two berths sufficient?”, “Is

this silo large enough?” or “Can we improve the production by 10%?” are just

a couple of the many real life problems I have tackled.

 This dissertation could not have been developed without these real life

problems, but if you are reading this dissertation to find the answers to the

questions then I have to disappoint you. This dissertation focuses around the

question whether a different way of performing simulation studies is more

effective. Years I have been claiming “Yes, building blocks will rule the world”,

but putting that down in the right words have given me more headaches than

all my simulation studies, modeling problems and unexplainable errors

together. And thanks to all the help, support, motivation and inspiration I have

received an end has been put to this pending challenge of writing a

dissertation.

 “Schrijven is schrappen”1 has never been my best point, but I owe it to

both my promotores Henk Sol and Alexander Verbraeck that they kept on

telling me to stick to what I can and know. If I look back to some of the

documents I have asked them to review, then it is a miracle they did not kick

me out. Instead they kept on helping and guiding me towards a complete

research and not just two dozen of fun simulation studies without any relation.

 On the other hand, I have had the opportunity to participate in these

simulation studies and apply there my ideas and suggestions. I want to thank

my contacts at the different institutes and (simulation) companies as well as

the students and colleagues that actively worked with me in these projects,

especially Adrien Leleu, Alessandro Nati, Annemarie Corver, Corné

Versteegt, Dave Sturrock, Dennis Pegden, Freeke Heijman, Gregory Piot, Igor

Mayer, Jeroen Korf, Klaas Pieter van Til, Martijn Riesenkamp, Patrick Blom,

Piero Silva, Rachid Maghnouji, Remmert van der Wal, Rienk Bijlsma, Rogier

van der Hee, Sicco Steijaert, Tim Holt, Vincent de Gast, Wieke Bockstael and

Yvo Saanen.

 I have had the opportunity to share the results of these simulation studies

and intermediate results of the use and design for simulation building blocks in

different scientific communities. Each group learned and showed me

something different ranging from the friends from Systeemkunde, the similar

minded researchers of the BETADE research program and PhD consortia to

1
 Kill your darlings

ii

the experts at simulation conferences such as WSC and ESS. To most of the

people I have met I owe thanks, especially the persons that over the years

kept interested, supporting and motivating in addition to previously mentioned

names: Ajantha Dehanayake, Bob Briggs, Dick Nance, Els van de Kar, Gert

Jan de Vreede, Gwen Kolfschoten, Hans Vangheluwe, Jaco Appelman, Jerry

Banks, Jessica Chen, Glenn Drake, Jon Philips, Jurgen van Grinsven,

Marielle den Hengst, Miranda Aldham-Breary, Nadia Ayad, Osman Balci,

Peter Jacobs, Peter Keen, Roy Chin, Sabrina Rodriques, Stijn Pieter van

Houten, Tamrat Tewoldeberhan, Wander van der Berg, Wenlong Zhao and

Yan Wang.

 It took me several years longer than the 4 years that are provided normally

by the university. Therefore I want to thank my employers Delft University,

Systems Navigator and Accenture for providing me with time, facilities and

trust to finish off my research and dissertation in the time I needed.

 Finally all this wouldnot have succeeded if my friends and family did not

provide the support and distractions that were necessary to empty and fill my

head. I cannot think of a better word for standing by me over the years than:

“Thanks”.

Edwin Valentin

2011.

 iii

Table of contents

Preface and Acknowledgements .. i
Table of contents .. iii
1. Effective problem solving using discrete event simulation 1

1.1 The use of models in problem solving 1
1.2 Research scope: Problem solving support by discrete event simulation 4
1.3 Elements of a discrete event simulation model 6
1.4 Applying discrete event simulation models for problem solving 9
1.5 Common challenges in simulation studies 11
1.6 Domain specific extensions to enable model adjustability 14
1.7 Research questions and approach 15
1.8 Outline of the research 18

2 Domain specific extensions of simulation environments21
2.1 Domain Specific Extensions; definitions and terminology 21
2.2 Representation of system elements in a domain specific extension 26
2.3 Design process for domain specific extensions 29
2.4 Advantages of using a domain specific extension 33
2.5 Risks of using a domain specific extension mentioned in literature 35
2.6 Conclusion 37

3 A qualitative analysis in domain specific extensions39
3.1 Introduction 39
3.2 Exploratory case study 1: OLS design of terminals 40
3.3 Exploratory case study 2: passengers at airports 56
3.4 Benefits and risks in the case studies 75

4 Testing domain specific extensions in a laboratory setting83
4.1 Introduction 83
4.2 First laboratory experiment: experimenting with an existing simulation model 91
4.3 Second laboratory experiment: creating simulation models from scratch 98
4.4 Third laboratory experiment: performing a simulation study 105
4.5 Overall conclusions drawn from laboratory experiments 113

5 Domain specific extensions realized by simulation building blocks .115
5.1 Introduction 115
5.2 Requirements for domain specific extensions 116
5.3 Types of changes and extensions for domain specific extensions 120
5.4 Simulation building blocks 122
5.5 Additional tools for domain specific extensions 143
5.6 Support and documentation for domain specific extensions 147
5.7 Design approach for improved domain specific extensions 153
5.8 Case studies to apply domain specific extensions 159

iv

6 Application to supply chains ...163
6.1 Why develop a domain specific extension? 163
6.2 Initial team to develop domain specific extension 164
6.3 Specification of domain specific extension 165
6.4 Implementation 167
6.5 Use of Simulation Building Block Guidelines 175
6.6 Simulation studies performed 182
6.7 Observations during simulation studies 188
6.8 Overview observations case study Supply Chain 190

7 Application to container terminals ..195
7.1 Why develop a domain specific extension? 195
7.2 Initial team to develop domain specific extension 196
7.3 Specification of domain specific extension 196
7.4 Implementation 199
7.5 Use of Simulation Building Block Guidelines 205
7.6 Simulation studies performed 210
7.7 Observations during simulation studies 212
7.8 Overview observations 214

8 Application to Nestlé production facilities ...219
8.1 Why develop a domain specific extension? 219
8.2 Initial team to develop the domain specific extension 220
8.3 Specification of the domain specific extension 220
8.4 Implementation 230
8.5 Use of building block guidelines 238
8.6 Simulation studies performed 247
8.7 Observations during simulation studies 257
8.8 Overview observations 259

9 Epilogue ...265
9.1 Introduction 265
9.2 Combined observations of case studies 265
9.3 Matching of requirements for domain specific extensions 268
9.4 Answers to the research questions 277
9.5 Further improvements and future research 279

References ...285
Appendix 1: Additional cases with domain specific extensions295

Appendix 1.1 Passengers at airport, once more 295
Appendix 1.2 Baggage handling at airports 296
Appendix 1.3 Business processes for shared service centers 298
Appendix 1.4 Emergency rooms in Hospitals UK 299
Appendix 1.5 Waterways and vessels 301
Appendix 1.6 Reorganizing police services to match reaction times 302
Appendix 1.7 International banking ABN AMRO 303
Appendix 1.8 Mail delivery Sandd 304

Summary ..307
Samenvatting ...311
Curriculum Vitae ..315

 1 Effective problem solving using discrete event simulation

 1

1. Effective problem solving using
discrete event simulation

1.1 The use of models in problem solving

 Problem owners need a good insight into their systems to be able to make

decisions for improving or changing the systems. They gather this insight

using models of the current systems and of possible alternatives. Any models

that problem owners use in their process of problem solving are reduced

representations of reality. Ackoff (1962) states that the process of problem

solving consists of two phases. In the first phase the problem or issue

encountered in a system is analyzed based on a model of the current system.

This model is used to identify a variety of potential solutions to improve the

system and thus reduce or remove the problem, or address the issue. In the

second phase the solutions are represented by models. These models are

evaluated and judged on a set of performance indicators identified by the

problem owners, which are often compared to the values of the same

performance indicators obtained by studying the model of the current system.

The outcome of the second phase is one selected solution that is applied to

the existing system to result in a new system that no longer presents the

observed problem.

 The complete process of problem solving as identified by Ackoff consists

of six sequential steps. These six steps are (after Ackoff, 1962):

Phase one:

1. formulating the problem

2. constructing the model

3. analysis with the model

Phase two:

4. deriving solutions from the model

5. analyzing solutions and selecting a solution to be implemented

6. implementing the solution

 The process of problem solving is aimed at finding a solution that best fits

the requirements of the problem owners. Usually, problem owners can easily

define a set of possible solutions for a problem, but comparing the different

solutions is difficult due to the lack of insight into the potential results.

Therefore, Ackoff introduces and uses models to represent the original system

and potential solutions. The models of the different variants of the system will

be compared by the problem owners, so they can make a decision which

solution to implement in reality. The problem owners will judge the quality of

solutions on performance indicators that can be obtained from their models. It

is important within the process of problem solving that the models of the

1.1 The use of models in problem solving

2

problem situation and the solutions provide the same set of performance

indicators. In practice, one model of the current situation is constructed, which

is adjusted to analyze the alternatives. In this way the models provide the

same performance indicators, and solutions can be compared objectively. The

level of success of using models in problem solving can be defined by the

ability of problem owners to base their decisions on the performance

indicators obtained by studying the models. These performance indicators can

be quantitative, but also qualitative judgments by the problem owner or by

experts.

 Identifying the best solution for a certain system requires that all solutions

are identified and modeled. Developing models of all solutions for real-world

problems is impossible. Simon (1969) introduces the concept of bounded

rationality for the complex multi-actor process of problem solving,

acknowledging the fact that it is impossible to see the complete solution

space.

 Models do not reflect the complete system with all its aspects, but rather

they are an abstraction that is applied to include only those aspects of the

system that are important for the solving of the problem. Mitroff and Sagasti

(1973) extend Ackoff’s process of problem solving by defining the use of

several types of models to support problem solving. The first type of models is

the conceptual model in which the structure, concepts and boundaries of the

system are defined. The second type of models is the empirical model.

Empirical models are used to represent the system within the structure,

concepts and boundaries of the conceptual model, to provide insight for the

problem owners into that particular system configuration. Sol (1982) adds that

a conceptual model defines the language that is used to instantiate the

empirical models and the conceptual model defines the view that model

developers apply to represent the system using empirical models. The

distinction between a conceptual and an empirical model is important,

because choices for the conceptual model might limit the scope of the

empirical model. During the process of problem solving the conceptual model

is used to describe the structure and concepts for all empirical models that

represent current and possible future systems.

An example of the use of different empirical models in problem solving is the
following situation: a computer hardware factory produces boxed computers at a
fixed interval. These boxes need to be sealed by a sealing machine. The number of
boxes to be produced will increase in the coming year and therefore the operation
manager of the factory foresees a problem in the sealing department. Boxes arrive
via a conveyor belt, are sealed by a machine, continue on a conveyor belt, are
placed on pallets after which a forklift truck delivers the pallets to the warehouse. If a
pallet is full, a box has to wait for a new pallet. If the second conveyor is full, the
sealing machine cannot continue. One operator moves between the two sealing
machines, replaces pallets once a forklift moves a full pallet away, and repairs the
sealing machines if they break down.

 1 Effective problem solving using discrete event simulation

 3

A conceptual model that abstracts the above description into the objects in the
system and the flow of the boxes through the system is given in Figure 1.1.

Figure 1.1: Conceptual model of problem system

Figure 1.2: Empirical model of problem system; layout drawing

Figure 1.2 shows a drawing of the system. In this empirical model several elements
have not been modeled, for example the sensors on the conveyor belts and the
equipment to put the sealed boxes on top of the pallet. Figure 1.3 is a model using a
spreadsheet to calculate the expected throughput and utilization of the sealing
machines, assuming that the factory is operating 5 days a week for 16 hours a day.

Figure 1.3: Empirical model of problem system; spreadsheet calculation

These two empirical models show the same system, but each of the models gives
the problem owners a different type of insight into the operation of the system and
what they can expect if they invest extensions or alternative solutions.

1.2 Research scope: Problem solving support by discrete event simulation

4

 Figure 1.4 is a representation of the process of problem solving, derived

from the work of Ackoff (1962), Simon (1969) and Sol (1982). This figure

clearly shows the two phases introduced by Ackoff (1962), i.e. first analyze

before developing models of alternative solutions. The iteration loops of

Simon (1969) are also included in the problem solving cycle and consist of

validating the empirical model and models of alternative solutions using a

consistency check between alternative solutions and the conceptual model,

and ex ante and ex post evaluations of solutions. Finally, Figure 1.4 shows

that the analysis of the problem system is based on empirical models

developed from a conceptual model as described by Sol (1982). A distinction

is made in the figure between process steps that result in new models and

steps that are performed for checking and evaluating the models or systems.

The first type of steps are represented with uni-directional arrows, the latter

type of steps with bi-directional arrows.

Figure 1.4: Process of problem solving derived from

Ackoff (1962), Simon (1969) and Sol (1982)

1.2 Research scope: Problem solving support by discrete event

simulation

 The process as represented in Figure 1.4 is generic and can be supported

by different types of conceptual and empirical models. Conceptual models

provide the generic structure and boundaries of the system as it will be

studied, and can for instance be represented by a set of processes and

objects that are considered to be important to address the problem or issue.

These can be described using e.g., text, object models and flow charts.

Empirical models represent the system or solution and can be represented

using many different types of models. Examples of quantitative empirical

models are mathematical equations or spreadsheets, for example to be able

to calculate cost and turnover of a system. These models are static

representations of the system, showing one moment or state of the system.

 1 Effective problem solving using discrete event simulation

 5

Within this research we focus on problem solving supported by dynamic

empirical representations of the system, and more particularly “discrete-event”

simulation models.

 Simulation models are models that are not just a fixed representation of

the system at one moment in time, but rather they show the system in

“operation” Simulation models are commonly applied in systems where static

calculations using spreadsheets or queuing theory are insufficient. Standard

queuing theory or spreadsheet calculations cannot be applied, and solutions

tend to be non-linear. Simulation models allow us to show the effects of

interactions over a time period and thus enable problem owners to gather

insight into the dynamic aspects of their system.

 Simulation models can be developed using different formalisms (Zeigler et

al, 2000; Vangheluwe and Vansteenkiste, 1997). The most common types of

formalisms are continuous simulation and discrete event simulation. In

continuous simulation the state changes of the system are calculated by

solving a set of differential equations over time. In discrete event simulation

the state changes of the system take place at fixed moments in time.

A simulation model of the sealing department of the computer factory will
provide additional insights into the system that did not appear in the models of
Figure 1.2 or Figure 1.3. If the forklift is delivering the pallet, the conveyor belt
and the sealing machine might have to halt. At the same moment an operator
could be working on a breakdown at the second sealing machine. Figure 1.5
is a drawing of a possible state of the system at a random moment during the
week. The static empirical models of Figure 1.2 or Figure 1.3 do not give any
insight into these possible states of the system. Depending on the distance
the forklift has to travel or the breakdown interval of the machines this
particular state could occur frequently and thus the performance of the factory
will not be as high as concluded based on the spreadsheet model of this
system.

Stoppage due to lack
of pallet space

Stoppage due to lack
of conveyor space

Forklift left for
delivery of pallet

Out of order,
operator repairs

Figure 1.5: Empirical model of problem system; possible state during
operation

Applying simulation models in problem solving will improve the insight of the
problem owners into the system, but it might also lead to an evaluation of
more alternative solutions. For example, after having seen a run of the
simulation model, the travel distance of the forklift becomes important as well
as the breakdown interval of the machines. New solutions can include new
layouts, more buffer spaces between the machines and the pallets, and the
allocation of priorities to the operator.

1.3 Elements of a discrete event simulation model

6

 Discrete event simulation enables model developers to represent the

behavior of a system and its elements over time, to include randomness and

variance, and to calculate performance indicators that take into account the

effect of time and variance. The suitability of discrete event simulation in

problem solving can be summarized as follows (Shannon, 1975; Law and

Kelton, 1999; Banks, 1999; Kelton et al, 2003). Discrete event simulation

provides us with:

• the ability to explicitly model the dynamic behavior of a system over

time, and thereby gaining insights into the way the system functions;

• the ability to obtain quantitative results from running the simulation

model, both for the current situation and for potential future situations;

• the ability to visualize a system during its operation to observe

bottlenecks or shortcomings;

• the ability to visualize the effects of different courses of actions for a

system by observing adjusted operations;

• the ability to imitate a system even though the data is incomplete;

imitation is achieved by a reduction in complexity or by using

assumptions with regards to data;

• the ability to communicate the working of the system to different actors

involved;

• the ability to include stochastic effects in the models and in the

calculated performance indicators.

1.3 Elements of a discrete event simulation model

The models presented in the example of the computer factory are empirical

models that are based on an abstraction of reality. This abstraction excludes

certain types of equipment, such as the sensors at the conveyor belt. In

dynamic models, like simulation models, the processes in the system are an

important part of the model. Also, not all processes that can be identified in

reality will be included in the models; some of these processes will be left out

(abstraction) or simplified, which is called reduction in simulation modeling.

One of the processes for which reduction was applied in the simulation model

is the coffee break of the operator, another is the process of feeding the seal

machine with new tape.

 The abstractions that apply to empirical models, both the abstraction in

scope or equipment and the abstraction in processes, are described in the

conceptual models. A conceptual model describes how the system will be

represented and what parts of the system will be left out of the simulation

study. In the conceptual model the system is often divided into smaller parts

that have relations and together represent the complete system. We follow

Flood and Carson (1988) who define a system as “an assembly of elements

related in an organized whole” (p7). According to Flood and Carson an

“element may be anything that is discernible by a noun or a noun phrase that

 1 Effective problem solving using discrete event simulation

 7

all informed observers would agree exists” (p7). The “organized whole”

contains a set of relations that these entities have with each other (Sol, 1982).

The relations can be static dependencies or dynamic interactions which affect

the behavior of the system. The different elements in a system will be

identified by decomposition of the system.

 In so-called discrete-event simulation that provides a representation a

system with a focus on the logical and physical flows, the processes and the

elements are instantiated in a simulation model to represent the system

dynamically. The descriptions of the elements and the processes in a

simulation model are static, until the processes are triggered and executed.

The simulation model will take its dynamic behavior from the system in a

simulation environment. A simulation environment is a set of one or more

applications that support the model developer in instantiating a simulation

model to represent a system and to execute the processes for a defined time

frame (Nance, 1993). A simulation environment will control the clock in the

simulation model and trigger events as discrete scheduled events for the

duration of the simulation experiment.

Figure 1.6 shows a static representation of the processes of the simulation of
the sealing department at a computer factory. This simulation model was
developed in the simulation environment Arena which provides a flow chart
approach to describe the processes in the system. During a simulation run,
the model will show the state of the system at exact moments in time, for
example the number underneath the first process “Transport via conveyor to
machine” will show the number of boxes present in that process.

Figure 1.6: Representation of empirical model for processes of problem
system in simulation environment Arena

Figure 1.7 shows a static representation of the elements in the system. In the
top of the figure there is a picture of the equipment, at the bottom a definition
of the elements with their capacity and the failures that apply to the seal
machines. During execution of the simulation model the top of the figure will
be comparable to Figure 1.5 and thus represent the exact state of the system
at a discrete event.

1.3 Elements of a discrete event simulation model

8

Figure 1.7: Representation of empirical model for elements of problem
system in simulation environment Arena

At the end of the simulation run, statistics can be gathered comparable to the
spreadsheet of Figure 1.3. The difference is that the pure spreadsheet data is
a calculated prediction which does not include stoppages, breakdowns or
blockages. All these system characteristics that can influence the outcome
are, however, reflected in the calculated performance indicators after running
the simulation model.

Figure 1.6 and Figure 1.7 are screen dumps of a simulation model developed

in the simulation environment Arena (Bapat and Sturrock; 2003). Examples of

other popular discrete event simulation environments are eM-Plant (Heinicke

and Hickman; 2000), Witness (Mehta; 1999), Promodel (Harrell and Price;

2003), Enterprise Dynamics (Britals, 2008) and Automod (Rohrer, 2003).

These simulation environments are generic and can be applied in many

domains. We will refer to these as generic simulation environments.

 The simulation environments provide certain elements to compose a

simulation model. All simulation environments use different names to refer to

these elements. For example, Arena and Witness use “modules”, eM-Plants

uses “objects”, Enterprise Dynamics uses “atoms” and Automod and

Promodel use “elements”. We will refer to these elements in a simulation

environment as model constructs, these are the elements in a simulation

environment that are used to compose a simulation model.

 Model constructs are instantiated in the simulation model to represent

elements of the system. An element of the conceptual model can be defined

by one or more model constructs. The model constructs in the generic

simulation environments provide generic representations of system elements,

thus in most cases the elements that are defined in the conceptual model will

be represented by a collection of model constructs that together provide a

valid representation of the element in the real system (Birtwistle, 1979;

Pegden et al, 1990; Balci and Nance, 1992; Banks, 2000). Each model

 1 Effective problem solving using discrete event simulation

 9

construct can be parameterized in a certain way, and thus two instances of a

model construct can represent different system elements with (slightly)

different properties or behavior.

1.4 Applying discrete event simulation models for problem solving

In this research, we follow Shannon (1975) with regard to his definition of the

process of using simulation models in problem solving: “the process of

designing a model of a concrete system and conducting experiments with this

model in order to understand the behaviour of a concrete system and/or to

evaluate various strategies for the operation of the system.” (p.2).

 Discrete event simulation studies follow the process of problem solving as

it is described in Figure 1.4. Figure 1.8 is a specification for problem solving

using discrete event simulation environments based on the process

descriptions of Shannon (1975), Banks (1999) and Kelton et al (2003). This

process is a more detailed description than the one given in Figure 1.4 and

pays more attention to the development of conceptual and simulation models

and the analyses that are performed with the simulation models. Following

Ackoff, the process of performing a simulation study to support problem

solving can also be separated into two phases. The first phase, above the

dotted line in Figure 1.8, provides an analysis to the problem system using a

valid model of the problem system, and the second phase, below the dotted

line in Figure 1.8, evaluates solutions using simulation models of alternative

systems.

 The conceptualization process resulting in a conceptual model as shown in

Figure 1.4 is performed for a simulation study in three process steps as shown

in Figure 1.8: “Problem description”, “Define conceptual model” and “Select

model constructs to represent system elements”. The conceptual model

contains a clear boundary with the model environment to limit the need for

quantitative data for the empirical model. Of course the boundaries should be

so wide that the problem can be solved with the simulation study, but not

much wider. The result of this process step is a structured overview of

elements and processes of the system that will be included in the simulation

model to be developed. This overview uses the terminology of the domain to

enable the problem owner to understand the way the model developer has

abstracted knowledge from the system. Model developers will make choices

as to how to represent the system elements with model constructs depending

on their knowledge of the simulation environment, their affinity with the

problem domain and the input of the problem owner. The element definitions

in the terminology of the domain are translated to the applicable model

constructs of the generic simulation environment in the next process step,

which is part of the so-called specification of the simulation model.

1.4 Applying discrete event simulation models for problem solving

10

Problem
description

Define conceptual
model

Select model

constructs to
represent system

elements

Instantiate

simulation model
for problem

system

Verify and validate

simulation model
for problem

system

Data
problem

system

Analyse outcome
of simulation

model

Simulation
model verified &

validated?

No, simulation model outcome not valid

Define solution for
analysed outcome

Instantiate
simulation model

for identified

solution

Yes, outcome simulation
model is comparable to

problem system

Data

solution

system

Verify and validate
simulation model

for identified

solution

Analyse outcome
of simulation

model for

identified solution

Simulation
model verified &

validated?

Problem owner

gathered sufficient

insight?

No, simulation model outcome not valid

Yes, outcome simulation

model is understandable

No, Problem owner requests
more insight, thus more

solution systems
Figure 1.8: Process of a simulation study based on process descriptions

of Shannon (1975), Banks (1999) and Kelton et al (2003)

 The simulation model can be instantiated based on data gathered from the

system and its elements using model constructs, therefore the incoming

information “data problem system” at the top of Figure 1.8. The instantiation of

the simulation model should be a straightforward process, because all the

thinking and defining activities have been performed for the development of

the conceptual models. The process of instantiating is thus the

parameterization of the model constructs.

 Verification of a simulation model is an activity in which the conceptual

model is compared with its representation provided by a simulation model.

Model developers evaluate whether the model has been derived correctly

from the conceptual model during the verification process step. This process

step enables modelers to find programming or parameterization errors made

during model development.

 During validation in a simulation study, the simulation model is compared

with the real system to see whether the simulation model is a valid

representation of the system. Significant differences in the outcome or

behavior of the simulation model, or expectations of the problem owners that

have not been met, hint at errors of the model developer in the translation of

 1 Effective problem solving using discrete event simulation

 11

the system to the simulation environment or to inconsistencies or flaws in data

used to instantiate the simulation model.

 The process “Analyze outcome of simulation model” prepares for the

design of alternative solutions, and it triggers the process “Define solution for

analyzed outcome” to try to find alternatives for the system to overcome or

reduce the observed issues.

 The identified solution should then be instantiated in the simulation model

to enable further analysis and a (statistical) comparison between the original

model and the solution. From Figure 1.4 it can be seen that the models of the

solution systems are usually based on the same conceptual model. The

process step “Instantiate simulation model for identified solution” will therefore

result in a simulation model that can be compared to the original simulation

model. The simulation model of the solution system can be a brand new

simulation model, but most often the solution model will be based on the

original simulation model, and it only includes some additional or different

model constructs or it even contains the same model constructs but with

different parameter values.

 After the simulation model of the solution has been verified the problem

owner can use the outcome to gather insight and judge the effects of the

proposed solution. Once sufficient insight is gathered the simulation study will

be finished. Otherwise more solutions for the problem might be defined so

these can be evaluated using simulation models, until the problem owner has

gathered the insight necessary for the process of problem solving.

1.5 Common challenges in simulation studies

 Even though there are clearly advantages and benefits of using simulation

models, many problem owners are not fully satisfied with the simulation

studies (Robinson and Pidd, 1998). These problem owners cannot base their

decisions on the outcome of the simulation study. Effectiveness of a

simulation study is roughly defined as the closeness of the gathered insight

and required insight of the problem owner. The gathered insight is all of the

insight the problem owner gained during the simulation study regarding the

problem system and possible solutions. The required insight is the insight that

the problem owner, before the study, expected to gain using the simulation

study to be able to successfully perform the process of problem solving and

solution selection. A small gap between the provided insight and the required

insight means an effective simulation study. Law and McComas (1989) state

that problem owners often do not know what to expect from a simulation

study, so in these simulation studies it is difficult to determine the required

insight of the problem owner. Nevertheless effectiveness of a simulation study

can be evaluated by interviewing the problem owners and identifying whether

the gathered insight was sufficient to satisfy their needs.

1.5 Common challenges in simulation studies

12

 Robinson and Pidd (1998) carried out interviews among providers and

users of simulation models. They conclude that the main reason for not using

discrete event simulation models in problem solving is uncertainty as to

whether the investment into developing a simulation model and gathering

valid data will result in enough “added value” for the problem owners. Often

problem owners find out that the effort they have spent on the simulation

study, both in time and money, does not result in the insights they need to

support their process of problem solving.

 Problem owners gain most insight from an analysis of the performed

simulation experiments of solution systems. If a problem owner encounters

insufficient insight at the end of a simulation study, then this is mostly a result

of insufficient analysis of possible solutions. The problem owners claim a lack

of experiments, a lack of performance indicators and a lack of trust that the

simulation model represents their problem correctly. Insufficient results

presented to the problem owner is caused by projects that are finished before

the problem owner captures the insight. Many internal and external factors

cause simulation studies to be finished before the problem owners are

completely satisfied. The available budget, expectations of the problem

owners and operating as a team are common causes for failure in many

technical projects, including simulation studies. Robinson and Pidd (1998)

observed three reasons why problem owners perceive a gap between the

required insight and the gained insight, i.e. ineffective simulation studies.

One, difficulties to handle the unlimited freedom in modeling by

model developer: the generic simulation environments offer, with their

generic model constructs, a lot of freedom how a model developer represents

a system. The model developer has to select the model constructs that can be

used to represent a system, and configure and combine these model

constructs in such a way that the system is correctly modeled. A small part of

the system will be modeled by a large number of many generic model

constructs. The model developer will make multiple decisions and perform a

lot of actions until the model is as he envisions the best representation of the

system. Mistakes can be made in every decision and every action performed.

Further, a minor change to the problem system may require remodeling

several system elements, using generic model constructs in an alternative

way.

Two, model developers need to be experts in multiple areas: model

developers should be multifunctional persons. In each of the activities

mentioned in Figure 1.8 the model developer needs to apply a different

technical skill, ranging from conceptualization to computer engineering and

from database knowledge for data generation to statistics for output analysis.

Further, the model developer needs to be an advanced consultant who can

explain to the problem owner the scope of the simulation study and extract

from the problem owner all kinds of system specific characteristics. Finally,

 1 Effective problem solving using discrete event simulation

 13

the model developer needs to be an expert on the domain to be able to speak

the language of the problem owner. The basic skills can be learned at

university, but the diversity of the model development work requires training

and experience. Skills commonly found to be lacking in model developers are

those dealing with statistics, conceptual modeling and implementation skills

(Law and McComas, 1989; Keller et al, 1991; Sadowski and Grabau, 2000).

Insufficient statistical skills cause model developers generate incorrect

outcome or make ungrounded conclusions. Conceptual modeling is difficult for

model developers who are not an expert in the problem system. Setting

boundaries to the system requires insight and experience in a problem

system. Implementation skills are required to make a valid translation to

model constructs. System elements can be instantiated in simulation models

in different ways and using a certain translation can limit the experiments that

can be performed or require system functionality to be added.

Three, model developers do not speak the language of the problem

owner: the problem owner and model developer defined in the conceptual

models the scope of the simulation study. The model developer cannot be the

person who knows everything about the system, especially at the start of the

simulation study, therefore he depends heavily on the information provided by

the problem owner. The model developer often has the intention to generalize

the system elements to the model constructs available in the simulation

environment he is working with. The conceptual models will then be

composed out of generic objects as a “resource” or a “queue” while the

problem owner speaks in words such as “forklift” and “high-speed stack

crane”. The ‘language mismatch’ applies to all activities in the simulation

study, but mainly to the initial scope of the problem system. Misinterpretation

will lead in later activities to rework and extension of the scope. Fixing the

issues caused by the ‘language mismatch’ will consume a lot of time, and can

result in the fact that one or more of the solution systems cannot be modeled

during the time allowed for the simulation study. When some experiments

cannot be performed, the problem owner cannot achieve the insight

requested.

 The three causes of the perceived gap between required insight and

achieved insight using simulation models discussed above often make it often

difficult for the model developers to adjust a simulation model for a solution

system (Robinson and Pidd, 1998). If simulation environments were less

generic, model developers would have less modeling freedom. The generality

of these simulation environments is seen as a strength by advanced model

developers (Robinson and Pidd, 1998). Advanced model developers are fully

aware of the generic simulation environment and like the generality, because

this allows them to model a system exactly according to their preferences.

 Less advanced model developers do not need full control and full power

over the way they represent a system in a simulation model. These less

1.6 Domain specific extensions to enable model adjustability

14

advanced model developers have difficulties with the large gap between the

conceptual model of a problem system and the model constructs of generic

simulation environments. The large gap requires the translations of elements

of conceptual models into a combination of model constructs. Model

developers would not have this problem if the model constructs of the

simulation environment were more specific. Instead of instantiating a

simulation model from model constructs like a resource or a queue the model

developers should be able to instantiate a model from problem domain

specific model constructs. As a result the translation from concept to model

construct will be less difficult and the model developer will be able to adjust

the simulation model more easily to run additional experiments to satisfy the

problem owner.

1.6 Domain specific extensions to enable model adjustability

 Model developers would be better supported if they could instantiate their

simulation models using domain specific model constructs, for example a

doctor with his skills and specific statistics rather than a default resource. The

model developer would even be better supported with a complete set of model

constructs for his/her domain. This would be a dedicated set of model

constructs for problem domains with model constructs only for sub-systems of

the specific domain. Examples of sets of model constructs specifically

designed for a domain are model constructs to simulate train networks that

implement domain specific elements such as rails and stations and model

constructs to simulate ship movements in harbors using model constructs to

represent water canals and locks (Pater and Teunisse, 1997).

 The sets of specific model constructs that Pater and Teunisse (1997) refer

to are extensions of a generic simulation environment. In this research an

extension of a generic simulation environment for a specific domain is called a

“domain specific extension of a simulation environment” abbreviated to

“domain specific extension”. A domain specific extension restricts model

developers to implementing simulation models of a specific domain, based on

a conceptual model of that domain. The domain specific extension consists of

model constructs that can be directly derived from the elements of the

conceptual model. A model developer no longer needs to make a translation

from the conceptual elements to the model constructs and the model

developer also does not have to compose several model constructs to

represent one system element.

 The domain specific model constructs enable the model developer to

instantiate the simulation model more easily. The parameterization of the

model constructs enables the model developer to make changes to the

simulation model to represent solution systems. A domain specific extension

reduces the freedom of the model developer, but the advanced model

 1 Effective problem solving using discrete event simulation

 15

constructs also reduce the complexity of the instantiation of a simulation

model. Adhering to Kasputis and Ng (2000), it is believed that these

reductions enable less advanced model developers to make valid simulation

models of the problem system in a shorter time span.

 Problem owners gather insight by analyzing the outcome of simulation

experiments, viewing animation or evaluating input parameters of model

constructs. The focus of the research presented here is the effect of domain

specific extensions for simulation environments in a simulation study. If

problem owners gather more insight into the problem and solution systems

without extending the duration of a simulation study, then the simulation study

is more effective. Faster development of a valid simulation model that is easily

adjusted to support for analysis of solution systems will increase the insight a

problem owner gains during the simulation study. The problem owner will

better understand the outcome of the simulation model and more solution

systems will be analyzed. As a result the effectiveness of a simulation study

performed using a domain specific extension will be higher than the

effectiveness of a similar study performed using a generic simulation

environment.

 Domain specific extensions seem to be the best way of performing a

simulation study and of providing effective support to problem owners.

Nevertheless, a lot of model developers prefer to use generic model

constructs, instead of domain specific model constructs in the same

simulation environment. One remark often made is that domain specific model

constructs can only be applied in limited situations, because the model

constructs limit the flexibility of the model developer (Sol, 1982; Page and

Opper, 1999; Kasputis and Ng, 2000; Barton et al, 2003; Diamond et al,

2003).

1.7 Research questions and approach

 This research is based on the assumption that simulation studies where

the challenges defined by Pitt and Robinson have been overcome are more

effective than traditional simulation studies, and that the use of domain

specific extensions in a simulation study will help to overcome these

challenges. The larger effectiveness of the simulation study using the domain

specific extensions is expected to result from better insight into the behavior of

the system and possible solutions. This insight will be mainly gathered by

analyzing the behavior and outcome of different simulation models.

 The central research question is therefore:

How can domain specific extensions for a simulation

environment improve the effectiveness of simulation

studies?

1.7 Research questions and approach

16

 Simulation studies are performed in all kinds of organizations to answer a

wide variety of questions. Often the success of a simulation study depends on

the political situation within an organization and the priority the project

receives from the involved stakeholders (Robinson and Pidd, 1998). The

focus of this research is not the success of simulation studies and the results

of a simulation study, for example dollars saved or production process

improvements. The focus of this research is how to enable model developers

to better support problem owners with a simulation study that uses domain

specific extension for simulation environments. Hereby the three causes of

Robinson and Pidd (1998) are leading to generic attention areas: handle

unlimited modeling freedom, model developers need to cover multiple

expertises and language mismatch needs to be resolved.

 The idea of domain specific extensions is not totally new and it has been

applied in several studies. However, the reported low percentage of success

has not convinced the community of simulation model developers to adapt the

approach of domain specific extensions to its current best practice. The best

practice consists mainly of some technical features in the common of the shelf

simulation environments. The model developers require more support to

ensure they can execute a simulation study using domain specific extensions.

The development of these extensions requires the multidisciplinary of the

model developer to the extreme to ensure a usable extension for a simulation

environment is available. Therefore this research aims to deliver support for

the development of domain specific extensions for simulation environments

that can be applied for successful simulation studies.

 The use of the solution in development of the domain specific extensions

should enable model developers to perform their simulation studies in the

environment they are accustomed to, it should make the process steps they

have to perform simpler and it should enable the model developers to extend

the use of simulation models in a specific domain. The verification of these

possible increased effects of the use of domain specific extension for

simulation environments results in research questions around the ability to

define a generic solution that is applicable in different common of the shelf

simulation environments, ability to improve the process of performing a

simulation study and the ability to reuse the domain specific extension beyond

the initial simulation study in a domain.

Research question 2A relates to the difficulties to handle the unlimited

freedom in modeling by model developer:

What constructs and design approach will enable that

domain specific extensions can be defined independent of

the generic simulation environment in such a way that the

model developer is supported, but not limited to one way of

representing a system element?

 1 Effective problem solving using discrete event simulation

 17

Research question 2B relates to the challenge that model developers need to

be experts in multiple areas:

What methodologies, approaches and techniques can be

offered to a model developer to support the use of domain

specific extensions in the activities of a simulation study?

Research question 2C relates to the challenge that model developers do not

speak the language of the problem owner:

How can be ensured that the domain specific extension

gets the model developer closer to the language of the

problem owner?

 The starting point for answering the research questions will be the current

state of expertise in the field of discrete event simulation. This will be a

mixture of the latest state of simulation research as published at conferences

and what commercial parties offer in simulation environments and in their

consultancy best practices. We follow Cresswell (2003) who suggests to use

case studies as these are research instruments to “explore in depth a

program, an event, an activity, a process, or one or more individuals” (p15).

Figure 1.9 demonstrates how this starting point for our research and the use

of case studies reflects within the inductive research approach described by

Sol (1982).

Figure 1.9: Research approach following Sol (1982)

 The next step is that we apply the knowledge in case studies with real

problem owners for qualitative analysis and set up a laboratory experiment

with a fictive simulation study for a quantitative analysis as part of “Use of

domain specific extensions” in Figure 1.9. The combination of the two sets of

studies will cover the disadvantages that both types of studies carry (Yin,

2003; Cresswell 2003). The disadvantage of the qualitative analysis is that

comparison of the simulation study in a traditional way is not possible. The

disadvantage of the laboratory settings will be that no real problem owner can

1.8 Outline of the research

18

participate and thus the difficulty of communicating, interpretation and

resolving the conflicts can not be part of the observations.

The observations of the simulation studies and the quantitative analysis

will be used to refine theory. This refining will be done in several steps,

initially by translating the observations to benefits and risks for domain

specific extensions, followed by the definition of requirements for domain

specific extensions that will enable mitigating the risks and enlarging the

observed benefits. With all gathered knowledge and experiences we will then

construct a theory to support development for domain specific extensions.

We follow Yin (2003) who introduces case study as 1) the research

element to cover empirical inquiries in their environment when the contextual

conditions cannot be deliberately divorced from the research topic and 2) the

case study will deliver more than data points, but will be used to refine the

theory and thus the use of case studies is a comprehensive research

strategy. The case studies will all cover the global research question, and all

individual focus on one of the three sub questions: handle unlimited freedom;

support use of domain specific extensions; bridge the gap with the language

of the problem owner. In that way we can evaluate whether the theory that we

define answers the sub research questions and achieves the overall objective

to make simulation studies more effective.

1.8 Outline of the research

 The research starts with an analysis of existing domain specific extensions

for simulation environments (chapter 2). The knowledge gathered from this

analysis will be applied as basis for participative case studies (Yin, 2003) in

which domain specific extensions will be developed and used to support

problem owners, in their specific domains, and with their specific processes of

problem solving (chapter 3). These case studies are expected to confirm the

encountered pitfalls and perceived disadvantage of using a domain specific

extension that limit model developers in developing simulation models.

 Secondly, several laboratory experiments will be performed to compare the

use of a generic simulation environment with a domain specific extension

(chapter 4). It is expected that these experiments will show that a domain

specific extension has advantages over a generic simulation environment. It is

also expected that using domain specific extensions in this manner will

highlight the disadvantages that model developers encounter when using a

domain specific extension for the first time. Observation and surveys of

participants in the laboratory experiments and the case studies will be used to

provide an overview of advantages that can be achieved and of

disadvantages that restrict and prevent model developers from achieving all

the possible benefits of using a domain specific extension. The outcome of the

laboratory experiment and case studies will be used to define a new concept

 1 Effective problem solving using discrete event simulation

 19

and guidelines for domain specific extensions for simulation environments

(chapter 5).

 This new concept and guidelines will be applied to develop new domain

specific extensions and these environments will be used in simulation studies

in different domains. All three simulation studies described in chapter 6, 7 and

8 will be used to show the applicability of the concepts and guidelines of

domain specific extensions for simulation environments. In addition each of

the simulation studies focuses on one of the research questions of research

challenge 2. In chapter 6 it will be evaluated whether several simulation

environments can be used for the same domain specific extension for supply

chains. In chapter 7 a management game of a container terminal design will

be supported by automatic tools to verify whether the model developers can

be supported in the simulation study process and in chapter 8 the same

domain specific extension for simulation environments will be applied to a

wide range of simulation studies at Nestlé production facilities.

 The findings of the simulation studies in chapter 6, 7 and 8 are combined

in chapter 9 to identify whether the solution for domain specific extensions for

simulation environments is feasible. Specifically this chapter will provide

feedback to the requirements for a solution identified in the beginning of

chapter 5. This will lead to answer of the research question and research

challenges.

Figure 1.10: Outline of thesis

1.8 Outline of the research

20

 2 Domain specific extensions of simulation environments

 21

2 Domain specific extensions of simulation

environments

2.1 Domain Specific Extensions; definitions and terminology

 Domain specific extensions of simulation environments have existed for

several years (Pater and Teunisse, 1997; Baker, 1997). A domain specific

extension consists of model constructs that represent a system element of the

targeted domain. Model constructs are elements in a simulation environment

or simulation language that represent a part of the system, and that can be

instantiated and parameterized in a simulation model for specific use. Model

constructs are domain specific if they are a member of a set that is meant to

build simulation models for a specific problem domain. The choice whether a

set of model constructs is indeed specific for a certain domain is quite

arbitrary and can ultimately only be decided by the simulation model

developer. Thus a set of model constructs can be domain specific to one

person, while another model developer in the same domain might not be able

to instantiate certain elements based on the set of model constructs

successfully for a simulation study in that domain.

 A simulation model will be instantiated according to the system

abstractions as defined in the conceptual models. Shannon (1975) defined

several activities as part of a simulation study, e.g. conduct experiments,

understand the current system, and evaluate strategies for alternative

systems. These activities are carried out using a simulation environment. A

simulation environment is a (set of) computer application(s) that enables

modellers to specify a simulation model and conduct experiments with the

simulation model. A simulation environment uses a certain simulation

language and a simulation formalism to enable the modeler to instantiate the

simulation model. The notion of a simulation formalism points to the formal

meta-model in which a broad class of models can be described (Zeigler et al

2000; Vangheluwe and De Lara, 2002). Popular formalisms are DESS

(Differential Equation System Specification, Zeigler et al 2000) for continuous

modeling and DEVS (Discrete Event System Specification, Zeigler et al 2000)

for discrete-event modeling. Formalisms that build on DESS are e.g.,

differential equations, System Dynamics (Forrester, 1999), and Bond Graphs

(Cellier, 1992). Extensions of DEVS are e.g., the process interaction

formalism (Nance, 1993) and the event scheduling formalism. In simulation

environments, these meta-models are made more specific by providing a

simulation language that builds on the simulation formalism, and that

provides a set of model constructs to the modeler. Many of these simulation

languages are programming languages, early examples are SIMULA (Dahl

and Nygaard, 1966) with DEMOS (Birtwistle, 1979), GPSS (Schriber, 1974),

2.1 Domain Specific Extensions; definitions and terminology

22

SIMAN (Pegden, 1990), and Simscript II (Kiviat, 1966). A good overview is

provided in Nance (1993). With the increased power of computers and

graphics, and to avoid programming, graphical modeling environments were

created for simulation on top of the simulation languages. These are also

referred to as drag-and-drop environments or grab-and-glue environments

(Paul, 2002; Eldabi et al., 2003). Many of the popular general-purpose

simulation environments are of this type. Swain (2007) lists over 50

commercial simulation environments. Rockwell Automation (2007) provides

an overview of the most mentioned commercial simulation environments at

the WSC conference of 2006. These include the simulation environments that

will be discussed in this thesis: Arena (Kelton, Sadowski, and Sadowski, 2002;

Bapat and Sturrock, 2003), ProModel (Harrell and Price, 2003), AutoMod

(Rohrer, 2003), Extend (Krahl, 2003), SIMUL8 (Haige and Paige, 2004), eM-

Plant and its predecessor Simple++ (Kalasky and Levasseur, 1997), and

Enterprise Dynamics (Britals, 2008). Even the Java-based AnyLogic

simulation environment (XJ Technologies, 2005) uses the drag-and-drop

metaphor to enable users to create their simulation models. The library of

components in these general purpose simulation environments from which the

simulation model is assembled contains the model constructs. We refer to

these basic model constructs as “generic”, because the developers of the

simulation environments aim at generic use so that all kinds of systems can

be represented with the model constructs. Almost all simulation environments

allow users to develop extensions to their generic model constructs (Valentin

and Verbraeck, 2007). In this context we define an extension as a coherent

set of model constructs aimed to represent a system or systems in a particular

domain.

 How a simulation study is carried out was shown in figure 1.8. The first

steps are to define the conceptual model, select the model constructs and to

instantiate the simulation model in the chosen simulation environment.

Conceptual modeling involves abstraction of the system into generic

classes of elements instead of a full listing of the element instances. As Van

Gigch (1991, p. 19) states it: “In the usual sense to abstract means to isolate

certain characteristics from others. It also refers to an action of the mind, a

mode of inquiry which seeks to generalize (i.e., to consider lower-level

statements from a metalevel perspective and to extract their common

features).” In the process of defining the conceptual model, the model

developer decomposes the system into system elements. Decomposition of

a system is to separate the system into smaller elements that contain a

coherent part of the functionalities of the system with their relations. As Sage

and Armstrong (2000, p.7) state it: “Because large-scale systems are

inherently complex in the sense of being comprised of many subsystems,

systems often can be better understood by organizing their parts into groups

based on function or some other organizing principle. Often systems are

 2 Domain specific extensions of simulation environments

 23

organized into hierarchies”. The first step is to decompose the system into

system elements. The second step is a translation of the system elements to

the model constructs of the simulation environment, i.e. selecting the suitable

model constructs to represent each individual system element and their

relations. The final step is to compose the simulation model from the selected

model constructs. Composition of a simulation model is to combine several

model constructs to represent the system elements and, ultimately, the entire

system under consideration. The composition of the model constructs will also

enforce the relations between the system elements to be included in the

simulation model. In most simulation environments, this is the “glue” part of

the grab-and-glue approach (Eldabi et al 2003; Eldabi et al 2004). The

decomposition and composition steps to develop a simulation model are

shown in Figure 2.1. This figure also shows that the simulation model is

composed from a selection of the available model constructs. A limited

number of the model constructs that are part of the simulation environment is

often sufficient to compose the simulation model to represent the system.

Figure 2.1: Decomposition of a system and composition of a

simulation model

2.1 Domain Specific Extensions; definitions and terminology

24

Instantiated

and

parameterized

Domain Model

Construct P1

Instantiated

and

parameterized

Domain Model

Construct Q1

Instantiated

and

parameterized

Domain Model

Construct P2

Figure 2.2: Decomposition of a system and composition of a
simulation model using domain specific model constructs

 Domain specific model constructs are developed by assembling one or

more model constructs of the generic simulation environment. Each model

construct of a domain specific extension is based on a composition of model

constructs of the generic simulation environment. The selection of model

constructs to represent the system elements is now a different process,

because the set of model constructs is different. Figure 2.2 shows how a

 2 Domain specific extensions of simulation environments

 25

model developer can now select directly from the domain specific model

constructs. Figure 2.3 and Figure 2.4 show the different ways of representing

a system element in a simulation model using the example from the previous

chapter.

 There are several other differences between the generic and domain

specific model constructs besides the hidden complexity. In Figure 2.3 the

low-level process flow is shown in terms of the generic model environment

(create, process, dispose), not in terms of something a problem owner would

understand. In Figure 2.4 an icon is used of an operator with a tool as a

representation, which can be much easier understood by a stakeholder in the

problem domain. This visualization enables the model developer to assess the

structure of the simulation model more quickly, and the problem owner will

directly recognize the system element.

 Another important difference between the model with the generic and

domain specific model construct is the ability to make changes to the

representation of the system element. When using generic model constructs,

a different parameterization of the system element, for example a shorter

processing time, might require changes in several of the generic model

constructs that are used to represent the system element. The model

developer also needs to know in which of the model constructs to make the

change for the correct parameterization. When using domain specific model

constructs, however, parameters are displayed only once and recognizable

(non simulation-specific) terms can be used. Finally, the generic model

constructs have parameters that are not applicable for the representation of

the system element. All these additional parameters might confuse model

developers and complicate the process of instantiating the simulation model.

In the model constructs of a domain specific extension, only those parameters

are shown that are expected to be changed by the modeler.

The system of the sealing department, introduced in the previous chapter,
includes the handling of breakdowns of the sealing machines. Figure 2.3 and
Figure 2.4 are both a part of the simulation model representing the system
element “Breakdown process”. In Figure 2.3 the system element is
instantiated using three different model constructs of the generic simulation
environment Arena. In Figure 2.4 the same system element is instantiated
using one domain specific model construct of a domain specific extension for
modelling of factories.

Figure 2.3: Implementation of system element “Breakdown process”
using generic model constructs “create”, “process” and “dispose”

2.2 Representation of system elements in a domain specific extension

26

The domain specific extension for computer factories extends the generic

simulation environment Arena. The model construct “Breakdown process”

uses, internally, the same generic model constructs as shown in Figure 2.3.

The generic model constructs shown in the circle in Figure 2.4 are used to

compose the domain specific model construct “Breakdown process” by the

developer of the domain specific extension “Computer Factory”. In this case,

the two ways of representing the system element will thus result in exactly the

same output of the simulation model.

Figure 2.4: Implementation of system element “Breakdown process”
using one domain specific model construct, which automatically

instantiates all required generic model constructs

2.2 Representation of system elements in a domain specific extension

2.2.1 Decomposition, abstraction, and generalization

 The model constructs of a domain specific extension are representations

of system elements in a domain. In order to make the extensions applicable in

multiple simulation studies, the system elements that are represented in a

domain specific extension should not be the result of decomposing and

abstracting only one system. In a simulation study that uses a generic

simulation environment, the particular system that is studied is decomposed,

identifying individual instances of parts in the system (see top part of Figure

2.5). In Figure 2.5, a further abstraction results in the following set of system

elements: hexagon, cross, ellipse, square and circle (bottom of Figure 2.5).

 The set of system elements identified in different systems within the same

domain can vary. In Figure 2.6 (top), the decomposition of three systems

results in 15 different system elements. A closer look at these 15 system

elements shows us that they are not completely different. For example, the

decomposition resulted in three system elements that appear to be triangles.

The differences between these three systems elements, in addition to size

and position that had already been turned into properties, is the rotation. The

system elements with commonalities, e.g. the three triangles, can be further

generalized to one system element that can be configured via parameters. In

abstraction and generalization commonalities are identified in different system

 2 Domain specific extensions of simulation environments

 27

elements to allow these different system elements to be represented by one

system element. We reserve the term abstraction to the process of

identifying the system elements based on a set of instances. In object

orientation, this process is equivalent to defining object classes. We use the

term generalization to the process of reducing the set of system elements

further by further parameterization of system element properties. This is

equivalent to defining superclasses in object orientation and applying the

inheritance relation. The result of the generalization process depends on the

trade-offs made by the modeler between many system elements with a few

parameters versus few system elements with many parameters.

Figure 2.5: System decomposition and abstraction of a system

A possible generalization of the 15 system elements of the decomposition of

three systems in Figure 2.6 is the depicted set of 7 system elements. By

adding a parameter “number of vertexes”, the hexagon, square and triangle

could be further generalized into a system element called polygon. Taking this

to the extreme, one system element called shape, with a large number of

parameters, could be sufficient to model all three systems of Figure 2.6.

System elements identified in domain

System 3System 2System 1

System

abstraction

Elements of system 1

System

abstraction

Elements of system 2

System

abstraction

Elements of system 3

Domain generalization

Figure 2.6: Domain generalization

2.2 Representation of system elements in a domain specific extension

28

2.2.2 System abstraction

 Simulation studies require a level of abstraction of the system that

depends on the goal of the simulation study. In a factory problem, for

instance, abstraction can be applied to the processes and the equipment, see

chapter 1. Abstraction of the equipment is performed by identifying classes of

equipment, and generalizing into more common classes where appropriate,

thus obtaining fewer system elements or more common system elements.

Abstraction of the processes is performed by leaving out process rules and

process details and thus obtaining combined system elements representing

process steps.

 The decomposition into the types of system elements is often done using

two different views of a system. The first view for decomposition is that

comprising equipment and infrastructure or objects. We follow Pollacia and

Delcambre (1997) and we will refer to this decomposition view as “object

oriented decomposition”. The second view for decomposition is that

comprising services or activities or processes. We will refer to this

decomposition view as “process oriented decomposition”.

 An example of a domain specific extension that matches the two systems

views for decomposition is “Contact Center” based on the generic simulation

environment Arena (Bapat and Sturrock, 2003). The domain specific

extension Contact Center aims at the modelling of call centers. The system

elements identified using the object oriented decomposition are “agent” and

“telephone line”. The system elements originating from the process oriented

decomposition are processes like “handling a call by an agent”, “routing

decision” and “handling queue priorities”. The two types of model constructs

enable the model developer to experiment with changes to the processes and

to the objects.

Figure 2.7: Call center agents with different characteristics

for handling calls

 Figure 2.7 and Figure 2.8 are two screen dumps of simulation models

instantiated with the domain specific extension Contact Center. Figure 2.7

 2 Domain specific extensions of simulation environments

 29

shows the operators handling incoming calls. All operators on the right hand

side of the screen dump are instances of the abstracted system element

“agent”. Each of the agents is further characterized by the setting of certain

parameters. Figure 2.8 shows the process flow of handling calls in a call

center depending on the origin and call attributes. Further detail could be

achieved by dividing one or more of the flows into sub flows to make

additional distinction between calls in the call center.

Figure 2.8: Process steps for handling calls

2.3 Design process for domain specific extensions

 Figure 1.8 in chapter 1 showed the generic process of a simulation study.

How to perform simulation studies was described as the first generic

simulation environments became available (Birtwistle, 1979; Shannon, 1975).

There is, however, much less literature available on how to carry out the

process of developing domain specific extensions. In this section we give

some guidelines based on the available literature. These guidelines will be

used to develop domain specific extensions for the case studies (chapter 3)

and laboratory experiments (chapter 4).

2.3.1 Generic simulation environments

 Most generic simulation environments have features to develop domain

specific model constructs. They provide ways of combining a set of simulation

model constructs into an advanced model construct. Two examples are

shown in Figure 2.9 and Figure 2.10 for the generic simulation environments

Witness and Enterprise Dynamics. These examples show that the

development of a model construct is done with just one mouse click. Other

examples are the generic simulation environment Arena, which allows for the

development of advanced custom model constructs (Rockwell Software,

2000), and eM-Plant, in which software is built in a hierarchical manner using

so-called frames (Kalasky and Levasseur, 1997). Examples of the use of both

these simulation environments will be given in subsequent chapters.

2.3 Design process for domain specific extensions

30

Figure 2.9: Menu for duplicating

existing model constructs in

Enterprise Dynamics

Figure 2.10: User-interface to

develop a model construct out of

a part of a simulation model in

Witness

 In our opinion the aim of a domain specific extension for a simulation

environment is to ease simulation model development of different systems, by

providing more than the ability to combine and reuse model constructs of

previous simulation studies carried out in a domain. A domain specific

extension is a set of system elements to be simulated in a particular domain.

In that sense, its potential application base is less than that offered by generic

simulation environments. Although the “technical” way a model construct is

developed is important, we should also look at the process by which model

constructs can be developed by model developers to make a simulation

model in a domain. Manuals of generic simulation environments do not

address this issue; they focus – understandably – on the technical issues.

2.3.2 Process descriptions in literature

 Research in the field of object oriented simulation models has paid

attention to the use of model constructs to assemble a simulation model.

Several researchers have built on the use of object orientation in software

engineering and its suitability for simulation. Jacobs (2005) and Tyszer (1999)

applied object orientation, but they mainly focus on its use to develop a new

simulation environment, not to represent systems in a specific domain. An

object oriented simulation method has been described by Hill (1996). He

evaluated software engineering approaches and adjusted and combined them

into one approach for defining object oriented simulation models. He suggests

an approach in three phases which he calls M2PO. In the first phase object

classes are identified and, for all classes, the dynamics and object life cycle

are defined. In the second phase, system specific elements are added and in

 2 Domain specific extensions of simulation environments

 31

the third phase the collaboration between objects is included. After the third

phase the objects can be implemented in an object oriented simulation

environment.

 The approach described by Hill (1996) focuses on object oriented models

for only one system. He considers the need to adjust simulation models to

carry out additional experiments, but his approach is not aimed at designing

simulation objects for domain wide applicability. Therefore the approach that

he describes does not fit in its current version as a prescription for the

development of a domain specific extension, because the model constructs of

these environments need to be flexibly applicable to cover the wide range of

demands for more experiments that problem owners demonstrate.

 Zobrist and Leonard (1997) give several descriptions of object oriented

simulation software, frameworks and methods. In that book, Kim and Ang

(1997) present a framework, which builds on DEVS (Zeigler, 2000), in which

they apply five principles: 1. Functions may be reused in the development of

models (function abstraction); 2. Data may be reused in the development of

models (data abstraction); 3. Models may be reused in the construction of

composite models which in turn are reused as components of higher level

composite models (composition); 4. Models may be reused in the

development of new models that are slightly different from old ones

(inheritance); 5. Models may be reused in a variety of applications (use of

libraries). We will see these principles back in later chapters.

 Pater and Teunisse (1997) have developed a domain specific extension for

cargo rail networks. In their article they generalize the approach they used to

design a domain specific extension. The first step of the process they

described is an analysis of requirements of the problem owners for the type of

information they are interested in, by identifying the system elements using

object oriented decomposition in their domain. In this case the authors

abstracted the system objects on a very high level, leading to constructs such

as a “pipe” and a “node”. Secondly, they applied process oriented

decomposition to define processes to be part of their simulation models. In

their case of rail cargo transport, they identified e.g., safety mechanisms and

traffic control requirements. All model constructs are at quite a high level of

abstraction. The implemented model constructs of the domain specific

extension are then extended with additional objects and processes whenever

these are required in later studies. Pater and Teunisse (1997) refer to their

process of abstraction, generalization and decomposition as a top-down

approach.

2.3.3 Developing domain specific extensions

 We combine the top-down approach of Pater and Teunisse (1997), the

notions of Kim and Ang (1997), and the object oriented approach of Hill

2.3 Design process for domain specific extensions

32

(1996). We can outline an approach for the development of domain specific

extensions. In this approach we will decompose a system in an object

oriented and a process oriented manner. The steps of this approach for

development of domain specific extensions are shown in Figure 2.11. The

approach is a first draft and therefore the steps are suggestions and not

prescriptive.

Figure 2.11: Developing a domain specific extension

Step 1. Object oriented and process oriented decomposition and

abstraction. The development of a domain specific extension should take into

account observations of not just one individual system, but preferably several

systems, to get a more complete picture of the domain. The decomposition

and abstraction should be carried out for both the objects and the processes

that can be identified in these systems. Pollacia and Delcambre (1997) call

this object flow modeling.

 In this first step of the development of a set of model constructs, the

problem domain should be decomposed to identify those system elements

that could be turned into model constructs later. Object oriented

decomposition and abstraction will result in a set of system elements. Hill

(1996) uses UML class diagrams for his object-oriented decomposition and

abstraction. The description of each object class should include attributes and

behavior, because this will enable model developers to understand what is

included in the model constructs that will be based on the decomposed

system element.

 Process oriented decomposition and abstraction will result in process

descriptions that can be derived from informal system descriptions. The result

will be small process descriptions relating to one or more system elements

identified with the object oriented decomposition. The overall result of the

decomposition and abstraction will be a set of system elements.

Step 2. Generalize system elements. Generalization should be applied to

the identified system elements to reduce the number of system elements and

reach a manageable and understandable number of model constructs. The

 2 Domain specific extensions of simulation environments

 33

definition of these model constructs should be extended with parameters to

enable modelling of different systems using the model constructs that

represent different system elements as suggested by Kim and Ang (1997).

Step 3. Instantiate system elements as domain specific model

constructs. The generalized system elements should be translated into a

domain specific model construct in a certain simulation environment or

simulation language. Each domain specific model construct is a composition

of generic model constructs, which represents a system element and uses

parameterization.

 The top-down approach suggested by Pater and Teunisse (1997) is

applied by first instantiating model constructs as abstract elements. Once a

first version of all model constructs is implemented, the model constructs can

be extended with details. The process of adding the details is represented in

Figure 2.11 by the arrow “Extend model constructs with more detail”. The

details could include additional functionalities, but also an improved user-

interface, visualization of the state of the model construct, or performance

indicators.

Step 4. Verify domain specific model constructs. Tests should be

performed to make sure that the created model constructs are behaving as

the developers expect, i.e. verification. These tests are performed by

modeling one or more systems that allow a model construct to be tested, and

studying the input-output behavior of the model construct. If the test is not

successful, the developers should make adjustments to the model construct.

These adjustments can be an alternative combination of underlying generic

model constructs, alternative parameter settings, or alternative calculations of

performance indicators by the model construct.

Step 5. Instantiate simulation model using domain specific model

constructs. The model constructs should be used to implement a simulation

model once all model constructs are verified and have the desired level of

detail. At this moment the simulation study can be performed as described in

Figure 1.8.

2.4 Advantages of using a domain specific extension

 Using a domain specific extension in a simulation study does not

necessarily change the activities in a simulation study. We hypothesized in

chapter 1 that a simulation study using domain specific extensions will be

more effective than one without. The improvement in effectiveness is

expected to take place in all of the activities of a simulation study, as will be

discussed below.

Activity 1. Problem description & define conceptual model: the activity of

conceptualization of the original system is inevitable, but the availability of a

2.4 Advantages of using a domain specific extension

34

domain specific extension will facilitate the conceptualization. The

conceptualization does not need to be done from scratch, but can start from

observing which of the system elements of the domain specific extensions are

applicable to the specific system. In many cases, the object classes and

process descriptions that have been used to create the domain specific

extension can be reused to conceptualize the system at hand.

Activity 2. Select model constructs: as the model constructs of the domain

specific extension have a clear relationship with the system elements

identified in the problem domain, the conceptual model is structured according

to the model constructs of the domain specific extension. Figure 2.1 shows

that in traditional simulations, a conceptual model is translated from the

system elements via instances of generic model constructs to the simulation

model. Figure 2.2 shows that the translation using a domain specific extension

does not involve generic model constructs, but only the model constructs of

the domain specific extension.

Activity 3. Data collection: this activity is not shown in Figure 1.8, because

the description is focused at the steps of the model developer. Data collection

is easier for domain specific model constructs than for traditional simulation

modeling activities. The data to be collected is determined by the parameters

of the domain specific model constructs, where the model constructs are

nicely mapped onto system elements. This reduces discussion and confusion

regarding the type and format of the data needed. Furthermore, data

gathering can begin directly at the start of a project, and does not have to be

postponed until insight is gathered about the type of data that is required.

Activity 4. Instantiate simulation model for original system: fewer model

constructs need to be used, thanks to the hiding of complexity (Kasputis and

Ng, 2000; Altiok, 2001). Traditionally, model coding of a system element

normally involves many model constructs of a generic simulation environment,

but each system element can now be modelled by one model construct of the

domain specific extension. An example is shown in Figure 2.3 and Figure 2.4.

Activity 5. Verify and validate simulation model for original system:

detailed testing of complex logic is needed in traditional simulation modeling.

When we assume that the developer of a model construct of a domain specific

extension has performed sufficient testing before handing over it to the model

developer (step 4 in the method), a model developer does not need to test the

model construct of a domain specific extension anymore in detail. This is

comparable to a model developer instantiating a model construct in a generic

simulation environment, where the developer also does not test whether that

construct works correctly (Baker, 1997).

Activity 6. Analyze output of simulation model: the output of domain

specific model constructs is usually standardized. Therefore, in each

simulation model using the constructs, the same type of data will be produced,

thanks to the definition of performance indicators in the model constructs.

Often, problem owners in a domain are interested in the same type of

performance indicators, even though they are part of different systems.

 2 Domain specific extensions of simulation environments

 35

Activity 7. Define solution for analyzed output: identifying possible

solutions based on the output will be similar to a normal study, but an

additional source for new solutions will be provided by the parameterization of

model constructs. The system element representation of generic model

constructs keeps the implementation of possible changes hidden for the

modeler, though. The analysts can directly see the possible changes to the

parameterization of the domain specific model construct.

Activity 8. Instantiate simulation model for identified solution: the user

interface enables model developers to adjust a simulation model more easily

and therefore carry out simulation experiments of system alternatives easier

(Pater and Teunisse, 1997; Altiok et al, 2001).

Activity 9. Verify and validate simulation model for identified solution:

this is faster for the same reasons that apply to the verification of the

simulation model for the original system.

Activity 10. Analyze output of simulation model for identified solution:

faster for the same reasons mentioned for the project step “analyze output of

the simulation model”.

2.5 Risks of using a domain specific extension mentioned in literature

Unfortunately, the use of domain specific extensions has not always resulted

in effective simulation studies in practice. Simulation practitioners have

mentioned several risks they encountered while using or trying to use model

constructs of domain specific extensions within simulation studies, see for

example: (Sol, 1982; Balci, 1997; Pater and Teunisse, 1997; Page and Opper,

1999; Davis et al, 2000; Kasputis and Ng, 2000; Banks et al, 2001; Diamond

et al, 2002; Barton et al, 2003). We have allocated the risks mentioned in

literature to the activities of a simulation study (Figure 1.8). As for activities 3

‘Data Collection’ no risks were mentioned in literature, the data collection

activity is not mentioned in the overview below.

Activity 1. Problem description & define conceptual model: the use of a

domain specific extension can limit the scope of the model developer. Model

developers tend to consider only the capabilities of the model constructs of

the domain specific extension. This can restrict the problem description and

therefore not match all the requirements of the problem owner (Sol, 1982).

Activity 2. Select model constructs: according to Balci (1997), model

developers have limited trust in model constructs of domain specific extension

and thus less trust in the simulation models developed using these model

constructs; as a result they will not select domain specific model constructs to

compose a simulation model. Kasputis and Ng (2000) describe how a model

developer might not have insight into whether a domain specific extension is

suitable for representing a particular system and thus decide not to use

domain specific model constructs that actually might be suitable. On the other

hand, Pater and Teunisse (1997) describe examples of model developers that

2.5 Risks of using a domain specific extension mentioned in literature

36

overestimated the functionalities provided by a model construct of a domain

specific extension and used model constructs that were not suited to

represent a system element.

Activity 3. Data collection: No risks are documented regarding data

collection when model developers use domain specific extensions.

Activity 4. Instantiate simulation model for original system: Barton et al

(2003) indicate that model developers do not always understand the model

constructs of domain specific extensions. Model developers do not know how

to parameterize the model construct, how to interface the model construct with

other model constructs or what the state variables of the model constructs

mean in the real system. This results in simulation models that have an

incorrect representations of system elements or an ill-defined state of the

model construct.

Activity 5. Verify and validate simulation model for original system:

verification and validation of a simulation model can take more time when

using domain specific model constructs, because the model developers have

either instantiated the wrong model constructs or parameterized the model

constructs incorrectly. The model constructs are a black box to the model

developer, thus identifying what has been done wrong by a model developer

is hard to identify (Diamond et al, 2002).

