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ABSTRACT

In this paper Incremental Nonlinear Dynamic Inversion, a sensor based approxi-
mate form of Feedback Linearization with favorable robustness properties, is applied
to the traction control and stability augmentation problem of a Le Mans Prototype 1
race car. A cascaded side-slip and yaw-rate envelope protection system is developed
in combination with a model following yaw-rate controller which acts inside the safe
envelope. The vehicle is controlled through two limited slip differentials featured in
the front and rear of the vehicle. A method is presented to account for load-tranfer
effects in the calculation of the limited control effectiveness associated the actuators
. Simulations with a high-fidelity vehicle model demonstrate that the control system
is robust against parameter uncertainties and is able to effectively keep the vehicle
within the bounds of the safe envelope.

KEYWORDS

Vehicle Stability Augmentation, Incremental Nonlinear Dynamic Inversion,
Feedback Linearization, Le Mans Prototype 1, Limited Slip Differential, Load
Transfers, Envelope Protections

1. Introduction

The World Endurance Championship (WEC) features some of the most technologi-
cally advanced race cars that exist today. The Le Mans Prototype 1 (LMP1) class of
race cars compete in races lasting from 6 up to 24 hours, the most famous being the
’24h of Le Mans’. The WEC stands out from other championships in that it allows the
use of certain technologies which have been prohibited in other forms of racing. Where
most competitions have banned the use of modern driver assist technologies like Trac-
tion Control (TC) and Electronic Stability Control (ESC), the WEC, a tournament
revolving around technology and strategy, permits a restricted form of TC to be used.
In this paper, Incremental Nonlinear Dynamic Inversion (INDI), a robust nonlinear
control technique first developed for aerospace applications, is investigated outside its
usual context and will be applied to the traction and stability control problem of an
LMP1 race car.

ESC systems are primarily developed for reasons of added safety in limit conditions
where the average driver would otherwise lose control [1]. Therefore, most ESC sys-

CONTACT M. B. Ruijs Email: mart ruijs@outlook.com



tems that can be found on consumer cars prevent the driver from entering the highly
non-linear parts of the vehicle state-space entirely. However, in the context of high-
performance vehicles, driving further into this nonlinear region is advantageous for
performance around a lap [2]. In other words, the control system should increase the
driver’s ability to keep the race car in this region of the state-space.

Automotive control systems frequently feature nonlinear Sliding Mode Control
(SMC) techniques [3–6] as these tend to offer some robustness in the presence of
parameter uncertainties but tend to suffer from chatter in the control signal. Other
nonlinear control techniques, such as Nonlinear Dynamic Inversion (NDI), are inher-
ently difficult to apply to road vehicle control due to the nature of the tire force
characteristics. Control inputs typically do not appear affine in the state equations,
which requires either strong assumptions on the manner in which forces are modeled
[7], or nonlinear optimizations to find the controls [8]. Other possibilities include lin-
earization of the equations involved in the optimization [9], or neglecting the nonlinear
nature of the tire-force characteristics entirely [10].

Furthermore, ESC systems typically rely on a form of differential braking [3,11,
12], differential drive [13], active steering[7] or a combination thereof [4,14,15]. In the
vehicle under consideration, two power units, one at the front and one at the rear
of the vehicle, distribute the drive force through two limited slip differentials and
form the only means of controlling traction forces. Although the control authority of
such systems is limited compared to differential brake or differential drive systems, the
longitudinal distribution of drive forces has a strong effect on the vehicle dynamics [16]
and has been investigated a means of yaw-rate control [17,18]. However, the limited
control authority may require the consideration of secondary effects such as lateral
and longitudinal load-transfers [19,20] due to vehicle accelerations.

Envelope protection systems potentially provide the driver with more control au-
thority inside the safe envelope compared to classical model following techniques
[21,22]. Therefore, a side-slip and yaw-rate stability augmentation and envelope pro-
tection system is developed which incorporates the bounds presented in [21]. The
cascaded control structure is based on INDI. This sensor based nonlinear control tech-
nique has favorable robustness characteristics over classical NDI [23]. Furthermore,
INDI can be applied, with relative ease, to a much wider range of nonlinear systems
such as those with control variables that do not appear affine in the state equations.

The structure of this paper is as follows: Firstly, section 2 briefly describes the
theory behind INDI. Section 3 provides the model that was used in the approximate
inversion of the drive-train and yaw-rate dynamics. The structure of the proposed
control system and the envelope is given in section 4. Next, section 5 provides the
derivation of the control effectiveness of the front and rear drive-trains and a method
for including load-transfer effects. Lastly, section 6 provides simulation results of the
stability augmentation system in conjunction with a high-fidelity vehicle model.

2. Incremental Nonlinear Dynamic Inversion

Incremental Nonlinear Dynamic Inversion (INDI) is an approximate, sensor based,
form of Nonlinear Dynamic Inversion [23], sometimes also referred to as approximate
[24] or simplified Feedback Linearization [25]. INDI can be applied to the general
nonlinear system (1) and starts by approximating the state equations using a Taylor
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series expansion (2).

ẋ = f(x,u) (1)

ẋ ≈ f(x0,u0) +
∂f(x,u)

∂x

∣
∣
∣
∣
(x0,u0)

(x− x0) +
∂f(x,u)

∂u

∣
∣
∣
∣
(x0,u0)

(u− u0) + h.o.t. (2)

By neglecting higher order terms and realizing that for high control rates the term
(x− x0) vanishes, equation 2 simplifies to,

ẋ ≈ f(x0,u0) +
∂f(x,u)

∂u

∣
∣
∣
∣
(x0,u0)

(u− u0). (3)

Further, noting that the first term can be substituted with a measurement of the state
derivative at t0,

f(x0,u0) = ẋ0, (4)

and defining the control effectiveness as,

G(x0,u0) =
∂f(x,u)

∂u

∣
∣
∣
∣
(x0,u0)

, (5)

equation 3 simplifies to,

ẋ ≈ ẋ0 +G(x0,u0)
︸ ︷︷ ︸

Control Effectiveness

(u− u0). (6)

Where ẋ0 is the state derivative measured at time t = t0.
Similar to exact NDI [26], by equating the right hand side of equation 6 to ν and

inverting, one ends up with a mapping between the original control input u and the
virtual control ν (7), which once applied to equation 1 results in an approximate linear
differential relation between the state x and ν (8).

∆u = G-1(x0,u0)(ν − ẋ0) (7)

ẋ ≈ ν (8)

Note that in contrast with regular NDI the mapping (7) results in a control increment
only. The new control input can be calculated with equation 9.

u = ∆u+ u0 (9)

Where u0 is the actuator state as measured at time t = t0.

3. Vehicle Model

The control effectiveness required for the approximate inversion of the drive-train and
yaw-rate dynamics is determined using a 7-DOF vehicle model [18,27,28]. The motion
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is assumed completely planar. Furthermore, the roll and pitch angles are assumed
to be small and the corresponding dynamics fast enough, such that these states and
the associated wheel normal loads can be approximated by their steady-state values
[29]. Tire forces are modeled with a normalized Magic Formula (MF)-like function in
conjunction with the similarity method [30]. The behavior of the front and rear Limited
Slip Differentials (LSD) are described by a relatively detailed model that accurately
captures the transition between locked and unlocked conditions [31] as this behavior
greatly influences the magnitude and even the sign of the control effectiveness. This
phenomenon detailed in a later section.

3.1. Vehicle Body Dynamics

The vehicle body dynamics, which are described by the three states corresponding
to the translational and rotational motion of the vehicle in the horizontal plane, are
depicted in 1. Also shown are the wheel force vectors.

ψ̇

β
Xb

Yb

Xv

Yv

vx

vy V

xw

xw

yw

yw

-αrr

-αrl

-αfr

-αfl

δfr

δfl

Fyrr

Fxrr

Fyrl

Fxrl

Fy fr

Fxfr

Fyfl

Fxfl

2wr 2wf

lr lf

Figure 1. Two-track vehicle model

The body state vector is defined as xB =
[

vx vy ψ̇
]T

, where vx, vy and ψ̇ stand
for the longitudinal velocity, lateral velocity and yaw-rate respectively. Using xB, the
equations describing the body dynamics can be compactly expressed in matrix form
as [16,28],

ẋB = M-1E BF− c. (10)

WhereM = diag (m,m, Izz),
BF =

[
bFxfl

bFyfl . . .
bFxrr

bFyrr
]T

, c =
[

−vyψ̇ vxψ̇ 0
]T
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and E is given by,

E =





1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

−wf lf wf lf −wr −lr wr −lr



 . (11)

The transformation from the tire force vector WF expressed in the wheel frame to the
tire-force vector in the body frame BF appearing in equation 10 is given by equation
12.

BF = TB,W

WF (12)

TB,W = diag
(
TB,Wfl,TB,Wfr,TB,Wrl,TB,Wrr

)
(13)

Where the sub-rotation matrices depend on the corresponding steering angles δij are
given by,

BFij = TB,Wij
WFij (14)

[
bFxij
bFyij

]

=

[
cos δij − sin δij
sin δij cos δij

][wFxij
wFyij

]

Subscripts i ∈ {f, r} and j ∈ {l, r} denote the front or rear and left or right wheel
respectively.

3.2. Normal Loads

High performance vehicles commonly feature stiff suspensions and low centers of grav-
ity. Consequently, the time constants associated with the roll and pitch degrees of
freedom can be assumed to be small compared to those of the planar body dynamics
[2]. Therefore, the effects of changing normal loads on the control effectiveness, are
approximated with a steady state load-transfer model adopted from [29]. Equations
15a and 15b give the lateral load-transfers for the front and rear axles respectively.

∆Wy f = Ay
m

2wf

(
Kφf

Kφf +Kφr −mhs
+
lr
l
hf

)

(15a)

∆Wyr = Ay
m

2wr

(
Kφr

Kφf +Kφr −mhs
+
lf
l
hr

)

(15b)

Where Kφf and Kφr denote the front and rear roll-stiffnesses, and hf and hr the corre-
sponding roll-center heights. Lastly, Ay denotes the specific force in lateral direction,
hs is the vertical distance between the roll-axis and the center of gravity and l rep-
resents the wheel base. Longitudinal load transfers are approximated with equation
16.

∆Wx = Ax
hm

l
(16)

Where, Ax is the specific force in longitudinal direction and h is the height of the
center of gravity.

5



The normal loads for each wheel are now given by equation 17.

Fz = Fz stat +∆Fz (17)

Where Fz stat represents the static normal load distribution and the load-transfer vector
is given by,

∆Fz = [−∆Wx −∆Wy,−∆Wx +∆Wy, (18)

−∆Wx −∆Wy,−∆Wx +∆Wy]

3.3. Drive-Train

The behavior of the front and rear drive-trains, including the Salisbury type LSDs,
is described by a model adopted from [31,32]. Instead of using the commonly used
left and right wheel speeds or drive-shaft velocities as state variables, the motion is
described by the average movement of the system and the difference between the left
and right drive-shafts (19).

2ωp = ωl + ωr (19a)

2ωd = ωl − ωr (19b)

Where, ωp is the angular velocity of the prop-shaft and 2ωd denotes the delta between
the left and right wheel-speeds, respectively ωl and ωr. This choice of state variables
allows the motion to be described by a reduced order model if two or more bodies
stick, i.e., if one or more states become zero. Circumventing the need to estimate the
indeterminate static friction forces [33]. Equations 20a and 20a describe the motion of
a single axle. The subscript i has been dropped for clarity.

ω̇p =
KtTin −

bFxl ·Re −
bFxr ·Re − TL

Jeq + 2Jw + Jc
(20a)

ω̇d =
−TD − bFxl ·Re +

bFxr ·Re

2Jw + Jd
(20b)

Where bFxl and
bFxl denote the left and right longitudinal wheel forces on the cor-

responding axle and Re stands for the effective wheel radius. Torque TL accounts for
possible friction losses in the drive train and TD is used to model limited-slip behav-
ior. The factor Kt, represents the total transmission gain and control input Tin is the
torque coming from the power-unit. The combined inertia of the power-unit, transmis-
sion and prop-shafts, incorporating the effect of transmission-ratios, is represented by
Jeq. The terms relating to the differential, Jd and Jc, respectively denote the inertia of
the casing and those parts that only move if ωd 6= 0. Lastly, the inertia of the wheels
and corresponding drive-shafts are lumped into Jw.

Friction forces TD and TL are approximated with a coulomb friction model with a
distinction between static and kinetic friction. Equation 21 gives the kinetic friction
model for TD.

TDk
= max (TDk0

, rDk
· |Tp|) · sgn (ωd) (21)

6



Where the coefficient rDk
depends on the geometry of the ramps which cause the

internal clutch package to compress, leading to the characteristic torque transfer. The
term TDk0

depends on the differential’s preload settings and Tp stands for the input
torque experienced at the differential and is corrected for the accelerations of the
power-unit, transmission and prop-shaft (22).

Tp =
KtTin · 2J + (bFxl ·Re +

bFxr ·Re)(Jeq + Jc)

2Jw + Jeq + Jc
(22)

The maximum static friction TDmax
is defined similarly.

Four cases are used to describe the sticking and sliding behavior of the two differ-
entials [31,32].

• Case 1: ωp 6= 0, ωd 6= 0
Both states are non-zero, therefore no sticking of the moving parts occurs. The
motion of the differential is described by both equations (20a) and (20b). There-
fore, the differential torque transfer and torque due to friction losses are given
by their kinetic values, i.e., TD = TDk

and TL = TLk
.

• Case 2: ωp 6= 0, ωd = 0
When the relative velocity between the left and right wheel is zero, the differential
is said to be locked. In this scenario, the drive-train effectively moves as a single
body and associated dynamics can therefore be described by a single equation
(20a). As long as the torque required to maintain this condition (ω̇d = 0) is less
than the maximum static friction force, the relative velocity between the left and
right wheel remains zero. The required torque follows from equation 20b and is
simply given by,

T̃D = − bFxl ·Re +
bFxr ·Re (23)

The resulting friction force can now be expressed as,

TD =

{

T̃D if, |T̃D| ≤ TDmax

TDmax
sgn(T̃D) otherwise.

(24)

The prop-shaft’s rotational velocity is non-zero and friction force TL is given by
its kinetic value,

TL = TLs
.

Cases three and four, corresponding to {ωp = 0, ωd 6= 0} and {ωp = 0, ωd = 0}, are
defined similarly but are of little practical value for the design of the control system.
However, the first two cases descried above, {ωp 6= 0, ωd = 0} and {ωp 6= 0, ωd = 0},
determine the torque distribution created by a limited slip differential and therefore
have a large influence on the vehicle dynamics. Specifically, switching from case 1 to 2
and vice versa will play a dominant role in the choice of control system structure and
the determination of the control effectiveness.
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3.4. Tire Model

Tire forces are evaluated with an MF-like model and the similarity method [30]. The
force-slip characteristic is normalized at some reference normal force, after which the
normalized curved can be appropriately scaled to represent different driving conditions.
Equation 25 gives the normalized reference MF used in this paper.

Fkn(φ) =
1

µi0Fz0
Fk

(
CF k0
µk0Fz0

φ

)∣
∣
∣
∣
Fz=Fz0

(25)

Fkn(φ) = sin [1/Bkn arctan {Bknφ− Ek0 (Bknφ− arctan(Bkn · φ))}] (26)

The force in the direction k ∈ {x, y} is then found by rescaling the reference curve
using,

Fk = (µk(Fz) · Fz)
σk
σ
Fkn

(

σkeq

)

(27)

Where the scaled equivalent slip is defined as,

σkeq =
µk(Fz) · Fz
CF k(Fz)

σ. (28)

and the magnitude of the wheel-slip vector of a single wheel is given by,

σij =
√

σxij2 + σyij
2. (29)

The theoretical wheel slip σkij is defined by equations 30 and 31 [30].

σxij =
ωijRe − vxij

ωijRe
(30)

σyij = −
vyij
ωijRe

(31)

Where the translational velocities of the wheel centers each wheel centers, vxij and
vyij , are given by,

[
wvxfl
wvyfl

]

=

[
cos δfl sin δfl
− sin δfl cos δfl

] [
1 0 −wf
0 1 lf

]
[

vx vy ψ̇
]T

(32)

Therefore, the tire force vector can be written as a function of the full state vector
x = [vx, vy, ψ̇, ωfl, ωfr, ωrl, ωrr]

T , i.e., WF = f(x) which will be used in the subsequent
sections on controller design and control effectiveness.

4. Controller Design

This chapter initially discusses the basic structure of the control system and its indi-
vidual parts in separate sections. The concluding section provides a description of the
envelope protection system and the yaw-rate set-point generator.
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4.1. Cascaded control structure

The basic control structure consists of a cascade of feedback loops controlling respec-
tively the vehicle side-slip angle, the yaw-rate, and the prop-shaft velocity. A cascaded
control structure greatly simplifies the design of an inversion based controller, which
would otherwise involve the repeated differentiation and subsequent inversion of equa-
tions 10, 20a and 20b, including the tire model. The nature of INDI ordinarily requires
a cascaded structure if the control input does not directly appear in the time deriva-
tive of the controlled output, further reinforcing the proposed choice of control system
structure.

A prerequisite for the use of a cascaded control structure is the existence of nat-
urally occurring time scales in the controlled dynamical system [34] or the ability to
sufficiently speed-up the inner-loops by increasing the associated gains [35]. Time-scale
separation in combination with inversion techniques has been used successfully in air-
craft control where the existence of different time scales between the aerodynamic
angles and the angular rates [34,36] or the attitude angles and angular rates [23], is
well-established. Most of the references on automotive stability control included here
assume that the dynamics associated with controlling the wheel forces are fast enough
to be separated from the yaw dynamics or can be neglected entirely [4,11–15,37].
The bandwidth separation is assumed to be large enough to adopt a cascaded control
structure.

4.2. Prop-Shaft Velocity Controller

The low level controller incorporates an INDI control scheme based on the equations
that describe the dynamics of the power-train (20a). Combining the front and rear
prop-shaft dynamics in a single equation, neglecting the friction losses TL and lin-
earizing around ωp0 results in,

ω̇p = ω̇p0 + JRe
∂Fx
∂x

∣
∣
∣
∣
(x0,Tin0)

(x− x0) + JKt(Tin − Tin0). (33)

Where WF =
[
wFxfl . . .

wFxrr
]T

denotes the tire-force vector in x direction, the prop-

shaft velocity vector is given by ωp = [ωpf, ωpr]
T

and the drive torque vector Tin =
[Tinf, Tinr]

T

. Diagonal matrix Kt has the transmission of the front, and rear drive train
on its diagonal and the inertia matrix is defined as,

J =

[
(Jeq + 2Jw + Jc)f 0

0 (Jeq + 2Jw + Jc)r

]

. (34)

Lastly, ω̇p0 denotes the current prop-shaft angular acceleration and is substituted with
a measurement or estimate.

By equating the virtual νω to the state derivative ω̇p, equation 33 can be used to find
a linear differential relation between the controlled variable ωp and νω. Furthermore,
if the control rate is sufficiently high, the time-scale separation principle dictates that
the term containing the linearized tire model can be neglected as the change in prop-
shaft velocity over each time-step becomes negligible compared to the changes in the
control input, i.e. (ωp −ωp0) ≈ 0. The resulting relation can be solved for the control
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increment ∆Tp leading to,

∆Tp = K -1

t J
-1 (νω − ω̇p0) (35)

Torque increment ∆Tp represents the torque increment required to reach the desired
propshaft acceleration set by the virtual control. The commanded torque is therefore
given by,

Tpc = Tpf +∆Tp. (36)

Where Tpf is the current measured or estimated current torque set-point.
If Equation 35 and 36 are applied to 33 it is approximately linearized. In other

words, under the aforementioned assumptions an approximate linear differential rela-
tion exists between the prop-shaft velocity and the virtual control, i.e.,

ω̇p ≈ νω. (37)

Therefore, a simple linear controller suffices to control the system with νω. In the
prop-shaft velocity loop, this linear controller is a simple PID.

Note that the approximate linearization does not depend on the tire-forces and
therefore does not necessitate the inversion of a complex tire-model as required by NDI
[38], greatly simplifying the inversion process. Furthermore, matrix J and Kt depend
solely on the transmission ratios, equivalent inertias and the current transmission gain,
but are otherwise constant.

However, Equation 35 may require differentiating a measurement or estimate of the
prop-shaft velocity if no direct prop-shaft acceleration measurement is available. To
facilitate the differentiation of a potentially noisy signal, the prop-shaft velocity mea-
surement is filtered by a second order low-pass filter, H(z). The same filter is applied
to the measurement or estimate of the current control input in order to guarantee the
stability of the system [39].

4.2.1. Pseudo Control Hedge

The prop-shaft velocity controller further incorporates Psuedo Control Hedging
(PCH), a technique first introduced in the context of Model Reference Adaptive Con-
trol (MRAC) to address the problems associated with model adaptation in the presence
of actuator dynamics and (rate-) saturation [40]. A reference model is negated with
the error between the commanded and actual virtual or pseudo control signals such
that the reference signal more closely resembles the system dynamics permissible by
the actuator. Psuedo Control Hedging (PCH) has also been demonstrated as advan-
tageous outside the context of adaptive control in conjunction with NDI as a means
for flight envelope protection [41]. PCH further improved controller performance when
used with INDI in the presence actuator dynamics and saturation [42].

In this controller PCH is used to compensate for the torque and power limits of
both power-units of the vehicle. The PCH compensated reference dynamics of the
first order reference model are given by equation 38 [41].

ẋr = Kp(xc − xr)− νh. (38)

Where the diagonal gain matrix Kp is chosen such that the time constant of the first
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order reference model reflects the desired dynamics of the controlled system. The PCH
signal νh, when used in conjunction with INDI, is simply given by equation 39 [42].

νh = G(uc − ua) (39)

Where uc−ua corresponds to the difference between the commanded and actual actu-
ator position. In the prop-shaft velocity controller this amounts to the delta between
the commanded and the actual torque. An accurate estimate of prop-shaft torque is
assumed to be available from either a power-train model or a direct measurement.
Consequently, the dynamics of the implemented reference model are given by,

ω̇ref = Kp(ωc − ωref)−Gω(Tc − Ta) (40)

Where ωc and ωref are the commanded and filtered reference prop-shaft velocities
respectively.

Figure 2 provides a schematic of the control structure of the prop-shaft velocity
controller including the PCH. The block E(z) represents the actuator dynamics, com-
prising the behavior of both the electric motor in the front and the combustion engine
in the rear of the car, which are assumed to be known. Block VD corresponds to the
remaining vehicle dynamics and the effectiveness JKt is abbreviated as Gω. Note that
subscripts have been dropped where does not cause any ambiguity.

Vehicle System

Pseudo Control Hedge

Kp
Tsz
z−1 PID G

-1

ω E(z) VD

Gω

ωc ωref νω ∆T Tc ω

Hω(z)
T0

Hω(z)
z−1
Tsz

νrm

- --

-

-

ω ω̇f Tf

Figure 2. A schematic of the prop-shaft velocity controller including the Psuedo Control Hedging (PCH)

4.3. Yaw Rate Control

The feedback loop enclosing the prop-shaft loop controls the vehicle yaw-rate. The
equation describing the yaw-rate dynamics (10) reveals that constructing a controller
based on NDI would require the full inversion of a tire-model. Moreover, the control
variable ωs does not appear affine in 10, i.e., the controlled system has the more general
form given in equation 1. Determining the control input once the virtual control is
known, would therefore require solving a nonlinear optimization problem. The problem
can be simplified by linearizing the corresponding equations [9] or by neglecting the
nonlinear nature of tire model by using the tire forces as pseudo control inputs and
solving for the tire-slips at a later time [10].

