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Executive summary

In Ethiopia, rainfall variability and changes in rainfall patterns, induced by climate change, could increase
the frequency and occurrence of floods and droughts. Due to smallholder farmers in the Gumera sub-basin,
Ethiopia, mostly relying on rainfed agriculture, climatic changes highly influence the agricultural production
with corresponding negative effects on food security and their economic well-being. To reduce their vulnera-
bility to climate variability, the majority of smallholder farmers take up adaptation strategies, whereas a small
group of farmers does not have the capacity to adapt. The climate adaptive capacity of a farmer is thought to
be influenced by his or her assets and climate perception. However, the understanding of how these factors
combined influence the climate adaptive capacity of farmers and how climate adaptive behaviour influences
a farmer’s economic well-being is limited.

Therefore, via a bottom-up approach, this study aims to determine what factors drive the climate adaptive
capacity of smallholder farmers in the Gumera sub-basin and how they adapt to climate variability. Focus
Group Discussions are conducted prior to an individual household survey to obtain local-level knowledge
and data on the characteristics of smallholder farmers. Subsequently, this data is used to develop a method-
ology to incorporate the climate adaptive behaviour of smallholder farmers in socio-hydrological modelling.
By implementing a logit model, the (dynamic) adaptive capacity of smallholder farmers is implemented such
that the system dynamics of smallholder farmers with respect to climate variability can be analysed. This
provides the opportunity to create a better understanding of why farmers adapt to climate variability and its
impact on their economic well-being.

From the Focus Group Discussions and the individual household survey it is observed that the majority of
farmers adapt to climate variability by changing to a short cycle crop, mostly potato, and adjusting the plant-
ing and harvesting dates. They especially do so whenever a bad year occurs, which is defined by farmers as a
drought when the onset of rains also occur late. The drivers that are found to mainly influence the uptake of
these adaptation strategies are farm size, altitude, level of education, the number of livestock owned, capital,
experience, access to a weather forecast, and labour availability. A small group of farmers does not take up
adaptation strategies instead. First of all, their adaptive capacity is constrained by a lack of land, labour, and
a weather forecast. Hereby, especially the access to a weather forecast is assumed to significantly increase
the adaptive capacity, since all farmers with access to a weather forecast claim to adapt to climate variability.
Secondly, the rather optimistic perception of non-adapting farmers towards climate change seems to limit
their adaptive capacity. Thirdly, especially the limited use of the onset of rains by non-adapting farmers was
observed to negatively influence their climate adaptive capacity.

Incorporating the climate adaptive behaviour of smallholder farmers in socio-hydrological modelling by en-
abling a logit model showed to be a successful approach. Based on the main drivers for the climate adaptive
capacity, the model is able to simulate the agricultural practices with respect to climate variability, hereby
distinguishing between adapting and non-adapting farmers. As such, the model has shown to be able to
simulate agricultural practices that better coincide with what is observed during both the Focus Group Dis-
cussions and the household survey. In addition, the methodology used to evaluate the long-term effect of
climate adaptation on the economic well-being of a farmer has the potential to help in creating a better un-
derstanding of why farmers adapt to climate variability. However, due to the model lacking the ability to
accurately calculate crop yield estimates, the model cannot yet be used to answer the question why small-
holder farmers adapt to climate variability and how climate adaptive behaviour influences their economic
well-being.

Additional research is needed to obtain a more comprehensive understanding of the climate adaptive be-
haviour of smallholder farmers. Discussions with local farmers, especially in the higher altitude areas, can
add relevant knowledge on farmers’ climate behavioural aspects to this research. Furthermore, for one to
be able to rely on the outcomes of this model, crop yield calculations should be improved in order to obtain
good estimates. In addition, implementing the aspect of ‘environmental awareness’ is likely to improve the
way in which the model describes the climate adaptive behaviour of smallholder farmers.
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1
Introduction

1.1. The World Food Problem
Eradicating hunger and malnutrition is one of the great challenges of the last decades. Worldwide there were
821 million people who did not get enough to eat in 2019 (see Figure 1.1). Although the trend in world hunger
remains unchanged at a level just below 11% since 2015 after decades of steady decline, the number of people
who suffer from hunger has slowly increased (FAO et al., 2019). The vast majority of the world’s hungry people
live in rural areas in developing countries and mostly depend on agricultural production for their subsistence
(FAO, 2018b). With 133 million people in 2018 (30% of the population) (FAO et al., 2019), Eastern Africa
encounters the highest prevalence of undernourishment (PoU). The Food and Agriculture Organization (FAO)
defines PoU as the condition in which an individual’s habitual food consumption is insufficient to provide the
amount of dietary energy required to maintain a normal, active, healthy life (FAO, 2018b). In order to improve
people’s lives, the global community adopted 17 Sustainable Development Goals (SDG). "Zero Hunger" is
one of these goals and is the priority of the World Food Programme (WFP) (see Figure 1.2). It pledges to end
hunger, achieve food security, improve nutrition and promote sustainable agriculture (United Nations, 2015).

Figure 1.1: World Food Program (WFP): Hunger map of 2019 (FAO et al., 2019).
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1.2. The Case of Ethiopia 2

The rural poor who are dependent on their agricultural production for their subsistence are commonly known
as smallholder farmers. Most often they are poor and food insecure, which is mostly caused by limited access
to land and water, poor quality soils and their high vulnerability to land degradation and climatic uncertainty.
This leaves them in a poverty trap with little or no scope to improve their livelihoods (Dile et al., 2013). A
limited access to markets and services often intensifies this situation (Karfakis et al., 2017).

Figure 1.2: WFP: SDG 2 - Zero Hunger

Despite the critical situation smallholder farmers are in, they
are highly important in the world food production. They own
90% of the 570 million farms worldwide and produce over 80%
of the food consumed by the developing world (Karfakis et al.,
2017). Smallholder farming is therefore key in achieving SDG 2
- Zero Hunger - by 2030. The United Nations (2015) state SDG 2
can be achieved by focusing on smallholder farmers. Doubling
their agricultural productivity and incomes should help to end
hunger, achieve food security and improved nutrition and pro-
mote sustainable agriculture. The FAO (2018b) even states that agricultural growth in smallholder farming
and low-income economies is at least twice as effective as growth in other sectors at reducing hunger and
poverty.

1.2. The Case of Ethiopia
With a population exceeding 115 million people, Ethiopia is the second largest country of Africa, and the
fastest growing economy in the region. Over the past two decades, Ethiopia has gained notable progress, es-
pecially in the period 2008 to 2019 when economic growth reached 10% per year (World Bank, 2020). Despite
the population having doubled in the last 25 years, and predicted to exceed 200 million by the year 2050,
the rapid economic growth has resulted in reduction in extreme poverty and hunger rates (Worldometer, nd).
Based on the national poverty line from 1996 to 2016, poverty in Ethiopia decreased from 46% to 24%. The na-
tional poverty line is based on the required food basket to achieve the minimum required daily calory intake
of 2200 kilocalories per adult in Ethiopia (World Bank, 2020).

Despite these positive trends in economy and poverty reduction, Ethiopia still is one of the poorest coun-
tries in the world, ranking 173 out of 189 in the 2019 Human Development Index and 91 out of 113 in the 2019
Food Security Index (Global Food Security Index, 2019). Inequality is one of the reasons for this pattern. All
over Ethiopia, urban areas have experienced a much faster decline of poverty (from 25.7% in 2011 to 14.8%
in 2016) compared to rural areas that have only experienced limited progress (from 30.4% in 2011 to 25.6% in
2016). Since roughly 80% of the population of Ethiopia lives in rural areas and depends on agriculture, a large
part of the Ethiopians does not profit from the economic growth and poverty reduction. Hence, inequality
increased, which is likely to prevent poverty reduction in the future (World Bank, 2020).

The agricultural sector plays a significant role in the economic development of Ethiopia. This sector is domi-
nated by smallholder farmers living in rural areas, who only marginally reap benefits of the economic growth.
The Ethiopian Central Statistical Agency (CSA) classifies this group of farmers as small (i.e. < 25.2 ha), frag-
mented farms, producing mostly for own consumption (Taffesse et al., 2012). According to the Ministry of
Agriculture and Rural Development (MoARD), agriculture in Ethiopia contributes to about 47% of the GDP,
90% of exports, and provides 85% of employment (Erkossa et al., 2009). Although Ethiopia has seen a decrease
in the PoU from almost 40% in 2004-2006 to around 20% in 2016-2018, it still is one of the most food-insecure
and famine affected countries as a large share of the country’s population has been affected by chronic and
transitory food insecurity (Sani and Kemaw, 2019). The decrease in PoU is mainly due to a more than dou-
bling of Ethiopia’s agricultural output in the period between 2005 and 2015. To a certain extent, this has
been due to crop area expansion, the increased use of fertiliser, and the introduction of improved crop va-
rieties. This has increased agricultural productivity, albeit not to the desired level yet. One of the objectives
of Ethiopia’s Growth and Transformation Plan 2015-2020 (GTP II) (Fiedler et al., 2018) was therefore to bring
about a significant shift in agricultural productivity.

Climatic changes make it more challenging to reach this objective. Ethiopia’s National Adaptation Program of
Action (NAPA) says climate change in Ethiopia will cause changes in rainfall patterns, rainfall variability, and
temperature, which could increase the frequency and occurrence of floods and droughts (The World Bank
Group, 2011). As more than 90% of smallholder farmers in Ethiopia depend on rainfed agriculture, they are
highly vulnerable to climatic variability. The climatic changes indicated by the NAPA could therefore highly



1.3. Scope of the Research 3

influence the agricultural production with corresponding negative effects on food security (The World Bank
Group, 2011). Hereby, climate variability is about deviations of weather patterns from year-to-year, whereas
climate change is about a climatic change that persists for a decade or longer.