Activity 6. Analyze output of simulation model: the model constructs

calculate performance indicators that the developers of the domain specific

extension find useful. Problem owners might be interested in more or different

performance indicators for a system, ones that are not included in the domain

specific extension (Diamond et al, 2002; Barton et al, 2003).

Activity 7. Define solution for analyzed output: the capabilities of the

model constructs influence the type of experiments that the model developers

will consider. The model developers are restricted by the model constructs in

their thinking and their modeling (Sol, 1982; Page and Opper, 1999; Kasputis

and Ng, 2000; Barton et al, 2003; Diamond et al, 2003).

Activity 8. Instantiate simulation model for identified solution: when

solutions are defined that can not directly be modeled using the model

constructs, an adjustment of the model constructs of the domain specific

extension might be required. The availability of the developer of the domain

specific extension, the structure of the model constructs or the concepts

applied in the design of the model constructs might make it difficult or

impossible to model these solutions (Davis et al, 2000).

Activity 9. Verify and validate simulation model for identified solution:

the same risks apply as during the verification and validation of the simulation

model of the original system.

 2 Domain specific extensions of simulation environments

 37

Activity 10. Analyze output of simulation model for identified solution:

the same risks apply as during analysis of the output of the simulation model

of the original system.

 These risks are encountered in situations where a domain specific

extension was already available for the system to be simulated. However, only

a very small set of domain specific extensions is available and according to

Page and Opper (1999) and Barton et al (2003), designing and developing a

domain specific extension that can be used by other model developers is a

difficult and time consuming investment.

 In general, the encountered risks are caused by a lack of understanding of

the model developers regarding the usability of (model constructs in) the

domain specific extension, and by the limited flexibility of the model

constructs. In several cases reported in literature, the simulation practitioners

found ways to handle the risks. In general, the fact that these risks occur

might lead to simulation studies that do not provide sufficient insight for

problem owners. The occurrences of these risks have two causes. First,

model developers do not use domain specific extensions and keep carrying

out simulation studies in the old way, which is a lost opportunity of capitalizing

on the advantages mentioned in section 2.4. Second, model developers that

use the domain specific extension cannot produce valid answers for the model

developers.

2.6 Conclusion

 Although domain specific extensions clearly have added value, model

developers are hesitant to use domain specific extensions because of several

risks that apply when using them in practice. Providing solutions to overcome

these risks will be an important step towards acceptance of domain specific

extensions by simulation model developers. Not much literature about domain

specific extensions is available, however, and the advantages and risks are

still poorly understood. In order to get a better understanding of the

advantages and disadvantages of the use of domain specific extensions, we

will carry out a number of case studies in the next chapter using a common-of-

the-shelf simulation environment that allows for the creation of domain specific

extensions. These case studies lead to a rich list of advantages and risks that

will form a basis to provide solutions that can deal with the risks.

2.6 Conclusion

38

 3 A qualitative analysis in domain specific extensions

 39

3 A qualitative analysis in

domain specific extensions

3.1 Introduction

 It was shown in chapter 2 that model developers observed a number of

risks when using domain specific extensions, which prevent them from using

such extensions. An analysis of the limited amount of publications on this

matter shows that the main causes are a lack of trust in the model constructs

of the extensions and perceived difficulties with the maintainability or

adjustability of a domain specific extension. Further, model developers are

unclear as to whether using domain specific extensions will provide more

benefits than using model constructs of generic simulation environments, and

therefore, the developers are reluctant to take the time required to get to know

a domain specific extension and to use this environment instead of a generic

simulation environment with which they are familiar.

 We carried out two case studies in which we developed a domain specific

extension, to observe whether we would encounter these risks and whether

the risks cause more problems than benefits. We will use the theory and

concepts described in chapter 2 and use the simulation environment eM-Plant

for our case studies to obtain a close match between the object oriented

decomposition and the hierarchical object modeling present in eM-Plant.

 The domains of the case studies had the potential that more simulation

studies could be carried out, which made us decide to invest in the

development of domain specific extensions. The first domain for which a

domain specific extension was developed and applied concerned the

modeling of advanced control techniques for Automatic Guided Vehicles

(AGVs). The domain specific extension was used to develop simulation

models in a project for underground transportation of cargo around

Amsterdam Airport Schiphol, abbreviated to OLS (Ondergronds Logistiek

Systeem = Underground Logistic System). Simulation models have been used

in this project to evaluate hundreds of different designs for terminals for

loading and unloading of the AGVs (Verbraeck et al, 1998b; Verbraeck et al,

1999; Van der Heijden et al, 2002; Versteegt, 2004).

 The second domain concerned the modeling of passengers at airports.

Simulation models have been developed using a domain specific extension to

model movement and activities of passengers in airports. These simulation

models have provided support for problem solving in three projects. The

studies looked at passenger terminals at Amsterdam Airport Schiphol (NL)

and John F. Kennedy in New York, USA at different levels of detail (Blom and

Korf, 2000; De Witt-Hamer, 1999; Valentin, 2002).

3.2 Exploratory case study 1: OLS design of terminals

40

 The simulation studies described in this chapter were all carried out using

just a domain specific extension. These systems have not been modeled

simultaneously using model constructs of a generic simulation environment.

The simulation studies therefore did not result in a comparison between using

a domain specific extension and using a generic simulation environment, but

rather insight was gathered into the use of domain specific extensions in real,

large scale simulation studies that are expected to benefit most from the use

of domain specific extensions. The outcome of this chapter should be a

confirmation of the expected benefits and encountering of risks. The

simulation studies were also expected to provide some insights in how the

risks were avoided or mitigated once they were encountered to make

simulation studies with domain specific extensions even more effective.

Chapter 4 describes a number of laboratory experiments in which the same

problem is addressed with generic simulation environments and domain

specific extensions, and provides a comparison.

3.2 Exploratory case study 1: OLS design of terminals

3.2.1 Introduction OLS-project

 The fast growing traffic on the Dutch roads is seen as a rapidly increasing

problem for efficient and on-time transportation of goods. The Dutch

government fears that traffic delays will reduce the competitive value of the

Netherlands as a logistics and transportation country. As a possible solution it

is promoting the use of new transportation technology (CTT, 1997). The

transportation of flowers worldwide via the flower auction at Aalsmeer is an

example where the Netherlands acts as a transit country. Flowers from all

over the world are brought into Aalsmeer by air (or by rail or truck), and, after

auctioning, often exported the same day by airplane (or by rail or truck). The

transportation process between Amsterdam Airport Schiphol and flower

auction of Aalsmeer, which is now done by truck, is vital for the auction,

because flowers that miss the airplane have to wait an extra day. These

flowers will be worthless and cannot be exported. The risks of delays with

transportation by truck are increasing, therefore an alternative transportation

mode that will provide higher reliability is necessary.

 In 1997 the Dutch government started research into the use of Automatic

Guided Vehicles (AGVs) to transport goods, mainly flowers, between the

flower auction of Aalsmeer, different terminals at Amsterdam Airport Schiphol

and a brand new rail terminal in Hoofddorp. This project should result in a

transportation system capable of handling 3.5 million tons of cargo per year in

2020, using a tunnel system, see Figure 3.1. These AGVs should replace

truck movements, reducing pressure on traffic and increasing the time window

for handling flowers at the auction. This project is called OLS-Schiphol,

whereby OLS stands for Underground Logistic System.

 3 A qualitative analysis in domain specific extensions

 41

Figure 3.1: AGVs moving through tunnels underneath the airport

(CTT, 1997)

 In the original design of the OLS-Schiphol, the terminals of the OLS-

Schiphol were connected by a tunnel system of up to 20 km (CTT, 1997). 200

to 400 AGVs were designed to be used to transport the goods. Figure 3.2

shows the most likely route of the design in 1997 and the main alternative with

a dotted line. Deciding which of the many possible different layouts to use was

one of the many topics that needed to be dealt with in the OLS project. The

transportation system of AGVs should consist of state of the art techniques for

vehicles, tunnel constructions, control mechanisms and loading and unloading

equipment. Each of these techniques had a wide range of alternatives and

each possible decision has effects on the logistic and economic performance

of the system in one way or the other. Simulation models were thought of as

being able to provide answers to the questions of the system designers

regarding the scale of the system and detailed control of the AGVs at small

transit terminals.

Figure 3.2: Map of the routes between Amsterdam Airport Schiphol,

Flower Auction Aalsmeer and Rail Terminal Hoofddorp (CTT, 1997)

3.2 Exploratory case study 1: OLS design of terminals

42

3.2.2 Object oriented and process oriented decomposition

 The OLS was a new and not yet existing system. Therefore, knowledge

about existing AGV-systems and early designs for the OLS were used as

system representations to enable decomposition into object-oriented and

process-oriented system elements. In addition, expert sessions with designers

of the AGVs and the logistic terminals were carried out to obtain additional

information.

 These different studies and information sources resulted in the following

system elements using object oriented decomposition:

• AGV: vehicle moving around to pick up and drop of loads;

• Load: unit of materials to be moved by an AGV;

• Track: imaginary line between two points followed by an AGV to get

from one place to another;

• Dock: machine that enables the movement of a load to or from an

AGV;

• Dock place: physical configuration of a dock with one or more tracks for

AGVs;

• Parking spot: physical configuration of one or more tracks that provides

spots where AGVs wait for a new task, for example to pick up a load;

• Terminal: area consisting of one or more dock places and parking

spots, which are connected by tracks to enable parking, loading and

unloading of AGVs.

 The process oriented decomposition resulted in 6 main processes,

represented in Figure 3.3 to Figure 3.8. Figure 3.3 shows the process that is

carried out for a load. Figure 3.4 shows the main tasks that are performed by

an AGV. Figure 3.5 and Figure 3.6 are functionalities for allocating the scarce

resources, e.g., AGVs and docks, to the entities that require these resources,

e.g., loads. Figure 3.7 and Figure 3.8 show in more detail how the AGVs

move safely over the available tracks.

Load arrives in

terminal

Load waits for an

AGV

Load is loaded on

AGV

Load is moved by

AGV

Load is unloaded

from AGV

Load arrives at

destination

Figure 3.3: Process of a load

AGV waits for
assignment

AGV picks up load
AGV moves to
unload location

AGV unloads load

Figure 3.4: Process of an AGV

 3 A qualitative analysis in domain specific extensions

 43

Request for dock

arrives from load

or AGV

Determine list of

suitable docks

Select dock to go

to

Inform request

object (load or

AGV) about

selected dock

Figure 3.5: Process of allocating a load or AGV to a dock

Request for AGV
arrives from load

Determine list of
suitable AGVs

Select AGV that
should move

requesting load

Inform AGV to
pick up load

Figure 3.6: Process of allocating an AGV to a load

AGV measures

save distance

AGV calculates desired

speed (e.g. acceleration,

deceleration or constant

speed)

AGV moves with

new determined

speed

Figure 3.7: Process of an AGV driving

AGV claims

capacity from

track

AGV moves over

track

Figure 3.8: Process of an AGV moving over tracks

 The safe distance between AGVs, as mentioned in Figure 3.7, was

measured in the final system using sensors and a collision avoidance

mechanism. The collision avoidance mechanism consisted of semaphores

that restrict the use of tracks by AGVs (Lindeijer, 2003). Figure 3.8 shows how

an AGV claims one or more semaphores before starting to move over a track.

The system of claiming semaphores to gain permission to move is defined by

the TRACES-concept (Transport Control Engineering System) for concurrent

use of infrastructure (Evers and Koppes, 1996).

3.2.3 Existing domain specific extensions

 Several generic simulation environments provide extensions for the

domain of transportation systems with AGVs. We evaluated the suitability of

domain specific extensions of the generic simulation environments Arena, eM-

Plant and Automod. The key issue in this evaluation was whether the

TRACES-concept (Evers and Koppes, 1996) could be implemented in

addition to the track layout.

 The domain specific extensions of the simulation environment Arena and

Automod take care of safety mechanism internally. It is possible to interact

with the safety mechanisms, but the TRACES concept can not easily be

developed in a reusable model construct. The only way to overcome this is to

use lower level constructs in these simulation environments, and not use the

AGV systems that are provided. The generic simulation environment eM-Plant

3.2 Exploratory case study 1: OLS design of terminals

44

allows model developers to add TRACES logic, but only if it is directly linked

to infrastructure, so every infrastructure has one semaphore. This way of

handling the TRACES semaphores was not acceptable, given that several

tracks might overlap and use the same semaphore for safety. In addition, the

domain specific extension of eM-Plant did not allow vehicles to accelerate and

decelerate, but assumed that vehicles had a constant speed. For this project it

was concluded that it would be more difficult to adjust the existing model

constructs of the domain specific extensions than to develop a new set of

domain specific model constructs.

3.2.4 New domain specific extension

 Based on the identified system elements a new domain specific extension

was developed for the OLS project. The number of model constructs that were

part of this domain specific extension increased during the process of

implementation and carrying out simulation experiments. Figure 3.9 and

Figure 3.11 give an overview of the model constructs that represent system

elements obtained from an object oriented and a process oriented

decomposition.

Figure 3.9: Model constructs that represent decomposed constructs

 The thick lines in Figure 3.9 are added to show the relation with the objects

identified for this domain. The first row of model constructs contains the load

(first icon), the AGV (second icon) and the track (next four icons). The track

model construct is further used in all model constructs to create parts of the

layout of a terminal. The model constructs without any thick lines are

compositions of tracks, for example a merger of two tracks into one track. The

second row contains docks in different versions. The dock variants are

composition of the basic dock configuration including one or more tracks to

represent places where AGVs can temporarily wait for the dock to become

available, see an example of the details in Figure 3.13. The last two rows

contain more composed parts of a terminal, i.e. the parking (large P in icon)

 3 A qualitative analysis in domain specific extensions

 45

and complete terminal layouts (remaining icons). The parking objects are

composed of tracks with additional logic for parking. Some of the terminals of

the bottom two rows are shown in more detail in Figure 3.14.

 The system elements in the design of a terminal were not individual tracks,

but layouts of a part of the terminal that were composed of several tracks, for

example the configuration of the dock including the curves leaving the main

track. This piece of layout was on its turn composed of several domain

specific model constructs and made available as one new model construct.

Figure 3.10 shows the composition of a specific dock with tracks, using

several domain specific model constructs. Similar compositions have been

made for other docks, parking spots, parts of terminals, and even whole

terminals. As a result the set of model constructs of the domain specific

extension grew quite large, as is shown in Figure 3.9.

Figure 3.10: Composition of model construct

"Side dock next to main track"

 The AGVs and loads that use the infrastructure were controlled and

managed by other model constructs. During the process oriented

decomposition (Figure 3.3 - Figure 3.8) the allocation and safety mechanisms

used in the AGV systems were identified, and these functionalities were

implemented in different model constructs for the levels of control. Figure 3.11

shows the model constructs developed to represent the processes. The

interaction between different model constructs represents the process as

identified at page 43. For example, the model constructs in Figure 3.11 at the

first row with a box around them are used for the process of an AGV moving

safely over tracks (process in Figure 3.8).

Figure 3.11: Model constructs that represent decomposed functionalities

3.2 Exploratory case study 1: OLS design of terminals

46

 The processes were implemented in several ways. The allocation

mechanisms and decision processes (see Figure 3.5 and Figure 3.6) were

implemented as model constructs that make a match between the available

resources and the requests. These model constructs are called “managers”

and handle the allocation in the parking or the docks. For example, the

terminal manager decides whether an empty AGV should be loaded with a

waiting cargo, should stay at a parking spot, or should leave the terminal.

Depending on the layout and size of the terminal, these managers make

different types of decisions and use alternative information in their decision

logic.

 The AGV driving process, e.g., to determine their speed given their

allowed distance, was divided into two model constructs. One model construct

had the functionalities for calculating the distance, based on modeled sensor

readings and permissions given by the TRACES safety concept, and one

model construct had the functionalities to determine the new speed. Both of

these model constructs were integrated into the model construct AGV and

were dedicated to representing the required AGV behavior within this project.

In the course of the project the way of handling these processes was

changed, requiring coding adjustments in the process model constructs.

 The last process, the process where AGVs gather access to new tracks

based on their route (Figure 3.8), was modeled using a scripting language to

define the steps that AGVs carry out. The scripting language enables flexibility

when defining routes in the system, while still taking into account the required

safety. An example of such a script that is part of the crossing shown in Figure

3.12 is given in Table 3.1. This script enables an AGV to move safely from left

to right over the crossing. More about the implementation of TRACES in this

domain specific extension can be found in Verbraeck et al (1998a) and Van

der Heijden et al (2002).

Script LR Comments

Insist SX

Exec AX

Exec XB

Free SX

Claim ticket for

crossing

Drive from left to

centre

Drive from centre to

right

Free ticket SX

Table 3.1: Script for an AGV to

move over the crossing in

Figure 3.12 from left to right.

Figure 3.12: Crossing with

scripts

 3 A qualitative analysis in domain specific extensions

 47

3.2.5 Simulation study design of terminal layouts considering vehicle

movement

Problem

 Two simulation studies regarding the OLS system were carried out

simultaneously. The first simulation study considered the complete system

and applied optimization for the number of vehicles, the number of terminals

and the effects of alternative forecasts for load patterns (Ebben, 2001). The

second simulation study focused on the detailed behavior of AGVs, collision

avoidance and routing, mainly within one terminal for loading and unloading of

vehicles. Only the simulation study concerning the detailed behavior of AGVs

within terminals used the domain specific extension discussed in this chapter.

 Terminal layouts were designed according to several concepts for loading

and unloading, parking and routing. Vehicle designs under consideration used

various ways for loading and unloading the cargo. The different vehicle

designs required specific concepts for docking to enable efficient handling of

cargo and efficient use of the vehicles (Pielage, 2005). The variant layouts for

docks are shown in Figure 3.13. The differences between the layouts were,

e.g. the position of the vehicle, the direction for leaving the dock and the ability

to park vehicles while another vehicle is being loaded or unloaded. The

concepts for docking resulted in various possible layouts for docks in the

terminal, alternative positions for vehicles to stop and routes towards and from

docks.

Figure 3.13: Dock variants with their Dutch names

(Verbraeck et al, 1998b, p14)

 The terminal designs differed in the docking concept used and in the way

vehicles were parked and routed. Four of the many concepts of terminal

designs that were available and that were evaluated using one or more

simulation models are shown in Figure 3.14.

3.2 Exploratory case study 1: OLS design of terminals

48

 The evaluation of the terminal concept was the key issue in this simulation

study. Depending on the concept an alternative safety mechanism, a number

of docks and parking spots and the overall number of vehicles allowed in the

terminal were evaluated.

Figure 3.14: Different possible layouts of terminals

that have been evaluated

Project approach

 A traditional simulation study starts with evaluation of the original system

and then defines alternatives (see figure 1.8). Because this study was about a

new to be built system, it started with available alternatives that had to be

tested. The solution systems were configurations of the terminal for many

concepts of which four are shown in Figure 3.14. The evaluation of the

feasibility of a terminal design was carried out in two steps. The first step was

an experiment using a scenario of one peak hour in which a high number of

AGVs arrive at the terminal to load and/or unload.

 Successful terminal designs were further optimized with scenarios of the

expected load pattern for a full day pattern of arriving and departing vehicles

according to the 30th busiest day in the year 2015. This full day pattern

included an early morning peak or a late afternoon peak. A good terminal

layout should succeed in handling all loading and unloading AGVs in a

reasonable time, partly during off-peak hours. The simulation experiments

with the layouts provided insight into different distances for vehicles to travel,

the ability to use parking spots, the number of crossing vehicles at a terminal

and the utilization of docking places.

Simulation models of terminal layouts considering vehicle movement

 Model constructs of the new domain specific extension were used to

implement simulation models of terminals. These simulation models were

 3 A qualitative analysis in domain specific extensions

 49

used to perform experiments to evaluate possible terminal designs. Figure

3.14 provides an overview of four successful terminal layouts that were used

in experiments with full day scenarios. The terminal layouts have different

shapes, different numbers and types of docks, different numbers and types of

parking places, and a different control logic. The initial simulation models were

easily instantiated once the model constructs with the layouts of the terminals

were available, because the rest of the simulation model contained only a

generator of vehicles, a track where vehicles were waiting to enter the

terminal in addition to the model construct representing the terminal with its

layout and control.

Verification and validation

 The simulation models were verified by making a detailed evaluation of

individual vehicles in the terminal. All events of an individual vehicle were

observed to check that the vehicle was accelerating and decelerating at the

right moments, claimed the right set of TRACES-semaphores and received

the correct allocations from the terminal manager.

 For verification, we mainly based ourselves on the animation of the

simulation model. Each infrastructure model construct had an animation that

showed exactly where the vehicles were. The model construct vehicle

changed color depending on its state and it was easy to verify whether the

vehicles received the correct state, i.e. accelerate or decelerate at the right

moments.

 Validation using data from a real system was not possible, because there

was no real system. We performed validation sessions with experts of control

systems and experts on the design of terminals to evaluate the correctness of

the simulation models and the model constructs.

Experiments

With every terminal layout two experiments were carried out, one, a peak hour

check and two, a full day experiment. The analysis of the output results of the

experiments triggered several types of adjustments to the terminal design to

try to improve the performance and check the sensitivity of the design to

changes. A couple of the adjustments to the terminal designs dealt with:

• The number of vehicles allowed at the same time within the terminal. If

too many vehicles were allowed in the terminal, congestion took place,

the average speed of the vehicles dropped due to the applied safety

mechanisms.

• “Smarter” TRACES scripts. Most terminal concepts (especially 1 and 4)

were extended with additional TRACES scripts to improve the

3.2 Exploratory case study 1: OLS design of terminals

50

throughput and enable vehicles to keep a higher average speed in the

terminal.

• Process duration for loading or unloading AGV at dock. Various

process durations were evaluated to see the effects of the docking time

to the overall throughput.

• Required time for communication between AGVs and control systems.

Anticipating on a slow communication process between the AGVs and

the control system resulted in a more reliable system when actual

communication times varied stochastically.

 Initially the simulation models of alternative terminal layouts and their

configurations provided just output of the number of AGVs that were loaded

and unloaded and the average time AGVs stayed in the terminal. The output

of these initial simulation models triggered requests for insight in many other

system performance indicators. These system performance indicators were

included in the simulation model by instantiating new model constructs and by

adjusting existing model constructs. Examples of performance indicators that

were added after the initial simulation experiments were: use of batteries,

number of accelerations and decelerations in the terminal, time an AGV was

waiting for a dock and utilizations of docks, dock places and parking spots.

Results of the simulation study terminal layouts considering vehicle movement

 The experiments that were performed using the simulation models were

based on a wide range of assumptions for vehicles, docks and load patterns.

Most design options within the OLS project were completely open at the time

that the simulation models were developed, because the design teams were

just beginning to evaluate the possibilities. The simulation models that were

used answered the question which terminal variant performed best, but the

output of the evaluations of designs did not lead to a choice for a terminal due

to the many assumptions that had been made for the model constructs of the

domain specific extension. Therefore, the result of the simulation study was

not a simple suggestion to use one terminal design, instead it was a set of

design guidelines that should be considered in the final design of the

terminals. This advice was supported by tables and graphs gathered from the

performance indicators of all the experiments. Analyses of the experiments

resulted in more than 30 guidelines for designers of terminals in the OLS

system. The most important guidelines for the design of a terminal are listed

below; additional guidelines can be found in Verbraeck et al (1998b)

• Avoid the AGVs crossing the main traffic route while entering or leaving

a dock;

• Enable AGVs to be loaded and unloaded at the same dock to improve

AGV throughput in the terminal;

 3 A qualitative analysis in domain specific extensions

 51

• Provide parking spots very close to a dock to improve the throughput of

the terminal and utilization of the docks;

• Enable AGVs to make turns in the terminal in as many places as

possible to achieve short terminal times in wide terminals.

 The main advice for the terminal layout was to design a terminal that

avoids crossing traffic, that spreads the traffic over the space of the terminal

as much as possible, and that provides a “slow” and a “fast” track, where the

slow track is a side track used by vehicles that wait for their docking operation.

 The following graphs, Figure 3.15, Figure 3.16 and Figure 3.17, are some

examples of the data that was generated and automatically combined into an

Excel sheet to visualize the system performance. Figure 3.15 shows the

distances AGVs drive against the time they stay in the terminal. Figure 3.16

shows the average number of accelerations and decelerations by the AGVs

for each hour of the day (important for battery usage). Figure 3.17 shows the

waiting time for loads before leaving the terminal during a day, clearly showing

two peaks times at the terminal.

-

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12 14 16 18 20

time in terminal (min.)

D
ri

v
e
n

 d
is

ta
n

c
e
 (

k
m

)

Figure 3.15: Relation between

the terminal time and the driven

distance of each AGV

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time of the day

N
u

m
b

e
r

o
f

a
c

c
.
o

r
d

e
c

.

avg decelerate

avg accelerate

max. decelerate

max accelerate

Figure 3.16: Number of times

AGVs accelerate or decelerate

during a day

0

5

10

15

20

25

30

35

40

45

4:00:00 8:00:00 12:00:00 16:00:00 20:00:00 0:00:00

time of day

m
in

u
te

s
 w

a
iti

n
g

Figure 3.17: Time a load waits before leaving the terminal during a day

3.2 Exploratory case study 1: OLS design of terminals

52

Observations simulation study terminal layouts considering vehicle movement

 This simulation project provided insight into the problem owners in the

design of vehicles, docks, terminals and allocation mechanisms. De Vos

Burchart, one of the problem owners, stated in Van der Heijden et al (2002,

p.19): “One of overall goals in this project was to show the feasibility of an

AGV based solution…. The contribution of the simulation group was essential

to analyze the logistical performance of the system…. Simulation was

extremely helpful in developing and testing our new control system.” The

satisfaction of problem owners is achieved thanks to the wide range of

simulation experiments that could be carried out to evaluate terminal designs,

control mechanism and allocation mechanisms.

 De Vos Burchart confirmed that the simulation study was extremely

helpful; however, several of the questions of problem owners, which were

posed after the first publication of results (Verbraeck et al, 1998b), have not

been answered. The most important questions that arose, after the report was

published were the following:

• What would be the effect of an advanced or centralized allocation

mechanism that links AGVs to certain docks, parking places or loads?

• Can alternative TRACES safety scripts improve the performance of

terminal layouts that were not efficient?

• How will the terminal perform when it is integrated in the complete OLS

system?

• What effects will adjustments of size, radius or acceleration of the AGV

have on terminal layouts and performance?

• What relations exist between communication time, docking time,

capacity of the terminal and number of parking spots or docking

places?

 These additional experiments could not be carried out, due to the time

required for each experiment. Even though the model constructs of the

domain specific extension would enable some experiments to be carried out

fairly easy, other experiments would require more effort and some could not

be implemented due to early design decisions taken during the development

of the domain specific extension.

 The simulation experiments have been used for evaluating and improving

the control system of the individual vehicles and for empty vehicle

management. In 2002 the research for the OLS ended, because the financial

risks for the investments in building the OLS-Schiphol were considered to be

too high (Van der Meer, 2002).

 3 A qualitative analysis in domain specific extensions

 53

3.2.6 Observations on domain specific extension in case OLS terminal

design

 We made the following observations by linking this simulation study to the

activities of Figure 1.8 and the expected benefits and potential risks of using

domain specific model constructs listed in chapter 2:

Activity 1. Problem description & define conceptual model: the expected

benefits and potential risks for conceptualization mentioned in chapter 2 were

not observed in the use of the domain specific extension for AGVs, because

the domain specific extension was developed specifically for this simulation

study and problem description.

Activity 2. Select model constructs: each of the docks, parking spots and

terminal designs were implemented as a model construct of the domain

specific extension. The benefit of easier selection of model constructs was

encountered in the simulation studies, because the translation of system

elements to low level model constructs was not necessary. When someone

designed a new piece of infrastructure the model construct to represent this

system element could be composed from already available model constructs

such as the track, dock and parking spot.

 Unfortunately, for the control model constructs, composing a model

construct from lower level domain specific model constructs was not possible.

For example, the terminal manager was redesigned several times to make it

suitable for the terminal layouts and configurations. The risk identified by

Davis et al (2000) that system elements can not always be represented by

existing model constructs in a domain specific extension was encountered

during this activity. In chapter 2 we added this potential risk to activity 8

“Instantiate simulation model for identified solution”, but this case study

showed that the risk was also encountered if a domain specific extension is

developed specifically for a simulation study.

Activity 3. Data collection: the benefit of a known format did not apply to this

case study, because the format required by the domain specific model

constructs was adjusted and changed as the implementation of the model

constructs progressed, just as it occurs in a normal simulation study where the

need for data is not known beforehand. As a result the data gathering for this

simulation study could not start directly at the start of the project, but was

postponed until sufficient insight was gathered into the type of data that was

required.

Activity 4. Instantiate simulation model for original system: the simulation

models clearly contained fewer model constructs and were quite easy to

develop initially. The composition of the layouts of the terminals was easy and

fast, the TRACES-semaphores could easily be added and the initial versions

of the TRACES-scripts for the vehicles were quickly defined. Once more

difficulties arose regarding the model constructs that represented automatic

management systems, but that was more due to the lack of availability of

certain domain specific model constructs as mentioned for activity 2, than to

the development of the simulation model.

3.2 Exploratory case study 1: OLS design of terminals

54

 The initial set of simulation models was instantiated by the developers of

the domain specific extension. These developers understood the capabilities

of the domain specific model constructs fully, and knew what to do when

errors were observed during the test runs. Some additional simulation experts

joined the project team later to instantiate simulation models of alternative

layouts of terminals and docks. These model developers had not participated

in the development of the domain specific model constructs and they had

quite some difficulties when it came to understanding the full concept and the

way it was represented by the model constructs. This was partially caused by

the lack of example models and the fact that only technical detail

documentation was available. The result was that the new model developers

had difficulties with parameterization of the model constructs, which was also

caused by a lack of simple interfaces and contextual help for the model

constructs.

Activity 5. Verify and validate simulation model for original system: the

initial simulation models were tested by the developers of the domain specific

extension to test the model constructs. No formal testing was done before the

simulation models were instantiated. Thus the benefit of reduced verification

requirements because the model construct had already been tested did not

apply. In the validation of the simulation models the visualization of the

system, automatically provided by the model constructs, proved its added

value. The visualization of the vehicles could be observed and analyzed at

levels of composition, enabling us to view the visualization of the complete

model, and simultaneously a visualization of for example an individual dock

with the movement of vehicles around it.

 Unfortunately, the benefit that calculations to support the statistics that

problem owners are interested in are already available inside the model

constructs did not apply in our case. The verification and validation sessions

triggered what type of statistics were required and which ones should be

added. Luckily these statistics could be added to the model constructs quite

easily and were automatically shown the next time the simulation model was

run.

 The potential risk mentioned in literature of time consuming model

adjustments after verification, has partially been encountered. There were

quite some adjustments to be made, but because the model developers also

developed the domain specific model constructs, they knew exactly how to

tackle the differences that were observed during verification and validation

sessions.

Activity 6. Analyze output of simulation model: we extensively used the

benefit of standardizing the output of model constructs. Each model construct

calculated some statistics and these were all combined and analyzed using

one dedicated Excel sheet. This ability saved a lot of time for collecting and

visualizing the statistics originating from several simulation models and thus

clearly was a benefit.

 3 A qualitative analysis in domain specific extensions

 55

 The potential risk of lack of performance indicators was mitigated by

adding extra performance indicators. Step wise the number of performance

indicators was extended in the model constructs and thereby automatically

included in the simulation runs.

Activity 7. Define solution for analyzed output: the model constructs had

few user interfaces that were exposed to the modeler. The generic simulation

environment does not allow for easy user interface development and thus this

was left out of the model constructs. The benefit of receiving triggers for

solutions by observing parameters was thus not observed. In addition, the

problem owners and system experts who generated the majority of the

alternatives had never seen the parameters of the model constructs.

Therefore this benefit was not observed in this case study.

Activity 8. Instantiate simulation model for identified solution: a large set

of experiments was carried out, because the model constructs of the domain

specific extension enabled the model developers to:

• easily represent the infrastructure for the terminals, based on available

model constructs, like the many alternative dock places and parking

spots;

• easily compare the output of the simulation models, because each

model construct provides the same type of statistical information, which

was prepared as a standardized report;

• easily visualize the model, thanks to the detailed visualization included

in all model constructs;

• easily apply different control mechanisms to safeguard terminal

designs using instances of script model construct to represent the

TRACES safety mechanism.

 The benefit of parameterization did not apply during some of the

experiments. The list of unanswered questions that was mentioned before,

was partly caused by insufficient parameterization of the model constructs.

For example, changing the diameter of a curve has effects on the safety

controls and on the overall layout of a terminal. This change therefore still

required several changes within the model construct. This difficulty would

certainly have been observed when the simulation model would have been

composed of generic model constructs, but this does not justify that the use of

domain specific extension did not result in this expected benefit.

 Changing the simulation model for some of the experiments also resulted

in errors during the run of the experiment. Model constructs of the domain

specific extension depended on each other in unexpected ways even though

an object-oriented approach was used in decomposing the system.

Activity 9. Verify and validate simulation model for identified solution:

the same expected benefits and potential risks applied as for activity 5:

verification and validation of the simulation model for the original system.

3.3 Exploratory case study 2: passengers at airports

56

Activity 10. Analyze output of simulation model for identified solution:

the same expected benefits and potential risks applied as for activity 6:

analyze output of the simulation model for the original system.

3.3 Exploratory case study 2: passengers at airports

3.3.1 Introduction: domain specific extension for passengers at airports

 Simulation models are used by Amsterdam Airport Schiphol to support

decision making processes with respect to extending and redesigning its

passenger terminal. This case study project used a domain specific extension

with model constructs for passengers at airports to avoid the need for

simulation models to be developed from scratch in subsequent studies. This

domain specific extension was developed based on experiences gained in an

earlier project at the airport and described by Babeliowsky (1997) and

Gatersleben and Weij (1999).

 This section contains a description of the domain specific extension for

passengers at airports and the use of this extension in three different

simulation studies. Two of these studies were carried out at Amsterdam

Airport Schiphol regarding an increase in passenger numbers, and a new

check-in procedures for the airline KLM. The third simulation study was done

at JFK airport in New York for analyzing the capacity of new check-in facilities.

3.3.2 Object oriented and process oriented decomposition

 Airports all over the world have similar infrastructure and passengers go

through similar processes at these airports. People move from an origin

(either the airplane or the entrance of the terminal) through hallways,

concourses and lounges towards a destination (either the airplane or the exit

of the terminal) and before they reach their destination they participate in

several processes, e.g. checking in, passport check, shopping, visiting

restaurants and lounges, collecting luggage, and boarding. The activities that

people perform at airports are reasonably standard, it is easy to generalize the

systems behavior at different airports to a set of basic processes. However,

airports have different ways of handling these processes, thus one needs to

be able to parameterize and extend the basic processes to cover many

alternatives. For example, at Amsterdam Airport Schiphol, the check-in

process for a flight with a European carrier within Europe has fewer security

issues, and thus requires less time and resources, than a check-in process for

a flight to the United States.

 People at airports use the infrastructure available within an airport for their

various processes and to travel from their origin to their destination in the

terminal. Arends (1999) made an overview of the infrastructure system

elements that he regarded to be important within a simulation study of

passenger flows in airports. He also performed a generalization of the

 3 A qualitative analysis in domain specific extensions

 57

decomposed infrastructure objects. All system elements he identified were

location dependent, and described an area at the airport where a certain

function was performed. Examples are a check-in counter, a hallway, a gate,

a seat and a shop. These system elements have been generalized further to

one top-level model construct which he called an area. An area is a location

where one or more passengers stay for a certain time, and sometimes carry

out a certain activity. After this time the passengers try to move to the next

area. The time for staying in the area depends on the type of infrastructure,

the activity, and passenger characteristics. For example, in a hallway the

staying time depends on the distance to walk, the number of other passengers

in the area and the direction in which they are walking, and on the used

surface (cart or not; family) and walking speed of the passenger. For a seat

area as part of a gate area, a passenger will stay in a seat until a signal

sounds that the boarding of a flight starts. In each of these areas the capacity

is limited and thus each area can become a bottleneck for the processes at

the airport when the number of passengers rises.

 In the same way Arends (1999) has applied object oriented decomposition

to identify types of people present at an airport. He made a detailed list of

types of people, which he generalized to passengers, meet-greeters and

personnel. Further he observed that people who are alone behave differently

than people who are in pairs or groups. For example, a group of five co-

travelers wait for each other after the passport check, take the same route, go

to the same restaurant and arrive at the boarding at the same moment.

Therefore passengers, meet-greeters and personnel are further generalized to

groups.

 By applying process oriented decomposition Arends (1999) identified

system elements regarding the movement of people and the allocation of

areas to flights or airlines. The process flow of people moving in the airport is

divided into a detailed flow from area to area and a higher level flow from

origin via intermediary destinations to a final destination. Further process

flows were defined for the movement within areas, regarding the adjustment

of capacity, and for the determination of the time spent in the area by people.

Finally, the process oriented decomposition shows how the available capacity

within the airport, provided by the areas, is allocated to different airlines and

specific flights. These allocation mechanisms are also seen as specific

processes.

 The process of people entering and leaving an area is shown in Figure

3.18. The process is the same for all areas and it is assumed that this process

applies for airports all over the world, as this is a basic and very generic

description. The process of a group can be further specified depending on the

type of area. For example, a passenger in a check-in area will have a staying

time that depends on the speed of the check-in process, while if this

3.3 Exploratory case study 2: passengers at airports

58

passenger is in a shopping area the staying time is a combination of the

attraction of the shop and the spare time of the passenger.

Figure 3.18: Process flow people

 The destinations of a group, as referred to in Figure 3.18, depend on the

purpose and moment of arrival of the group. Passengers that arrive by car

and leave by airplane will perform process steps like check-in, go through

passport check, security check and boarding an airplane. Some of these

passengers might also have to check-in luggage, and some might have a

Schengen2 or national flight, which means that they do not have to go through

customs. Passengers who arrive by airplane and transfer to another flight

have a different process. Business class passengers behave differently from

economy class passengers; individual passengers differ from families and

larger groups. Therefore, the process for passengers at an airport can be

different for each individual passenger at each airport. Decomposition of this

process resulted in a set of process steps, of which some are shown in Table

3.2.

Table 3.2: Example process steps for routing behavior of passengers at

airport

Process step Description

Arrive Entering airport

Board airplane Leaving the airport via an airplane

Check of boarding

card

Showing the boarding card to stewardess, often prior to

enter restricted areas or airplane

Check of passport Showing the passport to security employees, often

prior to enter or leave restricted areas

Check-in for flight Checking-in for a flight and optionally dropping off

luggage

Enter gate Moving to the gate where the passengers will depart

2
 The Schengen agreement is a treaty dating from 1985 between European countries which eliminates all internal

border controls between them.

 3 A qualitative analysis in domain specific extensions

 59

 The passengers need to go to a certain area for each of the process steps.

For example, the passengers need to select a check-in counter based on their

airline or flight when they arrive, or the correct gate from where to board their

airplane. The passengers receive information regarding their destinations from

information providing objects such as monitors containing gate information.

3.3.3 Existing domain specific extensions

 At the start of the project, two domain specific extensions were available

for modeling passenger behavior at airports, ‘IBM Journey Manager’ (Bitault,

1997; Snowdon et al, 1998) and ‘PaxSim’ (Joustra and van Dijk, 2002). Both

are extensions of the generic simulation environment Arena. These two

domain specific extensions applied decomposition using the object oriented

view. Some examples of model constructs available in those two domain

specific extensions are a check-in counter, a gate and a security check.

Between these main model constructs the passengers move freely and

unrestricted. This does not fit with the concept of areas, because passengers

can meet bottlenecks and queues anywhere at an airport.

 The process for passengers is also too fixed. Passengers in these models

go as quickly as possible to the gate, while normally passengers who arrive

early at an airport spend some time hanging around and enjoying the shops or

restaurants. No modeling concepts are offered in these domain specific

extensions to represent flexible passenger processes, therefore these

environments could not be used for the particular purposes of our simulation

studies.

3.3.4 New domain specific extension

 A new domain specific extension was developed for passengers at

airports. This new domain specific extension includes model constructs to

represent areas and a variety of processes for passengers. The model

constructs of this domain specific extension were implemented in the generic

simulation environment eM-Plant. The system elements that were identified

during system decomposition by Arends (1999) were implemented using an

inheritance structure. In this way the top-down implementation steps as

suggested by Pater and Teunisse (1997) were performed.

 The process steps regarding the detailed process of passengers in an

area, see Figure 3.18, were implemented as functionalities of an area. The

process steps regarding the directions of passengers at an airport, see Table

3.2, were implemented separately from the areas to keep the process of

passengers flexible and easily adjustable. This separation of routing of

passengers and use of areas by groups of passengers enables the use of

areas by passengers with a different flow, for example departing and arriving

passengers who use the same hallways.

3.3 Exploratory case study 2: passengers at airports

60

 The areas were developed into a structure with several variants of an Area

that are inherited from the generic model construct called Area. The

differences between the variants regard one or more of the following features

and functionalities of the model construct: visualization, performance

measurements, prioritizing of passengers, capacity and availability,

determining the time a group will stay in the area and the restrictions for

groups to enter. For example, a “check-in-counter area” calculates the time a

group stays in the area for the check-in process using a statistical distribution

that takes group properties as parameters, and in a “hallway area” the time a

group stays is calculated using the walking speed of the group or passenger

and the utilization of the area at the moment of entering. An overview of the

most common Area model constructs is provided in Figure 3.19.

Figure 3.19: Model constructs to represent system elements of Areas

 Each area in the inheritance structure provides a representation of one

system element of an airport. Often standard combinations of two or more

areas can be identified at airports. For example, the combination of a sitting

area and a boarding check area can represent a system element “gate”. A

system element gate is represented by a model construct called

‘ComposeArea’ where the required areas (in this example sitting area and

boarding check) are combined. In the model construct ‘ComposeArea’ the

individual behavior of the underlying areas is not changed, but additional

statistics and hierarchical animation on the higher level are included. A

GateArea can then be inherited from the ComposeArea. These model

constructs increase the ease of model development by depicting repeated and

recognizable parts of the infrastructure.

 One of the assumptions in this domain specific extension is that each

group can behave differently when going through the terminal at the airport.

This assumption was implemented in the domain specific extension using

functionalities for advanced passenger generation and scripting. Scripts

describe the sequence and type of activities of passengers. The advanced

passenger generation was implemented by a model construct that determines

the number of passengers in the group, the speed of the group and many

other passenger specific parameters. For example, a group that consists of

 3 A qualitative analysis in domain specific extensions

 61

one individual experienced business traveler behaves differently than a group

that consists of a family with three young children going on holiday. The

routing behavior of these groups was represented in a script applying the

decomposed functionalities mentioned in Table 3.2. Each script statement

was a process that the group needs to perform somewhere at the airport and

a combination of these script statements determines the routing of a group.

Table 3.3 shows a simple example script of a group of passengers departing

by an airplane. This script shows the sequence of processes for this departing

group.

Table 3.3: Example of a simple script for a group departing by plane

Script statement: Argument(s):

Check-in Choose area based on flight number

Shopping Choose area(s) based on interests and time

left for shopping

Wait in gate for

boarding

Choose area based on flight number

Enter airplane

3.3.5 Cases where domain specific extension for airports is applied

 The model constructs of the domain specific extension for passengers at

airports were used in different simulation studies. Three different systems will

be described that have been modeled using these model constructs. The

three systems deal with different parts of airports and also with different levels

of abstraction for the areas where passengers stay.

 The first simulation study involved modeling the complete terminal at

Amsterdam Airport Schiphol to evaluate passenger processes at a growth rate

of 40% for the number passengers. Amsterdam Airport Schiphol aims to keep

all their passengers within one terminal building and simulation models are

used to evaluate different scenarios for extension (Arends, 1999). The second

simulation study in which the model constructs of the domain specific

extension were applied was the challenge from the KLM to divide their

passengers better over their different check-in counters. Simulation should

show the effect of different allocation mechanisms without reducing the

passengers’ freedom to check-in at any location of KLM designated check-in

counters (De Witt-Hamer, 1999). The third simulation study handled the

completely new check-in process at a renovated terminal building for

international traffic at JFK in New York. The simulation study included

determination of the desired number of check-in counters in this terminal and

an evaluation of different ways to allocate check-in counters to airlines.

(Heijman, 1999; Blom and Korf, 2000; Valentin et al, 2003a).

3.3 Exploratory case study 2: passengers at airports

62

3.3.6 First simulation study: One Terminal Concept at Amsterdam Airport

Schiphol

Problem

 Amsterdam Airport Schiphol is an expanding airport that combines all its

activities in one terminal building. The management of Amsterdam Airport

Schiphol prefers to keep the one terminal concept when accommodating the

increasing number of passengers. However, the growth in the number of

passengers will have effects on passenger logistics, therefore airport

management wanted insight into the allocation of processes to available

infrastructure and the configuration of the terminal. Simulation models were

constructed to show the effects of and Amsterdam Airport Schiphol’s ability to

handle the expected growth in the coming 20 years for the following design

issues that the airport management was dealing with:

• physical separation of passengers of international and Schengen

flights.

• determination of locations of shops and entertainment areas.

• new technologies for passport checks, such as biometric scans.

• using different floors for certain passengers in the terminal building.

• enlarge areas where passengers stay.

• personnel allocation for customs and passport check.

• personnel allocation for check-in and boarding.

• allocation of flights and airlines to check-in counters, gates and reclaim

belts.

Simulation model One Terminal Concept at Amsterdam Airport Schiphol

 Insight into the effects of all considered issues required a wide range of

experiments with the simulation models. In this project, first a simulation

model was built for the current system. This simulation model was validated

with parameter settings taken from two different days. The validated

simulation model was used to evaluate effects of alternatives and growth. The

simulation model consisted of over 1500 instances of different domain specific

model constructs representing areas and processes to accommodate

passengers using this infrastructure.

 The top overview of the whole airport terminal building is shown in Figure

3.20. The second more detailed level of one of the piers of the terminal is

shown in Figure 3.21. The pier is composed of single areas, like WalkAreas

and ConveyorAreas, and composed areas like a Gate-Area, which on its turn

is a composed area representing a waiting area, a security check and the

boarding process.

 3 A qualitative analysis in domain specific extensions

 63

Figure 3.20: Model overview of

Amsterdam Airport Schiphol

Figure 3.21: F-pier of Amsterdam

Airport Schiphol

 The modeled infrastructure was used by different types of groups that

represent different types of passengers and visitors, as was explained before.

The data used to define the unique specifications and behavior of groups was

based on actual flight schedules and an analysis performed for the project in

1997 (Babeliowsky, 1999). The actual flight schedules that were applied to the

simulation model were those for Friday 30th of April 2000, an average day with

an average flight pattern, and Friday 2nd of July 2000, one of the busiest days

in the year.

 The insight for the management of Amsterdam Airport Schiphol was

created by visualizations and statistical output generated by the simulation

model. Visualization provided in the simulation model consisted of changing

colors of the areas triggered by the utilization of the area. The more highly an

area was utilized, the darker the color that represented the area, rating from

light green to dark red. The statistical outputs were calculations of

performance indicators included in each area in the simulation model. As the

model contained more than 1500 areas, this resulted in a lot of detailed

statistics. The main performance indicators that were used for analysis of the

behavior at the terminal were:

• total time passengers waited, shopped or walked per flight;

• length of queues at the passport checks for departing passengers;

• length of queues for the central security boot at the different piers for

departing passengers;

• number of passengers that were in one of the main halls at the same

moment;

• percentage of passengers that missed their flight.

Verification and validation

 The validation process of the simulation model consisted of verifying and

validating the model constructs and the total simulation model. This study was

the first study to be carried out using the model constructs of the domain

specific extension for passengers at airports. Each new model construct was

3.3 Exploratory case study 2: passengers at airports

64

tested for a short time in a small simulation model. The model construct was

instantiated in the large simulation model of Amsterdam Airport Schiphol once

the model construct had shown valid behavior in the small simulation model.

 The second step for validation was to compare output of the model with

measurements of the days under investigation. For validation, we counted the

number of passengers and measured times for a large set of performance

indicators during a full day at the airport. Afterwards we compared the

measured data to the output of the simulation model for that day and we found

several differences. After discussing the differences with experts at the airport,

we concluded that the differences had to do with the following uncertainties

regarding available input data:

• moment of arriving of passengers at the check-in process;

• the size of a group influences the handling times for the check-in

process;

• the length of the queue influences handling times for the passport

check;

• moment of arriving of passengers at the gate;

• activities of transfer passengers during their stay at the airport;

• airline companies use a specific capacity for the check-in process.

 We concluded after consultation with the experts at Amsterdam Airport

Schiphol that the simulation model was valid for experimentation.

Experiments

 Evaluation of the output of the simulation models for future flight schedules

showed that problems could be expected regarding the number of security

checks that need to be carried out at different gates all over the airport and

the queues that would result from an expected lower number of available

security agents. One of the possible solutions that we evaluated using the

developed simulation model was to combine the passport check and security

for all departing passengers. The changes that needed to be made for

experiments with this alternative control were an alternative model construct

‘gate’ and instantiate additional model constructs in the simulation model to

represent the security check. These changes in infrastructure were easily

performed, thanks to the structure of the simulation model and the existence

of suitable model constructs.

 The new simulation model with a security check directly after the passport

check was evaluated with different number of passengers for the two

evaluated days. Table 3.4 shows one of the main distinctive outputs of these

experiments, the waiting time of passengers in front of the passport and

security check. Figure 3.22 is a graph that zooms in at the value for security of

 3 A qualitative analysis in domain specific extensions

 65

the south location and plots the average waiting time for groups of passengers

(in seconds) against the hour of the day (0 – 24).

Table 3.4: Maximum waiting time for groups of passengers in minutes

Increase in number of
passengers

0% 10% 20% 30% 40% 50%

Location Process

West Passport 7.3 7.8 7.4 7.6 9.0 8.7

West Security 0.6 0.9 0.9 0.9 1.0 1.0

Central Passport 7.6 7.9 8.4 9.0 9.1 9.7

Central Security 1.0 1.0 1.0 1.1 1.0 1.2

South Security 3.5 3.8 3.8 4.0 4.2 4.2

Queue time passengers for security filter in South

0

50

100

150

200

250

300

350

400

450

500

0 6 12 18 24

Hour of the day

Q
u

e
u

e
 t

im
e

 i
n

 s
e

c
o

n
d

s

Figure 3.22: Waiting time of passenger at security filter in South

Results of the simulation study One Terminal Concept at Amsterdam Airport

Schiphol

 The output of the simulation experiments (Arends, 1999) showed that the

waiting time of passengers at the different halls was within limits. The

maximum queue time of 8 minutes was comparable with the current queue

time. The merge of the passport and security check resulted in faster handling

at the gate, therefore no extension of the number of gates was necessary and

thus advanced infrastructure investments like more gates or double floor piers

were not further evaluated.

3.3 Exploratory case study 2: passengers at airports

66

Observations simulation study One Terminal Concept at Amsterdam Airport

Schiphol

 Thanks to the hierarchical concept and strong relation between system

elements and model constructs, the first simulation model that was

instantiated using the model constructs was developed in less than one day.

This model included shortest path walking for passengers between

destinations, scripts for passengers and allocation of flights to check-in

counters and gates. We expected that the model development would go faster

if model constructs were used, but less than one day was much faster than

expected.

 The first presentation of the simulation model to the problem owners

triggered a lot of new questions, which could be answered using other model

constructs to replace existing ones in the model. However, these model

constructs were not available at the time, so in the next phase of the project

the development of model constructs and the experimentation with the large

simulation model went hand in hand. Time pressure resulted in many model

constructs that were only tested and validated as part of the large simulation

model. Every time that errors or problems were observed with the new model

constructs this delayed the modeling process, and also frustrated the model

developers who became more skeptical regarding the use of the domain

specific extension.

 Additional difficulties that the model developers faced were the growing set

of model constructs. A tendency existed in the project to compose a new

model construct for each alternative process. For example, only one type of

check-in counter area was available in the domain specific extension that was

used to compose the initial simulation model. Over time the domain specific

extension was extended with versions that represented check-in counter

areas for groups, versions using statistical distributions, versions using

conditions for determining the handling time, versions including rules for

changing capacity based on the number of passengers in queue, versions

including rules for changing capacity based on the queue time, versions

making distinctions for different types of luggage, and versions that combines

several of the above behavior, e.g. statistical distributions and capacity

changes. In addition the model developers included check-in counter model

constructs that were pre-configured for the different terminals at Amsterdam

Airport Schiphol, to reduce the parameter settings that needed to be done

when a model construct was instantiated into the simulation model. Especially

the combinations of features made the number of model constructs grow

considerably, but also decreased the ease of maintenance as the same

 3 A qualitative analysis in domain specific extensions

 67

behavior was implemented in different building blocks without a proper

inheritance3.

 The model developers also came across a lack of data regarding future

situations. The model constructs expected complete flight schedules as input

data. The flight schedules should include the number of passengers, the

location of the check-in counters used, and the gate for boarding each flight.

This information was available for current situations, but not for (far) future

scenarios. The model developers tried to make custom flight schedules, but

that turned out to be more difficult than initially suspected, and led to double

booked gates and check-in counters that were not used at all, where others

had long waiting times. In reality, a careful planning process is carried out to

make these allocations. The simulation model with the generated flight

schedule showed passengers queuing very long and missing their flight, due

to an impossible flight schedule. The model developers had a hard time

creating valid simulation runs for future scenarios.

 Finally, the model developers and problem owners had difficulties with

understanding what was happening exactly in the simulation model. The

visualization provided in the areas, i.e. changing colors, was not sufficient,

while the performance indicators of each individual area were too detailed.

The problem owners were interested in performance indicators like “how

many passengers are too late for their flight” or “what is the minimum transfer

time” but instead they received performance at a much lower level:

“passengers have been waiting between 06:00 and 07:00 on average 0.03

seconds to enter WalkArea C24x5right1.” And this example output was

duplicated over 1500*24 times as each area model construct in the simulation

model provided this output for each hour of the day.

3.3.7 Second simulation study: KLM check-in allocation

Problem

 KLM and partners use the check-in and baggage drop off counters in one

of the three check-in halls at Amsterdam Airport Schiphol. Within this check-in

hall KLM is free to allocate flights over the available check-in and baggage

drop off counters. KLM allows every passenger to check-in at any available

counter, but the monitors with check-in information show a dedicated location

to spread the passengers equally over the different check-in counters to

accommodate fast and easy handling of passengers. The allocation of flights

over different check-in counters using the monitors has effects on the service

levels for passengers of KLM flights. In 2000 the allocation of flights was

3
 The fact that certain aspects of different building blocks were changed in the same way to create children in the

inheritance tree could only be solved with code duplication in eM-Plant. Multiple inheritance or aspect-oriented
programming could have (partially) solved the issue, but is not available in this generic simulation environment.
Furthermore, this would lead to a new inheritance tree of features, that was not foreseen in the abstraction and
generalization of the system elements. It will be shown later how this issue was addressed in other studies.

3.3 Exploratory case study 2: passengers at airports

68

performed based on the available time before a flight leaves. The question

from KLM was whether alternative allocation mechanisms would improve the

service level and reduce the costs of operations. This question was answered

using discrete event simulation for the situation in 2000 and for future

scenarios with more electronic check-in facilities.

Simulation model KLM check-in allocation

 A simulation model was developed using the model constructs of the

domain specific extension for passenger movements at airports. Specific

model constructs were developed to match the system description of KLM.

The set of model constructs of the airport domain specific extension was

reduced to ease development, adjustment and use of the simulation model for

this particular simulation study. The specification of model constructs for KLM

concerned mainly visualization of the output of the check-in counters using

graphs and animation of groups moving through the simulation model.

Figure 3.23: Simulation model of KLM check-in counters

 The new model constructs were instantiated to develop a simulation model

of the check-in area of KLM, see Figure 3.23. The bottom of the figure shows

the entrance of the check-in hall and the arrow at the top indicates the walking

direction for the passengers towards the passport check. The passengers

enter the simulation model at the moment they enter the arrival hall and they

leave the system when they start queuing for the passport check. The queuing

process for the passport check, the ticket offices and passengers that walk

through the check-in hall but do not use the facilities are not included in this

simulation model.

 KLM used a scheduling tool that determines the number of active

operators in a check-in row, based on the flight schedule and additional

 3 A qualitative analysis in domain specific extensions

 69

parameters like the expected percentage of passengers using electronic

check-in and requiring just a baggage drop-off. The scheduling rules were

translated to rules in the simulation model based on queue length. Every time

the queue became longer than a certain number of passengers, an additional

operator was requested to serve at one of the counters in a check-in row.

Verification and validation

 The first processes of a simulation study, i.e. model development,

verification and validation and analysis of the current system, were done as a

group process. The group consisted of a developer of the domain specific

extension who instantiated the simulation model, the user of the simulation

model who would do all simulation experiments for evaluating the solution

space, a domain expert that acted as problem owner on behalf of the KLM,

and a facilitator.

 The user of the simulation model and the problem owner made sure that

during the model development process all desired input parameters for the

model constructs were available. The problem owner used a face validation

process to the instantiated simulation model during a group meeting. This

face-validity was satisfactory and when the real data was compared with the

output of the simulation model they judged that the simulation model was valid

and ready to be used for experimenting to find alternatives in the solution

space.

Experimentation

 The simulation model was fed with historical data of passenger arrivals.

The results showed that queues appeared at different locations during the

day. Experiments were designed with different mechanisms to allocate

personnel to check-in counters, and to inform passengers where they should

check-in during the day. In the morning passengers arrived closer to the

departure time of their flights, and thus a higher number of passengers use

the last-moment check-in counters, while passengers for afternoon flights

arrived well in advance. Different simulation experiments showed that the

optimal service level would be reached by sending passengers that arrive

between one and two hours in advance of their flights to go to check-in rows

10, 11 and 16 in the morning until 10 o’clock, and in the afternoon check-in

rows 10 and 11 should be dedicated to check-in for flights up to 3 hours in

advance. De Witt-Hamer (1999) describes many additional experiments that

were carried out in 2000, for instance a number of scenarios with high e-ticket

use by passengers.

3.3 Exploratory case study 2: passengers at airports

70

Results of the simulation study KLM check-in allocation

 The model building group sessions resulted in a valid simulation model

that the KLM could use for additional experimentation. The experiments that

KLM performed further (Wit-Hamer, 1999) provided new allocation

mechanisms and resulted in a more sophisticated planning mechanism. The

outputs of the simulation experiments and the new allocation mechanisms

were adopted by the operational check-in department and have resulted in

new allocations and scheduling of the check-in counters for KLM at

Amsterdam Airport Schiphol.

Observations simulation study KLM check-in allocation

 The possibility to compose KLM-specific model constructs made it very

easy to carry out this simulation study. Instantiating the model constructs

created a system representation directly, with representative animation and

easy to understand performance indicators. In addition, experiments could be

performed by straightforward parameterization of the input variables of the

instantiated model constructs.

3.3.8 Third simulation study: Check-in counters at JFK Terminal 4

Problem

 International terminal 4 at JFK airport in New York was completely

reconstructed in the period of 1996 to early 2001, see Figure 3.24. The

management of this terminal had opportunities to increase the number of

flights from this terminal significantly by welcoming new airlines at the terminal

after the construction period. The extension of the number of flights departing

from the terminal would have effects on the expected service levels, mainly at

the check-in processes at the terminal. A simulation study was carried out to

evaluate the service level at the check-in area to consider possible future

scenarios for growth in the number of departing flights.

Figure 3.24: Artist impression of the building of JFK International

Terminal (Heijman, 1999)

 3 A qualitative analysis in domain specific extensions

 71

Simulation model check-in counters at JFK Terminal 4

 The simulation model was instantiated from model constructs of the

domain specific extension for passengers at airports. The scope of the

simulation model is marked by the box in the middle of Figure 3.25. The

check-in hall at terminal 4 was represented by areas for the check-in process

and walk areas. The walk areas allowed passenger to move from the entrance

of the check-in hall to the check-in counter and out of the check-in hall

towards the gates and the shops.

Figure 3.25: Map of level 2 of terminal 4 (Blom and Korf, 2000)

 Check-in times differ considerably between different airlines. Handling time

measurements were carried out for all different airlines. The processing times

were lumped together on destination, based on these measurements, see

Table 3.5.

Table 3.5: Processing times passengers check-in counters

Destination Domestic
USA

Europe Far East South
America

Other

Processing time
(min, mean,
max)

2 min.;
2½ min.;

3 min.

2½ min.;
3 min.;

3½ min.

2½ min.;
3½ min.;

4 min.

3 min.;
3½ min.; 4½

min

3 min.;
4½ min.;

6 min.

 The scripts to describe the processes of the passengers were kept simple

and consisted of only four steps: “arrive at the airport”; “check-in”; “say

goodbye”; “leave to the secured area”. The passengers could arrive at several

entrances to the terminal. 70% of the passengers in the model arrived through

the main entrances (see Figure 3.25), with 30 percent arriving by the JFK

monorail system and then coming down the stairs. Business class passengers

3.3 Exploratory case study 2: passengers at airports

72

were expected to arrive 30 minutes to 2 hours in advance of flight departure,

economy passengers to arrive between 1 hour and 4.5 hours in advance.

These passenger arrival times were based on measurements and

questionnaires. Additional questionnaires among airlines that fly from this

terminal showed that the patterns for economy and business class

passengers apply for all airlines.

 The flight schedules that were used in the base scenario were constructed

based on projections for future growth and consisted only of predictions for

airlines currently operating from the terminal. Four additional scenarios were

created, each with an increasing number of new flights departing from

terminal 4.

 The domain specific extension was extended with a model construct for

this system to allocate available check-in counters to departing flights, in line

with the specific situation at this terminal. This allocation was also used to

direct passengers to the correct check-in counter. This model construct took

restrictions in the infrastructure into account and decided how many check-in

counters would have to be available for the check-in process for a flight. The

decisions of this model construct were based on the priority of airlines and the

expected number of business and economy passengers to check-in.

Verification and validation

 The verification and validation activities that were performed for this

simulation model were restricted to a number of tests with extreme input

parameters. Examples of the extreme input parameters that we used were a

low number of check-in counters and a high number of passengers on a

selected flight (Valentin, 2002).

Experiments

 The first simulation runs showed that the planned check-in counters would

not be sufficient for the expected increase in the number of flights. Changes in

the allocation mechanism for allocating check-in counters to airlines resulted

in an improvement of the waiting times, but still resulted in long queues.

Alternatives that were evaluated included an increase in the number of check-

in counters.

Results simulation check-in counters at JFK Terminal 4

 Based on the output of this simulation study the management of Terminal

4 at JFK decided to increase the number of check-in counters and to do

additional research into how they would allocate the available check-in

counters to the airlines in the future.

 3 A qualitative analysis in domain specific extensions

 73

Observations simulation study check-in counters at JFK Terminal 4

 The simulation study provided the insights that the problem owners of the

terminal were lacking. The model development using the model constructs

also went well; however, there were some minor problems. This simulation

study started with the domain specific extension that was tested and enriched

during the two previous simulation studies mentioned. In these studies new

model constructs were added to the simulation environment and this made the

number of available model constructs larger. As a result, the model

developers now had difficulty selecting the best model constructs to represent

their system elements.

 Another encountered risk was that the layout of the terminal showed 8

rows of check-in counters. Several airlines would share facilities in one check-

in row. The processes at the individual counters could easily be represented

by the available model constructs, but in this case no control was initially

available to open or close additional check-in counters when needed, or to

pick passengers from a shared queue. It actually required quite some time to

develop the dedicated model constructs for these controls, and the use of the

domain specific extension might have been equally or less effective than a

simulation study using a generic simulation environment.

 Finally, it turned out that using the domain specific extensions had a steep

learning curve, and it took the simulation experts with quite some airport

knowledge a lot of time to understand the way the model constructs should be

used (Valentin, 2002).

3.3.9 Observations simulation studies domain passengers at airports using

domain specific extension

 Based on the activities of Figure 1.8 and the expected benefits and

potential risks outlined in chapter 2, we learned the following from the three

experiments using the domain specific extension for airports.

Activity 1. Problem description & define conceptual model: the problem

descriptions in the three airport simulation studies were independent of the

capabilities and available model constructs in the domain specific extension.

In the first simulation study, a basic domain specific extension was available.

In the other two simulation studies it was known beforehand that additional

model constructs were required.

Activity 2. Select model constructs: for each of the three simulation studies,

the model developers could select the model constructs based on the

decomposition of the original system, because the model constructs and

system elements were similar. The model developers did not need to make a

translation from system element to a variety of model constructs.

 Another benefit was that the different domain specific model constructs

represented were part of an inheritance structure. The selection of the correct

3.3 Exploratory case study 2: passengers at airports

74

model construct could be made based on functionalities that were related to

the inheritance tree of the domain specific extension. The existence of this

tree made it easier to select the correct model construct, although the set of

model constructs was quite large in the end.

 One of the newly observed risks was that model developers instantiated a

new model construct as soon as they thought that a system element was

slightly different from the offered model constructs in the domain specific

extension.

 Some of the system elements were represented by the wrong model

constructs, due to the large set of model constructs available to represent

check in areas and other areas that were available. The structure of the

domain specific extension and inheritance helped in selecting, but did not

prevent model developers from selecting the wrong model construct.

Activity 3. Data collection: the data collection was a large issue for the first

simulation study, as there was no information regarding the flight schedule for

2020 on the level that we needed for the simulation study. The participants in

the KLM check-in simulation study were informed during the first session, so

in the second session they brought all the data that was required. In this

simulation study there was a clearly defined benefit from using predefined

data requests.

Activity 4. Instantiate simulation model for original system: the initial

simulation model for all three simulation studies was developed rather easily

and fast. The benefit of faster model development was clearly observed. The

problem owners had insight directly and directly started to make suggestions

on how to improve the simulation model. In a normal simulation study the

problem owners would not have that much insight into the model and would

not interact in the model development phase, but thanks to the model

constructs the model was understandable and the problem owners recognized

the layout from their maps.

 The risk for correctly configuring the model constructs was encountered for

the model constructs that generated new groups of passengers or triggered

new destinations in the airports, such as the model constructs used to

represent information screens for guiding the groups of passengers through

the infrastructure. These model constructs required quite some data that was

related to the flight plan, but not as obvious as a map of the airport or duration

for a process. With some additional training and a demonstration in a small

simulation model, the model developers sufficiently understood the

importance of these model constructs and could configure the model

constructs for the logical routing of passengers.

Activity 5. Verify and validate simulation model for original system: there

was insufficient testing of the first version of the library of model constructs,

and this resulted in several issues during verification process of the simulation

study for Amsterdam Airport Schiphol. The fact that the model developers

were testing the model constructs instead of their simulation model caused a

 3 A qualitative analysis in domain specific extensions

 75

reduction of trust in the quality of the model constructs with the problem

owners.

 The model developers did not allow time for full testing and in two

situations started to make their own adjustments to the model constructs at

moments that errors were observed during the model development. Once the

model constructs were completed the simulation model still behaved

differently, because adjustments to the model constructs in the domain

specific extension no longer had an effect on the model constructs

instantiated in the simulation environment. This risk was mainly encountered

due to the openness of the simulation environment used, allowing the model

developer to change the logic of the domain specific model constructs.

Activity 6. Analyze output of simulation model: the model developers had

the possibility to define a large amount of areas, a lot of group types, and

different kinds of mechanisms to manage passengers and flights. Each of the

model constructs that was used to represent the behavior of these system

elements also collected a bunch of statistics. The model developers were

overwhelmed by the amount of information that the system produced and it

took them a lot of time to find out how to handle the data.

Activity 7. Define solution for analyzed output: the solutions that were

defined were prepared, and confirmed by the analysis of the output data. The

benefit of the parameters of the model constructs was not really confirmed,

but the feared risk of limiting the model developers has not been encountered

during the simulation study.

Activity 8. Instantiate simulation model for identified solution: the

simulation models could be instantiated and parameterized for the new

simulation experiments. Unfortunately, the main set of experiments of the first

simulation study required a lot of additional data to be defined, mainly a valid

plan for flights and use of gates. Such a plan was not available and thus was it

very hard to perform the experiments for the future situation. This is not

caused by a potential risk of use of domain specific extensions, it would also

have occurred in a simulation study where only generic model constructs

would have been used.