However, these methods only result in approximate feedback linearizations and are
characterized by the characteristic shortcomings of NDI or Feedback Linearization
(FBL) [26]. A different approach would be to linearize the system before inverting the
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equations, corresponding to INDI [23]. Linearizing equation 10 results in the approxi-
mate yaw-rate equations in matrix form.

ψ̈ ≈ ψ̈0 +M-1

3,3E3,∗TB,W

[

∂F

∂x

∣
∣
∣
∣
(x0,u0)

(x− x0) +
∂F

∂ωp

∣
∣
∣
∣
(x0,u0)

(
ωp − ωp0

)

]

(41)

Where ψ̈0, the yaw-acceleration at the time of linearization, can be substituted with a
measurement or estimate of the state derivative. The subscripts accompanying matrix
M and E refer to the rows and columns corresponding to the derivative of the yaw-
rate. Lastly, ∂F∂x and ∂F

∂ωp
denote the partial derivatives of the tire-forces towards the

state vector and the prop-shaft velocities respectively.
Analogous to the inversion of the prop-shaft velocity loop, assuming that the control

rate is sufficiently high, such that the state increment over one sample time is much
smaller than the control increment, equation 41 simplifies to,

ψ̈ ≈ ψ̈0 +M-1

3,3E3,∗TB,W

∂F

∂ωp
∆ωp (42)

ψ̈ ≈ ψ̈0 +Gψ∆ωp (43)

Where the control effectiveness is abbreviated as Gψ. Section 5 treats the calculation
of the control effectiveness in more detail and provides a method for incorporating the
effect of load-transfers in Gψ directly.

Equating the virtual control νψ to the state derivative ψ̈ and solving for ∆ωp yields
a mapping between ∆ωp and νψ which once applied to equation 10 results in an

approximate linear differential relation between ψ̈ and νψ. A simple linear controller
then suffices to control the system with νψ.

(νψ − ψ̈0) = Gψ∆ωp (44)

ν̂ = Gψ∆ωp (45)

However, the columns of Gψ̇ are not linearly independent and therefore equation 45
may not have a unique solution in ∆ωp. The problem of finding a suitable set of control
commands that satisfy equation 45 is commonly referred to as control allocation and
is treated in the next section

4.3.1. Control Allocation

A typical approach to finding a distinct solution to the control allocation problem 45
is to simultaneously minimize a secondary objective such as the deviation from some
desired input [43]. In conjunction with an incremental control law, the deviation to
some desired control increment ∆ωpd can be minimized instead. Where ∆ωpd may be
chosen such that it reflects some feed-forward torque or slip distribution associated
with maximizing the lateral acceleration as described in [18].

If the l2-norm is used as a measure for the error between the control input and a
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desired value, the control allocation problem can be cast into,

argmin
∆ωp

‖Ws (∆ωp −∆ωd)‖2 + γ ‖Wv (Gψ∆ωp − ν̂)‖2 (46a)

subject to ∆ωp ≤ ∆ωp ≤ ∆ωp (46b)

Where the primary objective (45) is augmented to a secondary objective using a pa-
rameter γ reflecting the relative importance of the two terms. Weighting matrix Ws

andWv prioritize the different actuators and the rows of the primary objective respec-
tively. Lastly, equation 46b constrains the solution such that it does not violate any
actuator rate or position limits.

Redistributed Pseudo Inverse (RPI) [44] or Cascaded Generalized Inverse (GCI) [45]
methods, which iteratively modify the exact solution to a similarly defined equality
constraint problem [46,47], are widely adopted within control allocation algorithms
due to their simplicity and low computational burden [43]. However, these methods
do not always converge to the optimal solution as demonstrated in [43,47]. Active-
set methods do not suffer from this inherent problem and have been demonstrated to
converge to the optimal solution in a finite number of steps [48]. Therefore, a Weighted
Least Squares (WLS) control allocation algorithm, an active-set method described by
[47] was incorporated into the yaw-rate controller.

The actuator rate limits are related to the maximum and minimum realizable prop-
shaft rotational accelerations and the sample time ts as,

∆ωpr = ω̇smax(Tmax) · ts (47)

∆ωp
r
= ω̇smin(Tmin) · ts (48)

Where ∆ωpr and ∆ωp
r
depend on the maximum available drive torque and engine drag

respectively. Furthermore, prop-shaft velocities that saturate the longitudinal slip on
one of the wheels are taken as absolute limits are transcribed to an incremental form
by subtracting the current prop-shaft velocity as,

∆ωpσ = max
(
ωs sat(σxij , σxij)

)
− ωp0 (49)

∆ωp
σ
= min

(
ωssat(σxij , σxij)

)
− ωp0 (50)

Figure 3 provides a schematic of the yaw-rate loop described in this section. Anal-
ogous to the controller described in the previous section, the measured yaw-rate and
prop-shaft velocity are filtered using the same second order low-pass filter which re-
flects the bandwidth of the yaw-rate response of the vehicle. Lastly, the block that is
responsible for control allocation is denoted by G

+

ψ̇.

4.4. Side-Slip Control

The outer-loop of the control system is formed by a feedback loop and dynamic inver-
sion of the vehicle side-slip angle. In contrast to the prop-shaft velocity and yaw-rate
loops, the side-slip angle inversion can be made exact as demonstrated by [23]. A pre-
requisite for both the feedback loop and the dynamic inversion described below is an
accurate measurement or estimate of the side-slip angle. This information is assumed
to be available.
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VS + Prop-Shaft Control

PID G
+

ψ̇ PSC E(z) VD
ψ̇ref

νψ̇ ∆ω ωc ψ̇, ω

Hψ̇(z) ω0
Hψ̇(z)

z−1
Tsz

- - +

ψ̇ ψ̈f
ωf

Figure 3. Schematic of the yaw-rate controller

The side-slip angle for non-planar motion is given by,

β = arcsin
(vy
V

)

. (51)

Which reduces to equation 52 if the motion of the vehicle is assumed to be planar.

β = arctan

(
vy
vx

)

(52)

Taking the derivative of equation 52 results in,

β̇ =
vxv̇y − vyv̇x

v2x
(
1 + v2y/v

2
x

) (53)

β̇ =
vxv̇y − vyv̇x

V
(54)

Once more assuming planar motion, the derivatives of the body velocities are given
by equations 55b.

v̇x = Ax + vyψ̇ (55a)

v̇y = Ay − vxψ̇ (55b)

Where Ax and Ay denote the longitudinal and lateral specific force respectively. Sub-
stituting equations 55b into equation 54 gives,

β̇ =
Axvy −Ayvx

V
︸ ︷︷ ︸

aβ(x,ẋ)

+ −1
︸︷︷︸

bβ

·ψ̇ (56)

If the side-slip derivative is equated to the virtual control and the yaw-rate in equation
56 is treated as control input, it may be inverted to linearize the side-slip dynamics
leading to Equation 57.

ψ̇ = −1 ·

(

νβ −
Axvy −Ayvy

V

)

(57)

Figure 4 provides a schematic of the side-slip angle feedback loop. The linear part
of the controller is made up of a simple gain Kβ however an integrator term might be

14



appropriate if the estimate of the lateral velocity proves insufficiently accurate.

VS + PSC + Yaw Control

Kβ −1 YRC PSC E(z) VD
βref νβ ψ̇ref β, x, ẋ

aβ(x, ẋ)
x, ẋ

- -
β

Figure 4. Schematic of the outer side-slip angle inversion loop

4.5. Envelope Protection and Yaw-Rate Set-Point

An envelope protection scheme is used to ensure the vehicle does not leave the stable
regions of the state space. The stability of the planar vehicle model can be analyzed
graphically inside the side-slip and side-slip-velocity (β − β̇) phase-plane [49] or the
side-slip and yaw-rate (β − ψ̇) phase-plane [21,22]. The (β − ψ̇) plane reveals that
both the maximum yaw-rate and vehicle-side slip are important targets for vehicle
stability augmentation systems. The stable region can be approximated using a max-
imum overall yaw-rate and the vehicle side-slip angle corresponding to the maximum
allowable side-slip on the rear axle [21]. Furthermore, in some circumstances it may
be appealing to limit lateral tire usage to some degree in order to reduce tire wear and
possibly some of the driver workload associated with driving the vehicle at its limits.
However, an experienced driver may consider the side-slip bounds too restrictive and
looser constraints that allow the driver to push the rear axle past the maximum slip
angle may be preferred. Equation 58 gives the bounds on the yaw-rate as adopted
from [21].

ψ̇max =

{
(Fy f)max(1+lr/lf)

vx
if (Fy f)max ≤ lr

lf
(Fy r)max

(Fy r)max(1+lr/lf)
vx

if (Fy f)max >
lr
lf
(Fy r)max

(58)

Where (Fy f)max and (Fy f)max denote the front and rear lateral force potentials respec-
tively. A maximum yaw-rate exists for both directions of a turn and will be denoted
by ψ̇max and ψ̇min. The bounds on the side-slip angle can be approximated by the
linearized slip-angle at the rear wheels,

βmax = αmax + lrψ̇ (59)

βmin = αmin + lrψ̇ (60)

Where the maximum and minimum values correspond to the outside wheel and are
determined using the tire-model described in section 3 and the current longitudinal
slips.

The side-slip inversion and cascaded nature of the control system allows the bounds
on both the side-slip and the yaw-rate to be combined in a straightforward manner. If
the reference of the side-slip angle inversion is set to one of the side-slip angle bounds,
the output represents the yaw-rate necessary to reach this bound as if the associated
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dynamics behave like a simple integrator. Therefore, the output of the side-slip angle
inversion can be interpreted as a second set of bounds on the yaw-rate that prevent
the rear axle side-slip from reaching undesirable levels. Using equation 57 the new
bounds can simply be expressed as,

ψ̇β = −1 ·

(

Kβeβ −
Axvy −Ayvy

V

)

(61)

Where eβ is given by,

eβ =

[
βmax − β0
βmin − β0

]

(62)

The translated side-slip angle bounds are now straightforwardly related to maximum
yaw-rate from equation 58 and the current yaw-rate through equation 63. This com-
parison leads to a controller that does not act inside the safe envelope but tries to
intervene as soon as the yaw-rate exceeds any of the bounds described previously.

ψ̇r = min
(

max
(

ψ̇0, ψ̇lb

)

, ψ̇ub

)

(63)

The lower bound on the yaw-rate is given by minimum value of the translated side-
slip bounds and the minimum attainable value of the steady state yaw-rate (64a). The
upper bound on the yaw-rate is defined similarly (64b).

ψ̇lb = min
(

ψ̇β , ψ̇min

)

(64a)

ψ̇ub = max
(

ψ̇β , ψ̇max

)

(64b)

Further note that the gain Kβ , scales the translated side-slip angle boundaries, with
smaller values leading to tighter bounds and higher values to a controller that will
intervene later. [21,22] show that the side-slip angle bounds are less critical and there-
fore Kβ should be chosen such that the controller does not prevent the driver from
reaching maximum lateral tire usage as quickly as possible, possibly allowing for some
overshoot.

The current yaw-rate ψ̇0, can be replaced by a set-point from a reference model
resulting in a model following controller that acts inside the safe envelope. Equation
65 provides a frequently applied set-point generator derived from the linear-bicycle
model [18].

ψ̇ss

δ
=

vx

l +−m
l
lfCα f−lrCα r

Cα fCα r
v2x

(65)

Where Cα f and Cα r denote the lateral slip-stifness of the front and rear axle respec-
tively.

Figure 5 provides a high level overview of the entire control system.
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Figure 5. High level overview of the complete control system6

5. Yaw-Rate Loop Control Effectiveness

The control effectiveness in the yaw-rate loop is defined as the partial derivative of
the yaw-rate state-equation towards the prop-shaft velocities ωp = [ωpf, ωpr]

T and can
conveniently be written in matrix form using equation 10.

Gψ̇ =
∂ψ̈

∂ωp
=
∂ψ̈

∂ω

∂ω

∂ωp
= M-1

3,3E3,∗TB,W

∂F

∂ω

∂ω

∂ωp
(66)

Where the vector F denotes the tire-forces in the wheel frame wF, ω = [ωfl, ωfr, ωrl, ωrr]
T

is the wheel speed vector and ωp = [ωpf, ωpr] contains the prop-shaft velocities. From

equations 19a - 19b, 20a - 20b and the cases described in section 3, it is clear that ∂ω
∂ωp

does not have a closed form solution. The estimation of this derivative will be treated
in a later section, after finding an expression for ∂F

∂ω .

5.1. Tire force Jacobian

That traction and braking forces create yaw-moments through load-transfers is well-
known. In fact, [11] proposes Direct Yaw-Moment Control (DYC) as a means to com-
pensate for the moments created during accelerating and braking but use a crude esti-
mation. However, Direct Yaw-Moment Control (DYC) implies that each wheel can be
actuated individually and as a result, the magnitude of the attainable yaw-moments is
large. The effect of load-transfers on the control moments is therefore often considered
relatively small and slow in comparison and is usually neglected [27]. The yaw-moments
associated with torque increments on a LSD are much smaller and therefore the effect
of longitudinal load-transfers has to be incorporated into the control effectiveness.

Assuming steering angles affect the longitudinal components of the wheel forces only
marginally, the tire force vector can be expressed implicitly by combining equation
27 and the longitudinal component of the instantaneous load-transfer model (17),
resulting in,

F̄ = f̄(ω, h(F̄)). (67)

Where the longitudinal component of the load-transfer model is given by,

Fz = h(F̄) = [−∆Wx,−∆Wx,∆Wx,∆Wx]
T

, (68)
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and the tire force vector is re-partitioned into,

F̄ =
[
Fxfl, . . . , Fxrr, Fyfl, . . . , Fyrr

]T

. (69)

The dependencies of Fxij and Fyij on vxij and vyij have been omitted for reasons of
clarity.

Defining the wheel-speed vector ω as the independent variable, equation 67 can be
differentiated implicitly to find the derivative of the tire forces towards the wheel slips
incorporating the effect of changing normal loads. Resulting in:

∂F̄

∂ω
=

∂ f̄

∂ω
+

∂ f̄

∂Fz

∂Fz

∂F̄

∂F̄

∂ω
(70)

Solving for ∂F̄
∂ω gives,

∂F̄

∂ω
=

(

I −
∂ f̄

∂Fz

∂Fz

∂F̄

)-1

∂ f̄

∂ω
(71)

Where the term ∂ f̄
∂ω corresponds to force the Jacobian without load-transfer effects.

The matrix between parentheses, from now on referred to as M , accounts for the
changes in the normal load distribution following a change in wheel speed.

Due to the partitioning of F̄, the matrix ∂ f̄
∂Fz

is made up of two diagonal matrices.

∂ f̄

∂Fz
=

[
∂fx
∂Fz
∂fy
∂Fz

]

(72)

Where,

∂fx
∂Fz

= diag
(
∂Fxfl

∂Fz fl

∂Fxfr

∂Fz fr

∂Fxrl

∂Fzrl

∂Fxrr

∂Fzrr

)

and

∂fy
∂Fz

= diag
(
∂Fy fl

∂Fz fl

∂Fy fr

∂Fz fr

∂Fyrl

∂Fzrl

∂Fyrr

∂Fzrr

)

.

Similarly, the partial derivative ∂Fz

∂F̄
can be expressed in block-form as,

∂Fz

∂F̄
=

[
∂Fz

∂Fx
0
]

. (73)

The block matrix ∂Fz

∂Fx
can be simplified further by applying the chain rule a second

time and using the specific force as an intermediate variable, resulting in,

∂Fz

∂Fx
=
∂Fz

∂Ax

∂Ax
∂Fx

. (74)
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Where,

∂Fz

∂Ax
=








−∂∆Wx

∂Ax

−∂∆Wx

∂Ax
∂∆Wx

∂Ax
∂∆Wx

∂Ax








and
∂Ax
∂Fx

T

=
1

m







1
1
1
1






. (75)

It follows from equations 72 - 73 that M can be written as,

M =

(

I −
∂ f̄

∂Fz

∂Fz

∂F̄

)

=

[

I− ∂fx
∂Fz

∂Fz

∂Ax

∂Ax

∂Fx
0

− ∂fy
∂Fz

∂Fz

∂Ax

∂Ax

∂Fx
I

]

=

[
A 0

C I

]

(76)

Due to its structure, finding the inverse of matrix M is now relatively straightforward
and is given by,

M -1 =

[
A-1 0

−CA-1 I

]

(77)

The inverse of sub-matrix A can be found by noting that ∂Fz

∂Ax

∂Ax

∂Fx
is in fact the outer-

product of two column vectors. This allows the application of the Sherman-Morrison
Formula [50], which gives the inverse of the sum of an invertible matrix K and the
vector product uvT, in terms of K -1 and vectors u and v (78).

(K + uv
T

)-1 = K -1 −
K -1uvTK -1

1 + vTK -1u
(78)

Application of equation 78 to the inverse of sub-matrix A leads to,

A-1 =

(

I−
∂fx
∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

)-1

= I +
1

|A|

∂fx
∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

(79)

Where the determinant of A is given by,

|A| = 1−
∂Ax
∂Fx

∂fx
∂Fz

∂Fz

∂Ax
(80)

=

(
∂Fxfl
∂Fzfl

+
∂Fxfr
∂Fz fr

−
∂Fxrl
∂Fzrl

−
∂Fxrr
∂Fzrr

)
∂∆Wx

Ax
+ 1 (81)

Substituting the result for A-1 in −CA-1 leads to,

−CA-1 =
∂fy
∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

(

I +
1

|A|

∂fx
∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

)

. (82)
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Factoring out |A| and bringing ∂Fz

∂Ax

∂Ax

∂Fx
into the parentheses results in,

−CA-1 =
1

|A|

∂fy
∂Fz

(
∂Fz

∂Ax

∂Ax
∂Fx

−

[
∂Fz

∂Ax

∂Ax
∂Fx

∂Ax
∂Fx

∂fx
∂Fz

∂Fz

∂Ax

+
∂Fz

∂Ax

∂Ax
∂Fx

∂fx
∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

])

. (83)

The term within brackets equates to zero, reducing equation 83 to,

−CA-1 =
1

|A|

∂fy
∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

. (84)

Matrix inverse M -1 is now given by equation 85.

M -1 =

[

I + 1
|A|

∂fx
∂Fz

∂Fz

∂Ax

∂Ax

∂Fx
0

1
|A|

∂fy
∂Fz

∂Fz

∂Ax

∂Ax

∂Fx
I

]

(85)

Similarly, ∂F̄∂ω is straightforwardly expressed in terms of the partial derivatives of f̄ and
Fz only (86).

∂F̄

∂ω
=

[

I + 1
|A|

∂fx
∂Fz

∂Fz

∂Fx
0

1
|A|

∂fy
∂Fz

∂Fz

∂Fx
I

]

∂ f̄

∂ω
(86)

The partial derivatives, ∂ f̄
∂ω ,

∂fx
∂Fz

and ∂fy
∂Fz

appearing in equation 86 can either be found
analytically or through finite differences, depending on the type of tire-model that is
used. In this work these derivatives are found through finite-differences.

The effect of changing lateral load-transfers can be included into the control effec-
tiveness as well. However, these effects are inherently smaller than the longitudinal
component discussed previously. The equation that gives the tire-force jacobian in-
cluding the effect of both longitudinal and lateral load-transfers is given by equation

∂F̄

∂ω
=

[
A-1 0

0 D-1

]




I+ P

|M̄|
∂fx
∂Fz

∂Fz

∂Fy

|A|

|M̄|
∂fx
∂Fz

∂Fz

∂Fy

|D|

|M̄|
∂fy
∂Fz

∂Fz

∂Fx
I+ Q

|M̄|
∂fy
∂Fz

∂Fz

∂Fx




∂ f̄

∂ω
(87)

5.1.1. Separating Slip and Load-Tranfer Effects

Looking at equation 86 and 87 reveals that tire-force Jacobian can be written as

a sum of two matrices. Respectively ∂ f̄
∂ω and a transformed version of this matrix,

corresponding to the force Jacobian without load-transfer effects and a term that
accounts for changing vertical wheel loads.

G̃ψ̇ = Gψ̇ + Ĝψ̇ (88)

This partition will be used to investigate the impact of load-transfers on the control
effectiveness.
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5.2. Ratio of wheel-speed increments

The partial derivative of the angular velocities of the wheels towards the prop-shafts
velocities is approximated with the ratio of wheel-speed increments in response to a
unit torque increment found using a linearized drive-train model (89).

ω̇ = Ja
∂Fx
∂ω

∣
∣
∣
∣
(x0,u0)

(ω − ω0) + JbT0 = JaA
-1
∂ f̄

∂ω

∣
∣
∣
∣
(x0,u0)

(ω − ω0) + JbT0. (89)

Where matrices Ja and Jb reflect the inertial properties of the drive-train and the
torque redistribution caused by the limited slip action.

If the differential of a particular axle is locked, i.e., the relative velocity of the left
and right wheels is zero, the dynamics of the power-train is of reduced order. From
case 2 in section 3 we have ωl = ωr = ωp. Therefore, for the locked axle the following
relation holds,

(
∂ωl

∂ωp

)

i

=

(
∂ωr

∂ωp

)

i

= 1 (90)

Where subscript i ∈ {f, r} denotes that the derivatives appearing in equation 90 belong
to either the front or rear power-train.

However, if (ωd)i 6= 0 the constraints 19a and 19b do not provide enough information

to determine ∂ω
∂ωp

. In this case the derivative will be approximated using the steady-

state wheel speed increments of the linearized power-train dynamics in response to a
step-input and are given by,

ωss = −

(

JaA
-1
∂ f̄

∂ω

)-1

Jb (91)

The resulting steady state wheel increments ωss can be used to approximate the ele-
ments appearing in ∂ω

∂ωp
. For the front axle this results in,

∂ωfl

∂ωpf
≈

∆ωfl

∆ωpf
=

2
(

2∂Fxfl

∂Fz fl
+ (1− rf)

)
∂ffr
∂ωfr

(

2∂Fxfl

∂Fz fl
+ (1− rf)

)
∂ffr
∂ωfr

+
(

2∂Fxfr

∂Fz fr
+ (1 + rf)

)
∂ffl
∂ωfl

(92)

∂ωfr

∂ωpf
≈

∆ωfr

∆ωpf
=

2
(

2∂Fxfr

∂Fz fr
+ (1 + rf)

)
∂ffl
∂ωfl

(

2∂Fxfl

∂Fz fl
+ (1− rf)

)
∂ffr
∂ωfr

+
(

2∂Fxfr

∂Fz fr
+ (1 + rf)

)
∂ffl
∂ωfl

(93)

The approximate wheel-speed ratios only depend on the local longitudinal slip-
stiffnesses, the partial derivatives of the tire-model to the normal loads and the

differential-ramps respectively ∂fij
∂ωij

, ∂fij
∂Fzij

and (rDc
)i. The dependence of ωss on the

inertias is canceled out due to the left-right symmetry of the power-trains and there
is no influence of T0 due to the linear nature of equation 89. If the locking ratio (rDc

)i
is relatively large, the differential will lock at low longitudinal slip values. This means

that the values of ∂fij
∂Fzij

are small compared to the other terms appearing in equations

92 through 93 and may be neglected.
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5.3. Evaluation of the Control Effectiveness

Figure 6 provides some insight in the effects of load-transfers on the control effective-
ness. The plots appearing in the first column of Figure 6 depict the control effectiveness
if no load-transfer effects are present, corresponding to the nominal control effective-
ness Gψ̇. Column two illustrates the isolated effect of load-transfers on the control

effectiveness, corresponding to Ĝψ̇. The last column represents the combined effect of
slip and load-transfer effects.