1.3. Scope of the Research
The Gumera sub-basin is one of the areas in Ethiopia in which many smallholder farmers live who depend on
rainfed agriculture. It is part of the Amhara National Regional State (ANRS) and located in the Ethiopian high-
lands in the north west of Ethiopia, inducing large elevation differences. Although the Eastern Nile Technical
Regional Office (ENTRO) states the Gumera sub-basin having a medium to high agricultural potential (EN-
TRO, 2007), often low crop production is obtained that also varies substantially from year-to-year due to this
region being highly vulnerable to climate variability. This largely affects the economic well-being of farmers
within this region. The high agricultural potential in combination with the high vulnerability of farmers to
climate variability make that the Gumera sub-basin is chosen as the study area of this research.

The vulnerability of smallholder farmers in the Gumera sub-basin to climate variability is partly induced
by the combination of rainfed agriculture on small and degraded plots on which only one crop a year is
cultivated. This makes their crop production, and therefore their economic well-being, highly vulnerable to
climatic changes that often induce short rainy seasons, droughts and floods, but also crop pests, weeds, and
diseases. According to Asrat and Simane (2017), vulnerability is not a static concept. It not only depends on
the rate of climate change, it is also determined by the extend to which a system is exposed, its sensitivity and
adaptive capacity.

This thesis will mainly focus on the aspect of adaptive capacity, which is the ability of smallholder farmers
to adapt to climatic changes, in order to increase their resilience towards, for example, floods and droughts.
Hereby, the adaptive capacity might be limited due to the lack of certain assets, such as land, labour, credit,
and information on climate (Gezie, 2019). According to Bryan et al. (2009), the adaptive behaviour of small-
holder farmers is mostly related to recent climate events or trends as opposed to long-term changes in aver-
age conditions (i.e. climate change). As such, the way in which most smallholder farmers try to reduce their
vulnerability to climate variability consists of adjusting their farming practices by taking up different (short-
term) adaptation strategies, such as changing the crop type, sowing seeds later in case the rainy season starts
late, or changing to off-farm non-agricultural labour. To a certain extent this is thought to be influenced by
the smallholder farmer’s perception of climate variability (Deressa et al., 2011), which, according to Gezie
(2019), is significantly influenced by having access to information on climate. The access to weather infor-
mation is therefore hypothesised to influence the climate adaptive behaviour of smallholder farmers (Wood
et al., 2014).

However, the understanding of how these factors combined influence the climate adaptive capacity of
smallholder farmers, and the related choices for certain adaptation strategies is limited (Wood et al., 2014).
How, for example, does weather information influence the climate adaptive behaviour of a smallholder farmer
and what drives the climate adaptive capacity? The understanding of how smallholder farmers perceive and
adapt to climate variability gets even more urgent when taking into account the possible increase in the oc-
currence of floods and droughts (Deressa et al., 2011). This understanding will help to increase the adaptive
capacity of smallholder farmers and to guide future adaptation strategies with respect to climate variability.

This research will therefore focus on the adaptive behaviour of smallholder farmers in order to cope with
climate variability and how this influences their economic well-being. Hereby, adaptive behaviour induced
by climate change (i.e. long term strategies), conflicts, pests and diseases, and land degradation are not taken
into account as this is beyond the scope of this research. Within the scope of this research, the interactions
between human and water systems are very important. The adaptation of smallholder farmers to cope with
climate variability is an example of such interactions. Socio-hydrology, first introduced by Sivapalan et al.
(2012), accounts for such dynamic coupled human-water interactions. It is a relatively new approach that
provides the opportunity to explore the dynamics of smallholder farmers with respect to climate variability,
and to investigate what drives their climate adaptive capacity. As such, it can be analysed whether farmers
taking up climate adaptation strategies are indeed less vulnerable to climate variability. However, to date,
only few studies (Di Baldassarre et al., 2015, Kuil et al., 2016, 2019, O’Keeffe et al., 2018) have incorporated
the climate adaptive behaviour of farmers within a socio-hydrological model. This study aims to create a
better understanding of the impact of climate variability on the system dynamics of smallholder farmers
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in the Gumera sub-basin by incorporating their climate adaptive behaviour. Hereby the socio-hydrological
modelling framework of Pande and Savenije (2016) is used.

1.4. Objective and Research Questions
The objective of this research is to obtain a better understanding of the climate perception and the drivers of
the climate adaptive capacity of smallholder farmers in the Gumera sub-basin, Ethiopia. Hereby the focus is
on short-term adaptive behaviour with respect to climate variability. It composes a comprehensive bottom-
up approach to analyse the characteristics and farming practices of smallholder farmers in the Gumera sub-
basin in order to explain the mechanisms that influence their climate adaptive capacity. In addition, this re-
search aims to establish a methodology to incorporate the climate adaptive behaviour of smallholder farmers
in socio-hydrological modelling. Hereby, the socio-hydrological modelling framework of Pande and Savenije
(2016) will be used. Enabling this model provides the opportunity to holistically simulate the system dynam-
ics of smallholder farmers and to analyse the smallholder farmer dynamics induced by their climate adaptive
behaviour.

To reach the objective of this thesis, the general research question to answer is formulated as follows:

What are the drivers of the climate adaptive capacity of smallholder farmers in the Gumera sub-basin and
how can a socio-hydrological model be used to simulate their behaviour with respect to climate

variability?

In order to answer the main research question, this thesis is subdivided into two major sub-questions:

1. What drives the climate adaptive capacity of a smallholder farmer in the Gumera sub-basin?

1.1. What factors influence the crop production obtained by a smallholder farmer?

1.2. What is the smallholder farmer’s perception of climate change and variability?

1.3. What agricultural decisions (i.e. adaptation strategies) do smallholder farmers make to adapt to
climate variability?

1.4. What are the major barriers smallholder farmer’s face in order to adapt to climate variability?

1.5. How is the climate adaptive behaviour of smallholder farmers influenced by weather information?

2. How can a socio-hydrological model be used to simulate the climate adaptive behaviour and its im-
pact on the economic well-being of smallholder farmers in the Gumera sub-basin?

2.1. In what way can the climate adaptive behaviour of smallholder farmers be incorporated in a socio-
hydrological model?

2.2. How are smallholder farmer dynamics influenced by the farmer’s adaptive behaviour with respect
to climate variability?

1.5. Reader’s Guide
This section provides the structure of this thesis. In Chapter 2 an overview of the theoretical background
is provided, in which the current scientific literature, relevant definitions, and key concepts are discussed.
The characteristics of the Gumera sub-basin, such as the agro-climatic zones and climatic trends, will be
described in Chapter 3. In addition, the agricultural practices of smallholder farmers within the Gumera sub-
basin will be explained in this chapter. Subsequently, each of the two research sub-questions, formulated
in Section 1.4, will be answered in a separate chapter. Both chapters contain an introduction, a description
of the methodology used to answer the sub-question, a section in which the results are presented and dis-
cussed, and main conclusions. The first sub-question is answered in Chapter 4. It will explain and discuss the
characteristics of smallholder farmers, their perception towards climate variability, and how each of these as-
pects influences their climate adaptive capacity and behaviour. Chapter 5 will explain the socio-hydrological
model and answers the second sub-question. The way in which the climate adaptive behaviour of small-
holder farmers in the Gumera sub-basin can be incorporated in a socio-hydrological model, and how this
influences their farming practices within the model will be discussed. In Chapter 6 the results presented in
Chapters 4 and 5 are discussed. The last chapter, Chapter 7, contains a comprehensive overview of the con-
clusions of this thesis and answers the research questions proposed in Section 1.4. In addition, it provides
recommendations for further research.



2
Theoretical Background

This chapter describes the theoretical background that contains the concepts and main topics of this re-
search. In Section 2.1, the term ‘smallholder farmer’ is described, as wells as other key terms that are used
throughout this research. Subsequently, a literature study on the main general perceptions of Ethiopian
smallholder farmers towards climate variability, and their climate adaptive behaviour is provided. Section
2.2 explains the aspects of socio-hydrology and how socio-hydrological modelling is used in other studies
to describe the system dynamics of smallholder farmers. In addition, it will explain why socio-hydrology is
suitable for analysing the climate adaptive behaviour of smallholder farmers.

2.1. Climate Adaptive Behaviour of Ethiopian Smallholder Farmers
In this section the key terms that play a central role throughout this research will be defined in Subsection
2.1.1. In addition, a better understanding of the climate perception and the climate adaptive behaviour of
smallholder farmers in Ethiopia is created based on previous studies (see Subsection 2.1.2).

2.1.1. Key Terms Used Throughout the Research
The term ‘smallholder farmer’ does not know an unambiguous definition. To clearly be able to distinguish
smallholder farmers from other farmers, the definition of the Ethiopian Central Statistical Agency (CSA) is fol-
lowed. The CSA classifies Ethiopian farms into two major groups: large commercial farms cultivating more
than 25.2 hectares and smallholder farms cultivating less than 25.2 hectares (Taffesse et al., 2012). The latter
is the group within which the large majority of smallholder farmers in Ethiopia belong. These farms, though
small, are often fragmented, produce mostly for own consumption and generate only a small-marketed sur-
plus (ADSWE, 2015a). For the remaining of this report, a smallholder farmer will be referred to as "farmer".