Activity 9. Verify and validate simulation model for identified solution:

the same expected benefits and potential risks applied as for the verification

and validation of the simulation model for the original system.

Activity 10. Analyze output of simulation model for identified solution:

the same expected benefits and potential risks applied as for the analyze

output of the simulation model for the original system.

3.4 Benefits and risks in the case studies

 The simulation studies that were carried out in the two domains provided

us with new insights into the effects of using a domain specific extension to

compose simulation models. First of all we enjoyed many of the expected

benefits that were predicted in literature (chapter 2). The simulation studies

3.4 Benefits and risks in the case studies

76

were performed correctly and the problem owners were satisfied with the

result.

 The use of model constructs of the domain specific extension was not a

complete victory. The concepts and approach helped with developing model

constructs for a domain specific extension, but we encountered still most of

the risks that we had identified from literature. We could mitigate most of the

risks reasonable easily, because we were prepared for them, but the time and

effort spent to mitigate the encountered risk in the simulation study could

better have been used to improve the quality of the insight generated for the

problem owner by the simulation study.

 A summarizing overview of the benefits and risks that were introduced in

chapter 2 and whether or not they were observed in the simulation studies in

the domain is provided in Table 3.6. If “No” is filled in for a potential benefit it

means that in the case studies for this domain we did not observe effects of

the expected benefit. This is not negative, but points out that the case study

has the potential of being even more effective. Potential risks that we did not

observe during the execution of the case study (“No” in the table) probably did

not occur and thus that the potential risk has been avoided by the way the

domain specific extension was designed, structured and used.

 In Table 3.6 we also describe the effect of the benefit or encountered risk

to the simulation study. The effects of the benefit are described in relation to

carrying out the same simulation study using model constructs of a generic

simulation environment. The effects of encountering the risks are mainly the

way that the risk has been mitigated.

Table 3.6: Summary of benefits and risks in the case studies

Expected benefits and potential risks Observed
in case
AGVs

Observed
in case
Airports

Activity 1. Problem description & define conceptual model

Benefit 1.1: conceptualize system elements with
model constructs in mind
- faster conceptualization
- conceptualization is better prepared for model
instantiation

Not
applicable

Yes

Risk 1.1: scope of model developer is limited by model
constructs

Not
applicable

No

Activity 2. Select model constructs

Benefit 2.1: no translation between system elements
and model constructs
- reduction of complexity

Yes Yes

 3 A qualitative analysis in domain specific extensions

 77

Activity 2. Select model constructs

Risk 2.1: lack of trust results in no motivation to use
domain specific extension
- talk to model developers to explain potential benefits
- show use of model constructs in other project

No Yes

Risk 2.2: lack of insight in model constructs results in
ignore domain specific extension

Not
applicable

Not
applicable

Risk 2.3: use of model constructs that are not suited
for representation of system elements
- training of model developers
- include additional terminology in interface of model
construct

No Yes

Activity 3. Data collection

Benefit 3.1: collection of predefined input data No No

Activity 4. Instantiate simulation model for original system

Benefit 4.1: less model constructs used
- simulation model is instantiated faster
- simulation model seem better understandable

Yes Yes

Risk 4.1: model developers do not understand model
construct
- training of model developers how to use model
construct

Yes Yes

Risk 4.2: model developers do not know how to
parameterize model construct
- training of model developers how to use model
construct
- additional terminology in interface of model construct

Yes Yes

Risk 4.3: difficult to compose simulation model,
because model constructs are not available
- create additional model constructs to satisfy need in
simulation study

Yes Yes

Activity 5. Verify and validate simulation model for original system

Benefit 5.1: no more detailed testing
- reduction of time spend by model developer

No No

Benefit 5.2: easily gathering validation data
- reduction of time spend for data gathering

Not
applicable

Yes

Benefit 5.3: structured and standardized performance
indicators
- easier gaining insight in performance of a system

No Yes

Risk 5.1: mistakes of model developer are hard to
overcome
- training of model developers how model constructs
were meant to be used
- spend extra time to verify simulation model

Yes Yes

(continued at next page)

3.4 Benefits and risks in the case studies

78

Activity 5. Verify and validate simulation model for original system

Risk 5.2: model developers know something is wrong,
but cannot identify what to do about it
- training of model developers how to interpret results
- extra performance indicators and animation in model
constructs

No Yes

Activity 6. Analyze output of simulation model

Benefit 6.1: structured and standardized performance
indicators
- easier gaining insight in performance of a system

Yes Yes

Risk 6.1: model constructs do not provide
performance indicators problem owner desired
- extend model constructs with extra performance
indicators

Yes Yes

Activity 7. Define solution for analyzed output

Benefit 7.1: model developers are triggered to find
new solutions by parameters
- more insight gained thanks to more experiments

No Yes

Risk 7.1: model developers are triggered to find new
solutions by parameters

Yes Yes

Risk 7.2: model developers are limited by parameters
and model constructs
- extend model constructs with extra input parameters

Yes Yes

Activity 8. Instantiate simulation model for identified solution

Benefit 8.1: easy adjustment of model thanks to user
interfaces of model constructs
- easier to prepare simulation model for
experimentation

Not
applicable

Yes

Risk 8.1: solution is identified that can not be
represented by model constructs
- Ignore possible solution
- extend model constructs and set of model constructs

Yes Yes

Risk 8.2: adjustments of model constructs required to
represent solution are time consuming
- spend required time to fix model

Yes Yes

 The mentioned expected benefit and potential risks were not applicable for

the AGV project for activity 1 “problem description & define conceptual

model”, because the model constructs had not been developed when the

simulation study started. In the simulation studies of the passengers at airport

the model constructs were already available, but model developers demanded

additional model constructs instead of limiting the conceptual models.

 The risks resulting in ignoring the domain specific extension in activity 2

“select model constructs” were not encountered in these simulation studies,

 3 A qualitative analysis in domain specific extensions

 79

because the model developers were forced in these simulation studies to use

the domain specific extension. They could not ignore the domain specific

model constructs and received additional explanations until they were

convinced that the domain specific extension was the best way to carry out

the simulation studies.

 The OLS system and the future terminal at JFK did not exist at the time of

the simulation studies. Therefore it was not possible to collect validation data

and thus the benefit of easily gathering validation data did not apply to the

domain specific extension for AGVs. In the simulation studies for the

passengers at Amsterdam Airport Schiphol and the KLM the validation could

be collected and in those studies the benefit regarding validation was

observed.

 The benefit of easy adjustments thanks to the interface of model

constructs did not apply to the use of the model constructs of the domain

specific extensions of the AGVs. The models could easily be adjusted, but the

model constructs did not have a user interface. The changes were made

directly in the logic or the attributes, not via a dedicated user interface. The

model constructs of the domain specific extension for airports were extended

with user interfaces. In the simulation studies using these model constructs

the benefit was applicable and observed.

 The risk of ‘Model developers are triggered to find new solutions by

parameters’ is special, because to this encountered risk no counter actions

have been carried out. The reason is that this risk is encountered after the

experimentation and solution finding is finished.

3.4.1 New benefits and unexpected risks

 We made more observations during the case studies that can be

generalized to additional benefits of using domain specific extensions in a

simulation study. These benefits had similar effects as the expected benefits

identified in chapter 2. We also encountered some unexpected risks. These

risks have been mitigated by extra activities. The new benefits, the

unexpected risks and their respective effects and activities to mitigate them

are listed in Table 3.7.

 For the new benefit 8.2 and 8.4 in activity 8 “Instantiate simulation model

for identified solution” we have to give a remark: “Partly” because these

benefits applied in the majority of the changes that were made to the

infrastructure of the AGV terminals or the areas in the airport. Unfortunately,

these benefits did not apply to the model constructs for controls or processes.

The model constructs as developed in the domain specific extension did not

allow for composition of a control or process system and the model constructs

could not be replaced easily, because other instantiated model constructs

3.4 Benefits and risks in the case studies

80

were connected and depended on the originally instantiated model constructs.

Thus, we observed benefits, but not as consistently as expected.

Table 3.7: New benefits and unexpected risks of use of domain specific
extensions in simulation studies

New benefits and encountered risks Observed
in case
AGVs

Observed
in case
Airports

Activity 1. Problem description & define conceptual model

No additional benefits or risks have been observed for this activity

Activity 2. Select model constructs

New benefit 2.2: compose model constructs from
developed domain specific model constructs to
represent system elements
- more flexibility during model development
- easier to develop models

Yes Yes

New benefit 2.3: easy selection of model construct
thanks to structure of domain specific extension
- faster model development

No Yes

New risk 2.4: system elements can not be
represented by model constructs
- develop very specific model constructs

Yes Yes

New risk 2.5: compose model constructs from
developed domain specific model constructs only
applied for infrastructure system elements
- develop very specific model constructs

Yes Yes

New risk 2.6: model developers can adjust internal
logic of model constructs
- Change internal logic back to original state

No Yes

Activity 3. Data collection

No additional benefits or risks have been observed for this activity

Activity 4. Instantiate simulation model for original system

New benefit 4.2: model development faster and easier Yes Yes

New benefit 4.3: model development by simulation
novices
- simulation model can be developed by persons who
are no simulation experts

Yes Yes

New risk 4.4: difficult to compose simulation model by
person other than developer(s) domain specific
extension
- training by developer of domain specific extension

Yes Yes

 3 A qualitative analysis in domain specific extensions

 81

Activity 5. Verify and validate simulation model for original system

New benefit 5.4: semi-automatic reporting of
performance indicators
- easier to gain insight in performance indicators
- easier to report on performance indicators of
simulation model

Yes Yes

New benefit 5.5: observe animation at different levels
of the composition: high level and at individual model
construct
- easier to gain insight in system
- possible to gain top-down insight in system

Yes Yes

Activity 6. Analyze output of simulation model

New benefit 6.2: semi-automatic reporting of
performance indicators
- easier to gain insight in performance indicators
- easier to report on performance indicators of
simulation model

Yes Yes

Activity 7. Define solution for analyzed output

No additional benefits or risks have been observed for this activity

Activity 8. Instantiate simulation model for identified solution

New benefit 8.2: easy adjustment of model thanks to
replacement of model constructs
- faster preparation of simulation model for
experimentation

Partly Partly

New benefit 8.3: easy visualization thanks to
incorporation of visualization in model constructs
- faster model development

Yes Yes

New benefit 8.4: composition of new model constructs
enabled new solutions to be evaluated
- flexibility in performing simulation experiments and
thus more insight in system

Partly Partly

New risk 8.3: replacement of model constructs causes
errors in model constructs that were linked or
connected.
- spend required time to fix model

Yes No

3.4 Benefits and risks in the case studies

82

 4 Testing domain specific extensions in a laboratory setting

 83

4 Testing domain specific extensions in a

laboratory setting

4.1 Introduction

 The use of model constructs of a domain specific extension in case studies

have shown that participants encountered some of the known and new risks.

The observations also resulted in conclusions regarding the advantages of

using model constructs of a domain specific extension instead of using model

constructs of a generic simulation environment. The case studies have been

executed using the model constructs of new developed domain specific

extensions. The case studies do not prove that they were more effective than

if the simulation studies would have been carried out using model constructs

of a generic simulation environment, for the simple reason that the size and

availability of experts to carry out the simulation study did not allow to perform

the case studies in two ways.

 To date, very little research has been published that compares the use of

domain specific extensions with the use of model constructs of generic

simulation environments for problem solving. This type of research is provides

additional insight to answer the question regarding why model developers do

not use domain specific extensions. Three laboratory experiments, in which

80 novices and experts in simulation used simulation models to answer

questions for a public transportation case, are described in this chapter. The

simulation models were developed using either a domain specific extension or

a generic simulation environment, so that a comparison could be made

between the two types of model constructs.

 The results of this comparison will be a first confirmation of the mentioned

risks and provide the first insight into the causes and ways to mitigate these

risks during a simulation study. The laboratory experiments have been

simplified compared to a real-life simulation study, but because of these

simplifications we can better identify the existence of risks described in

literature and their causes. In this chapter we describe the main findings of the

laboratory experiments. The full detailed analysis of the laboratory

experiments has been described in a number of papers (Kolfschoten et al,

2006; Kolfschoten et al, 2010; Valentin et al, 2003a; Valentin et al, 2003b).

4.1.1 Model development for problem solving

 The laboratory experiments that are described in this chapter investigate

the difference between using generic and domain specific extensions on the

effectiveness of a simulation study. In the laboratory experiments we measure

how much of the required insight for the problem owner is provided by the

4.1 Introduction

84

model developers. The effectiveness of the simulation studies carried out with

domain specific or generic simulation environments is the gap between the

requirements of the problem owners and the insight that the model developers

provide during the laboratory experiments.

 In the laboratory experiments the model developers had several ways to

provide insight to problem owners. In the first laboratory experiment we only

focused on the number of simulation experiments they could perform. In the

second and third laboratory experiment the model developers had the

freedom to provide insight in the way they considered best. In the second and

third laboratory experiments the model developers had total modeling freedom

for animation, level of detail, and types of performance indicators.

 The objective measurement in the laboratory experiments was the

“number of questions answered with required quality”, see the block on the

right of Figure 4.1. In the first laboratory experiment the answers were

provided as quantitative output of simulation experiments, in the second and

third laboratory experiment the model developers also used other ways to

answer the questions. The simulation experiments in the second and third

laboratory experiment dealt with parameter settings, policy change, and

influences in values of data input and sensitivity analysis to values of

performance indicators.

Figure 4.1: Causal diagram of problem solving with simulation models

 The open blocks with their causal relations in Figure 4.1 are the

intermediary steps the model developer had to take during the problem

solving process. The diagram shows the relation between understanding a

simulation model and the answers provided to the questions of the problem

owners. Based on Pater and Teunisse (1997) and Diamond et al (2002) it is

assumed that having fewer actions will improve the understandability of the

simulation model. The improved understandability will reduce the amount of

time that needs to be spent performing a simulation experiment.

 4 Testing domain specific extensions in a laboratory setting

 85

 The main variable that was varied in each of the laboratory experiments

was the domain specificity of the simulation environment that the model

developers were using. The system used in the laboratory experiments was

public transportation using light rail. This system can be modeled using a

generic simulation environment that takes into account resource allocation, or

using a domain specific extension, designed for systems that fit the problem

domain rail networks and passengers. The domain specific extension was

specifically developed for the laboratory experiments. The questions of the

problem owners within the laboratory experiments were taken into account

when the model constructs for the domain specific extension were developed.

 In the causal diagram (Figure 4.1) it is shown that the match between

model constructs and the problem has an effect on the number of actions to

be carried out. The model developers need to make adjustments to the model

constructs if a system element can not be modeled with the provided

implementation. This requires a lot of insight into the internal working of the

model construct and quite some time to gather this insight and make the

changes. Adjusting a model construct of an existing domain specific extension

requires detailed insight into the way the model constructs of the simulation

environment are implemented. It was in this case not possible to find

volunteers with enough time and competences and skills in the field of

discrete event simulation.

 The three causal blocks at the left-hand side of Figure 4.1 are the variables

that were varied between the three laboratory experiments. “Experience of

simulation model developer” was evaluated using novices for the first and

second laboratory experiment and experts for the third laboratory experiment.

The participating novices were engineering students that had followed

courses on discrete event simulation and the participating experts were

professionals working full-time for a simulation vendor, each of whom had at

least 5 years of professional experience.

 The level of “Complexity of question from problem owners” and the

“Quality level desired by problem owners” varied from simple and predefined

in the first laboratory experiment to complete and open for the model

developers in the third laboratory experiment. This was achieved by providing

participants with different assignments. In the first laboratory experiment the

participants received a valid simulation model that needed to be adjusted for

several pre-defined simulation experiments. In the second and third

experiment the participants started with an empty model. The assignment for

the participants of the second laboratory experiments was to design a

simulation model that would be usable for experimentation and in the third

laboratory experiment the participants had to design an optimal layout for the

rail network.

4.1 Introduction

86

 The ‘+’ and ‘-‘ signs for the relations in the causal diagram were obtained

using the following assumptions, to be confirmed by the laboratory

experiments. In the laboratory experiments we will refer to causal relations as

described in Table 4.1 and taken from Figure 4.1.

Table 4.1: List of causal relations

ID Relation Explanation

1 Experience ->
Number of actions

A more experienced model developer will be able to
achieve the same result with fewer actions.

2 Complexity ->
Number of actions

A more complex question will require more actions
to represent the system in a model.

3 Quality level desired
-> Number of actions

A higher level of quality required by the problem
owner requires more actions of a model developer.

4 Domain specificity ->
Number of actions

Instantiating a model using a domain specific
extension requires fewer actions of the model
developers than using a generic environment.

5 Match model
constructs ->
Number of actions

If the model constructs match the requirements, the
model developer does not need to change and
adjust the model constructs. If the model constructs
do not match, the model developer has to perform
more actions.

6 Number of actions ->
understand model
constructs

If more actions are required to develop a model,
then this makes it more difficult to understand how
model constructs in the simulation model represent
parts of the system.

7 Number of actions ->
understand model
structure

If more actions are required to develop a model,
then this makes it more difficult to understand the
model structure.

8 Domain specificity ->
understand structure

When instantiating a model using a domain specific
extension, it costs less effort to understand the
structure of the model.

9 Understand model
construct -> time
spent

Better understanding of the model constructs result
in less time spent for an experiment

10 Understand structure
->
time spent

Better understanding of the simulation model
structure results in less time spent for an
experiment

11 Time spent ->
Number questions

Less time spent to carry out an experiment enables
the model developer to carry out more experiments
and thus answer more questions of the problem
owner.

 4 Testing domain specific extensions in a laboratory setting

 87

4.1.2 Case used in laboratory experiments

 The case study applied in the laboratory experiments was based on a

master thesis project at Delft University of Technology by Brandt (1999). This

master project concerned the analysis of possible vehicles, cost calculations,

design of the route and analysis of logistical performances using simulation

models. The case study is described in the block text below in the same way it

was described to all participants in the three laboratory experiments. This

introductory description was extended with information and specific questions

that were different for each of the three laboratory experiments. In the first

laboratory experiment the questions of the problem owners were formulated in

the form of precisely defined simulation experiments that the participants had

to perform. In the second laboratory experiment the participants had to

compose a valid simulation model that represented the 2010 situation and a

fixed timetable for the vehicles. Participants in the third laboratory experiment

received the assignment to come up with an optimal solution for the situations

in 2015 and 2020 given three possible vehicle vendors.

Over the last years new metropolitan areas have evolved in the area between The

Hague Central Station (CS) and the VINEX location Ypenburg. A completely new ‘city’

has been developed in Ypenburg and in the area between the highway and the Central

Station a lot of new office space has been created. Due to these building activities the

throughput levels on the existing transport infrastructure have increased and the result is

that traffic jams occur each morning and evening and parking a car is becoming

increasingly challenging. An alternative to the car can be provided by high quality

automated mass-transportation systems. The policy makers of The Hague looked at

various alternatives for automatic transportation by monorail which they liked.

In 1999 the SkyShuttle project started to investigate the added value and necessary

investment required for a high quality mass transport system. This system should be

equipped to handle 15,000 people per a day of which 70% will travel during peak hours.

The consultant companies Advanced Netherlands Transport (ANT) and Bohemen

Beheer BV have designed some routes. The map of the area with the most likely route,

according to the involved transportation experts is shown in Figure 4.2. The yellow

stations will be the first to be implemented, the red stations are future extensions

expected to be completed in 2015 and 2020.

At these different stations the number of passengers fluctuates over time. In the morning

the main flows will go from Central Station to Brinkhorst (the major office centre) and

from Ypenburg to either Central Station or to Brinkhorst. In the evening the main

passenger flows will be in the opposite direction. Besides commuter traffic, leisure

related traffic to HTS and GAVI
4
 and business related traffic to the Brinkhorst is expected

to use the same infrastructure.

The rough calculations performed by the SkyShuttle project team showed possible

benefits. The next step identified by the project team was to provide some additional

sources of information regarding the feasibility of the monorail concept. They identified

simulation as the methodology that should be used to do this, as simulation can be used

to model logistic flows and to visualize them.

4
 HTS = Shopping mall ; GAVI = new soccer stadium of ADO Den Haag

4.1 Introduction

88

The project team wants you to carry out a very short simulation study to provide some

data and a good visualization. Unfortunately due to competitors in the project, bad

planning and some other excuses, the simulation study is required to provide some

results fast.

The map of the expected route between The Hague and Ypenburg is shown in Figure

4.2. A completely new and advanced automatic transportation system is dealt with in this

case study. Although the route is fixed, a lot of design choices are still open and these

need to be evaluated using simulation. Some of the choices are:

• type of vehicle, monorail versus cable mover, large versus small vehicles, fast

versus slow

• number of vehicles

• daily pattern of the vehicles

• number of platforms at stations

• number of tracks between stations

Figure 4.2: Expected route for the SkyShuttle transportation system

All these choices need to be evaluated for a large range of assumptions, one sub-set of

assumptions that need to be varied to give a complete overview of the situation is: arrival

pattern of passengers, origin-destination of passengers, effects of new offices on leisure

activities in the region, effects of linking the new system to present public transportation

(bus and train) systems.

4.1.3 Domain specific extension for rail networks

 No domain specific extension was available to implement monorail / light

rail networks and to observe performance indicators for individual passengers.

Therefore a new simulation environment was developed for passengers in rail

networks, based on the problem description of Brandt (1999) and simulation

studies of rail networks for passengers (Hooghiemstra and Teunisse, 1998).

 The systems that were evaluated in the simulation studies of Brandt (1998)

and Hooghiemstra and Teunisse (1998) were decomposed, as described in

section 2.4, using the object oriented decomposition and process oriented

 4 Testing domain specific extensions in a laboratory setting

 89

decomposition. The object oriented decomposition resulted in the system

elements station, platform, track, vehicle and passenger. The process

oriented decomposition provided process flows for the entities vehicle and

passenger. The identified system elements were all translated into domain

specific model constructs. These domain specific model constructs have been

composed using generic model constructs of the simulation environment

Arena.

Model constructs to represent infrastructure

 The physical network consists of three model constructs; track, station and

platform. The configuration of these model constructs can be retrieved directly

from the drawing of the system. Changing the configuration is not difficult

thanks to the domain specific interface of the model constructs; an example is

shown in Figure 4.3. A simulation model of an example network using the

infrastructure model constructs of the domain specific extension is given in

Figure 4.4.

Figure 4.3: Model construct "Track"

with visualization and interface for parameters

Figure 4.4: Screen dump of the physical network in a simulation model

4.1 Introduction

90

 The model construct “Station” is an implementation of a connection

between two or more tracks. The “Station” provides one or more platforms

where passengers can get into or out of vehicles. Several processes take

place at the platform. Among these processes are ‘passenger waits for a

vehicle’, ‘passenger enters vehicle through a door, ‘vehicle stops and leaves’

and ‘vehicle enables passengers to leave’ when they arrive at the platform of

their destination station.

 The model construct “Track” connects the stations in the network. Tracks

can be of the type single or dual direction. Single direction means that

vehicles can move only from one start station to the end of the track. Dual

direction means that a security system is included so that vehicles can move

in both directions along a track. The network in Figure 4.4 shows single tracks

between all instances of the station model construct.

Model constructs to control passenger and vehicle entities

 The two types of entity, ‘passenger’ and ‘vehicle’, have their own control

mechanisms. These control mechanisms describe the process of the entities

and their use of the infrastructure, i.e. tracks and stations. The process of the

passenger is represented in Figure 4.5 and instantiated in the model construct

“PassengerControl”.

Generation of

passenger
Arrive at station

Wait for vehicle at

platform

Enter vehicle if
destination is

correct and place

available

Wait till vehicle
arrives at

destination statoin

Leave vehicle
through door

Destroy
passenger after

saving statistics

Figure 4.5: Abstract representation of the process of passenger entity

 The process of the vehicle entity is shown in Figure 4.6. This process is

implemented and managed by the model construct “VehicleControl”. The

figure shows only the main process steps.

 4 Testing domain specific extensions in a laboratory setting

 91

Trigger for vehicle
to start; vehicle

moves from
“storage”

Move to first
station

Stop at designated
platform

Open doors so
passengers can
leave and enter

Close doors when
moment of leaving

has arrived

Move over track to
next station

Save statistics of
trip; vehicle moves

to “storage”

no

Vehicle has
next

destination

yes

Figure 4.6: Abstract representation of the process of vehicle entity

Validation of the domain specific extension

 The model constructs of the domain specific extension were verified and

validated by instantiating several small simulation models of imaginary

situations and one simulation model of a real problem system. The small

simulation models showed that the model constructs worked as expected.

Passengers reached their final destinations and vehicles waited for other

vehicles to clear platforms and pick up available passengers (Valentin et al,

2003a).

 The real-life simulation model represented the same system Brandt (1999)

studied. The same input parameters were used to validate the behavior of all

the model constructs in a model. Brandt identified the number of travelled

kilometers of vehicles and passengers and utilization of vehicles as main

performance indicators. The simulation model developed using the domain

specific extension for rail networks showed the same values with a 95%

confidence interval for these performance indicators.

4.2 First laboratory experiment: experimenting with an existing

simulation model

4.2.1 Set up of the first laboratory experiment

 The first of the three laboratory experiments can be seen as a follow up of

the initial study performed by Brandt (1999). Simulation experts had already

developed simulation models, using the domain specific and generic

simulation environment, and the participants had to perform different

simulation experiments using these models. The required list of experiments

was predefined by the problem owner. The simulation study will be effective

for the problem owner if all desired experiments are performed. The

proposition for this laboratory experiment is:

4.2 First laboratory experiment: experimenting with an existing simulation model

92

Simulation novices who use a simulation model composed of

domain specific model constructs perform more simulation

experiments than simulation novices who use a simulation model

composed of model constructs of a generic simulation environment.

 In Figure 4.7 circles are drawn around the main items in the causal

diagram that are evaluated during the first laboratory experiment. The

participants have to understand the simulation model, i.e. the structure and

the interface, and with an understanding of the model they can answer

questions from the problem owners that deal with either the type of vehicles or

with the infrastructure of stations and tracks. The participants were allocated

to the domain specific extension or the generic simulation environment at

random.

Figure 4.7: Focus of the first laboratory experiment

 The participants of this laboratory experiment were 30 full-time students

from the Faculty of Technology, Policy and Management of Delft University of

Technology in their third and final year of their bachelor degree, or in the first

year of their master degree. All these students had received a basic education

in the use of Arena (a 160 hours course) and they had carried out a small

simulation project (80 hours course). With only educational experience these

participants can be called novices in simulation modeling. The laboratory

experiment took 6 hours, including preparations and filling in the final

questionnaire.

 The group of participants was randomly divided into two groups.

Participants of one group used simulation models that were constructed using

model constructs of the domain specific extension for rail networks. The

second group used simulation models that were constructed using model

constructs of the generic simulation environment Arena. Neutral observers

evaluated both models to check whether the simulation models were good

and understandable (Valentin et al, 2003a).

 4 Testing domain specific extensions in a laboratory setting

 93

 The participants received documentation about how the simulation models

worked and where changes could be made. This was described in two

different documents, because the individual participants received specific

support documentation based on the simulation environment they used.

 All participants received the same set of requests for additional simulation

experiments after approximately two hours of learning how the simulation

model worked (Table 4.2). The last two columns in the table are performance

indicators of the simulation model. The participants of the laboratory

experiment had to fill in these performance indicates after they finished the

simulation experiment. The first assignment consisted of 15 different

simulation experiments all concerning adjustments to vehicle behavior. The

second assignment consisted of 15 simulation experiments that focused on

adjustments to the infrastructure.

Table 4.2: Part of the 15 simulation experiments to be performed by

laboratory participants for the first set of assignments

Description Average
waiting

Max.
delay
vehicle

Change the type of vehicle from Hovair to the monorail of Siemens with
one carriage (similar intervals for starting from CS, different timetable)

Change the type of vehicle from Hovair to the monorail of Siemens with
two carriages (similar intervals for starting from CS, different timetable)

The Hovair vehicle will move each 10 minutes, in addition extra vehicles
will be used during peak hours. Morning peak hours are from 8 till 10,
afternoon peak hours are from 17 till 19. These extra vehicles will
consist of two carriages and move each 5 minutes.

 The participants finished their laboratory experiment by filling in a

questionnaire that was used to evaluate their level of satisfaction. The

questionnaire was also used to observe the other relations of the causal

diagram (Figure 4.1).

4.2.2 Insights gathered, based on output of the first laboratory experiment

Observations during the experiment

 A separate modeling assignment based on the Arena modeling exam of

2001 showed that the 30 participants of the first laboratory experiment could

be divided into two types of participants. 22 participants scored good, between

25 and 35 points out of 40 available points for the assignment, and 8

participants scored low, between 15 and 25 points. Participants were

assigned randomly to work with the domain specific or generic simulation

environment, taking into consideration the score of the modeling assignment

to ensure even spread of high and low performers.

4.2 First laboratory experiment: experimenting with an existing simulation model

94

 The participants started with 2 hours of learning to use simulation models

of public transportation in their simulation environment. The individuals

working with the generic simulation environment used the opportunity to ask a

lot of questions regarding the simulation model. These questions covered

topics such as how to make certain adjustments, what the meaning was of

various things in the simulation model, and why certain model constructs in

the generic simulation environment were used. The participants using the

simulation model developed in the domain specific extension asked only a

couple of questions. They read the material and started immediately to make

step-by-step adjustments to the example simulation models using the

example assignment.

 The participants were all very motivated. They behaved as if they were

competing as groups to use the alternative systems. As a result all students

worked as hard and well as possible to tackle as many possible experiments

even though the participants with the generic simulation environment soon

noticed that the participants with domain specific extension moved faster

through the experiments.

Prescribed simulation experiments

 The first set of simulation experiments that the participants received dealt

with the selection of the kind of vehicles to be used on the transport system.

This meant that the participants had to perform simulation experiments with

more vehicles, larger vehicles or faster vehicles. The changes they had to

make to develop simulation models that could be used for these simulation

experiments were comparable to the changes they made during the first

example assignment. The participants could easily repeat their actions,

because they recognized the steps they needed to do to adjust the simulation

model for the experiments.

 The forms where participants logged the output of their experiment showed

that it did not matter for the participants with good Arena skills whether they

used the domain specific or the generic simulation environment for these first

set of assignments. The participants with good modeling skills succeeded in

running between 9 and 12 simulation experiments with valid results. This

comparable number of simulation experiments can be explained by the small

number of actions the participants needed to carry out for changing the

simulation models. The experiments to be performed were also highly

repetitive, for 15 simulation experiments two or three very similar adjustments

to the simulation model needed to be made.

 The use of the domain specific or generic simulation environment showed

a clearer difference for the participants with low modeling skills. The

participants with low modeling skills who had to use the domain specific

extension performed 6 to 10 valid simulation experiments. The other

 4 Testing domain specific extensions in a laboratory setting

 95

participants with low modeling skills using the basic simulation environment

performed no more than 3 valid simulation experiments, most none at all. The

reason was that these participants could not find where to make the changes

and therefore began looking at the detailed logic of the simulation model.

Evaluating the logic of the simulation model made it difficult for the

participants to find the parameters required to adjust. The participants using a

simulation model in the domain specific extension did not have to understand

the detailed logic inside the domain specific model constructs. They could

adjust the parameters in the user-interfaces of the model constructs.

 In the second set of simulation experiments the participants had to adjust

the infrastructure, i.e. add extra stations with platforms and tracks. The

participant had 2 hours for several simulation experiments regarding

alternative layouts of tracks and stations. After 2 hours the difference between

generic and domain specific was clear. The participants with the generic

simulation environment were still making changes to the simulation model for

the first simulation experiment. The participants with the domain specific

extension had performed 4 to 8 valid simulation experiments. The number of

valid performed experiments was not as high as in the first set of experiments,

because they made several mistakes while changing their models:

• they carried out no verification or validation after they made the

changes to the simulation model and thus they did not observe

deadlocks of waiting trains;

• they forgot to enter some data values. The adjustments that had to be

made for the second set of simulation experiments concerned the

model constructs of infrastructure and control, because a new station

implied a new timetable for the vehicles.

 The participants using the domain specific extension still had sufficient

time to adjust their simulation models and to correct their mistakes once they

realized the shortcomings of their first experiments.

Observations based on the questionnaire

 The participants finalized their activities for the laboratory experiment by

filling in a questionnaire to evaluate whether they felt satisfied with the

correctness and validity of their simulation results. The participants had to

score 7 statements on a scale from 1 to 5. A score of 1 indicated that they

completely disagreed with a statement while a score of 5 indicated that they

completely agreed.

 We can assume that the participants of the laboratory experiments were a

random sample of the group of inexperienced simulation users. The

participants were randomly allocated either to use the domain specific

extension or the generic simulation environment. As a result, we are allowed

to combine the variances of the answers of the questionnaire of the two

4.2 First laboratory experiment: experimenting with an existing simulation model

96

groups to one value (McClave et al, 2000). With the combined variance of the

sample we can apply a t-test with 28 degrees of freedom.

 The outcome of the questionnaire for the two different groups is shown in

Table 4.3. In this table no distinction is made for type of participant regarding

skill level. The columns “mean” refer to the mean value the participants of

domain specific or generic provided. The variances are the variances of the

set of answers provided by the participants for domain specific or generic. The

value is bold if the t-test (99% certainty, 28 degrees of freedom) showed that

the participants using the domain specific extension agreed more with the

item in the questionnaire than the participants using the generic simulation

environment.

Table 4.3: Outcome of the first laboratory experiment

 Description Mean Variances T0.01

28df

N domain specific = 16 ; N generic = 14
1 = completely disagree; 5 = completely agree

spec
-ific

gen-
eric

spec
-ific

gen-
eric

1 The adjusted simulation models are technically
correct representations of the system 4.1 3.5 0.5 0.6 2.2

2 The adjusted simulation models are valid
representations of the system 3.9 3.4 0.5 0.5 1.9

3 Use of the other simulation environment would have
resulted in a lower number of executed experiments 3.9 1.9 2.3 0.8 4.3

4 The used simulation environment is suitable for
modeling a rail network 4.4 2.1 0.2 1.2 7.5

5 The simulation model developed in the used
simulation environment was easy to understand 4.3 2.0 0.6 0.8 7.4

6 The simulation model developed in the used
simulation environment was easy to maintain 3.9 1.9 0.5 0.6 7.3

7 The simulation model developed in the used
simulation environment was easy to extend 3.7 1.6 0.6 0.8 6.8

 Both groups of participants agreed with the first and second statement.

These findings are not surprising given that we observed that the participants

were working hard and were proud of the work they had carried out.

 The participants only worked with one of the two simulation environments,

but they could see what the others were doing, they heard each other’s

questions and during the lunch they chatted together and compared their

progress. Based on this informal exchange of information and ideas the

participants had a perception about the applicability of the other simulation

environment for the assignments used in this laboratory experiment.

Statements 3 and 4 show that the participants with the domain specific

extension preferred their environment above the generic simulation

environment and the participants with the generic simulation environments

envied the others, supported by the t-values of 4.3 and 7.5.

 4 Testing domain specific extensions in a laboratory setting

 97

 Most likely the preference for the simulation environment is partly based on

the usability, maintainability and extendibility of the simulation model for

experimentation. A significant difference can be observed between the

participants given the domain specific extensions to use and those given

generic simulation environments. Understanding the simulation model of the

domain specific extension was much easier than understanding the simulation

model based on the generic simulation environment according to statement 5.

Increased understandability resulted in better maintainability and better

maintainability enabled easy extendibility of the simulation model for the

experiments.

4.2.3 Conclusions from first laboratory experiment

 Based on the analysis of the observations made during the laboratory

experiment and the questionnaire results, we can conclude that performing

simulation experiments using a simulation model developed with domain

specific model constructs is easier than using a simulation model based on a

generic simulation environment (Kolfschoten et al, 2006). The observations of

the laboratory experiment show that this qualified advantage is achieved as a

result of perceived higher understandability, easier maintainability and

extendibility of the simulation model. This enabled the participants with the

domain specific extensions to ask for less support, as is seen by the fact that

there were almost no questions from these participants, and to work faster,

and thus perform relatively more simulation experiments. Further, the

understandability of the domain specific extension enabled participants with

low modeling skills to still be able to perform a number of simulation

experiments and provide insight to problem owners.

 Some risks of using domain specific extensions were also encountered.

The novices had too much trust and faith in the simulation model developed

with the domain specific extension, so they forgot important steps of a

simulation study, mainly verification and validation of the model.

 Participants that used the simulation model developed in the domain

specific extension carried out more valid simulation experiments, mainly in the

second set of assignments. This view is strengthened by the results of the

questionnaire and thus the proposition of this laboratory experiment can be

accepted:

Simulation novices that use a simulation model composed of

domain specific model constructs perform more simulation

experiments than simulation novices that use a simulation model

composed of model constructs of a generic simulation environment.

4.3 Second laboratory experiment: creating simulation models from scratch

98

 From the causal diagram on page 92 one can see that the first laboratory

experiment focuses on the complexity of the questions, the domain specificity

and the effects with respect to understanding the simulation model. The

questionnaire confirmed that domain specificity reduces the effort required to

understand the simulation model (causal relation 8). This causal relation is

thus negative as expected. The observations showed that more complex

questions result in more actions (causal relation 2) and that the larger number

of actions that needed to be carried out for the second set of laboratory

experiments made the model understanding less (causal relations 6 and 7).

The importance of the understanding is also observed in the differences

between the first set of experiments, i.e. experiments for vehicle configuration,

and the second set of experiments, i.e. new stations. In the second set of

experiments more actions had to be carried out resulting in less

understanding of the model constructs and structure (causal relations 6 and

7).

4.3 Second laboratory experiment: creating simulation models from

scratch

4.3.1 Set up of the second laboratory experiment

 In the second laboratory experiment participants were asked to develop a

full simulation model from scratch. The same problem situation and simulation

environments were provided for the participants of this laboratory experiment.

The insight that the problem owner required was defined as open ended. The

participants did not have to perform a fixed set of experiments or deliver a

certain animation of the system in operation. The participants had to make an

educated guess as to what information would be sufficient for the problem

owner.

 The participants had the task to develop a valid simulation model within 8

hours. In this laboratory experiment it was key to finish in time. After these 8

hours an evaluation was done on how much insight the model developer

provided to the problem owner and whether that covered all the items the

problem owner requested. Possibly participants would be finished in less time

and be able to provide the insight for the problem owner earlier. Therefore

effectiveness was interpreted as “better and faster”, resulting in the following

proposition for the second laboratory experiment:

Simulation novices can develop a simulation model better and

faster using model constructs from a domain specific extension for

future simulation experiments than simulation novices that must

develop a simulation model composed of model constructs from a

generic simulation environment.

 4 Testing domain specific extensions in a laboratory setting

 99

 ‘Faster’ was evaluated by comparing the moments the students claimed to

be ready or, if they had not finished in 8 hours, by the participants making an

educated guess regarding how much more time was needed. ‘Better’ was

evaluated by observing the ability of the simulation models made by the

participants to provide insight into the questions of the SkyShuttle problem

owners (see the case description on page 87).

Figure 4.8: Focus of the second laboratory experiment

 The participants had only one question to answer, but depending on the

domain specificity they have to carry out a number of actions. The main

measurement in this laboratory experiment was whether the simulation

novices succeeded in building a valid model and performing a simulation

experiment. Once the model developers could perform a valid simulation

experiment they were done, therefore in Figure 4.8 a circle is drawn around

the time spent and not around the number of questions answered.

 This laboratory experiment was done by 16 students of the Faculty of

Technology, Policy and Management of Delft University of Technology. All the

students had received a basic education comparable to the participants in the

first laboratory experiment. In addition, the students had been trained for 12

weeks in advanced simulation model development.

 The participants randomly received the domain specific or generic

simulation environment. All the participants received documentation about the

concepts that could be used for building the simulation models. These

concepts formed the basis of the model constructs from the domain specific

extension, but it was made clear to all participants that the conceptual model

was just an overview and they could reduce or expand the model concepts as

much as they felt appropriate. The individual participants using model

constructs from the domain specific extension received some extra material

about the background and technical implementation of the available model

4.3 Second laboratory experiment: creating simulation models from scratch

100

constructs. The time that the participants needed to study this material was

included as part of the 8 hours allowed for the complete laboratory

experiment.

 At the end of the laboratory experiment the students were required to

provide a set of deliverables:

• a simulation model based on the provided simulation environment,

• a document that explained the chosen level of abstraction and the

boundaries used for the simulation models,

• a filled in questionnaire regarding their satisfaction with using the

assigned simulation environment and their expectations of the model

development assignment,

• a log-file registering their activities of the 8 hours.

 Two simulation experts with several years of experience evaluated the

models and documents, mainly the simulation model and the explanatory

document (Valentin et al, 2003b). These experts were expected to judge the

simulation model on clarity, structure, ease of maintenance and ease of

extension. Further they were required to judge the completeness of the

simulation model and to see whether the participants had implemented their

assumptions that were described in the explanatory document.

 The expectation at the beginning of the second laboratory experiment was

that the proposition at the beginning of this section would be accepted. This

expectation was based on the following additional expected observations:

• the simulation models based on the model constructs of the domain

specific extension will contain more details than the models of the

generic simulation environment,

• the participants using the domain specific extension will be more

positive about the quality of their simulation models, compared to the

model developers using the generic simulation environment,

• the participants using the domain specific extension will assume they

have better met the problem owner’s needs regarding visualization,

performance indicators and preparation for future experiments,

compared to the model developers using the generic simulation

environment,

• the participants using the domain specific extension will agree more

with the statement that they have had enough time compared to the

model developers using the generic simulation environment.

 4 Testing domain specific extensions in a laboratory setting

 101

4.3.2 Insight gathered, based on the second laboratory experiment

 The participants made less progress with the simulation study than

expected (Valentin et al, 2003a). Only one participant claimed to have

finished. He provided a simulation model and several simulation experiments

that showed the validity of the model within the period of 8 hours. All the other

participants ran out of time for the laboratory experiment before they were

finished. Therefore, the original plan to evaluate the final simulation models

and judge their quality could not be carried out as planned. The time log could

not be used either, because the participants logged that they only carried out

the task “model development”. Nevertheless the simulation models handed in

were analyzed, but we focused more on what was lacking rather than on what

accomplished. Below, a description is given, per type of observation of what

was learned from this laboratory experiment.

Observation during the performance of the experiment

 The participants using model constructs of the domain specific extension

started with reading the provided documents to help them understand the

functionality of the available model constructs. Once they felt confident about

their knowledge regarding how to use the model constructs, the participants

started to develop a simulation model. Their actions consisted mainly of

quickly instantiating their model using the model constructs, and then entering

data for all the parameters of the model constructs. The participants

immediately tried to run their simulation model after they had instantiated the

complete simulation model using all the available data. This showed that they

had faith in the model constructs of the simulation environment and trusted

the model constructs to work flawless. Unfortunately, the participants received

error messages relating to typing errors and missing instances of model

constructs. Solving these error messages took them a large amount of time.

 The participants using the domain specific extension started to validate the

simulation model, when their model was finally compiled and seemed to run.

Validating the simulation model took them more time than they expected,

mainly because the data for passenger arrival lead to a highly unstable

system, which meant that selecting vehicle types and the timetable was a

hard task. Some of the students carried out as many as 15 different simulation

experiments just to have an idea of whether their simulation run was valid.

 When trying to solve the modeling errors the participants made verbal

remarks to express their frustration and to keep up their spirits. Some of their

remarks are given below. The remarks show that, even though the

participants made progress, they did not fully understand what was

happening.

4.3 Second laboratory experiment: creating simulation models from scratch

102

• “This is nice, something is moving. I do not know what, but it is

moving”.

• “I have defined that vehicles stop for 2 minutes, but what the **** is

‘minimum stop time’? I do not understand anything of these model

constructs”.

• “The fast vehicles are running over the slow vehicles on the same

track”.

 The participants who used the model constructs of the generic simulation

environment started with refreshing their knowledge on suitable model

constructs of the simulation environment. They frequently used the help-files

and basic modeling examples provided by the generic simulation

environment. Based on these small training models they decided how to use

the generic model constructs, but their lack of a broad modeling experience

prevented them from making fast progress in model development. Each new

functionality they added to the simulation model was tested and made valid, to

make sure that they would not have the problem of composing a complete

simulation model and being incapable solving errors from the simulation

environment.

 The approach of the participants using the generic simulation environment

seemed good, but some quotes show that they were surprised that the

participants using domain specific extensions were much faster:

• participant with domain specific: “How can you increase the speed of

your run?” participant with generic: “Are you already finished then?”

• participant with domain specific: “I have a problem, I would like my

animated vehicles to move exactly following the line” participant with

generic: “That’s your problem? My model is not running and I do not

expect it to run at all”

• “I have reduced the system so that passengers only move from left to

right”

• “I have reduced a lot already, but I should have reduced it so that I

have no more than one station in the system”

Observations made by the simulation experts

 The two simulation experts who had to evaluate the simulation models and

the provided documents of the participants had a reasonably simple job. They

looked at the models and judged whether the models were complete, i.e. that

they contained a minimum set of functionalities at a reasonable level of detail.

The simulation experts took into account the documentation of the participants

that described what kind of abstraction and limitations they had applied.

 4 Testing domain specific extensions in a laboratory setting

 103

 The conclusion of the simulation experts was that the simulation models of

the participants using model constructs from the domain specific extension

were almost finished and that these participants were already working on the

experimentation.

 The participants who used the model constructs of the generic simulation

environment Arena had not progressed as far as the participants using

domain specific extension within their 8-hour time frame according to the

simulation experts. Based on the simulation models that the participants made

it was concluded that they used a very structured approach, starting with a

small simulation model and extending it with new functionalities. The final

simulation models included one or more moving vehicles and a first attempt at

passenger generation. In the documentation the participants stated that they

were almost finished, but the observing simulation experts judged that the

participants would need to do more to enable all required experiments to be

performed with the model.

Observations based on the questionnaire

 The questionnaire filled in by the participants of the second laboratory

experiment has a limited value. The number of participants in the experiment

was small and thus the number of respondents to the questionnaire was also

low. Table 4.4 summarizes a few of the most important statements and the

average scored opinion of the participants. Even though there was a small

number of participants, we could carry out a t-test for comparing the two

groups, using 14 degrees of freedom.

 The outcome of the questionnaire for the two different groups is shown in

Table 4.4. In this table no distinction is made for type of participant regarding

skill level. The columns “mean” refer to the mean value the participants of

domain specific or generic provided. The variances are the variances of the

set of answers provided by the participants for domain specific or generic. The

t-value was calculated using the variance of the complete sample, weighted

for 9 domain specific participants and 7 generic participants. The value is bold

if the t-test showed that the participants using the domain specific extension

agreed more with the statement than the participants using the generic

simulation environment or the other way around.

 Statements one to five in the questionnaire dealt with satisfaction of the

participants with the simulation model they developed. The average scores of

the participants using model constructs from the domain specific extension for

these statements ranged from 2.4 to 3.1 on a 5 point scale. This means that

on average the participants were not satisfied with the quality of their work.

These participants thought that the validation of their simulation model and the

availability of performance indicators could be improved. The average scores

of the participants using model constructs from the generic simulation

4.3 Second laboratory experiment: creating simulation models from scratch

104

environment were even lower for these five statements. The average score of

these participants is not higher than 2.0, meaning that the participants were

dissatisfied with the model development, validity, and visualization.

 The sixth statement in Table 4.4 shows that the participants using the

generic simulation environment unanimously agreed that there was not

enough time to develop the simulation model. Some of the participants using

the domain specific extension felt that 8 hours was enough for this task.

 Statements 7, 8 and 9 provide information about the understandability and

future adjustability of the simulation model. The participants using the domain

specific extension again agreed more on this than the participants using the

generic simulation environments. The latter assume that problem owners can

understand their model reasonably well, but they see extendibility and

maintainability as a problem.

Table 4.4: Outcome of the second laboratory experiment

 Description Mean Variances T0.01

14df

N domain specific = 9 ; N generic = 7
1 = completely disagree; 5 = completely agree

spec
-ific

gen-
eric

spec
-ific

gen-
eric

1

S
a
ti
s
fa

c
ti
o
n
 o

f
m

o
d
e

l
d
e
v
e
lo

p
e
rs

a
b
o

u
t

th
e
 s

im
u
la

ti
o
n

 m
o
d
e

l

The simulation model is technically
correct / verified 3.4 1.9 0.6 0.8 3.5

2 The simulation model is a valid
representation of the system 2.4 1.3 0.3 0.1 5.5

3 The used level of abstraction was
correct to answer the questions of the
problem owners 3.0 2.0 0.5 0.4 3.0

4 The visualization of the simulation
model meets the problem owner’s
needs 3.1 1.0 0.8 0.0 6.1

5 The performance indicators of the
simulation model meet the problem
owner’s needs 2.8 1.1 0.6 0.4 4.7

6

T
im

e
 Not enough time was provided for

model development

2.9 4.9 1 0.1 -5.9

7

F
u
tu

re
 u

s
e
 o

f
th

e

s
im

u
la

ti
o
n
 m

o
d
e
l

The simulation models developed are
easy to understand by problem owners 3.1 3.0 0.7 1.0 0.2

8 The simulation models developed are
easy to maintain for later simulation
studies 3.4 1.0 0.5 0.1 8.7

9 The simulation models developed are
easy to extend for later simulation
studies 3.2 1.4 0.4 0.1 7.2

4.3.3 Conclusions from the second laboratory experiment

 This laboratory experiment showed that, for novice simulation model

developers, the development of a simulation model using model constructs of

a domain specific extension is easier and faster than the development of a

 4 Testing domain specific extensions in a laboratory setting

 105

similar simulation model using the model constructs of a generic simulation

environment. The participants using domain specific extensions achieved

more, built better simulation models, were more confident about their model,

and carried out more evaluations to improve the quality of their simulation

model within the available 8 hours. Thus the proposition for this laboratory

experiment (see page 98) can not be rejected.

 Even though the participants using the domain specific extension achieved

better results, it was interesting how they reached their results. Their

approach of: “first we implement everything and enter all the data; then we

test” showed a high confidence in the power and user-friendliness of the

domain specific extension. They expected error messages during the

development process to tell them that they were making mistakes. This

confidence cost these participants a lot of time as they had to deal later with

the mistakes they made. Support from model development and a list of

frequently made mistakes in addition to the available documentation, might

have helped these participants.

 The participants who were using the domain specific extension got closer

to completion of the simulation model. The causal relation between domain

specificity and number of actions (causal relation 4 in Table 4.1 and Figure

4.1) showed that we expected that fewer actions should be carried out. This

relation turned out to be true for model development. The participants that

were using the domain specific experiments needed much fewer steps to

instantiate their first simulation model. However, these participants used a lot

of time to check the simulation model and to try to validate it completely. Even

though fewer actions were required, the understanding of the model

constructs in the simulation model was not better (causal relation 6 in Table

4.1 and Figure 4.1). Only after the participants had gathered sufficient

understanding of the simulation model, the simulation experiment could be

completed.

4.4 Third laboratory experiment: performing a simulation study

4.4.1 Set up of the third laboratory experiment

 The participants in the first and second laboratory experiment were

novices. None of them had extensive experience in developing a simulation

model or performing a simulation study. Their lack of experience with model

reduction and their lack of knowledge of the generic simulation environment

used, resulted in difficulties with implementing and recognizing the error

messages of the simulation environment. Experience with using simulation

models and a generic simulation environment may affect how a model

developer uses a domain specific extension. Professional simulation experts

with a good working knowledge of the generic simulation environment Arena

performed the third laboratory experiment. The assignment for the experts

4.4 Third laboratory experiment: performing a simulation study

106

was to carry out a complete simulation study in which the simulation model

had to be built from scratch, using either the domain specific or the generic

simulation environment. The quality of the simulation model was evaluated by

showing the output of the case study to real problem owners.

 Eight employees from the company Rockwell Software, the vendor of the

generic simulation environment Arena that was used in the laboratory

experiments, participated in the experiment. All of the participating simulation

experts had been working for at least 5 years in simulation, some of them for

20 years. The group consisted of developers of the core code of the

simulation environment, developers of commercial domain specific

extensions, and consultants that use the generic simulation environment in

commercial projects. The eight simulation experts were divided into four pairs:

• developers of simulation software with more than 15 years of

experience and a PhD in computer science.

• expert users with ± 10 years of experience.

• developers of commercial domain specific extensions as extensions of

the generic simulation environment with ± 7 years experience.

• junior simulation consultants with ± 3 years of experience in simulation

projects.

 Randomly one person of the pair carried out the simulation study with the

generic simulation environment. The other person of the pair received the

domain specific extension including available documentation and example

models. The participants were given a maximum of 8 hours to develop their

model and to run any number of experiments they assumed to be necessary.

The experiments were meant to demonstrate the validity of the simulation

models and to provide the optimal solution for the design of SkyShuttle. None

of the participants was able to participate in one session of 8 hours, due to

other planned activities, so they divided the 8 hours of the laboratory

experiment over a period of three days.

 At the end of the laboratory experiment the participants were expected to

provide a set of deliverables:

• a simulation model based on the simulation environment assigned.

• a presentation that could be used to provide insight into the optimum

system configuration to the problem owners at the Municipality of The

Hague.

• a filled in questionnaire about their satisfaction with using the

simulation environment assigned to them and their expectations of

successful applying the simulation model for (future) problem solving.

• a log-file describing their simulation study activities of the 8-hour

period.

 4 Testing domain specific extensions in a laboratory setting

 107

 The deliverables were important to evaluate the performance of the

participants. This evaluation was carried out in three steps. The first step dealt

with problem owners in the SkyShuttle project. Problem owners needed to feel

supported by the simulation expert, based on model output, visualization,

experiments and useful model abstractions. The second step was to judge the

quality of the simulation model, on level of detail, completeness, model

structure and ease of adjustment using simulation experts. The third step was

to evaluate the questionnaire and log files created by the participants.

 The project did not have real problem owners to carry out the evaluation,

because the case in the laboratory experiment was adapted from the original

study of Brandt (1999). However, the problem owners of the initial study that

triggered this set-up for the laboratory experiment and 2 experts drawn from

the field of transportation who had used simulation models in their projects

were willing to participate as problem owners. A list of more than 50 items,

that are important to problem owners in the field of transportation, was

designed and the problem owners set the priority for these items, leading to

15 items with the highest priority for the problem owners. A similar evaluation

was planned for the simulation experts, who were expected to prioritize a

large list of items and score the top 15 items for the final simulation models of

each of the participants. The lists of criteria for problem owners and simulation

experts were developed together with R. Sadowski from Rockwell Software

(Valentin and Sadowski, 2003).

 It was expected that the evaluations by the problem owners would show

that the problem owners gathered more insight from the simulation studies

carried out using the domain specific extension. The gap for the requested

insight of problem owners would be smaller, and might even disappear

completely if the model developers provided all the insight the problem

owners requested. The existence of the gap between provided and required

insight was defined as the effectiveness of the simulation study. Therefore,

the proposition for the third laboratory experiment was:

The effectiveness of the described simulation study is larger when

simulation experts use model constructs from a domain specific

extension than simulation experts that use model constructs from a

generic simulation environment.

 This proposition is almost the same as the accepted propositions for the

two laboratory experiments using novices. The main difference that was

expected between the laboratory experiments with novices and experts was

that in this experiment the participants using the domain specific extension

would all succeed to build their model within the 8 hour time frame, and would

be able to perform several simulation experiments. Secondly, the participants

using the generic simulation environment would make their simulation models

4.4 Third laboratory experiment: performing a simulation study

108

at a higher level of abstraction. The similarity between the second and third

laboratory experiment result in a focus on the causal relation between the

experience of simulation model developers and the number of actions they

have to carry out, and as a result the time spent on the simulation study

(Figure 4.9).

Figure 4.9: Focus of the third laboratory experiment

4.4.2 Insight gathered, based on the third laboratory experiment

 It was expected that all the participants would easily finish the complete

simulation study. Surprisingly only two participants, both using the model

constructs of the domain specific extension, succeeded in performing several

simulation experiments and providing output. However, the two simulation

experts felt they needed to carry out many more experiments to reach an

economically feasible system design and therefore they did not hand in their

presentation. As a result the evaluation by problem owners did not take place.

Observations during the laboratory experiment

 Notes were made during the laboratory experiment regarding the model

building process and the simulation models produced. Even though the

participants were all working in their own office, the processes the experts

used to carry out the simulation study and the positive and negative results

were remarkably similar. The solutions varied in details, but in general the

same process was applied by the simulation experts, with similar problems

arising during the laboratory experiment.

 In the second laboratory experiment, both the experts and the novices

used model constructs from the domain specific extension to build their

complete simulation model based on the available data. The experts had the

same problems as the novices. Error messages and invalid behavior was

 4 Testing domain specific extensions in a laboratory setting

 109

observed while they tested their model after the complete model instantiation.

However, the way the experts solved their problems differed from those of the

novices. The novices mainly went further into the manual and, at random,

made adjustments to the data entry trying to find a solution. The novices

expected the model constructs to be correct and assumed their data was

entered incorrectly. The experts were more convinced about their own work

and blamed the model constructs of the domain specific extension. They

applied reverse engineering to see where something went wrong in the model

constructs of the domain specific extension so they could try to take counter

actions using generic model constructs taken from the simulation environment

Arena.

• The experts used the debugger of the Arena simulation software and

scanned, at the lowest implementation level, the processes carried out

within the model constructs of the domain specific extension.

• The experts analyzed the functionality of a model construct by back tracing

its internal code. The simulation software allows model developers to see

parts of the code of a model construct, even though the simulation experts

did not have the source code.

• The experts practiced with example models to understand the process of

using the model constructs of the domain specific extension. Testing of the

example models using the provided example assignments taught the

experts what influences different variables in the user-interface of the

model constructs have on the output of the simulation model.

 The experts using generic model constructs tried to develop a perfect and

broadly applicable simulation model, while the experts using domain specific

model constructs struggled with their error messages and deadlocks. The list

of possible experiments in the problem description and the provided

conceptual models triggered them to try to develop a simulation model that

could be easily adjusted to model all the issues mentioned. Unfortunately,

time pressure meant that the experts were not able to achieve this level of

perfection. Even with their years of experience they made mistakes similar to

the novices.

Outcome of the questionnaire and talks after the expert experiment

 This laboratory experiment was carried out by eight persons, not sufficient

to use statistical techniques to accept or reject the proposition of page 108. In

the evaluation of this laboratory experiment the questionnaires were used as

triggers for a group evaluation with all the eight participating simulation

experts. Table 4.3 shows the outcome of the questionnaire, but no t-test is

carried out due to the small number of participants.

 All simulation expert participants were satisfied with their work. The

participating simulation experts that had been using the domain specific

4.4 Third laboratory experiment: performing a simulation study

110

extension were satisfied that, with their limited knowledge of the domain

specific model constructs, they had succeeded in developing a working model

and some of them even provided usable model output. In the discussion

afterwards it became clear that the experts had more difficulty learning how to

work with the domain specific extension than expected from the previous

laboratory experiments with the novices. The experts even required more time

and material than the novices, as their skepticism regarding the domain

specific extensions was much higher than that of the novices. The simulation

experts indicated that they would be able to increase productivity and would

be able to obtain better results, if they would be using the domain specific

extension for a second time. The experts using the generic simulation

environment were convinced that they had reached the maximum achievable

within the time frame. During the discussion session, the main discussion of

these experts was around other approaches such as starting at a higher level

of abstraction, reducing data, or ignoring some of the requested experiments.

Table 4.5: Outcome of the third laboratory experiment

 Description Mean Variances

N domain specific = 4 ; N generic = 4
1 = completely disagree; 5 = completely agree

spec
-ific

gen-
eric

spec
-ific

gen-
eric

1

S
a
ti
s
fa

c
ti
o
n
 o

f
m

o
d
e

l
d
e
v
e
lo

p
e
rs

a
b
o

u
t

th
e
 s

im
u
la

ti
o
n

 m
o
d
e

l

The simulation model is technically
correct / verified 3.8 1.3 0.5 0.5

2 The simulation model is a valid
representation of the system 3.3 1.3 0.5 0.5

3 The used level of abstraction was
correct to answer the questions of the
problem owners 4.0 3.3 0.8 0.5

4 The visualization of the simulation
model meets the problem owner’s
needs 3.5 1.0 0.6 0.0

5 The performance indicators of the
simulation model meet the problem
owner’s needs 4.3 1.0 0.5 0.0

6

T
im

e
 Not enough time was provided for

model development

4.8 5.0 0.5 0.0

7

F
u
tu

re
 u

s
e
 o

f
th

e

s
im

u
la

ti
o
n
 m

o
d
e
l

The simulation models developed are
easy to understand by problem owners 3.8 3.0 0.5 0.8

8 The simulation models developed are
easy to maintain for later simulation
studies 3.5 2.5 0.6 0.6

9 The simulation models developed are
easy to extend for later simulation
studies 3.8 3.0 0.5 0.0

 The answers to the questionnaire showed that all the experts assumed

that their simulation model, finished or not, fitted the problem. They were all

convinced that the level of abstraction and data was appropriate for providing

verified and valid simulation models.

 4 Testing domain specific extensions in a laboratory setting

 111

 The expected satisfaction of the problem owners of the SkyShuttle project

regarding the presented results of the simulation study was scored low by the

simulation experts. The participants using the generic simulation environment

argued that visualization and performance indicators could be made much

better, but they did not have time to do this. The participants using the model

constructs from the domain specific extension were slightly more positive

about the visualization and performance indicators within their simulation

model. None of the participants expected the problem owner to be fully

satisfied with the insights provided by the simulation experiments.

 The questions in the questionnaires regarding the time limits and use of

additional time were not as relevant as expected, because none of the expert

participants was close to finishing the project. One of the participants using

the domain specific extension claimed “With the experience I have right now, I

could do the project in two hours. I just lost too much time trying to understand

what was going on.” The other users of the domain specific extension agreed.

The experts using the domain specific extension admitted that they did not

trust the model constructs when the first error messages appeared. The extra

work to gather the knowledge they required consumed all the available time,

but provided them with the knowledge and trust necessary to use the domain

specific extension in future projects.

 The experts using the model constructs from the domain specific extension

were convinced that their simulation model could be used to provide answers

to most of the questions of future problem owners. The experts using the

generic simulation environment had the same opinion, but they made the

reservation that quite some time would be needed to finish their simulation

model and implement the missing functionalities before future problem owners

would be satisfied.

 Overall the work of the simulation experts using the generic simulation

environment confirmed the difficult nature of simulation projects. Even though

these experts had years of experience, the expected results were not

achieved in time. Too much detail, alternative interpretations of the problem

description and an underestimation of the complexity of the process resulted

in implementation problems and difficulties in carrying out the required

experiments.

 The participants using model constructs from the domain specific

extension added that the domain specific extension was not as

understandable as they expected. The error messages and mysterious

deadlocks caused them severe problems. They reacted positively to the idea

of providing something like a Frequently-Asked-Question list to help users

deal with common problems. The simulation experts also complained that

they did not have the source-code, so when they encountered problems, they

4.4 Third laboratory experiment: performing a simulation study

112

could not check the source code of the model constructs of the domain

specific extension.

Conclusions of the third laboratory experiment

 This laboratory experiment showed that, for simulation experts, developing

a simulation model using a domain specific extension is easier and faster than

developing a similar simulation model using model constructs from a generic

simulation environment. However, simulation experts require higher

investments in time and training before they are convinced of the quality of

model constructs developed by someone else. The barrier that simulation

experts have to overcome before they are confident enough to trust model

constructs of domain specific extensions is higher than that for novices. After

working with the domain specific extension for several hours the experts

gained the necessary trust and confidence. Using this trust and confidence,

the simulation experts produced more and better simulation models, they

were more confident about their models and they carried out more simulation

experiments to improve the system design for the SkyShuttle problem owners

within the available 8 hours. Thus the proposition for this laboratory

experiment cannot be rejected.

 Probably the most important observation of this laboratory experiment is

that the experts using model constructs from a domain specific extension had

to overcome a high level of mistrust in the model constructs before they could

begin to use them comfortably. Simulation experts need to be fully convinced

of the technical superiority of the simulation environment and the applicability

of the model constructs to the problem before they feel happy to use the

domain specific extension. If experts do not fully trust a domain specific

extension they will complain about the implementation of the concepts,

instead of assuming that they might be mistaken.

 The participants using model constructs from the generic simulation

environment wanted to show off their expertise with Arena. They were

convinced of the quality of their generic simulation skills so they did not want

to abstract too much. However, this approach resulted in no solution at all

within the time constraints of the experiment.

 The causal relation between experts, domain specificity and

understandability of the simulation model was unexpected. Experts in

simulation models that were working with the generic simulation environment

had a high level of understanding of their simulation model. The

understanding of the experts using the domain specific extension was much

lower. These experts tried to understand, but this took them a lot of additional

actions and steps. The number of actions should be divided into the actions

required for composing the model and the actions for validating the model.

The number of actions required to compose a model using a domain specific

 4 Testing domain specific extensions in a laboratory setting

 113

extension is the same for simulation experts and novices, but the number of

actions required for validation is much higher for simulation experts, because

the simulation experts tend to doubt the validity of the model constructs of the

domain specific extension.

 Kolfschoten et al (2006) explain that the difficulty that experts have with

model constructs is due to the way they handle observations of a system and

mentally build their own cognitive scheme. They explain, using cognitive load

theory, the advantages of building blocks and the difficulty that (simulation)

experts have, because they have to put aside their normal way of working and

adapt to the concepts enforced by the model constructs. Novices such as the

participants in the first and second laboratory experiment do not have this

expertise and thus are more easily able to adapt to the concepts of the

domain specific extension.

4.5 Overall conclusions drawn from laboratory experiments

 The laboratory experiments showed that model developers using a domain

specific extension achieved more results within the given time than model

developers that started with a generic simulation environment and the same

time limit. ‘More results’ refers to more experiments carried out in laboratory

experiment 1 or simulation models that are closer to being used for

experimentation in laboratory experiments 2 and 3. The model developers

using model constructs from a domain specific extension provided more

simulation experiments, delivered simulation models that were better

understandable and extendable, and were more satisfied about the usability

and quality of their work. Further, the model developers expect that they

would need less time to carry out a subsequent simulation study now that they

had a good working knowledge of the domain specific extension.

 The outcome of the laboratory experiments taught us that the importance

of a model developer’s understanding of the model constructs had been

underestimated. The different participants in the laboratory experiments

taught us that the type of documentation and training given before using a

domain specific extension should be tailored to fit the type of simulation model

developer. Experts need to be convinced that the model constructs of the

domain specific extension are valid before letting them work with a domain

specific extension. The main thing that these technical experts wanted, was

insight into the inner working of the model constructs of the domain specific

extension. The novices, who had fewer prejudices to overcome, could start

working directly with the model constructs, but they needed to be managed

more within the modeling process. A structured process for using a domain

specific extension for developing a simulation model might be very helpful to

overcome these problems. Clear support, example solutions in the case of

errors, and a Frequently Asked Question list are also needed.

4.5 Overall conclusions drawn from laboratory experiments

114

 In the laboratory experiments all activities of a simulation study, as

described in figure 1.7 were carried out. The laboratory experiments also

showed us that the participants experienced most of the advantages and

encountered some of the risks that were identified in sections 2.4 and 2.5 for

each of the activities. The main differences we observed were for the actions

carried out for the verification and validation activity. The novices in the first

laboratory experiment were quite optimistic about the quality of their models,

so they mainly ignored this activity. The advantage of a simplified verification

and validation process resulted in a higher risk of not performing this activity.

 The laboratory experiments did not confirm all risks mentioned in literature.

The only documented risk encountered during the laboratory experiments was

found in the activity “instantiate simulation model” where it turned out that

participants did not fully understand the model constructs. This resulted in a

longer process to address modeling mistakes.