The yaw-moment resulting from the redistribution of normal loads opposes the di-
rection of the turn as reflected by the second column. This effect is most apparent
when the axles are equipped with an open differential corresponding to the first two
rows of figure 6. An open differential does not create any yaw-moments through dif-
ferential torque effects but almost entirely through the decrease of lateral tire forces
on the respective axle. On the front axle a decrease of lateral load causes a small
yaw-moment opposing the turn (a). Consequently, the nominal control effectiveness is
negative throughout most of the operating range apart from a small band of positive
control effectiveness, at low input torques, caused by a steering input. However, the
moments created by load-transfers are relatively large in the low torque regime, re-
sulting in the complete absence of positive total control effectiveness as illustrated by
sub-figure (c). Although the nominal control effectiveness on the rear axle equipped
with an open differential is positive everywhere (d), a similar observation can be made
about the total yaw-moment which is mostly opposing the direction of the turn (f).

Row three and four of Figure 6 depict the components of the control effectiveness
of respectively the front and rear drive-trains equipped with locked axles. Contrary to
the case with open differentials, torque increments on a locked axle are not necessarily
distributed equally left and right, resulting in yaw-moments in the direction of the turn,
illustrated by sub-figure (g) and (j). However, the effect of load-transfers significantly
increases the area of negative control effectiveness on the front axle and almost halves
the magnitude of the control effectiveness on the rear axle.

Figure 7 illustrates the effect of increasing locking coefficients and the transition
from locked to unlocked conditions on the control effectiveness. At low torques the
differential slip is leading to the band of negative control effectiveness seen in all of the
figures. However moving to larger torques, the control effectiveness exhibits a large
discontinuity towards positive control effectiveness across the point of locking. The
locking coefficient both increases the size of this discontinuity and the area in which
the differential is locked. Note that the zero magnitude isoline almost always coincides
with this discontinuity. Consequently, changing the state of the differential almost
always results in a sign change of the control effectiveness. Because the state of the
differential can be inferred from wheel speed measurements, the direction of the yaw
moments is therefore known as well, potentially making the INDI based controller
robust against the non-monotonic character of the control effectiveness.
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Figure 6. The effect of load-transfers on the control effectiveness. For all plots: Vx = 30m/s. First row

(a,b,c): Front, Open differential. Second row (d,e,f): Rear, Open differential. Third row (g,h,i): Front, Locked
Differential. Last row (j,k,l): Rear, Locked Differential. First column (a,d,g,j): No load transfer effects. Second
column (b,e,h,k): Load transfer effect only. Last column (c,f,i,l): Total Control Effectiveness.
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Figure 7. Control Effectiveness calculated for the rear axle at Vx = 30m/s for different locking ratio’s. Figure
(a): rDc

= 0.0, Figure (b): rDc
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= 0.2 and Figure (d): rDc
= 0.5.

6. Simulation Results

In order to evaluate the performance of the inversion based stability augmentation
system, several simulation experiments were performed in conjunction with a high
fidelity 40-DOF vehicle model. The model includes a full aerodynamic model and
further includes the effects of suspension deformations under loads etc.

6.1. Envelope Control - Slalom Maneuver

The performance of the envelope controller is tested using a sinusoidal steering input
which would otherwise result in vehicle spin. The bounds on the vehicle side-slip
approximately coincide with the maximum side-slip angle of the rear outside tire.
Within the yaw-rate envelope, a linear model is used to generate a yaw-rate set-point.
Figure 8 provides an overview of the results of the slalom test. The vehicle starts
at a velocity of 18m/s and accelerates due to a nominal torque command of 2 kNm
until it reaches approximately 60m/s at the end of the maneuver. The desired torque
distribution such that it approximately minimizes the terminal oversteer/understeer
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behavior [18].
Sub-figure (a) depicts the vehicle yaw-rate and the yaw-rate bounds corresponding

the maximum and minimum side-slip. The controller is able to sufficiently track the
yaw-rate set-point at the boundaries, such that the vehicle side-slip depicted in sub-
figure (b) stays within the defined envelope. The time the controller starts decreasing
the yaw-rate coincides with the inflection points of the side-slip angle trajectories,i.e.,
the yaw-rate set-point is such that it decreases the side-slip angle velocity. Sub-figure
(c) shows the torques on the front and rear axle along with their desired values. Firstly,
the yaw-rate is decreased through an increase of torque on the front axle and secondly
by a decrease of drive-torque at the rear axle, corresponding to the signs of the front
and rear control-effectiveness depicted in sub-figure (d). Note that as the velocity
increases, the front differential starts to lock each time the controller increases the
front torque. However, once the front axle locks, the ability to create an understeering
moment is diminished, possibly even creating some oversteering moment towards the
end of the maneuver. This effect is most clearly reflected in the evolution of the front
axle torque; In the last four turns, the front axle torque shows a steep increase followed
by a strong drop as a result of the front axle differential subsequently locking and
unlocking. The controller is able to effectively handle these non-monotonicities in the
control effectiveness as they are relatively straightforward to predict. Sub-figure (h)
further demonstrates that the controller is able to maintain a positive acceleration
while keeping the vehicle within the boundaries of the safe envelope.

6.2. Effect of Load-Transfers

A second test was done to compare the controller’s performance, with and without
considering load-transfers. The maneuver is equivalent to the previous experiment.
Figure 9 provides the results of the two simulations. The lighter curves correspond to
the simulations done with a load-transfer compensated control effectiveness and the
darker curves represent the simulation done without taking into account load-transfers.
Sub-figure (a) demonstrates that the maneuver without load-transfers eventually re-
sults in vehicle spin. This can be explained by examining the control effectiveness of
the front and rear axle depicted in Sub-figures (b) and (c).

Initially, neglecting load-transfer effects results in underestimation of the front con-
trol effectiveness whereas the rear control effectiveness is overestimated. Although
tracking is somewhat compromised, these discrepancies do not immediately result in
vehicle instability. However, once the front axle locks at approximately t = 10.5s, the
estimates of the control effectiveness are of opposite sign. The controller now incor-
rectly believes that decreasing the front torque will lead to a decrease yaw-rate in
the direction of the turn. Moreover, the overestimation of the rear control effective-
ness results in a torque decrease on the corresponding axle that only barely results in
a stabilizing moment. Only after the front differential starts slipping again, the con-
troller applies the correct torque increase, bringing the vehicle within the safe yaw-rate
boundaries. When the front axle locks a second time, the incorrect estimation of the
control effectiveness results in vehicle spin. These results demonstrate that including
the effect of load-transfers is crucial when dealing with the limited control authority
of a Limited Slip Differential.
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6.3. Robustness Tests

In order to evaluate the robustness of the controller, several tests were done simulating
a sine and dwell maneuver with artificially created model mismatch in the approximate
yaw-rate inversion. The alterations are introduced at 5.5s, half-way into the maneuver,
in order create equivalent conditions when the vehicle hits the yaw-rate envelope. RMS
values of the yaw-rate error (ǫψ̇ = ψ̇ref − ψ̇0) and the allocated prop-shaft velocity

deltas (∆ω) are used to quantify the tracking error and control effort respectively.
The parameters of the high-fidelity model are unchanged. Therefore, the estimation
of the maximum rear axle side-slip remains correct and the effects on the yaw-rate
inversion are isolated.

Scaling the control effectiveness of a controller based on INDI, through for example
altering the inertia of the system, affects the size of the allocated actuator commands
but influences the tracking performance to a much lesser degree [23]. Therefore, the
parameters that have been altered in the following tests, the friction coefficient and
the location of the center of gravity in lateral and longitudinal directions, affect the
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control effectiveness asymmetrically.
Figure 10 illustrates the effect of scaling up the friction coefficient (µ) on the con-

trol effectiveness and tracking performance. Sub-figure (c) and (d) show the control
effectiveness of the front and rear axle respectively. The nominal values are depicted
with the dotted line and darker values correspond to trajectories using progressively
larger parameter deviations. Although the nominal control effectiveness on both axles
is increased, the load-transfer effects become more pronounced resulting in a decrease
in overall control effectiveness on the rear and a correspondingly stronger increase on
the front axle. At 130% the control effectiveness on the rear axle has shifted to such
a degree that it is almost zero in some parts of the maneuver. However, the yaw-rate
bounds are overshot slightly and the vehicle stays within the side-slip bounds. At
140 and 150% µ the controller fails to keep the vehicle within the both the yaw-rate
and side-slip boundaries.

Table 2a and 2b provide the RMS values of the tracking error and control effort
for the different simulations. The tracking error does not grow to large values below a
friction coefficient of 30% above of the nominal value. Beyond this value, the control
effectiveness on the rear axle is deteriorated to such a degree that the controller is no
longer able to track the desired yaw-rate.

Scaling down the coefficient of friction results in a decrease in estimated front control
effectiveness. The torque increase on the front axle in response to leaving the yaw-rate
envelope is larger, leading to less time spent outside the boundaries. These results
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Figure 10. Results of increasing estimated friction coefficient: (a) Vehicle Yaw-Rate, (b) Vehicle Side Slip,
(e) Control Effectiveness Front,(e) Control Effectiveness Rear

are illustrated by the smaller values in the first column of table 2a. These smaller
values come at the cost of increased control effort reflected by the larger RMS values
of the allocated prop-shaft velocity deltas. However, these values are attenuated by
the bounds set in the control allocation scheme.

Table 1. RMS values of the tracking error and control effort for simulations with scaled coefficient of friction

RMS
ǫψ̇ ∆ωf ∆ωf

rad/s rad/s rad/s
% µ 10−3 10−1 10−1

40 2.3 5.56 7.36
50 2.2 5.41 6.48
60 2.7 5.25 6.19
70 3.8 5.10 6.06
80 5.1 4.98 5.95
90 6.3 4.88 5.77

(a)

RMS
ǫψ̇ ∆ωf ∆ωf

rad/s rad/s rad/s
% µ 10−3 10−1 10−1

100 7.5 4.83 5.63
110 8.5 4.79 5.51
120 10.1 5.10 5.21
130 14.1 5.00 5.27
140 16.0 4.91 5.16
150 19.2 4.86 5.13

(b)

In a second set of simulations the control effectiveness is corrupted by introducing
a shift in the location of the center of gravity. Figure 11a and 11b provide the results
obtained by respectively shifting the center of gravity to the front and to the left of
the vehicle. The maneuver and the time when the parameter changes are introduced
are equivalent to the sine and dwell maneuver described previously.

The performance of the controller is only marginally affected by longitudinal shift in
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Figure 11.

center of gravity location, reflected by the tracking error values in table 3a. The effects
of changing lateral loads due to changes in prop-shaft velocity are much smaller than
those caused by longitudinal tire forces. Therefore, the effect of a longitudinal shift of
the center of gravity on the control effectiveness is small. A shift in lateral location
of the center of gravity would therefore have a much stronger effect on the control
effectiveness. Table 3b provides the tracking error and control effort of the simulations
done with a lateral shift in center of gravity. Although the tracking performance drops
more quickly, it takes a shift of 30% before the controller is not able to keep the
vehicle within the side-slip bounds. Note that this point coincides with the time when
the estimated control effectiveness is of different sign compared to the nominal value.

Table 2. RMS values of the tracking error and control effort for simulations with shifted center of gravity

RMS
ǫψ̇ ∆ωf ∆ωf

rad/s rad/s rad/s
% dcgx 10−3 10−1 10−1

100 4.8 0.500 0.541
110 4.97 0.487 0.546
120 5.7 0.494 0.551
130 6.2 0.542 0.552
140 6.61 0.483 0.564

(a)

RMS
ǫψ̇ ∆ωf ∆ωf

rad/s rad/s rad/s
% dcgy 10−3 10−1 10−1

100 4.8 0.500 0.541
110 6.1 0.505 0.551
120 16.5 0.546 0.621
130 46.0 0.591 0.566
140 143.1 0.650 0.855

(b)

7. Discussion and Concluding Remarks

Most stability augmentation systems rely on either differential drive, differential brak-
ing, active steering, or a combination thereof. This work investigated the possibilities
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of stabilizing and controlling a high performance vehicle with just the front and rear
differentials in conjunction with a controller based on INDI. To this end, a cascaded
side-slip and yaw-rate envelope protection system was developed in combination with
a model following yaw-rate controller that acts inside the bounds of the safe envelope.
The presented simulation results suggest that INDI can effectively be applied to the
stabilization of an LMP1 race car.

The model dependencies in the inner-loop are significantly reduced compared to
conventional inversion techniques. A difficult inversion of a drive-train and tire model
can be avoided by substitution with a measurement or estimate of the angular accel-
eration. The remaining approximate dynamic inversion depends solely on the inertial
properties of the drive-train. A PCH scheme in combination with a first order reference
model is used to protect from actuator saturation and provides a reliable derivative of
the prop-shaft velocity reference.

INDI further allows the approximate inversion of the yaw-rate dynamics through
feedback of the yaw-acceleration, directly including the locally linearized effects of the
tire characteristics. The control allocation problem that remains is straightforwardly
solved using weighted least squares and is suitable for real time applications. Further-
more, the effects of load-transfers have been included in the calculation of the control
effectiveness. These reveal that the relatively low control authority associated with the
front and rear limited slip differentials, necessitate the inclusion of load-transfer effects
on the created yaw-moments. The attenuating effects of load-transfers on the control
effectiveness, particularly on the rear axle, are shown to be of such magnitude that the
oversteering capabilities of open differential are completely diminished in a large part
of the state-space. The importance of including load-transfers in the control effective-
ness was further reinforced by comparing the performance of a controller that did not
incorporate load-transfer effects with a controller that used the control effectiveness
suggested in this paper. The results demonstrate that neglecting load-transfer effects
can lead to misinterpreting the sign of the control effectiveness, resulting in degraded
controller performance.

An outer-loop consisting of an exact inversion of the vehicle side-slip allows the
bounds on the side-slip to be interpreted in the yaw-rate domain. The resulting limits
on the yaw-rate correspond to the values needed to stay within the side-slip envelope.
A simulation of a slalom maneuver in conjunction with a high-fidelity vehicle model
demonstrates that the controller is capable of effectively keeping the vehicle within
the safe envelope while still maintaining the a forward acceleration, crucial in high
performance applications.

Robustness of the stability augmentation system against model uncertainties in the
yaw-rate inversion was demonstrated through introducing model imperfections while
simulating a sine and dwell maneuver. Underestimation of the overall friction coeffi-
cient was demonstrated to have little effect on the tracking performance, even showing
a performance increase, at the cost of increased control effort. Overestimation of the
friction coefficient has a larger detrimental effect on controller performance. However,
these effects stay small enough to maintain vehicle stability below 30% above the nom-
inal friction value. Furthermore, shifting the center of gravity in longitudinal direction
was shown to have very little effect on tracking performance as most of the induced
yaw-moments are the result of longitudinal tire-forces. A shift of center of gravity lo-
cation in lateral direction therefore has a stronger effect but stayed marginal below a
shift of 30%. The robustness tests conducted in this work were specifically aimed at
isolating the effects on the yaw-rate inversion loop. In reality over or underestimation
of for example the friction coefficient also influences the safe bounds on the vehicle
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side-slip and yaw-rate, but these have not been considered here.
Considering the favorable results obtained in simulation with the approximate inver-

sion based envelope controller presented in this work, there are several opportunities
for future research. Firstly, the bounds on the side-slip and yaw-rate that were imple-
mented only approximate the stable envelope, and more elaborate methods might be
able to determine these bounds more accurately. A third opportunity would be to test
the performance of the controller in conjunction with a (side-slip) state-estimator and
sensor noise, as these can affect the controller performance negatively. Lastly, human
in the loop tests could be performed in order to determine if the controller increases
the abilities of a driver controlling the vehicle in limit conditions and whether this
leads to reductions in driver work-load.
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Appendix A. Control effectiveness and Lateral Load-transfers

A.1. Lateral Load-Transfers

The effect of changing lateral load-transfers can be included into the control effective-
ness but is inherently smaller than the load-transfer effects discussed so far. Further-
more, the equations become significantly more complicated and contain more uncer-
tainties on account of equations 15a - 15b. Nevertheless, to properly evaluate effects the
full effect of load-transfers on the control effectiveness and for reasons of completeness,
the equations are given here.

If lateral load-transfers are included, equation 68 changes to,

Fz = h(F̄) = [−∆Wx,−∆Wx,∆Wx,∆Wx]
T

+ (A1)
[
−∆Wy f,∆Wy f,−∆Wyr,∆Wyr

]T

.

The partial derivative ∂Fz

∂F̄
is now a full matrix, given by equation A2.

∂Fz

∂F̄
=

[
∂Fz

∂Fx

∂Fz

∂Fy

]

(A2)
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Where the block-matrix ∂Fz

∂Fy
can be expressed as outer product of two vectors (A3).

∂Fz

∂Fy
=
∂Fz

∂Ay

∂Ay
∂Fy

(A3)

Where,

∂Fz

∂Ay
=









−
∂∆Wy f

∂Ay

∂∆Wy f

∂Ay

−
∂∆Wyr

∂Ay

∂∆Wyr

∂Ay









and
∂Ay
∂Fy

T

=
1

m







1
1
1
1






. (A4)

Using equations 72, 74, A2 and A3 matrix M is rewritten to include the effects of
lateral load-transfers, resulting in,

M̄ =

(

I −
∂ f̄

∂Fz

∂Fz

∂F̄

)

=

[

I− ∂f
∂Fz

∂Fz

∂Ax

∂Ax

∂Fx
− ∂f
∂Fz

∂Fz

∂Ay

∂Ay

∂Fy

− ∂g
∂Fz

∂Fz

∂Ax

∂Ax

∂Fx
I− ∂g

∂Fz

∂Fz

∂Ay

∂Ay

∂Fy

]

=

[
A B
C D

]

(A5)

In a manner similar to the method described above, by repeated application of the
Sherman-Morrison formula, the inverse of matrix M̄ can be found. Resulting in the
following expression,

M̄ -1 =

[
A-1 0

0 D-1

]




I+ P

|M̄|
∂f
∂Fz

∂Fz

∂Fy

|A|

|M̄|
∂f
∂Fz

∂Fz

∂Fy

|D|

|M̄|
∂g
∂Fz

∂Fz

∂Fx
I+ Q

|M̄|
∂g
∂Fz

∂Fz

∂Fx



 . (A6)

Where inverse of sub-matrix D is given by equation A7.

D-1 = I +
1

|D|

∂g

∂Fz

∂Fz

∂Fy
(A7)

And the determinant of D,

|D| = 1−
∂Ay
∂Fy

∂f

∂Fz

∂Fz

∂Ay
. (A8)

Scalars P and Q are given by equation A9 and A10 respectively.

P =
∂Ax
∂Fx

∂g

∂Fz

∂Fz

∂Ax
(A9)

Q =
∂Ay
∂Fy

∂f

∂Fz

∂Fz

∂Ay
(A10)

Finally, the determinant of M̄ can be expressed as,

∣
∣M̄

∣
∣ = |A| |D| − PQ. (A11)
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37
With the inverse of matrix M̄ known the control effectiveness, including the effect

of changing lateral and longitudinal load-transfers, is now easily found using equation
71.

∂F̄

∂ω
=

[
A-1 0

0 D-1

]




I+ P

|M̄|
∂f
∂Fz

∂Fz

∂Fy

|A|

|M̄|
∂f
∂Fz

∂Fz

∂Fy

|D|

|M̄|
∂g
∂Fz

∂Fz

∂Fx
I+ Q

|M̄|
∂g
∂Fz

∂Fz

∂Fx




∂ f̄

∂ω
(A12)
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Chapter 1

Introduction

The World Endurance Championship (WEC) features some of the most technologically ad-
vanced race cars that exist today. The Le Mans Prototype 1 (LMP1) class of race cars
compete in races lasting from 6 up to 24 hours, the most famous being the ’24h of Le Mans’.
The WEC stands out from other high performance race classes in that it allows certain tech-
nologies to be used that have otherwise been prohibited. Where most championships have
banned the use of modern driver assist technologies like Traction Control (TC), the WEC
a race class that revolves around technology and strategy, permits a restricted form to be
used. In this project, Incremental Nonlinear Dynamic Inversion (INDI) a control technology
first developed for aerospace applications is investigated outside its usual context and will be
applied to the traction and stability control problem of an LMP1 race car.

Traction Control systems regulate the longitudinal wheel slip to an optimal value for maximum
traction and can be used to prevent excessive wheel spin. Systems that regulate traction or
braking forces to stabilize or control the vehicle in lateral direction, are loosely referred to as
Electronic Stability Control (ESC) systems (Rajamani, 2011). Traction and stability control
systems are developed for consumer cars with the goal of increased safety in limit conditions,
where the average driver would lose control of the vehicle (Van Zanten, 2000). However,
even an experienced race driver operating a car at the very limit of the stable envelope could
benefit from such a system.

Road vehicle control design is inherently difficult because of the highly nonlinear and complex
nature of the vehicle dynamics. Traction Control systems that can be found on consumer
vehicles, prevent the driver from entering the highly nonlinear region of the state-space en-
tirely. However, in the context of high performance race cars, this highly nonlinear region
is exactly what the driver is after (Milliken & Milliken, 1995). In other words, the control
system should increase the driver’s abilities to keep the race car in this part of the state space,
where nonlinearities and high accelerations govern the vehicle dynamics.

Another intrinsic difficulty in Traction Control design is the uncertainty of the dynamics of
the tire-road interaction. A lot of time and effort is spent on identifying and modeling tire
characteristics which change with road conditions, tire temperatures and tire wear. These
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42 Introduction

nonlinear and uncertain dynamics demand a more complex and at the same time robust
control system design than can be expected for a regular consumer car.

Electronic Stability Control systems rely on a number of different actuators to regulate the
driving force at each wheel. The most common implementation in road vehicles involves
using the hydraulic braking system to reduce traction force on a given axle or wheel, other
mechanisms use engine/motor torque control or an active differential (Manning & Crolla,
2007). The LMP1 car under consideration is able to control the traction force on each axle
through regulating the torque supplied by two separate motors, one at each axle. The drive
shafts on both axles are driven through a limited slip differential which means that wheel
slips can not be controlled individually, making pure torque vectoring impossible. However,
because the car is operated in the highly combined slip range of the tire, the lateral dynamics
of the car can be controlled by regulating traction forces which in turn affect the lateral forces
generated by each tire. (H. Pacejka, 2005).