As more than 90% of these farmers in Ethiopia are dependent on rainfed agriculture, they are highly vul-
nerable to changes in climate. Although recent climate models say long term trends in rainfall are difficult to
determine for Ethiopia (The World Bank Group, 2011), the country’s National Adaptation Program of Action,
says climate change in Ethiopia will cause changes in rainfall patterns, rainfall variability, and temperature,
which could increase the frequency and occurrence of floods and droughts. A ‘drought’ can be character-
ized as agricultural, hydrological, and meteorological (Van Loon, 2015). Hence, it is important to distinguish
droughts. An agricultural drought is defined as a deficit of soil moisture, causing less water to be available to
vegetation. Hence, it is strongly linked to crop failure. A hydrological drought occurs whenever there is a lack
of water in the hydrological system, for example, causing low river discharge, and low water levels in lakes,
reservoirs, and/or groundwater. At last, a meteorological drought occurs if precipitation reaches below the
long-term mean. The latter definition is used within this research.

Variability in climate, induced by climate change, will highly influence the agricultural production with
corresponding negative effects on food security (The World Bank Group, 2011). Among the heavy reliance
on rainfall for agriculture, also unsustainable land use practices, and lack of necessary capital to invest in
adaptation options exacerbate the vulnerability of Ethiopia to climate change and variability (World Bank,
2010). Note, ‘climate change’ and ‘climate variability’ are two distinct terms but often used interchangeably.
In this research, for both terms, the definition stated by the Intergovernmental Panel on Climate Change
(IPCC) is followed (IPCC, 2018):

5
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"Climate change is a change in the state of the climate that can be identified (e.g. by using statistical tests) by
changes in the mean and/or the variability of its properties and that persists for an extended period, typically

decades or longer. Climate change may be due to natural internal processes or external forcings such as
modulations of the solar cycles, volcanic eruptions and persistent anthropogenic changes in the composition

of the atmosphere or in land use."

"Climate variability are deviations of some climate variables from a given mean state (including the
occurrence of extremes, etc.) at all spatial and temporal scales beyond that of individual weather events.

Variability may be intrinsic, due to fluctuations of processes internal to the climate system (internal
variability), or to variations in natural or anthropogenic external forcing (forced variability)."

The ability of a farmer to adapt to climate variability depends, to a certain extent, on his or her ‘adaptive
capacity’. This is defined by the IPCC as "The ability of systems, institutions, humans, and other organisms to
adjust to potential damage, to take advantage of opportunities, or to respond to consequences" (IPCC, 2014).
In this research, this is translated to the ability of a farmer to adjust to climate variability in order to reduce
or moderate the potential negative effects, and is in the remaining of this research referred to as the climate
adaptive capacity.

2.1.2. Farmer’s Climate Adaptive Behaviour and Climate Perception
All over the world farmers face climate change and adapt by taking up adaptation strategies. This is as-
sumed to not only be beneficial on the short-term, in terms of increasing yields during a bad year, but is
also assumed to reap benefits on the long-term, such as reducing crop production and income variability
and making production and livelihoods more resilient to climate change and variability (FAO, 2015). The way
in which farmers behave with respect to climate variability is thought to be strongly influenced by the way
in which they perceive climate change and variability (Deressa et al., 2011, Makate et al., 2017). Grunblatt
and Alessa (2017) suggest a predictive relationship between the perception of environmental change and at-
titudes. Perceiving changes in climate and its related risks would therefore be an important first step in the
process of adapting agriculture to climate variability (Deressa et al., 2011). The nature of farmer behavioural
response to this perception will to a certain extent determine the adaptation strategy a farmer takes up and
its outcome. Therefore, to understand the farmer’s adaptive capacity to cope with climate variability it is im-
portant to know the farmer’s perception of climate, the drivers and barriers to adaptation strategies and the
actual methods with which these farmers adapt (Ado et al., 2019). All around the world several studies have
researched the climate perceptions of farmers and their climate adaptive behaviour. Harmer and Rahman
(2014) reviewed 18 studies that analysed the adaptation of farmers to climate change and variability. In total,
45 separate adaptation strategies were observed, in which strategies taken up by farmers had both spatial
and temporal dimensions, and were influenced by a set of socio-economic factors, such as resources, gender,
or cultural identities. In addition, Karki et al. (2020) reviewed 208 articles regarding the climate perception
of farmers across the world, from which 39 were focussed on smallholder farmers. Several studies (Deressa
et al., 2011, Kahsay et al., 2019) hypothesise that differing climatic conditions influence a farmer’s perception
of climate change and variability and their decisions to adapt, and are therefore often site specific. Farm-
ers living in different agro-ecological zones, which are distinguished by different climatic conditions, would
therefore use different adaptation strategies (Deressa et al., 2011). Therefore, this subsection will focus on the
climate adaptive behaviour of smallholder farmers in Ethiopia and more closely in the Gumera sub-basin.

Farmer’s climate perception
Several studies conducted in Ethiopia indicate that the perception of climate change is likely to affect how
farmers will respond and adapt to climate change and variability (Bewket et al., 2011, Deressa et al., 2011,
Gezie, 2019). Farmers are very likely to assess rainfall in relation to the needs of particular crops at particular
times. As such, small changes in the amount of rainfall or the timing of the onset of rains can largely influence
the farmer’s climate perception. This is the reason there often exists a mismatch between the climate experi-
enced by farmers and what is observed from meteorological station data (Ayal and Leal Filho, 2017, Regassa
et al., 2010). Different from perceived rainfall, farmer’s perceptions of changes in temperature are observed
to be rather similar with meteorological station data (Kahsay et al., 2019). However, Kahsay et al. (2019) ob-
served the farmers’ perceptions of climate change and variability, that demonstrate decreasing mean annual
rainfall and increasing temperature, to coincide with actual meteorological data. Hence, farmers have the
ability to perceive the actual climatic changes. However, despite farmers being aware of changes in temper-
ature and rainfall, they often fail to recognise these actual trends of climate change and variability (Kahsay
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et al., 2019). Adaptation to climate change requires the recognition of the need to adapt and the ability to
adapt, and thus requires the awareness of climate change (Skambraks, 2014). There are multiple factors in-
fluencing the way farmers perceive climatic changes. This perception is highly personal, site specific, and
likely to be influenced by past personal experience and cultural differences (Kahsay et al., 2019). In a study of
Deressa et al. (2011), it was observed that experienced farmers are more likely to perceive climate change. In
addition, the degree of education of the head of the household was hypothesized to also be positively related
to awareness of climate change. This coincides with a study conducted by Maddison (2007), who analysed the
farmers’ perception of climate change and their adaptation in 10 African countries, amongst which Ethiopia.
It was found that farmers with the greatest experience of farming were more likely to notice climate change,
but educated farmers were more likely to take up adaptation strategies. It was therefore concluded that it
is especially the availability and access to means that will increase an individuals’ adaptive capacity. On the
other hand, the lack of these can cause barriers to a farmer’s adaptive capacity. In addition, Gezie (2019), who
conducted a review study in Ethiopia, observed that higher incomes from both on-farm and off-farm activi-
ties were found to positively influence farmer’s perception of climate change and variability (Gezie, 2019). At
last, it was observed that access to information on climate change significantly influences the farmer’s per-
ception of climate change and variability and therefore creates higher environmental awareness. This was
observed to result in more favourable conditions for taking up adaptation strategies in order to cope with
climate change and variability. The access to weather information is therefore associated to influence the
climate adaptive behaviour of farmers (Wood et al., 2014).

To provide an overview of how farmers, surrounding the Gumera sub-basin, perceive climatic changes the
main results of a study conducted by Bewket et al. (2011) are described here. Bewket et al. (2011) conducted
a study in the Ethiopian portion of the Nile river basin in which 500 randomly selected households were
interviewed to assess the farmers’ perceptions of climate change. The results indicated that the majority of
these farmers perceived climatic changes, mainly in form of changes in rainfall and temperature, over the past
two to three decades. About 82% of farmers perceived an increase in temperature, whereas 96% perceived
overall shortage of rainfall. A similar share of farmers perceived that the onset of rains had become later over
the years, but the cessation of rains to come early, resulting in an overall perception that the length of the crop
growing period had decreased. About 77% of the respondents had observed considerable reduction in crop
production.

Adaptation strategies
In order to cope with climatic changes, farmers adopt a variety of context-specific adaptation strategies. From
surveys undertaken by multiple studies undertaken throughout Ethiopia (mainly in the regions Amhara,
Oromiya, and Tigray) (Bryan et al., 2009, Gezie, 2019, Kahsay et al., 2019, Regassa et al., 2010) it can be con-
cluded that the most common adaptation strategies include: use of changing crop varieties, soil conserva-
tion practices, adjusting planting and harvesting dates, and planting trees. According to Bryan et al. (2009)
the adaptive behaviour of these farmers is more related to recent climate events or trends as opposed to
long-term changes in average conditions. Moreover, their decision to adopt one of these farming practices
depends on their personal experience of extreme events, rainfall frequency, timing and intensity.