 5 Domain specific extensions realized by simulation building blocks

 115

5 Domain specific extensions realized by
simulation building blocks

5.1 Introduction

 Chapter 2 described what domain specific extensions are and what steps

should be taken to develop domain specific extensions. We then developed

new domain specific extensions for automatic guided vehicles and

passengers in airports (chapter 3). Additionally, laboratory experiments

comparing generic simulation environments and domain specific extensions

were carried out in chapter 4. In chapter 3 we observed successful simulation

studies due to the flexibility that domain specific extensions offer. The

flexibility provided mechanisms to deal with the new requirements and the

demands for insight of problem owners and model developers. We also

observed that the effectiveness of simulation studies with domain specific

extensions improves if we avoid more of the identified risks. In the case

studies presented in chapter 3 we still encountered some of the known risks,

but we succeeded in overcoming these without any real problems. We should

also be able to avoid the new risks we encountered during the case studies in

chapter 3 using the knowledge we gained during the case studies. In chapter

4 we learned that domain specific extensions are more effective than generic

simulation environments, but that (expert) model developers have difficulties

using a new domain specific extension.

 The findings in literature and observations from chapter 3 and 4 enabled

us to answer the research question introduced in chapter 1 positively:

Yes, the effectiveness of a simulation study increases

when the simulation models are instantiated using model

constructs of a domain specific extension for a simulation

environment.

 However, this answer comes with a big reservation. The results of the

laboratory experiments and the simulation studies were positive: But during

the experiments the developers of the domain specific extension were

available to provide support to the participants. We doubt that the simulation

studies described in chapter 3 would have finished as successful if the

developers of the model constructs had not actively participated and helped

the participants during the simulation studies.

 The encountered risks were overcome by spending more time and effort

on the simulation study. Most of these risks have been known for a long time

and have been identified in literature (see chapter 2). The way we carried out

the design process of the domain specific model constructs reduced the effect

of the risks, but was not sufficient to avoid the risks completely during the

simulation study. Time, money and goodwill are lost when carrying out a

5.2 Requirements for domain specific extensions

116

simulation study when one needs to mitigate risks. The simulation studies with

the domain specific extension were therefore not as effective as they could

have been. It will never be possible to create domain specific extensions that

are fully satisfactory for a simulation study, but improvements to the concept

and design approach of domain specific extensions and the training of model

developers will reduce the chance of encountering a risk, and they will support

the model developer in mitigating these risks more easily. The things we

learned during the case studies that help us to avoid and overcome risks can

be translated to requirements for domain specific extensions of simulation

studies. These requirements for domain specific extensions will be derived in

section 5.2.

 The requirements for domain specific extensions cannot be met by just

using the concept and design guidelines described in chapter 2. Extensions

and changes to the concept and design guidelines need to be made to

improve the domain specific extensions. The suggested changes and

extensions will be described in section 5.3. A more detailed description of four

types of changes and extensions will be provided in the last four sections of

this chapter:

• An improved concept of model constructs with structure and interfaces

to interact with other model constructs of domain specific extensions

(section 5.4).

• Tools and instruments that are part of a domain specific extension to

automate the activities the model developers have to perform (section

5.5).

• Training and documentation materials to support a model developer to

work independent from the developer of the domain specific extension

(section 5.6).

• A design approach to support developers of domain specific extensions

to design and implement model according to the new concept (section

5.7).

The chapter concludes with section 5.8, which provides an introduction into

the testing case studies of chapters 6 to 8.

5.2 Requirements for domain specific extensions

 We observed in the case studies of chapter 3 all the expected benefits and

this demonstrated the usefulness of domain specific extensions. We even

succeeded during the simulation studies in overcoming most of the risks of

using domain specific extensions during the simulation studies. The risks that

were still encountered during the simulation studies in chapter 3 were caused

by a domain specific extension that was not fully suited for modeling the

system, and not by properties of the domain specific extensions themselves.

We believe that the risks could have been avoided completely during the

 5 Domain specific extensions realized by simulation building blocks

 117

simulation study, if the domain specific extensions had been of even better

quality. Quality improvement for a domain specific extension can be realized if

the developers make sure that their domain specific extension matches the

requirements listed in Table 5.1, which is based on the risks described in

Table 3.7. These were based on the positive and negative observations of

using domain specific extensions in the AGV case and the Airports case. The

relationships between the requirements and the positive experiences gained

during the case studies of chapter 3 are explained below.

Table 5.1: Potential risks of using domain specific extensions in a
simulation study and requirements to mitigate these risks

Potential risk of using a domain
specific extension in a simulation

study

Requirements for a
domain specific extension (DSE)

Activity 1. Problem description & define conceptual model

Risk 1.1: scope of model developer
is limited by model constructs

Requirement 6: Model constructs
should be understandable for model
developers

Activity 2. Select model constructs

Risk 2.1: lack of trust results in no
motivation to use domain specific
extension

Requirement 1: DSE should show
added value for model developers
compared to use of model constructs of
generic simulation environments

Risk 2.2: lack of insight in model
constructs results in ignore domain
specific extension

Requirement 6: Model constructs
should be understandable for model
developers

Risk 2.3: use of model constructs
that are not suited for representation
of system elements

Requirement 2: Use of model constructs
of DSE should be clear and well defined
so model developers know when and
how to use the model constructs

Risk 2.4: system elements cannot
be represented by model constructs

Requirement 3: System elements that
seem to be exceptional for the domain
represented by the DSE should not
become model constructs

Risk 2.5: compose model constructs
from developed domain specific
model constructs only applied for
infrastructure system elements

Requirement 4: The infrastructure and
physical elements should be represented
by model constructs separated from the
model constructs for control or
management

Risk 2.6: model developers can
adjust internal logic of model
constructs

Requirement 5: Internal logic of model
constructs of DSE should be closed or
accessible depending on type of model
developer

(continued at next page)

5.2 Requirements for domain specific extensions

118

Activity 3. Data collection

No risks identified

Activity 4. Instantiate simulation model for problem system

Risk 4.1: model developers do not
understand model construct

Requirement 6: Model constructs
should be understandable for model
developers Risk 4.2: model developers do not

know how to parameterize model
construct

Risk 4.3: difficult to compose
simulation model, because model
constructs are not available

Requirement 7: DSE should be an
extendible set of model constructs

Risk 4.4: difficult to compose
simulation model by person other
than developer(s) domain specific
extension

Requirement 6: Model constructs
should be understandable for model
developers

Activity 5. Verify and validate simulation model for original system

Risk 5.1: mistakes of model
developer are hard to overcome

Requirement 8: Behavior of model
construct should be understandable and
verifiable Risk 5.2: model developers know

something is wrong, but cannot
identify what to do about it

Activity 6. Analyze output of simulation model

Risk 6.1: model constructs do not
provide performance indicators
problem owner desired

Requirement 7: DSE should be an
extendible set of model constructs

Activity 7. Define solution for analyzed output

Risk 7.1: model developers are
triggered to find new solutions by
parameters

Requirement 2: Use of model constructs
of DSE should be clear and well defined
so model developers know when and
how to use the model constructs

Risk 7.2: model developers are
limited by parameters and model
constructs

Requirement 7: DSE should be an
extendible set of model constructs

Activity 8. Instantiate simulation model for identified solution

Risk 8.1: solution is identified that
cannot be represented by model
constructs

Requirement 7: DSE should be an
extendible set of model constructs

Risk 8.2: adjustments of model
constructs required to represent
solution are time consuming

Requirement 9: Model constructs
should be individually parameterizable

Risk 8.3: replacement of model
constructs causes errors in model
constructs that were linked or
connected

Requirement 9: Model constructs
should be individually parameterizable

 5 Domain specific extensions realized by simulation building blocks

 119

 Satisfying requirement 1 helps model developers and problem owners to

predict the benefits of using domain specific model constructs. Understanding

the potential advantages will probably reduce reluctance to use a domain

specific extension. The benefits of using a domain specific extension can be

determined from experience gained in earlier studies using the same domain

specific extension.

 Requirement 2 implies that model developers who understand the

capabilities and limitations of model constructs will be better able to select the

correct model construct to represent an element of a system. The problem of

selecting the correct model construct was satisfied by custom training during

the simulation studies described in chapter 3. Additional support was provided

at points where the model developers ‘got stuck’. Improving the support and

training should avoid this risk without the personal interventions of chapter 3.

 We observed in the case studies for the airport, that the number of model

constructs increased for every new part of an airport to be modeled. The

consequence was that a lot of model constructs were part of the domain

specific extension, but had only one instance in the simulation studies. The

action of extending the set of model constructs was performed to overcome

the risk that a system element was not represented as a model construct. The

enthusiasm of the developer of the domain specific extension led in the case

studies to large sets of model constructs after only a small number of

simulation studies. Therefore requirement 3 states that not every missing

model construct should directly result in a new model construct in the domain

specific extension. The aim of this requirement is to improve maintainability

and use of the domain specific extension in subsequent simulation studies.

 The AGV infrastructure in the simulation study described in chapter 3 was

modeled using different hierarchical layers. Model constructs for the control of

the AGVs and the allocation of AGVs and Loads to infrastructure were

separated. The attempted separation of the infrastructure from the control and

management enabled experimentation for just the infrastructure or just the

control. Similar types of experiments can be identified in any system: either

adjust the number of resources, infrastructure or physical elements in the

system, or adjust the way the resources, infrastructure or physical elements

are controlled and managed. Requirement 4 implies that separation in

classes of model constructs helps to achieve the flexibility required for

experimentation.

 The model developers who used the domain specific extension for airports

were confronted with error messages that parameters were wrong. These

model developers decided to adjust the code of the model constructs instead

of adjusting the parameters in the simulation model. The effect was that the

model constructs provided incorrect behavior and thus were no longer valid

5.3 Types of changes and extensions for domain specific extensions

120

system representations. Requirement 5 indicates that model developers

should be protected against such events.

 We observed in the case studies that the development of a simulation

model by the developers of the model construct went much faster and easier

than model development by other persons. The model developers who were

not involved in the development of the domain specific model constructs had

start-up problems. The difficulties that model developers encountered during

model development need to be reduced in such a way that model developers

can carry out their work independently. Being able to understand the model

constructs, as mentioned in requirement 6, is an important first step.

 In the explanation for requirement 3 we state that not every system

element should be directly transferred into a new model construct. However, it

is also impossible to know the complete composition and size of the required

set of model constructs in advance. Change is a given and therefore new

model constructs will have to be added to the domain specific extension.

Adding new model constructs should be possible without damaging the

capabilities of the current model constructs and should not invalidate

simulation models that have already been developed using the domain

specific extension. The extendibility mentioned in requirement 7 of the set of

model construct is thus the ability to add or adjust model constructs of a

domain specific extension.

 One of the main advantages of domain specific extensions is that a model

developer does not need to verify and validate the behavior of the model

construct during the verification phase. He or she can safely assume that the

model construct is working as defined and described. The laboratory

experiments showed that the expert simulation model developers first blamed

the set of model constructs and then secondly, started searching for mistakes

in their own simulation model that used the model constructs. The possibility

of verifying that the model constructs are technically correct will reduce this

problem, and give us requirement 8.

 Model constructs represent a part of a system. These system parts are

different in each system, and also for the same system in different situations.

Requirement 9 enables the model developer to configure the model

constructs in the simulation model to create an accurate representation of the

system, without the model developer needing to know technical details about

the inner structure of the model construct or the simulation environment.

5.3 Types of changes and extensions for domain specific extensions

The requirements for domain specific extensions can be satisfied in different

ways. For example, requirement 6 “Model constructs should be

understandable for model developers” can be achieved by training the model

developer, by simplifying the model constructs, or by automating the process

 5 Domain specific extensions realized by simulation building blocks

 121

of simulation model development so the model developer requires less

understanding to use the model constructs. In addition each of these three

solutions can be achieved in different ways and using different instruments.

For example, the training of the model developer could be performed via a

user manual, via assignments, using example models or by providing training

videos for a specific model construct. Simplifying the model construct can be

achieved via user interfacing, structural improvements, or better use of

terminology. The automation of the process could be done by selecting the

model construct out of a set, by automatic instantiation of the model construct

in the simulation model or by automatic parameterization using information

from a specific data source.

 The example of how to tackle requirement 6 shows that there is not a

single approach to satisfy the requirements. The case studies showed the

effectiveness of activities to mitigate risks. We believe that the concept and

guidelines described in chapter 2 can be improved to accommodate the

actions required to mitigate risks before the risks occur. We set out, in Table

5.2, a list of changes and extensions to the concept of domain specific

extensions that can be used to avoid the potential risks to be found during

simulation studies.

Table 5.2: Changes to concepts and design guidelines of domain
specific extensions to avoid risks

Requirement for domain specific
extensions

Changes to concepts and
guidelines for domain specific

extensions as described in chapter
2

Requirement 1: DSE should show
added value for model developers
compared to use of model constructs
of generic simulation environments

Additional documentation and
example models; clear overview of
capabilities and limitations of domain
specific extensions

Requirement 2: Use of model
constructs of DSE should be clear
and well defined so model developers
know when and how to use the model
constructs

Additional documentation and
example models; use terminology of
domain

Requirement 3: System elements
that seem to be exceptional for the
domain represented by the DSE
should not become model constructs

Structure of model constructs to
enable exchange with generic model
constructs of simulation environment;
improvement to process to identify
required model constructs in domain
specific extension

Requirement 4: The infrastructure
and physical elements should be
represented by model constructs
separated from the model constructs
for control or management

Structure of model constructs to
enable composition of predefined
parts of model constructs.

(continued at next page)

5.4 Simulation building blocks

122

Requirement for domain specific
extensions

Changes to concepts and
guidelines for domain specific

extensions as described in chapter
2

Requirement 5: Internal logic of
model constructs of DSE should be
closed or accessible depending on
type of model developer

Interfacing for model constructs to
stop model developers of diving into
internal logic

Requirement 6: Model constructs
should be understandable for model
developers

Training of model construct
applicability; simplification of structure
of model constructs; automate
selection and parameterization of
model constructs in simulation model

Requirement 7: DSE should be an
extendible set of model constructs

Structure of model constructs to
enable composition of predefined
parts of model constructs; Structure of
model constructs to enable exchange
and/or co-operation with generic
model constructs of simulation
environment; Structure of model
constructs to enable composition of
predefined parts of model constructs

Requirement 8: Behavior of model
construct should be understandable
and verifiable

Example models including model
construct; simple process description
of using model construct together with
other model constructs; documented
specifications how model construct
should perform under certain
conditions; animation representing
state of model construct in simulation
model

Requirement 9: Model constructs
should be individually
parameterizable

User interface to model constructs

5.4 Simulation building blocks

5.4.1 Definition of simulation building blocks

 Thus far we defined model constructs only as parts of a simulation

environment. The domain specific model constructs that we introduced and

used in chapters 2, 3 and 4, were developed using the ability provided by

generic simulation environments to group generic model constructs. The

result was a new model construct that could be instantiated in a simulation

model to represent a system element. An analysis of the observations taught

us that the concept of domain specific model constructs can make more

 5 Domain specific extensions realized by simulation building blocks

 123

contributions to the effectiveness of simulation studies than the grouped

generic model constructs can offer.

 In this section we introduce a different structure and architecture for

domain specific model constructs. The improvements in structure will allow

changes in the model constructs to be made. The model constructs of domain

specific extensions that follow this new structure and architecture will have the

same advantages in simulation studies as we discovered in chapters 3 and 4.

Model developers will be able to develop their simulation models faster, they

will need less detailed programming and can more easily prepare their

simulation model for new experiments. We will further refer to model

constructs as the constructs of simulation environments that have been

designed according to the principles of chapter 2. The constructs of domain

specific extensions that follow the new structure and architecture will be called

simulation building blocks. Simulation building blocks are extensions of

model constructs of generic simulation environments, similar to the domain

specific model constructs, but they have a structure that is expected to enable

their use in future simulation studies in a better way and mitigate the risks

encountered in the case studies of chapter 3. As simulation building blocks

are extensions of generic model constructs, the simulation building blocks fit

at exactly the same spot in Figure 2.2 at the position of model constructs P, Q,

R & S.

 Simulation building blocks are a product of the research of the BETADE-

research program, a 5-year research program at Delft University of

Technology that aimed at defining, specifying and using building blocks in

different modeling domains, including geo-information, web-services and

discrete event simulation (Verbraeck, 2002). The BETADE-research group

provided the following definition for a building block: “A building block is a self-

contained, interoperable, reusable and replaceable unit, encapsulating its

internal structure and providing useful services or functionality to its

environment through precisely defined interfaces.” (Verbraeck et al, 2002,

p23).

 The term self-contained in the above definition of a building block refers

to the use of local information and local processes. Information within a

building block represents the state of the building block and affects its

behavior with respect to external events. This information is used for the

processes and functions the building block performs. Once a building block

receives an external event to execute a function, it can do this using the

information and process descriptions that are part of the building block. For

simulation building blocks this means that the building block keeps track of its

own attributes and has all the knowledge and capabilities required to express

the behavior of the system element it represents. We enable this by storing

data locally in the simulation building block and dividing the functionality and

services within a simulation building block over different elements, each with

their own part of the system element’s representation. These elements of

5.4 Simulation building blocks

124

simulation building blocks will be referred to as building block elements and

they provide the internal structure of the building blocks.

 Interoperable means that the building block has to cooperate with other

building blocks. This might seem to be contradictory to self-contained, but a

simulation model cannot consist of just one super building block. System

elements are represented by different simulation building blocks. These

system elements together form the system to be simulated. These system

elements in reality exchange information and entities, and the same has to

occur between simulation building blocks. However, due to the self-

containment of simulation building blocks, the way simulation building blocks

are interoperable needs to follow certain rules, i.e. by precisely defined

interfaces. The ability to be interoperable starts from the idea that simulation

building blocks are part of a set. This set consists of a family of building blocks

which are composed of the same type of building block elements, e.g. the

‘area’ in the airport case study of chapter 3. The set of simulation building

blocks consists of building blocks representing infrastructure and building

blocks for control or management. The simulation building blocks for control

are represented as a process description and use pointers to infrastructure

building blocks, in order to be interoperable with simulation building blocks for

infrastructure or physical elements.

 Reusability for a simulation building block means that the simulation

building blocks are instantiated more than once in a simulation model, or the

simulation building block is instantiated in simulation models used in several

simulation studies. When a simulation building block is reused in a simulation

model several times, it is especially necessary to be able to parameterize the

simulation building block according to the properties and behavior of the

system elements it represents. Internal reuse is also achieved by the use of

building block elements within a simulation building block, which enables

flexibility and the ability to extend the set of building blocks with new building

block elements instead of directly developing new building blocks.

 A building block is replaceable if it can be removed from a system and

another building block can take its place in the system. The system should still

work after the change. For example, replacing a CPU in a computer by a

newer model will give the result that the computer is still capable of executing

the same software, but it can do it faster. The same applies for simulation

building blocks. Replacing one simulation building block by another building

block is a type of experimenting to evaluate system alternatives. The

replaceability is achieved via the family of simulation building blocks that

operate together with other simulation building blocks via standardized

interfaces. Of course the replaceability is only possible between carefully

designed sets of building blocks that have the same interface and a similar

function. When looking at the CPU example: only a CPU of the same family

and with the same pin structure can potentially replace the original CPU.

 5 Domain specific extensions realized by simulation building blocks

 125

 Encapsulating its internal structure means that the model developer

does not need to know what is inside a simulation building block. The internal

working of a simulation building block is shown to the outside world by

expressing the state of the simulation building block. The user interface will be

the only thing the model developer will observe, but this can vary depending

on the type of model developer, e.g. allow expert users a peek inside.

 Building blocks are part of a system for a number of reasons: these are the

useful services or functionality that the building block provides to a system.

Each simulation building block in a simulation model should add something to

the overall system representation; otherwise it can be left out. In addition, the

services a simulation building block provides is to other building blocks in the

system. A separation can be made between the type of services and

functionality and how they are allocated to simulation building blocks, because

no simulation building block in a domain specific extension provides all the

services and functionalities of the system. Several services or functionalities

will be offered by building block elements inside the simulation building block.

In some cases the desired service or functionality can only be realized by the

model developer by integrating the building block with model constructs of the

generic simulation environment

 Building blocks encapsulate their internal structure and are self-contained,

yet they provide services to other building blocks and are interoperable. This

means that somehow they exchange information. Therefore, building blocks

have precisely defined interfaces. A building block contains several types of

precisely defined interfaces for different purposes. These purposes are

exchange of information and entities with other building blocks,

parameterization by the model developer and collection of statistics at the end

of the simulation run. A part of the statistics and external representation of the

simulation building block is also realized via an interface for visualization and

animation.

 The BETADE research group described the use of building blocks in the

following way: “A building block may be customized in order to match the

specific requirements of the environment in which it is ‘plugged’ or used.”

(Verbraeck et al, 2002, p23). This means, for the use of domain specific

extensions, that building blocks are instantiated into a simulation model and

within the simulation model the simulation building blocks will be

parameterized to represent a system element.

 The BETADE research group defined building block as widely applicable,

beyond the use of a single domain like software engineering, data

management or simulation. Barros et al (2004) summarize the difference

between component based software development and component based

simulation. They conclude that a simulation component or building block

behaves differently than a software component, due to level of abstraction and

modeled system representation. Nevertheless, they conclude that concepts

5.4 Simulation building blocks

126

like separation of concerns, interfacing and product line engineering can also

be applicable for the development of components for simulation.

5.4.2 The way that simulation building blocks achieve ‘self-contained’

Data locally stored

 The characteristic of a building block that it is self-contained relates to

information belonging to the simulation building block. The state of a

simulation building block is defined as the values of all its attributes

(sometimes called state variables). Examples of these attributes are the

current destination or the current speed of an AGV. The attributes of a

simulation building block will vary over time. The AGV will change destination

and speed regularly. In most generic simulation environments, the speed

attribute of a vehicle can be changed by any model construct. Freely changing

the attributes of other building blocks often results in unexplainable behavior

and difficulties with verifying and validating a simulation model. Therefore it is

important that a simulation building block only changes its own attributes. For

example, a control simulation building block should send a message to an

AGV if the control simulation building block has decided that the destination of

the AGV needs to change, instead of directly overwriting the destination in the

AGV building block.

Simulation Building Block Guideline 1: data belonging to a building block

should not be written by other building blocks directly, but only via defined

interfaces.

Use of building block elements

 The ’self-contained’ characteristic does not just deal with the need for

shielded attributes of the simulation building blocks to resemble their state, it

also applies to the functions or processes within building blocks. For example,

the area model construct in the airport case study (chapter 3) had at least the

following functions: resource limitation to entering passengers; prioritization of

passengers queuing for the area; determination of duration passengers

remain in area; collecting of statistics of passenger in area; providing a

relation to other areas for using shortest path algorithm. ‘At least’ is used

because the advanced areas contained mechanisms to e.g., represent

conveyor belts, to adjust the capacity of resources in time and the ability to

trigger changes of attributes for passengers.

Each combination of functionalities results in a new model construct to

represent an area according to the specific requirements of the system. An

example of an area with several functionalities is the check-in area, i.e. the

area where passengers hand over their luggage and receive a boarding pass.

The functions of this area are a priority mechanism for queuing passengers, a

calculation for the duration of the processes depending on the attributes of a

 5 Domain specific extensions realized by simulation building blocks

 127

passenger, a mechanism to change attributes of passengers at the counter,

and a mechanism to change operator availability depending on queue size or

allocated flights. At different airports the check-in areas were slightly different

and thus different model constructs were developed of the check-in areas

resulting in a large set of variants.

 The issue with the variants used to model constructs has also been

encountered in component development in software engineering. Software

component developers overcome the large sets of variants by applying the

concept of Product Line Engineering (Weis and Lai, 1999). In this concept the

functionalities of components are divided over smaller objects. One of these

objects contains the core of the component that will be the same for all variant

components. The other objects are adjusted to represent the different

variants. Figure 5.1 shows, on the left side, three software components,

before Product Line Engineering is applied. In these three components you

can observe three objects (triangle, circle and diamond). The circle object is

the core of the component, the triangle and diamond objects are variants for

respectively function X and function Y. Product Line Engineering enables us

to find the commonality in the component variants and combine them. Figure

5.1 shows, at the right side, the same three software components, but now the

engineering concept is applied and maintenance and usability is focused on

the core of the component and its smaller objects that provide the variations.

Figure 5.1: Product Line Engineering; find commonality in alternative

components

 The concept of Product Line Engineering can be applied for each

simulation building block, where one or more functionalities can be observed

as a functional variant. Product Line Engineering is worth applying if variants

can be implemented by smaller elements to represent a slightly different

behavior. The check-in counter model construct is a good example of such a

future simulation building block as it has specific functionalities for the queuing

mechanism, processing, resource availability and passenger state changes,

where other area building blocks have different implementations for these

same functionalities. We model these functional variants as specific objects,

5.4 Simulation building blocks

128

which will be a part of the simulation building blocks. We will refer to these

specific objects as building block elements.

 The simulation building block will consist of one of the instances of building

block elements for each functionality in this example. The building block

elements might vary for building blocks in functionality and some might not

even be available. In the example of Figure 5.2 the simulation building block

with the circle as core will be instantiated with one of the triangle and one of

the diamond building block elements. The model developer can thus make a

decision for one of the available building block elements for each functionality.

Figure 5.2: 3 model constructs versus 1 Simulation building block with a

circle core and 6 building block elements to represent system elements.

 The use of building block elements enlarges the number of system

elements that can be represented by the domain specific extension. Figure

5.2 shows that originally only 3 model constructs were available, and thus only

3 representations of the system elements were available. With 6 building

block elements the model developer can now represent 9 (3 triangle * 3

diamond) system elements.

Simulation Building Block Guideline 2: a simulation building block consists of a

core and building block elements to represent functions and services.

 The building block elements that are part of a simulation building block will

vary with each domain specific extension. However, we encountered in all

simulation studies we were involved in the need for resourcing behaviour, the

requirement for statistics and the need to handle errors in the execution.

Based on the experience we gained in simulation studies we envision that the

building block elements listed in Table 5.3 are likely to return in many

simulation building blocks. These common building block elements provide

extra richness to the concept of simulation building blocks compared to model

 5 Domain specific extensions realized by simulation building blocks

 129

constructs and are identified to help the design of the simulation building block

and its building block elements.

Table 5.3: Building block elements expected in simulation building
blocks

Building block
element

Description

Statistics Building block element to calculate statistics like resource
utilization, waiting time and process duration of functions
and services provided by the simulation building block.

Error handling Building block element to handle errors based on wrong or
inconsistent input, or based on a wrong or inconsistent
state.

Resource
definition

Definition of the availability and capacity of the resource
represented by the simulation building block.

Evaluate
capacity
availability

Building block element to check whether a resource of the
building block currently has enough free capacity.

Claim capacity Building block element to claim capacity of the resource of
the simulation building block. This building block element
also can include queueing and/or storing functionalities.

Carry out
process

Building block element to trigger the simulation building
block to perform an allocated function or service. The
process can be executed for a certain (random) duration or
until a certain state is reached.

Release
capacity

Building block element to release capacity that earlier has
been claimed by a process to ensure execution of service or
function.

Animation Building block element to animate the state of the simulation
building block, possibly including one or more of the
statistics of the simulation building block.

 The building block elements that are described in Table 5.3 can use a

variety of attributes of the simulation building blocks to perform each function

or service. The attributes used, and the information to be exchanged in these

building block elements, are available within the simulation building block. A

developer of simulation building blocks might decide to introduce a reduction

of data exchange of building block elements as described in Simulation

Building Block Guideline 1, i.e. data exchange requires the use of defined

interfaces. However, this will strongly reduce the understandability of the inner

logic of the building block element and is therefore seen as an unnecessary

overhead.

Simulation Building Block Guideline 3: data belonging to a building block

element can be accessed by other building blocks elements of that building

block without using the interfaces of the simulation building block.

5.4 Simulation building blocks

130

5.4.3 The way that simulation building blocks achieve ‘interoperable’

Set of simulation building blocks

 The IEEE (1990) defines interoperability as “the ability of two or more

systems or components to exchange information and to use the information

that has been exchanged.” The components that the IEEE talks about are

software components instantiated in a software application, but the definition

also applies if we replace software component by simulation building block or

building block element. The ability of simulation building blocks to exchange

information only applies for simulation building blocks that belong together, i.e.

simulation building block members of a domain specific extension. The set of

simulation building blocks in a domain specific extension can be structured

according to different views.

 One view is the identification of families of simulation building block. We

define a family as a set of simulation building blocks that all represent a type

of system element. The areas in the airport case study are examples of

simulation building blocks that can be structured as a family. The use of

families is to support the simulation model developer in understanding the

replaceability of a simulation building block by another simulation building

block from the same family.

 Another view on the structure of simulation building blocks is the difference

between infrastructure or physical building blocks and control or management

building blocks. The infrastructure and physical building blocks represent the

system elements that deal with the processing and handling of entities, while

the control and management building blocks deal with the allocation of entities

to infrastructure or physical building blocks or triggers when physical building

blocks should start or stop processes.

 The third view of the structure is the view of fixed control or control using

process steps. Within a system a distinction can be made between control or

management systems that can be modeled as process steps in a fixed order,

or by a much more flexible solution where the process can be defined

stepwise. For example, the allocation of AGVs to a dock was, in the case

study in chapter 3, a fixed sequence, while the actual claiming of tracks to

drive on was defined in a process sequence using scripts.

Family of building blocks with building block elements

 The areas in the domain specific extension for airports are a clear example

of a family of simulation building blocks. The simulation model was configured

by instantiation of various members of the area family, for example the

walking area, the conveyor, the shop, the boarding area and the check-in

counter. Possibly several other families can also form part of the simulation

environment. For example, a second family in the domain specific extension

for airports could be the building blocks implementing mechanisms of

allocating airlines to check-in counters, a set of building blocks that was

developed for the simulation study at JFK Terminal 4.

 5 Domain specific extensions realized by simulation building blocks

 131

 The simulation building blocks that belong to a family will have mostly the

same types of building block elements. Figure 5.3 shows 3 simulation building

blocks based on the simulation building block introduced in Figure 5.2. Exactly

as shown in Figure 5.2, the building blocks of that family share one or more

types of building block elements and further have variants to a basic simple

version of building block elements. Figure 5.3 shows a part of an example

domain specific extension consisting of one family of simulation building

blocks and building block elements based on the Product Line Engineering

example of Figure 5.2. Families are to structure the available simulation

building blocks to support the model developer. Families can be organized in

any way that the model developer and the future users feel comfortable with.

Figure 5.3: Family of simulation building block extended of figure 5.2

Simulation Building Block Guideline 4: system elements that appear in

different variants and processes in a system can be organized in families of

building blocks and building block elements.

Building blocks for infrastructure and building blocks for control

 Two types of experiments are often performed in simulation studies to

improve system performance. The first option is to extend the availability of

resources, the second option is to improve the way that resources are used:

by resources we mean things such as machines, vehicles or people. We refer

to these items as infrastructure or physical elements of the systems. The

infrastructure or physical elements carry out processes for other elements in

the system. For example, the AGVs perform a process for a Load or an Area

performs a process for a Passenger.

 The processes, services and functions performed by physical elements or

infrastructure are determined by control or management functions in the

5.4 Simulation building blocks

132

system. For example, a management system allocates which Load an AGV

will transport. Simultaneously a control system makes sure that the AGV can

safely move over a Track. The control system triggers when the AGV can start

driving, and the AGV notifies the control mechanism when it reaches the end

of the provided Track.

 Figure 5.4 shows the structure of control and infrastructure building blocks

in generic terms. The infrastructure simulation building blocks will be triggered

and provide feedback to the control simulation building block. The introduction

of these two types of simulation building blocks, control and infrastructure,

support the model developer in performing simulation experiments to vary the

availability of infrastructure and to adjust the control of the infrastructure, see

also Saanen (2004) and Versteegt (2004) who further describe the use of

control and infrastructure dedicated building blocks.

Infrastructure

simulation

building block

Control

simulation

building block

triggers

activity

notifies

status change

Figure 5.4: Simulation building blocks

 that separate the control and infrastructure

Simulation Building Block Guideline 5: building blocks are of different types, it

is common to have separate building blocks for infrastructure and for control.

Process description for control simulation building blocks

 The way the infrastructure is controlled and managed is in each system

different. Therefore simulation building blocks need to have a way of flexible

control by other simulation building blocks. A part of the required flexibility in

control will be achieved via building block elements within control building

blocks. The scripts in the AGV case study provided an alternative way for

controlling the infrastructure. The control consisted of a sequence of

processes instead of control that consisted of one model construct. This

approach resulted in more flexibility for the control of AGVs, and the ability to

model control matching to every possible layout of tracks.

 In the AGV case study flexibility was achieved by a scripting language that

was hard to maintain and limited in configuration. The different script

statements can be seen as individual simulation building blocks consisting of

 5 Domain specific extensions realized by simulation building blocks

 133

the building block elements like interaction, statistics, error handling and one

or more building block elements for the actual process and control to the

infrastructure. Table 5.4 shows a fragment of an actual script and Figure 5.5

shows how this script could be instantiated in a simulation model using

different control simulation building blocks.

Script LR Comments

Insist SX

Exec AX

Exec XB

Free SX

Claim ticket for crossing

Drive from left to center

Drive from center to right

Free ticket SX

Table 5.4: Script of AGVs in table

Insist SX Exec AX Exec XB Free SX

Figure 5.5: Script of AGVs using

simulation building blocks

Simulation Building Block Guideline 6: complex control mechanisms should be

represented using control building blocks linked together to represent a flow.

Pointers between simulation building blocks

 Interoperable means that the building blocks work together and exchange

information. The building blocks that are instantiated in the simulation model

can only interact if they are aware of each other’s existence. The simulation

environments offer several technical ways to achieve such awareness, i.e. to

know that other building blocks exist in the simulation model and what their

names or identifiers are. The easiest way is to point to the other building

blocks via their name. This process was applied to the simulation models

within the AGV case study and resulted in several errors so that model

constructs were not available or did not receive the correct name. We learned

that the awareness of other model constructs should be flexible and not fixed

in the design of the model construct.

 We introduced flexibility in defining the pointer to other building blocks in

the airport case studies. For example, in the model construct to allocate flights

to a check-in area we listed the check-in areas using a pointer. These

parameters were verified and error messages were generated if the pointer

was invalid. In this way awareness of other model constructs was easier to

obtain, check and update.

 Awareness of the simulation building blocks can be achieved via pointers,

but it is very time consuming to set the pointers of each building block to point

to other building blocks it might interact with. An alternative approach is to use

one instance of a specific building block that contains pointers to all building

blocks in the model. This mechanism can be compared to a naming function

in software engineering.

Simulation Building Block Guideline 7: building blocks should be aware of

each other’s existence within a range of applicability.

5.4 Simulation building blocks

134

5.4.4 The way that simulation building blocks achieve ‘reusable unit’

 The reuse of a simulation building block will be improved by the use of

building block elements. A simulation building block that exactly fits system A

does not need to be a good match for system B, even though the domain is

the same. The reuse of simulation building blocks is less of an issue, because

the building block that was a good match in system A can be updated to

match system B via adjustment, replacement or alternative parameterization

of one of the building block elements in the simulation building block, see also

Simulation Building Block Guideline 2.

5.4.5 The way that simulation building blocks achieve ‘replaceable unit’

Family of building blocks

Replacing a simulation building block in a simulation model can be easily

achieved for building blocks that are part of the same set. A check-in counter

in the simulation study of the airports could easily be replaced by a check-in

counter with another function or the waiting area could be replaced by a

shopping area to entertain passengers during waiting.

 Replacing of elements in the simulation model can be achieved by using

simulation building blocks from the same family or by replacing building block

elements in the instantiated simulation building blocks. This works exactly as

defined in Simulation Building Block Guideline 4.

Extend set with new building block elements

 The use of building block elements also improves our ability to extend the

set of building blocks. In cases where a model developer cannot find a

matching building block to represent alternative behavior in the system, then a

new building block element can resolve the problem. The domain specific

extension will include the new building block element and the model developer

can then develop simulation models with new simulation building blocks that

were not considered in the original design of the domain specific extension.

Simulation Building Block Guideline 8: extension of a domain specific

extension can be achieved by introducing new building block elements for

existing simulation building blocks.

Standardized interfaces

 Replacing building blocks in a simulation model is not a direct result of

using families of building blocks, it is due to the building blocks having the

same interface within the family. By interface we mean the way building

blocks interact with other building blocks. If a control building block expects a

check-in area to send triggers and receive notifications in a certain way, then

it is important that a building block that can replace the original check-in area

handles the same type of interaction via the same interfaces. This interface is

the way that building blocks receive triggers to do things. Standardized

 5 Domain specific extensions realized by simulation building blocks

 135

interfaces to enable replaceablity applies for building block elements in exactly

the same manner as for simulation building blocks, because building block

elements should also be replaced without any complexity for the model

developer.

Simulation Building Block Guideline 9: simulation building blocks and building

block elements of the same family follow the same interface requirements.

5.4.6 The way that simulation building blocks achieve ‘encapsulating its

internal structure’

Hide inner working

The internal structure of simulation building blocks and its underlying building

block elements are hidden behind a user interface to the simulation building

block in which the model developer enters the values for parameters. This

user interface completely hides the inner code and prevents the model

developer seeing what is inside or even tampering with the logic of the

simulation building block or building block elements inside.

Simulation Building Block Guideline 10: simulation building blocks hide their

inner working.

Limitations depending on type of model developer

We observed during the laboratory experiments that experts want to

understand the inner workings of the set of model constructs and see what is

hidden behind the interface. We also observed that the developers of domain

specific extension made improvements in the model constructs instantiated in

the simulation in the case study of the AGVs. We conclude from these two

observations that the user interface is a good way to hide the inner working,

but that, depending on the type of model developer, a way to observe the

inner working of the building blocks might be desired. Especially in the

development of the simulation building blocks and building block elements

advanced developers will want to test and verify a block by evaluating the

detailed logic of the simulation building block or the building block element.

Simulation Building Block Guideline 11: advanced model developers have to

be able to unhide the inner logic and see how the processes and attributes

are implemented.

5.4 Simulation building blocks

136

5.4.7 The way that simulation building blocks achieve ‘providing useful

services or functionality’

Simulation building block elements

The services and functionalities that simulation building blocks provide are

represented by building block elements. A simulation building block can have

several building block elements for the different services or functionalities it

provides. This follows from Simulation Building Block Guideline 2.

Integrate with model constructs of generic simulation environment

The service or functionality that should be represented by a simulation

building block can be exceptional compared to the common representation of

the system element in the domain. In systems were a system element needs

to be represented that is exceptional for the type of systems in a domain, then

it might not be worth extending the domain specific extension with new

building block elements. An alternative approach to Simulation Building Block

Guideline 8 is to instantiate the desired functionality of the building block via

custom model constructs of the generic simulation environment.

The breakdown process of the computer factory consists of three building block

elements: “Generate a breakdown”, “Call an operator”, “Solve the breakdown”.

Sufficient building block elements have been developed for the sub-process of “Call

an operator” and “Solve the breakdown”, but in one factory a machine is in use that

generates breakdowns every 24 hours but only if more than 200 boxes have been

closed in the past hour and only if preventive maintenance has taken place more than

3 hours ago. Figure 5.6 shows the simulation building block “Breakdown process”

instantiated using 4 generic model constructs to represent the very specific building

block element.

Figure 5.6: “Breakdown process” using several generic model constructs for
the building block element “Generate breakdown”

 Applying building block elements for functionalities reduces the chance to

encounter the risk of developing building blocks to represent exceptional

system elements, but still there is a risk that the developers of the simulation

building blocks and building block elements will spend their time on a building

block representing an exceptional system element that is not required in other

simulation models. These exceptional system elements can much better be

represented by one or more generic model constructs instead of a dedicated

domain specific simulation building block. We suggest, therefore, that a model

developer should have the possibility to use generic model constructs to

represent a certain system element or part of a system element. The block

 5 Domain specific extensions realized by simulation building blocks

 137

below and Figure 5.6 show an example of a simulation building block that

requires one of the building block elements to be represented by generic

model constructs. The discussion above results in Simulation Building Block

Guideline 12.

Simulation Building Block Guideline 12: system elements should be

represented by building block elements that can be extended with custom

instantiations of model constructs of a generic simulation environment.

An alternative approach is to enable simulation building blocks to interact with

model constructs of the generic simulation environment. This approach will be

mainly applied to the control building blocks represented in a process

description according to Simulation Building Block Guideline 6. Figure 5.7

provides an example of simulation building blocks from a domain specific

extension (rectangle with thin border) with model constructs of the generic

simulation environment (shapes with thick 3D-border). The ability to interact

with the generic model constructs of the simulation environment gives the

result that the domain specific extension really is an extension to the

simulation environment and not a partial replacement.

Figure 5.7: Simulation building blocks and generic model constructs

integrated

The difference with Simulation Building Block Guideline 12 is that in Figure 5.7

the building blocks and generic model constructs jointly are composed into the

model and that without the combination the simulation model will not work. In

Simulation Building Block Guideline 12 the assumption is that the simulation

building block can work without the generic model constructs, but that the

generic model constructs represent a specific or exceptional variant that is not

worth the development of a building block element as part of the domain

specific extension.

Simulation Building Block Guideline 13: a building block can connect to model

constructs of a generic simulation environment.

5.4 Simulation building blocks

138

5.4.8 The way that simulation building blocks achieve ‘precisely defined

interfaces’

Different interfaces of simulation building blocks

A simulation building block contains interfaces that serve different aims,

during model development, during the simulation run and during the analysis

of the simulation experiments. The interface with the simulation model

developer, mainly during model development, is used to support

understanding of the possible use of the simulation building block and to

enable the model developer to easily parameterize the simulation building

block. The interfaces used during the simulation run are interfaces to other

simulation building blocks, used to exchange information and to trigger

functions and processes in the other building blocks in the simulation model.

Finally, the interfaces for analysis are used by the analyst during the

execution of the simulation run and after the simulation run has been

completed. The interface is a visualization of a selected subset of the state of

the simulation building block during the simulation run. The interface contains

reporting of statistics after the simulation run is completed, gathered from the

state of the simulation building block during the run.

 We first describe the interface used by the model developer for

parameterization, which is usually built using the features of the generic

simulation environments to offer dialogs and hide the inner working of the

building block, see also Simulation Building Block Guideline 10 and 11.

Secondly, we describe how simulation building blocks should exchange

information. This is mainly an approach to be followed by the developer of the

domain specific extension, because most generic simulation environments do

not force this on the developers. This also follows Simulation Building Block

Guideline 1, i.e. that exchange between building blocks should go via their

interfaces, and Simulation Building Block Guideline 9, i.e. that building blocks

of the same family follow the same defined interfaces. Thirdly, we describe

how the information on performance indicators can be visualized or reported

to the model user.

User interface parameter settings

 In chapter 2 we showed the differences between interfaces of generic

model constructs (Figure 2.5) and the interface of a domain specific model

construct (Figure 2.6). Simulation building blocks require a similar

parameterization to represent a system element of a specific system, see

Figure 5.8.

 The user interface has to contain fields in which the model developer can

enter e.g., the parameters or statistical distributions for processes, the

availability of resources, or the initial state of a simulation building block. The

values that the model developer enters in the user interface of the simulation

building block will be used during the simulation run and for the initialization of

the simulation building block. The model developer does not need to make

 5 Domain specific extensions realized by simulation building blocks

 139

adjustments in one or more places of the underlying code thanks to the user

interface, but can rely on the simulation building block to use the values

entered in this user interface.

Figure 5.8: User interface for a simulation building block

Simulation Building Block Guideline 14: the model developer has to adjust the

parameters of a simulation building block via a user interface.

 The user interface has an additional advantage that the developers of the

simulation building block should use. In a generic model construct the user

interfaces are kept generic. For example, a process model construct uses the

term “Process duration” while the process model construct refers to the

process used to repair a breakdown. Figure 5.8 shows that the simulation

building block can use the text “Process duration repair breakdown” to clarify

what process parameter is entered. Terminology in the user interface clarifies

the use and capabilities of the simulation building block within a domain and

supports the model developer and helps him/her to make correct choices for

configuring the building blocks in a simulation model.

Simulation Building Block Guideline 15: use of domain terminology in the user

interface provides insight in the suitability of a building block for a certain

purpose and the meaning of its parameters.

 Model developers will use the user interface of the simulation building

block to enter their data. When they are feeding their data into the simulation

building block, a check can be performed automatically to verify the

correctness of the parameters. The simulation building block can provide

warnings or error messages to the model developer if a parameter of the

5.4 Simulation building blocks

140

simulation building block is not within a valid range. For example, the interval

breakdown should always have a positive value in the interface in Figure 5.8.

Simulation Building Block Guideline 16: parameters in a user interface of a

simulation building block have to be checked for validity of the values.

 The parameters that a model developer uses to configure an instance of a

simulation building block in a simulation model will differ between projects. In

some projects with a domain specific extension all parameters will be custom

defined, in another simulation study it is sufficient to work with average values

from the domain. For example, the walking speed of passengers in an airport

can be varied in each simulation study, but in some studies it could be

sufficient to take an average value such as 4.5 km/hr. If the developer of the

simulation building block has already put in a default value (for example 4.5

km/hr.) then the development of a simulation model is easier for a model

developer.

Simulation Building Block Guideline 17: parameters in a user interface of a

simulation building block should have default values whenever possible.

 Documentation is an important instrument which model developers must

study to understand how a simulation building block should be used.

However, model developers will usually not spend hours reading a user

manual. They need to have easy access to relevant support and explanations

that link to the simulation building block on which they are working. The

simulation building block in Figure 5.8 offers this easy access to support and

documentation via a help button in the user interface. Pressing the help button

should return information that explains, for the model developer, how to use

the simulation building block. This information could be, for example, a page

number from the user manual, a window, or a web page.

Simulation Building Block Guideline 18: The user interface of a simulation

building block should provide support for the model developer.

 The building block elements that represent functions and services of the

simulation building block are hidden for the model developer within the

simulation building block. Different technical solutions can be used to enable

the model developer to change building block elements depending on the

generic simulation environment used, but whatever technical option the

generic simulation environment offers, the model developer will have to make

these changes via the user interface. In the user interface of the simulation

building block the user can select the appropriate building block elements and

set their parameters correctly. The user interface is thus not only used for

 5 Domain specific extensions realized by simulation building blocks

 141

parameters of the simulation building block, but also for changing parameters

of the underlying building block elements.

Simulation Building Block Guideline 19: The user interface of a simulation

building block can be used by model developers to select building block

elements and set their parameters.

Interaction using designed interfaces

 Handling interaction between building blocks is one of the main features

required to successfully replace simulation building blocks in a simulation

model. A building block in a simulation model cannot be replaced by another

building block if the two building blocks use different ways of interacting with

the rest of the building blocks in the simulation model. Figure 5.9 is a

schematic representation of the interaction issue as it appeared in the AGV

case study. On the left hand side the interaction between different model

constructs of the Terminal Manager (star at bottom) is shown. In the right

picture an alternative Terminal Manager model construct is used, which needs

another type of interaction by one of the surrounding building blocks. The

model construct can thus not be replaced without changing the interactions

with other model constructs.

Original model construct Alternative model construct

X

Figure 5.9: Unstructured interaction model constructs

 In software development (Meyer, 1997; Szyperski, 2001; Atkinson et al,

2001) this issue with interaction has been tackled in two steps. The major step

is to create awareness during the development of the software applications.

Software developers force themselves to make sure that their components

can follow a structure that has been agreed with all the developers. This way

of developing software components is known as Design By Contract or,

Programming By Contract (Jézéquel and Meyer, 1997; Atkinson et al, 2001).

The second step is the use of development environments and languages that

force the use of well-defined interfaces.

5.4 Simulation building blocks

142

Figure 5.10: Structured interface for simulation building block

 The effect of these interfaces is shown in Figure 5.10. Other simulation

building blocks no longer interact with something inside the model construct,

but send their trigger, request, entity, or event to the interface of the simulation

building block. The simulation building block will redistribute the received

object internally to the appropriate building block element. The original

building block on the left hand side in Figure 5.10 can be replaced by an

alternative building block (right hand side of Figure 5.10) without any changes

to the other simulation building blocks in the simulation model.

 In Figure 5.10 only one interface remains and all interaction is managed

via the small bar above the star or triangle. The important thing is that all the

building blocks in the family follow the same interface, it does not mean that

this is the only point of entry for the building block. The interface can easily be

distributed over two or three different locations, but the more points of entry

are available, the larger the chance that developers of the simulation building

block will ignore the defined interface and try to connect directly, therefore we

suggest to work with one point of entry.

Simulation Building Block Guideline 20: a simulation building block has a

defined interface that receives triggers, requests, entities, or events from other

simulation building blocks in the simulation model and redistributes these

internally.

 The interfaces have an additional function besides redistributing. They can

also be used to check the state of a simulation building block before carrying

out the logic associated with that trigger. For example, an AGV cannot receive

the trigger “pick up load” if it is currently in maintenance. Another check that

the interface can perform is to capture triggers that are not supposed to be

received at all by a simulation building block. For example, the model

developer may have made some errors with the pointers result that a repair

man has to pick up a load. The interface of the repair man is not prepared for

the trigger “pick up load” and thus the event is cancelled and a runtime error

message is provided to the model developer.

Simulation Building Block Guideline 21: the interface of a simulation building

block contains evaluations of the state of the trigger and the building block to

determine whether the building block can handle the trigger.

 5 Domain specific extensions realized by simulation building blocks

 143

User interface visualization

The last type of interfacing of a simulation building block is the interfacing it

provides to the analyst to allow them to evaluate the behavior of the model.

This interface is used during the simulation run or afterwards to visualize the

states and key performance indicators.

 Visualization during the simulation run can be provided by animation

elements that are part of the simulation building block. Figure 5.11 shows

animation using a set of pictures. Depending on the state of the simulation

building block a different picture is shown. Other options are counters and

texts that show, for example, the number of entities sealed at the building

block or the number of breakdowns that occur. The important thing is that all

these animation elements are provided to the model developer at the moment

that the simulation building block is instantiated. Once again, different

simulation environments will implement this in different ways, but independent

of the simulation environment, the simulation building block should already

contain the visualization definitions.

Figure 5.11: Four status visualizations of the seal machine:
available, sealing a box, break down, repairing a breakdown

Simulation Building Block Guideline 22: a simulation building block contains

pictures, texts, numbers and other elements to support visualization of the

state, and the key performance indicators during the simulation run.

5.5 Additional tools for domain specific extensions

 The use of simulation building blocks in simulation projects standardizes

the way the simulation models represents a system in a certain domain. The

simulation building blocks will also collect statistics in a standardized way. The

standardization of the simulation building blocks in a domain specific

extension enables the automation of the steps a model developer has to

perform.

 The complete process of performing a simulation study is shown in Figure

1.8. The following steps are part of this process and can be supported by

automation and additional support tools on top of the set of simulation building

blocks and the generic simulation environment:

5.5 Additional tools for domain specific extensions

144

• Model development by instantiating model constructs

• Set parameters of the model constructs according to system data

• Verify logic and data entry of simulation model before running

• Run simulation experiment

• Analyze output of the simulation model

5.5.1 Model development by instantiating model constructs

 The simulation building blocks can be automatically instantiated by an

application. The possible automatic development from, e.g., a Visio drawing

by a tool that instantiates the building blocks at the correct location into the

simulation model is shown in Figure 5.12.

Figure 5.12: Automatic model instantiation

5.5.2 Set parameters of the model constructs according to system data

 Instantiating simulation building blocks is a one-time activity in model

development. The main effort is the parameterization of the building blocks to

represent slightly different systems. Simulation Building Block Guideline 14

describes how parameters of a simulation building block can be set via a

customized user interface. Standardization of the interface for multiple

building blocks in a simulation model enables us to define a common user

interface covering the complete simulation model.

 This simulation model interface can be provided in different ways, for

example a spreadsheet or a database application. An example spreadsheet

interface that enables the model developer to set parameters of multiple

simulation building blocks in the simulation model is shown in Figure 5.13.

 5 Domain specific extensions realized by simulation building blocks

 145

Figure 5.13: Example parameter setting instrument: spreadsheet enables

adjusting all parameters of the simulation building blocks

5.5.3 Verify logic, data entry and syntaxes of simulation model before

running

 The generic simulation environments contain instruments to evaluate

whether the syntax of a simulation model is correct. These instruments

provide the model developer with feedback if parts of the model are not

configured correctly, but they only check the basic features of a model like the

number of parenthesis or whether all referred names are defined. The

laboratory experiment clearly showed us that these checks are not sufficient.

The generic simulation environment will provide feedback to model

developers if something is wrong in the simulation model, but this occurs in a

context that is aimed at the advanced model developer using the generic

model constructs. A model developer with limited knowledge of the generic

simulation environment often find it difficult to interpret generic error

messages.

 Model developers that use simulation building blocks need feedback that

takes into account the building blocks level of abstraction. Figure 5.14 shows

an example of feedback that could be provided if a process building block

refers to an operator building block that is not instantiated in the simulation

model. This instrument supports the model developer in parameterizing

simulation building blocks (requirement 10) in the way that it is intended

(requirement 2 and 6).

5.5 Additional tools for domain specific extensions

146

Figure 5.14: Example of result of automatic model check

Figure 5.14 is a customized message generated by the domain specific

extension before the simulation run. In a generic simulation environment a

model developer has infinite options as to how to model and represent a

system. If a model developer starts using domain specific building blocks,

then he or she no longer has infinite options. The structure of the simulation

building blocks and the design decisions made by the developer of the set of

building blocks limit the number of options. This limitation can be used to

verify whether a model developer has followed the rules for the set of

simulation building blocks.

5.5.4 Analyze output of the simulation model

 Simulation models that are composed using a domain specific extension

are easier to adjust. The case studies showed that ease of adjustment leads

to a larger numbers of experiments being performed in the simulation study.

Each of these experiments needs to be analyzed to determine the problem

solution direction or the feasibility of a solution. Problem owners are not

interested in viewing the statistics of one model construct or one type of

statistics. They would like to see an appropriate combination of performance

indicators, all generated and fed by different model constructs instantiated in

the simulation model. In a support tool the total outcome representation of the

simulation building blocks can be combined and thus better support the

problem owner. Developing such an interface for an individual simulation

model is a lot of work, but developing a generic solution based on the

simulation building blocks of the domain specific simulation extension is an

investment that can be spread over different simulation projects and thus be

more cost effective. Further, a specific building block element can easily be

used to gather and, in a structured way, provide the statistics to an interface.

An example is shown in Figure 5.15, where an Excel sheet is fed with the

output data of a domain specific extension.

Figure 5.15: Example Excel sheet with output data of simulation run

 5 Domain specific extensions realized by simulation building blocks

 147

5.6 Support and documentation for domain specific extensions

 Developing a simulation model of a system is a complex activity. We do

not expect that we ever will be able to develop a domain specific extension

that will make the work so easy that model developers can perform this work

without training or support. In the laboratory experiments we noticed that the

training provided to the novices and the experts was sufficient to get them

started, but not sufficient to let them solve all problems they encountered. We

also noticed in the laboratory experiments that the experts wanted to find out

more about the technical background of the model, while the novices did not

have the background knowledge to do so. We concluded that the two types of

model developers require different types of support to work comfortably with a

domain specific extension.

 The laboratory experiments showed that documentation is necessary:

however, model developers will only read the manual if they get stuck or have

questions about how to deal with certain system elements. When this

happens they will not start reading the manual at page 1 and carefully read

every page, instead they scan the document to find the section about their

building block. There the model developer expects to find a clear explanation

of the issue at hand, assumptions for the building block, and a small but clear

example.

 The documentation of the domain specific extension and the model

constructs provided for the laboratory experiment focused mainly on providing

an explanation of the input parameters. The difficulty that model developers

encountered when attempting to solve their problems showed that this

explanation was not sufficient. Model developers and potential users of the

domain specific simulation should be provided with information that explains

when to use the domain specific extension (applicability) and why the

behavior of the simulation building blocks in a simulation model can be trusted

(trustworthiness). Using the information for applicability and trustworthiness

the model developers can decide whether a domain specific extension is

suited for their purpose and whether they have faith that the domain specific

extension will result in a valid simulation model.

 The next step is to start using the domain specific extension. Model

developers require support and documentation for this process, mainly

covering individual simulation building blocks and building block elements in

the domain specific extension to illustrate usability.

5.6.1 Support and documentation to illustrate applicability

A model developer who is considering using a domain specific extension and

its simulation building blocks to represent a system needs to be able to verify

whether the domain specific extension is suited for the type of systems that

he/she wants to simulate. Developers of a domain specific extension do not

aim to produce a product that can be used by every model developer for any

5.6 Support and documentation for domain specific extensions

148

kind of systems. The developers model a domain specific extension and its

simulation building block for a certain scope of systems. A good description of

the scope is a first step to providing good documentation, but more support

and documentation needs to be provided for the use by (future) model

developers. This information should at least contain the following:

• Description of the scope of models that can be developed with the

simulation building blocks of the domain specific extension.

• Overview of possible simulation experiments that are likely to be

performed in the domain and that are supported by parameterization of

the simulation building blocks or by instantiating new or different

building block elements.

• Description of the level of detail of models that can be developed with

the simulation building blocks.

• Outline of the assumptions that were made when building the domain

specific extension, by defining the structure of the simulation building

blocks.

• Overview of performance indicators that are generated by a simulation

building block.

• Descriptions of small simulation models that show specific uses of the

simulation building blocks.

• Example models developed using the simulation building blocks.

• Overview of expected influence of input parameters on the

performance indicators, which explains the potential effect of the input

parameters on the building block’s performance.

5.6.2 Support and documentation to illustrate trustworthiness

Trust in a domain specific extension is hard to achieve and good

documentation will only go part of the way to achieve it. Trust in a domain

specific extension will be achieved by developers having faith in an extension

and word of mouth advertisement by other users. Nevertheless, the

trustworthiness of a domain specific extension can be influenced by providing

documents and models that reflect the following items:

• Outcomes of experiments with small example simulation models.

• Descriptions of verification and validation steps to evaluate the

behavior of the simulation building blocks and building block elements.

• List of model developers or problem owners that have used the domain

specific extension.

• Success stories that explain why the model developers or problem

owners used the domain specific extension.

• Background of the developers and designers of the domain specific

extension.

 5 Domain specific extensions realized by simulation building blocks

 149

5.6.3 Support and documentation to illustrate usability

The final type of support required is to help model developers who selected a

domain specific extension to start using the simulation building blocks and the

building block elements in the correct way. Below we list a number of points

that should be addressed by the developers of a domain specific extension to

help model developers to work with their domain specific extension:

• Process descriptions should show the model developer how to

develop a simulation model with the simulation building blocks of the

domain specific extension.

• Description of when to use which of the available building blocks

elements for system elements.

• Description of the simulation building blocks which includes a

description of the possible use, parameterization and performance

indicators.

• Overview of warnings and errors that can be generated by the domain

specific extension during the model development or experimentation

with the simulation model; each error should contain suggestions how

to solve the problem causing the error.

• Set of verification experiments with small simulation models to observe

different system behavior using the same simulation building blocks.

 The documentation provided with a simulation building block should enable

a model developer to know when and how to use this simulation building block

in a simulation model. The available documentation of a simulation building

block is often used as reference material once a model developer cannot find

out what to do with a building block or which building block to use to represent

a system. This documentation of individual simulation building blocks should

therefore be well structured, easy to understand and answer potential

questions of the model developer adequately.

 Also in other problem domains people are struggling to develop sufficient

user documentation for building blocks. In the domain of software engineering

several initiatives exist to define the minimum requirements for documentation

of a software component. The aim of these attempts is to achieve

standardization in documentation, to promote exchangeability, clarity and

transferability of software components between different software developers

(Verbraeck, 2002).

 We analyzed three proposals for defining software components to judge

their ability to also describe simulation model components. The analyzed

proposals were the Web Service Description Language (WSDL)

(www.daml.org/services/), a specification standard for business components

developed by a working group of the German “Gesellschaft für Informatik”

5.6 Support and documentation for domain specific extensions

150

(www.fachkomponenten.de) and an approach developed by Heisel and

Souquières (2004).

 The Web Service Description Language (WSDL) is designed

(www.w3.org/TR/wsdl) to facilitate the use of services over the web. The goal

of the WSDL is to provide better, unambiguous meanings of services and to

support re-use of services or components by others, where the context of this

re-use is not known in advance. The description of a web-service comprises

three parts:

• the service profile for advertising and discovering services; it answers the

question “What does the service require of the user(s), or other agents, and

what does it provide for them?”

• the process model, which gives a detailed description of a service's

operation, and answers the question “How does it work?”

• the grounding, which provides details of how to interoperate with a service,

via messages, and answers the question “How is it used?”

 In 1999, the working group “Component Oriented Business Application

Systems” within the German “Gesellschaft für Informatik” started to develop a

standard specification for business components (www.fachkomponenten.de).

The result of this working group is a description of a business component,

structured using seven levels. The purpose of business components is to

support business processes. The marketing level describes business-

organizational features of the business component and technical initial

conditions. The task level contains the purpose of the business component

and the tasks that it automates or supports. The functional terms of the

business domain are explained on the terminology level. The quality level

describes non-functional properties and quality features, and their

corresponding measurement units and methods. The relationships between

the services of the components and the cooperation with other components

are specified on the coordination level. The behavioral level contains

invariants and pre- and post-conditions. Finally, the interface level describes

the different views of business components, services, parameters, data types

and failure reports, as well as service signatures and assignment to business

tasks.

 Heisel and Souquières (2004) have developed a specification structure for

software components that covers the functional aspects of such components.

This structure is aimed at supporting those making the decision whether two

components can be interfaced or not. The description of a software

component consists of the specification of its export (supplied) interfaces, its

import (required) interfaces, a usage protocol relating the export interfaces,

and a relation between export and import interfaces. That relation states

which export service relies on which import services.

 5 Domain specific extensions realized by simulation building blocks

 151

 None of the three descriptors fits completely with the need for simulation

building blocks, but a combination of the documented work of all three

workgroups has resulted in the list of items that can be used to describe of a

simulation building block:

Name: a clear and representative name that enables model developers to

grasp its intended purpose.

Objective: description why the building block should be part of the model. This

could be to provide an overview of experiments that can be performed with

models that are composed using the simulation building block.

Purpose: a natural language description of the building block should include a

rough sketch of its functional behavior and thus of the function that the

simulation model building block can fulfill in a simulation model.

Underlying assumptions: the underlying assumptions identify when a building

block can be used and when it cannot be used. For example, if a traffic

building block assumes that no blocking of crossings will occur, the simulation

building block should not be used for situations where blocking plays a central

role. The assumptions are often closely related to the overall objective of the

building block.

Validation: validation and verification are one of the key issues when building

and using a simulation model (Balci, 1997). Model validation makes sense

only in the context of a specific purpose of the model and of the question to be

answered using the model. Hence, using a simulation building block that is

valid in a certain context does not guarantee that this building block is valid in

another context. Therefore the validation item will have to show an overview

of testing models and parameters that have been used to validate the

behavior and representation of the simulation model component. Furthermore,

case studies and problem descriptions that show the successful and

unsuccessful use of the building block may be valuable.

Input and output ports including associated signatures: this is the technical

interface description as identified in all software structures. It provides an

overview of the triggers or messages the simulation building block can receive

and will send to other building blocks. The associated signatures are an

overview of the function or process started when something enters through an

input port.

Parameterization: Which values of the component can/must be parameterized

by the model developer? Parameterization information should also include the

allowed ranges of values for parameterized attributes. Most often the model

developer can parameterize the behavior and attributes of a simulation model

component through a user interface of the simulation environment.

Expected effects of changes to parameters: the influence of parameterizable

values should be clear to the simulation model developer.

Visualization / performance indicators: output generated by the simulation

building block that provides insight into the behavior and state of the

5.6 Support and documentation for domain specific extensions

152

component. Visualization mainly refers to insight during the simulation run.

Examples of visualization are a console with messages or animations.

Description of the functionality: model developers will not use a simulation

building block unless the behavior of the building block is absolutely clear to

them. Model developers run the risk of inconsistencies in their model, different

use of resources, different levels of abstraction, or a process flow that does

not represent their system. For software components, pre and post conditions

and usage protocols suffice, but in simulation model components, the

functional behavior should be described in detail, preferably using a

standardized and formalized description, like, for example, the DEVS-

framework (Zeigler et al., 2000).

Illustrations of how it works: to support a faster decision whether or not to use

a simulation building block, and an easier integration of a simulation building

block into a composed model, the description of the functionality should be

complemented by example models using the component, training material, or

animation movies.

 Examples provided to help the modeler should be small simulation models,

preferably of a fictive and simplified system. The simulation model should be

composed of a limited number of simulation building blocks, so it is easy to

see the effects of an individual simulation building block on the overall system.

These small models can also be used for demonstrating the effects of

parameter settings to modelers. Assignments can be defined that use the

original model as a starting point for adjustments to the settings of the

parameters of the simulation building block. These assignments should

preferably also provide outcomes of the adjusted model and an explanation of

the alternative behavior of the simulation model. The box below shows an

example for the domain specific extension “Computer factory”, which was

introduced in chapter 2.

Example model “Breakdowns”. The simulation model shown in Figure 5.16 shows one

sealing machine, a breakdown process and an operator. The sealing machine is waiting for

computers in boxes, but in this simulation model the arrival of boxes is not included.

Nevertheless the sealing machine has a breakdown every 24 hours, represented by the

simulation building block “Breakdown process”. This building block will request an operator

“Theo” to repair the machine. The operator requires on average 30 minutes to repair the

machine. The output (right side of Figure 5.16) shows that after 240 hours there were 5.84

hours when the operator worked to solve machine breakdowns.

Figure 5.16: Implementation of simulation building block “Breakdown Process”

 5 Domain specific extensions realized by simulation building blocks

 153

Training assignment for model “Breakdowns”. Adjust the interval between breakdowns

from an average of 24 hours to an average of 12 hours. The expected result is that much

more time is spent on fixing breakdowns and that the number of breakdowns increases. Even

though the decrease is only 50%, the number of breakdowns will not double, due to the time

required to fix the breakdown. Figure 5.17 shows the change that should have been made in

this assignment with the outcome of the simulation model.

Figure 5.17: Adjusted simulation model with output of training assignment

“Breakdown Process”

5.7 Design approach for improved domain specific extensions

 In section 2.3.3 we introduced some steps for the development of a

domain specific extension. We observed during the simulation studies,

described in chapter 3, that we needed to extend the set of model constructs,

to extend the performance indicators in the model constructs and to adjust the

terminology to match the understanding of the model developers in the

domains. In other words: we designed a set of model constructs that was not

sufficiently linked to the domain, because system elements and important

information were missing.

 The initial phase of the design of the domain specific extension did not

receive sufficient attention, and as a result we did not describe all required

system elements. In this section we provide a design approach that pays

more attention to setting the scope of the domain specific extension, which

hopefully results in a set of simulation building blocks that better match the

expectations of the problem owners in the domain.

 In addition, the design approach introduced in section 2.3.3 was based on

model constructs and not the concept of simulation building blocks. Therefore

the design approach for development of domain specific extensions is

extended with considerations regarding the simulation building block

guidelines (section 5.4), the development of additional tools (section 5.5) and

activities to result in documentation and support for model developers (section

5.6).

5.7 Design approach for improved domain specific extensions

154

5.7.1 Roles

 Developing a domain specific extension requires insight into a problem

domain. The extension should not just be focused on one particular system,

but on multiple systems. Developing a domain specific extension requires

advanced knowledge of the field of simulation and of the selected generic

simulation environment. Knowledge of the field of simulation is needed to

support experiments, to enable analysis, and to provide validation. Advanced

knowledge of the generic simulation environment is needed to develop

simulation building blocks that are sufficiently parameterized.

 It is very rare that a person knows everything about a domain and is also a

simulation expert. Except for these rare cases we suggest that a team of

experts should be formed, with different roles, to design a domain specific

extension. One or more roles could be performed by one person, but we think

that the quality of the final domain specific extension will be better if each role

is performed by a different person, and some roles even by several persons.

The roles that we have identified in the design of a domain specific extension

are:

• Domain expert / problem owner: this role provides knowledge of the

domain and a vision of the future demands for the simulation study to

define the type of simulation models and experiments to be carried out.