The aim of the proposed research project is to contribute to the development of a robust
Traction Control system for an LMP1 race car. For this purpose, a technique that has
recently been developed in the aerospace industry called Incremental Nonlinear Dynamic
Inversion will be investigated (Sieberling, Chu, & Mulder, 2010). This sensor based technique
has favorable robustness characteristics compared to classical nonlinear dynamic inversion
and can be applied, with relative ease, to a much wider range of highly nonlinear systems,
with control variables that do not appear affine in the state equations. These properties make
it a suitable candidate for the design of a high performance TC system.
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Chapter 2

Background

2-1 Literature Review

The first traction control systems were mainly developed to maximize traction forces in on-
throttle situations by avoiding wheel-spin in a similar way that anti-lock brake systems prevent
the wheel from locking up during braking (Tomizuka & Hedrick, 1995). Although different
methods can be used to regulate the driving force, the most frequently used mechanism
involves using the vehicle’s braking system. Other implementations control engine torque, or
more recently an active differential, to control wheel-slip (Rajamani, 2011).

Traction control systems later evolved into stability control systems that regulate the traction
force to influence the lateral dynamics of the vehicle. The lateral stability of the vehicle is
governed by the vehicle side-slip and/or vehicle yaw rate. Inagaki, Kshiro, & Yamamoto, 1994
used phase plane analysis in the side-slip - side-slip velocity (β−β̇) plane to identify the stable
regions of the open-loop vehicle dynamics. Another such method focuses on the slide-slip -
yaw-rate (β− ψ̇) plane Bobier, 2012. Most vehicle stability control systems therefore, employ
some form or combination of yaw-rate or side slip control to ensure vehicle stability.

Today, vehicle stability control systems can be categorized into direct yaw-moment control,
in which individual wheel forces are controlled to create a corrective yaw moment, active
steering systems that control the steering angle to influence the lateral dynamics, or active
suspension systems that control the wheel vertical loads (Manning & Crolla, 2007). This
review is primarily focused on traction control systems and stability control systems that
regulate traction forces only, as other approaches like active steering and suspension systems
are banned from the WEC. Because a novel control strategy is investigated, this section
surveys the control strategies that have previously been applied to traction and stability
control.

2-1-1 Traction Control

Several control methods have been used for the low level traction control problem. Delli Colli,
Tomassi, & Scarano, 2006 presented a longitudinal fuzzy wheel slip controller that tracks a
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44 Background

friction gradient based on throttle paddle position. They introduce a simple friction estimator
that effectively copes with changing road conditions. The estimated friction slope is used in
two controller designs that are based on fuzzy logic and sliding modes techniques respectively
and require a simple tuning approach.

Shi, Li, Lu, & Zhang, 2012 developed a wheel slip controller based on feedback linearization
that tracks the slip ratio for maximum longitudinal force. The longitudinal slip set point
is generated using a simple gradient ascent method that finds the wheel slip for which an
estimated longitudinal friction per longitudinal slip gradient goes to zero,i.e., longitudinal
slip for which longitudinal force is maximized. Feedback linearization is done on a quarter
car model for which the control variable naturally appears affine in the output. A sliding mode
controller for the wheel slip error is added to provide robustness against modeling errors.

To avoid the discontinuous control or chattering that is accompanied with first order sliding
mode techniques, Amodeo, Ferrara, Terzaghi, & Vecchio, 2010 propose a second order sliding
mode wheel slip controller in which discontinuous behavior is restricted to the derivative
of the control. A sliding mode observer that estimates the maximum friction coefficient is
incorporated to create a controller that is less sensitive to changing road conditions.

There are several ways the traction force can be regulated. To compare the performance of two
actuators on a front wheel drive and a four wheel drive car, Song & Boo, 2004 designed sliding
mode controllers based on differential braking, engine torque regulation and a combination
of the two. The effect of the controllers during turning maneuvers was investigated using a
driver model and a fixed longitudinal slip set point. They found that the low level controllers
had a large effect on vehicle stability without considering the lateral dynamics of the system
and that the integrated method demonstrated the highest performance.

The previously presented methods only controlled the wheel and slip dynamics and looked at
the resulting longitudinal dynamics of the car. However, the traction forces have a large influ-
ence on the lateral dynamics through the combined slip characteristics of tires (H. B. Pacejka
& Bakker, 1992). Park & Kim, 1999 demonstrated that the lateral stability of the car can be
improved by considering this combined slip behavior, on a front wheel driven car, without di-
rect feedback on the lateral vehicle states. They designed a traction control system that uses
a varying slip set point based on the estimated side-slip of the driven tires. A PI controller
is used to regulate the throttle position to attain the desired slip ratio. Although the paper
does not state the slip tracking performance of the control scheme, the turning performance
and understeering properties of the vehicle are improved compared to fixed slip ratio traction
controllers.

2-1-2 Vehicle Stability/dynamics Control

One of the first commercially available vehicle stability control systems is that of Bosch
(Van Zanten, Erhardt, & Pfaff, 1995). This early system creates a correcting yaw moment
by introducing a traction force difference between left and right wheels through the braking
system to stabilize the vehicle in situations where a regular driver could potentially lose
control. The direct yaw moment control (Shibahata, Shimada, & Tomari, 1993) approach is
used in the majority of stability control systems that are discussed in literature. Although
the braking system can not be employed directly by the traction control system of the LMP1
race car (FIA, 2016), the control strategies are largely the same.
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One of the most widely proposed control techniques in literature is Sliding Mode Control
(SMC). Drakunov, Ashrafi, & Rosiglioni, 2000 created a yaw control algorithm based on
sliding mode techniques for a vehicle model with unknown slip characteristics. The controller
distributes braking torques between left and right wheels to create a control moment. Both
the longitudinal and lateral friction forces are assumed to be unknown nonlinear functions.
The longitudinal force is assumed to depend on longitudinal velocity and wheel speed whereas
the lateral force is assumed to depend on lateral velocity only. This general structure results
in an uncertainty in the sign of the applied torque in the sliding mode control scheme. A
periodic switching function is applied to overcome this problem and it is shown that yaw rate
tracking is possible without extensive knowledge of the tire characteristics.

Yaw rate tracking alone is not guaranteed to result in a stable vehicle because in some cases
the side-slip angle tends to diverge (Rajamani, 2011). An alternative approach is to track
a side-slip angle target instead. Abe, Kano, Suzuki, Shibahata, & Furukawa, 2001 propose
a controller that tracks the side-slip response of a bicycle model at constant velocity. A
sliding controller is used to minimize the error between the measured side-slip and the desired
response. Under the proposed conditions the side-slip angle reference tracking method’s
stabilizing performance is shown to be higher than the performance of yaw rate reference
tracking method. Tchamna & Youn, 2013 present an integrated yaw rate and vehicle side-
slip controller based on differential braking, which does not incorporate the usual simplifying
assumptions such as constant longitudinal velocity and small side-slip angles. Instead, the
full equations for the derivative of the side-slip angle are used. The proposed sliding mode
surface incorporates both a yaw rate and a vehicle side-slip tracking error. They demonstrate
that a trade-off exists between side-slip angle and yaw rate reference tracking but that the
side-slip angle is most important from a stability point of view.

One of the downsides of using braking forces to influence the yaw response of a vehicle, is its
negative effect on the longitudinal velocity. In order to overcome this problem Cho, Yoon,
Kim, Hur, & Yi, 2008 investigated control strategy based on sliding mode techniques in
combination with a control allocation algorithm. The brake force is allocated to each wheel
through a numerical optimal control law, based on the Karush-Kuhn-Tucker conditions, that
minimizes the unwanted longitudinal deceleration. Yim, Choi, & Yi, 2012 present a linear
computational efficient weighted pseudo inverse control allocation algorithm with a similar
objective that can run in real time. The weights of the pseudo inverse were chosen such that
the yaw rate error and longitudinal velocity delta were minimized over a simulated maneuver.
The resulting algorithm is simple and fast, but its weights are static thus might not yield the
same results for every maneuver.

Apart from the sliding mode approaches that were discussed above, several other control tech-
niques have been proposed in literature. Di Cairano, Tseng, Bernardini, & Bemporad, 2013
investigate a model predictive control architecture for a driver requested yaw rate tracking
controller based on active front steering and differential braking. One of the downsides of
model predictive control is that most implementations are computationally heavy. In order
to run on common automotive electronic control units, an offline prediction model is created
using a bicycle model at constant velocity and a piecewise affine approximation of the tire slip
behavior. A hybrid model predictive controller is designed to track a desired yaw rate and
to keep the tire side slip angles within acceptable bounds. Tahami, Kazemi, & Farhanghi,
2003 introduced a completely different, fuzzy logic based, stability system for all-wheel drive
electric vehicles. The system is split between a high level fuzzy yaw rate controller and indi-
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vidual low level fuzzy wheel speed controllers. A neural network is trained using sine wave
maneuvers on different velocities to create a nonlinear yaw rate reference generator that uses
inputs from a fuzzy vehicle speed estimator and the current steering angle. The yaw rate
controller uses the yaw rate reference and the measured yaw rate acceleration to calculate a
torque difference between left and right driven wheels to attain the desired yaw rate.

2-1-3 Front to Rear torque distribution

The techniques discussed so far regulated traction force trough differential braking for cars
with combustion engines and driving torque distribution strategies for electric vehicles. Differ-
ential braking is not allowed in the WEC therefore, the traction force can only be influenced by
controlling the front and rear motor torque the LMP1 car. Because the LMP1 car operates in
the highly nonlinear and combined slip region of the tire during cornering, longitudinal forces
have a significant effect on lateral forces. Furthermore, accelerating and braking actions have a
large effect on the distribution of lateral forces through longitudinal load-transfers. The mag-
nitude and distributions of front and rear driving torques therefore have a considerable effect
on handling and stability characteristics (Uffelmann, 1983; Motoyama, Uki, ISODA Manager,
& YUASA Manager, 1993).

Klomp, 2007 examines the front to rear torque distribution at specific longitudinal acceler-
ations for different drive-line configurations taking into account longitudinal load-transfers.
For moderate to large longitudinal accelerations, the front to rear drive distribution that re-
sults in the largest possible lateral acceleration, corresponds to that which balances front and
rear axle yaw-moment potentials.

Piyabongkarn, Lew, Rajamani, Grogg, & Yuan, 2007 investigate distributing the front and
rear driving torques, as a means for yaw stability control. The tested system is a four wheel
drive passenger car with an initially front axle driven configuration with a variable torque
transfer to the rear axle. An electronically controlled limited slip differential is used to transfer
torque from left to right. The torque biasing system is demonstrated to be able to create
an oversteering yaw moment during on-throttle situations. A low level controller was able
to meet the yaw moment demand of a high level yaw controller by distributing the driving
forces with proposed system.

2-1-4 Dynamic Inversion Techniques in Automotive

Hsu & Gerdes, 2005 present a stability controller based on feedback linearization for a steer-by-
wire vehicle. A simple pure-slip piece-wise defined tire model is used to facilitate the inversion
of a constant velocity bicycle model. The resulting controller is uniquely defined for different
regions of lateral tire-slip for each wheel and combinations thereof and is demonstrated to
outperform a simple linear controller.

One of the difficulties with the inversion of a vehicle model arises from the modeling of tire-
force characteristics. Accurate tire modeling requires the consideration of highly nonlinear
saturation and combined slip effects. The resulting equations are typically not invertible and
cause control variables to appear in a non-affine manner. Consequently, dynamic inversion
techniques applied to road-vehicle control frequently incorporate some (nonlinear) solver to
find the control variables.
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A common approach to circumvent the inversion of a complex tire-model, uses the total ve-
hicle body forces as intermediate or virtual control variables. The subsequent distribution of
tire forces results in an inherently nonlinear optimization problem. Fredriksson, Andreasson,
& Laine, 2004 adopt this method to allow for the inversion of the vehicle state equations in
a controller of an over-actuated vehicle. The proposed control allocation problem simulta-
neously solves the problem of non-affine control inputs and the distribution of control effort
among the actuators. Nonlinear constraints are included that prevent using any tires past
their limit, however a solver was not specified. Weiskircher & Müller, 2012 assume that any
tire force can be obtained and propose a linear straightforward control allocation strategy
solely based on car geometry. A downside of this approach is that no tire or actuator limits
can be considered. Andreasson & Bünte, 2006 handle the nonlinearities arising in a simi-
lar context by linearizing the associated equations and solving a subsequent weighted least
squares control allocation problem.

2-2 Knowledge Gaps and Contributions

The majority of the methods presented in literature on stability control employ robust non-
linear control strategies such as sliding mode techniques. SMC offers robustness against
uncertain tire characteristics due to changing road conditions and un-modeled vehicle dy-
namics. However, sliding mode techniques commonly result in a discontinuous control signal,
which can be an important downside in some applications. Furthermore, Sliding Mode (SM)
techniques that result in smooth control signals, performs ideally when provided with accurate
bounds on model uncertainties (Slotine, Li, et al., 1991).

Feedback Linearization (FBL) is difficult to apply to the stability control of a car due to the
structure of the nonlinear vehicle dynamic equations and its inherit sensitivity to modeling
errors. The only examples of FBL for traction control are on quarter car models in pure slip
conditions, which limits their applicability outside the context of simulations. For vehicle
stability control, inversion techniques typically involve some nonlinear optimization problem
to solve for the control inputs due to uninvertible tire models. Linearizations can be used
to yield algorithms that can be solved in real time. However, all these methods suffer from
very little robustness against modeling errors, inherent to feedback linearization or nonlinear
dynamic inversion techniques.

INDI is an approximate, sensor based form of FBL, developed for aerospace applications,
which does not have the inherent limitations of regular FBL (Sieberling et al., 2010). FBL has
been demonstrated to be robust against modeling errors. Its favorable robustness properties
and simplicity make it a very interesting candidate for the automotive stability augmentation.
Chapter 3 provides a short introduction to INDI. No examples of this control technique have
been found in the field of automotive control. Exploring this technique outside the usual
context of aerospace applications by applying and adjusting it to the stability control problem
of a race car is considered the main contribution of the proposed work to the existing body
of knowledge.

Additionally, the effectiveness of actuating the front and rear axle is studied in detail and a
method is presented which incorporates load-transfer effects in the effectiveness directly.
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2-3 Research Questions and Objectives

In this section, the project objective is defined and broken down into sub-goals. The objective
and the sub-goals which make up the research framework have been used to formulate the
main research question which is in turn split into sub-questions.

2-3-1 Project Objective

The main objective of the proposed research project can be stated as follows,

Contribute to the development of a vehicle control system of an LMP1 race car by
designing a robust traction control system and stability augmentation system based
on Incremental Nonlinear Dynamic Inversion

Several sub-goals are identified which together should be sufficient to achieve the main objec-
tive of the project.

• Perform literature research on relevant topics

– Perform literature research on the vehicle and tire dynamics

– Perform literature research on stability and traction control

– Perform literature research on (Incremental) Nonlinear Dynamic Inversion

• Design a prototype control system and show the feasibility of the proposed controller

– Establish the control objective

– Create a vehicle model with sufficient fidelity for design of prototype controller

– Design a prototype stability augmentation controller

– Perform a verification and validation step for model and prototype controller

– Asses controllability of the system in different regions of the state space

• Incorporate the torque demand of the driver in the control design by implementing a
control allocation method

• Implement the controller on a high definition vehicle model provided by Audi Sport and
adjust methods if necessary

– Perform a verification and validation step for the final controller

– Perform performance and robustness tests on the final controller to evaluate the
efficacy and robustness of the proposed control method
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2-3-2 Project Research Question

The main research question relating to the main objective of the proposed project can be
stated as follows,

What is an effective and robust control design of a traction and stability control
system for an Le Mans Prototype 1 based on Incremental Nonlinear Dynamic Inver-
sion?

The proposed research question is split up in two sub-questions. The first question relates
to the structure of the control system and the second to the efficacy and robustness of the
method.

• What control structure, based on Incremental Nonlinear Dynamic Inversion, achieves
the stability and traction control objective?

– What is the control objective, in terms of controlled variables, of the vehicle sta-
bility control problem?

– Is the system Time-Scale separable?

– If the system is Time-Scale separable, what control structure should be chosen i.e.
what are the intermediate variables?

– What type of inversion loop is needed for each intermediate variable? i.e. exact,
approximate or incremental?

– Does Psuedo Control Hedging improve the performance of the inner loop?

– What type of control allocation method, effectively constrains the total applied
torque to the drivers torque demand and avoids excessive wheel spin?

• What is the performance of the designed control system based on Incremental Nonlinear
Dynamic Inversion?

– What is the performance of the controller in terms of the classic performance
measures such as rise-time, overshoot, control error for each loop.

– What is the performance of the controller in terms of system specific performance
measures?

∗ What is the effect of longitudinal load-transfer on controller performance?

∗ What is the effect of switching states of the limited slip differential, i.e., locked
versus open on controller performance?

∗ What is the effect of vertical wheel load disturbances on controller perfor-
mance?

– Is the controller robust against model uncertainties and actuator/sensor delays?

∗ What is the influence of uncertainties in the tire model on controller perfor-
mance?

∗ What is the influence of uncertainties in the location of the center of gravity
on controller performance?

∗ What is the influence of uncertainties in the vehicle inertia on controller per-
formance?
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2-4 Thesis Outline

The structure of the remaining chapters of this work is as follows: Firstly, chapter two offers
a broad survey of the available literature on traction and stability control in an automotive
context in section one. The following section identifies possible knowledge gaps and elaborates
how this work contributes to the existing body of knowledge. Lastly, the research objective
and research question are formalized and subsequently broken down into sub-goals and sub-
questions in section three.

Chapter three provides a short introduction into feedback linearization or nonlinear dynamic
inversion and its incremental form INDI. Chapter four presents the planar seven degree of
freedom vehicle model, utilized during preliminary control structure design and evaluation
of the control effectiveness, in three sections. The first section describes the body dynamics
in the relevant reference frames. Section two provides a detailed description of a switched
order limited slip differential model and a well know semi empirical tire model is elaborated
in section three.

Chapter five presents the structure of the proposed cascaded control system. The first section
identifies the different time scales present in the vehicle dynamics, which are then related to
the different control loops. The following section describes the prop-shaft velocity control
loop and introduces an aerospace control concept known as pseudo control hedging (Johnson,
2000). Section three describes the yaw-rate loop and presents an efficient active-set weighted
least squares control allocation algorithm (Härkeg̊ard, 2003). Section four presents the side-
slip loop and the corresponding dynamic inversion. Lastly, the envelope protection system is
described.

Chapter six elaborates the calculation of the yaw-rate control effectiveness. Section one
presents the calculation of the tire-force jacobian and introduces a method to incorporate
the effect of varying load-transfers in the control effectiveness directly. Section two offers
a method for the approximation of the wheel speed increments depending on the state of
the limited slip differential. An elaborate discussion of the magnitude, sign and important
influencing states and parameters of the control effectiveness, in different quasi-steady state
driving conditions, is presented in section three.

M. B. Ruijs Robust Stability Augmentation of a

Le Mans Prototype 1 race car using Incremental Nonlinear Dynamic Inversion



Chapter 3

Incremental Nonlinear Dynamic
Inversion

This section gives an introduction to the control approach which is to be used in the pro-
posed project. The vehicle dynamics will not be discussed in this document as exploring this
control strategy in the context of automotive control is the focus of the project. First a short
introduction to classical Nonlinear Dynamic Inversion is given, then the incremental form is
discussed.

3-1 Feedback Linearization/ Nonlinear Dynamic Inversion

Consider the nonlinear system 3-1 in which the control input appears affine in the state
equations.

ẋ = f(x) +G(x)u

y = h(x) (3-1)

Nonlinear Dynamic Inversion or Feedback Linearization amounts to finding a state transfor-
mation z = T (x) and a suitable control input mapping u = a(x) + b(x)ν which creates a
linear differential relation between the output y and the new control input ν (Slotine et al.,
1991). This section discusses the Single-Input Single-Output (SISO) case for a system with
relative degree one.

The first step is to find a direct relation between the output y and the input u. This is done by
differentiating the relation y = h(x), r times until the input appears directly in the equation.
Differentiating once, results in equation 3-2.

dh(x)

dt
=
∂h(x)

∂x

x

dt
= ∇h(x)ẋ = ∇h(x)[f(x) +G(x)u]

= ∇h(x)f(x) +∇h(x)G(x)u = Lfh(x) + Lgh(x)u (3-2)
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Where Lfh(x) and Lgh(x) are the Lie derivatives of the smooth scalar function h with respect
to the vector fields f and G respectively. Assuming that Lgh(x) = 0 a direct relation between
input and output has not yet been found. Continuing the differentiation process leads to,

dih(x)

dti
= Lifh(x) + LgL

i−1
f h(x)u (3-3)

If after differentiating r times, LgL
r−1
f h(x) 6= 0, i.e., the relative degree of the system is r, we

have found a direct relationship between the output y and the input u. (3-4)

yi = Lifh(x) + LgL
i−1
f h(x)u (3-4)

Equating the right hand side in equation 3-4 to ν and inverting, results in a mapping between
ν and u that renders a linear differential relation between the output y and the new input ν.
(3-6)

u = (LgL
i−1
f h(x))-1(ν − Lifh(x)) (3-5)

ẏ = ν (3-6)

Now classical linear control techniques can be used to design a controller for the transformed
system described by equation 3-6. The SISO case, discussed here, is readily extended to the
MIMO.

3-2 Incremental Nonlinear Dynamic Inversion

Incremental Nonlinear Dynamic Inversion (INDI) is an approximate, sensor based, form of
Nonlinear Dynamic Inversion (Sieberling et al., 2010), sometimes also referred to as approx-
imate (Bacon & Ostroff, 2000) or simplified Feedback Linearization (Smith, 1998). INDI
can be applied to the general nonlinear system (3-7) and starts by approximating the state
equations by a Taylor series expansion (3-8).

ẋ = f(x,u) (3-7)

ẋ ≈ f(x0,u0) +
∂f(x,u)

∂x

∣
∣
∣
∣
(x0,u0)

(x− x0) +
∂f(x,u)

∂u

∣
∣
∣
∣
(x0,u0)

(u− u0) + h.o.t. (3-8)

By neglecting higher order terms and realizing that for high control rates the term (x− x0)
vanishes, equation 3-8 simplifies to,

ẋ ≈ f(x0,u0) +
∂f(x,u)

∂u

∣
∣
∣
∣
(x0,u0)

(u− u0). (3-9)

Further, noting that
f(x0,u0) = ẋ0, (3-10)

and defining the control effectiveness as,

G(x0,u0) =
∂f(x,u)

∂u

∣
∣
∣
∣
(x0,u0)

, (3-11)
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equation 3-9 simplifies to,
ẋ ≈ ẋ0 +G(x0,u0)

︸ ︷︷ ︸

Control Effectiveness

(u− u0). (3-12)

Where ẋ0 is the state derivative measured at time t = t0.

In a similar way to exact NDI, by equating the right hand side of equation 3-12 to ν and
inverting, one ends up with a mapping between the original control input u and the virtual
control ν (3-13), which results in a linear differential relation between the state x and ν (3-14).

∆u = G-1(x0,u0)(ν − ẋ0) (3-13)

ẋ = ν (3-14)

Note that contrary to standard NDI the mapping (3-13) results in a control increment only.
The new control input can be calculated with equation 3-15.

u = ∆u+ u0 (3-15)

Where u0 is the actuator state as measured at time t = t0.

There are several advantages of Incremental Nonlinear Dynamic Inversion compared to exact
Nonlinear Dynamic Inversion. Fist of all, only the model component related to the effect of the
actuator on the dynamics, or control effectiveness matrix (3-12), is needed for the inversion.
Second, the method is robust against modeling errors in the control effectiveness. Sieberling et
al., 2010 show that the inverted system stays linear in case of model uncertainties, as opposed
to the inverted system using classic NDI. Modeling errors will result in lower performance
but will not cause the linear control law to break down. Finally INDI can be applied to the
more general nonlinear system (3-7) as opposed to Nonlinear Dynamic Inversion (NDI) which
works for nonlinear systems in which the control input appears affine in the equations (3-1).