Despite the perception of changes in climate, a large percentage of smallholder farmers (roughly 40%) did not
make any adjustments to their farming practices (Bryan et al., 2009, Deressa et al., 2011). On-farm adaptation
strategies, such as varying planting dates, use of drought tolerant crop varieties, soil conservation strategies,
are based on farmers indigenous knowledge passed down from generations (Aniah et al., 2019). Wood et al.
(2014) suggest, upon multiple literature studies, that assets and household wealth are necessary to allow
adoption of adaptation strategies that may require access to capital. Adaptation to climate that requires these
investments is, therefore, less likely to be carried out by the poor, who are often budget constrained. This
coincides with what is observed by Gezie (2019), who observed that a lack of access to land, information,
credit and labour were mentioned by smallholder farmers across Ethiopia to be the main barriers that keep
them from adapting to climate variability.
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2.2. Socio-Hydrology
This section explains what socio-hydrology is, its relevance, and how it differs from other modelling ap-
proaches (see Subsection 2.2.1). In addition, Subsection 2.2.2 describes how the climate adaptive behavioural
aspects of farmers are incorporated in socio-hydrological models by previous studies, and explains the term
‘environmental awareness’.

2.2.1. Relevance of socio-hydrological modelling
It is evident that societal actions influence the hydrology in many countries at a tremendous and increasing
rate. In some cases this induces a significant stress on water systems, causing water to become a major limit-
ing factor to the sustainable development of the society. The decreasing length of the rainy season perceived
by smallholder farmers in the Gumera sub-basin is an example of this. This requires societies, such as these
smallholder farmers, to adapt. There thus exists a strong interaction between societal and hydrological sys-
tems that co-evolve over time (Montanari et al., 2013). One way to analyse the interaction between these two
systems is by the use of a mathematical hydrological model. However, to date, hydrological analyses focusing
on the interaction between these two connected systems have mainly been conducted by considering each
system separately. Therefore, hydrological models are particularly suited to simulate and predict processes
for pristine catchments, whereby the interaction with society is often taken into account via independently
developed models of societal behaviour. Hereby, the feedback between these models is often introduced by
boundary conditions. As such, it may account for hydrological changes induced by shifts in external forcings
or internal dynamics, but cannot account for more complex changes due to co-evolving model structures or
parameters (Montanari et al., 2013)

An example is Integrated Water Resources Management (IWRM). The process of IWRM has been shown
to be successful in accounting for these complex interactions between water and humans, and is widely
adopted by political decision makers in many countries (Savenije and Van der Zaag, 2008). By acknowl-
edging the entire water cycle, and taking into account the interests of water users in different sectors of a
society, it addresses both the natural and human dimensions of water. It explores the interaction using a
‘scenario-based’ approach, hereby controlling the water system to reach desired outcomes for society and
the environment (Sivapalan et al., 2012). However, by enabling this approach only limited attention is given
to the co-evolutionary human-water interactions, as well as feedbacks and dynamics in system behaviour
(Montanari et al., 2013). Due to the increasing impact of humans on the hydrological system, it is becoming
more important to incorporate the co-evolution of human-water systems in such models, in order to reach a
better interpretation of the interaction between water and humans. This has led the International Association
of Hydrological Sciences (IAHS) to focus, from 2013-2022, on hydrology for society and related changes, in-
cluding environmental feedbacks and humans as an essential part of hydrological systems (Montanari et al.,
2013).

In case of this research, we want to explore the interaction between climate variability, which is part of the
hydrological system, and the climate adaptive behaviour of smallholder farmers, which is the societal sys-
tem, since these interactions are known to play a vital role in smallholder farmer dynamics. This concept of
human-water interactions is incorporated in socio-hydrology, first introduced by Sivapalan et al. (2012). It is
a relatively new holistic approach that provides the opportunity to couple human-water interactions. It fo-
cusses on the co-evolution of coupled human-water systems and thus explores the dynamics of people with
respect to water variability (Sivapalan et al., 2012). As such, it is possible to link human behaviour, which
might be influenced by several factors, such as economical and demographical factors, to the hydrology part
of the model. In this way a socio-hydrological model provides the opportunity to holistically model the sys-
tem dynamics of smallholder farmers by taking into account all of these factors. Socio-hydrological mod-
elling can therefore help to better understand the system dynamics of smallholder farmers, which is defined
as the dynamics of smallholder farmers, in terms of, for example, their economic well-being, farming prac-
tices taken up, and their level of food security, within the human-water system. Within a socio-hydrological
model these system dynamics are modelled using stocks (calculated by differential equations), flows, and
internal feedback loops.
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2.2.2. Incorporating Climate Adaptive Behaviour in Socio-Hydrological Modelling
It is shown that the outcomes of Socio-hydrological models can improve the assessments of policy-makers
for identifying the proper management strategies to cope with water resources challenges, especially water
scarcity (Montanari et al., 2013). However, the challenging point in water resources management is that peo-
ple try to adapt themselves to cope with environmental problems in order to satisfy their needs (Pouladi et al.,
2019). In recent years, several socio-hydrological models have been developed to investigate the complex co-
evolutionary interactions between hydrological systems and dynamic behaviours of farmers (Kuil et al., 2016,
Pande and Savenije, 2016, Van Emmerik et al., 2014). Most of these models were developed through top-down
approaches which make it possible to create an overview of a system. However, the fundamental background
process are hereby overlooked (O’Keeffe et al., 2018). Bottom-up approaches, which focus more on the un-
derlying linkages of sub-systems, could deliver more accurate results of socio-hydrological processes, espe-
cially when dynamic elements, such as the climate adaptive behaviour of smallholder farmers, are taken into
account (Pouladi et al., 2019).

As is described by Subsection 2.1.2, Grunblatt and Alessa (2017) suggests a predictive relationship between
the perception of environmental change and attitudes. Perceiving changes in climate and its related risks
would therefore be an important first step in the process of adapting agriculture to climate variability (Deressa
et al., 2011). One way of incorporating the human-water interactions is therefore by including the aspect of
‘environmental awareness’. However, to date, only few studies have incorporated human adaptive behaviour
with respect to climate variability in socio-hydrological models by enabling the ‘environmental awareness’ of
farmers (Di Baldassarre et al., 2015, Dile et al., 2013, Kuil et al., 2016). The perception of changes in climate is
captured in the aspect of ‘environmental awareness’, in which it is seen as a sort of memory bank, in which
it could be a function of, for example, the number of days with water shortage, or the soil moisture content.
The details and accuracy of people’s memory of climate variability change based on personal perceptions
(Singh et al., 2018), which, for example, are influenced by their farming experience. As such, people may
exaggerate certain drought events and forget others based on how they were affected. Each of the frameworks
proposed by these studies (Di Baldassarre et al., 2015, Dile et al., 2013, Kuil et al., 2016) uses socio-hydrological
modelling as an explorative tool to support the understanding of human-water interactions. Although these
models have been compared with empirical data, the approach of incorporating human-water interactions
based on the ‘environmental awareness’ is not without critics from the social sciences. One critique is that
strong and robust social theories are needed to underlie any mathematically based socio-hydrological model
(Di Baldassarre et al., 2015). However, these current social theories are often underdeveloped or contested.
In addition, there exist large gaps in our understanding of how human-physical systems function. Building
socio-hydrological models would therefore be particularly valuable for exploring how variables effect system
functioning and could therefore aid in the development of theories.



3
Study area

This chapter provides an overview of the study area of this research, the Gumera sub-basin. First, the ge-
ographic characteristics are described, after which Section 3.1 elaborates on the agro-climatic zones (ACZ)
which largely separates the Gumera sub-basin into two parts. The main climate of the Gumera sub-basin
is discussed in Section 3.2, together with climatic trends and variability and how this is related to El Niño
weather events. Lastly, Section 3.3 gives an overview of the main agricultural practices of farmers in the
Gumera sub-basin.

The study area for this research is the Gumera sub-basin. It is located in South Gondar zone that is part of the
Amhara National Regional State (ANRS) in the north west of Ethiopia (see Figure 3.1). The area is separated
by four Woredas (the third-level administrative division of local government in Ethiopia), namely Dera in
the South West, Fogera in the North West, Farta in the North East, and East Este in the South East. Each of
these Woredas is further subdivided into Kebeles, the smallest level of local government in Ethiopia. With
more than 20 million people (making up 22.4% of the Ethiopian population), the ANRS is the second most
populous region in Ethiopia (Dile et al., 2018). The Gumera sub-basin is part of the larger Lake Tana sub-
basin, which has an average population density of 200 persons per km2 (Abera, 2017).

Figure 3.1: Spatial overview of the Gumera sub-basin in Ethiopia, indicating the population density per Woreda in person per km2. The
figure on the top right shows the location of the Lake Tana sub-basin in Ethiopia. The figure on the bottom right zooms in on the

Gumera sub-basin, and indicates the four Woredas by which it is separated. Made by author.
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The Gumera sub-basin is located in the Ethiopian highlands between 11.5°N and 12°N latitude, and 37.5°E
and 38.2°E longitude. The elevation ranges from 1786 meter above mean sea level (AMSL) in the west to 3709
meter AMSL in the east (see Figure 3.3). This means rather flat areas in the west, whereas it gets more hilly
moving towards the east (see Figure 3.2). Here, the landscapes are separated by deep river valleys, which
makes conducting agricultural practices more difficult. The Gumera river is the main river and drains into
Lake Tana in the west. This is the largest lake in Ethiopia and is the origin of the Upper Blue Nile, contributing
to 60% of the Nile River flow (Dile et al., 2018).

(a) West (b) South

(c) East

Figure 3.2: Impressions of farming landscapes in the a) western part, b) southern part, and c) eastern part of the Gumera sub-basin in
the beginning of March, 2020. Made by author.