• Model developer: this role will be performed by the users of the domain

specific extension to develop a simulation model and to perform

experiments with the simulation model. The knowledge of these persons

can range from “have heard about simulation” to “have experience

performing simulation studies”. In the laboratory experiment we found that

both types of persons could use the simulation environment and that they

needed different kinds of support.

• developer domain specific extension: this role will design the domain

specific extension, implement the individual simulation building blocks and

write the documentation about the building blocks and support tools of the

domain specific extension.

• tester domain specific extension: this role will use the developed domain

specific extension and the support tools and evaluate whether the

functionalities mentioned in the documentation can be achieved. The tester

will do this by developing small simulation models of representative

systems in the domain.

5.7.2 Process steps and milestones

 In Figure 2.11 is a process described to develop a domain specific

extension. This process helped us to execute the case studies in chapter 3,

but the input of our lessons learned and the identification of simulation

 5 Domain specific extensions realized by simulation building blocks

 155

building blocks, use of additional tools and improvements to the support and

documentation enable us to improve the process and define a prescriptive

design approach for the development of domain specific extensions.

 In this design approach the main focus is on the specification of the

simulation building blocks. The extra attention in the design is aimed at

avoiding that the implemented simulation building blocks and building block

elements cannot represent the necessary system elements for the simulation

studies. The design approach also includes the development of additional

tools for model development, model parameterization, model verification and

output representation to complete the domain specific extension. Finally, the

domain specific extension should provide the support and documentation as

described in the previous section.

Figure 5.18: Overall process development domain specific extension

5.7 Design approach for improved domain specific extensions

156

 The overall process of designing a domain specific extension is shown in

Figure 5.18. On the left we show the type of information that is provided by

domain experts and problem owners. The process steps in the middle of this

figure are carried out by either the developer or the tester of the domain

specific simulation. These process steps then result in the products shown on

the right of Figure 5.18.

 This design approach described in Figure 5.18 does not describe how the

problem owner or domain expert gathers the material they feed into the

design process. This will depend on the size of the group of domain experts

and their availability. A very efficient way is to bring all the problem owners

together and let them provide their system knowledge. This could be done

using a GDR session (De Vreede, 1995), but interviews or literature research

into the problem domain can also be used to gather sufficient information to

design a flexible domain specific extension. In this the ‘example systems’ are

not existing sets of simulation models, but common domain knowledge the

team is aware of and systems that should be suited to be simulated with the

domain specific extension.

 The first step in Figure 5.18 is ‘Specification’. We concluded in section 5.2

that an extension of this process is needed to help developers design a

domain specific extension that matches the structure of simulation building

blocks. This process step is further explained in Figure 5.19 and is an

improvement to step 1 (Object oriented and process oriented decomposition

and abstraction) and step 2 (Generalize system elements) as introduced in

the initial approach for development of domain specific extensions in section

2.3.3.

 The other process steps in the design of a domain specific extension are

fundamental to the development of a domain specific extension. They are

listed below:

• ‘Implementation of simulation building blocks and building block

elements’ is the process step to instantiate the building blocks as an

extension to a generic simulation environment, based on the provided

specification. Replaces step 3 (Instantiate system elements as domain

specific model constructs) of section 2.3.3.

• ‘User documentation’ can be written while the simulation building

blocks are being implemented. Extra step introduced to enable the

development of support and user material as introduced in section 5.6.

• ‘Test using small models’ is the development of small models by a

tester and the use of experiments to validate the behavior of the

separate simulation building blocks. These models are used by the

model developers to help them to understand how to use simulation

building blocks (requirement 2 and 6). The model developers can also

use these models to verify the exact behavior of simulation building

 5 Domain specific extensions realized by simulation building blocks

 157

blocks (requirement 8). This was covered in step 4 (verify domain

specific model constructs) of section 2.3.3, but add more activities and

details of verifications to be performed.

• ‘Test using large models’ is the instantiation of the simulation building

blocks and building block elements by a tester to represent the

example case studies. These models can be used to demonstrate the

capabilities of the building blocks in a full simulation study (requirement

1). This is an extra activity to increase the trustworthiness of the

simulation building blocks. In section 2.3.3 this was not considered yet.

• ‘Development of generic output reports’ results in reports for the model

developer that provide all the data that the model developer might need

to evaluate their simulated system. This activity is added to support the

development of additional tools as introduced in section 5.5.

• ‘Training model developers’ can be a formal training, or a self-study

project in which the model developer uses the domain specific

extension to gain understanding and trust in the provided simulation

building blocks. This training satisfies requirements 2 and 6. Possibly a

more technical training can be provided as well to train model

developers in how to handle new building blocks and building block

elements. This is an extension to support model developers as

suggested in section 5.6.

5.7.3 Conceptualization and specification for a domain specific extension

 The conceptualization and specification of a domain specific extension can

be divided into four parts as is shown in Figure 5.19. ‘Determine scope’ deals

with describing what the simulation models that will be instantiated using the

simulation building blocks can represent. ‘Decompose problem domain’ is the

decomposition of different systems of the problem domain into sub-systems

and system elements, using the constructs view and functionalities view

introduced in chapter 2. ‘Design building blocks’ is the transformation of

system elements into building blocks, where some system elements might be

combined or ignored to support flexible yet easy use. ‘Design building block

elements’ is the final phase of the specification and is focused on to a more

technical level, like providing a user-interface, and interfaces between building

blocks.

 Each of these phases of the specification is decomposed into process

steps. The order of these process steps is the preferred order to develop the

specification, but as any design process, the actual execution will be highly

iterative and returning to earlier phases while design is going on. In the first

phase (determine scope) the main information from the domain experts will be

used. The problem domain is limited to a set of problems to be modeled. This

set of problems will influence the selection of example systems that is used for

5.7 Design approach for improved domain specific extensions

158

developing the domain specific extension. The aim of the example systems is

to verify whether design decisions donot limit the model developer to make

simulation models of the selected example systems. Model developers should

be possible to construct simulation model of each of the selected example

systems as much as possible using the simulation building blocks that will be

developed in the domain specific extension. Therefore the descriptions of

these example systems will be “requirements” for future design decisions. The

developers of the domain specific extensions should evaluate in each design

step whether they can still fulfill the requirements of the example systems. For

example, an example system in the domain of passengers at airports could be

the case study of KLM check-in. In this case study the type of passengers was

important, thus one of the key-input parameters to be defined in the phase

‘Determine Scope’ should be “type of passenger” as was expected that similar

processes apply to airports worldwide.

Determine scope

Develop list of

problems in

domain

Develop list of

example system

descriptions

Develop list of

experiments

Develop list of

performance

indicators

Develop list of

key input

parameters

Decompose

using view to

constructs

Decompose

using view to

functionalities

Generalize

decomposed

system elements

Determin

additional

elements at

system boundary

Structure system

elements to

infrastructure and

control

Determine

functionalities in

simulation

building blocks

Determine

functionalities for

building block

elements

Determine

alternatives for

building block

elements

Design user

interface for

buildig block

Design interfaces

between building

blocks

Decompose problem

domain

Design building blocks Design building block

elements

Figure 5.19: Conceptualization & specification for domain specific

extension

 The phase ‘Decompose Problem Domain’ is similar to the process steps 1

‘Object oriented and process oriented decomposition and abstraction’ and 2

‘Generalize system elements’ of the design approach introduced in section

2.3. The difference with the design approach described in chapter 2 is that the

generalization is performed separately for the two views, i.e. the object

oriented and process oriented view.

 5 Domain specific extensions realized by simulation building blocks

 159

 The specification phase ‘Design building blocks’ is the phase in which the

objects that have been decomposed and generalized are allocated to

simulation building blocks. Some of these objects will be simulation building

blocks, others will be allocated as a functionality for one of the other

simulation building blocks. The result of this phase strongly depends on the

types of experiments that are foreseen and the importance of the objects that

have been identified using the two different views on decomposition. Some of

the trade-offs have to do with the actual decision whether to make something

into a simulation building block or to allocate it as a functionality.

 Finally, the specification of the domain specific extension focuses on the

technical aspects. We have mentioned the importance of the interfaces of the

simulation building blocks to enable the simulation building blocks to interact

correctly. We also identified the need for the usability of building block

elements to enhance their flexibility for model developers. How these two

concepts are incorporated into the simulation building blocks and the domain

specific extension depends partly on the selected generic simulation

environment. A domain specific extension developed as an extension of a

JAVA based simulation environment can use more of these software

engineering concepts than a domain specific extension that is developed on

top of procedural simulation environments like Arena or Witness.

5.8 Case studies to apply domain specific extensions

 Section 5.4 (Simulation building blocks), section 5.5 (Additional tools for

domain specific extensions), section 5.6 (Support and documentation for

domain specific extensions) and section 5.7 (Design approach for improved

domain specific extensions) describe the contribution of this dissertation to the

field of discrete event simulation. This chapter provides concepts and

approaches to overcome problems with simulation studies observed in

literature, laboratory experiments, and case studies. In the laboratory

experiments in chapter 4 we showed that domain specific extensions are

more effective in simulation studies than generic simulation environments. In

the following chapters (6, 7 and 8) we will show domain specific extensions

that apply this contribution and see the effects in simulation studies that are

performed based on the suggestions formulated in this chapter. Most

important is that the domain specific extensions contain simulation building

blocks and building block elements implemented using a generic simulation

environment and following the simulation building blocks guidelines introduced

in section 5.4. Further the domain specific extensions contain additional tools

to support the model developer in creating simulation models and perform

experiments according to the ideas described in sdection 5.5. The model

developers and problem owners are supported with training and user

documentation as mentioned in section 5.6. These domain specific extensions

with their simulation building blocks, additional tools and support material are

developed according to the design approach described in section 5.7.

5.8 Case studies to apply domain specific extensions

160

 The domain specific extensions described in the following chapters have

resulted in successful simulation studies that have been performed fast and

easy, benefiting from the concept of the simulation building blocks. We do not

describe the simulation studies in detail, but focus mainly on the design of the

domain specific extension, i.e. on the result of following the design approach

and the 22 Simulation Building Block Guidelines. The development of the

different domain specific extensions have been team efforts in which we were

highly involved, in the execution of the simulation studies we have occupied

the backseat and observed the execution and use by model developers. The

observations are organized per case study and in chapter 9 they are

combined to overall conclusions of the research contribution for domain

specific extensions containing simulation building blocks, additional tools and

documentation and support.

5.8.1 Case study for supply chains described in chapter 6

 The first domain specific extension is for the domain of supply chains

which will be used to prove that the design guidelines can be applied in

different generic simulation environments (chapter 6). This case study

answers research question 2A related to the difficulties to handle the unlimited

freedom in modeling by the model developer:

What constructs and design approach will enable that

domain specific extensions can be defined independent of

the generic simulation environment in such a way that the

model developer is supported, but not limited to one way of

representing a system element?

 This case study will focus on the flexibility of simulation building blocks and

building block elements to easily change the behavior of a system in a supply

chain using existing mechanisms as well as customized mechanisms that

were not part of the domain specific extension.

5.8.2 Case study for container terminals described in chapter 7

 The second domain specific extension deals with the design of container

terminals, where the focus of the case studies was to provide fast and easy

insights into the suitability of a terminal design (chapter 7). This case study

mainly addresses research question 2B related to the challenge that model

developers need to be experts in multiple areas:

What methodologies, approaches and techniques can be

offered to a model developer to support the use of domain

specific extensions in the activities of a simulation study?

 The simulation building blocks represent a high level of abstraction and the

domain specific extension contains additional tools to enable the model

developers to quickly develop simulation models automatically from drawings

 5 Domain specific extensions realized by simulation building blocks

 161

and database entries. The model developer can thus focus on the analysis of

the automatically generated output. In this case study the complete process of

a simulation study with a domain specific simulation extension (section 5.5) is

automated.

5.8.3 Case study for Nestlé production facilities described in chapter 8

The case studies of the supply chains and container terminals have been

mainly applied as a proof of concept. Though the problem was real, the

problem owners were not. Therefore the third case study focuses on real

problems with real problem owners who really need answers from a

simulation study (chapter 8). The third case study explains how a dozen

different simulation studies have been performed using a domain specific

extension for Nestlé’s production facilities. This case study gives insight in all

aspects of the theory introduced in this chapter, and mainly answers research

question 2C related to the challenge that model developers do not speak the

language of the problem owner:

How can be ensured that the domain specific extension

gets the model developer closer to the language of the

problem owner?

The Nestlé case is an ideal case study to demonstrate how the language gap

was closed by using a domain specific extension, and how developments in

the domain were translated into further development of the domain specific

extension.

5.8.4 Way of describing the case studies

 The three cases studies in chapter 6, 7 and 8 are all described in a similar

way. Each case study has a short introduction of the domain that the domain

specific extension should support, and it explains the reason why a domain

specific extension should be developed. The case studies have all been

selected for the fact that the domain specific extensions have been used

several times and thus they needed to be adjusted and improved. Each case

study focuses first on the initial development, by describing the team that

developed the initial specification (scope, problem domain, define building

blocks and define building block elements) following figure 5.19. All three case

studies have hundreds of pages of documentation that elaborate on the

specification, the implementation, and the user information of the domain

specific extension. In this thesis only the key concepts, building blocks and

their interfaces are described to provide a feeling for the design of the domain

specific extension.

 The implementation focuses first on the generic simulation environment

that was used, followed by a description of the additional tools that have been

developed and the (user) support that was provided by documentation and

5.8 Case studies to apply domain specific extensions

162

training material. Again, this is not a complete account of all available

documents, but an overview to show what was available for users and

simulation experts who continued the development in later stages of the life

cycle of the domain specific extensions.

 The result of the development and testing of the domain specific extension

are briefly discussed by evaluating the 22 Simulation Building Block

Guidelines. In the evaluation of these guidelines, the extensions of the domain

specific extensions are described as well.

 Each case study section ends with a short description of the simulation

studies performed with the domain specific extension and observations about

the success or failure of the domain specific extension to support and

enhance the simulation study.

5.8.5 Additional case studies not described in detail

 In addition to the three main case studies, many more simulation studies

using domain specific extensions were carried out. The most important of

these simulation studies are described in appendix 1. The appendix provides

an overview and short description of the domains and cases that were

performed in the period of 2002 to 2007, but which are not discussed in detail

in this thesis. In each of these cases a domain specific extensions has been

developed and used in at least one simulation study within that domain. These

cases are only briefly described.

 6 Application to supply chains

 163

6 Application to supply chains

6.1 Why develop a domain specific extension?

 Supply chains are an important part of how organizations worldwide add

value to products via storage, transfer and assembly. The costs related to

activities in the supply chain, e.g. transport, procurement and storage can

have a significant impact on the cost of the final product. In addition the

availability and demand of products changes over time, resulting in alternative

patterns of purchases and sales within the supply chain. The structuring of a

supply chain, i.e. selection and cooperation between organizations, needs to

be adapted to keep costs low and to optimize interaction between supply-

chain partners (Boyson et al, 1999).

 Current supply chains use real time exchange of data via internet and

email. A customer can order his product via websites of different retailers and

easily evaluate their offers to buy the same product from the cheapest retailer.

Retailers on their turn also use the spot market, retrieving their stock

replenishments from whoever provides the product at the lowest price. The

key characteristics of a spot market are the placing of orders with different

suppliers and the use of short term contracts (Cooper et al, 1997). The

competition in this market is on price and availability of product. The actors

have different mechanisms to manage their price and product availability for

customers. Verbraeck (2004) describes how simulation models can be used

to evaluate mechanisms for supply chain management and to help companies

to decide on a mechanism for order generating, pricing and offer selection.

 In a supply chain the actors exchange information. The key information

exchanges are requests for quotations (RFQs) that an actor sends to several

actors that are able to deliver the requested product(s). These actors will

return a quote including price and delivery date. The actor that requested the

product(s) will select which of the quotes of the supplying actors matches its

requirements in the best way. The selected actor will receive an order to

deliver the product(s) according to the conditions in the quote. The delivering

actor will send a commitment, the products and a bill to get paid. This

complete process, in particular between a customer and a supplier, is shown

in Figure 6.1. All actors that participate in the supply chain will have their own

way of handling the incoming messages, for example, a supplier might decide

not to react to customers who are farther away than 2000 km. How the actors

react to the messages and how they generate their own messages are key

elements to represent in a simulation models of supply chains.

 Simulation models are often used to design the structure of the supply

chain and to evaluate alternatives like order size, order moments, use of

external organizations and reaction times to demand. Supply chains have

become an important topic with the ability of customers and organizations to

easily shop worldwide and select the best product and delivery methods for

6.2 Initial team to develop domain specific extension

164

their requirements. Organizations that try to (re)design their supply chain

network have different choices and mechanisms to react to demand. This

requires models that can easily be adjusted and that can handle large

amounts of data in combination with management decisions of allocation

mechanisms to be used.

Figure 6.1: Process interaction between customer and supplier

(Van der Hee, 2002)

 The complexity of a supply chain network in combination with the vast

amount of possibilities and information triggered the use of simulations. Van

der Hee (2002) used a domain specific extension to define a set of supply

chain teaching cases at the R.H. Smith Business School of the University of

Maryland in the USA to illustrate different concepts of supply chains to the

students. The simulation models that supported the teaching cases needed to

be configurable and extendable by MBA students without any further training

in the simulation environment, comparable with the complexity of the

laboratory experiment described in chapter 4

 A second use of the domain specific extension has been to evaluate the

supply chain processes for turbine spare parts of the engines of the F101

fighter jet of the USA Department of Defense (Tewoldeberhan, 2005; Jacobs,

2005) where the focus was on regenerating the supply chain based on real

time data.

6.2 Initial team to develop domain specific extension

 The use of simulation models for supply chains has been one of the key

research topics at the Supply Chain department of the R.H. Smith Business

school of UMD. They have been supported by simulation modeling experts

from Delft University of Technology (TU Delft) to jointly develop the domain

specific extension. Jointly experts from these organizations have performed

the specification of the simulation building blocks and the implementation in

different simulation environments (Corver, 2001; Van der Hee, 2002;

Tewoldeberhan, 2005; Jacobs, 2005; Van Houten, 2007).

 6 Application to supply chains

 165

 The role of model developers was initially performed by the developers of

the domain specific extensions themselves. The initial models were used by

the supply chain experts to run the experiments.

6.3 Specification of domain specific extension

6.3.1 Scope

 The scope of the simulation models is defined as different actors working

together in a supply chain. The actors are generally defined as customers,

retailers, distribution centers, manufacturers and suppliers. The scope of the

supply chain can contain the whole chain from raw material until final product,

but the actor concept also allows a focus on a part of the supply chain where

the supplier provides semi finished products.

The interaction between the actors is in essence described in Figure 6.1. An

actor needs a supplier for a product and the supplier provides that product

given certain conditions are met. The potential complexity of the information

exchange and the physical good exchange are endless and have been part of

the initial scope of the design of the simulation building blocks.

 The experiments, performance indicators and input parameters have also

been strongly limited. The focus of the project was to support the teaching

cases and thus enable experimentation with supply chain concepts such as

make-to-order, make-to-stock, bull whip-effect and JIT-delivery (Van der Hee,

2002).

6.3.2 Problem domain

 Defining the problem domain was a further identification of the processes

and functionalities of the actors to be simulated in the scope of the domain

specific extension. This resulted in a more precise definition of the types of

interaction that the actors had. Based on the interaction patterns, we split an

actor into a logical and a physical actor. The logical actor keeps track of stock,

puts requests to other actors and keeps track of the reservations placed by

other actors. The physical actor is responsible for preparing the goods (e.g.

the manufacturer that requires a couple of days to make an order to the

specification of the customer) and keeps the physical stock. The interaction

also includes a yellow page object that is aware of the different actors in the

system and knows which goods the actor offers. In this way the actors can

easily identify other actors that are probably suited for their business needs.

 Another example of identified new objects to handle the scope of the

actors was the introduction of a transport actor that enabled the transport of

goods from one actor to another actor.

6.3 Specification of domain specific extension

166

6.3.3 Building blocks

 The scope of the actors, the extension of the initial actors with the yellow

pages and the transport actor were good a preparation for the set of building

blocks. The separation in a logical and physical actor resulted in three families

of building blocks: 1) logical actors; 2) physical actors; 3) support actor like

yellow pages and transport actor.

6.3.4 Building block elements

 The building block elements definition of the logical and the physical actor

also came to life reasonably simple. Each process step in the interaction

scheme of Figure 6.1 resulted in a building block element, because for each of

the interaction steps alternative implementations had been defined as part of

the experiments in the scoping and the configuration of the key input

parameters. The way an actor handles an incoming document or message

defines its way of acting, and turns the overall behavior of the actor into e.g.,

make-to-order or make-to-stock. For example, a building block element was

defined for the functionality ‘determine to reorder’. In a make-to-stock concept

the ‘determine to reorder’-building block element analyzes the quantity still in

stock, while the make-to-order concept was represented by a building block

with a ‘determine to reorder’-building block element that keeps track of the

incoming orders.

 The logical actor and the physical actor received different building block

elements to represent their functionalities in the process of ordering. For

example the logical actor client, retailer, distribution center and manufacturer

all possess the building block elements ‘order generator’ and ‘yellow page

selector’ among many others. In Table 6.1 these two building block elements

are listed with a number of their alternatives. The other building block

elements and their (implemented) variants are well described by Corver

(2001) and Van der Hee (2002).

 6 Application to supply chains

 167

Table 6.1: Example of functions and possible building block elements to
represent behavior logical manufacturer

6.4 Implementation

6.4.1 Extension of simulation environment

 A special aspect of this domain specific extension is that the building

blocks and building block elements have been implemented by different

developers in three different generic simulation environments. The

implementation in the generic simulation environment eM-Plant was the first

completed version, developed to enable validation of the concept of the

building blocks and the use of building block elements to represent the

information flow in supply chains (Corver, 2001). The second implementation

was in the generic simulation environment Arena, aimed at use by none

modeling experts of the R.H. Smith school to increase their knowledge of the

concepts of supply chains with practical tools (Van der Hee, 2002). The third

implementation was based on Java objects in the DSOL library, aimed at

distributed modeling of large and distributed supply chain networks

(Tewoldeberhan, 2005; Jacobs, 2005; Van Houten, 2007).

Development in eM-Plant

 The strong point of the domain specific extension in eM-Plant was the

ability to apply object oriented programming for the simulation building blocks,

but offer the model developer to overrule defined inheritance and freely read

and write attributes of other objects. As a result the building blocks and the

building block elements could rapidly be developed and the design made by

Function Building block
elements

Description

Order
generator

Standard Generate a new order for materials or products at regular
times for a constant quantity.

Periodic Generate a new order for materials or products at regular
times, but the quantity differs per period of the year.

Continuous Generate a new order for materials or products at the
moment that the stock quantity is below an identified level.

Customer Generate a new order for materials or products without
looking at any stock levels, just according to a random
distribution for a time between requests.

EOQ Generate a new order for materials or products, depending
on calculations for the economic order quantity that is
repeated once every couple of months.

Yellow
pages
selector

Standard Make a shortlist of potential suppliers for desired materials or
products.

Distance Make a shortlist of potential suppliers for desired materials or
products that are a maximum distance from the requesting
actor.

Type of Actor Make a shortlist of potential suppliers for desired materials or
products that are of a certain type of actor.

6.4 Implementation

168

Corver (2001) could be implemented in a straightforward way. The

disadvantage of the generic simulation environment eM-Plant was mainly the

availability of licenses that hindered the use of the domain specific extension

beyond pilot stage, for example to support the teaching cases.

Figure 6.2: Families of building blocks in eM-Plant

Figure 6.3: Information for the Physical Actor (DC) (Corver 2001, p51)

 The implemented simulation building blocks were combined in a specific

Supply Chain toolbar as an extension to the generic modules in the simulation

environment eM-Plant, see Figure 6.2. Each building block contained a user

interface where the parameters of the building block and the selection of the

available building block elements could be set by the model developer. Figure

6.3 is a screenshot of the simulation building block Distribution Center, the

physical actor configured for a model of a supply chain in the USA.

 The model developer using the domain specific extension in eM-Plant has

the opportunity to bypass the user interface and manually adjust the

mechanism in the building block by replacing a building block element or even

override the logic of a specific method in the building block. Figure 6.4 shows

 6 Application to supply chains

 169

the inside of the manufacturer building block with its default building block

elements that a model developer could adjust.

Figure 6.4: Building block elements in simulation building block

based on eM-Plant

 The status of the actors in the simulation model was maintained using

variables only available within the building block or the related building block

elements. Orders, RFQs and other information exchange were modeled via

entities that contained attributes such as their origin, product type and

amount. Gathering information from one or more different actors was handled

via method calls via predefined interfaces and the information was stored

within one or more entities that kept track of the status of an order (Corver,

2001). The information exchange between building blocks was always

organized via a ‘mail box’ within the building block to enable flexibility of

exchange of building block elements and not to reprogram the inner-working

of different building blocks. Figure 6.5 shows the conceptual working of the

post box in the building blocks of eM-Plant.

Method receive
trigger

If BBE=1 then

 Call X
Elseif BBE=2 then

 Call Y
Else

 Show Error

Figure 6.5: Logic in a method of eM-Plant to determine which building
block element to trigger

6.4 Implementation

170

Development in Arena

 The main challenge of the domain specific extension using the generic

simulation environment Arena was the flow concept that Arena applies and

the lack of data types and data structures (Van der Hee, 2002). The concept

of a building block that exists of several sub building block elements with

object references as applied in the domain specific extensions developed in

eM-Plant was not available in Arena. The solution was found in defining

building blocks and separate building block elements that are connected by

the model developer. Figure 6.6 shows at the right hand side an instantiated

building block of a logical manufacturer and the triangles illustrate the need to

link required building block elements, which can be dragged from the library at

the left-hand side and connected to the triangles. In Figure 6.6 two building

block elements have already been connected; the others still have to be done.

Figure 6.6: Building block elements in Domain specific extension based

on Arena

 The model developer has the option to select from all individual building

block elements that exist, for example the top row in Figure 6.6 shows four

different order generators implemented in the domain specific extension. Each

of these building block elements have their own features and parameterization

capability (see Figure 6.7), which at the same time protects the model

developer from messing with the underlying logic and information.

 As said before, one of the main challenges in the development of the

domain specific extension on top of Arena was the lack of data structures. All

information exchange had to be managed by entities that were sent back and

forth between building block elements where the status had to be monitored

using numbers (Arena has no strings). This made tracking difficult, but also

 6 Application to supply chains

 171

resulted in blocking of opportunities for model developers to enhance the

functionality of building block elements with user defined logic developed with

Arena generic model constructs.

Figure 6.7: User interface for parameterization of two different order

generator building block elements.

 The implementation of the exchange of entities between building blocks

and building block elements was achieved by defining dedicated stations

where the entities arrive. The entities then follow one or more decisions based

on their attribute values to be routed to the correct building block element.

Figure 6.8 shows a part of the mechanism for a logical supplier actor. The left

block evaluates which building block element has to be called. The bottom-

right part evaluates which internal function of the simulation building block has

to be called. If an entity arrives that does not match any of the defined building

block element interface specifications then an error will be generated to warn

the model developer of incorrectly defined message exchange between

actors.

Figure 6.8: Internal logic in Arena to determine which

building block element to trigger

6.4 Implementation

172

Development in DSOL

 The challenge in the case study for the USA Department of Defense was

that information should be kept local to actors, and not be globally available in

the model, due to the fact that the models needed to be distributed over the

Web (Jacobs, 2005). The models should be easy to distribute to participants

in worldwide locations and should run on computers, laptops and even PDAs

that cannot install complete simulation environments like eM-Plant or Arena.

The model of the supply chain should therefore not be one monolithic

simulation model, but each actor (or group of actors) should be separate. In

addition, the models of the supply chains should be predictive, but also

represent actual events in history and forecast from there. Therefore, the

domain specific extensions that have been developed on top of eM-Plant and

Arena could not be applied as these generic simulation environments are not

capable of retrieving a base situation from external sources (Jacobs, 2005).

The solution was found in the use of a new Java-based simulation engine

that could be extended with the designed building blocks and the processes of

the logical actors. The simulation objects of the DSOL library developed in

Java have been designed especially to accommodate the capability of

separate compositions of simulation building blocks connected into a

simulation model with one combined simulation clock. The implemented

building blocks worked much like the eM-Plant building blocks, using object

oriented concepts, but their way of exchanging information was monitored in a

more strict manner.

 The use of both history and forecasting was implemented by two

alternative instances of algorithms for the simulation building block elements.

For example, the order request generation element of the logical actors either

used information from historic data files, or prediction algorithms with

economic order quantity.

 Jacobs (2005) describes how the simulation model data is retrieved via a

database connection, and results in instantiation of objects specific for the

modeling of this supply chain as a DoDTrader and a Base, which are

specifications of the building blocks Yellow Pages and Customer. The

simulation models that use the domain specific extension on top of DSOL are

composed using databases that contain structural information on the actors.

 The result of the use of the domain specific extension on top of DSOL with

the appropriate data sources is a simulation model that can be instantiated via

any web browser or via a specific viewer application. The Java program will

instantiate a map and use information from the specific databases to

instantiate actors on their geographical locations.

6.4.2 Additional tools

 The domain specific extensions developed using the generic simulation

environments eM-Plant and DSOL have not reached beyond the state of

proof-of-concept. The domain specific extension developed using Arena has

 6 Application to supply chains

 173

been used for all kinds of experiments and several developed simulation

models. A large effort has therefore been put in developing additional tools.

One to support the model development (mainly to overcome the labor-

intensive job to instantiate all building block elements) and one to enable

analyzing the outcome of the simulation model and to easily perform cross

checks of the performance of all actors.

 The model development in Arena has been supported by a Visual Basic

application called “Builder Tool”. This allows a new actor to be added by

selecting from pull down lists which building block elements are included. The

actor will then be instantiated in the simulation model including all the selected

building block elements. Figure 6.9 shows an example configuration of a new

retailer with the name ‘New York’ that will be added to the simulation model

with only standard building block elements for each function.

Figure 6.9: Tool of domain specific extension to instantiate logical actor

in simulation model

 The statistics of the simulation models developed in Arena have been

collected in an MS Access database, developed especially to create reports of

the performance of individual actors and compare the actors over time with

each other. The main focus of the reports developed in the MS Access

database was on the stock levels of the actors and on comparing out-of-stock

moments based on parameterization of the building block elements of an

actor in the supply chain (van der Hee, 2002). Figure 6.10 provides an

example of a part of the report that can be produced by the MS Access

database after the executed simulation model had run to completion.

6.4 Implementation

174

Figure 6.10: Example report generated in MS Access after simulation

model run of domain specific extension

6.4.3 Support to users

 The support to the users of the domain specific extensions developed in

eM-Plant and DSOL has been limited, as it was just a proof-of-concept. The

support to gain confidence in the building blocks and improving the

applicability for a simulation study was not necessary for this reason, as the

aim of the development and the use was to find out whether the building

blocks could be used at all. Furthermore, the designer of the building blocks

and the building block elements was the main user of the implemented

domain specific extension in eM-Plant, thus fully aware of what was possible

and which building block or building block element should be used in a

particular scenario.

 The domain specific extension developed in Arena has been used in

classes of students at the R.H. Smith School of Business of the University of

Maryland. The students who worked with the teaching cases developed in

Arena also did not need a lot of convincing that the simulation building blocks

were suited for their problems. They primarily needed support to understand

how to interpret the results of the experiments and configure the building block

and building block elements to improve the supply chain system. Their basic

knowledge consisted of supply chain concepts. In two additional classes they

learned how to interpret the effects of using supply chain concepts on the

outcome of the simulation models. In these two classes they also received a

demonstration how to make adjustments and use the additional tools to easily

configure their simulation models to represent the desired system.

 6 Application to supply chains

 175

 All students received a CD that contained example models, the additional

tools and documentation about the building blocks and the building block

elements. Step-wise they were guided through assignments using existing

simulation models. The final course assignment was to optimize an existing

supply chain by setting parameters and selecting the most appropriate

building block elements. All this support material was sufficient to get the

students working and perform the necessary experiments.

6.5 Use of Simulation Building Block Guidelines

 This sub-section uses examples of the building blocks and building block

elements from the three developed domain specific extensions. The design of

the building blocks and the building block elements have based on the same

conceptual model for all three implementations. Only the technical

implementation differ. The main technical details are already described in

section 6.4.1, therefore the Simulation Building Block Guidelines are only

illustrated with examples of one of the domain specific extensions. The fact

that the other environments are not mentioned does not mean that the

guideline does not apply for the other environments as well, unless explicitly

mentioned.

Guidelines related to self-contained building blocks

Simulation Building Block Guideline 1: data belonging to a building block

should not be accessed by other building blocks directly, but only via defined

interfaces.

 Each of the actor building blocks contained its own information and state of

its orders. For example, if a customer logical actor wants price information of a

product from a retailer, it sends the retailer a request for quotation (RFQ).

Figure 6.1 shows the complete set of messages exchanged between a logical

customer actor and a logical retailer actor. Figure 6.8 shows how the

interaction is technically achieved in Arena.

 The messages shown in Figure 6.1 are the only way to exchange

information in the domain specific extension. Similar interaction exists

between retailers and distribution centers, between distribution centers and

manufacturers and between manufacturers and supplier actors. None of the

actors can retrieve information of another actor without the actor actively

sending that information via a message.

Simulation Building Block Guideline 2: a simulation building block consists of a

core and building block elements to represent functions and services.

 Logical actors and physical actors have different functions. Logical actors

are dealing with inventory levels, reservations of customers and price

determination. The physical actor is concerned with the physical products that

belong to an order, e.g. order picking, physical storage and the physical

manufacturing process. Each of these functions is represented by a building

6.5 Use of Simulation Building Block Guidelines

176

block element. Figure 6.6 shows all the building block elements that are

required to represent the services of a logical manufacturer.

Simulation Building Block Guideline 3: data belonging to a building block

element can be accessed by other building blocks elements of that building

block without using the interfaces of the simulation building block.

 The inventory level of an actor is kept by the building block element

‘Inventory’ of the logical actors. This building block element contains

information of the current number of items in stock, expected deliveries of

incoming stock and committed supply of products. This information is

evaluated by building block elements like the order generation, i.e. generate a

new order if the inventory is below a certain level, or the order commit, i.e.

commit an order if stock is in place.

 In the eM-Plant implementation this information is structured as separated

object variables, e.g. Actor.Inventory.ProductY.Stock or

Actor.Inventory.ProductY.ExpectedDelivery.

Guidelines related to interoperability of building blocks

Simulation Building Block Guideline 4: system elements that appear in

different variants and processes in a system are represented by a family of

building blocks and building block elements.

 The logical actors belong to the same family, for example the difference

between a manufacturer logical actor and a distribution center logical actor is

the existence of the building block element ‘manufacture’, which triggers the

physical manufacturing process. In the implementation in the generic

simulation environment Arena, the building block elements for the logical and

physical actors have been combined in one library, but the families of the

building block elements can still be recognized thanks to the naming and

shape of the building block elements.

Figure 6.11: Families of building block elements of logical actors

 6 Application to supply chains

 177

Figure 6.11 shows the implementation of the building block elements with their

family naming in Arena. The first five icons starting with ‘ORG’ are the building

block elements for order generation, the two icons at the second row starting

with ‘YPS’ are part of the family of Yellow Page building block elements and

the three building block elements at the bottom of Figure 6.11 starting with

‘QUO’ are icons of the building block element ‘Quote’ as the reply to a request

for quotation.

Simulation Building Block Guideline 5: building blocks are of different types,

most common to have building blocks for infrastructure and for control.

 The infrastructure in the domain specific extension is represented by the

physical actors. The control is provided by the logical actors and its building

block elements. The logical actor exchanges information with other logical

actors until an order is accepted or manufacturing is triggered. The logical

actor will then trigger the process that is part of sending a physical shipment

or starting a manufacturing process at the physical actor. The physical actor

will return a message to the logical actor when an order has been shipped or

received or when the manufacturing process is finished.

Simulation Building Block Guideline 6: complex control mechanisms should be

represented using control building blocks linked together to represent a flow.

 The control processes in the domain specific extension for the supply

chain are reduced to individual steps. The sequence of an order is not

adjustable, and there is one process for handling orders as shown in Figure

6.1. How each step is handled is flexible using the building block elements.

We decided not to use process representation for the control processes,

because the type of experiments did not suggest a need to change the

sequence in the order handling process.

Simulation Building Block Guideline 7: building blocks should be aware of

each other’s existence within a range of applicability.

 Building blocks are linked in the implemented simulation models in

different ways. The first is a fixed link between building blocks that are part of

the simulation model. The second are real-time links between building blocks,

depending on the state of the simulation model.

 Examples of the fixed links are the connections between a logical actor

and a physical actor, which is defined in the user interface of the building

block, see Figure 6.3 where the physical distribution center in Salt Lake is

connected to the logical distribution center ‘Salt Lake’. A second example is

the structure of the yellow pages object. One of the variants of the yellow

page book is locally organized, whereby the logical actor registers itself to a

local yellow pages building block, instead of to a globally organized yellow

pages building block.

6.5 Use of Simulation Building Block Guidelines

178

 Examples of real-time links between building blocks are the negotiation

and the execution of an order. Via the yellow pages, Request-For-Quotation

and order placement, two or more actors are connected to exchange goods.

The real-time link is a one-time connection not to be reused automatically

because of the market situation in the supply chain.

Guidelines related to replaceable unit of building blocks

Simulation Building Block Guideline 8: extension of a domain specific

extension can be achieved by introducing new building block elements for

existing simulation building blocks.

 Table 6.1 contains building block elements that have been identified by

Corver (2001) as part of the domain specific extension to accommodate the

type of experiments foreseen. Figure 6.11 shows that only a couple of these

building block elements have been implemented in the domain specific

extension on top of Arena. The developer of the domain specific extension

can easily duplicate one of the existing building block elements and make the

necessary adjustments to represent the missing building block elements. Van

der Hee (2002) decided due to time constraints and the content of the

teaching cases, that the development of the additional building block elements

was not necessary. He provided sufficient technical descriptions to enable an

experienced user of the generic simulation environment Arena to develop the

extension of the domain specific extension in the same way that he extended

the domain specific extension to contain the set of building block elements it

currently contains.

Simulation Building Block Guideline 9: simulation building blocks and building

block elements of the same family follow the same interface requirements.

 The concept of interfaces illustrated in Figure 6.5 for the simulation

environment eM-Plant and Figure 6.8 for the simulation environment Arena is

applied for all building blocks and building block elements. The coding is kept

the same for building block elements of the same type, thus the order

generators ‘Standard’ and ‘EOQ’ use the same code numbers to refer the

method call or entity to the correct functionality.

Guidelines related to encapsulating internal structure of building blocks

Simulation Building Block Guideline 10: simulation building blocks hide inner

working.

 The inner working of the building blocks in the domain specific extension

developed in eM-Plant are hidden, but not made unavailable for the model

developer, as can be seen in Figure 6.3 with the button ‘Open’ for ‘Open

structure of the object’ to view the building block elements and even the

methods of the building block elements.

 6 Application to supply chains

 179

 The inner working of the building blocks in the simulation environment

Arena has been hidden better than in eM-Plant. There is no way that a regular

model developer can see what occurs within the building blocks.

Simulation Building Block Guideline 11: advanced model developers have to

be able to unhide the inner logic and see how the processes and attributes

are implemented.

 The same text as mentioned for Simulation Building Block Guideline 10

could be used to explain how this guideline is achieved. In eM-Plant the model

developer is discouraged, but can have a look. In Arena no option is available

as the user interface of simulation building blocks developed in the simulation

environment Arena cannot be overridden to show the internal code.

Demonstrating the inner working of simulation models developed in the

simulation environment Arena is done via documentation and process flows

(Van der Hee, 2002).

Guidelines related to providing useful services or functionality of building

blocks

Simulation Building Block Guideline 12: system elements should be

represented by building block elements that can be extended with custom

instantiations of model constructs of a generic simulation environment.

 The building block elements in the Arena simulation environment could

easily be connected with generic model constructs of this generic simulation

environment, for example via the connection between the building block and

the building block element. However, the entities that are sent over that

connection are coded in a certain way and their attributes have values that are

focusing on a particular function. There is a large risk that a model developer

adds generic model constructs which alter the status of the entity. The

building block element is then no longer capable of handling the function as

intended. Furthermore, the additional tools that have been developed around

the domain specific extension on top of Arena might not function due to the

extra model constructs.

 The advice is therefore not to tamper with generic model constructs in the

domain specific extension developed in Arena. The disadvantage of lack of

flexibility for the model developer should be matched by the flexibility to

replace building block elements or to extend the set of building block

elements.

Simulation Building Block Guideline 13: a building block can connect to model

constructs of a generic simulation environment.

 The same applies for this guideline as for Simulation Building Block

Guideline 12.

6.5 Use of Simulation Building Block Guidelines

180

Guidelines related to precisely defined interfaces for building blocks

Simulation Building Block Guideline 14: the model developer has to adjust the

parameters of a simulation building block via a user interface.

 Figure 6.3 and Figure 6.7 show examples of parameterization of the

building blocks or building block elements in the simulation environments eM-

Plant and Arena. These user interfaces are made available to the

parameterization of all building blocks and building block elements in the

domain specific extensions.

Simulation Building Block Guideline 15: use of domain terminology in the user

interface provides insight in the suitability of a building block for a certain

purpose and the meaning of its parameters.

 The user interfaces shown in Figure 6.3 and Figure 6.7 are dedicated for

the domain specific extension and contain a textual explanation of what the

value represents. In addition it is described in detail in the user manual of the

domain specific extension on top of Arena what the effect of changing values

is (van der Hee, 2001). For example, increasing the quantity for evaluating the

stock in the building block ‘Order Generation’ will result in higher safety stock

and thus a lower probability of an out-of-stock event.

Simulation Building Block Guideline 16: parameters in a user interface of a

simulation building block have to be checked for validity of the values.

 At the moment that the OK button is pressed in the user interface of the

simulation building blocks, checks are performed for the values entered in the

fields. For example, in the implementation in eM-Plant it is evaluated whether

the pointer of a logic actor to a physical actor is valid and in the

implementation of Arena it is verified whether the name of an actor is unique.

The logical actors further contain checks that e.g., the initial stock levels and

the reorder points have positive values.

Simulation Building Block Guideline 17: parameters in a user interface of a

simulation building block should have default values whenever possible.

 Simulation studies in the domain of supply chains are performed for a wide

range of systems. It is impossible to define valid and logical default values. In

a supply chain for computer parts the order sizes and delivery times are

completely different than in a supply chain for airplane engines. Nevertheless,

the user interfaces are equipped with default values. The default values in the

simulation building blocks are not to show possible valid values, but to show

that values should be filled in and to avoid that the simulation model will return

errors caused by faulty data entry.

 6 Application to supply chains

 181

Simulation Building Block Guideline 18: The user interface of a simulation

building block should provide support for the model developer.

 The description of the parameter in the user interfaces of the building

blocks and building block elements is made as self-explanatory as possible.

Additional explanations of each individual parameter are described in the user

documentation of the domain specific extension on top of Arena in case the

self-explanatory parameter description is insufficient. The users of the eM-

Plant simulation environment have to do without, as no time has been spent

on additional user documentation.

Simulation Building Block Guideline 19: The user interface of a simulation

building block can be used by model developers to select building block

elements and set their parameters.

 The selection of the building block elements is differently handled in each

simulation environment. Figure 6.6 shows for Arena how a model developer

instantiates the simulation building block into the simulation model, in this

case a logical manufacturer. One-by-one the required building block elements

have to be added in the Arena case.

 The model developer in the eM-Plant environment can use the drop down

list in the user interface (Figure 6.3) or manually replace building block

elements within the building block (Figure 6.4) by removing the existing

building block element and instantiating a building block element from the

library of the same family.

Simulation Building Block Guideline 20: a simulation building block has a

defined interface that receives triggers, requests, entities, or events from other

simulation building blocks in the simulation model and redistributes these

internally.

 Figure 6.5 and Figure 6.8 demonstrate how this is handled in eM-Plant and

Arena via mail boxes.

Simulation Building Block Guideline 21: the interface of a simulation building

block contains evaluations of the state of the trigger and the building block to

determine whether the building block can handle the trigger.

 Figure 6.8 shows that an error will be generated if a simulation building

block or a building block element receives an incoming entity that triggers

functionality that is not applicable for the simulation building block. Similar

checks are also performed if triggers or messages are received at moments

that the simulation building block or building block element is not expecting it

given the state.

6.6 Simulation studies performed

182

Some examples are:

• Receive a quote when no request for quotation is send

• Receive a quote from a logical actor to whom no request for quotation

is send

• Receive a notification from a physical actor that an order is received

when no order was placed

• Receive a bill when no order was placed

 In both simulation environments these checks are implemented in similar

ways.

Simulation Building Block Guideline 22: a simulation building block contains

pictures, numbers and other elements to support visualization of the state and

key performance indicators during simulation run.

 The supply chain building blocks implemented in Arena have been

provided with animation details to visualize the state of the logical actor.

Figure 6.12 shows for example information related to the duration of certain

activities, the financial situation of the actor and stock levels. More information

is available regarding the state of the logical actor, but that would overload the

visualization. Therefore this information is all exported to a dedicated MS

Access database that collects and manages all events and statistics in the

system.

Figure 6.12: Visualization items of logical actor

6.6 Simulation studies performed

6.6.1 Fictive computer supply chain

 Corver (2001) demonstrated the applicability of the domain specific

extension using a fictive computer supply chain with world-wide suppliers and

 6 Application to supply chains

 183

manufacturers providing products to customers in the USA and Australia. This

same case study has been used by Van der Hee (2002) as an example model

in Arena. The product manufactured in the fictive supply chain is a PC. The

manufacturing process is mainly an assembly activity from a keyboard,

monitor, casing, mouse and speakers, which can be provided by one or more

suppliers. The manufacturer assembles the PCs for USA or Australia

according to the so-called Bill of Materials. In the example, there are two

different manufacturers. Both manufacturers can provide PCs for the USA, but

only the manufacturer in Taipei can manufacture PCs for Australia. In the

concept there are three distribution centers. The distribution centers in Salt

Lake City and Frankfort serve the US market. The third distribution center, in

Alice Springs, serves the Australian market. In the concept, customers place

orders only at one of the retailers. Figure 6.13 shows the actors that

participate in the fictive computer supply chain and the potential flows of

products.

Figure 6.13: Layout of fictive computer supply chain (Corver, 2001)

 The suppliers of raw materials (left actors in Figure 6.13) provide different

components that are used by the manufacturers in Mexico City and Taipei

(second set of actors in Figure 6.13). The different suppliers provide different

materials. The materials that suppliers need for their production process is

6.6 Simulation studies performed

184

kept outside the scope of this fictive supply chain. The manufacturers produce

and assemble the physical products from the suppliers and their products are

transported to the distribution centers (set one from the right). The distribution

centers send the physical computers that they receive to retailers and retailers

finally get purchase orders from customers in their neighborhood. In this

supply chain it is not possible to skip actors, e.g. there is no direct delivery

from manufacturer to retailers possible.

 All actors can have product in stock and will place requests for quotations

and finally orders to providers down the supply chain if they run out of stock. If

an actor cannot satisfy an order, then a backorder will be placed and as soon

as the stock is replaced the pending backorders will be satisfied.

 Figure 6.14 shows the building blocks of the domain specific extension of

eM-Plant with at the background the building blocks instantiated in a

simulation model and situated across the USA with the manufacturer,

distribution center and retailer.

Figure 6.14: Supply chain actors placed on the world map (Corver, 2001,

p50)

 The aim of the simulation model was to prove the concept of handling

logical and physical actors with their different sub-processes to represent

particular behavior. The instantiation of the building blocks according to the

case description and behavior of the logical actors to the limited scope proved

suitable.

 6 Application to supply chains

 185

 Corver (2001) demonstrated the applicability via different configurations

and roles of the actors in the simulation model. One example was a simulation

experiment in which the manufacturer in Mexico City was closed for one

complete year. During this year Taipei has to supply to the distribution center

in Australia and has to satisfy the full requirements of the distribution centers

in the USA. Taipei consequently has to deal with backorders, because the

production facilities are running full time.

6.6.2 Simulation models for teaching at R.H. Smith Business School

 The domain specific extension for supply chains in Arena was used to

develop a set of demonstration models and teaching cases. The

demonstration models were used to show the effect of decisions and policies.

For these teaching examples, the same fictive computer supply chain has

been modeled as described in Figure 6.13.

 The teaching cases were not just demonstration models, but they

encouraged the students to perform an analysis and experiment with the basic

situation. Three different teaching cases asked the students to come up with

the best possible policy and settings. The first teaching case regarded a

simple optimization and parameter setting of an already existing supply chain.

The second teaching case regarded a certain change in demand and required

the students to lessen the bullwhip effect in the chain, and the third teaching

case asked the students to handle uncertainty in demand with either a

distribution center or direct ordering at the manufacturer. A part of the simplest

teaching case is shown in Figure 6.15.

Assignment 1: Connect Inc.

Joe is a manager at Connect Inc, a business telephone manufacturer. He’s looking into ways
to improve his fill rate’s on customer orders (or reducing stockouts), while at the same time
lowering inventory levels.

He has asked you, the business analyst, to make an analysis of his supply chain and present
a number of solutions to his problems. Where possible, he wants the improvements clarified
with numbers.

Figure 6.15: Fragment of a teaching case (Van der Hee, 2001a, p14)

6.6 Simulation studies performed

186

 The teaching cases were based on descriptions of supply chain cases

provided by the teaching staff of R.H. Smith Business School. The teaching

staff had expectations for the simulation model behavior for each of the

teaching cases, mainly based on theoretical knowledge. The input data and

complexity of the case has been adjusted until the desired behavior was

represented by the simulation model in different configurations and with

different selections of decision algorithms for actors in the supply chain.

 The teaching cases provided directions for the students to the type of

experiments they could do, but the teaching cases were open ended by

design and provided students with opportunity to experiment themselves.

 The demonstration models and the teaching cases have been used in a

course for the MBA-program of the R.H. Smith Business School, University of

Maryland, USA 20 groups of 2 to 3 students analyzed the outcome of the

simulation models and improved the models by adjusting the parameter

settings for ordering and storage, as well as by changing policies. The result

and learning effect was satisfactory according to the teachers of the supply

chain course (Van der Hee, 2001; Verbraeck, 2004).

6.6.3 Simulation study for Department of Defense of the turbine engines of

the F101

 The Department of Defense (USA) has a complex supply chain to provide

maintenance parts for their airplanes and helicopters that are in active service

worldwide. The parts of an airplane are stored at dozens of places worldwide

at intermediary distribution centers, and in some cases an order is placed to

the manufacturer who is also organized globally. The supply chain experts of

the Department of Defense thought that a reduction of their storage cost and

the number of out-of-stock events should be possible, if they would have

better knowledge of their current requirements and the possibility of

transferring maintenance parts through their network (Jacobs, 2005).

 A proof of concept project has been carried out for simulating the supply

chain of the Low-Pressure Turbine for F101 engines focusing on 25 parts of

the engine. One of the requirements of the study was that the information of

the supply chain should be spread over the internet and only limited

information can be provided and responded to, due to security and safety. The

information of the current situation should be reproduced and information from

different sources should be collected and reproduced in a simulation model of

the supply chain. Based on this information a simulation model should run to

provide insight when a certain part could be available and how many parts

should be stored for the coming period of time at the different locations

worldwide.

 The simulation model of the turbine engines of the F101 is developed as a

Java program based on the DSOL simulation engine that will instantiate a

world map and use information from the specific databases to instantiate

actors on geographical locations at the world map. This world map and certain

parts of the information available at actors that the user of the simulation

 6 Application to supply chains

 187

model is permitted to view can be accessed via a web browser or applet as

shown in Figure 6.16.

 The order information that is used in the simulation model is also retrieved

from the available data sources and result in actual transaction and

information exchange between the actors, for example the animated airplanes

moving from the manufacturer to a base in mid USA (Figure 6.16).

Figure 6.16: Viewer of simulation model F101 supply chain

(Verbraeck, 2004)

 The system was evaluated by representing the system in two phases, first

the modeling of the current activities in the supply chain based on historical

information. Secondly it was verified whether the simulation model represents

similar behavior as visible in historic data files. Evaluation by experts of the

Department of Defense supply chains showed that the future behavior was in

line with the expectations based on the historical data files.

 The involved actors of the Department of Defense were impressed by the

possibilities of simulation and identified future extensions of the use of real-

time management of supply chains with simulation models. However, the

complexity of gathering the data in this minor proof-of-concept project and the

required exchange between different actors turned out to be a time consuming

factor (Verbraeck, 2004).

6.7 Observations during simulation studies

188

6.7 Observations during simulation studies

 The main observation from the simulation studies performed with the

different implemented domain specific extensions is that the design of building

blocks and building block elements is not hindered by the generic simulation

environment in which the building blocks will be implemented. In all three

generic simulation environments the developers succeeded of getting the

building block and the basic building block elements running according to the

Simulation Building Block Guidelines identified in chapter 5.

6.7.1 Observations regarding design approach and implementation

 A positive observation was the capability of designing a consistent domain

specific extension, starting from a problem domain description. A negative

observation was that the initial design of the domain specific extension was

not easy to apply for real-time simulations based on a historic starting point,

which was necessary for the simulation study for the Department of Defense.

This type of use is not very common in the domain of discrete event

simulation and the standard simulation environments are not prepared to

provide these kinds of services. Nevertheless, this type of experiment should

have been included in the definition of the scope and the problem domain of

this domain specific extension. Including the experiment might have provided

some additional requirements for the design of the building blocks. Another

negative technical observation was that Arena as a generic simulation

environment was not able to handle more complex data types needed to

simulate supply chains (Van der Hee, 2002).

6.7.2 Observations regarding additional tools

 No observations are available of additional tools for the domain specific

extensions in eM-Plant and DSOL as no additional tools have been built. The

users of these domain specific extensions also had no complaints about the

absence of additional tools. The comments for the additional tools developed

for the domain specific extension developed with Arena are both positive and

negative.

 Positive is that the MS Access database collected the needed data and

enabled the students to make comparisons, but it could have been even

better if the MS Access database would have contained more reporting

instruments that would have helped the students of the teaching cases to

focus on the important data and more easily derive conclusions.

 Positive about the VB-Program that supported the model development was

that it helped to quickly instantiate a new actor with all of its building block

elements. Negative about this tool was that it only worked for the initial

instantiation. Once the actor building block with its building block element was

in the simulation model, the VB-Program could not help with adjusting.

Furthermore, the development of the VB-program started from the observation

 6 Application to supply chains

 189

that creating the building blocks and the building block element structure in

Arena was time consuming.

6.7.3 Observations regarding provided support

 Positive about the support was the wide availability of support material for

model developers and model users for the implementation in the Arena

environment. Positive was also the direct availability of live experts for the

domain specific extensions for eM-Plant and DSOL, although that kind of

support would not be available as soon as the domain specific extensions

would have been handed over to other model developers.

 A possible improvement could be the limited integration of the support

material with the building blocks. Now all the documentation was provided on

a separate CD that model developers could access, while the information

could be integrated with the Arena simulation building blocks using the

development of a help file.

6.7.4 Observations regarding applying building block concepts and

guidelines

 The observations for the capabilities of the domain specific extension are

structured via the characteristics of a building block as defined by Verbraeck

et al (2002) in Table 6.2: Characteristics of building block in Supply Chain

case study.

Table 6.2: Characteristics of building block in Supply Chain case study

Self-Contained Positive data locally stored & use of building block
elements and alternatives for functions.

Interoperable Positive families of building blocks enable the
exchange of building block elements.

To be
improved

division between infrastructure and control

Reusable Positive design of building blocks applied in three
different generic simulation environments,
and actor structure applied to all actors in the
supply chain.

Replaceable Positive extended sets of replaceable building block
elements.

Encapsulating its
internal structure

Positive eM-Plant building blocks were closed, yet an
expert could open and improve them.

Negative Arena building block elements completely
closed and no capability of extending with
generic model constructs.

Providing useful
services

Positive building block element for all defined
functionalities of actor in supply chain.

Precisely defined
interfaces

Positive structure of building block and building block
element enabled replacing of building block
elements without risk.

6.8 Overview observations case study Supply Chain

190

 It turned out in all three domain specific extensions that the developers are

capable of extending the set of simulation building blocks and building block

elements with additional predefined functionalities. Unfortunately, in this case

study we did not have the opportunity to apply the building blocks of the

domain specific extension to a real-life simulation study rather than a teaching

case or a proof of concept. Therefore, this case study does not demonstrate

that the building blocks or the building block elements have the required

flexibility to be extended beyond the original designs of Corver (2001). On the

other hand, there is no reason to assume that the building blocks and the

building block elements cannot handle this flexibility, especially when

observing the extended set of close-to-real-life supply chain concepts that are

represented in the teaching cases by Van der Hee (2001).

6.8 Overview observations case study Supply Chain

6.8.1 Observed of benefits

 The simulation studies that were performed confirmed the benefits that

were noted in chapter 2 and 3. Overall, the simulation studies were performed

correctly. Table 3.6 provides a similar summarizing overview as presented in

chapter 3 tables 3.6 and 3.7 regarding only the benefits.

 Overall all benefits have been achieved, but the benefits have not been

shown in all simulation studies, because the development has been different

depending on the generic simulation environment. For example, the benefit

‘semi-automatic reporting of performance indicators’ is only achieved by the

Arena implementation thanks to the MS Access database implemented as an

additional tool (Van der Hee, 2002).

 6 Application to supply chains

 191

Table 6.3: Summary of benefits observed in case study Supply Chain

Process step
Expected benefits as mentioned in chapter 2 and 3

Observation
supply
chains

Activity 1: Problem description & define conceptual model
Benefit 1.1: conceptualize system elements with model constructs
in mind

Yes

Activity 2: Select model constructs
Benefit 2.1: no translation between system elements and model
constructs

Yes

Benefit 2.2: compose model constructs from developed domain
specific model constructs to represent system elements

Yes

Benefit 2.3: easy selection of model construct thanks to structure
of domain specific extension

Yes

Activity 3: Data collection
Benefit 3.1: collection of predefined input data Yes

Activity 4: Instantiate simulation model for original system
Benefit 4.1: less model constructs used Yes
Benefit 4.2: model development faster and easier Yes
Benefit 4.3: model development by simulation novices Yes

Activity 5: Verify and validate simulation model for original system

Benefit 5.1: no more detailed testing Yes

Benefit 5.2: easily gathering validation data Yes

Benefit 5.3: structured and standardized performance
indicators

Yes

Benefit 5.4: semi-automatic reporting of performance indicators Yes

Benefit 5.5: observe animation at different levels of the
composition: high level and at individual model construct

Yes

Activity 6: Analyze output of simulation model

Benefit 6.1: structured and standardized performance indicators Yes

Benefit 6.2: semi-automatic reporting of performance indicators Yes

Activity 7: Define solution for analyzed outcome

Benefit 7.1: model developers are triggered to find new solutions
by parameters

Yes

Activity 8: Instantiate simulation model for identified solution

Benefit 8.1: easy adjustment of model thanks to user interfaces of
model constructs

Yes

Benefit 8.2: easy adjustment of model thanks to replacement of
model constructs

Yes

Benefit 8.3: easy visualization thanks to incorporation of
visualization in model constructs

Yes

Benefit 8.4: composition of new model constructs enabled new
solutions to be evaluated

Yes

6.8 Overview observations case study Supply Chain

192

6.8.2 Observed of risks in Supply Chain

 The simulation studies that were performed in the different simulation

studies also provided confirmation about the capability of the domain specific

extension to mitigate the risks that have been identified in chapter 2 and 3.

Thanks to the Simulation Building Block Guidelines and the design approach

of chapter 5 we seemed to have mitigated most of the risks described in

chapters 2 and 3.

 Table 6.4 provides a similar summarizing overview as presented in chapter

3, tables 3.6 and 3.7 regarding only the risks. Potential risks that we have

mitigated during the execution of the case study (“No” in the table) did not

occur and the potential risk has most probably been avoided by the way the

domain specific extension was designed, structured and used.

Table 6.4: Summary of risks observed in case study

Process step
Potential risks as mentioned in chapter 2 and 3

Observation
supply
chains

Activity 1: Problem description & define conceptual model
Risk 1.1: scope of model developer is limited by model constructs No

Activity 2: Select model constructs
Risk 2.1: lack of trust results in no motivation to use domain
specific extension

No

Risk 2.2: lack of insight in model constructs results in ignore
domain specific extension

No

Risk 2.3: use of model constructs that are not suited for
representation of system elements

No

Risk 2.4: system elements can not be represented by model
constructs

No

Risk 2.5: compose model constructs from developed domain
specific model constructs only applied for infrastructure system
elements

No

Risk 2.6: model developers can adjust internal logic of model
constructs

No

Activity 3: Data collection
No risks defined in chapter 2 or 3

Activity 4: Instantiate simulation model for original system
Risk 4.1: model developers do not understand model construct No
Risk 4.2: model developers do not know how to parameterize
model construct

No

Risk 4.3: difficult to compose simulation model, because model
constructs are not available

No

Risk 4.4: difficult to compose simulation model by person other
than developer(s) domain specific extension

No

 6 Application to supply chains

 193

Activity 5: Verify and validate simulation model for original system
Risk 5.1: mistakes of model developer are hard to overcome No
Risk 5.2: model developers know something is wrong, but cannot
identify what to do about it

No

Activity 6: Analyze outcome of simulation model
Risk 6.1: model constructs do not provide performance indicators
problem owner desired

No

Activity 7: Define solution for analyzed outcome
Risk 7.1: model developers are triggered to find new solutions by
parameters

No

Risk 7.2: model developers are limited by parameters and model
constructs

Partly

Activity 8: Instantiate simulation model for identified solution

Risk 8.1: solution is identified that cannot be represented by model
constructs

No

Risk 8.2: adjustments of model constructs required to represent
solution are time consuming

No

Risk 8.3: replacement of model constructs causes errors in model
constructs that were linked or connected.

Partly

 The risks encountered by the domain specific extensions for supply chains

do not apply to all implementations. The risk ‘system elements cannot be

represented by model constructs’ and ‘model developers are limited by

parameters and model constructs’ existed in eM-Plant and the DSOL

implementation as a result of the scoping. Not all designed building blocks

have been implemented and thus not all systems could be represented

(Corver, 2001; Tewoldeberhan, 2005). The risk ‘model developers can adjust

internal logic of model constructs’ only applied for the eM-Plant

implementation, whereby sufficient warnings in the user interface were

included to make sure a model developer was aware of the risks of his/her

actions (Corver, 2001).

 The risk ‘replacement of model constructs causes errors in model

constructs that were linked or connected’ appeared in supply chain teaching

cases with Arena when the model developers included a mixture of building

block elements for the concept ‘make-to-order’ and ‘make-to-stock’. Several

building block elements needed to be replaced to change from one to another

concept.

6.8 Overview observations case study Supply Chain

194

 7 Application to container terminals

 195

7 Application to container terminals

7.1 Why develop a domain specific extension?

 The planning and design of infrastructures, such as railroads, business

parks and utility networks, is a complex task due to a large number of

interrelated design parameters and mutually dependent public and private

stakeholders. Possible stakeholders such as local, regional and national

public authorities, infrastructure operators, (potential) customers, logistical,

transportation and shipping companies, residents and environmental

associations, constitute an inter-organizational network. (De Bruijn and Ten

Heuvelhof, 2000). The actors are mutually dependent, but will most likely have

different perceptions, interests, values and objectives. As a consequence, the

optimization of technical, economic and logistical values will strongly be

inhibited by conflicting interests, political and external boundaries and

strategic stakeholder behavior.

 Visualization and simulation can contribute to the initial design phase of

complex infrastructures. Visualizations of a system, such as sketches or

layouts, and simulation models, expressing a system’s dynamic

characteristics, communicate the complexity of the system, show the

consequences of options and place a design in its future environment.

Important questions can be raised however, on how collaborative visualization

and simulation can be embedded in an inter-organizational network and a

multi-actor negotiation process. Can visualization and simulation contribute to

the quality and progress of negotiation for instance by facilitating the

development of mutual understanding or a shared vision? In that case, what

are the specific requirements and guidelines for using visualization-simulation

tools in an inter-organizational context? What interactive procedures,

programs and ground rules may guide such a collaborative vision

development? (Mayer et al, 2004)

 To answer the aforementioned research question a gaming-simulation

(Duke, 1980) was developed using the planning and design of a fictitious but

realistic inland container terminal as the topic of the game. In the gaming-

simulation ‘Containers Adrift’ the participants play the role of stakeholders

(Mayet et al, 2004). They explore and negotiate a container terminal design

whereby all stakeholders are in principle in favor of the container terminal, but

only if certain conditions regarding either economic scale, noise production,

sight disruption or passing trucks are met. The stakeholders are supported

during the game by a visualization-simulation tool that provides them the

opportunity to evaluate different designs of the container terminal and observe

the results for key parameters like operational profit, truck movements, initial

investment, noise and CO2 production. The basis of the visualization-

simulation tool is a domain specific extension consisting of simulation building

7.2 Initial team to develop domain specific extension

196

blocks that are used to create and automatically execute a simulation model

based on the design and choices of the stakeholders regarding the container

terminal.

 The aim of the visualization-simulation tool was to enable the participants

to evaluate effects of design characteristics of the important elements for a

terminal design such as its location, the quays, roads, ships, trucks, cranes

and containers (Du, 2002a; Bockstael et al, 2003; Mayer et al, 2004). The

visualization-simulation tool should provide quantified indicators for the

performance, which were used by the stakeholders in the negotiation during

the game. Therefore the complete cycle of the design and parameterization,

model development, model run and evaluating the results of the simulation

model should be within time boundaries of 15 minutes, otherwise the game-

participants would not have sufficient patience to use the results in their

negotiations.

7.2 Initial team to develop domain specific extension

 The domain expertise for the container terminal was delivered by the game

designers who defined the scope of the game for the design of the container

terminal. They tried to be realistic, but also aware of the complexity to design

a game with ten different stakeholders who all should have the opportunity to

express their position (Van Kempen et al, 2002). The team of game designers

and the game development team were experts from the TU Delft (Bockstael et

al, 2003; Mayer et al, 2004).

7.3 Specification of domain specific extension

7.3.1 Scope

 The scope of the visualization-simulation tool, and thus of the domain

specific extension was defined by the background of the game situation: A

new inland container terminal where containers where stored and picked up

and delivered by trucks or vessels (Van Kempen et al, 2002). Inside the

container terminal the transport was handled by special vehicles that were

dedicated for the terminal and cranes that lifted the containers in and out of

the vessels. The experiments that should be performed were mainly to

support the game participants in making decisions on the capability of the

container terminal. The decisions provided in the game design that had to be

supported by the visualization-simulation tool were the following:

• Size of the storage location (square meters and height)

• Number and type of customers (resulting in truck movements and

storage occupancy)

• Vessel size and pattern

• Number of dedicated container terminal vehicles

• Number of cranes for loading/unloading vessels

 7 Application to container terminals

 197

 The participants in the game had some additional decisions that they

needed to make, but these were not supported by the visualization-simulation

tool. The main decision was the location of the terminal, close to the city or

close to a nature park. Even though the selection of the location did not affect

the outcome of the visualization-simulation tool, the decision was mainly

based on the outcome of the tool concerning performance indicators as noise

and CO2 production (Bockstael et al, 2003).

 Other performance indicators that the participants used (or decided to

ignore depending on their role in the game) in their negotiations were: initial

investment, operational profit and the number of jobs (Bockstael et al, 2003).

These performance indicators were helpful for the negotiation, but to improve

the design of the terminal (and thus enlarge the profit or reduce the

investment) the participants required insights in turnaround times of vessels

and utilization of storage space, cranes and trucks.

 The game design and the limitation of the duration of the game also put

some types of experiments clearly out of scope of the visualization-simulation

tool. Examples are the ability to change to process of handling a container in

the container terminal, selection of storage space in the terminal and priority

settings in vessel and customer handling. Whenever participants came with

the question whether the visualization-simulation tool could provide any

insights resulting from adjusting these mechanisms, the answer was that they

should identify this as a possible gain for the design and steer the negotiation

towards future research.