3-3 Psuedo Control Hedging

Recently, INDI has been investigated in combination with Psuedo Control Hedging (PCH)
(Simplicio, Pavel, Kampen, & Chu, 2013). The technique was originally designed to cope
with actuator limits in the context of adaptive control (Johnson & Calise, 2000), and later
applied to NDI by Holzapfel & Sachs, 2004, adjusts a reference model in case of unachievable
commands.

3-4 Adaptive INDI

Another recent development is the use of an adaptive element in conjunction with INDI.
Smeur, Chu, & De Croon, 2016 designed an attitude controller for a quadcopter that identified
the control effectiveness matrix online, further reducing the method’s reliance on a vehicle
model. Smeur et al., 2016 further introduces a method to deal with signal delays introduced
by differentiating angular rates for use in the INDI inversion loops.
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Chapter 4

Vehicle Model

This chapter describes two-track 7-DOF vehicle model that was used for the calculation of
the control effectiveness and the feasibility study in the preliminary phase of this thesis. It
captures the most important aspects and nonlinearities that arise in vehicle dynamics and is
therefore sufficient to asses the feasibility of the method.

The motion is assumed to completely planar. Furthermore, the roll and pitch angles are
assumed to be small and the corresponding dynamics fast enough to approximate these states
and the associated wheel normal loads, by their steady state values (Abe, 2015). The model
incorporates the widely adopted Magic Formula tire model for the determination of the steady
state wheel forces (H. B. Pacejka & Bakker, 1992). The behavior of the front and rear Limited
Slip Differential (LSD) is described by a relatively detailed model as these parts have a large
influence on the overall vehicle dynamics and later the control effectiveness calculation.

4-1 Two Track Vehicle Model

Figure 4-1 depicts the three states corresponding to the translational and rotational motion
of the vehicle. In the body fixed reference frame (Fb), vx and vy stand for the longitudinal and
lateral velocity respectively. The yaw-rate is denoted by ψ̇. Alternatively, the vehicle motion
can described in the path fixed reference frame (Fv) by the velocity V and the side-slip angle
β.

The figure further depicts the individual wheel forces wFxij and wFy ij in their respective
wheel frames (Fwij). Where subscripts i ∈ {f, r} and j ∈ {l, r} denote the front or rear and
left or right wheel respectively. The wheel forces, slip angles φij and steering angles δij are
drawn in accordance with ISO8855, 2011. The lengths 2wf and 2wr stand for the front and
rear track widths. Lastly, the front and rear parts of the wheelbase are denoted by lf and lr
respectively.

The equations of motion for the planar vehicle model, excluding the states that describe the
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Figure 4-1: Two-track vehicle model

axle dynamics, are given by equations (4-1a)-(4-1c).

m(v̇x − vyψ̇) = (Fxfl + Fxfr) cos δ − (Fyfl + Fy fr) sin δ + Fxrl + Fxrr (4-1a)

m(v̇y + vxψ̇) = (Fxfl + Fxfr) sin δ + (Fyfl + Fy fr) cos δ + Fyrl + Fyrl (4-1b)

Izzψ̈ =− w1 cos δ(Fxfl − Fxfr) + l1 cos δ(Fxfl + Fxfr)− w2(Fxrl − Fxrr)

+ w1 sin δ(Fyfl − Fy fr) + l1 cos δ(Fyfl + Fy fr)− l2(Fyrl + Fyrr) (4-1c)

Where m is the vehicle mass, Izz is the moment of inertia around the z axis, v̇x and v̇y are
the longitudinal and lateral accelerations respectively and ψ̈ is the yaw-acceleration.

Defining the state vector as xB =
[

vx vy ψ̇
]T
, the equations (4-1a)-(4-1c) can be compactly

expressed in matrix form as (Jonasson, 2009; Klomp, 2010),

ẋB = M-1E BF− c. (4-2)

Where M = diag (m,m, Izz),
BF =

[
bFxfl

bFyfl . . .
bFxrr

bFyrr
]T
, c =

[

−vyψ̇ vxψ̇ 0
]T

and E is given by,

E =





1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

−wf lf wf lf −wr −lr wr −lr



 . (4-3)

The tire forces that occur in the local wheel frames must be rotated to the body frame. The
transformation of the front-left tire forces from the wheel to the body frame (Fw → Fb) front
left wheel is as follows.

BFfl = TB,Wfl
WFfl (4-4)

[
bFxfl
bFyfl

]

=

[
cos δfl − sin δfl
sin δfl cos δfl

] [
wFxfl
wFyfl

]
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Where δfl denotes the steering angle of the front left wheel. The transformation of the complete
set of tire forces, WF =

[
wFxfl

wFyfl . . .
wFxrr

wFyrr
]T
, from their respective wheel frames to

the body frame is given by,
BF = TB,W

WF. (4-5)

Where,

TB,W = diag
(
TB,Wfl,TB,Wfr,TB,Wrl,TB,Wrr

)
(4-6)

If the equations of motion are expressed in terms of the velocity V and the side-slip angle β
instead, equation (4-2) changes to,

ẋB = M-1E VF− c (4-7)

Where the new state vector xB =
[

V β ψ̇
]T
, VF are the forces and moments expressed in

the velocity frame Fv, M = diag (m,mV, Izz) and finally c =
[

0 ψ̇ 0
]T
.

The force transformation from the body frame to the velocity frame (Fb → Fv) is given by,

VF = TV,B
BF (4-8)

[
vFx
vFy

]

=

[
cosβ sinβ
− sinβ cosβ

] [
bFx
bFy

]

4-2 Normal Loads

The main/dominant assumptions of this model relate to the roll and pitch states. In the con-
text of high performance racing, which features vehicles with stiff suspensions and low centers
of gravity, these states and the associated time-constants can be assumed small (Milliken &
Milliken, 1995). The roll and pitch angles can therefore be approximated by their steady state
values which allows the corresponding dynamics to be omitted. Consequently, the wheel nor-
mal load distribution is approximated by its steady state value as well. Two models, for
respectively the lateral and longitudinal load transfers, are used to estimate the normal forces
(Abe, 2015). The front and rear roll-stiffness values, Kφf and Kφr, are assumed to be con-
stant. Furthermore, the location front and rear roll-centers, hf and hr, are assumed to be
unchanging. Using these assumptions, the lateral load transfer at the front and rear axles are
approximated by equations 4-9a and 4-9b.

∆Wy f = Ay
m

2wf

(
Kφf

Kφf +Kφr −mhs
+
lr
l
hf

)

(4-9a)

∆Wyr = Ay
m

2wr

(
Kφr

Kφf +Kφr −mhs
+
lf
l
hr

)

(4-9b)

Where, Ay is the specific force in lateral direction, hs denotes the vertical distance between
the roll-axis and the center of gravity and l stands for the wheel base.

The longitudinal load transfer can be calculated with equation 4-10.

∆Wx = Ax
hm

l
(4-10)
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Where, Ax is the specific force in longitudinal direction and h is the height of the center of
gravity.

The normal loads for each wheel can now be calculated with equations 4-11a - 4-11d.

Fzfl =
1

2

mglr
lf + lr

−∆Wy f −∆Wx (4-11a)

Fz fr =
1

2

mglr
lf + lr

+∆Wy f −∆Wx (4-11b)

Fzrl =
1

2

mglf
ll + lr

−∆Wyr +∆Wx (4-11c)

Fzrr =
1

2

mglf
ll + lr

+∆Wyr +∆Wx (4-11d)

Where the first terms in the above equations represent the static normal load distribution.

4-3 Tire Model

Tire behavior plays an essential role in vehicle dynamics analysis. It is one of the most domi-
nant factors for the overall vehicle performance and one of the main sources of nonlinearities
in the vehicle’s handling characteristics. Therefore, a lot of time and effort is spent to identi-
fying the tire-force/slip characteristics by race teams. One of the most widely adopted steady
state tire models is the empirical Magic Formula (MF) (H. B. Pacejka & Bakker, 1992). In
this thesis a semi empirical technique based on force normalization and pure MF force curves
adopted from (H. Pacejka, 2005) is used.

In reality tire forces are a result of a complex interplay of tire deformations and adhesion
and/or sliding effects at the tire-road interface (Svendenius, 2007). In empirical models like
the MF or even physics based brush models, several quantities are used that reflect the state
of the tire-road interaction as well as possible. If camber, turnslip, pressure effects etc. are
not considered, tire forces are often described as functions of practical longitudinal slip κij ,
practical lateral slip αij and the normal load Fzij (4-12)-(4-12).

Fxij = f(Fzij , κij , αij)

Fyij = g(Fzij , κij , αij)
i ∈ {f,r}, j ∈ {l,r}

(4-12)

(4-13)

The longitudinal slip or sometimes called slip ratio, is defined as the ratio between the slip
velocity vsxij = vxij−ωijRe and the x or longitudinal component of the wheel center’s velocity
expressed in the wheel frame vxij (4-14). The lateral slip or tire side-slip angle is defined by
the ratio of lateral and longitudinal component of the wheel center’s velocity, respectively vyij
and vxij (4-15).

κij = −
vxij − ωijRe

vxij
(4-14)

tanαij = −
vyij
vxij

(4-15)

Where ω is wheel angular velocity and the effective rolling radius Re is free-rolling wheel
radius defined as Re ≡

vx
ω

∣
∣
(κ = 0)

. The longitudinal and lateral velocity of the (front left) wheel
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vx

vy

V

α

(a) Wheel side-slip angle

Re

ω vx

(b) Wheel slip ratio

centers, with respect to the ground, expressed in the respective wheel frame, are given by
equation 4-16.

[
wvxfl
wvyfl

]

=

[
cos δfl sin δfl
− sin δfl cos δfl

] [
1 0 −wf
0 1 lf

]
[

vx vy ψ̇
]T

Wvfl =

[
cos δfl sin δfl
− sin δfl cos δfl

] [
bvxfl
bvyfl

]

Wvfl = (TB,Wfl)
T Bvfl (4-16)

Collecting all the wheel velocities in the vector Wv = [vxfl vyfl vxfr...vxrr vyrr]
T, and noting the

structure of the matrix E, the calculation of the all the wheel velocities can be conveniently
written as,

Wv = (TB,W)
T
E

T
xB. (4-17)

4-3-1 Magic formula and Similarity Method

The similarity method is based on the premise that the pure force-slip characteristic for differ-
ent conditions looks approximately the same when normalized. The force-slip characteristic
is normalized at some reference normal force, after which the normalized curved can be ap-
propriately scaled to represent different driving conditions. H. Pacejka, 2005 uses a MF like
function as a reference but other characteristic curves could in principle be employed.

In pure lateral or longitudinal slip the MF is given by equation 4-18.

Fi(φ) = Di sin [Ci0 arctan {Biφ− Ei0(Biφ− arctan(Biφ))}] i ∈ {x, y}, φ ∈ {α, κ} (4-18)

In this work, the shape parameters Ci0 and Ei0 are defined at some the nominal load Fz0 and
assumed constant throughout the operating range of the tire. The stiffness factor Bi and
peak force Di are given by,

Bi = CF i/(Ci0Di) (4-19)

Di = µiFz (4-20)

The remaining parameters µi and CF i, denote the friction coefficient and the initial force-slip
slope or slip stiffness, respectively.

One might expect the slip stiffness and the peak force to vary proportionally with the normal
load. Instead, both increase less than proportional with normal load, i.e, the friction coeffi-
cient decreases as the normal load increases. This effect, observed with pneumatic tires and
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usually referred to as tire load sensitivity, has a large effect on vehicle performance through
load transfers. Both the friction coefficient and the slip stiffness are therefore modeled as func-
tions of normal load. Equations 4-21 and 4-22 describe the lateral slip stiffness and friction
coefficient.

CF y(Fz) = cy1Fz0 sin [cy2 arctan {Fz/(cy3Fz0)}] (4-21)

µy(Fz) = µy0 + cy4 (Fz − Fz0) /Fz0 (4-22)

Where µy0 stands for the nominal friction coefficient. The longitudinal slip stiffness CF κ and
friction coefficient µx are described by equations 4-23 and 4-24.

CF x(Fz) = Fz (cx1 + cx2 (Fz − Fz0) /Fz0) e
cx3(Fz−Fz0)/Fz0 (4-23)

µx(Fz) = µx0 + cx4 (Fz − Fz0) /Fz0 (4-24)

The parameters ci1 - ci4 can be found through tire testing.

Nondimensionalization and Rescaling

The non-dimensionalized reference curve is obtained by first normalizing equation 4-18 with
the nominal peak force Di, subsequently multiplying its argument φ with the nominal slip
stiffness CF i and lastly dividing φ by the peak force (4-25). The resulting normalized force-slip
characteristic is given by equation 4-26.

Fin(φ) =
1

µi0Fz0
Fi

(
CF i0
µi0Fz0

φ

)∣
∣
∣
∣
Fz=Fz0

(4-25)

Fin(φ) = sin [1/Bin arctan {Binφ− Ei0 (Binφ− arctan(Binφ))}] (4-26)

Where the new coefficient Bin = 1/Ci0 and Ei0 is equivalent to its previous definition.

By appropriately rescaling equation 4-26, the pure slip curves can be obtained for different
normal loads. The normalized slip curve is first multiplied by the peak force under the new
driving conditions µi(Fz)Fz, next the argument φ normalized by the slip stiffness CF i(Fz)
and finally, φ is multiplied by the peak force. The resulting relation can be used to evaluate
the wheel forces in pure slip under different normal loads (4-27).

Fi(φ, Fz) = (µi(Fz) · Fz) · Fin

(
µi(Fz) · Fz
CF i(Fz)

φ

)

(4-27)

Combined Slip

So far only pure slip conditions have been considered. In order to model combined slip, the
theoretical slip values σx and σy are defined as,

σx =
κ

1 + κ
=
ωRe − vx
ωRe

(4-28)

σx =
tanα

1 + κ
= −

vy
ωRe

(4-29)
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The magnitude of the slip vector σ is given by equation 4-30.

σ =
√

σ2x + σ2y (4-30)

Using the slip magnitude, the longitudinal and lateral force in combined slip can now be
approximated with equations 4-31 and 4-32.

Fxij = f(Fzij , σxij , σxij) = (µx(Fz) · Fz)
σx
σ
Fxn

(
σxeq

)

Fyij = g(Fzij , σxij , σxij) = (µy(Fz) · Fz)
σy
σ
Fyn

(
σyeq

) i ∈ {f,r}, j ∈ {l,r}
(4-31)

(4-32)

Where the equivalent theoretical slip values σxeq and σ
y
eq are given by equations 4-33 and 4-34.

σxeq =
µx(Fz) · Fz
CF x(Fz)

σ (4-33)

σyeq =
µy(Fz) · Fz
CF y(Fz)

σ (4-34)

Dynamic Tire Behavior

Tire forces do not occur instantaneously. Instead, tires require a certain rolling distance
to build up tire forces. During this time, sliding and adhesion phenomena in the contact
patch settle and the carcass deflection -through which forces are transferred from the contact
patch to the wheel rim, reaches a steady state. A simple way to approximate the transient
tire behavior is by introducing first order dynamics to the slip build-up (Svendenius, 2007).
Assuming small slips, no camber angle and neglecting damping effects in the tire carcass, the
tire dynamics may be approximated by equation 4-35.

li
vx
φ̇ = φ− φ′ i ∈ {x, y} , φ ∈ {α, κ} (4-35)

In the time constant of this low-pass filter, li is referred to as the relaxation length. Under the
assumed conditions the relaxation length can be related to the slip stiffness CF i and carcass
deflection stiffness in the corresponding direction Cci as,

li ≈
CF i(Fz)

Cci
. (4-36)

In reality the tire dynamics are more complex but this approach serves as a good first order
approximation of the tire dynamics. In the context of vehicle stability control, tire dynamics
can be compared to a form of actuator dynamics and might be significant at lower speeds.
However, because its small time-constant, this effect is most often neglected.

4-4 Limited Slip Differential Model

The differential is an integral part of most road vehicles. It connects the left and right wheels
on a driven axle with the prop-shaft coming from the engine and is responsible for distributing

Robust Stability Augmentation of a

Le Mans Prototype 1 race car using Incremental Nonlinear Dynamic Inversion

M. B. Ruijs



62 Vehicle Model

the engine torque over both sides. The design of a differential greatly this influences this
torque split and therefore the dynamic behavior of the vehicle.

The open differential distributes the input torque evenly over both tires while allowing the
wheels to rotate independently if inertial forces of the internal gearing are neglected. This
in contrast with a rigid axle or spool, which constrains the wheels to rotate at the same
velocity. Especially in tight corners, this causes the inside wheel to ’drag’ along the road
surface resulting in high slips and accelerated tire-wear.

However, the extra degree of freedom of an open differential comes with a downside. In sit-
uations where one of the wheels loses traction, the wheel with the least traction will start
to accelerate quickly. The rapid acceleration of the power-train results in a decline of torque
experienced at the differential. Not much later, the power limit of the engine will be reached
and the input torque at the differential will decrease accordingly. The wheel with grip will
experience the same torque reductions, leading to a decrease in overall longitudinal accelera-
tion. This is an obvious disadvantage when trying to accelerate on slippery surfaces with low
traction. A similar situation occurs when accelerating out of a corner and one of the inside
wheels experiences low traction due to large load transfers. This highly undesirable effect can
be mediated by using a limited slip differential which allows some torque to be transferred
from the faster spinning wheel to the slower spinning wheel.

Figure 4-3 shows a cross-section of an open differential. The prop-shaft’s rotation, denoted by
ωs, is transferred to the differential casing through the drive gear. In an open differential the
casing is not directly attached to the drive-shafts. Instead, its rotation ωc causes the pinions
Jd to move around axis A-B. It is this rotation that in turn causes the two drive-shafts to
rotate with velocities ωl and ωr, through a bevel gear set. Because angular velocity of the
pinion, ωd, is unconstrained, the torque distribution is kept equal and the relative velocity
of both axles is not restricted as mentioned before. In a limited slip differential an extra
load path from the casing to the drive-shafts is created using some friction based system.
In a Salisbury type differential the pinion is not directly attached to the differential casing.
Rather, the differential casing first moves two halves of an insert that is forced to rotate with
the casing but can translate along axis A-B. When the two halves rotate, they move the
pinion similar to the open differential described before. The force on the interface between
the two inserts and the pinion also pushes the two halves away from each other, compressing a
clutch pack assembly attached to the casing and the drive-shafts. The resulting friction force
opposes the relative velocity of the drive axles and tries to make them and the differential
casing move as one. Another way of looking at this is that, compared to the open differential,
some torque is transferred from the faster rotating wheel to the slower rotating wheel. Figure
4-4 shows how the two halves are pushed outward. The angle of the ramp influences the ratio
of the two force components and thus determines how strong the clutch pack is compressed
and therefore how much force can be transferred. Note that the angle of the two ramps can
be different, resulting in distinct locking ratios for coasting and driving.

4-4-1 Model Description

The limited slip differential model described in this chapter is adopted from Forstinger, Bauer,
& Hofer, 2015; Morselli, Zanasi, & Sandoni, 2006. The system under consideration features
two LSDs in the front and rear of the car. Although the specifications of the front and rear
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A B

ωl ωr

ωp

ωd

ωc

Tl Tr

T0

TD

Jeq

Jl Jr

Jd

Jc

Figure 4-3: Cross section of an open differential

power-trains are distinct, they can be modeled in the same way and therefore the model is
treated here only once.

Assuming that all the gear ratios depicted in Figure 4-3 are 1 : 1, the structure is infinitely stiff
and no backlash is present, the motion of the differential satisfies the following constraints.

ωs = ωc (4-37)

ωl = ωp + ωd (4-38)

ωr = ωp − ωd (4-39)

Another equivalent but more intuitive set of constraints can be obtained by adding and
subtracting equation 4-38 and 4-39, resulting in relations 4-40 and 4-41.

2ωp = ωl + ωr (4-40)

2ωd = ωl − ωr (4-41)

Equation 4-40 and 4-37 state that both the prop-shaft and the differential-casing rotate at
the average angular velocity of the left and right drive-shaft. The pinions, Jd, rotate at half
angular velocity delta between the left and the right axle as can be seen from Equation 4-41.
The complete state of the differential can now be described by just two variables. For reasons
that will become clear later, the set of state-variables is chosen to be {ωp, ωd}.
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A BJd

αc

αd

ωc

Figure 4-4: Salisbury type differential inserts

Limited slip action can be modeled by a friction force, TD, that counteracts the motion of
Jd or in other words resists the relative motion between the left and the right drive-shafts.
Similarly, by adding a friction force, TL, to the prop-shaft the remaining friction losses are
included. The equations of motion for the differential are now given by,

ω̇p =−
(2Jl − Jd)Tr + (2Jr − Jd)Tl

D

+
(Jl + Jr + Jd) (Ts − TL)

D
−

(Jl − Jr)TD
D

(4-42)

ω̇d =
(2Jl − Jd)Tr − (2Jr − Jd)Tl

D

−
(Jl + Jr + Jd)TD

D
+

(Jl − Jr) (Ts − TL)

D
(4-43)

Where the denominator is given by,

D = 4JlJr + (Jl + Jr) Jd + (Jl + Jr + Jd) (Js + Jc) (4-44)

Assuming an infinitely stiff connection between the differential and the wheels, the inertia of
the right and the left wheels and their respective drive shafts can be lumped into Jl and Jr.
The input torques Tl and Tr now represent the external torques resulting from the left and
right tire forces respectively. Assuming Jl = Jr = J , the last terms of both equation 4-42 and
4-43 vanish. The cross dependence of the two states on the friction forces disappears and the
state equations are given by,

ω̇p =
Ts − Tl − Tr − TL
2J + Jc + Jp

(4-45)

ω̇d =
−TD − Tl + Tr

2J + Jd
(4-46)

The effect of the locking torque TD and the friction loss TL on the torque distribution, can
be examined in steady state by equating equations 4-45 and 4-46 to zero and solving for Tl
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and Tr. The resulting steady state wheel torques are given by,

Tlss = 1/2 (Tp − TL − TD) (4-47)

Trss = 1/2 (Tp − TL + TD) (4-48)

These equations reveal why the limited slip differential is said to transfer torque from one
wheel to another.

4-4-2 Friction,Sliding or Sticking and Order Reduction

The friction forces are approximated with a coulomb friction model and a distinction is made
between static and kinetic friction. If the left and the right axles have nonzero relative velocity
(ωl 6= ωr), i.e., the LSD is slipping, the friction force TD is given by equation 4-49.

TDc = max (TDc0 , rDc · |Ts|) · sng (ωd) (4-49)

Where TDc0 is a minimum constant term depending on the preload settings of the differential.
The second term, rDc · |Ts|, represents the friction force resulting from a driving or coasting
torque. The factor rDc depends on, e.g, friction surface size and the angle of the ramps
depicted in figure 4-4. The friction force FL is modeled in a similar manner, with a constant
minimum friction force and a component that depends on the input torque Ts (4-50).