3.1. Agro-Climatic Zones
This section describes the ACZs that divide Ethiopia into three major parts. In addition, the ACZs apparent in
the Gumera sub-basin are described.

Although the entire Gumera sub-basin lies within one regional administration zone (i.e. ANRS), it consists
of multiple agro-climatic zones (ACZs). An ACZ is defined by the FAO as "a land unit represented accurately
or precisely in terms of major climate and growing period, which is climatically suitable for a certain range
of crops and cultivars" (FAO, 2016). The purpose of ACZs is to separate areas with differing sets of potentials
and constraints. This not only helps to improve the planning of agricultural development on a regional or
national scale, but also to analyse impacts of climate variability and climate change on agriculture.

Taking into account the water balance and the growing period, Ethiopia can be divided into three major
ACZs. The first one can mainly be found in the lowland areas in the East of Ethiopia, which receive little or
no rainfall and thus have no significant growing period. In the western half of the country, the second major
ACZ can be found. This region only knows one rainy season that extends from February/March to Octo-
ber/November, with decreasing duration of the rainy season from south to north. This part of the country
therefore has only one growing period. The third major ACZ has two rainy seasons, the shorter rainy season
from February to April, locally called the "Belg" rainy season, and a longer rainy season from June to Septem-
ber, locally called the "Meher" rainy season. This results in two growing periods. The areas receiving two
rainy seasons are mostly located in the southern and the south eastern lowlands (FAO, 2016). The Gumera
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sub-basin is located in the second major ACZ as it only knows a single growing period, with a relatively short
rainy season extending from June to September. However, the rainy season often is inconsistent of length and
can extend from May to October (Wassie, 2017). This results in a largely varying length of the growing period,

Figure 3.3: The two major agro-climatic zones covering the Gumera sub-basin separated
by the ACZ belt at 2300 m AMSL (green line). The western part is located in the lower ACZ,
called "Wet Weyna Dega". The eastern part is located in the upper ACZ, and is called "Wet
Dega". Made by author.

with a range of 131 to 180 days
(Abebe et al., 2017). The length of
growing period (LGP) for a given lo-
cation is defined as the continuous
period of the year in which precipi-
tation exceeds half of evapotranspi-
ration plus a certain period to evap-
otranspire an assumed volume of
soil moisture storage. In addition,
the mean daily temperature needs
to exceed 6.5 °C during this period
(FAO, 1996).

Each of the major ACZs can be
spatially differentiated by altitude
and annual rainfall and their com-
bined effects on the characteristics
of agricultural production. This
classification consists of six altitudinal levels that vary between dry, moist or wet conditions, and divides
Ethiopia into 12 ACZs. With annual rainfall averaging to 1410 mm in the period 2000-2019, the Gumera sub-
basin can be classified as "wet". When taking into account altitude, the Gumera sub-basin can be divided
into four ACZs, namely ‘Wet Weyna Dega’ (1500-2300m AMSL), ‘Wet Dega’ (2300-3200m AMSL), ‘Wet Wurch’
(3200-3700m AMSL), and ‘High Wurch’ (above 3700m AMSL). However, as the latter two cover only 1% of the
total area of the sub-basin and have very steep slopes, resulting in low agricultural practices, they are not
taken into account in this research. Therefore, Figure 3.3 only shows the Wet Weyna Dega (in the west), and
Wet Dega (in the east), which are separated by the ACZ belt at 2300m AMSL.

3.2. Climate
In this section the climate of Ethiopia, and more specifically of the Gumera sub-basin, will be described.
First, the yearly cycle of rainfall and temperature will be shown, after which climate change and variability,
and its effect on the Gumera sub-basin, will be explained. In addition, the effect of El Niño on the variability
in weather patterns is described.

3.2.1. Seasonal Cycle
Ethiopia has a clear seasonal cycle

Figure 3.4: Mean monthly rainfall and temperature of the Gumera sub-basin from 2001-
2019. Made by author. Data obtained from Funk et al. (2014).

that varies regionally and is domi-
nated by the meridional migration
of the Inter-Tropical Convergence
Zone (ITCZ) (Gleixner et al., 2017).
This causes the rainfall pattern in
the Gumera sub-basin to be char-
acterised by an almost unimodal
wet season, meaning only one rain-
fall peak is apparent without alter-
nation of humid and dry months
(Herrmann and Mohr, 2011). The
Gumera sub-basin thus has a clear
seasonal cycle, with the rainy sea-
son (known as the ‘Meher’ season),
typically occurring from May/June
till September. May, therefore, is
the month representing the most normal onset of rain (Legesse, 2017). Figure 3.4 shows the mean monthly
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rainfall and temperature for the Gumera sub-basin over the period 2001-2019. The average monthly temper-
ature ranges from 27 °C in the months prior to the rainy season (i.e. March and April) to around 20 °C from
June to December, the latter of which is the extend of the cropping season. The ‘Meher’ season is known for
its ‘kiremt’ rains that account for approximately 80% of the annual rainfall. Over the last 15 years the amount
of annual rainfall amounted to 1410 mm on average (Funk et al., 2014). Due to this relatively high amount
of rainfall the Gumera sub-basin is known for having a relatively high rate of volumetric soil moisture com-
pared to the rest of the country. The Eastern Nile Technical Regional Office (ENTRO) therefore states that the
Gumera sub-basin has a low to very low risk to moisture stress, and can be classified as having medium to
high agricultural potential (ENTRO, 2007).

3.2.2. Climate change and variability and the impact of El Niño
Due to Ethiopia’s distinct seasonal cycle, and rainfall being highly erratic with large year-to-year variability,
smallholder farmers face a very high risk of intra-seasonal dry spells and annual droughts (FAO, 2016). Every
three to five years significant drought and flood events are occurring, impacting the livelihoods of farmers
(Alemu and Mengistu, 2019). Due to climate change these phenomena are expected to become more severe
in the future as rainfall variability will increase, possibly causing larger drought and flood disasters in Ethiopia
(Alemu and Mengistu, 2019). Over the last 20 years, Ethiopia has seen droughts in the years 2000, 2002/2003,
2006, 2011, and 2015/2016. The latter one in 2015-2016, can be considered as the worst drought in the last 30
years, leaving 10 million people food insecure (Alemu and Mengistu, 2019, FAO, 2016).

Figure 3.5: The impact of El Niño on Ethiopia (Gro Intelligence, 2015a).

Some of these droughts, such
as the 2015-2016 drought, are
related to El Niño weather
events (see Figure 3.5). An El
Niño event causes the north-
ern part of Ethiopia to be-
come much drier, whereas the
southern part becomes much
wetter resulting in floods. It
is observed that with climate
change, El Niño years could
become more frequent, caus-
ing the Northern part of Ethiopia
to experience more droughts
(Gleixner et al., 2017). Al-
though, not every drought is
induced by El Niño, for exam-
ple the drought years of 2000 and 2011 (Gro Intelligence, 2015b), it is estimated that 50 to 90% of crop failure
is caused by El Niño. It can thus be seen as one of the most important factors having impact on the well-being
of smallholder farmers in Ethiopia (Berhane and Tesfay, 2020).

Focussing on the Gumera sub-basin specifically, droughts and rainfall variability are the main climatic haz-
ards. In Subsection 2.1.1, it was explained that the term ‘drought’ has multiple definitions. In this research,
the drought is defined as a meteorological drought. In a study of Legesse (2017), conducted in the Lake Tana
sub-basin, 30 years of rainfall data (from 1984 to 2014) has been analysed with respect to climate change
trends, and droughts. Legesse (2017) found the Lake Tana sub-basin to have experienced moderate to mild
drought years in 1992, 1994, 2003, 2004. More sever droughts occurred in 1995, 2002, 2009 and 2012. This
not only suggests that occurrences of droughts have been rather frequent over the last 30 years, but also the
drought severity has increased, especially after the year 2000. On top of this, Legesse (2017) concluded that
the inter-annual rainfall variability has increased. On the long term a general decreasing trend of annual rain-
fall has been observed, together with a general increasing trend of the maximum and minimum temperature.
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3.3. Agricultural practices
In this section a general picture will be sketched of the agricultural practices noticed in the Gumera sub-
basin. This is done based on literature regarding the Lake Tana sub-basin. Hereby it is assumed that the
Gumera sub-basin is a typical representation of a basin in the Lake Tana sub-basin in terms of land cover and
geographic characteristics. This first analysis of agricultural practices will function as an initial perspective
from which certain (supposedly valid) assumptions will be made. In Chapter 4 a more detailed description of
the agricultural practices observed in the Gumera sub-basin will be given based on the results obtained from
the FGDs and an individual household survey. When different patterns are observed this will be noted and
discussed.

3.3.1. Landcover
In Figure 3.6 a GIS map of different land cover types in the Gumera sub-basin is shown. It can be seen that
the major land cover is cropland at 65%. As slopes are more gentle in the western part of the sub-basin,
cropland prevails in this area. The average household landholding size is 1.3 hectares (ADSWE, 2015a). From
the total cropland, 83% is used for growing cereal crops, such as teff, maize, barley, finger millet, wheat, rice,
and sorghum. This accounts for 87% of the total crop production in quintals (see Table 3.1). Root crops make
up for 2.91% of the total cropland, in which potato took the largest share in terms of both the area it is planted
(95.1%) and volume of crop production (in quintals) obtained. Since potato is the major food crop in the sub-
basin particularly in highland areas, it is produced in larger volumes compared with other root crops, such
as onion that covers only 1.3% of the area at which root crops are grown (ADSWE, 2015a). Table 3.1 shows an
overview of the share of crop area used for each crop type, and the corresponding share of crop production
in quintals.