7.3.2 Problem domain

 An inland container terminal consists of objects that are used for the

transport of containers. The containers are delivered and picked up using

trucks or vessels and moved by cranes and forklifts at the terminal area. The

additional objects for an inland container terminal are a quay, storage space

and roads where forklifts move around. The processes that occur in an inland

container terminal and the decisions that are made in the terminal are

described in special building blocks and more detailed building block elements

for dedicated processes (Du, 2002a).

 The advanced processes in a container terminal are evaluations such as:

where is a container terminal stored, which containers are leaving in a vessel

and which sequence is used in loading the vessel. These evaluations are

important in a realistic and technical representation of a container terminal,

but the simulation models as part of a game for initial design of a container

terminal do not require advanced algorithms. The order and sequence can be

determined by following a first in-first out strategy, resulting in relatively simple

processes.

7.3.3 Building blocks

 The building blocks that have been defined in the domain specific

extension are a larger set than what the designer of the container terminal

encounters (Du, 2002a). Table 7.1 shows the building blocks that form the

7.3 Specification of domain specific extension

198

physical container terminal that the model developer instantiates in the VISIO

drawing tool. These building blocks contain the physical representation and

the mechanisms to claim and release the physical availability of another

object, i.e. the storage space is occupied by containers and the ship quay is

occupied by one or more vessels.

 In addition to the physical elements that are drawn at a fixed position of the

terminal layout are the movable entities, i.e. the trucks, vessels and internal

vehicles. These are designed as a building block together with their control

mechanism that determines what activities the movable entity should perform.

 The last set of building blocks are at the boundary of the system, the

companies that generate containers to be transported and the harbor, the

location where vessels arrive or depart from.

Table 7.1: Building blocks in VISIO drawing with their description

Building

block

Picture in VISIO Description

Storage

Location where containers are stored.

ShipQuay

Location where cranes are placed and

vessels board until they are loaded /

unloaded by the available cranes.

Road

Infrastructure used by the internal

vehicles to transport containers from the

storage to the quay or the truck parking

spot.

Crane

Equipment to load or unload containers

from the internal vehicles to the vessels.

Parkingspot

Location where containers are loaded or

unloaded from trucks by the internal

vehicles.

 7 Application to container terminals

 199

7.3.4 Building block elements

 The domain specific extension for container terminals contains no variance

in building block elements within a building block. Each building block has only

one way of performing its functionality. However, certain building block

elements are applied in different building blocks of the domain specific

extension.

 The physical building blocks shown in Table 7.1 all contain a building block

element to claim their capacity, to release their capacity and to gather

statistics to be reported to the dedicated Excel report (see page 204).

 Further building block elements that are defined in this domain specific

extension are mainly used to structure the functionality of the building blocks

(Du, 2002a). For example, the building block ‘Company’ consists of four

building block elements: Create container to be picked up by truck; create

container to be picked up in harbor; handle container arriving at company by

truck; handle container arriving at harbor by vessel. The structuring of the

building block along the lines of this structure helps the development,

interfacing and debugging, but does not have any further added value to

support future extension and development of the domain specific extension.

The main reason for this simplification was the clear starting point that no

variations for building block elements were to be used by the game

participants.

7.4 Implementation

 The development of this domain specific extension focused on the

requirement to be able to perform the complete simulation and evaluation

process with the visualization-simulation tool within 15 minutes by game

participants. The implementation therefore focuses mainly on the capability of

automating the model development, and to run and experiment based on a

solid set of building blocks that represent the behavior of system elements of

a container terminal (Valentin et al, 2002).

7.4.1 Extension of simulation environment

 The selected generic simulation environment was Arena, with as the main

reason the ability to automate model development via Visual Basic coding

from an external application. An additional reason was the ability to develop

simulation building blocks that were completely closed, to avoid that game

participants would be able to alter the functions of the system and thus alter

the basis of the game negotiations.

 The processes in the simulation building blocks are triggered by a

container entity created by the Company building block. This entity further

follows the fixed modeled steps of transport via truck to the terminal, storage

in the terminal, move to a vessel, transport by vessel to harbor or the other

way around. The container entity is active at all times and executes the

functions of claiming and releasing the physical resources. Inside the Arena

7.4 Implementation

200

building blocks no ‘supervisor’ functionalities are developed and the logic in

the claim building block elements is all ‘first come, first serve’.

 The container entity is routed between the different physical resources via

‘mail box’ routing identified with specific codes. For example, code 11.4 is for

claiming the container crane to leave the vessel, code 11.5 for the unload

process by the container crane and code 11.6 for releasing the container

crane (Valentin et al, 2002).

Table 7.2: Building blocks in VISIO and ARENA with status
representation

Building

block

Picture in

VISIO

Representation in simulation model

Storage

ShipQuay

Road

Crane

Parkingspot

 7 Application to container terminals

 201

 The building blocks implemented in Arena automatically contain a user

interface for the parameter setting and a visualization of their state. The user

interface and the location of the visualization of the building block are filled via

the automatic model generation tool (see next section) and the model

developer does not need to pay attention to set the parameters or review the

status. Even though there is no need for it, the user interface and the

visualization are provided with the terminology used within the game to

enhance the ability to understand the model if game participants are

interested. Table 7.2 contains the visual representation of the physical

building blocks earlier on described in Table 7.1. The representation in the

simulation model shows the state of the physical resource, for example with

numbers to indicate the available storage capacity and with colors to show the

state of the container crane.

7.4.2 Additional tools

 The domain specific extension consists of building blocks, the ability to

translate a VISIO drawing into a simulation model, and an Excel interface that

contains all performance indicators of the Inland Container Terminal. The

building blocks of the physical elements of the container terminal are

implemented in the drawing tool VISIO and the simulation environment

ARENA. Figure 7.1 shows the technical sequence in the domain specific

extension. A drawing of the terminal is made in VISIO and additional data of

customer information is added to a MS Access database. The drawing and

data are integrated into an Arena simulation model. The simulation run is

performed and results are published in an Excel spreadsheet. In the

remainder of the section a brief description of the different elements is

provided. The full design can be found in Valentin et al (2002).

Design data

M
o

d
e
l d

a
ta

Output data

D
e
s
ig

n
 c

h
a

n
g

e
s

Figure 7.1: Cooperation between four tools

7.4 Implementation

202

Model generation

 The building blocks that represent infrastructure objects of a container

terminal are represented in a VISIO drawing template and in an ARENA

simulation template. The participants in the game make drawings using the

VISIO objects. Their position and configuration are used to instantiate the

represented building block in the simulation model. Table 7.2 shows the

physical building blocks in both the drawing in VISIO and the simulation model

in ARENA. The use of the drawing building blocks in VISIO can result in

drawings of an inland container terminal such as shown in Figure 7.2.

Figure 7.2: Example drawing of container terminal based on

building blocks in VISIO

 Within VISIO a Visual Basic (VB) program was developed that allowed the

simulation model to be generated based on the drawing made. The VB-

program analyzed all drawing elements in the VISIO drawing and registered

which elements were based on the building blocks made available in VISIO to

create the container terminal, i.e. the elements shown in Table 7.2. The

registration included different attributes depending on the building block. For

example, the ‘container storage’ registered the square meters and the height,

the ‘ship quay’ registered the length and the ‘crane’ included the connections

to the road network.

 The VB-program followed by instantiating a new blank Arena model and

instantiated in that model the building blocks for the physical system elements

obtained from the VISIO drawing. This was followed by instantiating several

building blocks for the transport, such as the trucks and the vessels. Finally

the generation of the companies was done, and the simulation model was

complete.

 7 Application to container terminals

 203

Model data entering

 The VISIO drawing contains the configuration of the container terminal for

the physical elements, but more data is required. For example, the number of

trucks, the arrival times of vessels, and the companies that are supported by

the container terminal. This information is all combined in an MS Access

database in which the game participants can indicate their preferences. Figure

7.3 shows the selection the game participants can make between large or

small vessels.

Figure 7.3: Access database for data entry,

example vessel configuration

 The information from the MS Access database is subsequently loaded into

the instantiated simulation model via a VB-program similar to the program

mentioned for the model generation. This VB-program copies all data of the

MS Access database into the correct parameters fields of the respective

simulation building blocks in the simulation model. The game participants do

not need to perform any further manual activity to transfer the data into the

simulation model.

Model execution

 The game participants have two VB-programs for execution of the

simulation model. One variant puts the Arena simulation model in the front of

the screen and shows the visualization of the simulation building blocks filled

with all the data from the MS Access database. While time proceeds the game

participants can keep track of the state of the container elements and will see

the trucks and internal vehicles drive around on the layout of the container

terminal. The game participants will also see the visualization of the container

cranes, the storage and the quay. Based on the visualization, they can decide

whether their design seems feasible or whether it is a bad solution for the

considered companies.

7.4 Implementation

204

 The other variant for model execution is a hidden execution. The VB-

program executes the simulation model in the background and generates at

the end of the simulation run all information required for the reporting in

separate text files. The game participants do not see any progress of running

the simulation model, but after 1 to 3 minutes they receive a message that the

data is ready to be imported in the Excel reporting tool for analysis.

Model outcome reporting

 The building blocks in the Arena simulation model provide functionalities to

represent behavior of an inland container terminal and collect data for various

performance indicators. The participants of this game need to evaluate

different performance indicators, which are based on economics, logistics and

environmental issues to reach consensus on one or two designs for the

container terminal. The wide variety in performance indicators is needed to

support the different roles in the game. For example, environmentalists are

mainly interested in the noise and emission levels, while future customers of

the inland terminal checked the throughput times provided. Further topics like

queue length and utilization are included to support the participants in making

suggestions for improvement of the terminal. Figure 7.4 shows a part of the

Excel interface, representing the performance indicator for investments that

are required for the design of the inland container terminal at the designated

position.

Figure 7.4: Excel interface showing

performance indicators for investments

 7 Application to container terminals

 205

 The data required for the reporting tool is automatically generated by the

building blocks in the simulation model and stored in text files. A VB-program

is triggered after the simulation model is executed to open a new instance of a

template designed for the reporting. One by one the text files are read into the

Excel sheet and their data is added to the appropriate sheets to calculate the

performance indicators such as investment, cost, profit and utilization. The

Excel template is also prepared with one overall A4 sheet showing all key

parameters that are primarily used by the game participants during their

negotiations.

7.4.3 Support to users

 In the first hour of the game, the game participants receive an introduction

in the game objectives, the different stakeholders, and the capabilities of the

visualization-simulation tool. This explanation is accompanied by a quick

demo of the complete process from an initial drawing in VISIO to the final

report in Excel (Van Kempen et al, 2002).

 Depending on the size of the group of game participants, between two and

four workstations were set-up with a laptop, projector and paper support

material where game participants together could design and evaluate

container terminals. Each station contained all the necessary software and a

couple of example drawings with simulation models (like Figure 7.2). In the

first game each station was managed by a teaching assistant who knew the

technical challenges and could guide the game participants around these

problems. This teaching assistant also gave additional explanation on the spot

about what the game participants saw on the screen during the simulation run.

 The experiences gathered during the first game have been used to finalize

a user manual and a ‘cheat’-sheet with the most common questions and

explanations (Du, 2002b). The provided documentation and the attitude of the

game participants to try themselves was a reason to reduce the on-site

support and change to on-demand support. An expert was available during

the following games to answer questions that popped-up regarding the use of

the visualization-simulation tool and detailed questions (mainly about

performance indicators in the Excel reporting).

7.5 Use of Simulation Building Block Guidelines

 The Simulation Building Block Guidelines have been created mainly to

allow future changes to the simulation building blocks and to make extensions

to the domain specific extension. The domain specific extension as basis of

the visualization-simulation tool that has been used by the game participants

has not been changed since the first version of the game, with the exception

of fixing a couple of minor bugs. The main upgrades have been carried out for

the VB-programs to enhance the ability to automatically generate the

simulation model with the correct data and produce a valid report for the

7.5 Use of Simulation Building Block Guidelines

206

simulation run. Therefore, several Simulation Building Block Guidelines have

not been followed for the development of this domain specific extension.

Guidelines related to self-contained building blocks

Simulation Building Block Guideline 1: data belonging to a building block

should not be accessed by other building blocks directly, but only via defined

interfaces.

 The whole process is triggered by a container. The container accesses the

information of the physical elements in the simulation model and is proceeding

in the predetermined sequence, thus following the defined interfaces.

Simulation Building Block Guideline 2: a simulation building block consists of a

core and building block elements to represent functions and services.

 See the remark in section 7.3.4 regarding building block elements being

hardly used, other than to structure the inner working of the building blocks.

Simulation Building Block Guideline 3: data belonging to a building block

element can be accessed by other building blocks elements of that building

block without using the interfaces of the simulation building block.

 Building block elements are only used for structuring of the inner working

of the building blocks in this domain specific extension. Therefore data did not

belong to a specific building block element, but to the building block itself. For

the communication and data exchange between building blocks the regular

mail box system was used, see more in Simulation Building Block Guideline 9.

Guidelines related to interoperability of building blocks

Simulation Building Block Guideline 4: system elements that appear in

different variants and processes in a system are represented by a family of

building blocks and building block elements.

 Some of the building blocks could be seen as ‘belonging to a family’, i.e.

the physical building blocks used in VISIO and Arena (see Table 7.2), but no

other families of building blocks have been defined. In line with the decision to

keep the process simple and steady, no alternatives of building block

elements are provided.

Simulation Building Block Guideline 5: building blocks are of different types,

most common to have building blocks for infrastructure and for control.

 The building blocks representing the physical infrastructure are listed, but

they also include the functionality of claiming and releasing the resources,

thus the control. In the type of experiments performed during the game, no

advanced control was necessary, therefore it was decided in the design of the

building blocks not to follow this guideline.

 7 Application to container terminals

 207

Simulation Building Block Guideline 6: complex control mechanisms should be

represented using control building blocks linked together to represent a flow.

 The level of abstraction in the container terminal was not sufficient to justify

separate control building blocks that represent the process flow of a container.

It was decided not to follow this guideline for the design of the building blocks.

Simulation Building Block Guideline 7: building blocks should be aware of

each other’s existence within a range of applicability.

 In the simulation models interfaces were defined via the network of roads

between the storages, parking spot and the container cranes. These were all

defined in the VISIO drawing and automatically exported to the road-

simulation building block. The internal vehicles used this information to

transport a container, but no further flexible links were used.

Guidelines related to replaceable unit of building blocks

Simulation Building Block Guideline 8: extension of a domain specific

extension can be achieved by introducing new building block elements for

existing simulation building blocks.

 Extending the amount of simulation building blocks within the domain

specific extension was explicitly out of scope for the game. Sometimes game

participants had additional questions for further research, which were not

accommodated by the available building blocks or automatic model

generation in the visualization-simulation tool. In these cases, the game

participants received the reply that they should address the request in their

negotiations as further research.

Simulation Building Block Guideline 9: simulation building blocks and building

block elements of the same family follow the same interface requirements.

 Each building block worked with the concept of ‘mail box’ to route the

container entity and enable monitoring of its status. Each building block had

its own code, because the building blocks could not replace each other’s

functions. For example, a storage location could not represent the functionality

of the parking spot.

Guidelines related to encapsulating internal structure of building blocks

Simulation Building Block Guideline 10: simulation building blocks hide inner

working.

 One of the reasons to select Arena as the generic simulation environment

is that model developers cannot interfere with the building blocks, except their

parameterization. In this domain specific extension hiding the inner working

has been taken a step further, as the building block do not have any

7.5 Use of Simulation Building Block Guidelines

208

connectors where generic modules can be connected and the standard game

participant will not view the simulation model any more than a couple of

minutes to see a simulation model run. The game participants cannot make

adjustments to the simulation model in the simulation environment and they

cannot change the functionality of a building block.

Simulation Building Block Guideline 11: advanced model developers have to

be able to unhide the inner logic and see how the processes and attributes

are implemented.

 This option has not been provided to the model developers. See

Simulation Building Block Guideline 10 for further explanation.

Guidelines related to providing useful services or functionality of building

blocks

Simulation Building Block Guideline 12: system elements should be

represented by building block elements that can be extended with custom

instantiations of model constructs of a generic simulation environment.

 This option has not been provided to the model developers. See

Simulation Building Block Guideline 10 for further explanation.

Simulation Building Block Guideline 13: a building block can connect to model

constructs of a generic simulation environment.

 This option has not been provided to the model developers. See

Simulation Building Block Guideline 10 for further explanation.

Guidelines related to precisely defined interfaces for building blocks

Simulation Building Block Guideline 14: the model developer has to adjust the

parameters of a simulation building block via a user interface.

 Each simulation building block has a user interface for parameter settings,

but the game participants will not use the interfaces. They will use the drawing

capability in VISIO or the database settings in the MS Access database

(Figure 7.3). This can be seen as a dedicated user interface, though.

Simulation Building Block Guideline 15: use of domain terminology in the user

interface provides insight in the suitability of a building block for a certain

purpose and the meaning of its parameters.

 The automatic model generation that is used in the visualization-simulation

tool works the other way around than the Simulation Building Block Guideline

suggests. If the VISIO drawing does not contain any of the following building

blocks (road, storage, parking spot, crane or quay) the VB-program gives an

error claiming that the drawing is incomplete. If all five types of building blocks

are instantiated at least once in the drawing, the VB-program will make sure

 7 Application to container terminals

 209

that all information is set into the simulation model to result in a verified

simulation model (Valentin et al, 2002).

 The same applies for data entry in the MS Access database, if no trucks

are available or no companies are selected, the simulation model will not be

populated with data, but the game participant will be informed of his/her

omission.

Simulation Building Block Guideline 16: parameters in a user interface of a

simulation building block have to be checked for validity of the values.

 The MS Access database contains field controls to check that valid data is

entered. The VISIO drawing is limited to the building blocks provided in the

stencil in VISIO.

Simulation Building Block Guideline 17: parameters in a user interface of a

simulation building block should have default values whenever possible.

 Again, because we are working with data from the MS Access database

that is checked for logical values, absence of this Simulation Building Block

Guideline does not result in any trouble for the game participants.

Simulation Building Block Guideline 18: The user interface of a simulation

building block should provide support for the model developer.

 The game participants do not need support in developing the simulation

model or setting the parameters of the building block, they need support in

making a drawing in VISIO. With the example at the beginning of the game

and the familiarity of most game participants with VISIO, this Simulation

Building Block Guideline is matched.

Simulation Building Block Guideline 19: The user interface of a simulation

building block can be used by model developers to select building block

elements and set their parameters.

 This Simulation Building Block Guideline is not applicable, because

building blocks are completely fixed and do not contain alternative building

block elements.

Simulation Building Block Guideline 20: a simulation building block has a

defined interface that receives triggers, requests, entities, or events from other

simulation building blocks in the simulation model and redistributes these

internally.

 This Simulation Building Block Guideline is handled by the coding for the

status monitoring of the container entity.

7.6 Simulation studies performed

210

Simulation Building Block Guideline 21: the interface of a simulation building

block contains evaluations of the state of the trigger and the building block to

determine whether the building block can handle the trigger.

 The status monitoring is used mainly for debugging purposes during the

development of the domain specific extension and its building blocks. With

completely closed building blocks and the automatic model generation the

Simulation Building Block Guideline is no longer is applicable for the case

study.

Simulation Building Block Guideline 22: a simulation building block contains

pictures, numbers and other elements to support visualization of the state and

key performance indicators during simulation run.

 The Arena building block screenshots in Table 7.2 show the visualization

the game participant can see during the model run, but in the visualization-

simulation tool the need for these interfaces is not as large as in other

simulation studies. The reason is that the game participants mainly ran the

simulation model without animation. They directly received the outcome of

their design in the Excel sheet and thus usually skipped the phase of

observing the model animation.

7.6 Simulation studies performed

 In the designed game, 10 different actors have 8 hours to come up with a

design of an inland container terminal. The challenge of the participants was

twofold, 1) design a terminal that all participants agree on and 2) design a

process for further negotiations and arrangements. The participants in the

game had different aims for the container terminal regarding size, location and

safety. On purpose some of the potential desires could not be satisfied with

the visualization-simulation tool, for example, the visualization-simulation tool

does not include the cost of moving the current garbage retrieval side of the

municipality, which is at the location where the container terminal has t obe

built, to another location. If the participants stumbled on this or similar issues

during their design process, they had to address this in their future process of

negotiation and arrangements (Bockstael et al, 2003).

 The participants in the game had four workstations available for all

participants, independent of the stakeholder they were representing. At the

workstations the participants could work on the design of the inland container

terminal. In each game the use of the tool was slightly different as the game

participants were free to organize themselves as they thought to be best

suited. In most games the participants decided to divide themselves in three

groups with representatives of each of the available teams, one group

discussing the future process, one group developing a terminal as large as

possible and one group developing an environmentally friendly solution. The

groups came together to discuss their progress and show their intermediate

 7 Application to container terminals

 211

results at different moments during the game. The participants often had their

first terminal design that made some profit after one hour and from then

onwards they worked on optimizing the design according to their desires, e.g.

increase the size or eliminate some types of customers, aiming at profit

optimization.

 The game has been used in different settings. Initially, the game has been

played in three gaming-simulation sessions with 77 participants, who were

students who signed up for a voluntary part of a course in the TU Delft’s

Technology, Policy and Management third year curriculum. Secondly we

played the gaming-simulation three times with 20 to 30 MBA-course

managers and thirdly the game has been played with 65 students again from

the Faculty of Technology, Policy and Management at TU Delft. These

sessions have been evaluated using questionnaires and external observers

(Bockstael et al, 2003). In total the management game has been played for

more than 20 times by bachelor students, students in MBA courses and

experts in process management.

 The participants in the game needed only a little bit of support in explaining

what performance indicators meant and what conclusions they could draw

from the results in the Excel interface. They succeeded with very limited

training in building their own terminal, export the configuration to the

simulation environment Arena and perform simulation experiments. They

worked their way through the results in the Excel interface and from there they

evaluated their design and identified possible improvements. Every

experiment was performed after some discussion between the different

stakeholders about the suitability of an experiment. For example, if the

participants analyzed that the storage space should be enlarged, then they

first had a discussion where the extension should be located, including the

height and the shape of the storage. Once the discussion was finalized, the

design was adjusted in their VISIO drawing and a new simulation run was

performed.

 The types of experiments that the participants in the game performed were

all along the lines of the capabilities of the visualization-simulation tool.

Experiments that were not supported, for example evaluating an alternative

lock at the entrance of the port, were scheduled for further analysis in the next

phase of the decision making process. As a result the experiments performed

with the visualization-simulation tool aligned perfectly with the interface

capabilities in the VISIO drawing or the database.

 In all the performed games the participants, none of them simulation

experts, succeeded in developing two or three different terminal designs that

they would like to enhance in further evaluations. In most of the gaming

sessions the participants had time to improve their design and increase the

expected profit. In games where they did not succeed in optimizing, this was

mainly caused by extensive discussion before they started to use the

visualization-simulation tool.

7.7 Observations during simulation studies

212

7.7 Observations during simulation studies

 The initial game session have been evaluated extensively (Bockstael et al,

2003). Empirical data were gathered through: (1) observation of the group

work during the game; (2) plenary debriefing after each game; (3) a written

questionnaire filled out by the participants shortly after the game; (4) a written

response by the participants to a few open questions. The evaluation of the

visualization-simulation tool and the game sessions focused on three main

aspects: (1) the role of the visualization-simulation tool in an inter-

organizational decision-making process; (2) the generation of some specific

requirements for using such a tool; (3) some suggestions for refining the game

and the visualization-simulation tool for real life systems. The evaluation

criteria regarding the visualization tool and the gaming-simulation were

generally derived from notions on infrastructure design in inter-organizational

settings.

 Bockstael et al (2003) and Mayer et al (2004) describe the results of the

questionnaires and observations mainly from the process management

viewpoint. They focus on the function of the visualization-simulation tool as

part of the game and the design of the game to teach students the interaction

and use of quantified data in a complex multi-actor design process. They

show that the students in majority found the visualization-simulation tool

helpful and that they could add quantified performance indicators to

discussions in an early stage of the design process.

 Valentin et al (2002) conclude that the use of the visualization-simulation

tool showed that the use of simulation does not need to be something to be

postponed until the final design phase. The participants in the game could

easily and quickly make a representation of their idea and evaluate the

effects, due to the support of the complete model development cycle (Figure

7.1). Without the automatic model development and collection of performance

indicators the simulation model would not have been of any use in the design

phase, and without the building blocks of the domain specific extension for

container inland terminals these tools could not have been developed.

7.7.1 Observations regarding design approach and implementation

 Every decision made during the design of the domain specific extension

and its implementation in the simulation environment Arena was aimed to

enable fast and easy model development. For example, all companies were

located 20 kilometers from the container terminal resulting in fixed cost for

transport of containers and no distinction between companies. This was just

one of at least a dozen assumptions that were made in the design of the

domain specific extension, as it was designed for this specific use only and

not for evaluation of real inland container terminals.

 7 Application to container terminals

 213

7.7.2 Observations regarding additional tools

 The additional tools have had their issues during the development process,

mainly the automatic connectivity between VISIO, MS Access, Arena and

Excel, but the second release was a good improvement. Many of the

connectivity problems were resolved. The availability of the additional tools

has been a key success of the domain specific extension and the success of

the game. The additional tools made the simulation model into a magic black

box that provided answers to the questions of the game participants regarding

a design, exactly what the game needed.

7.7.3 Observations regarding provided support

 The game participants were not hindered by the lack of knowledge about

the building blocks or the use of the domain specific extension. The game

participants studied the support material, but mainly to use it as a judgment of

the quality and the validity of the visualization-simulation tool. Given the scope

of the game, the provided support was a good match.

7.7.4 Observations regarding applying building block concept and guidelines

 Even though the need to update and extend the set of building blocks in

this case study did not occur, we still made observations regarding the

Simulation Building Block Guidelines. The observations for the capabilities of

the domain specific extension are structured using the characteristics of a

building block as defined by Verbraeck et al (2002).

Table 7.3: Characteristics of building blocks in Container Terminal game

Self-Contained Positive the container stored the information and
the outcome of decisions in the other
blocks.

Interoperable Positive centralized control versus individual
physical elements and container kept
information and pointers to actors.

To be improved no family structure and no process
description of the control elements, as
both were seen as not necessary for the
type of experiments.

Reusable Positive the domain specific extension has been
reused many times, although it always
was to model the same system, but every
time in a slightly different session with
different users.

(continued at next page)

7.8 Overview observations

214

Replaceable Not applicable the building blocks were not replaceable

and no use of building block elements

other than structuring. Furthermore there

was no need to extend the set of building

blocks or building block elements.

Encapsulating

its internal

structure

Positive the additional tools completely hide the

simulation model, including the inner logic

of the simulation building blocks.

Providing

useful services

or functionality

Positive the system of a container terminal was

completely composed out of simulation

building blocks.

To be improved the simulation building blocks could not be

extended or adjusted to provide additional

services or functionalities.

Precisely

defined

interfaces

Positive parameters of the user interface were

automatically defined and technical

interfaces between the building blocks

were correctly aligned.

7.8 Overview observations

7.8.1 Observed benefits in management game for container terminal

 Table 7.4 provides a similar summarizing overview as presented in chapter

3 tables 3.6 and 3.7, regarding only the benefits. Similar to in the tables in

chapter 3: If “No” is filled in for a potential benefit it means that in the case

studies for this domain we did not observe effects of the expected benefit.

This is not negative, but points out that the case study has the potential of

being even more effective.

 The benefits for the domain specific extension ‘Container Adrift’ game

range from a very explicit yes (‘Yes !’) to a ‘Partly’. The explicit ‘Yes !’ is a

result of the ability to perform a complete model cycle in 15 minutes. The

‘Partly’ is a result of the way the game participants used the visualization-

simulation game. The game participants could have a look at the visualization

of the simulation model, but they hardly used the opportunity, as they

preferred to directly use the overview of performance indicators provided via

the additional tool in Excel (Valentin et al, 2002; Bockstael et al, 2003; Mayer

et al, 2004).

 7 Application to container terminals

 215

Table 7.4: Summary of benefits observed in case study Container
Terminal

Process step
Expected benefits as mentioned in chapter 2 and 3

Observation
container

Activity 1: Problem description & define conceptual model
Benefit 1.1: conceptualize system elements with model constructs
in mind

Yes

Activity 2: Select model constructs
Benefit 2.1: no translation between system elements and model
constructs

Yes

Benefit 2.2: compose model constructs from developed domain
specific model constructs to represent system elements

Yes

Benefit 2.3: easy selection of model construct thanks to structure
of domain specific extension

Yes

Activity 3: Data collection
Benefit 3.1: collection of predefined input data Yes

Activity 4: Instantiate simulation model for original system
Benefit 4.1: less model constructs used Yes
Benefit 4.2: model development faster and easier Yes !
Benefit 4.3: model development by simulation novices Yes !

Activity 5: Verify and validate simulation model for original system
Benefit 5.1: no more detailed testing Yes
Benefit 5.2: easily gathering validation data Partly
Benefit 5.3: structured and standardized performance indicators Yes
Benefit 5.4: semi-automatic reporting of performance indicators Yes !
Benefit 5.5: observe animation at different levels of the
composition: high level and at individual model construct

Partly

Activity 6: Analyze output of simulation model
Benefit 6.1: structured and standardized performance indicators Yes
Benefit 6.2: semi-automatic reporting of performance indicators Yes !

Activity 7: Define solution for analyzed outcome
Benefit 7.1: model developers are triggered to find new solutions
by parameters

Partly

Activity 8: Instantiate simulation model for identified solution
Benefit 8.1: easy adjustment of model thanks to user interfaces of
model constructs

Yes

Benefit 8.2: easy adjustment of model thanks to replacement of
model constructs

Yes

Benefit 8.3: easy visualization thanks to incorporation of
visualization in model constructs

Partly

Benefit 8.4: composition of new model constructs enabled new
solutions to be evaluated

No

7.8.2 Observed risks in domain Container Terminals

 The execution of the management game also provided some observations

how the risks introduced in chapter 2 and 3 have been mitigated in the use

and further development of the domain specific extension for container

7.8 Overview observations

216

terminals. The Simulation Building Block Guidelines and design approach of

chapter 5 enabled to avoid most of the risks described, especially the ones

regarding time consuming execution, thanks to the many automated

processes applied in this case study.

Table 7.5: Summary of risks observed in case study Container Terminal

Process step
Potential risks as mentioned in chapter 2 and 3

Observation
container

Activity 1: Problem description & define conceptual model
Risk 1.1: scope of model developer is limited by model constructs Partly

Activity 2: Select model constructs
Risk 2.1: lack of trust results in no motivation to use domain
specific extension

No

Risk 2.2: lack of insight in model constructs results in ignore
domain specific extension

No

Risk 2.3: use of model constructs that are not suited for
representation of system elements

No

Risk 2.4: system elements can not be represented by model
constructs

No

Risk 2.5: compose model constructs from developed domain
specific model constructs only applied for infrastructure system
elements

No

Risk 2.6: model developers can adjust internal logic of model
constructs

No

Activity 3: Data collection
No risks defined in chapter 2 or 3

Activity 4: Instantiate simulation model for original system
Risk 4.1: model developers do not understand model construct No
Risk 4.2: model developers do not know how to parameterize
model construct

No

Risk 4.3: difficult to compose simulation model, because model
constructs are not available

Partly

Risk 4.4: difficult to compose simulation model by person other
than developer(s) domain specific extension

No !

Activity 5: Verify and validate simulation model for original system
Risk 5.1: mistakes of model developer are hard to overcome No
Risk 5.2: model developers know something is wrong, but cannot
identify what to do about it

No

Activity 6: Analyze outcome of simulation model
Risk 6.1: model constructs do not provide performance indicators
problem owner desired

No

Activity 7: Define solution for analyzed outcome
Risk 7.1: model developers are triggered to find new solutions by
parameters

No

Risk 7.2: model developers are limited by parameters and model
constructs

Partly

 7 Application to container terminals

 217

Activity 8: Instantiate simulation model for identified solution
Risk 8.1: solution is identified that cannot be represented by model
constructs

Partly

Risk 8.2: adjustments of model constructs required to represent
solution are time consuming

No

Risk 8.3: replacement of model constructs causes errors in model
constructs that were linked or connected.

No

 The game participants in the game ‘Containers Adrift’ observed mainly

risks that had to do with the scope of the visualization-simulation tool. The

game had a broader scope than the capability of the visualization-simulation

tool, therefore it was logical that game participants would have further

questions. This game aspect was added on purpose, to teach the game

participants that not everything can be known and decided in the first initial

design, but that decisions on the container terminal might be postponed to

later phases of the negotiations. These risks thus have been encountered, but

on purpose as part of the game design; therefore the observation is marked

with ‘Partly’.

7.8 Overview observations

218

 8 Application to Nestlé production facilities

 219

8 Application to Nestlé production facilities

8.1 Why develop a domain specific extension?

 Nestlé produces food products worldwide. Their product range consists of

many different types of products and includes milk powders, ice cream,

yoghurt, chocolate, water, soup and pet food. The products are aimed at the

top segment of the market, and are distributed in the wide region around the

factory. Distribution is not limited to the country where the factory is located.

The manufacturing processes used at Nestlé are aimed at producing a wide

range of high quality products for an extensive range of customers.

 Each Nestlé factory deals with different challenges, but in general the

factories strive for high efficiency on the production and the packing lines,

taking into account the need for effective and efficient changes when

changing from one product to another within the production system. Improving

the efficiency of a production cycle, for example by producing larger batch

sizes, will have negative effects with respect to required storage space and

product longevity. Further, Nestlé’s R&D departments are constantly inventing

new products. These new products require alternative production process and

different (new) packaging materials. More types of products, produced within

one factory, with different package sizes results in factories where there is a

high level of changeovers for products and packing lines.

 The design of any new factory is based on the product mix expected to be

produced once the factory is completed. However, new products or expansion

plans lead to an adjusted product mix. Consequently, the factory management

needs to find new and alternative means to meet the new production

demands and market requirements. The factory management will stretch the

production capabilities of their factory as much as they can, but eventually,

investment in a factory might be required to meet the requirements of effective

production of the increased product mix. Some of Nestlé’s factories are more

than twenty years old and over time Nestlé has increased product throughput

by 50 to 200% when compared to their original expected throughput.

However, not all Nestlé’s investments in their factories have resulted in the

efficiency and throughput improvements that management expected.

 Nestlé process engineers have few tools they can use to evaluate whether

their suggested improvements will pay-off before implementation, and result in

the desired production capacity. To deal with this problem the process

engineers were considering using simulation technology as a means to

achieve three goals:

8.2 Initial team to develop the domain specific extension

220

1) Improving the design of factory

2) Supporting operational planning

3) Improving and standardizing processes, and planning and testing

product automation ideas before implementing changes on the factory

floor

 Nestlé’s different departments do not have sufficient workload to make

hiring and educating full time simulation model developers economical. They

have a quickly rotating team of process engineers who will use simulation

tools for 1 month in a project at a factory and then for 7 or 8 months do

something completely different. Educating these process engineers so that

they can develop valid simulation models in such an environment would be a

waste of their other talents and time. A domain specific extension specifically

designed for Nestlé and its batch production technology that can be used by

the process engineers would resolve this issue.

 Nestlé started a couple of simulation projects in 2004 to evaluate the use

of simulation tools and different generic simulation environments in the design

of a factory. The ultimate goal was to enable the process engineers to

construct a simulation model of a factory, to perform an analysis and provide

suggestions for improvement. The simulation models should be able to be

used by the operational planning departments and to interact with the SAP

Globe ERP system and the PLCs of the physical equipment used in the

factory. In 2005 Nestlé Nutrition selected Systems Navigator and Rockwell

Software to use the Arena simulation environment to develop a domain

specific extension.

8.2 Initial team to develop the domain specific extension

 The domain expertise for the initial domain specific extension was provided

by a team of product engineers from the R&D center of Nestlé Nutrition.

Together with simulation experts from Systems Navigator and automation

engineers from Rockwell Software they defined the scope and problem

domain for the domain specific extension.

 The simulation experts of Systems Navigator completed the development

of the set of simulation building blocks, including example simulation models

and teaching material. The initial simulation studies have also been performed

by simulation experts of Systems Navigator, supported by subject matter

experts from Nestlé trained with the use of the domain specific extension.

8.3 Specification of the domain specific extension

8.3.1 Scope

 The scoping of the domain specific extension was mainly based on the

experience gained during two simulation studies, one for a fresh milk factory

in Asia and another for a milk powder factory in Europe. These initial

 8 Application to Nestlé production facilities

 221

simulation studies were performed to verify assumptions regarding the level of

detail of the simulation models, the performance indicators, and the technical

implementation. The conclusion of the simulation studies was that the

following assumptions were valid to apply in the design of the domain specific

extension:

• Pipes are not a constraint for the production process, neither is the

cleaning of these pieces of equipment. Given the complexity that of

adding them to the simulation model and the lack of availability of the

design of the piping network at the stage of the design of the

production facility, it is better to keep them out of the simulation model.

• The real factory has production and flow rates with a variance. The

operators have the task to adjust the valves and monitor the equipment

to keep the production rate as close as possible to an optimized rate.

Optimized rate in this case means ‘optimized for the quality of the

product’. The simulation models applied a constant flow rate per recipe

and this provided sufficient insight into the overall production process.

• The production process has a slowly increasing rate during the startup

of the process for a certain recipe. The production of goods during this

period of time is kept out of scope, only the quantity produced during

stable running of the production is considered. The startup and the

cleaning activities are represented by a fixed period of time that the

equipment is not capable of producing.

• Human resources are available and are not considered to be a

bottleneck for the production process.

• The performance indicators used in the simulation studies are sufficient

for the scoping of the domain specific extension.

• The generic concept of Arena tanks and flows is suited for the

modeling of Nestlé production facilities.

 The learning points of the simulation studies and the approved

assumptions have been used by the simulation experts to further describe the

scope and problem domain of the domain specific extension. Before the

document that described these elements was presented to Nestlé, a

workshop was organized to achieve further awareness and buy-in from

Nestlé’s process engineers. In a workshop with 20 experts from the Nestlé

Nutrition R&D center, Figure 8.1 was discussed. Some of these 20 experts

had been involved in the initial simulation studies in 2004. In pairs of two the

experts made adjustments to the drawings to point out experiments they

would typically like to perform and what kind of feedback they expect from the

simulation model to judge the suitability of the adjustments.

8.3 Specification of the domain specific extension

222

Figure 8.1: Example factory to trigger discussion on

experiments and scope (Spruengli et al, 2005)

 The results of the drawings were discussed with the full group. Spruengli et

al (2005) describe the full listing of the identified experiments. Some example

factors or variables of the experiments identified by the process engineers

are:

• Different quality levels of the fresh milk accepted by the trucks

• Change the number of tanks for storage

• Change the size of tanks

• Change the rotation rate of the centrifuge

• Different cleaning schemes of the centrifuge

• Use of the skimmed milk storage, or direct flow towards evaporators

• Change the maximum storage time of product in tanks

• Recipes depending on evaporator production rates

 8 Application to Nestlé production facilities

 223

• Using inline mixing before evaporator or even after storage in powder

bins

• Alignment of production scheme (and cleaning intervals) of evaporator

with spray dryer

• Dry powder storage in bins, totes or bags

• Adapting the pack type settings of the filling machine

• Varying the number of filling machines

• Changing the production rate of filling machine

 The process engineers typically followed the process of the production and

identified the issues they are struggling with in each of the particular

production departments. Spruengli et al (2005) have structured the types of

experiments accordingly:

• Experiments regarding number of equipment

• Experiments regarding parameter settings of equipment

• Experiments with process sequence and dependencies

• Experiments with recipe and product scope

• Experiments with planning and scheduling

 The reporting that the process engineers expected could be structured

according to the same lines, but it was important to notice that the priority of

the performance indicators was in reverse order:

• Quantity of product produced by the production facilities

• Lead time of product in storage from first drop to empty storage

• Production stoppages due to lack of product

• Energy consumption for operating the factory

• Fill rate of storage tanks

• Utilization of equipment

 Figure 8.1, which was used in the workshop to identify the experiments,

resembles a small factory. Nevertheless, the experts in the workshop

concluded that the experiments that they identified and the performance

indicators that they claimed to be interested in were also applicable for larger

factories. Whether a factory was producing 5 or 25 different recipes and 10 or

150 different finished products results in differences for the complexity of the

planning, but the questions that the factory management of large sites have

are the same.

The expertise of the process engineers resembled a broad overlap of

areas within Nestlé production facilities. Some of the process engineers were

mainly involved in the Nestlé Nutrition factories of the future, a greenfield

concept with minimum intermediate storage and less dependency on fresh

milk. Other process engineers were specialized in improving the production

facilities of existing factories where they had to deal with a lot of existing

equipment and processes. The combined knowledge provided a large list of

experiments, with many overlaps (Spruengli et al, 2005).

8.3 Specification of the domain specific extension

224

8.3.2 Problem domain

 The physical objects in the Nestlé production environments were mainly

defined in the workshop with the process engineers to identify the scope in

combination with the equipment for the initial simulation studies. The list of

objects include milk intake station; fresh milk storage tank; centrifuging unit;

inline mixing equipment; batch mixer; dissolver; evaporator; spray dryer;

powder storage; powder filling machine; liquid filling machine; cleaning

equipment. The objects were put in a hierarchy and the top of the hierarchy

for all equipment, except for the cleaning equipment, is a piece of equipment

that contain product (liquid or powder) that flows in and/or out. The most

generic equipment in the top of the hierarchy are the storage silo or the

powder bin. The full hierarchy of physical elements in Nestlé production

facilities is described in Valentin et al (2005a).

 The hierarchy of equipment could be extended much further than only the

mentioned objects, but together with the process engineers of Nestlé it was

decided to keep the following pieces of equipment out of scope of the object

orientation: pipes, circuit stations, individual product addition mixers (e.g.

inline sprayer for oil, honey or chocolate); storage tanks with specific

functionalities, e.g. fermenters. The main argument was that if a system

required this equipment to be included in the simulation model, the generic

piece of equipment, i.e. a storage tank or a powder bin, can be used to

represent these system elements with the addition of extra processes to

represent the additional functionality to handle the product or recipe.

 Nestlé organizes its factory according to a quantity of tonnage to be

produced per recipe or per pack type. The equipment itself is not producing

anything, unless an operator has an order to use the equipment to produce a

certain quantity of a certain product according to a recipe configuration. The

complexity of the system is therefore modeled by the processes of executing

the order and not by the functionality of the equipment.

 The processes consist of all the steps that need to be done to produce an

order. The trigger for the process is an order coming from a production

schedule or triggered by incoming trucks to deliver raw material that needs to

be handled. The steps for an order to be performed are to select equipment to

be used, claim equipment to avoid that several orders are mixed together,

clean any remaining elements from the equipment from previous orders, fill

the equipment with the product, stay in equipment as long as necessary to

reach the desired quality, remove the product from equipment and possibly

simultaneously evaporate some of the product, then release equipment for

next order. The order might include several pieces of equipment in sequence

to be executed, e.g. the example factory in Figure 8.1 had a sequence of

centrifuging and evaporation, and an order might include parallel activities,

e.g. the example factory in Figure 8.1 was active in parallel using the

evaporator, inline mixing and spray dryer.

 Figure 8.2, Figure 8.3 and Figure 8.4 show some alternative process flows

used by Valentin et al (2005) to communicate with the process engineers of

 8 Application to Nestlé production facilities

 225

Nestlé. Using these and other process flows the complexity and the individual

sub-steps in the process flows have been identified.

Intake raw

material

Store raw material

in silo

Produce raw

material to final

product

Fill final product in

SKU
Store SKU

Figure 8.2: Process decomposition of complete process in milk factory

Truck arrives at

factory

Fill storage with
raw material from

truck

Empty truck

leaves factory

Figure 8.3: Process decomposition of milk intake process in Figure 8.2

Select storage silo

for raw material

Wait until raw

material is

consumed for

production

Empty silo of raw

material for

production

Figure 8.4: Process decomposition of store raw milk process in Figure

8.2

8.3.3 Building blocks

 The need for individual equipment and flexible process descriptions was

realized by defining three sets of building blocks that together form the domain

specific extension for Nestlé Nutrition production facilities. The three sets

were: building blocks for equipment, building blocks for process descriptions

and control logic, and building blocks with definitions of recipes and

production plans.

 The separation in three sets of simulation building blocks was a

preparation for the experiments that based on Spruengli et al (2005) can be

summarized:

• Experiments regarding number of equipment and experiments

regarding parameter settings of equipment are supported by the set of

equipment building blocks.

• Experiments with process sequence and dependencies are supported

by the set of process building blocks and the experiments with recipe

and product scope.

• Experiments with planning and scheduling are supported by the

definition building blocks.

 The equipment building blocks were the elements identified in the

workshop with the process engineers, but slightly more combined to reduce

the set of building blocks. The key building block is the silo and in essence all

equipment building blocks have been derived from this building block as

already was defined by Valentin et al. (2005a) in the object hierarchy.

 Figure 8.5 shows the physical interfaces that any type of equipment,

whether a silo, an inline mixer or a spray dryer, encounters. These

8.3 Specification of the domain specific extension

226

interactions are handled by building block elements and the building block

elements receive triggers from process building blocks which are shown in

Figure 8.6. For example, the equipment ‘Silo’ has a building block element

that generates triggers when the flow is stopped at the moment that nothing is

entering or leaving the silo. The trigger is different if an incoming flow is

stopped because the requested quantity is transferred or the maximum level

of the silo is reached.

EQUIPMENT

In flow

In flow

Out flow

Out flow

Drainage
Figure 8.5: Example of physical interaction to a piece of equipment

EQUIPMENT

claim/release

equipment

claim/release

valve

Statistics

Start/stop

flow in/out

Trigger
secondary process

Feedback claim /

release equipment

Feedback claim/

release valve

Trigger flow
is stopped

Trigger finished
secondary process

Figure 8.6: Logical interaction between piece of equipment and process

description

 The equipment will not perform any of the described activities of Figure 8.6

via a process building block. Each of the process building blocks provides a

specific trigger for a function of equipment. As a result the set of process

building blocks consists of ‘claim equipment’, ‘release equipment’, ‘transfer

flow’ and ‘clean equipment’. In addition some process building blocks have

been defined to overrule the state of a piece of equipment, for example the

process ‘assign level’ overrides the current level in a piece of equipment

 8 Application to Nestlé production facilities

 227

(mainly silo) to a new value. The complete list of process building blocks can

be found in Valentin et al (2005a).

 The process building blocks are related to one or two pieces of equipment

and focus on one activity. In the process descriptions defined in the problem

domain (Figure 8.2), several processes are combined that can be observed in

several factories, and that could help in reducing the complexity of the

simulation model. Examples of these advanced processes are batch mixing,

evaporating, and the selection process. These more advanced process

building blocks link different pieces of equipment and different process steps

as described in Figure 8.6. These advanced process building blocks have

been identified, but due to time and budget constraints these were not

detailed at the initial phase of the project. In 2007 the domain specific

extension was stabilized and the budget was made available to extend the set

of process building blocks with these advanced building blocks. Valentin et al

(2007) describe the advanced process building blocks that primarily were a

composition of the existing process building blocks with limited parameters.

 The set of building block with its definitions for recipe and production

schedule is mainly used to provide a standardized way of documenting the

recipes and production schedules in the simulation model. The advantage is

the ability to use the structure in the parameters of the process building blocks

and standardize a user interface in an additional tool. The content of these

definition building blocks is provided in Valentin et al (2007).

8.3.4 Building block elements

 The building blocks that contain product, such as silo, evaporator, spray

dryer and centrifuge have a storage capacity and also contain physical

building block elements to load or unload the product. These building block

elements are called valves. The valves are necessary to enable processes to

simultaneous handle in or out flows if it is permitted in the equipment.

 The physical building block is composed out of physical and logical

building block elements. The physical building block elements represent

storage and incoming valves. The logical building block elements of the

physical building block are the following:

• Claim equipment => allocate the equipment for a specific order or

recipe.

• Release equipment => equipment is no longer in use.

• Claim valve => allocate a valve for a product flow in or out of the

equipment.

• Release valve => earlier claimed valve is no longer in use.

• Clean process => reset the state of the equipment after a certain time

period has passed.

• Statistics => collect data regarding quantity per recipe handled in

equipment, time spent in a certain state (e.g. occupied or cleaning) and

utilization of equipment, storage facility and available valves.

8.3 Specification of the domain specific extension

228

• Error generation => warning to model developer if equipment is asked

to perform a process that cannot be performed due to its current state.

For example an out flow while the storage does not have any content, a

product flow in while the equipment is not claimed or a flow in for recipe

X while the equipment is claimed to handle recipe Y. All these errors

can be overridden with the parameters of the equipment to avoid that

the simulation model stops for a permitted ‘error’. For example, recipe

Y and X are different, but it is allowed to combine them together in the

storage element.

 The product containing building blocks also have building block elements

that depend on the type of equipment. These building block elements have to

do with the product handling of the equipment which is different for an

evaporator or a centrifuge. The building block elements are:

• flow in for quantity X => Enable product transfer into the storage

element of the building block. This building block element does not

apply for a truck offloading station. The batch mixer building block has

a variant that handles different recipes before a state is provided to

perform a flow out. The inline mixer building block has a building block

element variant that enforces that the flow in is for several recipe

ingredients simultaneously.

• flow out for quantity Y => Enable product transfer out of the storage

element of the building block. This building block element does not

apply for a filling machine which produces SKUs at discrete time events

and not a continuous flow. The batch mixer building block has a variant

that checks whether the in-flow is finished. The evaporator, centrifuge

and the spray dryer building blocks have a variant that also trigger the

building block element ‘evaporize flow’.

• evaporize flow => Enable a secondary flow for building block

equipment such as spray dryer, centrifuge and evaporator. The

secondary flow is always transported to a storage unit (variant applied

for centrifuge), can be transported to a storage unit (variant applied for

spray dryer) or is lost (variant applied for evaporator).

 The building block equipment is kept simple, therefore each piece of

equipment has only one building block element per physical functionality that

it represents. No alternative building block elements are defined. In fact, most

of the building block elements that are standard in each building block (e.g.

claim equipment, release equipment and clean process) are exactly the same

for all equipment building blocks. In the design of the building block elements

the assumption is made that if a system element requires a representation

that is not provided by the building block that the model developer should

handle this with the capabilities of the process building blocks.

 The process building blocks also have building block elements that are

standard for each building block and building block elements that vary

depending on the process building block. Each process building block

 8 Application to Nestlé production facilities

 229

consists of at least three building block elements, which are standard in all

process building blocks:

• receive order => order enters the process building block and is

registered to enable reporting and progress monitoring.

• depart order => order departs the process building block and

monitoring of time and number orders handled is updated.

• statistics of order => report on the status of the process building block,

like number orders still to be handled, number orders handled in total

and processing time of orders.

 The process building block has one or more building block elements that

are activated between the building block elements ‘receive order’ and ‘depart

order’. The building block elements between the ‘receive order’ and ‘depart

order’ are comparable. The building block element of the process building

block gives a ‘go’ to the selected equipment to execute the related function(s)

of the equipment building block and its related building block element(s). After

the process within the equipment building block element is finished the order

returns to the process specific building block element for a wrap up process.

Finally the order executes the ‘depart order’ building block elements and

departs the process building block.

 Figure 8.7 shows the generic sequence in a process building block. A

typical example of this generic sequence is the process building block ‘Claim

equipment’. The process specific building block element provides the order

with the correct parameters to claim the equipment, i.e. equipment to be

claimed, recipe to refer to and a code for routing (in this example code 1.01).

The order will execute the logic of the building block element related to code

1.01, i.e. building block element ‘Claim equipment’. Once the code of the

building block element within the equipment building block is fully performed

the order will be returned to the process specific building block element of the

process building block ‘Claim equipment’. Here some statistics of the claim

process will be registered and then the order will depart the process building

block via the ‘depart order’ building block element.

8.4 Implementation

230

Receive order Depart order

Statistics of order

Trigger equipment
to perform process

Equipment signals
process is
executed

Process in
equipment

Process building block

Process specific building block element

Figure 8.7: Sequence of processes in Process building block

 Figure 8.7 and the example of the process building block ‘Claim

equipment’ are simple process building blocks. More complex process

building blocks contain several process specific building block elements that

are handled sequential and/or parallel by the order. The process building

block ‘Transfer’ is an example of a complex process building block that

triggers processes to be performed sequential and parallel. Sequential the

order prepares the physical equipment of the source of the product to be able

to send the product (call the building block element ‘claim valve’ with code

1.10a) followed by preparing the physical equipment of the target of the

product to be able to receive the product (call the building block element

‘claim valve’ with code 1.10b). Parallel activities are the triggers of the process

building block for the physical flow between the source and the target via the

‘flow out’ and the ‘flow in’ building block elements of the equipment building

blocks.

8.4 Implementation

8.4.1 Extension of simulation environment

 The domain specific extension for Nestlé has been developed in the

generic simulation environment Arena. The main reason is the fact that Arena

is delivered by Rockwell Software, a company that is also responsible for a

majority of the factory control software used by Nestlé. Nestlé thereby has the

option to further integrate the simulation models with the factory control

software by selecting the simulation environment that is provided by the same

company.

 The building blocks that are part of the Nestlé domain specific extension

are divided into three sets. Figure 8.8 shows a part of the set of equipment

building blocks and Figure 8.10 shows a part of the set of the process building

blocks. The third set of building blocks relate to definitions and settings such

as recipes and package types. Figure 8.8 and Figure 8.10 are not the initially

 8 Application to Nestlé production facilities

 231

defined sets of building blocks, but they represent a part of the sets that were

available in 2007. The set of equipment was initially developed for Nestlé

Nutrition factories, and then extended with building blocks representing

equipment used specifically in pet food factories (e.g. PetfoodMixer), coffee

factories (e.g. Roaster) and ice cream and yoghurt factories (e.g.

IceCreamFiller). These new building blocks follow the same principles

described in Figure 8.5 and Figure 8.6. For example, the ‘Roaster’ building

block contains all the same building block elements as the ‘Silo’ building

block, except for determination of dedicated coffee process ‘aging’ in the

roaster equipment.

 Each of the equipment building blocks has a different visual representation

that appears when the building block is instantiated in the simulation model.

Figure 8.9 provides the example of the visual representation of the ‘Silo’

equipment building block. The bar inside the silo shows the relative filling

grade of the storage building block element, the arrow shows the current flow

direction (outgoing) and the numbers at the bottom give insight in the state of

the building block regarding the current recipe, order and use.

Figure 8.8: Part of set of equipment building blocks of Nestlé domain

specific extension (Valentin, 2007)

8.4 Implementation

232

Figure 8.9: Visual representation of equipment building block 'Silo'

during simulation run

 The set of process building blocks was extended by performing projects in

other environments than Nestlé’s Nutrition sector. Process building blocks

such as ‘Claim equipment’ and ‘Filling process’ are used in simulation models

for all domains. In addition some processes were identified that are specific

for domains at Nestlé. For example, the process building blocks

‘PetfoodExtrusionProcess’ and ‘PetfoodMixProcess’ are specific for controlling

the equipment building blocks ‘Extruder’ and ‘PetfoodMixer’, both of which are

only applicable to pet food factories.

Figure 8.10: Part of set of process building blocks of Nestlé domain

specific extension (Valentin, 2007)

 The initial design of the equipment building blocks included a hierarchy

and inheritance structure. Arena does not allow these kinds of structuring and

Arena also does not allow instantiation of building block elements as separate

modules within a building block. The building block elements are therefore

completely implemented within the building block and the user interface for

parameter settings and visualization of the state of the building block element

is an integral part of the user interface and visualization of the building block.

The development of the physical building blocks was performed by first

 8 Application to Nestlé production facilities

 233

implementing the ‘Silo’ building block with all its building block elements and

then duplicating this building block to represent the other building blocks of

Nestlé Nutrition, e.g. ‘evaporator’, ‘extruder’, ‘centrifuge’ and ‘in-line mixer’. In

the same way the set of equipment building blocks was extended for the

representation of system elements of pet food, coffee and ice cream.

 Figure 8.7 and the explanation around the process building blocks and

their building block elements already described the use of coded triggers for

building block elements of the equipment building blocks. Within Arena this is

technically realized by defining unique stations for the equipment building

blocks, followed by a decision tree that indicates which of the codes of a

building block element has to be executed, similar to the routing mechanism

used for Supply Chains (see chapter 6).

 The applied design principle was to keep the equipment building blocks as

simple as possible. This also included the availability of data of the equipment

building block that enabled representation of its state. The applied rule of

thumb was that all the information that an operator can see at his/her screens

to make decisions regarding the process should also be available to the

process building blocks in the simulation model. Therefore, most of the data

regarding the state of an equipment building block were made public. Arena

has a special tool for easily identifying the correct pointer to a data reference

of a piece of equipment, called the ‘Expression builder’. Figure 8.11 shows an

example of the expression builder used to identify the data reference of the

current recipe handled in a silo building block.

Figure 8.11: Expression builder for reference of building block

8.4 Implementation

234

The Nestlé process building blocks interact with the equipment building

blocks and evaluate their state to make decisions, while the Arena generic

modules were used for further evaluation and handling of the entities. For

example, in Figure 8.12 we can see the process building blocks for selecting

equipment. These building blocks use the set of PetFoodMixer building blocks

and search for a PetFoodMixer that is not in use. Additionally, an Assign and

Delay module of the generic simulation environment Arena were used to keep

track of information in the system and schedule an event to select another

mixer or the same mixer again.

Figure 8.12: Mixture of building block processes and basic Arena

modules in simulation model of pet food factory

 The use of generic model constructs of the simulation environment Arena

is also applied for exception handling when the simulation model should not

give a user error, but handle the process accordingly. An example is a transfer

from a source to a target that will trigger an error when the target is full and

cannot handle any more quantity (see explanation underneath Figure 8.7). In

the user interface of the process building block ‘Transfer’ the model developer

has the option to stop the error from happening, and trigger a specific process

in case the error occurs. The correct handling of the process of a full target

destination is different in every factory, and even within factories the same

trigger is handled in different ways depending on the state of the factory. For

example, a trigger that a silo is full in a pet food factory in the UK can mean

that the production is stopped, or if 95% of an order is completed it will

indicate a need to start preparing the next order in a new silo. This variety of

factory specific requirements cannot be implemented into building blocks of a

domain specific extension, because the set of building blocks would grow

exponentially with every new project. The concept we applied is shown in

Figure 5.6 and as part of an actual simulation model of a Nestlé system in

Figure 8.13.

 8 Application to Nestlé production facilities

 235

Figure 8.13: Example simulation code how to handle

unexpected stop of flow

8.4.2 Additional tools

 The domain specific extension for Nestlé’s production systems is extended

with an additional tool to support the generation, data entry and analysis of

the outcome of the simulation models. The additional tool is an interface that

easily can be configured to match a specific simulation model. The tool

contains links to the user interfaces of the simulation building blocks that are

instantiated in the simulation model for the equipment and the definitions of

recipes and production plans. The tool further contains a mechanism to import

the reports from the simulation building blocks and combine the different

details into one overall sheet easily providing answers to the main question

whether the production plan could be completely produced and if not, what

the problem is. The tool was easily adjustable for a specific project. The tool

was developed as an Excel interface that represents data for one scenario

and as a Scenario Navigator (Gast et al, 2008) database that represents data

from the scenarios analyzed during the simulation model run.

8.4 Implementation

236

Figure 8.14: Input examples via Scenario Navigator for simulation model

Figure 8.15: Overview performance indicators via Scenario Navigator

 The simulation model was interfaced via Scenario Navigator for input

parameters, the collection of results and to trigger a planning algorithm. Input

data for orders and availability of packing lines is shown in Figure 8.14. On the

left hand side a list of scenarios is shown, each with its own data set of a

performed or planned simulation. The key performance indicators of the

selected scenario are shown in Figure 8.15. More detailed statistics can be

viewed and evaluated by pressing buttons at the bottom of the screen. These

 8 Application to Nestlé production facilities

 237

performance indicators are also available in reports and can be used to

compare the results of different scenarios.

Figure 8.16: Extension to define production plan for simulation

experiments

 The processes in the simulation models are triggered by a production plan.

In the simulation studies it turned out to be quite a challenge to define a valid

production plan for a factory that is not yet in operation. In the simulation

studies, every time the same evaluations were made to define the production

planning, therefore an initial attempt has been made for the pet food factory in

Hungary to define a production planning system based on the production

requirements and the factory capability as defined in the simulation model of

the factory. Based on the initial tool, called a ‘plan-generator’, a VisualBasic

program has been made as an extension to Scenario Navigator that is

capable of defining a production plan for a Nestlé factory based on data entry

of the simulation experiment. The integration of the ‘plan-generator’ with

Scenario Navigator enables the production plan to be used directly into the

simulation experiment and also to enable easy experimentation with

alternative production plans.

 The custom made extension is shown in Figure 8.16 with the example of a

pet food factory in the UK. This application evaluates the orders allocated to

packing lines and defines a sub optimal plan for the extruders to feed the

packing lines. A planner can manually improve the planning for the extruders

8.5 Use of building block guidelines

238

after a simulation run and, via several iterations, improve the extruder plan

and reduce stock outs for the filling lines.

8.4.3 Support to users

 The complete domain specific extension for Nestlé is much more than the

three sets of building blocks discussed above. The domain specific extension

was provided with extensive documentation for training and self-learning. A

total of 75 small simulation models were developed to show the specific

behavior of building blocks and combinations of building blocks. These range

from a simulation model that shows how a quantity is transferred from one silo

to another silo using the ‘Transfer’ process building block, to more complex

situations like the selection of a silo to fill and empty the extruder process in a

pet food factory. These small simulation models were used for several

reasons: one, to test whether the building block is working correctly; two, to

demonstrate that the building block is working; three, to demonstrate the

possible use of building blocks in simulation models; four, as a teaching cases

to introduce how to use the building blocks; and five, to test whether the

building block still provides the agreed behavior after changes or extensions

have been made to the building block or the set of building blocks.

 The small simulation models have been described in the user manual of

the Nestlé domain specific extension (Systems Navigator, 2007) together with

the concept of building blocks and the user interface of all the building blocks

for Nestlé. Version 2 (Systems Navigator, 2007) contains all the simulation

building blocks and not only the initial sets for Nestlé Nutrition. The second

version of the user manual has been part of a training package provided to 13

Nestlé process engineers from different domains including background

information, example simulation models and assignments based on the small

simulation models.

8.5 Use of building block guidelines

 The previous case study described in chapter 7 aimed at quick model

development with a very high level of abstraction. Realism and accuracy was

not necessary in these simulation models and no adjustments were needed

for the simulation building blocks of the domain specific extension to support

different simulation studies. The requirements and the planned use by Nestlé

is completely the opposite. The simulation models should contain a high level

of accuracy and the simulation models should contain flexible logic, yet

capable of handling complex decisions in the process of the system. Further

the domain specific extension and its additional tools should be ready to be

extended in any possible way:

• New infrastructure => new pieces of equipment within Nestlé Nutrition,

but also support for equipment of other Nestlé domains, e.g. coffee, pet

food and ice cream.

 8 Application to Nestlé production facilities

 239

• New processes => alternative ways of operating a factory by reducing

intermediate storage, producing new types of products, producing

according to different rules or regulations and producing products

completely different than milk powder, e.g. pet food, coffee capsules or

yoghurt ice cream.

• Enhanced model development => Nestlé management assumed that

every simulation model would be faster thanks to the gained

experience, but more important due to the improvement of the set of

building blocks and the additional tools.

• Enhanced model statistics => the performance indicator requirements

of the domain specific extension were based on the initial simulation

models for Nestlé Nutrition factories. Especially the simulation models

concerning the pet food production process brought in new

requirements to be able to analyze the reasons why the production

process got stuck before the end of the complete production cycle.

• More model use => the simulation models were not only for greenfield

systems, but also to improve existing systems and to provide

suggestions for operational planning optimizations.

• New users => within the Nestlé Nutrition research and development

center a process engineer stays only a couple of years and participates

in several projects of which only one or two include simulation

modeling. Therefore, new process engineers get involved in the model

development. However, the analysts only look at one simulation model

as they are only interested to analyze the results of their own factory.

Therefore every new simulation model that is developed is analyzed

together with a new group of experts.

• Enhance user friendliness => experiences gained in the model

development of a simulation model and the analyses of the results via

the additional tools had to lead to improvements of the user

friendliness. For example, initially it was decided not to develop

advanced process building blocks, in 2007 these advanced process

building blocks have nevertheless been developed to replace the

complete equipment selection by one simple process building block.

Guidelines related to self-contained building blocks

Simulation Building Block Guideline 1: data belonging to a building block

should not be accessed by other building blocks directly, but only via defined

interfaces.

 The interface definition has been widened for the data availability of the

equipment building blocks. Figure 8.11 shows how data could be retrieved via

variables that are referred to anywhere in the simulation model logic, but the

data is provided via a specific definition within the building block. Status data

was thus available for the model developer outside the building block,

because it was decided that the data exchange was open.

8.5 Use of building block guidelines

240

 On the other hand, data that was not provided to the model developer via

the Arena Expression Builder was not available outside the simulation building

block. As a result, most of the statistics of process building blocks or statistics

regarding production blockades were unknown for the inexperienced model

developer until they were produced in the standardized reports of Scenario

Navigator. On purpose we mention ‘inexperienced model developer’, because

within the generic simulation environment Arena no data can be hidden, thus

anything can be obtained by experienced users who are familiar with the inner

working of the simulation building block.

Simulation Building Block Guideline 2: a simulation building block consists of a

core and building block elements to represent functions and services.

 The equipment building block and the process building block contain a lot

of building block elements, which are structured and reused among the

different building blocks. See the description in section 8.3.4.

Simulation Building Block Guideline 3: data belonging to a building block

element can be accessed by other building blocks elements of that building

block without using the interfaces of the simulation building block.

 The implementation of the building block elements in Arena is included in

the building blocks, whereby the boundaries of the building block element are

set by the developer of the building block with some color boxes and texts. In

the logic itself is not possible to distinguish building block elements. State

parameters that are defined within one building block element, for example

the state of a valve in the physical equipment building block element, can be

evaluated by all logical elements in the building block without using further

interfaces.

Guidelines related to interoperable of building blocks

Simulation Building Block Guideline 4: system elements that appear in

different variants and processes in a system are represented by a family of

building blocks and building block elements.

 The clearest use of families in the domain specific extension for Nestlé

production facilities is the use of three different sets: equipment, processes

and definitions. The set of equipment building blocks can be separated into

two families: the equipment that contain product (liquid or powder, or coffee,

or pet food, or ice cream) and the equipment that is used to clean, for

example the ‘cleaning station’, the ‘tote-cleaner’ or the ‘truck cleaning station’.

 The process building blocks are all part of the same family that apply the

same base structure as demonstrated at Figure 8.6. This family can be

divided in sub-families:

 8 Application to Nestlé production facilities

 241

• logic process building blocks => process building blocks applicable for

logic process steps such as ‘Claim Equipment’, ‘Release Equipment’ or

‘Select Equipment’.

• execute process building blocks => process building blocks that

execute a process with one or more pieces of equipment, for example

‘Transfer’, ‘Clean equipment’ or ‘Fill process’.

• specialized execute process building blocks => process building blocks

developed to perform specialized processes with specific equipment of

Nestlé Nutrition or Nestlé Pet food. For example, ‘Evaporate process’,

‘Pet food mix process’ and ‘Inline mix process’.

Simulation Building Block Guideline 5: building blocks are of different types,

most common to have building blocks for infrastructure and for control.

 The infrastructure and control guideline has been applied as way of

working from the start of the project. The concept of simple equipment

controlled by detailed and advanced processes has been one of the points

that were verified with the initial simulation studies. This concept has been

applied in the design of the building blocks since the initial simulation studies,

resulting in the three sets of building blocks; equipment, processes and

definition.