TLc = max (TLc0 , rL · |Ts|) · sng (ω0) (4-50)

From equations 4-46 and 4-49 can be deduced that if the differential is slipping and the
condition

|TDc | ≥ |Tr − Tl| (4-51)

continues to hold, ωd → 0 in finite time. Or in other words, if the maximum friction force
is larger in magnitude than the resultant moment of the left and right input torques, the
relative velocity both drive-shafts will be brought to zero. Once ωd reaches zero, it enters a
sliding mode, where the sliding condition is enforced by the switching function in equation
4-49. Simulating this sliding mode can be troublesome because ideally the switching should
be instantaneous and occur at infinite frequency (Slotine et al., 1991).

Alternatively, the model order be adjusted to account for sticking and sliding conditions.
Once their relative velocity is zero, the left and right drive-shafts move as a single body. The
equations that describe the ’sticking’ motion are therefore of reduced order as long they are
represented by an average motion and n − 1 relative motions (Zanasi, Sandoni, & Morselli,
2001). This further reinforces the choice for {ωp, ωd} as opposed to {ωl, ωr} as state variables.

Under sticking conditions, the friction force is bounded by its maximum static value, FDmax .
Static forces FDmax and FLmax are defined similar to the kinetic friction described before. The
magnitude and direction of TD will be such that the relative velocity remains zero, i.e., such
that ω̇d = 0 as long as the moment required does not exceed FDmax .

Morselli et al., 2006; Forstinger et al., 2015 describe four cases based on the sticking or slipping
conditions of a differential. Assuming that Jl = Jr = J and the transmission ratios are 1 : 1
the of the cross dependence of the two states on the friction forces disappears. The cases
described here are therefore simplified.
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• Case 1: ωp 6= 0, ωd 6= 0
Both states are non-zero, therefore no sticking of the moving parts occurs. The motion
of the differential is described by both equations (4-45) and (4-46). Therefore, the
differential torque transfer and torque due to friction losses are given by,

TD = TDc

TL = TLc

• Case 2: ωp 6= 0, ωd = 0
The prop-shaft’s rotational velocity is non-zero and friction force TL is given by it’s
dynamic value,

TL = TLc .

The relative velocity between the left and right wheel is zero, the differential is said to
be locked. Substituting ωd = 0 into constraints 4-38 and 4-39 gives ωl = ωr = ωp, i.e.,
the bodies of the prop-shaft and the wheels move as one. The associated dynamics can
now be described by a single equation (4-45) or in other words, the order of the system
is reduced by one.

As long as the torque required to maintain this condition (ω̇d = 0) is less than the
maximum static friction force, the relative velocity between the left and right wheel
stays zero. The required torque follows from equation 4-46 and is simply given by,

T̃D = −Tl + Tr (4-52)

The resulting friction force can now be expressed as,

TD =

{

T̃D if, |T̃D| ≤ FDmax

FDmaxsgn(T̃D) otherwise.
(4-53)

• case 3: ωp = 0, ωd 6= 0
This case is very similar to case 2. The torque transfer TD is given by its dynamic value,

TD = TDc .

The friction loss torque TL is given by,

TL =

{

T̃L if, |T̃L| ≤ FLmax

FLmaxsgn(T̃L) otherwise.
(4-54)

Where, from equation 4-45,
T̃L = Tin − Tl − Tr (4-55)

The reduced order dynamics are described by equation 4-46.

• case 4: ωp = 0, ωd = 0
This case is the least interesting from a control design perspective. Both states are zero
and remain zero if the maximum friction forces are large enough. Under the previously
stated assumptions, no cross-coupling exists between the states and friction forces and
the friction forces are simply given by equation 4-53 and 4-54.

The cases descried above determine the torque distribution created by limited slip differential
and therefore have a large influence on the vehicle dynamics. Specifically, switching from case
1 to 2 and vice versa will play a dominant role in the choice of control system structure and
the determination of the control effectiveness.
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4-4-3 Power-Train

To include the inertia of the combustion engine, motor-generator-unit and the transmission,
equations 4-45 and 4-46 are rewritten as,

ω̇p =
KtT0 − Tl − Tr − TL
Jeq + Js + 2J + Jc

(4-56)

ω̇d =
−T̃D − Tl + Tr

2J + Jd
(4-57)

Where the constant Kt, is the total transmission gain and Jeq is an equivalent inertia
that includes both the inertia of the power-unit and transmission, incorporating the effect
transmission-ratios. The torque T0 represents the torque acting on the power-unit.

So far it was assumed that this input-torque and the torque experienced at the differential,
resulting in friction torque TDc , are equal. In reality, TDc is not a function of the input torque
T0 directly, but should be discounted by the inertial effects arising from the power-unit and
transmission during transients. The resulting friction torque T̃Dc is given by,

T̃Dc = max

(

TDc0 , rDc ·

∣
∣
∣
∣

KtT0 · 2Jw + (Tl + Tr)(Js + Jeq + Jc)

2J + Js + Jeq + Jc

∣
∣
∣
∣

)

· sgn(ωd) (4-58)

Note that although equation 4-58 replaces equation 4-49, the cases described above are unaf-
fected.
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Chapter 5

Controller Design

The objective of the control system is to aid the driver in achieving the fastest lap times
or more specifically to decrease the workload associated with controlling a high performance
vehicle at the edge of its stable envelope, while maintaining or even increasing the performance
of the driver. To this end, a cascaded side-slip and yaw-rate envelope protection system is
developed in combination with a model following yaw-rate controller that acts inside the
stable region of the state-space. A control allocation algorithm protects the tires from being
overused while stabilizing the vehicle and reaching an overall torque request. This chapter
firstly discusses the basic structure of the control system and its individual parts in separate
sections. The concluding section provides a description of the envelope protection system and
the yaw-rate set-point generator.

5-1 Cascaded control structure

A prerequisite for the use of a cascaded control structure is the existence of different time scales
in the controlled dynamical system (). Time scale separation occurs when a system exhibits
’fast’ and ’slow’ dynamics and is extensively studied in the context of singular perturbed
system analysis (Kokotovic, O’malley, & Sannuti, 1976). Loosely speaking it means that
in the slow time scale, the fast dynamics can be approximated by their steady state value.
Inversely, in the fast time scale, the slow dynamics are approximately constant. This principle
can be used in control system design by controlling the slow and the fast dynamics separately
and letting the output of the fast dynamics serve as the input for the slow dynamics. In other
words the set-point of the fast feedback loop is the output of the slower or outer feedback
loop.

In general this greatly simplifies the design an inversion based controller, which would other-
wise involve the repeated differentiation and subsequent inversion of equations 4-2, 4-45 and
4-46 including the tire model. The nature of INDI ordinarily requires a cascaded structure
if the control input does not directly appear in the time derivative of the controlled output,
further reinforcing the choice of control system structure.
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Time-scale separation in combination with inversion techniques has been used successfully in
aircraft control where the existence of different time scales between the aerodynamic angles
and the angular rates (Snell, Enns, & Garrard, 1992; Reiner, Balas, & Garrard, 1996) or the
attitude angles and angular rates (Sieberling et al., 2010), is well-established. Most of the
references on automotive stability control included here assume that the dynamics associated
with controlling the wheel forces are fast enough to be separated from the yaw dynamics or
can be neglected entirely. If a form of traction control is used to regulate the wheel forces, the
dynamics of the entire power-train should be considered when making this assumption. The
equivalent inertia of the power train, that is including the engine/mgu inertia and transmission
ratios, might slow down the dynamics such that the separation between the bandwidths of
the power-train and yaw dynamics becomes too small. On the other hand Schumacher,
Khargonekar, & McClamroch, 1998 prove that in the case of a constant outer-loop set-point,
sufficient time scale separation can be achieved by speeding up the inner-loop by increasing
the associated gains.

Table 5-1: Estimated bandwidths of the power-train and yaw dynamics

Front Rear
(

V=30.2m/s, ψ̇=0.135 rad/s
) (

V=29.9m/s, ψ̇=0.119 rad/s
)

bandwidth bandwidth
ωbw ωbw

rad/s rad/s
ωp 126.58 232.56
ψ̇ 18.52 19.87

Although the instantaneous bandwidth separation between the body and power-train dy-
namics is not constant throughout the state-space of the nonlinear vehicle model, table 5-1
provides some insight into the separation between these subsystems at a nominal quasi-steady
state condition. The estimated bandwidths approximately differ by a factor 7 and 12 for the
front and rear axle respectively. Although the front drive train has markedly less inertia than
the rear, the high gear ratio in the front leads to a high effective inertia and a relatively
low bandwidth. Both ratios are assumed to be large enough to adopt a cascaded control
structure. Therefore, the proposed structure is such that the prop-shaft velocities, yaw-rate
and side-slip are controlled in respectively an inner-loop, middle-loop and outer-loop. The
following sections elaborate the design of each loop separately.

5-2 Prop-Shaft Velocity Controller

The inner loop of the proposed structure controls the prop shaft velocities on the front and
rear axles. Rather than controlling the wheel speeds directly, the wheel-speeds are therefore
influenced indirectly through the front and rear differentials. Chapter 6 explains how the
desired moments required for yaw-rate can still be achieved. The low level controller incor-
porates a INDI control scheme based on the state equations 4-56 that describe the dynamics
of the power-train.

ω̇p =
KtT0 − Tl − Tr − TL
Jeq + Jp + 2J + Jc
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Combining the front and rear prop-shaft dynamics in a single equation, neglecting the friction
forces and linearizing around ωs0 results in,

ω̇p = ω̇p0 + J
∂Fx
∂ωs

∣
∣
∣
∣
(x0,u0)

(ωp − ωp0) + JKt(Ts − Tp0). (5-1)

Where the prop-shaft velocity vector is given by ωp = [ωs f, ωpr]
T
and the drive torque vector

Tp =
[
Tpf, Tpr

]T
. The second term of equation 5-1 is the result of linearizing the wheel toques,

Tl and Tr. Therefore, matrix ∂Fx
∂ωp

contains a linearization of the tire force characteristics as
described in Chapter 4. Furthermore, diagonal matrices J and Kt have the corresponding
inertia’s and transmission ratio’s on their diagonals respectively. Lastly, ω̇p0 denotes the
current prop-shaft angular acceleration.

Corresponding to the methods described in Chapter 3, by letting ω̇p be the virtual control νω,
equation 5-1 can be used to find a linear differential relation between the controlled variable
ωp and νω. Furthermore, if the control rate is sufficiently high, the time-scale separation
principle dictates that the term containing the linearized tire model can be neglected as the
change in prop-shaft velocity over each time-step becomes negligible compared to the changes
in the control input, i.e. (ωp −ωp0) ≈ 0. The resulting relation can be solved for the control
increment ∆Tp giving,

∆Ts = K -1
t J

-1 (νω − ω̇p0) (5-2)

Torque increment ∆Ts represents the torque increment required to reach the desired propshaft
acceleration set by the virtual control. The commanded torque is therefore given by,

Tpc = Tpf +∆Tp. (5-3)

Where Tpf is the current measured or estimated current torque set-point.

If Equation 5-2 and 5-3 are applied to 5-1, the equation is approximately linearized. In other
words, under the aforementioned assumptions an approximate linear differential relation exists
between the prop-shaft velocity and the virtual control, i.e.,

ω̇p ≈ νω. (5-4)

Therefore, a simple linear controller suffices to control the system with νω. In the prop-shaft
velocity loop, this linear controller is a simple gain Kω. Note that the approximate lineariza-
tion does not depend on the tire-forces and therefore does not necessitate the inversion of a
complex tire-model as required by NDI, greatly simplifying the inversion process. Further-
more, matrix J and Kt depend solely on the transmission ratio’s and equivalent inertia’s and
therefore what gear the car is in, but are otherwise constant.

However, Equation does 5-2 require differentiating a measurement or estimate of the prop-
shaft velocity as no direct prop-shaft acceleration measurement is available. To facilitate the
differentiation of a potentially noisy signal, the prop-shaft velocity measurement is filtered
by a second order low-pass filter, H(z). Smeur et al., 2016 demonstrate that H(z) has to be
applied to the measurement or estimate of the current control input in order to guarantee the
stability of the system.

A schematic of the control structure is presented in Figure 5-1. The block E(z) represents
the actuator dynamics, comprising the behavior of both the electric motor in the front and
the combustion engine in the rear of the car, which are assumed to be known. Block VD

corresponds to the remaining vehicle dynamics and the effectiveness JKt is abbreviated as
Gω. Note that the subscripts have been dropped where it did not cause any ambiguity.
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Vehicle System

PID G
-1
ω E(z) VD

ωref ν ∆T Tc ω

H(z)
T0

H(z)z−1
Tsz

- - +

ω ω̇f Tf

Figure 5-1: Schematic of the Prop-Shaft velocity controller

5-2-1 Pseudo Control Hedge

The prop-shaft velocity controller further incorporates Psuedo Control Hedging (PCH), a
technique first introduced in the context of Model Reference Adaptive Control (MRAC) to
address the problems associated with model adaptation in the presence of actuator (rate-)
saturation (Johnson, 2000). A reference model or command filter is adjusted or ’hedged’ with
the error between the commanded and actual virtual control signals such that reference signal
more closely resembles the system dynamics permissible by the actuator. In case of MRAC
the adaptive element is prevented from adjusting in areas of actuator (rate-) saturation and
is kept from compensating for linear actuator dynamics.

PCH has been demonstrated advantageous outside the context of adaptive control.
Lombaerts, Looye, Chu, & Mulder, 2010 proposed PCH in conjunction with NDI as means for
flight envelope protection and PCH improved controller performance when used with INDI
in the presence actuator dynamics and saturation (Simplicio et al., 2013).

In case of a first order linear reference model, the hedged reference dynamics are given by,

ẋr = Kp(xc − xr)− νh. (5-5)

Where the diagonal gain matrix Kp is chosen such that the time constant of the command
filter reflects the desired dynamics of the controlled system. The PCH signal νh, when used
in conjunction with INDI, is simply given by equation 5-6 (Simplicio et al., 2013).

νh = G(uc − ua) (5-6)

The reference model that is used in the prop-shaft velocity loop is hedged by the delta between
the commanded and the actual torque. An accurate prop-shaft torque estimate is assumed
to be available from either a power-train model or a direct measurement. The dynamics of
the implemented command filter are therefore given by,

ω̇ref = Kp(ωc − ωref)−Gω(Tc − Ta) (5-7)

Where ωc and ωref are the commanded and filtered reference prop-shaft velocities respectively.
Similarly, Tc and Ta denote the commanded and actual torques.

Figure 5-2 provides a schematic of the control structure of the prop-shaft velocity controller
including the PCH.
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Vehicle System

Pseudo Control Hedge

Kp
Tsz
z−1 PID G

-1
ω E(z) VD

Gω

ωc ωref νω ∆T Tc ω

Hω(z)
T0

Hω(z)
z−1
Tsz

νrm

- --

-

-

ω ω̇f Tf

Figure 5-2: A schematic of the prop-shaft velocity controller including the Psuedo Control
Hedging (PCH)

5-3 Yaw Rate Control

This section describes the control structure of the yaw-velocity loop based on INDI. Letting
ψ̈ be the virtual control νψ in equation 4-1c and subsequently solving for the control input
ωs , results a nonlinear mapping between νψ and ωs which produces a linear differential
relation between the yaw-rate and the virtual control. Consequently, once this nonlinear map
is found, a simple linear controller suffices to control the system with νψ. However, Equation
4-1c reveals that constructing such a map would require the full inversion of a tire-model.
Moreover, the control variable ωp does not appear affine in 4-1c, i.e., the controlled system
has the more general form 3-7. Determining the control input once the virtual control is
known, would therefore require solving a nonlinear optimization problem. The problem can
be simplified by linearizing the corresponding equations (Andreasson & Bünte, 2006) or by
neglecting the nonlinear nature of tire model by using the tire forces as pseudo control inputs
and solving for the tire-slips at a later time (Weiskircher & Müller, 2012).

However, these methods only result in approximate feedback linearizations and are character-
ized by the usual shortcomings of NDI or FBL described in Chapter 3. A different approach
would be to linearize the system before inverting the equations, resulting in the robust and
straightforward method of INDI (Sieberling et al., 2010).

Linearizing equation 4-2 results in the approximate yaw-rate equations in matrix form.

ψ̈ ≈ ψ̈0 +M-1
3,3E3,∗TB,W

(
∂F

∂x
(x− x0) +

∂F

∂ωp

(
ωp − ωp0

)
)

(5-8)

Where ψ̈0, the yaw-acceleration at the time of linearization, can be substituted with a mea-
surement or estimate of the state derivative. The vector x denotes the state vector and the
definition of matrix M, E and TB,W can be found in Chapter 4. Lastly, matrix ∂F

∂x and ∂F
∂ωp

denote the partial derivatives of the tire-forces towards the state vector and the prop-shaft
velocities respectively.

Analogous to the inversion of the prop-shaft velocity loop, assuming that the control rate is
sufficiently high, such that the state increment over one sample time is much smaller than
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the control increment, equation 5-8 simplifies to,

ψ̈ ≈ ψ̈0 +M-1
3,3E3,∗TB,W

∂F

∂ωp
∆ωp (5-9)

ψ̈ ≈ ψ̈0 +Gψ∆ωp (5-10)

Where the control effectiveness is abbreviated as Gψ. Equating ψ̈ to νψ and solving for ∆ωp

yields a mapping between ∆ωp and νψ which once applied to equation 4-1c results in an
approximate linear differential relation between ψ̈ and νψ. A simple linear controller then
suffices to control the system with νψ.

(νψ − ψ̈0) = Gψ∆ωp (5-11)

ν̂ = Gψ∆ωp (5-12)

However, the columns ofGψ̇ are not linearly independent and therefore equation 5-12 may not
have a unique solution in ∆ωp. The problem of finding a suitable set of control commands that
satisfy equation 5-12 is commonly referred to as control allocation and the method applied in
this thesis will be treated in the subsequent section.

5-3-1 Control Allocation

A typical approach to finding a distinct solution to the control allocation problem 5-12 is to
simultaneously minimize the deviation from some desired input (Bodson, 2002). In conjunc-
tion with an incremental control law, the deviation to some desired control increment ∆ωpd
can be minimized instead. Where ∆ωpd can be chosen such that it reflects some feed-forward
torque or slip distribution associated with maximizing the lateral acceleration as described in
(Klomp, 2007). Note that setting the desired control increment to zero does not necessarily
wash out the control signal over time but rather minimizes the control rate of change.

If the l2-norm is used as a measure for the error between the control input and a desired
value, the control allocation problem can be cast into,

argmin
∆ωp

‖Ws (∆ωp −∆ωd)‖2 (5-13a)

subject to Gψ̇∆ωp = ν̂ (5-13b)

∆ωp ≤ ∆ωp ≤ ∆ωp (5-13c)

Where the weighting matrix Ws prioritizes the different actuators and equation 5-13c con-
strains the solution such that it does not violate any actuator rate or position limits. The
actuator rate limits are related to the maximum and minimum realizable prop-shaft rotational
accelerations and the sample time ts as,

∆ωpr = ω̇smax(Tmax) · ts (5-14)

∆ωp
r
= ω̇smin(Tmin) · ts (5-15)

Where ∆ωp
r
and ∆ωpr depend on the maximum available drive torque and engine drag

respectively. Furthermore, prop-shaft velocities that saturate the longitudinal slip on one of

M. B. Ruijs Robust Stability Augmentation of a

Le Mans Prototype 1 race car using Incremental Nonlinear Dynamic Inversion



5-3 Yaw Rate Control 75

the wheels are taken as absolute limits are transcribed to an incremental form by subtracting
the current prop-shaft velocity as,

∆ωpσ = max
(
ωssat(σxij , σxij)

)
− ωp0 (5-16)

∆ωp
σ
= min

(
ωssat(σxij , σxij)

)
− ωp0 (5-17)

If the actuator constraints 5-13c are omitted problem 5-13 has an exact solution given by
equation 5-18 (Enns, 1998; Härkeg̊ard, 2003).

∆ωp = ∆ωpd +W -1
s G

T

ψ

(
GψW

-1
s G

T

ψ

)
-1
(
ν̂ −∆ωpdGψ

)
(5-18)

Although equation 5-18 does not consider any actuator limits, it is straightforwardly modified
to approximate the solution to the constrained problem. Firstly , the solution to equation
5-18 is calculated and subsequently clipped such that it does not violate 5-13c. Then, a new
control input is calculated using only the remaining control effectors such that it satisfies the
residual virtual control. This process is repeated until the solution satisfies equations 5-13
or all the actuators have been saturated. Methods that modify the solution in this way are
commonly referred to as Redistributed Pseudo Inverse (RPI) (Virnig & Bodden, 1994) or
Cascaded Generalized Inverse (GCI) methods (Bordingnon & Durham, 1995) and are widely
used due to their simplicity and low computational burden. However, GCI methods do not
always converge to the optimal solution as demonstrated by Bodson, 2002; Härkeg̊ard, 2003.
Active-set methods do not suffer from this inherent problem and can be demonstrated to
converge to the optimal solution in a finite number of steps (Petersen & Bodson, 2006).

This work includes the Weighted Least Squares (WLS) control allocation algorithm, an active-
set method described by Härkeg̊ard, 2003. It optimizes a modified objective in which the
constraint or primary control objective 5-13b is augmented using a parameter γ that reflects
the relative importance of the two terms. The resulting problem is given by equations 5-19

argmin
∆ωp

‖Ws (∆ωp −∆ωd)‖2 + γ ‖Wv (Gψ∆ωp − ν̂)‖2 (5-19a)

subject to ∆ωp ≤ ∆ωp ≤ ∆ωp (5-19b)

Which can be compactly written as,

argmin
∆ωp

∥
∥
∥
∥

[
γWνGψ̇

Wu

]

∆ωp −

[
γWν ν̂
Wueωd

]∥
∥
∥
∥
2

(5-20a)

subject to C∆ωp ≥ U (5-20b)

Where matrix C and U are chosen such that they reflect the constraints 5-13c and eωd
=

∆ωp −∆ωd denotes the error between calculated and the desired control increment.

Active-set methods iteratively find the solution to problem 5-19 by treating the inequality
constraints belonging to the active-set W, i.e. those inequality constraints for which the
condition C∆ωp = 0 holds at the current iteration, as equality constraints. By disregarding
the remaining inequality constraints a much simpler equality constraint problem can be solved
at each iteration. The optimally of every intermediate solution is checked by examining the
Lagrange multipliers given by equation 5-21.

λ = C0

[
γWνGψ

Wu

]T ([
γWνGψ̇

Wu

]

∆ωp −

[
γWν ν̂
Wueωd

])

(5-21)
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If the optimal solution has not been found, WLS contains heuristics for removing or adding
constraints from or to the working-set. Algorithm 1 provides the necessary steps in pseudo
code to finding a solution to 5-19 as described by (Härkeg̊ard, 2003).

Algorithm 1 Weighted Least Squares Control Allocation (Härkeg̊ard, 2003)

1: for i = 1...n do

2: Given ∆ωkp, find the optimal perturbation pk, while treating the equality constraints
W as equality constraints and disregarding the constraints outside W, such that,

min
p

∥
∥
∥
∥

[
γWνGψ̇

Wu

](

∆ωkp + pk
)

−

[
γWν ν̂
Wue

k
ωd

]∥
∥
∥
∥

(5-22)

subject to ∆ωp ≤ ∆ωp ≤ ∆ωp (5-23)

is minimized.
3: if ∆ωk+1

p = ∆ωkp + pk is feasible then

4: Compute the Lagrange multipliers λ for ∆ωk+1
p

5: if all multipliers corresponding inequality constraints in W, λ ≥ 0 then

6: ∆ωk+1
p is optimal.