Figure 3.6: Land cover map of the Gumera sub-basin. Made by author. Data obtained from ADSWE (2015a)

3.3.2. Cropping pattern
The cropping pattern describes the system by which farmer’s grow crops in a particular sequence. The most
dominant cropping pattern in the Gumera sub-basin is rainfed crop rotation with possibly supplementary
irrigation. Other cropping patterns used in the Gumera sub-basin are mixture, intercropping, and double
cropping by using residual moisture. Due to the unimodal rainfall pattern, the most dominant cropping
season is the Meher season. Most of the agricultural production is produced in this season.

Although ENTRO states the Gumera sub-basin having a medium to high agricultural potential (ENTRO,
2007), often low crop production is obtained that also varies substantially from year-to-year. This vulnera-
bility is partly induced by the combination of rainfed agriculture on small and degraded plots with only one
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crop a year. This makes the production highly vulnerable to natural hazards such as droughts or erratic rain-
fall patterns, crop pests, weeds, and diseases. However, also low usage of purchased inputs, such as seeds,
fertilizer and chemicals, and crop losses both in the field and during harvesting and storage, cause the crop
production to be low and variable. Studies by FAO and others (ADSWE, 2015b, FAO, 2018c), suggest that losses
of stored grains due to poor storage can be as high as 15-20% . As these smallholder farmers mainly produce
for their own consumption, only a small fraction of the production is marketed. This often is needed to meet
urgent cash needs or to buy staples later in the year (Stave et al., 2017).

Complementary livestock farming
Rearing livestock also plays an important role for Share of crop

area [%]
Share of crop
production in qt [%]

Cereal crops
Teff 25.8% 15.2%

Maize 19.3% 31.2%

Barley 10% 7.4%

Millet 8.3% 7.7%

Wheat 7.5% 7.2%

Rice 6.7% 2.5%

Sorghum 3% 2.7%

Triticale 2.5% 13.3%

Total 83.1% 87.2%

Root crops
Potato 2.8% 7.25%

Onion 0,04% 0,08%

Other crops 14.1% 5.5%

Total 100% 100%

Table 3.1: Major crops grown in the Gumera sub-basin in terms of crop
area, and production in quintals (qt) (ADSWE, 2015a). 1 quintal = 100
kg.

farmers to deal with crop failures and therefore
food security. It constitutes a major part of the
farming system next to crop production. Most
farmers do not have their own grazing land but
make use of communal grazing areas (Tahir et al.,
2018). In the Gumera-Ribb watershed the live-
stock density is 9.4 TLU/ha (Amsalu and Addisu,
2014). Besides livestock providing draft power
and the production of milk and meat, it plays
an important role for smallholder farmers to deal
with crop failures (ADSWE, 2015a). Selling live-
stock forms a critical source of income in times of
food insecurity (Brief, 2004). Cattle are the most
important species kept by farmers in the Lake
Tana sub-basin. Other livestock species reared
are donkeys and mules, which are mainly used
for transport, and goats, sheep, and chicken,
which provide an important source of protein for
smallholder farmers. The price of livestock ani-
mals varies significantly from time to time due to
several factors (Abera, 2017).

Rainfed agriculture
Within the Gumera sub-basin two main farming systems can be identified. The most dominant one is mixed
crop-livestock rainfed farming, and accounts for the bulk of food production in the area. More than 80% of
the cultivated land is rainfed (Abera, 2017). It is characterized by subsistence farming with low input - low
output productivity. Cultivation of crops mainly takes place during the Meher season and is predominantly
cereal based. Livestock production is undertaken complementary to producing crops. The most dominant
cropping system used is crop rotation in which the type of crop grown is changed each year. This not only
improves the soil structure and fertility, it also helps to control weeds, pests and diseases. As cereals are the
staple food in this area, the cereal-cereal-cereal approach is most dominant and used by almost all farmers.
The major rainfed crops grown in the Lake Tana sub-basin are teff, sorghum, barley, wheat, maize, and finger
millet (ADSWE, 2015a). Pulses like beans, and chickpeas are also grown. Rice is grown only in the wetlands,
especially in the Fogera and Dera Woredas. In these areas, rice is grown for two to three years without rotation
(Abera, 2017).

Traditional irrigation systems
The second main farming system consists of irrigation and residual moisture. This farming system occupies
the remaining land that is not used by the rainfed farming system (Abera, 2017). One of the reasons for the
use of supplementary irrigation and residual soil moisture is that the rainy season in northern Ethiopia often
does not exceed 65 days. As most of the crops require more than 80 days, the rainy season is shorter than
the crop growing period (Berhane and Tesfay, 2020). Almost all irrigation systems are traditional small-scale
irrigation systems (less than 200ha) and are found all over the region Hagos et al. (2009). In 2007, about 21%
of the households in the Lake Tana sub-basin are engaged in small-scale irrigation activities (ADSWE, 2015a).
However, the total irrigated area accounts for only 3.8% of the total cultivated land. About 35% of the small-
scale irrigation systems consist of traditional river diversions. Modern small-scale irrigation technologies,
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such as motorized pumps, also have been developed and account for 33% of the irrigation activities. Irri-
gation is mostly used for vegetables such as potato and onion. In some areas, cereal crops, like maize and
barley, and pulse crops are also grown using irrigation systems (ADSWE, 2015a).

Some farmers in the Lake Tana sub-basin also practice double cropping on black vertisol soil areas by using
residual moisture (ADSWE, 2015a). Farmers near Lake Tana grow crops like chickpea, grass pea, and bar-
ley using the residual moisture that is always available and use the land that is freed as the water recedes
during the dry season. Farmers in high altitude land areas particularly around Farta practice double crop-
ping. This means they grow barley just after potato or vice versa. Closer to Lake Tana, rice or teff is planted
during the Meher season, after which chickpea or grass pea is grown with residual moisture. The most
common double cropping system in these areas is: rice - chickpea/grass pea/maize, teff - chick pea/grass
pea/maize/fenugreek, and millet - chickpea/grass pea.



4
Characteristics of Smallholder Farmers in

the Gumera sub-basin

In this chapter the characteristics of smallholder farmers in the Gumera sub-basin are discussed based on the
outcomes of Focus Group Discussions and an individual household survey. General demographic, and socio-
economic results will be shown, as well as the main farming practices conducted by farmers in the Gumera
sub-basin. Subsequently, a more thorough analysis will be presented regarding the climate adaptive behaviour
of these smallholder farmers. The farmer characteristics and their climate perception are linked with their
climate adaptive capacity and behaviour. In addition, the barriers that keep farmers from adapting to climate
variability are exposed.

4.1. Introduction
Sections 3.2 and 3.3 explored the agricultural practices of farmers in the Gumera sub-basin, and how they are
influenced by changes in climate. It was observed that most farmers practice a mixed crop-livestock rainfed
farming system, which makes them highly vulnerable to variability in climate, often induced by El Niño. In
Subsection 2.1.2, an overview of the behaviour of farmers throughout Ethiopia with respect to climate vari-
ability is created based on previous studies conducted in the regions Amhara, Oromiya, and Tigray by Bewket
et al. (2011), Bryan et al. (2009), Kahsay et al. (2019), Regassa et al. (2010). It was observed that the majority of
farmers adapt to climate variability. By doing so, they take up adaptation strategies such as changing the crop
type, soil conservation, shifting planting and harvesting dates, and planting trees. The choice of a farmer to
adapt with a certain adaptation strategy was suggested to be influenced by their climate perception. In addi-
tion, some farmers did not take up adaptation strategies, claiming to be constraint by a lack of land, labour,
weather information, and credit. However, it is not quite known how each of these farmer characteristics
exactly drive the climate adaptive capacity and their choices for certain adaptation strategies.

This chapter explores, via a bottom-up approach, the differences between different groups of farmers
within the Gumera sub-basin, and aims to create a better understanding of the drivers behind their agricul-
tural decisions with respect to climate variability. In order to reach this objective Focus Group Discussions
and a individual household survey are conducted to gather data from local farmers in the Gumera sub-basin.
By gathering data on demographics, socio-economic parameters, climate perceptions and climate adaptive
behaviour, a more in depth analysis will be conducted. Section 4.2 describes the methods used to answer
the first sub-question proposed in Section 1.4. The results obtained from the Focus Group Discussions and
the individual household survey are presented and discussed in Sections 4.3 and 4.4, respectively. At last, a
conclusion is provided in Section 4.5.

4.2. Methodology
An effective and efficient approach to obtain good quality data is to conduct a field survey by combining
several different methods (Freudenberger, 2008). The most appropriate combination of methods for this
research is determined by considering the objectives as well as constraints such as time, money and expertise
(Marsland et al., 2000). The objective of data gathering in this research is twofold. First, socio-economic
data is required to both obtain knowledge on the livelihood of the farmers and to parameterise the socio-
hydrological model with site specific data. Second, more qualitative data is needed on the farming practices
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of these farmers and their agricultural decisions to obtain a better understanding of the behavioural aspects.
The latter type of data will be used to analyse what factors influence the choices farmers make regarding their
agricultural practices and how they cope with climate variability.