 The control within the simulation models has been further improved by

supporting the process building blocks with the full availability of the generic

modules of the Arena simulation environment.

Simulation Building Block Guideline 6: complex control mechanisms should be

represented using control building blocks linked together to represent a flow.

 The need for this guideline already appeared in the discussion of the

experiments with the process engineers (Spruengli et al, 2005). The process

building blocks have one entry and two or more exits. The main aim of these

connectors is to put the process building blocks in sequence and enable an

order to be executed following the defined sequence. An example is shown in

Figure 8.12 where several process building blocks are used in sequence to

select which equipment to use regarding a mixing process.

Simulation Building Block Guideline 7: building blocks should be aware of

each other’s existence within a range of applicability.

 The references to equipment between process building blocks and

equipment building blocks is achieved in two different ways, both to be

defined in the parameters of the process building blocks as shown in Figure

8.17. The left user interface shown in Figure 8.17 represents a fixed link

between the process building block and the equipment by referring to the

name of the equipment selected from a pull down list with all equipment

instantiated in the simulation model. Every entity that enters this process

8.5 Use of building block guidelines

242

building block will be triggered to perform a logic for a secondary process

same equipment building block, in this example ‘Filling_Can_1’.

Figure 8.17: User interfaces of process building block 'Claim equipment'

(left=reference via fix name; right=reference via pointer)

 The right user interface shown in Figure 8.17 uses a dynamic link where

an order previously has received an attribute that contains a pointer to an

equipment building block. Within the process block the order will be sent to

execute the process to a previously assigned equipment building block of

which the reference is stored in the pointer ‘Point_PackingLine’. The pointer

could have been set in several ways, most common is the use of the process

building block ‘Assign pointer’ in which a specific equipment is allocated to the

pointer, or the use of the process building block ‘Select Equipment’ in which a

suited piece of equipment is allocated based on conditions and a set of

equipment.

Guidelines related to replaceable unit of building blocks

Simulation Building Block Guideline 8: extension of a domain specific

extension can be achieved by introducing new building block elements for

existing simulation building blocks.

 The initial set of simulation building blocks for equipment focused only on

Nestlé Nutrition. New building blocks that have been developed are for

example the ‘extruder’, ‘grinder’ and ‘pet food mixer’ for pet food factories, the

‘roaster’ for coffee factories and the ‘ice cream filler’ for ice cream factories.

The new building blocks all have been duplicates of existing building blocks.

For example, the ‘extruder’ is based on the ‘evaporator’ building block, with

three adjusted building block elements. In case of the extruder it has been the

ability to have multiple in-flows and the processing time before the out-flow

could start.

 The new process building blocks have been composed in the same way by

copying existing process building blocks and adjusting the process specific

building block or by adding more parallel or simultaneous process specific

building blocks.

 8 Application to Nestlé production facilities

 243

Simulation Building Block Guideline 9: simulation building blocks and building

block elements of the same family follow the same interface requirements.

 All equipment building blocks part of the family of ‘product containing’ have

the same codes for calling building block elements. At page 230 an example

is described of the ‘claim equipment’ building block element with code 1.01.

Other building block element interface codes that are used are code 1.02 for

the building block element ‘claim regulator’ and code 1.04 for building block

element ‘flow in’.

Guidelines related to encapsulating internal structure of building blocks

Simulation Building Block Guideline 10: simulation building blocks hide inner

working.

 In simulation building blocks developed in Arena only the visual interface

and the user interface are accessible for the model developer. The model

developer can adjust the visual interface and set parameters in the user

interface, but the model developer is not capable of viewing or adjusting the

inner working of building blocks. This was a given after the selection of Arena

as the generic simulation environment by Nestlé.

Simulation Building Block Guideline 11: advanced model developers have to

be able to unhide the inner logic and see how the processes and attributes

are implemented.

 This is not possible for model developers as described in Simulation

Building Block Guideline 10, due to the selection of Arena. As a workaround

the process building blocks have the ability to be linked to generic model

constructs of Arena via the normal connectors (Figure 8.12) or for specific

connectors used in exception processes (Figure 8.13).

 Mainly the second option allows experts in Arena model development to

change the state of equipment via generic model constructs and thus enable

the process to be continued. In the support material simple examples are

provided for the use of these exception codes. The simulation models

developed by the experts of Systems Navigator show advanced use to enable

the production processes to continue as described by the factory analysts.

Guidelines related to providing useful services or functionality of building

blocks

Simulation Building Block Guideline 12: system elements should be

represented by building block elements that can be extended with custom

instantiations of model constructs of a generic simulation environment.

 Figure 8.13 shows how the specific process building block element of the

process building block ‘Transfer’ is extended with extra decision logic to

handle an early stoppage of the transfer. Similar capabilities are applied to the

8.5 Use of building block guidelines

244

process building blocks ‘inline mix process’, the ‘extruder process’ and ‘truck

offloading process’.

Simulation Building Block Guideline 13: a building block can connect to model

constructs of a generic simulation environment.

 The process building blocks all contain standard Arena connectors to

enable a process to be composed consisting of Nestlé process building blocks

and Arena generic model constructs, for example Figure 8.12. The main

reason is that the Nestlé simulation models need to contain quite some

decision logic by applying reuse. Functionalities available in the generic model

constructs of Arena do not need to be provided in Nestlé specific process

building blocks. Therefore the simulation models of Nestlé systems commonly

will be composed partially with Arena generic model constructs such as

‘Assign’, ‘Decide’, ‘Dispose’ and ‘Delay’.

Guidelines related to precisely defined interfaces for building blocks

Simulation Building Block Guideline 14: the model developer has to adjust the

parameters of a simulation building block via a user interface.

 This guideline has been achieved by the development of an Excel template

and a Scenario Navigator start database described in section 8.4 at page 235.

Both the template of Excel and the start database of Scenario Navigator have

been parameterized for several simulation studies to enable factory analyst to

enter the data for the experiment and view the results of the performed

experiment (Excel) or experiments (Scenario Navigator).

Simulation Building Block Guideline 15: use of domain terminology in the user

interface provides insight in the suitability of a building block for a certain

purpose and the meaning of its parameters.

 The suitability of the equipment building blocks was very clear for the

Nestlé process engineers as they recognize the system element from its

representation in the set of building blocks (Figure 8.8) and its visual

representation in the simulation model (Figure 8.9).

 The decision which process building block was to be used was more

difficult for the model developers, as this required also a mentality change

towards process preparation. The main example was the need to use the

process building block ‘Claim equipment’ to enable the use of a piece of

equipment for an order. The model developers have mainly been introduced

to this concept via their training and through the error messages they received

when they forgot a process step. Figure 8.18 shows an example of an error

message that a model developer receives during run time because the

equipment ‘Skimmed milk Silo 2’ has not been claimed to execute an order

triggered by the process building block instantiated in the simulation model

with the name ‘Transfer Milk’.

 8 Application to Nestlé production facilities

 245

Figure 8.18: Error provided to support model developers in

understanding model logic.

Simulation Building Block Guideline 16: parameters in a user interface of a

simulation building block have to be checked for validity of the values.

 Checks for the parameters settings are mainly carried out for the values of

the equipment building blocks. Examples are the checks on storage size and

the maximum rate of a product flow via a valve which both should be real

numbers larger than zero. Most parameters of the process building blocks are

composed expressions based on attributes or references to the recipe

configuration. Therefore, the checks whether the entered data is valid cannot

be performed in the parameter setting of the user interface, but has to be

verified during the execution of the simulation model.

Simulation Building Block Guideline 17: parameters in a user interface of a

simulation building block should have default values whenever possible.

 The parameters in the equipment and process building blocks all have

predefined values. The name of the building block is automatically defined, as

is the identification of the valve and a default pointer to a piece of equipment.

The equipment parameters like storage quantity and flow rate of the valves

are also set with default values, but these are based on the initial simulation

studies performed for Nestlé Nutrition. The values therefore are not the same

for other facilities within the Nutrition department, and even less for facilities

for ice cream, coffee or pet food.

 Providing initial values mainly turned out to be useful for the small example

simulation models, but for the real simulation studies, the values were invalid.

Using the configuration of the Excel or Systems Navigator interface the initial

parameter settings in the simulation model were overruled by values

appropriate for the system to be represented.

Simulation Building Block Guideline 18: The user interface of a simulation

building block should provide support for the model developer.

 The texts in the user interface have been chosen to reflect as much as

possible the terminology applicable within Nestlé, but in some cases it turned

out to be difficult to have a common term that reflects its purpose for process

engineers of Nestlé Nutrition as well as process engineers of the coffee, ice

cream and pet food departments. In equipment specific for a certain

8.5 Use of building block guidelines

246

department, for example the ‘Pet food mixer’, the terminology has been

agreed with the specific process engineers.

 The main support for the user interface has been provided via the user

manual (Valentin et al 2007). In this document each simulation building block

is described with its user interface and for each parameter an explanation is

given that matches the terminology of the domain. Whenever necessary, a

specific explanation of a parameter is provided for multiple domains.

Simulation Building Block Guideline 19: The user interface of a simulation

building block can be used by model developers to select building block

elements and set their parameters.

 The building blocks of the Nestlé domain specific extension do not have

the opportunity to have their building block elements replaced. The equipment

building blocks are dedicated to a specific equipment and therefore replacing

the building block element would mean to replace the physical building block

(for example replace a evaporator by a spray dryer in a Nestlé Nutrition

production facility).

 The process building blocks consist of simple and more advanced building

blocks. If the building block elements of the advanced building blocks do not

match, then the advanced building block should be replaced by a combination

of simple process building blocks with Arena generic model constructs.

Simulation Building Block Guideline 20: a simulation building block has a

defined interface that receives triggers, requests, entities, or events from other

simulation building blocks in the simulation model and redistributes these

internally.

 The equipment building block uses the code determined by the process

building block for the internal routing. The concept is similar as the routing

mechanism used for supply chains (see chapter 6). The routing within the

process building block is described in Figure 8.6, and an entity does not need

a mechanism to redistribute the triggers internally in the process building

block, because a sequence is used in combination with unique return labels.

Simulation Building Block Guideline 21: the interface of a simulation building

block contains evaluations of the state of the trigger and the building block to

determine whether the building block can handle the trigger.

 Figure 8.18 is the typical example of an error message that is provided to

the model developer if an equipment building block is triggered to perform an

activity that does not match with its state. Important parts of the error

message are the name of the process building block where the trigger initiates

and the name of the equipment building block where the error occurs. This

helps the model developer in identifying whether the mistake is made in the

process building block and points to the wrong equipment, or that the process

 8 Application to Nestlé production facilities

 247

for the order is incomplete and he/she should first update the state of the

equipment building block.

 Similar error messages as in Figure 8.18 are provided if a process building

block is demanding an activity that an equipment building block cannot

perform. It is very unlikely for the model developer to receive these kinds of

error messages, because almost all equipment building blocks have all the

building block elements and can thus handle all triggers from process building

blocks. An exception is if a trigger intended for a product containing building

block is sent by accident to a building block of the family of cleaning building

blocks.

Simulation Building Block Guideline 22: a simulation building block contains

pictures, numbers and other elements to support visualization of the state and

key performance indicators during simulation run.

 The visualization of an example equipment building block is provided in

Figure 8.9. This screenshot shows the state of the equipment with some of its

key performance indicators. The visualization of this building block is used for

validating the simulation model, and for demonstrating the process to the

involved stakeholders before diving into the details of the reports provided in

Excel or Scenario Navigator.

8.6 Simulation studies performed

 The simulation building blocks and building block elements were applied in

6 different projects at Nestlé Nutrition factories worldwide in the period of

2005-2007. Simultaneously the set of building blocks were extended to handle

the simulation of processes and equipment at Nestlé factories for pet food, ice

cream, coffee and soups. The extended domain specific extension for Nestlé

factories was then applied in another 9 projects worldwide in 2006 and 2007.

Further, over the period of three years a total of 28 process engineers were

trained to use the capabilities and details of the Nestlé domain extension to

analyze and develop simulations for the different Nestlé departments.

 Two out of the 15 simulation projects were selected as examples. The first

one is an existing Nutrition factory that is extended with new equipment. This

simulation study was one of the first to be executed with the domain specific

extension. The second example is a huge pet food factory in the UK that has

received enormous investments over the previous years, but evaluation of the

results show that the business case of these investments is not achieved. Via

minor investments and improvements of the weekly production plan the

expected production quantities should be achieved. The pet food factory study

was one of the latest of the 15 studies using the domain specific extension

release of mid-2007, which included the advanced Scenario Navigator

interfacing. The other simulation studies performed for Nestlé using the

domain specific extension are briefly described at the end of this section.

8.6 Simulation studies performed

248

8.6.1 Simulation study Milk factory in India – Roadmap investment coming

years

 In 2005 a Nestlé factory in India was in the process of extending its group

of farmers who provide fresh milk. The milk gathered from the farmers is used

to make coffee milk powder. The factory management foresees that

transferring a wet mixture into dry powder will be challenging for the

evaporation and drying process. More fresh milk will increase the potential

capacity of the factory, but fresh milk needs to be standardized and handled

within a specific time to maintain freshness and quality.

 The management of the factory identified a set of potential investments

that might prevent a bottleneck situation during drying and evaporation, but it

did not know which of these investments will provide the best result for factory

performance. More important, management did not know whether investment

in, for example, an extra evaporator would not cause problems in another part

of the factory, for example with the storage of skimmed milk, and thus only

move the bottleneck within the production system.

 A simulation study needed to be performed to evaluate the effect of

different investments in the factories and to provide insight into a combination

of possible results. Equipment must be included and excluded, and provided

at different rates and configurations in the simulation models to allow the

process engineers to determine the effects of seasonal changes in milk

production and of shutting down parts of the production system to allow for

maintenance.

Truck handling Storage fresh
milk

Centrifuge Storage
standardized milk

Evaporation &
Dry blowing

Thermising
fresh milk

Figure 8.19: Overview equipment in simulation of Nestlé Nutrition
factory

 The scope of the simulation model was from the intake of fresh milk using

trucks to the production of dry powder stored in totes. In between processes

include temporary storage, centrifuges, mixing of product via inline batching

processes and predicted bottlenecks at evaporators and/or blow drying

systems. The equipment in the nutrition factory is shown in Figure 8.19, while

an overview of the equipment in the part of the factory used for storage of

standardized milk during the simulation run is shown in Figure 8.20.

 8 Application to Nestlé production facilities

 249

Figure 8.20: Silos for milk standardization in Nestlé Nutrition factory

 The validation of the factory simulation model was performed together with

the process engineers and operation managers of the Indian factory. These

persons were given a detailed explanation of the different steps and details

implemented in the simulation model. Data was gathered about an actual

week, and the statistics of the simulation model were used to make

predictions for the number of trucks required, the levels of products in tanks

and silos, and to determine when activities would start and stop. These

predictions were validated by the process engineers and, with some

exceptions for the assumptions made with respect to trucks in the system,

these predictions were correct.

 The results of the simulation model are stored in an Excel interface. This

interface contains all the data regarding utilization, line efficiency and

production figures, similar to the data used by the factory management. Two

examples of information represented in the Excel interface are shown in

Figure 8.21 and Figure 8.22. The graph of the trucks in the system clearly

shows the daily, repeating, process of trucks arriving in a limited time slot and

waiting for the limited resources for handling the trucks. The graph of the tons

of milk shows the quantity of stock at a given time for all different types of

tanks, ranging from fresh milk just out of the truck to the intermediate storage

for the evaporation process. The capacity in the factory and the irregularities

in fresh milk delivery cause some production days where the factory is almost

empty, while on other days there is up to 250 tons of milk in stock in the

factory.

8.6 Simulation studies performed

250

Figure 8.21: Number of trucks in factory for emptying and cleaning

Figure 8.22: Tonnage of milk and semi products in factory

 The first set of experiments was used to identify whether an increase in

intake of fresh milk, i.e. more trucks coming per day, will result in a problem.

The results of these experiments clearly showed that additional investments

needed to be made in fresh milk storage to handle the available milk, and in

increasing the production to avoid that milk stays too long in the system and

needs to be thrown away.

 Simulation experiments were performed to study the effects of variations to

the evaporation activities. The variants could be entered simply by selecting

an alternative in the Excel interface. In the simulation model this resulted in

enabling and disabling all equipment that is no longer used or applicable for

this particular situation. A part of the interface that refers to these settings is

shown in Figure 8.23. As part of the verification process all the experiments

were run once to identify the technical and conceptual correctness of the

scenario. Batley (2006) claims to have performed over 150 different

experiments within one week to identify the best solution and to define an

 8 Application to Nestlé production facilities

 251

investment roadmap for the coming years. These experiments included

selecting the scenario of use of spray dryers in combination with the need for

storage capacity, product changes and recipe extensions in both the lean and

the flush season.

Figure 8.23: Interface to change way of evaporating per production line

8.6.2 Simulation study Pet food factory in UK – Extension and operational

use

 A pet food factory in the UK received over the past 25 years several

investments, including several new machines to produce dry pet food that

deliver products to approximately 30 filling machines. However, space of the

factory is limited and the internal transport and production lines have become

extremely complex. An example of the routing issues, designed by one of the

analysts of the factory, who called this a ‘simple flow’, is shown in Figure 8.24.

 All the new investments have increased the production capacity of the

plant, but a couple of the packaging lines still work at a low efficiency rate.

Logging of the factory machine data showed that this low efficiency was

caused by a lack of available components which are produced by extruders,

or by a temporary lack of ability to transfer a product from storage bins to the

packing lines. The planners and operators had several potential solutions for

these problems, these are listed below:

• The planners could try to make a better match between production of

components at extruders and packing at filling lines.

• The selection of the storage location of components could take into

account the need to use the filling lines efficiently.

• The mechanism used to select components and to blend them in

temporary storage could be changed.

• The planning of extruders and packing lines after issues arise could be

adjusted.

8.6 Simulation studies performed

252

EXT 6

Comp
onent

Stora

ge

EXT 4EXT 3EXT 2 EXT 7EXT 1

Comp
onent

Stora

ge

Comp
onent

Stora

ge

Comp

onent

Stora
ge

Comp

onent

Stora
ge

Comp
onent

Stora

ge

Comp
onent

Stora

ge

Comp
onent

Stora

ge

Comp
onent

Stora

ge

Comp
onent

Stora

ge

Comp
onent

Stora

ge

Comp
onent

Stora

ge

Comp
onent

Stora

ge

PACK

1

PACK

5

PACK

4

PACK

3

PACK

2

PACK

10

Elevator

Elevator

ElevatorElevatorElevator

BLEND BLEND

BLENDBLEND

Bakers
Complete
Transfer

PACK
11

PACK
12

BLEND

BLEND

Dry mix Storage

BC

Mixer

BC

Mixer

Storev

eyor

Storev

eyor

Storev

eyor

EXT 5

PACK
6

PACK
7

PACK
8

BLEND

BLEND

SC91

SCREW CONVEYOR X2

GRIND

Feed Bin

GRINDER
1&2

GRIND

Feed Bin

GRIND

Feed Bin

GRINDER 6

GRIND
Feed Bin

GRIND
Feed Bin

GRINDER 3

GRIND
Feed Bin

GRINDER 4

PACK
13

Extrusion
Feed Bin

Extrusion
Feed Bin

Extrusion
Feed Bin

Extrusion
Feed Bin

Storev

eyor

Figure 8.24: Simple process flow and routing in pet food factory

 The decisions that need to be made are complex and require a lot of

information about the current workload at the factory to understand and model

future activities. The planners and operators currently use rules of thumb to

manage their system and make operational decisions; especially when

making an optimal fitting plan. This takes time, but only makes sense if it is

updated with data on the latest state of the factory. The idea was to produce a

simulation model of the factory, link this to the planning and use it to represent

possible future situations to determine how to execute future plans. The

 8 Application to Nestlé production facilities

 253

results can be used to improve any plans, or even better, can be included in

an optimization algorithm to give a perfect plan for the coming day(s).

Figure 8.25: Part of storage available in pet food factory

 The simulation model for the pet food factory has been instantiated using

specific additional simulation building blocks. Figure 8.25 shows a part of the

equipment definition of the simulation model, with at the top of the screenshot

the specific pet food building blocks ‘Extruder’ to produce the components of

dry pet food to be mixed in the boxes.

 The verification of this simulation model was performed by evaluating,

order by order, which equipment was used in which order and for what

duration. Given the complex system interaction and equipment allocation

these steps were done together with an analyst from the factory and this thus

linked verification and validation. The validation was performed in more detail

by the factory analyst via face validity checks. He performed simulation

experiments using more planning rules and sets, until he found that something

was not working as expected. He then described what he observed in the

simulation model and what he expected and improvements were made to the

simulation model, mainly the process logic of handling exceptions when a

8.6 Simulation studies performed

254

storage silo was out of stock. This process was repeated until no differences

were observed anymore.

 The simulation model was used for different analyses in the factory. The

simulation model has been used regularly to perform experiments with

different sets of production plans and different data sets. The outcome of

these regular experiments triggered the management of the factory to perform

additional experiments with the simulation model. The alternatives performed

with the simulation model included for example (Batley, 2006):

• A new product mix for dog food

• The effect of adding an additional package line

• The use of premixing for a specific packing line

• The advantage/disadvantage of extra storage capacity after final mixing

for some products

• The advantage/disadvantage of adding additional routing from extruder

to storage bins

8.6.3 Other simulation studies performed with domain specific extension

 The list of the simulation studies underneath describes the factory

environments where the domain specific extension was applied. At several of

the facilities two simulation studies have been performed, one at the initial

design and one in a later stage of the design phase when technological

developments had triggered additional improvements. An example is the first

case study of the new nutrition factory in the USA that has been modeled in

2004 and in 2007 with a completely different design as the initially defined

UHT5 process was not feasible.

 New factory Nutrition in USA – At this factory UHT and dry powder

products are produced using a total of over 60 recipes, via one production

line. The challenge is when the recipe changes and new ingredients have to

come online while still keeping the production line running fast enough to feed

the packaging lines. The simulation model was developed by consultants at

Rockwell Automation together with process engineers from Nestlé USA. The

simulation model has an interface via Excel for data input. Performance

indicators are imported via standard Arena reporting

 New factory pet food in Eastern Europe – This new factory will start

production with dry products and 4 packaging lines and the components will

be imported. Two years after go-live the factory will be extended with a

dedicated extruder and storage bins. The main question was whether

sufficient storage bins were budgeted for given the different product mixes.

The simulation model was used by process engineers from Nestlé Purina

Europe to analysis, using an interface in Excel and a reduced version of the

plan generator similar to the application developed for the pet food factory in

the UK.

5
 UHT = Ultra-high-temperature; a specific way of processing dairy products to lengthen the expiration date.

 8 Application to Nestlé production facilities

 255

 Extension factory pet food in Eastern Europe – This factory produces dry

products and will extend current production using 2 extruders with 2 new

extruders, a doubled storage capacity and it will expand the number of

packing lines. The main question was whether it is feasible to produce

components for storage units depending on the final packing line, or whether

investments are required for expensive routing and blending equipment to

feed the packing lines. The experiments were performed by the process

engineers of Nestlé Purina Europe, together with planners of the factory. It

concluded that with different product mixes, there was no need for investment

in expensive routing equipment.

 Dimensioning new factory halal baby food – The production of halal baby

food requires dedicated production lines, storage units and packing lines that

confirm to halal requirements. A simulation model was developed to identify

what size would be required for a dedicated factory for baby food. The space

required would need to be enough for 10 weeks of storage before the

products can be packed into boxes and cans. During this period the products

need to remain in temperature controlled environments in totes (dedicated

containers of approximately 2 m3). The simulation model and interface were

defined in such a way that it could be used for current evaluation of the

required space, and for operational planning evaluation of the current factory.

This factory has been redesigned fully when the management had decided

not to support production of halal and non-halal products in one facility. The

simulation experiments could all be defined within the provided Excel

interface.

 Extension factory pet food in Latin America – A factory producing dry

products is to be extended with 2 sets of new extruders and to introduce

intermediate storage for single product blends. A set of extruders allows

factories to mix products directly and leads these products directly to the

packing lines. The disadvantage is that if the packing line gets stuck the

extruder stops. The new extruder should be a high performance extruder that

can produce one type of product at high speed. The individual components

are stored in bins and transferred via blending routes to the packing lines at

the moment that sufficient amounts of all the types of components are in

storage. The question to be answered with the simulation model was how

many bins would be required for this situation. The initial design contained 20

bins, which were reduced after the simulation analysis performed by process

engineers of the factory to only 14. A later design was also evaluated and this

design also reduced the number of silos required.

 New pro-biotic powder factory – The products made by Nutrition factories

worldwide use a very small percentage of pro-biotic ingredients in their semi-

finished product. This powder will be produced by a new factory that, because

of the high quality requirements, is fully closed and maximally automated to

avoid contamination. Using the domain specific extension, a simulation model

was made by a process engineer from Nestlé Nutrition to represent the

processes and filling of products into bags for worldwide transport. This

8.6 Simulation studies performed

256

simulation model was intended to be used in a later stage for planning support

and therefore contained all the planning and process delays for scheduling of

processes, and for cleaning and sterilization processes. The resulting

simulation model produces an evaluation of a detailed plan and can provide

all required performance indicators of interest to the Nestlé factory

management.

 Planning improvement at a milk powder factory Asia – a milk powder

factory in Asia has for the last few years been marked as a high performance

factory, because they have succeeded in getting a high efficiency from their

packing lines. However, because the market for their milk powder has grown,

improving the efficiency of their dry blowing equipment would further improve

the performance of this factory. Technically one of their dry blowers should be

able to increase its average rate of production by 35%. Recently a large

storage warehouse has been brought into use where the overflow from the dry

blower can be stored. A simulation model was developed to be used by the

planning department of the factory to analyze how changes in planning could

improve the efficiency of the factory and avoid products remaining too long in

the storage space. This simulation model contains an Excel interface for data

entry, configuration of the plan and output representation to evaluate the

success of the plan.

 Planning improvement of ice cream factory in Switzerland – Nestlé

produces several high quality ice cream brands in a specific factory in

Switzerland. This specialized factory has, due to the broad range of products,

a lot of change over times. It also faces a lot of unavailability of their filling

lines due to lack of half products ready to be mixed (Valentin, 2007). A

simulation model and Scenario Navigator interface have been developed with

the latest domain specific extension. The Scenario Navigator interface

consisted of the VB-program to define a production plan and a small

optimization engine to further improve the production plan that was produced

according to several parameters. The result of the combined use of the

interface and the simulation model to perform the experiments enabled the

factory planners to standardize the planning process and reach a 25%

increase in the factory throughput during their peak season.

 New production line for soup in Germany factory – The soup production is

very similar to the production of milk powders. A simulation model including a

planning module has been developed like the simulation development for the

milk factory in Asia. The model and the interface enabled the process

engineers to evaluate their initial design and on beforehand exclude some of

the design alternatives even before they developed the blueprint of the

factory. The factory is currently being built according to the outcome of the

simulation model and the factory management has the intention to use the

simulation model to support the operational planning department once the

production line is fully in use.

 8 Application to Nestlé production facilities

 257

8.7 Observations during simulation studies

 The first simulation study showed the usability of the domain specific

extension for Nestlé factories. The study was a straightforward investment

evaluation, and the experiments helped to support decision making on future

extensions. The second simulation study at the pet food factory showed that

the building blocks can be used for another type of production, and for more

detailed and complex processing rules. Therefore the main observation is that

the domain specific extension for Nestlé production facilities is applicable

across domains, extendable for new challenges and useable by process

engineers with limited simulation knowledge.

 The additional set of simulation studies performed by simulation experts in

cooperation with Nestlé process engineers showed that the domain specific

simulation extension could be used by different model developers, and that

the resulting simulation models made for different types of factories for

different types of analyses could be used by Nestlé process engineers.

Interaction with Scenario Navigator made it possible to link the system to SAP

Globe and to determine operational state information for the factory. The

second main observation is thus that the simulation models not only are suited

for initial investment decisions, but also can support operational planning with

optimized production schedules.

8.7.1 Observations regarding design approach and implementation

 The design of the domain specific extension was a step wise approach

whereby the full scope was not worked out in detail on beforehand. The focus

in the early days of the project was on getting the first set of building blocks

defined and working. The result was that with every new simulation model one

or more adjustments were made to the domain specific extension to improve

the building blocks, extend the scope, or fix problems. It was positive that the

structure of the domain specific extension allowed all these changes. It was

also positive that the management of Nestlé was supportive of the approach

and the project as a whole.

 It was less positive that changes to the domain specific extension

sometimes had implications to past simulation models, where it was not

always possible to change to the newest version. The applied workaround

was the use of different versions of the domain specific extension for Nestlé.

At some moment in time three different sets of simulation building blocks were

available to support three different simulation studies. Once these different

simulation studies were finished, the latest domain specific extension was

used for further development.

8.7.2 Observations regarding additional tools

 The Excel interface and the Scenario Navigator database both helped the

analysts in entering their data and retrieve the simulation results. The

extension with the plan generator to develop a production schedule for the

8.7 Observations during simulation studies

258

simulation model also proved to be successful. A positive fact about the

interfaces was that they were all based on the same template, thus for all

simulation models the interfaces looked similar, which enabled recognition,

yet they were focusing on specific needs of the analyst team of a certain

simulation project.

8.7.3 Observations regarding provided support

 The training for learning to use the domain specific extension only worked

in combination with a short Arena introduction. The Nestlé process engineers

picked up the basics rather quickly and succeeded in carrying out their

assignments successfully, but the step between the simple assignments and

the free format end assignment was rather large. The step from the free

format assignment to the development of a simulation model of a complete

Nestlé production facility turned out to be even larger. The training did provide

sufficient support, however, so that the Nestlé process engineers understood

the concept, the background of the building blocks, and the reason why

simulation experts asked certain questions during the modeling process.

 The user manual and the small simulation models have therefore hardly

been used by the process engineers, but mainly for validation purposes.

Nevertheless, the user manual provided support in explaining the importance

of parameters and to gain confidence that the simulation building blocks were

not just a one-off project.

8.7.4 Observations regarding applying the guidelines for simulation building

blocks

 The observations for the capability of the domain specific extension and to

result in genuine simulation building blocks is structured via the characteristics

of a building block as defined by Verbraeck et al (2002) in the table at the next

page.

 8 Application to Nestlé production facilities

 259

Table 8.1: Characteristics of building block in Nestlé case study

Self-Contained Positive use of building block elements in several
building blocks & data made available via
the Arena expression builder.

Interoperable Positive separation in infrastructure and processes &
simple equipment building blocks in
combination with flexible process building
blocks.

Reusable Positive applicability in several Nestlé domains.
Replaceable Positive process building block flexibility & ability to

implement complex processes with process
building blocks and generic model
constructs.

To be
improved

hierarchy structure in equipment building
blocks.

Encapsulating its
internal structure

Positive hidden inner-working & good capability to
extend with generic model constructs.

Providing useful
services or
functionality

Positive equipment could provide all required
functionalities via flexible processes &
processes extendable by new process
building block elements.

Precisely defined
interfaces

Positive user interfaces for parameters also available
via additional tool & visualization
representation includes key performance
indicators, yet is recognizable by process
engineers & technical structure for
information exchange good organized via
coding.

8.8 Overview observations

8.8.1 Observed benefits

 The simulation studies that were performed in the domain of Nestlé’s

production facilities were confirmation of the benefits that were noted in

chapter 2 and 3. Overall, the simulation studies were performed correctly and

the problem owners were satisfied with the output, resulting in new

assignments and a scope growing from dairy to ice cream, coffee and pet

food.

 The only remark to be made to the achieved benefits is for benefit 4.3

‘model development by simulation novices’. During the training of the domain

specific extension the process engineers of Nestlé were capable to develop

small simulation models, but the development of a simulation model of a

complete Nestlé production facility was too much to ask. The main reason

was that it required quite some modeling expertise to translate the production

processes into a model and the use of the domain specific extension also

required the use of generic Arena model constructs.

8.8 Overview observations

260

Table 8.2: Summary of benefits observed in case study Supply Chain

Process step
Expected benefits as mentioned in chapter 2 and 3

Observation
Nestlé

Activity 1: Problem description & define conceptual model

Benefit 1.1: conceptualize system elements with model constructs
in mind

Yes

Activity 2: Select model constructs

Benefit 2.1: no translation between system elements and model
constructs

Yes

Benefit 2.2: compose model constructs from developed domain
specific model constructs to represent system elements

Yes

Benefit 2.3: easy selection of model construct thanks to structure
of domain specific extension

Yes

Activity 3: Data collection

Benefit 3.1: collection of predefined input data Yes

Activity 4: Instantiate simulation model for original system

Benefit 4.1: less model constructs used Yes

Benefit 4.2: model development faster and easier Yes

Benefit 4.3: model development by simulation novices Partly

Activity 5: Verify and validate simulation model for original system

Benefit 5.1: no more detailed testing Yes

Benefit 5.2: easily gathering validation data Yes

Benefit 5.3: structured and standardized performance indicators Yes

Benefit 5.4: semi-automatic reporting of performance indicators Yes

Benefit 5.5: observe animation at different levels of the
composition: high level and at individual model construct

Yes

Activity 6: Analyze output of simulation model

Benefit 6.1: structured and standardized performance indicators Yes

Benefit 6.2: semi-automatic reporting of performance indicators Yes

Activity 7: Define solution for analyzed outcome

Benefit 7.1: model developers are triggered to find new solutions
by parameters

Yes

Activity 8: Instantiate simulation model for identified solution

Benefit 8.1: easy adjustment of model thanks to user interfaces of
model constructs

Yes

Benefit 8.2: easy adjustment of model thanks to replacement of
model constructs

Yes

Benefit 8.3: easy visualization thanks to incorporation of
visualization in model constructs

Yes

Benefit 8.4: composition of new model constructs enabled new
solutions to be evaluated

Yes

 8 Application to Nestlé production facilities

 261

8.8.2 Observed risks

 The simulation studies for Nestlé contained all complexity and time

pressure that model developers and problem owners are used to. Even

though, the observations show that almost all the risks identified in chapter 2

and 3 have been mitigated by the guidelines and design approach of chapter

5. Similar to in the tables in chapter 3, potential risks that we did not observe

during the execution of any of the simulation studies within this case study

(“No” in the table) probably did not occur and thus the potential risk has been

mitigated by the way the domain specific extension was designed, structured

and used.

Table 8.3: Summary of risks observed in case studies

Process step

Potential risks as mentioned in chapter 2 and 3

Observation
Nestlé

Activity 1: Problem description & define conceptual model

Risk 1.1: scope of model developer is limited by model constructs No

Activity 2: Select model constructs

Risk 2.1: lack of trust results in no motivation to use domain
specific extension

No

Risk 2.2: lack of insight in model constructs results in ignore
domain specific extension

No

Risk 2.3: use of model constructs that are not suited for
representation of system elements

No

Risk 2.4: system elements can not be represented by model
constructs

No

Risk 2.5: compose model constructs from developed domain
specific model constructs only applied for infrastructure system
elements

No

Risk 2.6: model developers can adjust internal logic of model
constructs

No

Activity 3: Data collection

No risks defined in chapter 2 or 3

Activity 4: Instantiate simulation model for original system

Risk 4.1: model developers do not understand model construct No

Risk 4.2: model developers do not know how to parameterize
model construct

No

Risk 4.3: difficult to compose simulation model, because model
constructs are not available

Partly

Risk 4.4: difficult to compose simulation model by person other
than developer(s) domain specific extension

Rarely

(continued at next page)

8.8 Overview observations

262

Activity 5: Verify and validate simulation model for original system

Risk 5.1: mistakes of model developer are hard to overcome No

Risk 5.2: model developers know something is wrong, but cannot
identify what to do about it

Partly

Activity 6: Analyze outcome of simulation model

Risk 6.1: model constructs do not provide performance indicators
problem owner desired

Partly

Activity 7: Define solution for analyzed outcome

Risk 7.1: model developers are triggered to find new solutions by
parameters

No

Risk 7.2: model developers are limited by parameters and model
constructs

No

Activity 8: Instantiate simulation model for identified solution

Risk 8.1: solution is identified that cannot be represented by model
constructs

No

Risk 8.2: adjustments of model constructs required to represent
solution are time consuming

No

Risk 8.3: replacement of model constructs causes errors in model
constructs that were linked or connected.

No

 The simulation models for Nestlé encountered several risks regarding the

availability of model constructs and performance indicators, i.e. risks with

‘Partly’. This reflects that the initial scope of the domain specific extension was

on purpose not sufficient for all production facilities of Nestlé. The risk was

thus observed that for example the pet food systems could not be

represented. The solution was that the sets of simulation building blocks of the

domain specific extension were extended with simulation building blocks for

petfood. After the extension the domain specific extension could be used to

represent the simulation model for the new sub-domain. The same applied to

the required extensions for ice cream and coffee (Valentin et al, 2007).

 Some of the simulation studies of Nestlé production facilities also observed

the risk ‘difficult to compose simulation model by person other than

developer(s) domain specific extension’. The simulation models have been

developed mainly by simulation experts, either the developers of the domain

specific extension or simulation experts closely contact to the developers of

the domain specific extension. The reason was not that it was not possible to

develop the simulation models without detailed knowledge of the simulation

building blocks, but the process configuration of a Nestlé production facility

contained quite some exceptions that had to be developed with a mixture of

Nestlé process building blocks and Arena generic model constructs. The

knowledge that simulation experts had about the inner working of the process

building blocks made the development of the simulation model easier. In the

 8 Application to Nestlé production facilities

 263

training attention was paid to this point, but 5 days was insufficient to teach

the full scope of capabilities of Arena in combination with the Nestlé process

building blocks (Valentin, 2007).

8.8 Overview observations

264

 9 Epilogue

 265

9 Epilogue

9.1 Introduction

 The completion of the three case studies described in chapter 6, 7 and 8

provides us with observations for the theory proposed in chapter 5 for domain

specific extensions. It was proposed to develop domain specific extensions

using four elements: building blocks, design approach, additional tools and

support and documentation. At the end of the case study chapters we already

posed several remarks and conclusions regarding the observed benefits and

encountered risks. In section 9.2 we combine these observations of the three

case studies (Supply Chains, Container Terminals and Nestlé Production

Facilities)6. In section 9.3 we provide a generalization of the observations in

relation to the requirements for domain specific extensions stated in section

5.2. In section 9.4 we translate the observations and generalizations of the

case studies to answer the research questions identified in chapter 1. Finally

in section 9.5 we look forward to points of interest for further investigation so

we can further improve the theory, leading to continuous improvement of

domain specific extensions in simulation studies.

9.2 Combined observations of case studies

9.2.1 Overall conclusions regarding benefits

 In chapter 2 we introduced a set of benefits for the use of domain specific

extensions (section 2.4; table 3.6). After the execution of the case studies in

chapter 3 we extended the initial list of benefits with table 3.7. We listed

whether we observed these benefits in the individual chapters of the testing

case studies (sections 6.8.1, 7.8.1 & 8.8.1). Table 9.1 provides the

observations of the three testing case studies together. In this table we clearly

see that all benefits originating from literature (introduced in chapter 2) and

possible benefits observed in the initial case studies (identified in chapter 3)

have been encountered in all three testing cases, with the remark that some

of the benefits for the case study container terminal have not been achieved

on purpose.

 We therefore conclude that the theories introduced in chapter 5 have

enabled the testing case studies to be successful and that the theories enable

to achieve the benefits expected to be achieved with the use of domain

specific extensions in all activities of discrete event simulation studies.

6
 We performed more simulation studies besides the three case studies described in chapter 6, 7 and 8 over the

period of the research project. These case studies are briefly described in Appendix I. Whenever applicable a
reference to these cases is included and the observations for these case studies are used as well.

9.2 Combined observations of case studies

266

Table 9.1: Summary of benefits observed in case studies

Process step
Expected advantages as mentioned in chapter 2 and 3

Supply
chains

Contain
er

Nestlé

Activity 1: Problem description & define conceptual model

Benefit 1.1: conceptualize system elements with model
constructs in mind

Yes Yes Yes

Activity 2: Select model constructs

Benefit 2.1: no translation between system elements and model
constructs

Yes Yes Yes

Benefit 2.2: compose model constructs from developed domain
specific model constructs to represent system elements

Yes Yes Yes

Benefit 2.3: easy selection of model construct thanks to
structure of domain specific extension

Yes Yes Yes

Activity 3: Data collection

Benefit 3.1: collection of predefined input data Yes Yes Yes

Activity 4: Instantiate simulation model for original system

Benefit 4.1: less model constructs used Yes Yes Yes

Benefit 4.2: model development faster and easier Yes Yes ! Yes

Benefit 4.3: model development by simulation novices Yes Yes ! Partly

Activity 5: Verify and validate simulation model for original system

Benefit 5.1: no more detailed testing Yes Yes Yes

Benefit 5.2: easily gathering validation data Yes Partly Yes

Benefit 5.3: structured and standardized performance indicators Yes Yes Yes

Benefit 5.4: semi-automatic reporting of performance indicators Yes Yes ! Yes

Benefit 5.5: observe animation at different levels of the
composition: high level and at individual model construct

Yes Partly Yes

Activity 6: Analyze outcome of simulation model

Benefit 6.1: structured and standardized performance indicators Yes Yes Yes

Benefit 6.2: semi-automatic reporting of performance indicators Yes Yes ! Yes

Activity 7: Define solution for analyzed outcome

Benefit 7.1: model developers are triggered to find new
solutions by parameters

Yes Partly Yes

Activity 8: Instantiate simulation model for identified solution

Benefit 8.1: easy adjustment of model thanks to user interfaces
of model constructs

Yes Yes Yes

Benefit 8.2: easy adjustment of model thanks to replacement of
model constructs

Yes Yes Yes

Benefit 8.3: easy visualization thanks to incorporation of
visualization in model constructs

Yes Partly Yes

Benefit 8.4: composition of new model constructs enabled new
solutions to be evaluated

Yes No Yes

9.2.2 Overall conclusions regarding risks

 In Table 9.2 we put the risks together from the different testing case

studies. We can clearly see in our observations of these testing case studies

that all risks have been mitigated in these simulation studies. Some of the

risks mentioned in the table have been encountered during the execution of

the case studies. These risks have to do with the decision to extend or not to

 9 Epilogue

 267

extend the domain specific extension with new model constructs, instead of

making a complete domain specific extension at the start of the first simulation

study.

 The encountered risks for the testing case study of supply chains were

caused by scope of the implementation which varied for the used generic

simulation environment. The proof of concepts developed in the generic

simulation environments of eM-Plant and D-SOL only contained the simulation

building blocks which where necessary to demonstrate the concept. The

teaching cases performed with the domain specific extension developed in

Arena contained more simulation building blocks and building block elements

to represent alternative system elements. Still, the scope was to support the

teaching cases and the implemented scope did not contain all supply chain

concepts that Corver (2000) defined.

 The case study for container terminals aimed at providing a black box with

limited features for designing and evaluating a container terminal in 15

minutes. Given the time limit, there was no room for extensions or changes to

simulation building blocks. Whenever the game participants encountered a

limit of the system, they decided to park the option for further research and

therefore the missing scope was no limitation to the progress of the game.

 For the Nestlé case, it was decided with the management of Nestlé to

develop the domain specific extension stepwise by adding new simulation

building blocks with every new simulation study executed. Therefore, some of

the risks (e.g., “1.2: system elements cannot be represented by model

constructs”) have been encountered in some of the simulation studies for

Nestlé, but these risks have been mitigated in follow-up studies to update the

domain specific extension.

Table 9.2: Summary of risks observed in testing case studies

Process step
Potential risks as mentioned in chapter 2 and 3

Supply
chains

Contain
er

Nestlé

Activity 1: Problem description & define conceptual model

Risk 1.1: scope of model developer is limited by model
constructs

No Partly No

Activity 2: Select model constructs

Risk 2.1: lack of trust results in no motivation to use domain
specific extension

No No No

Risk 2.2: lack of insight in model constructs results in ignore
domain specific extension

No No No

Risk 2.3: use of model constructs that are not suited for
representation of system elements

No No No

Risk 2.4: system elements can not be represented by model
constructs

No No No

Risk 2.5: compose model constructs from developed domain
specific model constructs only applied for infrastructure system
elements

No No No

Risk 2.6: model developers can adjust internal logic of model
constructs

No No No

(continued at next page)

9.3 Matching of requirements for domain specific extensions

268

Activity 3: Data collection

No risks defined in chapter 2 or 3

Activity 4: Instantiate simulation model for original system

Risk 4.1: model developers do not understand model construct No No No

Risk 4.2: model developers do not know how to parameterize
model construct

No No No

Risk 4.3: difficult to compose simulation model, because model
constructs are not available

No Partly Partly

Risk 4.4: difficult to compose simulation model by person other
than developer(s) domain specific extension

No No Rarely

Activity 5: Verify and validate simulation model for original system

Risk 5.1: mistakes of model developer are hard to overcome No No No

Risk 5.2: model developers know something is wrong, but
cannot identify what to do about it

No No Partly

Activity 6: Analyze outcome of simulation model

Risk 6.1: model constructs do not provide performance
indicators problem owner desired

No No Partly

Activity 7: Define solution for analyzed outcome

Risk 7.1: model developers are triggered to find new solutions
by parameters

No No No

Risk 7.2: model developers are limited by parameters and
model constructs

Partly Partly No

Activity 8: Instantiate simulation model for identified solution

Risk 8.1: solution is identified that can not be represented by
model constructs

No Partly No

Risk 8.2: adjustments of model constructs required to represent
solution are time consuming

No No No

Risk 8.3: replacement of model constructs causes errors in
model constructs that were linked or connected.

Partly No No

9.3 Matching of requirements for domain specific extensions

 In chapter 2 and 3 we already concluded that the use of domain specific

extensions enables some of the activities for a simulation study to be

performed faster, easier, less detailed etcetera resulting in the benefits listed

in Table 3.6 and Table 3.7. We kept the activities in the simulation study the

same, even though the actual actions within the activity in some cases have

been reduced. Instead we focused in chapter 5 on providing concepts,

guidelines, approaches and suggestions for tools to avoid the risks we

observed. This resulted in the 9 requirements in section 5.2. In this section we

explain how we satisfied the requirements and demonstrated this in the case

studies of chapter 6, 7 and 8.

 9 Epilogue

 269

9.3.1 Matching the concept of simulation building blocks to the requirements

 In section 5.4 we described the generic concept of building blocks

(Verbraeck et al, 2002) and the translation of this concept to simulation

building blocks with simulation building block elements. The 22 guidelines

define what is expected of a simulation building block and what points a

simulation model developer should pay attention to.

 The main point of these guidelines is the introduction of the use of building

block elements underlying the simulation building blocks. Building block

elements enable that building blocks are self-contained, interoperable,

reusable, replaceable, encapsulate their internal structure and provide a

useful service via their interfaces. We borrowed concepts from software

engineering such as product line engineering and interfacing to structure

simulation building blocks and building block elements. We enriched this

further with the capabilities of generic simulation environments regarding user

interfacing and visualization. In addition, we reused the experience we

gathered in the case studies of chapter 3, AGVs and passengers at airports,

regarding infrastructure versus control mechanisms, building block families,

and the use of terminology of the problem owner.

 Table 9.3 shows how these concepts and guidelines worked out to match

the requirements to domain specific extensions. The contribution of the

requirement can be observed in all case studies. A typical example from one

of the case studies of chapter 6, 7 or 8 is provided in the third column of Table

9.3.

Table 9.3: Contribution simulation building blocks to domain specific
extensions

Requirements for
domain specific
extensions

Contribution simulation
building blocks

Example from case
study

Requirement 1: DSE
should show added
value for model
developers compared
to use of model
constructs of generic
simulation
environments

Model developers are
supported by simulation
building blocks as they are
ready to use and
recognizable model
constructs.

Nestlé: simulation
studies defaulted to
being executed using
DSE

Requirement 2: Use
of model constructs of
DSE should be clear
and well defined so
model developers
know when and how
to use the model
constructs

Simulation building blocks in
terminology of problem
owner sorted in a family are
easy to match to need of
model developer, user
interface provides further
suggestions and support.

Supply Chains:
concept of modeling
a supply chain
translated to building
block elements in
structured families

(continued at next page)

9.3 Matching of requirements for domain specific extensions

270

Requirements for
domain specific
extensions

Contribution simulation
building blocks

Example from case
study

Requirement 3:
System elements that
seem to be
exceptional for the
domain represented
by the DSE should not
become model
constructs

Building block elements
enable definition of different
simulation building blocks,
and special interfaces of the
simulation building block
allow for using model
constructs of generic
simulation environment to
incorporate specific logic and
control whenever necessary
in simulation model

Nestlé: process
description in
simulation models
composed of
simulation building
blocks and model
constructs using the
full strength and
flexibility of the
generic simulation
environment

Requirement 4: The
infrastructure and
physical elements
should be represented
by model constructs
separated from the
model constructs for
control or
management

Apply specialization of
simulation building blocks in
representation of physical
elements and process-like
description, further
supported by family structure
of building blocks

Supply Chains:
Logical and physical
actors with different
building block
elements each
represent part of the
supply chain process

Requirement 5:
Internal logic of model
constructs of DSE
should be closed or
accessible depending
on type of model
developer

User interfaces provide
ability to hide or show the
inner logic.

Supply Chain
implementation in
eM-Plant: model
developer can
override logic in
building block
elements

Requirement 6:
Model constructs
should be
understandable for
model developers

Apply terminology used in
the domain and by problem
owner.

Nestlé: machines
have different names
for the icecream and
petfood factory

Requirement 7: DSE
should be an
extendible set of
model constructs

Functionalities, level of detail
and scope of simulation
building block can be
adjusted by replacing
building block element with a
new building block element
that better matches the
requirement of the model
developer

Supply Chains:
different variants of
order generation
building block
element, to be
extended in many
different ways

 9 Epilogue

 271

Requirements for
domain specific
extensions

Contribution simulation
building blocks

Example from case
study

Requirement 8:
Behavior of model
construct should be
understandable and
verifiable

Simulation building block and
building block element have
visualization (animation and
performance indicators) and
parameters which can be
observed in the model

Supply Chains: large
set of graphs and
plots to show the
status of the building
block, which change
when the model runs.

Requirement 9:
Model constructs
should be individually
parameterizable

Simulation building blocks
have a dedicated user
interface for their parameters

Container Terminals:
each storage can
have different
stacking height for
containers

 In the development of the simulation building blocks and the building block

elements according to the guidelines for the 11 different domains described in

appendix I many similar choices have been made. The same types of building

blocks were created, and also the same structure in parameter settings and

visualization was observed.

9.3.2 Additional tools for domain specific extensions matched to

requirements

 The simulation building blocks were an improvement in user friendliness to

the model developer compared to the model constructs. Additional tools have

been introduced to support the model developer in time consuming activities

that can be automated. The additional tools focus on repetitive activities for

model construction, parameterization of simulation building blocks and

gathering output data into a useful report with performance indicators.

 Especially the case study of the management game ‘Container Adrift’

proved that additional tools could support the model developer and model

analyst much further. The additional tools have been applied to supply chains

and Nestlé and some of the domain specific extensions in appendix I, but their

effect has been less explicit. Nevertheless, the simulation studies at for

example the Nestlé factories would have been completely different without the

Excel interface or the ‘plan generator’ application in combination with Scenario

Navigator, as these additional tools supported to keep model parameterization

together with output results of a specific simulation experiment.

 Only a couple of the requirements of section 5.2 apply to additional tools.

Therefore Table 9.4 only shows the applicable requirements and how the use

of additional tools support the requirement. An example is provided in the third

column based on the case study of the container terminal, chapter 7, as this

case study focused around the additional tools.

9.3 Matching of requirements for domain specific extensions

272

Table 9.4: Contribution additional tools to domain specific extensions

Requirements for
domain specific
extensions

Contribution additional
tools

Example from case
study Container
Terminals

Requirement 1: DSE
should show added
value for model
developers compared
to use of model
constructs of generic
simulation
environments

Compose the simulation
model automatically, set
parameters and provide a
specific report including all
output data of the simulation
model without user
intervention

Simulation model
development,
execution and
evaluation of
performance
indicators could be
performed by non-
experts within 15
minutes.

Requirement 2: Use
of model constructs of
DSE should be clear
and well defined so
model developers
know when and how
to use the model
constructs

Interface for
parameterization and output
report via Excel provides
extra information and
support material to model
developer

Customized Excel
sheet with
performance
indicators contained
additional controls to
present model
developers with
potential risks in their
design

Requirement 9:
Model constructs
should be individually
parameterizable

Parameterization via
additional tools such as
database or Excel supports
quick adjustment of all model
constructs with new
individual values

Company information
with all details could
be easily included by
number of clicks in
database part of the
container modeling
solution.

9.3.3 Support and documentation for domain specific extension matched to

requirements

 Support and documentation focuses on enabling the model developer to

better understand the capabilities of the domain specific extension and to be

able to apply the domain specific extension in a simulation study. The support

is provided by example models, small models to demonstrate specific

situations, by large models as show cases, and by training material. The

documentation focuses on what elements of a simulation building block or

building block element should be defined. This is to support the future users of

the domain specific extension, but also the future developers who will add

extra building block elements and simulation building blocks to the domain

specific extension.

 In the three case studies the support and documentation was provided in

different ways. Training in the management game ‘Container Adrift’ was about

the use of the visualization-simulation tool and not about the use of the

simulation building blocks. Training for Nestlé was to prepare the process

engineers for the questions from the simulation experts who were developing

 9 Epilogue

 273

the simulation models, and training of the students at the R.H. Smith Business

School of the University of Maryland for the supply chain teaching cases was

mainly about interpreting the results of the performed simulation models. In

the end the documentation as described in chapter 5 according to the

structure based on Heisel and Souquières (2004) was provided to the

simulation model developers, but they usually decided not to use this material.

 Nevertheless, the stakeholders in the simulation studies, e.g. the process

engineers of Nestlé advising the factory management, would not have been

so trusting if the extensive documentation would not have been present. They

would have had doubts about the quality and the maturity of the domain

specific extension. The question is whether the extensive documentation was

necessary, in other words, would the example simulation models and

testimonies of simulation studies with the domain specific extension have

been sufficient?

 Support and documentation is an important ingredient to ensure that the

model developer understands and trusts the domain specific extension, and

therefore all requirements of section 5.2 have an element of support and

documentation, but in the case studies these topics have been covered by

dedicated and customized training with hands-on contributions by one of the

developers of the domain specific extension. Therefore Table 9.5 contains

only the requirements where additional contributions were addressed,

supported by an example of one of the three case studies.

Table 9.5: Contribution documentation and support to domain specific
extensions

Requirements for
domain specific
extensions

Contribution
documentation and
support

Example from case
study

Requirement 1: DSE
should show added
value for model
developers compared
to use of model
constructs of generic
simulation
environments

Success stories of performed
simulation projects with the
domain specific extension.

Nestlé: via the milk
factories the idea of
using simulation
spread to petfood,
coffee and icecream

Requirement 6:
Model constructs
should be
understandable for
model developers

Small simulation models that
demonstrate one or two
specific simulation building
blocks or building block
elements.

Nestlé: Over 100
different small
simulation models
have been
developed, each
containing less than
10 simulation
building blocks.

9.3 Matching of requirements for domain specific extensions

274

Requirements for
domain specific
extensions

Contribution
documentation and
support

Example from case
study

Requirement 8:
Behavior of model
construct should be
understandable and
verifiable

Training material contains
assignments with verified
output and provided solution
models.

Supply Chains:
specific assignments
to understand the
parameters and train
interpretation of
results.

9.3.4 Design approach for improved domain specific extensions matched to

requirements

 The process to develop a domain specific extension was described in

section 5.7 using Figure 5.18 and 5.19. The first figure provided an overview

from initial design until the final handover to future model developers. The

second figure provides details for the conceptualization and specification of

the design of the simulation building blocks and the building block elements as

part of the domain specific extension.

 The main observation from the three case studies, supported by the cases

in Appendix I, is that the structured approach of specification provides a good

preparation for the implementation, either directly for the initial domain specific

extension, or later for updates and extensions to the domain specific

extension using the flexibility of composing building blocks out of building

block elements. Also we learned that the design approach is suited for

different implementations and that the design approach is thus independent of

the future generic simulation environment that is going to be used to realize

the domain specific extension.

 Key element in the specification phase is the use of lists to verify that the

designs can be realized and that the decision choices do not hinder the

intended use of the domain specific extension too much. The case studies of

supply chains and Nestlé demonstrate that simulation models can be used in

different situations, i.e. real time gaming and production planning. No attention

was paid in the design of simulation building blocks to potential usage for real-

time situations or to create a simulation model of the system from a

predefined state. As these types of experiments were originally left out of

scope of the domain specific extension, the realization of the new type of

experiments was a bigger challenge, but still achievable by introducing new

building block elements.

 The design approach supports the developers to construct a domain

specific extension that follows the simulation building block guidelines,

provides additional tools, and that is well supported and documented. All of

this is done in close cooperation with problem owners to ensure they

recognize the building blocks and terminology. The requirements of section

5.2 aimed at the products to be delivered, not to the design approach that

supports smooth delivery. Table 9.6 shows the requirements that resulted in

 9 Epilogue

 275

contributions for the design approach, with an example of one of the case

studies of chapter 6 (Supply Chain) or 8 (Nestlé).

Table 9.6: Contribution design approach to domain specific extensions

Requirements for
domain specific
extensions

Contribution design
approach

Example from case
study

Requirement 1: DSE
should show added
value for model
developers compared
to use of model
constructs of generic
simulation
environments

Conceptualization and
specification of the domain
specific extension is
extremely important. The
design approach pays
attentions to the future
experimentation and
objective of simulation
studies and includes checks
in each design decision

Nestlé: A list of
experiments and
variants has been
defined in a
workshop with over
20 functional experts
regarding their
expectations of the
simulation studies

Requirement 3:
System elements that
seem to be
exceptional for the
domain represented
by the DSE should not
become model
constructs

Not everything can be
implemented before the first
simulation study is started.
The building block elements
should be kept open and by
setting priorities in the design
approach further
implementation should be
scheduled.

Nestlé: Initially
developed for milk
products. A proof of
concept has been
performed for the
petfood division,
followed by an
implementation plan
for several years to
develop petfood
specific building
blocks.

Requirement 6:
Model constructs
should be
understandable for
model developers

Discuss extensively with
problem owners in domain to
ensure terminology and
problems are well covered in
the simulation building
blocks

Supply Chains: A
study has been
performed by Corver
to define concepts for
modeling the supply
chains based on
literature study and
experts at RH Smith
business school.

9.3.5 Match requirements and theory for domain specific extensions

 Table 9.7 shows how the requirements are satisfied by the new theory

described in chapter 5 and the table identifies whether this theory solution for

the requirements can be observed in the case studies of chapters 6, 7 and 8.

The solution directions (simulation building blocks; design approach; support

simulation study execution; documentation) all contribute to match the defined

requirements. The columns at the right hand side show whether the

requirement of a domain specific extension has been successfully matched for

9.3 Matching of requirements for domain specific extensions

276

the extension developed in the case study. Some of the requirements have

not been satisfied on purpose, due to the scope of the case study. This has

been mentioned in the applicable situations. Overall our observation is that we

covered all other requirements for the domain specific extensions.

Table 9.7: Representation of requirements in theory and case studies

Requirements for domain specific
extensions

Observations

Supply
Chain

Container
terminal

Nestlé

Requirement 1: DSE should show
added value for model developers
compared to use of model constructs
of generic simulation environments

Yes Yes Yes

Requirement 2: Use of model
constructs of DSE should be clear and
well defined so model developers
know when and how to use the model
constructs

Yes Yes Yes

Requirement 3: System elements that
seem to be exceptional for the domain
represented by the DSE should not
become model constructs

Yes

Exceptional
system

elements
were not part
of the game.

Yes !

Requirement 4: The infrastructure
and physical elements should be
represented by model constructs
separated from the model constructs
for control or management

Yes !

Yes,
especially

physical and
logical split

Yes !

Requirement 5: Internal logic of
model constructs of DSE should be
closed or accessible depending on
type of model developer

Yes,
especially
eM-Plant

implement
ation

Yes,
 for inner

working and
structure

parameters.

Yes

Requirement 6: Model constructs
should be understandable for model
developers

Yes Yes Yes

Requirement 7: DSE should be an
extendible set of model constructs

Yes Yes Yes

Requirement 8: Behavior of model
construct should be understandable
and verifiable

Yes Yes Yes

Requirement 9: Model constructs
should be individually parameterizable

Yes Yes ! Yes !

 9 Epilogue

 277

9.4 Answers to the research questions

 In chapter 1 we introduced three research sub-questions to clarify how

domain specific extensions can help a model developer to perform simulation

studies without the simulation studies becoming ineffective. Based on

Robinson and Pidd (1998) our research questions focused on: handle

unlimited modeling freedom, support model developers to cover multiple fields

of expertise, and resolve language mismatches. Chapter 5 describes four

elements as an addition to the existing theory for domain specific extensions:

1) the concept of simulation building blocks (section 5.4)

2) the use of additional tools (section 5.5)

3) the importance of support and documentation (section 5.6)

4) the design approach (section 5.7)

 These four elements have been applied in the case studies that have been

executed as part of this research, which were described in detail in chapter 6,

7 and 8 and at a high level in appendix 1. Each of the three case studies that

was described in detail focuses on one of the points of Robinson and Pidd

regarding ineffective simulation studies. “Unlimited modeling freedom” is

covered primarily by the supply chain case study in chapter 6; “multiple fields

of expertise” is covered primarily by the container terminal game in chapter 7;

“language mismatch” is covered by the case studies of Nestlé production

facilities in chapter 8.

 Research question 2A was related to the difficulties to handle the unlimited

modeling freedom by the model developer:

What constructs and design approach will enable that

domain specific extensions can be defined independent of

the generic simulation environment in such a way that the

model developer is supported, but not limited to one way of

representing a system element?

In the case study of the supply chains (chapter 6) we extensively worked

with different building block elements to represent parts of the flow in the

supply chain, for example different ways of determining an order for a

supplier, or the decision process to manufacture more products. The case

study, using the implementations in different generic simulation environments,

showed that the concept of simulation building blocks and building block

elements applies and can support model developers. The answer to the

question is thus:

Simulation building blocks and building block elements

further supported by the guidelines of section 5.4 to ensure

that the building blocks are self-contained, interoperable,

reusable, replaceable, encapsulate their inner working, and

provide useful services via precisely defined interfaces.

9.4 Answers to the research questions

278

Research question 2B was related to the challenge that model developers

need to be experts in multiple areas without them knowing all about a domain.

The model developer cannot know everything and cannot have talent and

skills to cover all areas, therefore the second question was:

What methodologies, approaches and techniques can be

offered to a model developer to support the use of domain

specific extensions in the activities of a simulation study?

In the case study of the container terminal it was shown that regular

students without a deep knowledge of simulation or container terminals can

be supported to perform a simulation study within 15 minutes and give an

advice regarding the design of a container terminal, supported by quantitative

and qualitative insights about the (logistical) performance of the designed

container terminal. The key in achieving the 15 minute lead time was to

automate as many actions in the activities of the simulation study as possible.

The automation was achieved by a combination of structure in the input and

data requirements, a structured simulation model and a structured

representation of the output of the simulation model. The answer to research

question 2B is therefore:

Additional tools to automate activities of model developers

like model initiation and parameterization of the simulation

model, and the translation of output data into key

information.

 The final research question (2C) is related to the challenge that model

developers do not speak the language of the problem owner. The model

developer has different interpretations of the system, limited knowledge of the

domain of the problem owner and is used to the generic terminology of the

generic simulation environments, for example ‘resource’ or ‘queue’. In chapter

1 the question has been formulated as:

How can be ensured that the domain specific extension

gets the model developer closer to the language of the

problem owner?

 The set of simulation studies at different Nestlé production facilities

showed the ability to represent the system using the terminology that the

people in the factory are used to work with. The growth of the set of building

blocks showed also that it is feasible to extend the scope of a domain specific

extension and that this results in new terminology. The concept of simulation

building block elements allowed to easily compose new dedicated simulation

building blocks, therefore the problem owners in icecream factories noticed in

their simulation model an icecream-filler while the problem owners of the

petfood factory had in their model a petfoodbox-filler. Two machines that

conceptually performed the same activities, but to the people involved in the

simulation studies the specific attention to ‘their’ vocabulary was very

 9 Epilogue

 279

important. The answer to research question 2C as has been discussed more

elaborate in chapter 5 and applied successfully in different case studies, but

mainly in the Nestlé case study, is:

Use terminology of the problem owner in the simulation

building blocks, example models and documentation.

 With the answers to the three sub questions and the successful execution of

the case studies described in chapter 6, 7 and 8 and appendix I, the initial

research question can be answered:

How can domain specific extensions for a simulation

environment improve the effectiveness of simulation

studies?

 The answer to this question is:

Perform simulation studies with models that are composed

using domain specific extensions, by applying a structure

using simulation building blocks and building block

elements, include additional tools for automation, provide

support and documentation for understanding via a

design approach that focuses on conceptualization and

specification.

9.5 Further improvements and future research

 Further improvements and future research regarding domain specific

extensions can be seen in two directions. The first direction is to further

improve the theory provided in chapter 5. At all four elements (concept of

simulation building blocks, additional tools, support and documentation, and

design approach) further improvements can be identified. Secondly, the

availability of domain specific extensions enable a new way of carrying out

simulation studies. The activities of a simulation study can be more focused,

but also the new types of simulation studies can be defined. This section

describes several of the potential research directions we have seen over the

past years.

9.5.1 Improvements to the concept of simulation building blocks

 The concept of simulation building blocks and the building block elements

have been described in chapter 5. In the case studies we encountered that

the simulation building block guidelines are applied differently according to the

scope and level of detail of the simulation models within a domain. We saw

that the guidelines have been applied in the Container Terminals case study.

On the other hand, in the case studies for Supply Chains and Nestlé

production facilities, the guidelines were applied more strictly. The

experiences of the case studies show that the developers of the domain

9.5 Further improvements and future research

280

specific extension have an interpretation of the guidelines and apply trade-offs

whether a guideline should be applied or not.

 Another point of attention is that the model developer makes trade-offs

within the scope of the domain whether to use the guideline. These trade-offs

deal with the decision whether the guideline should be applied to all building

blocks, or only to a specific family. An example of such a decision is

simulation building block guideline 2, see the block underneath with the trade-

off explanation. Based on the experience of the performed case studies each

simulation building block guideline can be extended in this way and further

clarified to support the designers of domain specific extensions and their

simulation building blocks.

Simulation Building Block guideline 2: a simulation building block consists of a

core and building block elements to represent functions and services.

Trade-off explanation: In chapter 5 it has already been described that the

simulation building block core can be coded with model constructs or the core

can be represented by one or more building block elements. In the case

studies described in chapter 6, 7 and 8, and in appendix 1, a rule of thumb

has been applied to help in deciding between the core and the division over

one or more building block elements. The rule of thumb consists of two parts.

1) functions that can be identified for potentially more than one building block

should be modeled as a building block element. For example, claim

equipment or release equipment. 2) if variants for these functionalities are

important for the problem owner and if they result in different building blocks,

then these functionalities should be implemented as separate building block

elements. If not, they could be modeled in the core of the building block.

 The case studies performed in chapter 6, 7 and 8 were executed with

domain specific extensions that have been developed on top of three different

generic simulation environments: Arena, eM-Plant and DSOL. With the case

study of the supply chain (chapter 6) we demonstrated that one design for

simulation building blocks and building block elements successfully can be

implemented in different generic simulation environments. But the

implementation project showed that some environments are easier to extend

than others. We have combined our experience in working with the different

simulation environments for the development of simulation building blocks and

listed some features in Table 9.8. This table contains features that we

observed in only one or two of the simulation environments. This table is

intended for developers and vendors of generic simulation environments to

apply these best practices into their simulation environment, resulting in the

best generic simulation environment for the development of domain specific

extensions.

 9 Epilogue

 281

Table 9.8: Features observed in one or two generic simulation
environments

Feature Generic

sim. env.