7: else

8: Remove the constraint corresponding to the most negative λ from W

9: else

10: Determine the maximum step length α such that ∆ωk+1
p = ∆ωkp +αpk is feasible.

Figure 5-3 provides a schematic of the yaw-rate loop described in this section. Similar to the
controller described in the previous section, the measured yaw-rate and prop-shaft velocity
are filtered using the same second order low-pass filter which reflects the time bandwidth of
the yaw-rate response of the vehicle. Lastly, the block that is responsible for control allocation
is represented by G

+

ψ̇.

VS + Prop-Shaft Control

PID G
+

ψ̇ PSC E(z) VD
ψ̇ref

νψ̇ ∆ω ωc ψ̇, ω

Hψ̇(z) ω0
Hψ̇(z)

z−1
Tsz

- - +

ψ̇ ψ̈f
ωf

Figure 5-3: Schematic of the yaw-rate controller

5-4 Side-Slip Control

The outer-loop of the control system is formed by a dynamic inversion and feedback path
of the vehicle side-slip angle. Contrary to the prop-shaft velocity and yaw-rate loops, the
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side-slip angle inversion can be made exact as demonstrated by Sieberling et al., 2010. A
prerequisite for both feedback and the dynamic inversion described below, is an accurate
measurement or estimation of the side-slip angle and is assumed to be available.

The calculations can be somewhat simplified if planar motion is assumed. The side-slip angle
for non-planar motion is given by,

β = arcsin
(vy
V

)

(5-24)

(5-25)

Which reduces to equation 5-27 if the motion of the vehicle is assumed to be planar.

β = arctan

(
vy
vx

)

(5-26)

(5-27)

Taking the derivative of equation 5-27 results in,

β̇ =
vxv̇y − vyv̇x

v2x
(
1 + v2y/v

2
x

) (5-28)

β̇ =
vxv̇y − vyv̇x

V
(5-29)

(5-30)

Once more assuming planar motion, the derivatives of the body velocities are given by equa-
tions 5-31b.

v̇x = Ax + vyψ̇ (5-31a)

v̇y = Ay − vxψ̇ (5-31b)

Where Ax and Ay denote the longitudinal and lateral specific force respectively. Substituting
equations 5-31b into equation 5-30 gives,

β̇ =
Axvy −Ayvx

V
︸ ︷︷ ︸

aβ(x,ẋ)

+ −1
︸︷︷︸

bβ

·ψ̇ (5-32)

By letting the derivative of the side-slip angle, β̇ be the virtual control νβ for the side-
slip inversion loop, a nonlinear map can be constructed which results in a linear differential
relation between νβ and β̇. Equation 5-33 provides the inversion that lets the side-slip angle
be controlled by the yaw-rate.

ψ̇ = −1 ·

(

νβ −
Axvy −Ayvy

V

)

(5-33)

Figure 5-4 provides a schematic of the side-slip angle feedback loop. The linear part of the
controller is made up of a simple gain Kβ however an integrator term might be appropriate
if the estimate of the lateral velocity proves insufficiently accurate.
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VS + PSC + Yaw Control

Kβ −1 YRC PSC E(z) VD
βref νβ ψ̇ref β, x, ẋ

aβ(x, ẋ)
x, ẋ

- -
β

Figure 5-4: Schematic of the outer side-slip angle inversion loop

5-5 Envelope Protection and Yaw-Rate Set-Point

This section describes the bounds on the yaw-rate and vehicle side-slip angle that are used in
the envelope control scheme and the yaw-rate controller acting inside the envelope. Beal, 2011
demonstrates, using phase-plane analysis, that the yaw-rate is an important target for vehicle
stability augmentation systems as most unstable trajectories caused by steering inputs first
result in a steep increase of yaw-rate past a certain maximum value after which the side-slip
angle grows rapidly and the vehicle spins. However, some disturbances may increase the side-
slip to large values before resulting in vehicle instability (). Beal, 2011 therefore suggests using
the maximum rear axle slip-angle as a bound on the vehicle side-slip to prevent instabilities in
those circumstances. An advantage of these bounds is that they tend to scale naturally with
the vehicle speed and yaw-rate much like the stable region of state-space. Furthermore, in
some circumstances it may be appealing to limit lateral tire usage to some degree in order to
reduce tire wear and possibly some of the workload associated with driving the vehicle at its
limits. However, an experienced driver may consider these bounds too restrictive and looser
constraints that allow the driver to push the rear axle past the maximum slip angle may be
preferred.

Although more elaborate methods may exist that can be used to more accurately define safe
and stable regions of the state-space, these are considered outside the scope of the current
work and will not be discussed here. Therefore, the bounds on the yaw-rate and side-slip angle
that were described in the work of Beal, 2011 have been applied in the envelope controller.
Equation 5-34 gives the bounds on the yaw-rate.

ψ̇max =

{
(Fy f)max(1+lr/lf)

vx
if (Fy f)max ≤ lr

lf
(Fy r)max

(Fy r)max(1+lr/lf)
vx

if (Fy f)max >
lr
lf
(Fy r)max

(5-34)

Where (Fy f)max and (Fy f)max denote the front and rear lateral force potentials respectively.
A maximum yaw-rate exists for both direction of a turn and will be denoted by ψ̇max and
ψ̇min. The bounds on the side-slip angle can be approximated by the linearized slip-angle at
the rear wheels,

βmax = αmax + lrψ̇ (5-35)

βmin = αmin + lrψ̇ (5-36)

Where the maximum and minimum values correspond to the outside wheel and are determined
using the tire-model described in chapter and the current longitudinal slips 4.
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The side-slip inversion and cascaded nature of the control system allows the bounds on both
the side-slip and the yaw-rate to be combined straightforwardly. If the reference of the side-slip
angle inversion is set to one of the side-slip angle bounds, the output represents the yaw-rate
necessary to reach this bound as if the associated dynamics behaves like a simple integrator.
Therefore, the output of the side-slip angle inversion can be interpreted as a second set of
bounds on the yaw-rate that prevent the rear axle side-slip from undesirable levels. Using
equation 5-33 the new bounds can simply be expressed as,

ψ̇β = −1 ·

(

Kβeβ −
Axvy −Ayvy

V

)

(5-37)

Where eβ is given by,

eβ =

[
βmax − β0
βmin − β0

]

(5-38)

The translated side-slip angle bounds are now straightforwardly related to maximum yaw-rate
from equation 5-34 and the current yaw-rate through equation 5-39. This comparison leads
to a controller that that does not act inside the safe envelope but tries to intervene as soon
as the yaw-rate exceeds any of the bounds described previously.

ψ̇r = min
(

max
(

ψ̇0, ψ̇lb

)

, ψ̇ub

)

(5-39)

The lower bound on the yaw-rate is given by minimum value of the translated side-slip bounds
and the minimum attainable value of the steady state yaw-rate (5-40a). The upper bound on
the yaw-rate is defined similarly (5-40b).

ψ̇lb = min
(

ψ̇β , ψ̇min

)

(5-40a)

ψ̇ub = max
(

ψ̇β , ψ̇max

)

(5-40b)

Further note that the gain Kβ , scales the translated side-slip angle boundaries, with smaller
values leading to tighter bounds and higher values to a controller that will intervene later.
Beal, 2011; Bobier & Gerdes, 2013 show that the side-slip angle bounds are less critical
and therefore Kβ should be chosen such that the controller does not prevent the driver
from reaching maximum lateral tire usage as quickly as possible, possibly allowing for some
overshoot.

The current yaw-rate ψ̇0, can be replaced by a set-point from a reference model resulting in
a model following controller that acts inside the safe envelope. A frequently applied set-point
generator given by equation 5-41 derived from the linear-bicycle model was applied in this
thesis ().

ψ̇ss

δ
=

vx
l +Kugv2x

(5-41)

The understeer gradient Kug given by equation 5-42 reveals some of the handling properties
of the linear bicycle model and is extensively described in literature but will not be discussed
in detail here.

Kug = −
m

l

lfCα f − lrCα r

Cα fCα r
(5-42)

Where Cα f and Cα r denote the local or linearized lateral slip-stifness of the front and rear axle
respectively. A higher fidelity set-point generator could improve the controller performance
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when combined high-performance vehicle operating at the edge of the stable envelope as the
accuracy of the linear bicycle model deteriorates in this nonlinear region of the state-space.
Furthermore, cases exist in which the steering angle alone is not sufficient to infer the intent
of the driver. For example if a driver is stabilizing the vehicle during a drifting maneuver
through counter steering, it might not be the case that the driver is seeking to lessen the yaw-
rate let alone reach a yaw-rate that is of opposite sign. Although these cases may require a
more elaborate approach, finding such a yaw-rate set-point generator was considered outside
of the scope of the current work.

Figure 5-5 provides a high level overview of the entire control system.

β
Bounds

β
NDI

ψ̇
Gen

ψ̇
INDI

ω
INDI VD

eβ ψ̇β ψ̇r ωr Tr x, ẋ

ω, ω̇, Ta
ψ, ψ̇, ω

aβ(x, ẋ)

β

δ T

Figure 5-5: High level overview of the complete control system6
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Chapter 6

Yaw-Rate Control effectiveness

The control effectiveness in the yaw-rate loop is defined as the partial derivative of the yaw-rate
state-equation (4-1c) towards the prop-shaft velocities ωp = [ωpf, ωpr]

T and can conveniently
be written in matrix form using equation 4-2.

G(x0,u0) =
∂f(x,u)

∂u

∣
∣
∣
∣
(x0,u0)

=
∂ψ̈

∂ωp

∣
∣
∣
∣
∣
(x0, ωp0)

= M-1
3,3E3,∗TB,W

∂F

∂ωp
. (6-1)

Where the vector F denotes the tire-forces in the wheel frame wF. The prop-shaft velocities
do not directly influence the tire-forces, therefore equation 6-23 is rewritten as,

Gψ̇ =
∂ψ̈

∂ωp
=
∂ψ̈

∂ω

∂ω

∂ωp
= M-1

3,3E3,∗TB,W

∂F

∂ω

∂ω

∂ωp
(6-2)

Where ω = [ωfl, ωfr, ωrl, ωrr]
T is the wheel speed vector and ωp = [ωpf, ωpr] contains the prop-

shaft velocities. From equations 4-38 - 4-39, 4-45 - 4-45 and the cases described in section
4-4-2, it is clear that ∂ω

∂ωp
does not have a closed form solution. The estimation of this

derivative will be treated in a later section, after finding an expression for ∂F
∂ω .

6-1 Tire force Jacobian

In the determination of the force Jacobian, the effects of normal load redistribution due to
load-transfers is considered. That traction and braking forces create yaw-moments through
load-transfers is well-known. In fact, Shibahata et al., 1993 propose their Direct Yaw-Moment
Control (DYC) as a means to compensate for the moments created during accelerating and
braking but use a crude estimation. However, in Direct Yaw-Moment Control (DYC) wheels
can be actuated individually and as a result, the magnitude of the attainable yaw-moments
is large. The effect of load-transfers on the control moments is therefore considered relatively
small and slow in comparison and is usually neglected (Jonasson, Andreasson, Jacobson, &
Trigell, 2010).

Robust Stability Augmentation of a

Le Mans Prototype 1 race car using Incremental Nonlinear Dynamic Inversion

M. B. Ruijs



82 Yaw-Rate Control effectiveness

With the system under consideration it is not possible to actuate each wheel individually.
As a consequence, the control authority is relatively low and the effect of load-transfers can
not be neglected. It will be shown that the moments created through load-transfers have an
attenuating effect on the overall control effectiveness and are of the same order as the moments
predicted by considering the changes in wheel-speed only. More importantly, influence of load-
transfers is shown to be such that under certain conditions the control effectiveness changes
sign entirely.

To simplify future calculations, partition the tire force vector WF into:

F̄ =
[
Fxfl, . . . , Fxrr, Fyfl, . . . , Fyrr

]T
(6-3)

And define the vector valued tire force function as,

f̄(ω,Fz) = [ffl, . . . , frr, gfl, . . . , grr]
T

(6-4)

Where,

fij : (ωij , Fzij) → f(ωij , Fzij)

gij : (ωij , Fzij) → g(ωij , Fzij)
i ∈ {f,r}, j ∈ {l,r},

(6-5)

(6-6)

are given by equations 4-31 and 4-32. The dependencies of fxij and gyij on vxij and vyij are
omitted for reasons of clarity . The vertical wheel load vector is defined as,

Fz = [Fzfl, Fzfr, Fzrl, Fzrr]
T
. (6-7)

If only longitudinal load transfers are taken into account, the wheel normal loads, Fz, depend
on the longitudinal components of body force vector BF through equations 4-9 - 4-11. The
effect of steering angles on the longitudinal components of the force vector is small and
therefore it is assumed that BF ≈ WF. This implies that the normal load can be written as a
function of the tire forces directly, Fz = h(F̄). For the calculation of the contribution of load
transfers to the control effectiveness, the nominal part of Fz is not of interest and therefore
omitted. Equations 4-11a - 4-11d reduce to,

Fz = h(F̄) = [−∆Wx,−∆Wx,∆Wx,∆Wx]
T
. (6-8)

The tire force function is now defined implicitly by,

F̄ = f̄(ω, h(F̄)). (6-9)

Although this equation can not be used to directly calculate the tire forces from the wheel
slips, it can be differentiated to find the derivative of the tire forces towards the wheel slips
incorporating the effect of changing normal loads.

Defining the wheel-speed vector ω as the independent variable, equation 6-9 can be differen-
tiated implicitly, using the chain-rule. Resulting in:

∂F̄

∂ω
=

∂ f̄

∂ω
+

∂ f̄

∂Fz

∂Fz

∂F̄

∂F̄

∂ω
(6-10)

Solving for ∂F̄
∂ω gives,

∂F̄

∂ω
=

(

I −
∂ f̄

∂Fz

∂Fz

∂F̄

)-1
∂ f̄

∂ω
(6-11)
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6-1 Tire force Jacobian 83

Where the term ∂ f̄
∂ω corresponds to force Jacobian if no load transfers are considered. The

matrix between parentheses, from now on referred to as M , accounts for the changes in the
normal load distribution following a change in wheel speed.

Due to the partitioning of F̄, the matrix ∂ f̄
∂Fz

is made up of two diagonal matrices.

∂ f̄

∂Fz
=

[
∂f
∂Fz
∂g
∂Fz

]

(6-12)

Where,

∂f

∂Fz
= diag

(
∂ffl
∂Fzfl

∂ffr
∂Fz fr

∂frl
∂Fzrl

∂frr
∂Fzrr

)

and

∂g

∂Fz
= diag

(
∂gfl
∂Fzfl

∂gfr
∂Fz fr

∂grl
∂Fzrl

∂grr
∂Fzrr

)

.

Similarly, the partial derivative ∂Fz

∂F̄
can be expressed in block-form as,

∂Fz

∂F̄
=

[
∂Fz
∂Fx

0
]

. (6-13)

The block matrix ∂Fz
∂Fx

can be simplified further by applying the chain rule a second time using
the specific force as an intermediate variable, resulting in,

∂Fz

∂Fx
=
∂Fz

∂Ax

∂Ax
∂Fx

. (6-14)

Where,

∂Fz

∂Ax
=








−∂∆Wx

∂Ax
−∂∆Wx

∂Ax
∂∆Wx

∂Ax
∂∆Wx

∂Ax








and
∂Ax
∂Fx

T

=
1

m







1
1
1
1






. (6-15)

It follows from equations 6-12 - 6-13 that M can be written as,

M =

(

I −
∂ f̄

∂Fz

∂Fz

∂F̄

)

=

[

I− ∂f
∂Fz

∂Fz
∂Ax

∂Ax
∂Fx

0

− ∂g
∂Fz

∂Fz
∂Ax

∂Ax
∂Fx

I

]

=

[
A 0

C I

]

(6-16)

Due to its structure, finding the inverse of matrix M is now relatively straightforward and is
given by,

M -1 =

[
A-1 0

−CA-1 I

]

(6-17)

The inverse of sub-matrix A can be found by noting that ∂Fz
∂Ax

∂Ax
∂Fx

is in fact the outer-product of
two column vectors. This allows the application of the Sherman-Morrison Formula (Sherman
& Morrison, 1950), which gives the inverse of the sum of an invertible matrix K and the
vector product uvT, in terms of K -1 and vectors u and v (6-18).

(K + uv
T
)-1 = K -1 −

K -1uvTK -1

1 + vTK -1u
(6-18)
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84 Yaw-Rate Control effectiveness

Application of equation 6-18 to the inverse of sub-matrix A leads to,

A-1 =

(

I−
∂f

∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

)-1

= I +
1

|A|

∂f

∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

(6-19)

Where the determinant of A is given by,

|A| = 1−
∂Ax
∂Fx

∂f

∂Fz

∂Fz

∂Ax
(6-20)

=

(
∂ffl
∂Fzfl

+
∂ffr
∂Fz fr

−
∂frl
∂Fzrl

−
∂frr
∂Fzrr

)
∂∆Wx

Ax
+ 1 (6-21)

Substituting the result for A-1 in −CA-1 leads to,

−CA-1 =
∂g

∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

(

I +
1

|A|

∂f

∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

)

. (6-22)

Factoring out |A| and bringing ∂Fz
∂Ax

∂Ax
∂Fx

into the parentheses results in,

−CA-1 =
1

|A|

∂g

∂Fz

(
∂Fz

∂Ax

∂Ax
∂Fx

−

[
∂Fz

∂Ax

∂Ax
∂Fx

∂Ax
∂Fx

∂f

∂Fz

∂Fz

∂Ax

+
∂Fz

∂Ax

∂Ax
∂Fx

∂f

∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

])

. (6-23)

The term within brackets equates to zero, reducing equation 6-23 to,

−CA-1 =
1

|A|

∂g

∂Fz

∂Fz

∂Ax

∂Ax
∂Fx

. (6-24)

Matrix inverse M -1 is now given by equation 6-25.

M -1 =

[

I + 1
|A|

∂f
∂Fz

∂Fz
∂Ax

∂Ax
∂Fx

0
1
|A|

∂g
∂Fz

∂Fz
∂Ax

∂Ax
∂Fx

I

]

(6-25)

Similarly, ∂F̄
∂ω is straightforwardly expressed in terms of the partial derivatives of f̄ and Fz

only (6-26).

∂F̄

∂ω
=

[

I + 1
|A|

∂f
∂Fz

∂Fz
∂Fx

0
1
|A|

∂g
∂Fz

∂Fz
∂Fx

I

]

∂ f̄

∂ω
(6-26)

The partial derivatives, ∂ f̄
∂ω ,

∂f
∂Fz

and ∂g
∂Fz

appearing in equation 6-26 can either be found
analytically or through finite differences, depending on the type of tire-model that is used. In
this thesis finite differences were used.

6-1-1 Lateral Load-Transfers

The effect of changing lateral load-transfers can be included into the control effectiveness
but is inherently smaller than the load-transfer effects discussed so far. Furthermore, the
equations become significantly more complicated and contain more uncertainties on account
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6-1 Tire force Jacobian 85

of equations 4-9a - 4-9b. Nevertheless, to properly evaluate effects the full effect of load-
transfers on the control effectiveness and for reasons of completeness, the equations are given
here.

If lateral load-transfers are included, equation 6-8 changes to,

Fz = h(F̄) = [−∆Wx,−∆Wx,∆Wx,∆Wx]
T
+ (6-27)

[
−∆Wy f,∆Wy f,−∆Wyr,∆Wyr

]T
.

The partial deri5vative ∂Fz

∂F̄
is now a full matrix, given by equation 6-28.

∂Fz

∂F̄
=

[
∂Fz
∂Fx

∂Fz
∂Fy

]

(6-28)

Where the block-matrix ∂Fz
∂Fy

can be expressed as outer product of two vectors (6-29).

∂Fz

∂Fy
=
∂Fz

∂Ay

∂Ay
∂Fy

(6-29)

Where,

∂Fz

∂Ay
=









−
∂∆Wy f
∂Ay

∂∆Wy f
∂Ay

−
∂∆Wyr
∂Ay

∂∆Wyr
∂Ay









and
∂Ay
∂Fy

T

=
1

m







1
1
1
1






. (6-30)

Using equations 6-12, 6-14, 6-28 and 6-29 matrix M is rewritten to include the effects of
lateral load-transfers, resulting in,

M̄ =

(

I −
∂ f̄

∂Fz

∂Fz

∂F̄

)

=

[

I− ∂f
∂Fz

∂Fz
∂Ax

∂Ax
∂Fx

− ∂f
∂Fz

∂Fz
∂Ay

∂Ay
∂Fy

− ∂g
∂Fz

∂Fz
∂Ax

∂Ax
∂Fx

I− ∂g
∂Fz

∂Fz
∂Ay

∂Ay
∂Fy

]

=

[
A B
C D

]

(6-31)

In a manner similar to the method described above, by repeated application of the Sherman-
Morrison formula, the inverse of matrix M̄ can be found. Resulting in the following expression,

M̄ -1 =

[
A-1 0

0 D-1

]




I+ P

|M̄|
∂f
∂Fz

∂Fz
∂Fy

|A|

|M̄|
∂f
∂Fz

∂Fz
∂Fy

|D|

|M̄|
∂g
∂Fz

∂Fz
∂Fx

I+ Q

|M̄|
∂g
∂Fz

∂Fz
∂Fx



 . (6-32)

Where inverse of sub-matrix D is given by equation 6-33.

D-1 = I +
1

|D|

∂g

∂Fz

∂Fz

∂Fy
(6-33)

And the determinant of D,

|D| = 1−
∂Ay
∂Fy

∂f

∂Fz

∂Fz

∂Ay
. (6-34)
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86 Yaw-Rate Control effectiveness

Scalars P and Q are given by equation 6-35 and 6-36 respectively.

P =
∂Ax
∂Fx

∂g

∂Fz

∂Fz

∂Ax
(6-35)

Q =
∂Ay
∂Fy

∂f

∂Fz

∂Fz

∂Ay
(6-36)

Finally, the determinant of M̄ can be expressed as,

∣
∣M̄

∣
∣ = |A| |D| − PQ. (6-37)

With the inverse of matrix M̄ known the control effectiveness, including the effect of changing
lateral and longitudinal load-transfers, is now easily found using equation 6-11.

∂F̄

∂ω
=

[
A-1 0

0 D-1

]




I+ P

|M̄|
∂f
∂Fz

∂Fz
∂Fy

|A|

|M̄|
∂f
∂Fz

∂Fz
∂Fy

|D|

|M̄|
∂g
∂Fz

∂Fz
∂Fx

I+ Q

|M̄|
∂g
∂Fz

∂Fz
∂Fx




∂ f̄

∂ω
(6-38)

6-1-2 Separating Slip and Load-Tranfer Effects

Looking at equation 6-26 and 6-38 reveals that tire-force jacobian can be written as a sum of
two matrices. Respectively ∂ f̄

∂ω and a transformed version of this matrix, corresponding to the
force Jacobian without load-transfer effects and a term that accounts for changing vertical
wheel loads. This partition will be used to investigate the impact of load-transfers on the
control effectiveness. Rewriting equation 6-11 is this way results in,

∂F̄

∂ω
=

∂ f̄

∂ω
+ M̂

∂ f̄

∂ω
(6-39)

Where the matrix M̂ is given by equation 6-40.