In general, survey methodologies can be distinguished into two types, formal and informal surveys. For-
mal surveys are better to gather quantitative data, whereas informal surveys are better to gather qualitative
data (Kleih and Wilson, 2001). To obtain high quality data it is often recommended that prior to a quantitative
study a qualitative phase is conducted. This provides the opportunity to understand the vocabulary used by
the smallholder farmers as well as understanding their motivations and attitudes towards, in this case, their
agricultural behaviour (Marsland et al., 2000). Hence Focus Group Discussions( FGDs) were conducted prior
to a formal survey, in order to improve the survey’s design and questioning. The formal survey was in the
form of an individual household survey.

This section describes the methods used to answer the first sub-question (see Section 1.4). The methodol-
ogy consist of a field survey that composes two phases. In Subsection 4.2.1 the design of the FGDs, which
composes the first phase of the field survey, is described. The main goal of these FGDs is to obtain insightful
information from and about local farmers with respect to their farming practices, climate perceptions, and
climate adaptive behaviour. This knowledge is then used to improve the individual household survey’s de-
sign and questioning. The individual household survey composes the second phase of the field survey, and is
described in Subsection 4.2.2. The design of this survey is explained, as well as which statistical tests are used
for the data analyses.

4.2.1. Focus Group Discussions
The first phase of the field survey composes FGDs. A FGD is a Participatory Rural Appraisal (PRA) technique
to gather qualitative information. It is frequently used to gain an in-depth understanding of social issues
by learning about rural life and conditions from, with, and by rural people (Chambers, 1992). Bewket et al.
(2011) and Regassa et al. (2010), for example, used FGDs in order to study the climate variability perceived by
farmers in the Amhara region (amongst other regions in Ethiopia) and its agricultural impacts. In the same
way, FGDs are conducted for this research in the Gumera sub-basin in order to investigate how local farmers
perceive climate change and variability, how they behave upon this, and how this compares to what is found
in similar studies conducted in Ethiopia (see Figure 4.1). In total three FGDs have been conducted, each in a
different Kebele (i.e. the smallest level of local government in Ethiopia). The FGDs have been conducted in
(from west to east) Jigena, Geregera, and Shime (see Figure 4.3).

Figure 4.1: An impression of the Focus Group Discussion conducted in Geregera.
Made by author.

During a FGD, several diagrammatic
techniques are frequently used to simu-
late debate and record the results. Par-
ticipatory mapping, timeline, structured
direct observation, and seasonal calen-
dar, are some of these techniques, and
are shortly discussed (Cavestro, 2003).

Participatory mapping can be used to
depict infrastructures, natural resources,
land ownership, soil types or cropping
patterns. Local people create a map by
drawing or modelling current or histori-
cal conditions. This allows to collect lo-
cal people’s perceptions and to recognize
spatial relationships.

The approach of a timeline can be
used to discuss the most important
events in the community’s past. Local
histories will give a more detailed ac-
count of how things have changed or are changing, and can, for example, be developed for crops or pop-
ulation changes.
The methodology of "structured direct observations" allows a cross-check of findings of what people tell.
Sometimes people idealise a situation and tell things which are more a description of how things should be
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than how things are. Direct observations also provide the opportunity to generate on-the-spot questions in
direct interaction with the local people.

Although each of these techniques can (partly) provide the information desired, the use of a seasonal calendar
was thought to be most suitable for this research. The use of a seasonal calendar is a more complementary
approach compared to the other diagrammatic techniques. It provides the opportunity to obtain data re-
garding what decisions the smallholder farmers make, when and why, and is therefore used as the central
discussion tool during the FGDs. During such a discussion local people were encouraged to fill in the ma-
trix of the calendar. In this way the main objective, which is to learn about changes in farming practices
over the year and to show the seasonality of agricultural and non-agricultural activities, is reached (Cavestro,
2003). Variables such as rainfall distribution, labour, income and expenditure, food availability, agricultural
production, and planting and harvesting dates were drawn to show month-to-month variations and seasonal
constraints. By enabling this method information is obtained on how smallholder farmers allocate their time
as well as their labour in various activities. In addition, knowledge is gained on the frequency of occurrence
of certain weather patterns, such as dry and wet years, and whether, in the perception of the smallholder
farmers, this has changed over the last decades. Figure 4.2 shows a seasonal calendar created during one of
the FGDs.

Figure 4.2: A seasonal calendar created during the FGD conducted in Shime.
Made by author.

The target group for these FGDs
were smallholder farmers in the Gumera
sub-basin that grow crops by using ei-
ther rainfed agriculture or irrigation or
both. Ideally, contributions from both
male and female, and younger and older
household heads are gained to capture
a representative view of the population.
This provides a complete picture of com-
munity activities and the opportunity
to highlight differences between each
group. At the start of each FGD, gen-
eral questions, such as household size,
crop area, the crop types grown, the yield
obtained, and the purpose of farming,
were asked to get a basic overview of the
group of farmers attending the FGD. Sub-
sequently, the seasonal calendar was cre-
ated, by first asking the farmer’s defini-
tion of a bad year and how frequently they experience such a year. Based on this definition, for both an
average and a bad year, the weather characteristics, such as rainfall, temperature, and wind, were indicated
for each month. In addition, for both type of years, the farming practices, off-farm activities, as well as their
level of food insecurity throughout the year were indicated. Furthermore, the farmers were asked what adap-
tation strategies they take up to cope with changes in, for example, the start and length of the growth season,
and what drives them in their decision to alter their farming practices. Do they rely upon their own observa-
tions or do they decide upon a received weather forecast? If they, on the other hand do not adapt, what then
are the constraints or barriers that prevent them from changing their farming practices? A full overview of the
outcomes of each FGD can be found in Appendix A.

4.2.2. Design of the Individual Household Survey
The second phase of the field survey composes an individual household survey. This subsection describes
the design of the individual household survey by indicating what type of questions are asked, and where
the individual household survey is used for. Furthermore, it is explained how the required sample size is
determined, as well as in what way the survey is conducted. In addition, the statistical methods used to
analyse the data obtained are explained.
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The aim of the individual household survey is twofold. First, detailed information on the socio-economic
characteristics of smallholder farmers in the Gumera sub-basin is gathered to obtain knowledge on the liveli-
hood of the farmers and to parameterise the socio-hydrological model with site specific data. Secondly, more
qualitative data is needed on the farming practices of these farmers and their decision making to obtain a bet-
ter understanding of the behavioural aspects with respect to climate variability. As such, the hypothesis that
farmers adapting to climate variability are economically better off compared to non-adapting farmers can be
analysed. The more qualitative data will be used to analyse what factors influence the choices farmers make
regarding their agricultural practices and how they cope with climate variability. Reaching this objective can
either be done through a sample survey or that of a census. Due to time and money constraints a sample sur-
vey is conducted in this research whereby each household is visited once. The most widely used method for
collecting quantitative data is by conducting a questionnaire survey (Mukherjee, 1997). It provides a system-
atic, ordered way of obtaining information from respondents and enables precise and statistically analysable
data (Norman, 1995). The FGDs, described in Subsection 4.2.1, were used to improve the questionnaire and
to better incorporate the smallholder farmer perspectives within the questionnaire.

The first part of the questionnaire included questions regarding general demographic variables, such as gen-
der, age, experience, household size, income and expenditure, and level of education. In addition, questions
regarding their on- and off-farm activities, the crops they grow and the livestock they rear are asked. This pro-
vides the opportunity to distinguish between groups during the analysis, and observe possible differences in
their decision-making. The largest part of the questionnaire is ascribed to questions that give information
on the smallholder farmer’s perception of climate change and their behaviour with respect to climate vari-
ability. The exact questions asked and how they are formulated were based on the theoretical background
(see Subsection 2.1.2) and the outcomes of the FGDs, but were such that it remained within the scope of the
research and that it could still be used as input for the socio-hydrological model. In order to minimise errors
introduced by response fatigue, the time needed to conduct the survey should not be too long. Therefore, it
is decided to categorise some variables such that it makes it easier and quicker to fill in the survey. Farmer
experience is an example of a categorical variable, in which farmers could choose between six categories: 0-5
years, 6-10 years, 11-15 years, 16-25 years, 25-35 years, and more than 35 years. On average, the survey took
15-20 minutes. A full overview of the individual household survey can be found in Appendix B.

Required sample size
To make sure the results can be generalised over the larger population and to be able to appropriately perform
statistical analyses the respondents need to be representative for the larger population (Kelley et al., 2003).
Therefore, the farmers targeted for the household survey were selected by random sampling. To fall within
the target group the participant should be cultivating land within the Gumera sub-basin, and (s)he is the head
of a smallholder farmer household.

In addition, the study should contain sufficient statistical power in order to obtain unambiguous results. The
power of a study roughly refers to the chances of finding an effect in a study given that it exists in reality
(at the population level) (Brysbaert, 2019). The power of a study is increased by reducing the overlap of the
distributions of two samples. This is achieved by following two strategies.

The first strategy, and the one a researcher can most easily control, is to increase the sample size (Cohen,
1992a,b). A larger sample size results in increased power. In this research, the sample size was calculated by
the equation from Krejcie and Morgan (1970):

s = X 2N P (1−P )

E 2(N −1)+X 2P (1−P )
(4.1)

with:
s = required sample size
X2 = the table value of chi-square for 1 degree of freedom at the desired confidence level
N = the population size
P = the population proportion
E = the degree of accuracy expressed as a proportion (i.e. margin of error)

An important indicator for calculating the required sample size, is the population size N, which for this re-
search translates to the number of households in the Gumera sub-basin. The number of smallholder house-
holds in the Lake Tana sub-basin in 2015 was estimated at 661.423 households by ADSWE (2015a). With the
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QGIS software it was determined that the Gumera sub-basin covers 12.5% of the entire Lake Tana sub-basin.
Assuming the population density to be equally divided over the entire Lake Tana sub-basin, the number of
households in the Gumera sub-basin is approximated at 74.567 (i.e. 12.5% of 661.423 households). For a 95%
confidence level, the required sample size was calculated for varying population proportions and a margin of
error ranging from 5% to 15% (see Table 4.1). By minimizing the margin of error (i.e. E = 0.05), the smallest
required sample size, in order for the study to have sufficient power, was estimated at 382 households.