Observed benefit that could also be realized in

other simulation environments

(Partial)

inheritance

objects

eM-Plant Ability to define a structure of objects, reusing parts

of the functionality of superclasses, and

possibilities for partial extension.

Composition of

model

constructs in

model

constructs

eM-Plant Model constructs defined in the object library can

be composed out of other model constructs. This

enables the concept of building blocks composed

out of building block elements.

Available data

types

eM-Plant

& DSOL

Availability of data types such as numbers, strings,

tables, lists and possible new data types specific

for the domain specific extension.

Visualization

capabilities of

state and

performance

indicators

Arena The simulation building blocks that are instantiated

into the simulation model automatically contain a

state drawing, performance indicators and

representation of parameter settings, which also

scale when the model users zooms in or out.

Layered

visualization

eM-Plant The model developer has the opportunity to hide

and show specific elements of the visualization of

the building blocks, however, elements that are

hidden at lower level, cannot be shown at a higher

level of abstraction.

Capability of

running via the

web

DSOL Simulation models developed in the DSOL

environment can be accessed via any web browser

and be executed and analyzed worldwide.

Programming

interface with

MS Office

products

Arena The additional tools developed for the container

game are all programmed in Visual Basic and

could be realized thanks to the complete

integration of Visual Basic in the Arena simulation

environment. This included model generation,

parameter setting, model execution and reporting

of performance indicators.

Capability of

separate

simulation

models with one

common clock

DSOL The system elements are represented by several

simulation models, divided over different

computers, that all use the same central clock

mechanism.

Routing of

entities via

stations

Arena Entities with all their attributes are sent from station

to station, where at each station, the correct code

can be executed, based on the state of the

attributes of the entity that resides in the mailbox.

9.5 Further improvements and future research

282

Feature Generic

sim. env.

Observed benefit that could also be realized in

other simulation environments

Connect model

constructs in

flow

Arena The Nestlé process building blocks were fluently

connected via connector interfaces that enable the

representation of a flow analogous to how process

engineers use their flow schemes of the production

mechanism.

Debugging

capability

eM-Plant

& DSOL

While the simulation model is in debug mode, the

code can be viewed exactly as it is programmed, it

can be executed step wise, and it is possible to set

breakpoints and return to breakpoints.

Building block

changes during

simulation run

mode

eM-Plant While the simulation model is running, it is possible

for expert model developers to temporarily stop the

clock, adjust the simulation model logic and

continue. This change can also be applied to the

simulation building blocks that are instantiated in

the simulation model. Especially during the system

testing of the simulation building blocks for initial

development this feature is very helpful for

developers.

9.5.2 Improvement to additional tools

 The additional tools defined in chapter 5 are simulation model instantiation,

model parameterization, model verification and analysis of the model output.

In the container game all these types of tools have been developed from

scratch. The domain specific extension for Nestlé production facilities included

with the Excel sheet only the parameterization and the output analysis. All of

these tools have been developed from scratch as well, even though the

simulation building blocks of the domain specific extension were both

implemented using the generic simulation environment Arena.

 The parameter interface of simulation building blocks developed in Arena

all have the same structure, therefore it should be feasible to have a

standardized approach of filling the parameters. The same applies for the

output of the simulation model that is defined in text files. A standard reusable

approach should be available to handle the output of simulation building

blocks.

 The standardized approach should contain a way of handling the output of

simulation building blocks and the best way to represent it. Some experience

was gained within the Nestlé simulation studies with combining and

abstracting performance indicators. On the other hand, the lack of combining

and abstracting was one of the major concerns in the teaching cases in the

supply chain (Van der Hee, 2002). The definition of additional tools could lead

to a better standardization and conceptually match better with the use of the

data and analysis on behalf of the problem owners.

 9 Epilogue

 283

9.5.3 Improvement to support and documentation

 In all of the three key domain specific extensions of chapter 6, 7 and 8, a

lot of effort was put to the documentation of the individual simulation building

blocks. This documentation contained the functionality of the individual

simulation building blocks, a detailed description of their parameters, the

visualization, the performance indicators and additional background

information.

 In the training sessions provided to model developers and users of the

different domain specific extensions, the model developers received sufficient

explanations with the functionality descriptions of the simulation building

blocks. With that knowledge they successfully applied the building blocks in

training assignments. They hardly ever paid attention to the other descriptions

of the simulation building blocks and just started working. Further research is

needed to develop a more targeted documentation, support, and training

sessions, and thus a more efficient investment in the domain specific

extension.

9.5.4 Improvement to the design approach for domain specific extensions

 If the simulation building block guidelines are extended with trade-offs,

then these trade-offs will enhance the design approach for domain specific

extensions, especially when the trade-offs contain enhanced mitigations for

the list of risks that have been identified. The trade-offs and the use of the

simulation building blocks guidelines can then become an integrated part of

the design approach. The advantage of an integrated design approach is that

the designer has a step-wise approach, including a descriptions of workshops

and intermediate documents, which help the complete design team and

problem owner to understand the process, the need of contribution and the

risks involved in insufficient participation by making undesired trade-offs.

9.5.5 New possibilities simulation and challenges using domain specific

extensions

 The domain specific extensions that have been developed in the case

studies enabled fast and easy model development, partially automatic setting

of the parameters and in two cases complete automatic model instantiation,

i.e. container game from VISIO drawings (chapter 7) and airport baggage

systems from AutoCAD drawings (appendix 1). These structured simulation

models allow for some new possibilities, beyond the used of default problem

solving as described in section 1.2.

 The first experiences of using simulation models developed with domain

specific extensions for other purposes than the intended simulation study for

problem solving and alternative experimentation were observed in the case

studies of OLS (control of hardware from simulation, section 3.3), supply chain

(use of real time data, section 6.6), container design (applicability in a

9.5 Further improvements and future research

284

management game, chapter 7), Nestlé production facilities (operational

planning optimization and generation of PLC logic, section 8.6) and baggage

handling at airports (test control software via simulation, appendix 1) possibly

automatic model development.

 The potential of these topics can be enormous in reducing the cycle of

investments and the quality of the operational performance of the investment.

However, each of these topics for further use of simulation models has its own

challenges. The potential and the main challenges that have been observed

during the execution of the case studies are briefly discussed as ongoing

follow up research.

Possibility of using real time data

 The potential of real time data in simulation models is that an actual

situation can be reviewed in the model and to have an accurate starting point

to predict what the system will look like when extrapolated from its current

situation. In the supply chain case study this resulted in a model that included

simulated events as well as actual events. Jacobs (2005) describes some

concepts regarding the generic simulation environment how to handle this.

Likely also some (additional) simulation building block guidelines are required

to incorporate this in the domain specific extension.

Possibility of using PLC linking

Saanen (2004) describes how the process of readying an automated

container terminal for production is performed, and the enormous challenges

the developers have with the testing the PLC code. He describes how

simulation models could be used to test the PLC code by interfacing between

the simulation software and the PLC software. The OLS project (chapter 3)

and the baggage handling at airport (appendix) are case studies that helped

Saanen in the integration and testing.

Possibility of supporting games with simulation

 In the management game ‘Container Adrift’ the visualization-simulation tool

is used to support the negotiations around a terminal design. This enabled the

stakeholders to have discussion about the content besides discussion about

the processes. Applying simulation models in this way increases the quality of

the discussion. The challenge for the game participants is not to lose

themselves in the details offered by the tool. Van Houten (2007) has used this

idea and the supply chain simulation building blocks to develop a design

approach for games. Some specific building block elements could be defined

to enhance the process of game development.

 References

 285

References

Ackoff, R.L. (1962) Scientific method: optimizing applied research decisions.

New York: John Wiley & Sons.

Arends, D. (1999) Using object-oriented simulation for a quantitative approach

of the terminal concepts, master thesis, Delft University of Technology,

Delft

Ayad N.; H.G.Sol. (2002) “Development of New Geographically Distributed

Business Models for Global Transactions”. In: R.H. Sprague, J.F.

Nunamaker (Eds.); Proceedings of the 35th Hawaiian International

Conference on Systems Sciences, CD-ROM, 8 pages

Ayad, N.; E.C. Valentin. (2001) Design building blocks for global banking at

ABN AMRO, intern report, Delft University of Technology, Delft

Babeliowsky, M.N.F. (1997) Designing interorganizational logistic networks, a

simulation based interdisciplinary approach, Doctoral Dissertation, Delft

University of Technology, Delft

Bajnath, S.S.; S.J. Bani Hashemi (2007) DSOL For Hospitals; A simulation

study on using DSOL in a Web-based Environment for Hospitals, intern

report, Delft University of Technology, Delft

Baker, G. (1997) “Taking the work out of simulation modeling: an application

of technology integration” In: S. Andradottir; K.J. Healy; D.H. Withers; B.L.

Nelson (Eds.) Proceedings of the 1997 Winter Simulation Conference,

pp.1345-1351

Balci, O. (1997) “Principles of simulation model validation, verification, and

testing” In: Transactions of the Society for Computer Simulation

International, 14 (1), pp.3-12

Balci, O; R.E. Nance. (1992) “The simulation model development

environment: an overview” In: J.J. Swain; D. Goldsman; R.C. Crain; J.R.

Wilson (Eds.) Proceedings of the 1992 Winter Simulation Conference,

pp.726-737

Banks, J. (1999) “Introduction to simulation”, In: P.A. Farrington; H.B.

Nembhard; D.T. Sturrock ; G.W. Evans (Eds.) Proceedings of the 1999

Winter Simulation Conference, pp.7-13

Banks, J. (2000) Getting started with Automod. Salt Lake City: Brooks

Automation

Banks, J.; F. Azadivar; D. Ferring; J.W. Fowler; D.W. Halpin; A.M. Law; M.

Manivannan; W.S. Murphy. (2001) “Panel session: the future of simulation”

In: B.A. Peters; J.S. Smith; D.J. Medeiros; M.W. Rohrer (Eds.) Proceedings

of the 2001 Winter Simulation Conference, pp.1453-1461

286

Bapat, V.; D.T. Sturrock. (2003) “The Arena product family: enterprise

modeling solutions” In: S. Chick; P.J. San-chez; D. Ferrin; D.J. Morrice

(Eds.) Proceedings of the 2003 Winter Simulation Conference, pp.210-217

Barton, R.R.; P.A. Fishwick; R.G. Sargent; J.O. Henriksen; J.M. Twomey.

(2003) “Panel: simulation – past, present and future” In: S. Chick; P.J.

Sanchez; D. Ferrin; D.J. Morrice (Eds.) Proceedings of the 2003 Winter

Simulation Conference, pp.2044-2050

Batley, A. (2006) “Simulation experiments for roadmap of investment in milk

factory” In: R.A.Bijlsma (Ed.); Proceedings of ArenaSphere 2006, CD-

ROM, 12 pages

Birtwistle, G.M. (1979) DEMOS, a system for discrete event modeling on

SIMULA. London: Macmillan

Blom, P.; J. Korf. (2000) Bottleneck analysis of the new terminal of JFKIAT.

Delft: TU Delft

Bockstael-Blok,W.; I.S. Mayer; E.C. Valentin. (2003) “Supporting the design of

an inland container terminal through visualization and gaming-simulation”

In: R.H. Sprague, J.F.Nunamaker (Eds). Proceedings of the 36th Annual

Hawaii International Conference on System Sciences, CD-ROM , 10 pages

Boyson, S.; T. Corsi; M. Dresner; L. Harrington. (1999) Logistics and the

Extended Enterprise, New York: John Wiley & Sons Inc.

Brandt, M. (1999) SkyShuttle, Den Haag in beweging (Dutch), master thesis,

Delft University of Technology, Delft

Britals, J. (2008) “Enterprise Dynamics New Release V8.0” In: S.J. Mason;

R.R. Hill; L.Mönch; O Rose; T.Jefferson; J.W.Fowler (Eds.) Proceedings of

the 2008 Winter Simulation Conference, pp.215-221

Bruijn, H. de; E. ten Heuvelhof. (2000) Networks and Decision-making.

Utrecht: Lemma

Cellier, F.E. (1992), “Hierarchical Non-Linear Bond Graphs: A Unified

Methodology for Modeling Complex Physical Systems”, Simulation, 58(4),

pp.230-248.

Cooper, M.; D. Lambert; J. Pagh. (1997) “Supply chain management: More

than just a name for logistics” In: The International Journal of Logistics

Management, 8 (1), pp.1-14

Corver, A. (2001) Supply chain visualization: Simulation as a means to gain

insight in the supply chain. master thesis, Delft University of Technology,

Delft

CTT-Center for Transportation Technology. (1997) Definitiestudie

ondergronds logistiek systeem, deelrapportages 1-5. Rotterdam: CTT

Dahl, O.-J.; K. Nygaard (1966) “SIMULA - an ALGOL-Based Simulation

Language”. Communications of the ACM, 9(9), pp. 671-678

 References

 287

Davis, P.C.; P.A. Fishwick; C.M. Overstreet; C.D. Pegden. (2000) “Model

composability as a research investment” In: J.A. Joines; R.R. Barton; K.

Kang; P.A. Fishwick (Eds.) Proceedings of the 2000 Winter Simulation

Conference, pp.1585-1591

Diamond, R.; J.O. Henriksen; C.D. Pegden; A.P. Walker; C.R. Harrell; W.B

Nordgren; M.W. Rohrer; A.M. Law. (2002) “The current and future status of

simulation software (panel)” In: E. Yücesan; C.H. Chen; J.L. Snowdon; J.M.

Charnes (Eds.) Proceedings of the 2002 Winter Simulation Conference,

pp.1633-1640

Du, W. (2002a) Ontwikkeling bouwstenen voor simulatie-spel. master thesis,

Delft University of Technology, Delft

Du, W. (2002b) User manual visualization-simulation tool Containers Adrift.

Delft University of Technology, Delft

Duke, R. (1980) “A paradigm for game design”, Simulation and Gaming,

11(3), pp.364-377

Ebben, M.J.R. (2001) Logistics Control in Automated Transportation

Networks. doctoral dissertation, University of Twente, Enschede

Eldabi, T.; M. Wai Lee; R.J. Paul (2003) “A Framework For Business Process

Simulation: The Grab And Glue Approach”. In: A. Verbraeck, V. Hlupic

(Eds.), Proceedings ESS’2003 – 15th European Simulation Symposium,

pp.141-148

Evers, J.J.M.; S.A.J. Koppers. (1996) “Automated guided vehicle traffic control

at a container terminal”, Transportation research part A – Policy and

practice, 30 (1), pp. 21-34

Flood, R.L.; E.R. Carson. (1988) Dealing with Complexity. New York: Plenum

Press

Forrester, J.W. (1999) System Dynamics: the Foundation Under Systems

Thinking. Cambridge: MIT

Gast, V. de ; R.A. Bijlsma; E.C. Valentin. (2008) “Empowering Decision

Support With Simulation Technology – Scenario Navigator” In: S.J. Mason;

R.R. Hill; L.Mönch; O Rose; T.Jefferson; J.W.Fowler (Eds.) Proceedings of

the 2008 Winter Simulation Conference, pp.236-244

Gatersleben, M.R.; S.W. van der Weij. (1999)“Analysis and simulation of

passenger flows in an airport terminal”. In: P.A.Farrington, H.B.Nembhard,

D.T.Sturrock and G.W.Evans (Eds.), Proceedings of the 1999 Winter

Simulation Conference, pp.1226-1231

Gigch, J.P. van (1991) System design modeling and metamodeling. New

York: Plenum Press

Haige, J.W.; K.N. Paige. (2004) Learning SIMUL8: The Complete Guide, 2nd

Ed. Bellingham: Plain Vu Publishers

288

Harrell, C.R.; R.N. Price. (2003) “Simulation modelling using Promodel

Technology” In: S. Chick; P.J. Sanchez; D. Ferrin; D.J. Morrice (Eds.)

Proceedings of the 2003 Winter Simulation Conference, pp.175-181

Hay, A.M.; E.C. Valentin; R.A. Bijlsma. (2006) “Modeling Emergency Care in

Hospitals: A Paradox - The Patient Should not Drive the Process.” In:

E.Yücesan; C.H.Chen; J.L.Snowdon; J.M.Charnes (Eds.) Proceedings of

the 2006 Winter Simulation Conference, pp.439-445

Hee, R. van der. (2001) Teaching cases Real-Time Supply Chain. CD-ROM,

Delft University of Technology

Hee, R. van der. (2002) Building blocks for Real-Time Supply Chain, master

thesis, Delft University of Technology, Delft

Heijden, M.C. van der; A. van Harten; M.J.R. Ebben; Y.A. Saanen; E.C.

Valentin; A. Verbraeck. (2002) “Using Simulation To Design an Automated

Underground System for Transporting Freight Around Schiphol Airport”,

Interfaces, 32 (4), pp.1-19

Heijman, F. (1999) Check-in capacity analysis of Terminal 4 at JFK, master

thesis, Delft University of Technology, Delft

Heinicke, M.U.; A. Hickman. (2000) “Eliminate bottlenecks with integrated

analysis tools in eM-Plant” In: J.A. Joines, R.R. Barton, K. Kang, P.A.

Fishwick (Eds.) Proceedings of the 2000 Winter Simulation Conference,

pp.229-231

Hill, D.R.C. (1996) Object-Oriented Analysis and Simulation Bedforshire:

Addison-Wesley

Hooghiemstra, J.S.; M.J.G. Teunisse. (1998) “The use of simulation in the

planning of the Dutch railway services” In: D.J. Medeiros; E.F. Watson; J.S.

Carson; M.S. Manivannan (Eds.) Proceedings of the 1998 Winter

Simulation Conference, pp.1139-1145

Hospital Navigator. (2007) User’s Guide: Hospital Navigator; Modelling,

Simulation & Analysis in Healthcare, Den Haag: Systems Navigator

Houten, S.P.A. van (2007) A suite for developing and using business games,

doctoral dissertation, Delft University of Technology, Delft

Jacobs, P.H.M. (2005) DSOL simulation suite - Enabling multi-formalism

simulation in a distributed context. doctoral dissertation, Delft University of

Technology, Delft

Kalasky, D.R., Levasseur, G.A. (1997). “Using SiMPLE++ for Improves

Modeling Efficiencies and Extending Model Life Cycles” In: S. Andradottir;

K.J. Healy; D.H. Withers; B.L. Nelson (Eds.) Proceedings of the 1997

Winter Simulation Conference, pp.1345-1351

Kasputis S.; H.C. Ng. (2000) “Composable simulations” In: J.A. Joines; R.R.

Barton; K. Kang; P.A. Fishwick (Eds.) Proceedings of the 2000 Winter

Simulation Conference, pp.1577-1584

 References

 289

Kempen, J. van ; I.S. Mayer; W. Bockstael-Blok. (2002) Spel beschrijving

Containers op Drift, Delft University of Technology, Delft

Keller, L.; C. Harrell; J. Leavy.(1991) “The three reasons why simulation fails”

Industrial Engineering, 23(4), pp.27-31

Kelton, W.D.; R.P. Sadowski ; D.T. Sturrock. (2003) Simulation with Arena,

third edition. New York: McGraw-Hill

Kim, T.G.; Ang, M.S., (1997) “Chapter 4. Reusable Simulation Models in an

Object-Oriented Framework”. In: Zobrist, G.W.; Leonard, J.V. (Eds.)

Object-oriented simulation: reusability, adaptability, maintainability. pp. 139-

164.

Kiviat, P. J., (1966) Introduction to the SIMSCRIPT II Programming Language.

New York: The RAND Corporation

Kolfschoten, G.L. ; E.C. Valentin; G.J. de Vreede; A. Verbraeck. (2006)

“Cognitive load reduction through the use of building blocks in the design of

decision support systems”, In: Proceedings of the Twelfth Americas

Conference on Information Systems, CD-ROM.

Kolfschoten, G.L.; S. Lukosch; A. Verbraeck; E.C. Valentin; G.J. de Vreede

(2010) “Cognitive learning efficiency through the use of design patterns in

teaching.” Computers & Education, 54(3), pp. 652-660

Krahl; D. (2003) “Extend: an interactive simulation tool” In: S. Chick; P.J.

Sanchez; D. Ferrin; D.J. Morrice (Eds.) Proceedings of the 2003 Winter

Simulation Conference, pp.188-196

Kuiper, R. (2001) Fly or Flee, Evacuation of Airport Terminal Buildings –

Possibilities for Computer Simulation, master thesis, Delft University of

Technology, Delft

Law, A.M.; D.W. Kelton. (1999) Simulation Modeling and Analysis.New York :

McGraw-Hill

Law, A.M.; M.G. McComas. (1989) “Pitfalls to Avoid in the Simulation of

Manufacturing Systems” Industrial Engineering, 21(5), pp.28-31

Lindeijer, D.G. (2003) Controlling Automated Traffic Agents, doctoral

dissertation, Delft University of Technology, Delft

Mayer, I.S., W. Bockstael-Blok, E.C. Valentin. (2004) “A Building Block

Approach to Simulation: An Evaluation Using Containers Adrift” In:

Simulation Gaming, 35 (1), pp 29-52

McClave, J.T.; P.G.Benson; T.L. Sincich. (2000) Statistics for Business and

Economics (8th Edition), Upper Saddle River: Prentice Hall PTR

Meer, T. van der. (2002) “Logistieke megaprojecten op lange baan

geschoven” LogistiekKrant, 15 (17), pp. 1

Mehta, A. (1999) “Business solutions using Witness” In: P.A. Farrington; H.B.

Nembhard; D.T. Sturrock; G.W. Evans (Eds.) Proceedings of the 1999

Winter Simulation Conference. pp.230-233

290

Mitroff, I.I.; F.R. Sagasti. (1973) “Operation research form the viewpoint of

general systems theory” OMEGA, 1 (6), pp.117-134

Nance, R.E. (1993) “A history of discrete event simulation programming

languages” ACM SIGPLAN Notices, 28 (3), pp 149-175.

Page, E.H.; J.M. Opper. (1999) “Observations on the complexity of

composable simulation” In: P.A. Farrington; H.B. Nembhard; D.T. Sturrock;

G.W. Evans (Eds.) Proceedings of the 1999 Winter Simulation Conference,

pp.553-560

Pater, A.J.G.; M.J.G. Teunisse.(1997) “The use of a template-based

methodology in the simulation of a new cargo track from Rotterdam harbor

to Germany” In: S. Andradottir; K.J. Healy; D.H. Withers; B.L. Nelson (Eds.)

Proceedings of the 1997 Winter Simulation Conference, pp.1176-1180

Pegden, C.D.; R.E. Shannon; R.P. Sadowski. (1990) Introduction to

Simulation Using SIMAN. New Jersey: McGraw-Hill

Pielage, P. (2005) Conceptual Design of Automated Freight Transport

Systems. Methodology and Practice, doctoral dissertation, Delft University

of Technology, Delft

Pollacia, L.F.; L.M.L. Delcambre. (1997) “Chapter 3. The object flow model for

object-oriented simulation and database application modeling”. In: G.W.

Zobrist; J.V. Leonard (Eds.) Object-oriented simulation: reusability,

adaptability, maintainability. Piscataway: IEEE Press, pp. 89-137.

Rengelink, W.; Y.A. Saanen. (2002) “Improving the Quality of Controls and

Reducint Costs for On-Site Adjustments with Emulation: An Example of

Emulation in Baggage Handling”. In: E.Yücesan; C.H.Chen; J.L.Snowdon;

J.M.Charnes (Eds.) Proceedings of the 2002 Winter Simulation

Conference, pp.1689-1694

Riesenkamp, M.; E.C. Valentin; G. Heijkoop; C. Konings. (2007) Functionele

Omschrijving: Sandd – Simulatie en experimentatie – capaciteitsplanning.

Intern rapport, Systems Navigator, Delft

Robinson, S.; M. Pidd. (1998) “Provider and customer expectations of

successful simulation projects” Journal of the Operational Research

Society, 49(3), pp.200-209

Rockwell Automation (2007) “Arena Shines at WSC—Again!” Retrieved 20-

March-2007 from: www.arenasimulation.com

Rohrer, M.W. (2003) “Maximizing simulation ROI with AutoMod” In: S. Chick;

P.J. Sanchez; D. Ferrin; D.J. Morrice (Eds.) Proceedings of the 2003

Winter Simulation Conference, pp.201-209

Saanen, Y.A. (2004) An approach for designing robotized marine container

terminals, doctoral dissertation, Delft University of Technology, Delft

Sadowski, D.; M.R. Grabau. (2000) “Tips for successful practice of simulation”

In: J.A. Joines; R.R. Barton; K. Kang; P.A. Fishwick (Eds.) Proceedings of

the 2000 Winter Simulation Conference, pp.69-76

 References

 291

Sage, A.P. ; J.E. Armstrong. (2000) Introduction to systems engineering. New

York: John Wiley & Sons

Schriber, T.J. (1974) Simulation using GPSS. New York: John Wiley

Shannon, R.E. (1975) Systems simulation: the art and science. Upper Saddle

River: Prentice Hall PTR

Simon, H.A. (1969) The sciences of artificial. Cambridge: MIT Press

Sol, H.G. (1982) Simulation in information systems development, Doctoral

Dissertation, Rijksuniversiteit Groningen, Groningen

Spruengli, G.; E.C. Valentin; S. Steijaert (2005) Report workshop scoping

simulation building blocks Nestlé Nutrition. Geneva: Rockwell Automation

Swain, J.J. (2007). “INFORMS simulation software survey. OR/MS Today.

Institute for Operations Research and the Management Sciences

(INFORMS), USA.” Retrieved 02-March-2008 from:

http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation.html

Systems Navigator (2005) User Manual Model Seine Nord, Den Haag:

Systems Navigator

Systems Navigator (2006) User’s Guide: Business Process Simulation

Building Blocks; Modeling Simulation & Analysis of business process. Den

Haag: Systems Navigator

Systems Navigator (2007) User Manual Nestlé Simulation Building Blocks,

version 2, Delft: Systems Navigator

Tewoldeberhan, T.W., (2005) Gaining insight into business networks; A

simulation based support environment to improve process orchestration,

doctoral dissertation, Delft University of Technology, Delft

Turner, M.J. (2006) “Designing UK Government Shared Services” In:

Proceedings European ArenaSphere 2006, CD-ROM

Valentin, E.C. (2002) “Building blocks for modeling of passengers at airports”

In: A. Verbraeck; A. Dahanayake (Eds.) Building blocks for Effective

Telematics Application Development and Evaluation pp.148-172

Valentin, E.C., I.S. Mayer, W. Bockstael-Blok. (2002) "Simulate designs of

container terminals in 15 minutes". In: A. Verbraeck, W. Krug (Eds),

Simulation in Industry – 14th European Simulation Symposium 2002. pp

308-312

Valentin, E.C.; R. Sadowski (2003) “Criteria system analysis of a simulation

study in transportation domain”, internal report, Delft University of

Technology

Valentin, E.C.; A. Verbraeck; H.G. Sol. (2003a) “Effect of Simulation Building

Blocks On Simulation Model Development” In: A. Ibarra (Ed.) Proceedings

of International Conference of Technology, Policy and Innovation, pp.54-61

292

Valentin, E.C.; A. Verbraeck; H.G. Sol. (2003b) “Advantaged and

disadvantages of building blocks in simulation studies: a laboratory

experiment with simulation experts” In: A. Verbraeck, V. Hlupic (Eds.),

Proceedings ESS’2003 – 15th European Simulation Symposium, pp.141-

148

Valentin, E.C.; S. Steijaert; R.A. Bijlsma; P. Silva. (2005a) “Approach for

Modelling of Large Maritime Infrastructure Systems”, In: M.E. Kuhl; N.M.

Steiger; F.B. Armstrong; J.A. Joines (Eds.) Proceedings 2005 Winter

Simulation Conference, pp.1577-1585

Valentin, E.C.; S. Steijaert; G. Spruengli. (2005b) Brainstorming for Nestlé

specific simulation. Den Haag: Systems Navigator

Valentin, E.C.; D. Gstoehl; A. Batley; A. Richoz; R.A. Bijlsma. (2005c)

Specification Nestlé Specific simulation building blocks. Den Haag:

Systems Navigator

Valentin, E.C. (2007) Conceptual model description Ice cream factory

Rorschach Den Haag: Systems Navigator

Valentin, E.C.; A. Verbraeck. (2007) “Domain specific model constructs in

commercial simulation environments”. In: S.G. Henderson; B. Biller; M.-H.

Hsieh; J. Shortle; J.D. Tew; R.R. Barton (Eds.) Proceedings of the 2007

Winter Simulation Conference. pp. 785-795

Valentin, E.C.; A. Nati; T. Holt; G. Piot; R.A. Bijlsma. (2007) Extension

specification Nestlé Specific simulation building blocks advanced

processes. Den Haag: Systems Navigator

Vangheluwe, H.L.; G.C. Vansteenkiste. (1997) “Multi-formalism modelling and

programming language types”. In: W. Hahn ; A. Lehmann (Eds.),

Simulation in Industry, Society for Computer Simulation International

(SCS), pp.105-109

Vangheluwe, H.L.; J. de Lara. (2002) “Meta-models are models too” In: E.

Yücesan; C.H. Chen; J.L. Snowdon; J.M. Charnes (Eds.) Proceedings of

the 2002 Winter Simulation Conference, pp.597-605

Verbraeck, A.; Y.A. Saanen; E.C. Valentin. (1998a) “Logistic Modeling and

Simulation of Automated Guided Vehicles”. In: A.Bargiela, E.Kerckhoffs

(Eds.) Simulation Technology: Science and Art. 10th European Simulation

Symposium and Exhibition. pp.514-519

Verbraeck, A.; Y.A. Saanen; E.C. Valentin. (1998b) Terminal rapportage

Simulatie Experimenten-deel 1(Dutch). Delft: Connekt

Verbraeck A.; Y.A. Saanen; E.C. Valentin. (1999) "Simulatie voor het

Ondergronds Logistiek Systeem Schiphol (Dutch)". In: J.van Nunen,

Leonard Verspui (Eds.). SimLog: Simulatie en Logistiek rond de Haven,

pp.145-156

Verbraeck, A. (2002) “Chapter 1: The BETADE Research Program”. In: A.

Verbraeck; A. Dahanayake (eds.) Building blocks for Effective Telematics

Application Development and Evaluation, pp.2-7

 References

 293

Verbraeck A.; Y. Saanen; Z. Stojanovic; B. Shishkov; A. Meijer; E. Valentin; K.

van der Meer. (2002) “Chapter 2: What are building blocks?”. In: A.

Verbraeck; A. Dahanayake (eds.) Building blocks for Effective Telematics

Application Development and Evaluation, pp.8-21

Verbraeck, A. (2004) “Real-time simulation for real-time supply chains.” In S.

Boyson; L.H. Harrington; T.M. Corsi (Eds.), Real Time: Managing the new

Supply Chain; pp. 99-122

Versteegt, C. (2004) Holonic control for large scale automated logistic

systems, doctoral dissertation, Delft University of Technology, Delft

Visser, R.J. (2000) Sturen zonder handen (Dutch), master thesis, Delft

University of Technology, Delft

Vreede, G.J. de; E.C. Valentin; J.C. Schuuring. (2002) Eindrapportage

"Resultaat door Kleinschaligheid". Rotterdam: DITSE

Witt-Hamer, K. de (1999) Managing the check-in process, master thesis,

Groningen University, Netherlands

XJ Technologies. (2005) ANYLOGICtm St Petersburg: User’s Manual, St

Petersburg, 2005

Zeigler, B.P.; H. Prähofer; T.G. Kim. (2000) Theory of modeling and

simulation: integrating discrete event and continuous complex dynamic

systems. San Diego: Academic Press

Zobrist, G.V.; J.V. Leonard. (1997) Object-Oriented Simulation – Reusability,

Adaptability, Maintainability. New York: Wiley-IEEE Press

294

 Appendix 1: Additional cases with domain specific extensions

 295

Appendix 1: Additional cases with

domain specific extensions

 Domain specific extensions have been developed for several more

domains in the period from 2002 to 2007 than only the domain for supply

chains (chapter 6), container terminals (chapter 7) and Nestlé production

facilities (chapter 8). The domain specific extensions were designed according

to the design approach described in section 5.7, the guidelines for simulation

building blocks described in section 5.4 and the use of additional tools and

support to model developers as mentioned in section 5.5 and 5.6.

 The author of this thesis has participated in the development and use of

these domain specific extensions, and therefore he assured the use of the

guidelines and approaches as mentioned. However, the domain specific

extensions have not been used as extensive as the three examples described

in the main text. The use has been limited to only one simulation study or the

model development has only been performed by the developer of the domain

specific extension. Nevertheless, the case studies describe the wide

applicability of the concept, guidelines and design approach and therefore

they have been included in this appendix.

Appendix 1.1 Passengers at airport, once more

 In section 3.3 we described three simulation studies of passengers at

airports. In those simulation studies the number of model constructs rapidly

extended due to small differences in functionality of model constructs. In these

simulations there also were difficulties with the modeling of the allocation

algorithms to allocate scarce resources such as gates or check-in counters to

flights.

 We redeveloped the domain specific extension in the simulation

environment eM-Plant with the theory described in chapter 5 and the

knowledge encountered in the three simulation studies of passengers at

airports described in section 3.3. In the new domain specific extension, more

attention was put to functionalities of system elements that were differing or

shared between the system elements.

 The infrastructure represented by an ‘Area’ has been modeled by several

building block elements representing tasks like ‘Allow passenger to enter

area’, ‘Manage capacity in area’ or ‘Determine process duration in area’.

These types of building block elements went through several implementations

resulting in more flexibility in representing an area, and easier changes in the

simulation models (Valentin, 2002).

 The use of building block elements also improved the flexibility of using

specific algorithms. The first simulation study performed with the new domain

specific extension for passengers in airports regarded the planning and

296

managing of personnel at the security and passport checks at Amsterdam

Airport Schiphol (Visser, 2000). The model developers required a specific

algorithm of allocating personnel to the areas for passport checks or security

checks. Visser solved this by extending the domain specific extension with

new building block elements to change the capacity of an area based on an

external trigger and a building block element to dynamically reroute

passengers that were queuing.

 The second simulation study with the improved domain specific extension

for passengers at airports also included the development of new building

block elements. Kuiper (2001) describes a research project together with the

Airport Research Center (www.arc-aachen.de) for the evacuation of

passengers from an airport in case of emergencies. He extended the areas

with a building block element that represents an alarm or intercom message

that informs all passengers to leave the airport as soon as possible. The new

building block elements in the domain specific extension enabled simulations

to represent different alarming mechanisms and to study the effects of

alternative emergency exits in an airport building. Kuiper used the new

building block elements (Figure Appendix.1) in simulation models of different

airports to prove their applicability.

Figure Appendix.1: New building block elements added to the domain

specific extension for passengers in airports
(Kuiper, 2001, p78)

Appendix 1.2 Baggage handling at airports

 Baggage systems become an essential element in the quality that an

airport provides to its customers. Just a single conveyor belt and manually

sorting of baggage is not possible, due to operational costs and available time

between arrival of passenger and departure of a plane. Airports require from

vendors to have a simulation study that proofs that their design will be able to

handle the daily peaks.

 Many vendors have invested in new mechanisms of transporting baggage,

other than using conveyor belts. Systems like automatic vehicles or magnetic

steered carts require high investments and thus a trade-off between flexibility

and investment. The investment in overcapacity can be reduced by smart

control mechanisms and just in time arrival of vehicles for transporting

 Appendix 1: Additional cases with domain specific extensions

 297

baggage. This can only be achieved with advanced management of the

operations in the baggage area.

 A team of simulation experts and baggage experts worked together at the

development of a domain specific extension for modeling of baggage

systems. The input from the experts of the TU Delft was generic simulation

knowledge, experts of TBA provided mainly knowledge of simulating baggage

systems and experts of the Airport Research Center provided knowledge of

animating and drawing baggage systems using AutoCAD.

 The challenge in this domain specific extension was to develop a set of

building blocks in the simulation environment eM-Plant including all

infrastructure and control of the infrastructure as well as a set of building

blocks in AutoCAD to easily translate a drawing to a simulation model for

analysis. The simulation model after the analysis should then be translated

back to the AutoCAD drawing for 3D animation and finalizing engineering

activities.

 Another expected use of the domain specific extension is the use of

different layers for infrastructure, control and management, which allows

interfacing with real-time objects. This should be a follow up of the successful

exchange between simulation model and reality as demonstrated in the

simulation project for the OLS (section 3.2).

 This domain specific extension consists of different types of transportation,

among them conveyors, automatic vehicles and magnetic transponders. The

simulation building blocks are composed from a range of building block

elements to enable easy development of new pieces of infrastructure, e.g. a

new type of vehicle or a new crossing between conveyors.

Figure Appendix.2: Representation of baggage handling system as

drawing and simulation model (www.arc-aachen.de)

 The interaction between AutoCAD and eM-Plant worked out as expected

thanks to the same definition of building blocks in the AutoCAD environment

as in the eM-Plant object libraries. As a result a simulation model can be

converted to an AutoCAD drawing and an AutoCAD drawing can be converted

to a simulation model. This interaction is shown in Figure Appendix.2. At the

left hand side the AutoCAD drawing is shown of baggage handling system in

Greece and at the right hand side the instantiated simulation model of this

298

system. Changes that are made in the AutoCAD drawing via the dedicated

user interface (shown also in Figure Appendix.2) will automatically result in

changes to the simulation model.

 The interaction between simulation models and the control software of

physical baggage equipment has not been realized in a real life case, but has

been performed in smaller laboratory settings in which several conveyors

belts were controlled via a simulation model. Rengelink and Saanen (2002)

describe how they test PLC logic via the simulation model by replacing the

control of the simulation by external PLC logic.

 Besides the project for testing of PLC logic (Rengelink and Saanen, 2002)

the domain specific extension for baggage handling has been applied at

several airports. Among them are the airport of Athens (Greece) and the

Moscow-Sheremetyevo Airport (Russia) (www.arc-aachen.de).

Appendix 1.3 Business processes for shared service centers

 The UK government is in progress of introducing shared service centers

for back office activities like human resources, finance and procurement. The

aim of introducing the shared service centers is to standardize procedures,

reduce the number of employees involved by 67% and improve throughput.

These aims will be achieved by introducing administrative tools and by

restructuring departments and task allocations. Discrete event simulation is

used to support in defining the required number of employees, the size of

work teams and provide qualitative information of lead times and pieces of

work in progress (Turner, 2006).

 The design of the shared service centers is performed in 8 cycles,

representing different tasks within the back offices. The first step is a new

design of the processes in the shared service center. The second step is to

develop a simulation model of this process and finally to perform simulation

experiments to determine the size of work teams and required skills of

employees by varying task allocations.

 Simulation models of cycle 1 and 2 of the design of the shared service

have been developed with model constructs of the generic simulation

environment. These simulation models represented the system as designed,

but had the disadvantage that, due to the available model constructs, there

were quite some differences between the VISIO design and the process flow

in the simulation model.

 In the domain specific extension for the container terminals we designed

building blocks in VISIO and in the simulation environment (chapter 7). In this

domain specific extension the exchange should not be for equipment, but

process related. The challenge is that the process in a VISIO chart represents

different levels and that these different levels result in combined and grouped

statistics.

 Appendix 1: Additional cases with domain specific extensions

 299

Figure Appendix.3: Part of design (left) and simulation model (right) of

cycle 3.

 Therefore, a domain specific extension was developed that matched with

the VISIO drawings and could represent the work teams easily (Systems

Navigator, 2006). Figure Appendix.3 shows at the left hand side the VISIO

drawing of a part of the design of cycle 3. At the right hand side is the

simulation model instantiated using model constructs of the new domain

specific extension.

 The use of the domain specific extension resulted in more effective

development of the simulation models of the other cycles. The models have

been developed in a quarter of the time and the problem owners can compare

the simulation models better with the initial design process drawings in VISIO.

Appendix 1.4 Emergency rooms in Hospitals UK

 Hospitals in the UK are enforced by the NHS (National Health Service) to

provide the appropriate care to patients that enter into the emergency within a

certain time limit. The difficulty in providing the appropriate care within the

time boundaries is to avoid underutilization of doctors, nurses and spaces and

still be capable of handling the variability of arrivals of patients. Discrete event

simulation is an increasingly popular tool to provide insight into the quality

regarding waiting times a hospital offers.

 The processes in hospitals are often modeled by a standard flow of

patients that try to seize doctors, nurses and spaces to enforce that they

receive the needed care. In reality the doctors determine when a patient is

taken care of and doctors will reply differently to requests of patients with

different needs and different waiting time. The longer a patient is waiting, the

higher its priority will become. The basic model constructs of generic

simulation environments are not suited to handle the priority and active

doctors without additional allocation mechanisms. We have designed a

domain specific extension that consists of simulation building blocks that can

handle these priority mechanisms and active doctors (Hay et al, 2006).

 Hospitals are forced by regulation to work in the same way. Further

doctors have worked for years on standardization of processes to be able to

help patients the best way. Therefore, hospitals seem one of the most likely

fields to apply a domain specific extension.

300

 The domain specific extension has been used for modeling four different

hospitals in the UK. They used the simulation model to analyze the allocation

of patients in 2006. The set of simulation building blocks is implemented in the

generic simulation environment Arena together with an Excel sheet that allows

setting of parameters, creation of doctors and nurses, validate data entry and

provide output performance indicators. Figure Appendix.4 shows the

parameter setting and ability to create new doctors in the system. Figure

Appendix.5 shows the occupancy of the available doctors over time (Hospital

Navigator, 2007).

Figure Appendix.4: Set doctor availability in simulation model

(Hospital Navigator, 2007 p86)

Figure Appendix.5: Output of doctor availability and occupancy during

simulation run (Hospital Navigator, 2007, p91)

 The designed simulation building blocks have also been implemented in

the simulation environment DSOL (Jacobs, 2005). Bajnath and Bani Hashemi

(2007) describe how they reused the concept of Hay et al (2006). They

 Appendix 1: Additional cases with domain specific extensions

 301

developed a domain specific extension with the DSOL library. A small fictive

emergency room was instantiated using the simulation building blocks. The

domain specific environment was extended with an interface for setting

parameters and analyzing results as part of an applet. Figure Appendix.6

shows this applet running via Internet Explorer (www.hospitalnavigator.com;

visited 22-03-2007).

Figure Appendix.6: Applet with interface to DSOL simulation model of

hospital

Appendix 1.5 Waterways and vessels

 The design of a new canal in France between Paris and Belgium was the

trigger of the development for a domain specific extension for the modeling of

vessels and waterways. The new canal should consist of 6 to 10 locks, but the

size and location between the locks was not known yet. Together with

maritime experts of Sogreah we have defined infrastructure and processes of

vessels.

 This domain specific extension has been the first where the Scenario

Navigator software has been applied for full control over the configuration of

the simulation model, extension of the simulation model and gather results of

the different simulation studies.

 A couple of the domain specific building blocks to represent system

elements of infrastructure are waterway, bridge, tunnel and lock. The

processes defined are the mechanism of priority in a lock or underneath a

bridge and reservation of positions in a lock (Systems Navigator, 2005).

 The domain specific extension has in addition been applied for simulation

studies of the locks near Grave (NL) and an improvement of the canal “Du

Rhône à Sète” (FR). These two additional simulation studies required small

302

extensions to the domain specific extension. A new simulation building block

representing two parallel locks has been composed out of existing building

block elements for the locks near Grave (NL) and additional building block

elements have been developed for the generation of vessels that use the

canal “Du Rhône à Sète”.

Input

scenario 2

Simulation
Application

Input

scenario 3

Input

scenario 1

Output

scenario 2

Output

scenario 3

Output

scenario 1

0

10

20

30

40

50

60

0 20 40 60 80

Scenario 1

Scenario 2

Scenario 3

Figure Appendix.7: Effective comparison of simulation experiments of

waterways using Scenario Navigator (Valentin et al, 2005a, p1582)

 The simulation building blocks have been prepared to be filled with data

via the application Scenario Navigator, which enables easy parameterization

and optimization for a large set of simulation experiments as well as multiple

simultaneous users involved in the simulation studies for the design of the

waterways. Figure Appendix.7 shows the use of Scenario Navigator and

simulation models developed using the domain specific extension for

waterways (Valentin et al, 2005a).

Appendix 1.6 Reorganizing police services to match reaction times

 Politicians in the Netherlands have put requirements to the reaction times

of police services. A police officer should be able to respond within a certain

time frame to an assignment, but also finish the paperwork correctly. Several

police departments in the eastern part of the Netherlands have joined forces

to be more certain of their capabilities of replying to calls of residents in their

area and to be able to reduce the number of individual police officers they

need to hire.

 A domain specific extension has been developed to represent police

officers with their schedules, availability and skills. An interface has been

 Appendix 1: Additional cases with domain specific extensions

 303

developed to allocate the correct number of police officers to each individual

area and to filter incoming calls from their historical database. The

development of the domain specific extension was worthwhile, even though

only one simulation study was performed. The adjustments to the simulation

model that were enabled by the simulation building blocks and the

parameterization instrument were performed much easier than with a

simulation model instantiated with generic model constructs. Also the

representation of statistics was better thanks to the building block element that

collected the statistics of the individual police officers. Figure Appendix.8

shows one of the allocations of police officers to the three sub-areas and the

organization of offices instantiated in a simulation model.

Figure Appendix.8: Simulation model allocation police officers to areas

 The experiments that have been performed included applying new

technology to provide process improvements and relocating police officers.

Thanks to the simulation experiments the police department had insight in the

suitability of different configurations and which additional technologies were

worth investing (De Vreede et al, 2002)

Appendix 1.7 International banking ABN AMRO

 Globalization offers advantages to banks, thanks to companies that

perform international business. However, the globalization also results that

banks have to deal with more competitors. The ABN AMRO triggered an

investigation whether it would be worthwhile to centralize some of their

payment activities from offices all over the world to a large dedicated office in

the Netherlands. Ayad and Sol (2002) describe issues that the bank has to

consider like local regulation and IT-architecture. Ayad and Sol defined

together with ABN AMRO several possible allocations of tasks and logistical

flows that are required to evaluate

304

Figure Appendix.9: Visualization interaction local and centralized bank

organization (Ayad and Valentin, 2001, p2)

 Simulation has been used to evaluate the possible allocations of tasks in

the international network of the ABN AMRO. Figure Appendix.9 shows an

example simulation model that resembles the map of Europe with local offices

in France and London and the interaction with the centralized office in

Amsterdam. The figure of a man represents a personal visit of someone to a

local brand of the ABN AMRO bank. Instantiating building block elements

inside the simulation building blocks of the bank offices enabled allocation of

tasks to the local or centralized office (Ayad and Valentin, 2001).

Appendix 1.8 Mail delivery Sandd

 Sandd is one of the new companies active at the Dutch mail market. They

are specialized in delivery to advertisement material and magazines. Since

2000 the company has been growing fast and captured the second spot of the

Dutch post market. The growth has led in 2005 to loss of quality and

increases in cost. Sandd has been looking for an instrument to help them in

their operational planning and redesign of their activities to be able to cope

better with the variability in workload. This instrument should also allow them

to predict the future and possible bottlenecks that might arise.

 Together with a team of analysts of Boer and Croon Young Executives

(www.BCYE.nl) and Sandd we have developed a domain specific extension

containing building blocks that represent the processes of post sorting and

transportation. The domain specific extension also contains simulation

building blocks that represent employees and equipment that is used for

sorting. Figure Appendix.10 shows the processes of post sorting in the central

hall and the types of equipment used for the sorting.

 Appendix 1: Additional cases with domain specific extensions

 305

Figure Appendix.10: Post sorting hall of Sandd

 The domain specific extension uses Excel sheets for setting parameters of

the building blocks and representing output statistics. Scenario Navigator

technology is applied to enable that the simulation models can be used by

managers in the sales department, the sorting hall, or the decentralized

depots to perform experiments with the expected workloads or possible new

customers (Riesenkamp et al, 2007).

306

 Summary

 307

Summary

Discrete event simulation modeling is for many years already a successful

instrument to support problem owners in getting more insight into their

problem domain and possible solutions. Eventhough its success, there are

also some pitfalls around the use of discrete event simulation. These pitfalls

can be summarized around three topics: 1) the model developer has

difficulties to handle the unlimited freedom in modeling; 2) model developers

need to be experts in multiple areas including programming, statistics and

general consultancy; 3) model developers do not speak the language of the

problem owner as a model developer cannot specialize as much into one

domain. The effect is that simulation studies take much longer then problem

owners expect and that the problem owners do not receive the amount of

insight requested.

A resolution is found in the use of domain specific extensions to the use of

generic simulation environments. Domain specific extensions consist of model

construct that represent system elements at the level of abstraction that the

problem owner is familiar with. These extensions enable the simulation model

developer to create simulation models in a generic simulation environment like

Arena or eM-plant, but do not require the model developer to work out all the

detailed bits and pieces that are normally part of a simulation model. The

model developer does not use model constructs with generic names as

‘queue’ and ‘resource’, nor will the model developer compose the simulation

model with processes as ‘wait’ or ‘claim’. The model developer can use model

constructs that represent system elements in the level of generalization the

problem owner is used to. For example, ‘AGV’, ‘check-in counter’ or ‘ship

quay’. As a result the model developer and the problem owner easily speak

the same language. Secondly, the model constructs require less technical

skills from the model developer and thirdly it reduces the options from the

model developer and guides him/her in the direction for composing a

simulation model that represents the system of the problem owner.

In literature the use of domain specificity has been seen as an enormous

advantage, especially to support the model developer in faster composing the

simulation models, but on the other hand the number of domain specific

extensions is limited. The same literature also refers to a wide range of risks

of using domain specific extensions and discussions with simulation experts

confirm the occurrences of these risks in practical case studies.

This research aimed at finding solutions to the risks of using domain

specific extensions in discrete event simulation studies. The applied approach

has been inductive research via case studies, supported by literature search

and laboratory experiments.

308

Initially two case studies have been performed based on the best

knowledge available for the development and use of domain specific

extensions in discrete event simulation studies. These case studies dealt with

an underground logistics system and passengers at Amsterdam Airport

Schiphol and JFK International in New York. In both domains a new domain

specific extension has been developed, including a wide range of model

constructs that represented system elements that were recognizable parts of

the system. With these model constructs several simulation models have

been created as part of performed simulation studies. The simulation studies

in both domains demonstrated that benefits can be achieved with domain

specific extensions that are developed for the domains of AGVs and

passengers at airports. However, the case studies also demonstrate that there

are a couple of risks that come up when using model constructs from a

domain specific extension. We identified new benefits and we had to mitigate

new risks in addition to the expected benefits and the predicted risks

originating from literature for the use of domain specific extensions in discrete

event simulation studies.

Besides the use of domain specific extensions in real life simulation

studies we also performed laboratory experiments in which we compared the

use of domain specific extensions versus the use of only model constructs of

generic simulation environments. The laboratory experiments have been

performed with novices (participants without any practical experience in the

field of simulation) and experts (participants who were simulation

professionals with at least several years experience) in the field of discrete

event simulation. In several laboratory experiments the different participants

had to make adjustments to existing simulation models to enable new

experiments, the participants had to develop simulation models from scratch

and the participants had to execute a miniature simulation study. The novice

participants that worked with the domain specific extension were better

capable to reach the results within the limited time compared to the novices

that worked with the generic simulation environment. Further, it was surprising

to notice how much difficulties the simulation experts had to work with the

model constructs provided by the domain specific extension. The novices

were well supported by the domain specificity of the model constructs, while

the experts wanted to see the details behind the domain model constructs and

felt limited by the domain specific extension.

The observations from the case studies and the laboratory experiments

are used to define requirements for a successful domain specific extension.

These requirements are translated to a theory that a domain specific

extension is more than a collection of model constructs. The contribution of

this dissertation provides four elements that help to ensure the expected

benefits and mitigate the identified risks. These four elements are:

 Summary

 309

• Domain specific extension should consist of simulation building blocks

and building block elements that match 22 guidelines.

• Additional tools should be available to support data entry, model

development and/or output evaluation and comparison.

• The simulation building blocks and building block elements should be

well documented and supported by small examples to enable the model

developer to feel comfortable with the domain specific extension.

• A design approach needs to be followed that allocates time to the

activities for conceptualization and specification.

 The concept of simulation building blocks and building block elements are

retrieved from research that has been performed in the domain of software

engineering. The 22 defined guidelines help to structure simulation building

blocks and to improve their reusability by composing the simulation building

blocks out of building block elements. Further the guidelines help the

developers of simulation building blocks to provide flexible interfaces and user

interfaces so model developers can set parameters of the building blocks.

 The additional tools automate some of the activities a model developer has

to perform in a simulation study. One of the benefits of the use of domain

specific extensions has been that statistics is all included in the simulation

building block. This inclusion results in a lot of detailed data gathered during

the execution of the simulation model, but a model developer cannot handle

all this information unless it is structured and summarized. Additional tools

help to combine the information and enable the model developer to do faster

more experiments that all provide quality insights into the system.

 The experts in the laboratory experiments dived into the details of the model

constructs of the domain specific extension. They did not have the trust that

the model constructs preformed correctly. In the simulation studies performed

with the AGVs and at the airports similar observations have been made.

Therefore the domain specific extension should provide a lot of documentation

and support to enable model developers not only to use the model constructs,

but more important to trust the domain specific model constructs.

 The domain specific extension is with the introduction of simulation building

blocks, the use of additional tools and the documentation and support material

much more than just a set of domain specific model constructs developed

using a generic simulation environment. Therefore, the approach to design

and develop a domain specific extension as it is proposed based on literature

studies has been extended, deepened and improved to better support the

developers of domain specific extension to follow the guidelines and result in

a successful, reusable domain specific extension.

 The contribution to the theory of domain specific discrete event simulation

(concept of simulation building blocks, additional tools, documentation and

support and a design approach) have been applied in a dozen different case

310

studies. We picked out three that are most representative to demonstrate how

the theory is applied, but more important the result of applying the contributed

theory in the execution of simulation studies using a domain specific extension

of simulation building blocks including additional tools and documentation and

support. The three case studies are:

• Information flows for supply chains; especially focus on the use of the

design approach and demonstrate the capability to develop the same

simulation building blocks independent of generic simulation

environment

• Container terminal simulations in 15 minutes; especially focus to the

capability of automating simulation model development and output

reporting to enable a design for a container terminal to be developed in

15 minutes and provide an extensive documentation of the output of

financial and logistical performance indicators

• Nestlé production facilities; especially the use of the simulation building

blocks in challenging simulation studies that change scope and require

extension of the capabilities of the building blocks that are part of the

domain specific extension

 The evaluation of these case studies led to the conclusion that domain

specific extensions improve the effectiveness of simulation studies, but that

the development of such a domain specific extension should follow the

guidelines and design approach. Further some additional research is

suggested in different areas. We list some possible enhancements to generic

simulation environments to better support the development of domain specific

extensions. We suggest to investigate the possibilities of new use of

simulation models developed using domain specific extensions and we

suggest improvements to the design approach to support developers in trade

offs to be made during the design of simulation building blocks.

 Samenvatting

 311

Samenvatting

Simulatie is al jaren een succesvol instrument dat probleemeigenaren

ondersteunt in het verkrijgen van inzicht voor mogelijke oplossingen in hun

probleemgebied. Ondanks successen rond het gebruik van discreet event

simulatie zijn er valkuilen die modelleurs vaak tegen komen. Deze valkuilen

kunnen worden samengevat rond 3 onderwerpen: 1) de modelbouwer heeft

moeite met de ongelimiteerde vrijheid in de modelbouw; 2) de modelbouwer

moet expert zijn in meerdere gebieden, onder andere programmeren,

statistiek en algemene consultancy; 3) de modelbouwer spreekt niet de

specifieke taal van de probleemeigenaar, want een modelbouwer kan zich

niet specialiseren in een domein. Het effect van deze valkuilen die

modelbouwers moeten ontwijken is dat simulatiestudies langer duren dan wat

probleem-\eigenaren verwachten en dat de probleemeigenaren niet het inzicht

krijgen dat ze nodig hebben.

Het gebruik van domeinspecifieke uitbreidingen van bestaande generieke

simulatieomgevingen levert hier een oplossing voor. Domeinspecifieke

uitbreidingen bestaan uit modelconstructen die een systeem representeren op

het abstractie niveau waar de probleemeigenaar gewend is in te werken.

Deze uitbreidingen stellen de simuatiemodelbouwer in staat om

simulatiemodeleln te bouwen in generieke simulatieomgevingen zoals Arena

of eM-Plant, maar de modelbouwers hoeven zich niet te buigen over de

technische details die normaal een onderdeel zijn van simulatiemodellen. De

modelbouwer gebuikt geen modelconstructuen met generieke namen zoals

‘wachtrij’ en ‘resource’, en ook zal de modelbouwer geen generieke

processen in het model opnemen zoals ‘wacht’ of ‘claim’. De modelbouwer

kan modelconstructen gebruiken die systeemelementen representeren op het

niveau van generalisatie dat de probleemeigenaar gewenst is. Bijvoorbeeld,

‘AGV’, ‘check-in counter’ of ‘scheepskade’. Allereerst kunnen de

probleemeigenaar en de modelbouwer dankzij de domeinspecificiteit gebruik

maken van dezelfde taal, ten tweede hoeft de modelbouwer minder

technische kennis te hebben en ten derde vermindert het gebruik van

modelconstructen van domeinspecifieke uitbreidingen de opties van de

modelbouwer en stuurt het de modelbouwer bij het bouwen van het

simulatiemodel dat het systeem van de probleemeigenaar representeert.

In de literatuur wordt het gebruik van domeinspecificiteit gezien als een

groot voordeel, met name om de modelbouwer te ondersteunen om sneller de

simulatiemodellen te ontwikkelen, maar aan de andere kant is het gebruik van

het aantal domeinspecifieke uitbreidingen beperkt. Dezelfde literatuur verwijst

ook naar de diverse risico’s die het gebruik van domeinspecifieke

uitbreidingen met zich meebrengen. Deze risico’s zijn is bevestigd in

312

gesprekken met simulatieexperts die de risico’s herkennen in hun eigen

simulatiestudies.

 Dit onderzoek richt zich op het vinden van oplossingen voor de risico’s

van het gebruik van domeinspecifieke uitbreidingen in simulatiestudies. In dit

onderzoek is gebruik gemaakt van inductief research met behulp van case

studies, ondersteunt door literatuuronderzoek en laboratorium-experimenten.

Initieel zijn twee casestudies uitgevoerd op bases van de best beschikbare

kennis voor de ontwikkeling en gebruik van domeinspecifieke uitbreidingen in

simulatiestudies. Deze casestudies hadden betrekking op een ondergronds

logistiek systeem en passagiers op Amsterdam Airport Schiphol en JFK

International in New York. In beide domeinen is een nieuwe domeinspecifieke

uitbreiding ontwikkeld, inclusief een variëteit aan modelconstructen die

herkenbare systeemelementen representeerden. Met deze modelconstructen

zijn verscheidene simulatiemodellen gebouwd als onderdeel van de

uitgevoerde simulatiestudies. De simulatiestudies in beide domeinen hebben

aangetoond dat de verwachte resultaten behaald kunnen worden met

domeinspecifieke uitbreidingen die zijn ontwikkeld voor de domeinen van

respectievelijk AGVs en passagiers op luchthavens. Echter, de case studies

hebben ook getoond dat er risico’s zijn bij het gebruik van domeinspecifieke

uitbreidingen. We hebben nieuwe risico’s en aanvullende voordelen

geïdentificeerd in aanvulling op de verwachte voordelen en de voorspelde

risico’s op basis van de literatuur over het gebruik van domeinspecifieke

uitbreidingen in simulatiestudies.

Naast het gebruik van de domeinspecifieke uitbreidingen in

simulatiestudies zijn ook laboratorium experimenten gedaan waarin we keken

wat het verschil is tussen het gebruik van een domein specifieke uitbreiding

en het gebruik van alleen maar een generieke simulatieomgeving. De

laboratoriumexperimenten zijn uitgevoerd met beginners (deelnemers zonder

enige praktijkervaring met simulatiestudies) en simulatieexperts (deelnemers

die minstens enige jaren professioneel simulatiestudies uitvoeren). In de

laboratoriumexperimenten moesten de deelnemers aanpassingen maken aan

bestaande simulatiemodellen om nieuwe experimenten mogelijk te maken, de

deelnemers moesten simulatiemodellen maken vanaf nul en deelnemers

moesten een mini simulatiestudie uitvoeren. De beginners die werkte met de

domeinspecifieke uitbreiding waren beter in staat om resultaten te verzamelen

met de kort beschikbare tijd vergeleken met de beginners die werkten met de

generieke simulatieomgevingen. Daarnaast was het verrassend hoe moeilijk

de simulatieexperts het hadden om te werken met de modelconstructen van

de domeinspecifieke uitbreiding. De beginners voelden zich goed ondersteunt

door de domeinspecifieke modelconstructen, terwijl de experts de details

achter de domeinspecifieke modelconstructen wilden zien en zich gelimiteerd

voelden door het gebruik van de domeinspecifieke uitbreiding.

 Samenvatting

 313

De observaties van de casestudies en de laboratoriumexperimenten zijn

gebruikt voor het samenstellen van eisen voor een succesvolle domein-

specifieke uitbreiding. Deze eisen zijn vertaald naar een theorie dat een

domeinspecifieke uitbreiding meer is dan alleen maar een collectie van

modelconstructen. De theorie beschreven in deze dissertatie is verdeeld over

vier onderwerpen:

• Domeinspecifieke uitbreiding moet bestaan uit simulatiebouwstenen en

bouwsteenelementen die 22 richtlijnen volgen.

• Aanvullende applicaties moeten beschikbaar zijn ter ondersteuning van

data invoer, modelbouw en/of resultaatevaluatie en resultaatvergelijking.

• De simulatiebouwstenen en bouwsteenelementen moeten uitgebreid

beschreven zijn en ondersteund worden door kleine voorbeeldmodellen

die de modelbouwer een comfortabel gevoel geven voor gebruik van de

domeinspecifieke uitbreiding.

• Een ontwerpaanpak moet gevolgd worden die veel tijd besteed aan de

activiteiten voor conceptualisatie en specificatie.

 Het concept van simulatiebouwsteneen en bouwsteenelementen is

gebaseerd op onderzoek in het gebied van software engineering. De 22

gedefinieerde richtlijnen helpen om simulatiebouwstenen te structeren en

verbeteren de herbruikbaarheid door het samenstellen van simulatiebouw-

stenen op basis van bouwsteenelementen. Daarnaast helpen de richtlijnen de

ontwikkelaars van simulatiebouwstenen in het maken van een flexibele

interface en gebruikersinterfaces zodat modelbouwers parameters van de

bouwstenen kunnen instellen.

 De aanvullende applicaties automatiseren enkele van de activiteiten die een

modelbouwer moet uitvoeren tijdens een simulatiestudie. Een van de

voordelen van het gebruik van domeinspecifieke uitbreidingen is dat

statistieken al onderdeel zijn van de simulatiebouwstenen. Dat betekent dat

automatisch veel gedetailleerde informatie beschikbaar is na de uitvoer van

een simulatiemodel, maar een modelbouwer kan niets met al deze informatie

tenzij het wordt gestructureerd en samengevat. Aanvullende applicaties

helpen om deze informatie te combineren en ondersteunen de modelbouwer

om sneller experimenten uit te voeren die inzichten geven in het systeem.

 De expertdeelnemers van de laboratoriumexperimenten doken in de details

van de modelconstructen van de domeinspecifieke uitbreiding. Zij hadden niet

het vertrouwen dat de modelconstructen correct werkten. Vergelijkbare

observaties zijn gemaakt in de simulatiestudies met de AGVs en de

luchthavens. Om dit te voorkomen moet de domeinspecifieke uitbreiding veel

documentatie en ondersteuning bieden aan de modelbouwers, niet alleen

over het gebruik van de modelconstructen, maar nog belangrijker over het

vertrouwen dat de modelbouwer mag hebben in de modelconstructen.

314

 De domeinspecifieke uitbreiding is met de introductie van de simulatie-

bouwstenen, het gebruik van aanvullende applicaties en het documentatie- en

supportmateriaal veel meer dan alleen maar een set van domeinspecifieke

modelconstructen ontwikkelt in een generieke simulatieomgeving. Daarom is

de ontwerpaanpak die is geïntroduceerd op basis van literatuuronderzoek

uitgebreid, uitgediept en verbreed om de ontwikkelaars van domeinspecifieke

uitbreidingen beter te ondersteunen om de simulatie bouwsteen richtlijnen te

kunnen volgen en te kunnen resulteren in een herbruikbare domeinspecifieke

uitbreiding.

 De bijdrage aan de theorie van domeinspecifieke uitbreidingen (concept van

simulatie bouwstenen, aanvullende applicaties, documentatie en support en

een ontwerpaanpak) is toegepast in een dozijn verschillende casestudies. We

hebben drie casestudies geselecteerd die het meest representatief zijn om te

demonstreren hoe de theorie is toegepast en om te laten zien wat het

resultaat is als deze theorie wordt toegepast in simulatiestudies met behulp

van domeinspecifieke uitbreidingen van simulatiebouwstenen inclusief

aanvullende applicaties en documentatie en support. De drie case studies

zijn:

• Informatie voorziening voor supply chains; met name focus op het

gebruik van de ontwerpaanpak en aantonen dat het mogelijk is om

simulatiebouwstenen te maken ongeacht de generieke

simulatieomgeving waarin de bouwstenen worden geïmplementeerd.

• Containerterminalsimulatie in 15 minuten; met name focus op de

mogelijkheid om door automatische simulatiemodel ontwikkeling en

automatische aggregatie van simulatiemodel data een containerterminal

te ontwerpen in 15 minuten en uitgebreid de resultaten te documenteren

van de financiële en logistieke kengetallen.

• Nestlé productiefaciliteiten; met name het gebruik van

simulatiebouwstenen in simulatiestudies die door wijzigingen resulteren

in uitbreidingen van de bouwstenen die onderdeel zijn van de domein-

specifieke uitbreiding.

De evaluatie van deze casestudies heeft geleid tot de conclusie dat domein-

specifieke uitbreidingen de effectiviteit van simulatiestudies verbeteren, maar

dat de ontwikkeling van deze domeinspecifieke uitbreiding wel gedaan moet

worden volgens de ontwerpaanpak en rekening houdend met de richtlijnen. Er

is aanvullend onderzoek geïdentificeerd ijn verschillende onderwerpen. We

adviseren verbeteringen voor de generieke simulatie-omgevingen met

betrekking tot ontwikkeling van domein-specifieke uitbreidingen. We adviseren

ook om te onderzoeken naar alternatief gebruik van simulatiemodellen

ontwikkeld met domeinspecifieke uitbreidingen en we adviseren onderzoek

naar verbeteringen van de ontwerpaanpak om ontwikkelaars van

simulatiebouwstenen beter te ondersteunen in het maken van ontwerpkeuzes.

 Curriculum Vitae

 315

Curriculum Vitae

Edwin Valentin was born in Delft at 21st of September 1976. He has been

raised in Naaldwijk and joined there the HAVO. After graduation in 1993 he

joined the HES (Hogeschool voor Economische Studies; College for economic

studies) and graduated in 1997 in the direction of Logistics and Economics

after 4 years of study including a semester at the University of Westminster in

London.

 Edwin joined in 1997 the consultancy branch of Incontrol Business

Engineering and produced his first simulation models with Arena and eM-

Plant for customers such as Unimills, Prorail and CTT. In 2000 Edwin

switched to the Delft University of Technology, Faculty of Technology, Policy

and Management, section Systems Engineering for a PhD-research position

as part of the BETADE research project group. In 4.5 years Edwin performed

over 15 different projects, delivered more than a dozen articles for

conferences, book chapters and journals and actively participated in the

education program by giving classes to students ranging from first years to

last year master students.

 In 2004 Edwin shifted his career to Systems Navigator where he build on

the development of a consultant department by performing simulation projects

for (international) companies such as Total, Nestlé, Sogreah, Sandd and

Samskip. Almost all his projects included the development of a domain

specific extension and some of the projects are included in this dissertation as

example.

 Currently Edwin is working for the consultancy firm Accenture where he

specializes in delivery management for large scale projects. His most recent

projects are a data migration project and implementation of Oracle Retail.