M̂ =

[
1
|A|

∂f
∂Fz

∂Fz
∂Ax

∂Ax
∂Fx

0
1
|A|

∂g
∂Fz

∂Fz
∂Ax

∂Ax
∂Fx

0

]

(6-40)

Substituting equation 6-39 in equation 6-2 the control effectiveness results in a similar parti-
tion,

G̃ψ̇ = Gψ̇ + Ĝψ̇ (6-41)

Where matrix G̃ψ̇ stands for the control effectiveness including load-transfer effects, Gψ̇

denotes the component that is caused by wheel-speed increments and Ĝψ̇ accounts for yaw-
moments created through changing normal loads.

6-1-3 Actuator Dynamics

For the derivation it was assumed that the wheel-speeds, slips and load-transfers can be
approximated by their steady state values when evaluating the much slower body dynamics.
In reality however, these phenomena are all governed by their own dynamics, e.g., a torque
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increment will not immediately lead to a desired wheel-speed and reaching a certain wheel-
speed will not immediately result in the expected wheel-slip and the associated wheel force.
The dynamics associated with the output variable of a control loop or control input of a
dynamic-system are often referred to as actuator dynamics. In this case it’s possible to
differentiate between actuator dynamics that are controlled through feedback in a subsequent
loop and those that are not. That is, the prop-shaft velocities are controlled to their desired
values in subsequent INDI loops, but the slips and the load-transfers remain uncontrolled.
Moreover, the load-transfer response is slower than those of the wheel-speeds/slips as it is the
result of the rolling and pitching motion of the car. Another way of looking at equation 6-41
is therefore, that Gψ̇ constitutes the fast component of the control effectiveness and that Ĝψ̇
can be seen as a delayed load-transfer effect. Note that speeding up the prop-shaft velocity
loop will have almost no effect on the delay of the load-transfer component of the control
effectiveness. In fact, Ĝψ̇ is a direct result of car setup and geometry. It is assumed that the
bandwidth separation between the load-transfer and the yaw-dynamics is sufficient for the
proposed cascaded control structure.

6-2 Ratio of wheel-speed increments

The calculation of the partial derivative of the angular velocities of the wheel speeds to those
of the prop-shafts is largely determined by the cases described in section 4-4-2.

The effects of an increment of the front prop-shaft velocity on the rear wheel-speeds and vice
versa are assumed to be negligible. Therefore, the derivative ∂ω

∂ωs
is conveniently expressed

as,

∂ω

∂ωs
=

[
∂ω
∂ωs f

∂ω
∂ωs r

]

=








∂ωfl
∂ωs f

0
∂ωfr
∂ωs f

0

0 ∂ωrl
∂ωs r

0 ∂ωrr
∂ωs r








(6-42)

If the differential of a particular axle is locked, i.e., the relative velocity of the left and right
wheels is zero, the dynamics of the power-train is of reduced order. From case 2 in section
4-4-2 we have ωl = ωr = ωs. Therefore, for the locked axle the following relation holds,

(
∂ωl

∂ωs

)

i

=

(
∂ωr

∂ωs

)

i

= 1 (6-43)

Where subscript i ∈ {f, r} denotes that the derivatives appearing in equation 6-43 belong to
either the front or rear power-train.

However, if (ωd)i 6= 0 the constraints 4-38 and 4-39 do not provide enough information
to determine ∂ω

∂ωs
. In this case the derivative will be approximated using the steady-state

wheel speed increments of the linearized power-train dynamics in response to a step-input.
Constraint 4-40 can be used to derive an approximation for the non-zero entries appearing in
∂ω
∂ωs f

as a function these increments.

∂ωfl

∂ωs f
≈

∆ωfl

∆ωs f
=

2 (ωfl)ss
(ωfl)ss + (ωfr)ss

(6-44)

∂ωfr

∂ωs f
≈

∆ωrl

∆ωs f
=

2 (ωfr)ss
(ωfl)ss + (ωfr)ss

(6-45)
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Where (ωij)ss denotes the steady-state angular-velocity increment of a single wheel due to a
unit step torque input. The approximation for the rear axle is defined similarly.

To find the approximate ratio of the wheel speed increments, the corresponding dynamics are
linearized. The time scale separation between the power-train and body dynamics is assumed
to such that the states corresponding to the body dynamics are approximately constant when
evaluating the response of the faster power-train dynamics. If friction losses are neglected
and only changes in longitudinal load-transfers are considered, using equation 4-56 - 4-58
and constraints 4-38 - 4-39 the power-train dynamics can be rewritten in terms of the wheel
speeds and subsequently linearized around a stationary point (ω̇0 = 0) resulting in,

ω̇ = Ja
∂Fx
∂ω

∣
∣
∣
∣
(x0,u0)

(ω − ω0) + JbT0 = JaA
-1
∂ f̄

∂ω

∣
∣
∣
∣
(x0,u0)

(ω − ω0) + JbT0. (6-46)

Matrices Ja and Jb are both in block-diagonal form with blocks representing the front and
rear power-trains. Matrix Ja is written as,

Ja =

[
(Ja)f 0

0 (Ja)r

]

(6-47)

Where,

(Ja)i =
Re
N

[
4J + Jd + (1 + r)(Jc+Js+Jeq) (r − 1)(Jc+Js+Jeq)
Jd − (r + 1)(Jc+Js+Jeq) 4J+Jd+(1 + r)(Jc+Js+Jeq)

]

, (6-48)

ri = (rDc)i · sng((ωd)i) (6-49)

and

N = (2J + Jd)(Js + Jc + Jeq). (6-50)

Matrix Jb can be expressed as,

Jb =

[
(Jb)f 0

0 (Jb)r

]

(6-51)

Where the sub-matrices are defined as,

(Jb)i =
1

N

[
Keq(2J(1− r) + Jd)
Keq(2J(1 + r) + Jd)

]

(6-52)

Note that for the derivation of matrices (Ja)i and (Jb)i, it was assumed that pre-loading of the
differential can be neglected and that the torque applied at the differential-casing is greater
than zero, i.e., the max-function and the absolute signs can be dropped from equation 4-58.

The steady state values of the linearized system in response to a unit step-input are straight-
forwardly found by substituting a unit step in equation 6-46 and solving for the wheel-speeds,
resulting in,

ωss = −

(

JaA
-1
∂ f̄

∂ω

)-1

Jb (6-53)
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Substituting ωss into equations 6-44 and 6-45 results in,

∂ωfl

∂ωs f
≈

∆ωfl

∆ωs f
=

2
(

2∂Fxfl∂Fzfl
+ (1− rf)

)
∂ffr
∂ωfr

(

2∂Fxfl∂Fzfl
+ (1− rf)

)
∂ffr
∂ωfr

+
(

2∂Fxfr∂Fz fr
+ (1 + rf)

)
∂ffl
∂ωfl

(6-54)

∂ωfr

∂ωs f
≈

∆ωfr

∆ωs f
=

2
(

2∂Fxfr∂Fz fr
+ (1 + rf)

)
∂ffl
∂ωfl

(

2∂Fxfl∂Fzfl
+ (1− rf)

)
∂ffr
∂ωfr

+
(

2∂Fxfr∂Fz fr
+ (1 + rf)

)
∂ffl
∂ωfl

(6-55)

For the rear, similar results can be found,

∂ωrl

∂ωs r
≈

∆ωrl

∆ωs r
=

2
(

2∂Fxrl∂Fzrl
+ (rr − 1)

)
∂frr
∂ωrr

(

2∂Fxrl∂Fzrl
+ (rr − 1)

)
∂frr
∂ωrr

+
(

2∂Fxrr∂Fzrr
− (1 + rr)

)
∂frl
∂ωrl

(6-56)

∂ωrr

∂ωs r
≈

∆ωrr

∆ωs r
=

2
(

2∂Fxrr∂Fzrr
− (1 + rr)

)
∂frl
∂ωrl

(

2∂Fxrl∂Fzrl
+ (rr − 1)

)
∂frr
∂ωrr

+
(

2∂Fxrr∂Fzrr
− (1 + rr)

)
∂frl
∂ωrl

(6-57)

The approximate wheel-speed ratios are a function of the local longitudinal slip-stiffnesses, the
partial derivatives of the tire-model to the normal loads and the differential-ramps respectively
∂fij
∂ωij

,
∂fij
∂Fzij

and (rDc)i. The dependence of ωss on the inertia’s is canceled out due to the left-

right symmetry of the power-trains and there is no influence of T0 due to the linear nature
of equation 6-46. If the locking ratio (rDc)i is relatively large, the differential will lock at low

longitudinal slip values. This means that the values of
∂fij
∂Fzij

are small compared to the other

terms appearing in equations 6-54 through 6-57 and may be neglected.

In conclusion, depending on the state of the differentials, the derivative of the wheel speeds
to the prop-shaft velocities is either constraint by the locking mechanism of the differential
or approximated by equations 6-54 through 6-57, summarized in equation 6-58 and 6-59.

∂ω

∂ωs f
=







[
1 1 0 0

]T
if (ωd)f = 0

[
∆ωfl
∆ωs f

∆ωfr
∆ωs f

0 0
]T

if (ωd)f 6= 0
(6-58)

and

∂ω

∂ωs r
=







[
0 0 1 1

]T
if (ωd)r = 0

[

0 0 ∆ωrl
∆ωs r

∆ωrr
∆ωs r

]T

if (ωd)r 6= 0
(6-59)

With expressions for ∂ω
∂ωs f

and ∂ω
∂ωs r

the derivative ∂ω
∂ωs

can be approximated and all the elements
of equation 6-2 are known. The next section discusses the results found with equation 6-2.

6-3 Evaluation of the Control Effectiveness

This section discusses the results that were found with equation 6-2. The control effectiveness
is evaluated at stationary points of the planar vehicle presented in Chapter 4 at different driv-
ing torque and steering angle inputs. For a specific longitudinal velocity Vx, the torque input
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on a single axle is swept through the full operating range of the respective ICE/MGU while
the other is kept zero. This procedure is repeated for different steering angles corresponding
to a left-hand turn.

Algorithm 2 Evaluating the front axle Control Effectiveness for Vx

1: for i = 1...n do

2: for j = 1...n do

3: Given Vx, δi, Tj and ωdf = 0

4: Find (xss)ij such that
[

β̇, ψ̈, ω̇s f, ω̇s r, ω̇dr

]T

= 0

5: if TDmax < |Tfr − Tfl| then
6: (Locked condition infeasible)
7: Given Vx, δi and Tj

8: Find (xss)ij such that
[

β̇, ψ̈, ω̇s f, ω̇df, ω̇s r, ω̇dr

]T

= 0

9: Calculate G̃f((xss)ij , δi, Tj)

In order to determine the state of the differential, the stationary points are first determined
assuming locked conditions, i.e., using the reduced order differential model described in section
4-4. If the maximum locking torque is not sufficient to guarantee locked conditions, stationary
point is redetermined using the full differential model. Assuming a locked differential first,
results in a slightly larger number of points in which the axle stays locked, due to the difference
in static and dynamic friction values. Algorithm 2 describes the basic steps needed for the
evaluation of the control effectiveness in different operating points for front axle in pseudo
code. Note that unactuated axle is assumed to remain in unlocked condition.

6-3-1 Front Axle

Figure 6-1 depicts the control effectiveness contours determined for the front axle with a
locking coefficient rDc = 0.15 at progressively higher longitudinal velocities. The contours
are plotted against the torque and the lateral acceleration as measured in the body frame.
Lighter areas represent positive control effectiveness whereas negative control effectiveness
appears dark. The red line indicates the zero magnitude isoline.

At low torque inputs the axle is unlocked regardless of steering angle. Moving from the
bottom to the top of the plots, the torque input and therefore the locking torque increases,
eventually locking the differential. The control effectiveness exhibits a large discontinuity
across the point of locking, increasing dramatically in the direction of the locked state.

Incremental Nonlinear Dynamic Inversion is robust against model inaccuracies as long as the
sign of the control effectiveness model matches reality (?, ?). Note that the zero magnitude
isoline almost always coincides with this discontinuity, except at high torques and low steering
inputs at low velocities. Consequently, changing the state of the differential almost always
results in a sign change of the control effectiveness. Because the state of the differential can
be inferred from wheel speed measurements, the sign of the control effectiveness is therefore
known as well. This results in a potentially robust method despite the strong discontinuous
behavior and potential model inaccuracies.
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6-3 Evaluation of the Control Effectiveness 91

Figure 6-1 further reveals that if the velocity is increased the torque at which the front axle
locks decreases. Furthermore, the lateral acceleration at which the axle unlocks increases.
The combined effect is a larger operating range with positive control effectiveness as the
longitudinal velocity increases.
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Figure 6-1: Control Effectiveness calculated for the front axle with rDc
= 0.15

at progressively higher velocities. Figure (a): Vx = 30m/s, Figure (b): Vx =
40m/s, Figure (c): Vx = 50m/s and Figure (d): Vx = 60m/s.

6-3-2 Rear Axle

Figure 6-2 illustrates the effect of increasing longitudinal velocities on the control effectiveness
contours determined for the rear axle with a locking coefficient rDc = 0.95. The differential is
locked through most of the operating range due to the large locking coefficient. Consequently,
the control effectiveness is mostly positive and grows in magnitude both with torque and
lateral acceleration.
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92 Yaw-Rate Control effectiveness

Sub-figures (a) through (d) further demonstrate that in contrast to systems that use dif-
ferential drive/braking, the longitudinal velocity has an attenuating effect on the maximum
control effectiveness. This maximum decreases from approximately 0.4 rad/s2 at Vx = 30m/s
to about 0.2 rad/s2 at Vx = 60m/s, markedly limiting the control authority at high longitu-
dinal velocities. Further note that compared to the front axle, the longitudinal velocity has
little effect on the location of the locking discontinuity.
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Figure 6-2: Control Effectiveness calculated for the rear axle with rDc
= 0.95

at progressively higher velocities. Figure (a): Vx = 30m/s, Figure (b): Vx =
40m/s, Figure (c): Vx = 50m/s and Figure (d): Vx = 60m/s.

6-3-3 Locking Coefficient

Figure 6-3 illustrates the effects of increasing locking coefficients on the control effectiveness
for the rear axle at Vx = 30m/s. Sub-figure (a) represents the control effectiveness for rDc = 0.
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6-3 Evaluation of the Control Effectiveness 93

With a locking coefficient of zero the axle effectively operates as an open-differential resulting
in complete absence of the discontinuity that could be seen in Figures 6-1 and 6-2. The control
effectiveness initially increases almost linearly with lateral acceleration, sloping off again half-
way through the interval towards the point of maximum acceleration and maximum torque.

Sub-figure (b) depicts the control effectiveness with a tiny locking coefficient, rDc = 0.01. Even
with this small locking coefficient, the operating range at which the axle is locked is consid-
erable, reflected by the band of positive control effectiveness bounded by its characteristic
discontinuity. Increasing the control effectiveness has an effect on the control effectiveness in
unlocked state although not yet visible in Sub-figure (b). Therefore, the negative region of the
control effectiveness is almost identical to Sub-figure (a), preserving the second zero-crossing
moving towards maximum torque and maximum lateral acceleration.
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Figure 6-3: Control Effectiveness calculated for the rear axle at Vx = 30m/s
for different locking ratio’s. Figure (a): rDc
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= 0.2 and Figure (d): rDc
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94 Yaw-Rate Control effectiveness

Sub-figure (c) depicts the control effectiveness with a locking coefficient of rDc = 0.2. The
larger locking coefficient lowers the torque at which he axle locks and increases the acceleration
at which the axle unlocks, substantially increasing the area with locked conditions.

The green line in Sub-figure (a) represents the zero magnitude isoline for the relative angular
velocity of both wheels. In the area below this line the outer wheel spins faster than the
inside wheel and vice versa opposite of this line. The result of this sign change is that, in the
operating range above this line the control effectiveness increases with the locking coefficient
and that below this line the control effectiveness decreases with increasing locking coefficient.
This can be explained through the fact that the LSD effectively transfers some torque from
the faster to the slower spinning wheel.

The areas with locked conditions in Sub-figures (b) through (d) correspond to the areas with
zero relative velocity, much like the green line in Sub-figure (a). Another way of looking at
Figure 6-3 is therefore that the locked region grows from a line with zero area if there is no
locking effect in figure (a) to an area that covers much of the operating range in Sub-figure
(d) at a locking coefficient of rDc = 0.5. The area with locked conditions doesn’t grow much
further past this point. Increasing the available locking torque therefore primarily increases
the understeering effect in unlocked conditions and therefore the growth of the discontinuity
at the border of the locked and unlocked operating range.

While the locking coefficient does increase the size of the area with locked conditions, it doesn’t
change the magnitude of control effectiveness in this area, clearly visible between sub-figures
(c) and (d). This can be explained through the fact that these areas are all described by the
same reduced order differential model which is unaffected by the locking coefficient.

6-3-4 Load Transfers

Figure 6-4 gives some insight in the effects of load-transfers on the control effectiveness. The
plots appearing in the first column of Figure 6-4 depict the control effectiveness if no load-
transfer effects are present, corresponding to the nominal control effectiveness Gψ̇. Column
two illustrates the isolated effect of load-transfers on the control effectiveness, corresponding
to Ĝψ̇. The last column represents the combined effect of slip and load-transfer effects that
has been discussed so far.

The second column reveals that the yaw-moment created by load-transfers has an understeer-
ing nature on both the front and rear axle, in locked as well as unlocked conditions, i.e., the
isolated load-transfer control effectiveness is negative for a left-hand turn or positive steering
angle. A simplified explanation can be given by using the longitudinal load-transfer effect.
Whenever the prop-shaft velocity is increased, and therefore the longitudinal acceleration,
the normal load at the front decreases and the normal load at the rear increases an equal
amount. The lateral forces in the front are therefore decreased while they increase it in the
front, creating a yaw-moment that opposes the direction of rotation. This effect is important
but only partially accounts for the observed effects as it approximately corresponds to the
effect of sub-block M̂12 of matrix M̂ in equation 6-39, if only longitudinal load-transfers are
considered.

The load-transfer effect initially increases approximately linear with lateral acceleration and
is highest in the low torque regime. The first trend can be explained by realizing that at high
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lateral accelerations, changes in normal loads also result in larger changes in lateral loads
and consequently larger yaw-moments are generated. The second trend can be explained by
noting that the longitudinal slip stiffnesses are high at low torque inputs. This results in a
high longitudinal-acceleration over prop-shaft-velocity-increment ratio and therefore strong
load-transfer effects.

The magnitude of these load-transfer effects is usually very small compared to the control
authority of conventional stability control systems, and are most often neglected completely
(?, ?), e.g., in systems featuring differential braking and independent drive systems. In the
current context however, the magnitude of the load-transfer effect is of the same order as the
nominally available control moments, as reflected by the magnitudes appearing in column one
and two of Figure 6-4. Therefore, load-transfers can not be ignored. Instead, they have a
considerable effect on the behavior of both actuators.

The effect of load-transfers is most apparent when the axle is unlocked. Row one and two of
Figure 6-4, respectively represent the control effectiveness for the front and rear axle, equipped
with an open-differential. In steady state, the slip increments of the wheels on an axle with
an open differential will be such that the force increase on either wheel is equal. Therefore,
an open differential does not create any yaw-moments through differential torque effects but
almost entirely through the decrease of lateral tire forces on the respective axle.

On the front axle a decrease of lateral load causes a small yaw-moment opposing the turn,
resulting in a nominal control effectiveness that is negative throughout most of the operating
range as seen in sub-figure (a). A positive steering angle at the front axle causes part of the
force increments to be directed along the body y-axis. At high longitudinal slip stiffnesses,
the increase of the longitudinal tire force component along the body y-axis is larger than the
decrease of lateral tire-forces resulting from a longitudinal slip increment. The result is a small
band of positive nominal control effectiveness at the front axle for low input torques. However,
the moments created by load-transfers are relatively large in the low torque regime, resulting
in the complete absence of positive total control effectiveness as illustrated by sub-figure (c).

Sub-figure (d) depicts the nominal control effectiveness for the rear axle. A decrease of lateral
load at the rear axle causes a small yaw-moment in the direction of the turn resulting in
a nominal control effectiveness which is positive throughout the operating range. The zero
magnitude isoline coincides with the zero lateral acceleration and torque input lines due to
the absence of a steering angle at the rear axle. Although the nominal control effectiveness
is positive everywhere, the load-transfer effect is such that the combined effect is negative
through a large portion of the operating range. Only a small band of positive control effec-
tiveness in the high torque/acceleration regime remains. Compared to the front axle the effect
of load transfers is considerably larger and frequently opposite to what one expects from just
considering changes in tire-slip.

Row three and four of Figure 6-4 reveal the components of the control effectiveness of respec-
tively the front and rear, equipped with a locked axle. A prop-shaft velocity increment on
an axle with a locked differential, results in an equally large wheel speed increment on both
wheels. In contrast to the open differential the torque increase is therefore not always equal on
both wheels. As the lateral acceleration increases, the normal load shifts from the inner to the
outer wheel, thereby increasing the slip stiffness of the outer wheel and decreasing it on the
opposing wheel. Therefore, an equally large wheel speed increment will create a larger change
in tire force at the outer wheel than the inner wheel, causing a yaw-moment in the direction
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Figure 6-4: The effect of load-transfers on the control effectiveness. For all
plots: Vx = 30m/s. First row (a,b,c): Front, Open differential. Second row
(d,e,f): Rear, Open differential. Third row (g,h,i): Front, Locked Differential.
Last row (j,k,l): Rear, Locked Differential. First column (a,d,g,j): No load
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(c,f,i,l): Total Control Effectiveness.
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of the turn. The nominal control effectiveness of a locked axle therefore gradually increases
with lateral acceleration, illustrated by the approximately equidistant parallel vertical lines
in the low acceleration regime of sub-figures (g) and (j). However, at higher longitudinal slips
the yaw-rate itself has a small attenuating effect on the growth of the left/right slip stiffness
delta and at the same time causes a slightly higher slip increment at the inner wheel compared
to the outer wheel, which cause the nominal control effectiveness to grow less with lateral
acceleration than would be expected from just a linear tire model. Tire load sensitivity has
a similar effect.

Apart from a yaw-moment through a delta tire-force, a locked axle creates a yaw-moment by
decreasing lateral tire forces, similar to the open differential. On the front axle this signif-
icantly decreases the control effectiveness in the high acceleration/torque regime as demon-
strated by sub-figure (g). The maximum nominal control effectiveness at the front thus occurs
at high accelerations in the low torque regime and decreases towards the high torque/accel-
eration operating range. Inversely, on the rear axle the effect of decreasing lateral loads is to
amplify the differential tire-force effect. The result is that the nominal control effectiveness
at the rear has a maximum in the high torque/acceleration regime as illustrated by sub-figure
(j).

Sub-figure (i) depicts the total control effectiveness at the front axle. As with the open
differential, changing load-transfers have a strong attenuating effect on the total control ef-
fectiveness of a locked axle. The zero magnitude isoline is shifted down most notably at
high accelerations. Sub-figure (l) reveals that changing load-transfers approximately half the
magnitude throughout most of the operating range. However, both Sub-figures (i) and (l)
demonstrate that load-transfers have a considerably smaller effect on the sign of the control
effectiveness of a locked axle compared to an open differential.
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