However, some researchers mention that looking
Pop. proportion E = 0.05 E = 0.1 E = 0.15

0,9 138 35 15

0,8 245 61 27

0,7 321 81 36

0,6 367 92 41

0,5 382 96 43

Table 4.1: Required sample size for varying population propor-
tions and margin of error E (significance level (α) = 0.05). Calcu-
lated with equation 4.1.

at the significance level alone is not adequate for de-
termining the required sample size (Brysbaert, 2019,
Sullivan and Feinn, 2012). Cohen (1992a), for exam-
ple, defined the statistical power of a significance test
as the long-term probability of rejecting the null hy-
pothesis, given the effect size in the population, the
chosen significance level, and the number of partic-
ipants tested. In research, the significance level and
power are often fixed at 0.05 and 0.80 respectively
(Beck, 2013), which makes the effect size the only fac-
tor that can affect sample size. Hence, the second strategy to increase power is to increase the effect size. The
effect size allows you to communicate the practical significance of these results rather than only examining
whether the results are likely to be due to chance as is done by the statistical significance (Sullivan and Feinn,
2012). The selection of an appropriate effect size is therefore essential. However, estimating the effect size is
rather difficult. Cohen (1992a) made a distinction between three types of effect sizes (i.e. Cohen’s d, hereafter
referred to as ‘d’): small effect sizes with d = 0.2, medium effect sizes with d = 0.5, and large effect sizes with
d = 0.8. In recent years, it has become clear that most effect sizes in psychology are smaller than 0.5. Two
large-scale replication studies of published findings pointed to an average effect size of 0.4 (Brysbaert, 2019).
In a study of Stewart et al. (2016), comprising a total of 4.493 participants, the effect of training, innovation
and new technology on African smallholder farmers’ economic outcomes and food security is researched. In
this research, effect sizes were found for the farmers’ levels of food security, ranging from 0.71 - 0.86, and for
farmers’ income, ranging from 0.12 - 0.26. However, Stewart et al. (2016) advised to be cautious with using
these effect sizes given the small sample and its risk of bias. Hence, it is rather difficult to obtain an accurate
value for the effect size from literature.

In behavioural sciences, statistical power is often neglected due to power analyses being too complex to per-
form (Mayr et al., 2007). This causes the interpretation of insignificant results to be very difficult. Therefore,
in this research, the software package GPower was used to determine the required sample size by taking into
account the statistical power. GPower is a freeware program that allows high-precision power and sample

Power Effect size
d = 0.1 d = 0.2 d= 0.3 d = 0.4 d = 0.5

0.80 3142 788 352 200 128

0.90 4206 1054 470 266 172

0.95 5200 1302 580 328 210

Table 4.2: Required sample size for varying power and effect size, cal-
culated with GPower (significance level (α) = 0.05) (Cunningham and
McCrum-Gardner, 2007).

size analyses (Cunningham and McCrum-Gardner,
2007). With an a priori power analysis, the sam-
ple size is computed as a function of the required
power level (1 - β), the significance level (α) and
the population effect size (d). The effect size in
this study is related to the increase in crop yield
due to a farmer adapting to climate variability.
Hereby, the sample size is dependent on the sta-
tistical test used. In this study, the independent
t-test was used frequently in order to check for
significant differences between different groups
of farmers. Enabling GPower, the sample size N is therefore calculated for a two-tailed t-test for two inde-
pendent groups and equal numbers in each group, with a 95% significance level, and power ranging from 80
to 95%. Since from literature (Stewart et al., 2016) it was not clear what effect size would be suitable for this
study, the sample size has been calculated for varying effect sizes (see Table 4.2. Considering a small effect
size would be favourable as a priori the true effect size is not known. However, the sample size increases
rapidly with decreasing effect size, ranging from 580 to 5200 for an effect size of 0.3 or lower. Collecting data
from such a large sample was not feasible for this study taking into account time and cost constraints. There-
fore, since an accurate estimation of the effect size is rather difficult, guidelines from literature were followed
and the average effect size of 0.4, indicated by Brysbaert (2019), is used in this study.
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Looking at the sample sizes shown in Tables 4.1 and 4.2, a sample size between 328 - 382 smallholder farmer
households is considered, with both the significance level and power at 95%, a margin of error of 0.05, and
effect size of 0.4. This is assumed to be adequate for performing a well powered study and to obtain practically
significant results. However, to account for missing respondents or badly conducted questionnaires, a higher
number was used, namely 400 respondents.

Conducting the Individual Household Survey
In order to obtain a representative dataset and to capture the heterogeneity between farmers within the study
area, the household surveys are divided amongst 11 Kebeles. Instead of selecting the Kebeles randomly, they
are purposively selected in order to get a representative sample of the entire population. Spatial geography,
and degree of cultivated land are taken into account when selecting appropriate Kebeles. This meant Kebeles
with, for example, only a small percentage of cultivated land were not selected as this does not generalize to
the region. The most eastern part of the area therefore is not represented as slopes are steep, population den-
sity is low and cropland only covers a small percentage. In addition, the Kebeles were selected such that both
ACZs (i.e. Wet Weyna Dega, and Wet Dega) were equally represented in proportion to their area and number
of households. However, due to COVID-19 induced logistical implications, the free choice of Kebeles was re-
stricted and resulted in choosing the most feasible ones. This is the reason no Kebeles in the north western
part of the study area were included. In addition, due to uncertainties whether or not some Kebeles could be
reached without further restrictions in time (due to COVID-19 restrictions), the number of household surveys
per Kebele was set to 40 in order to ensure the dataset would be large enough in case some Kebeles could not
be reached. Despite these restrictions, a relatively good representation of both ACZs (with respect to their
area and number of households) is obtained, in which the majority of respondents lives in the Wet Weyna
Dega (see Table 4.3).

Kebele Respondents Woreda

1. Aribayitu 28 Dera

2. Genamechawecha 41 Farta

3. Geregera 30 Dera

4. Jigena 38 Dera

5. Licha Arida 39 East Este

6. Mahirderamariyam 40 Farta

7. Shimagile Giorgis 39 East Este

8. Shime 40 Dera

9. Tebabarina 29 Dera

10. Wegedame 30 Dera

11. Werken 40 Farta

Wet Weyna Dega ACZ (west) 218

Wet Dega ACZ (east) 176

Total 394

Table 4.3: Number of household surveys conducted in each Kebele and ACZ for this research. Made by author.

The individual household survey has been conducted via ODK Collect (Hartung et al., 2010), and took ap-
proximately 20 minutes per survey. ODK Collect is an open source Android application that makes it possible
to program a questionnaire and conduct it without network connectivity. Due to COVID-19 induced logistical
implications it was not possible to conduct the household survey myself. Therefore, the household survey is
conducted by the help of several Agricultural Experts located in the Gumera sub-basin. These local Agricul-
tural Experts are experienced in conducting such a survey, and are in close contact with the local farmers.
The Agricultural Experts were instructed to interview households by random sampling, interviewing a cou-
ple of randomly chosen farmers distributed over multiple villages within one Kebele. As such, it is assumed
an unbiased representation of the total population would be obtained. Following this approach, a dataset
of 394 respondents is obtained (after excluding inadequate household surveys). The number of households
interviewed per Kebele and ACZ is shown in Table 4.3. The geographical spreading of household surveys
conducted is shown in Figure 4.3.
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Figure 4.3: Spatial overview of the location of the FGDs and of the respondents of this study’s individual household survey, both
conducted in the Gumera sub-basin. Made by author.

Methods of Statistical Data Analysis
The data obtained from the individual household survey is analysed using IBM SPSS Statistics 25 software
(IBM Corp., 2017). Prior to the actual analysis, the dataset is checked for errors, such as outliers, and are
either corrected or deleted as they can highly influence the outcome of the statistical analysis. Outliers are
defined as data points that differ significantly from other observations. They can be introduced by wrongly
interpreting the question, it can be a typo, or it can be a right answer but from a very atypical or unique
farmer that is not representing the rest of the population. In general farmers who do not grow crops are
excluded from the dataset. Farmers who do not rear livestock are kept in. Appendix B.3 gives an overview of
typical outliers that are dealt with to prevent them from influencing the outcomes of the statistical analysis.

Like other studies that focus on adaptation strategies of smallholder farmers (Ado et al., 2019, Motbainor
et al., 2016), descriptive statistics like the mean, standard deviation, frequencies and percentages, are used
to summarize the data collected and to provide a general picture of the farmer characteristics. Independent-
samples t-test (two-tailed) and chi-square test (in case of categorical variables) (Pallant and Manual, 2010)
were employed to test the null hypothesis (Ho) stating there not being a significant difference in, for example
the mean experience, education, capital, and time spend on agricultural activities, between two groups of
farmers, such as between male and female farmers, or between farmers in the lower and upper ACZ. Hereby,
the mean, standard deviation (SD), t statistic, p-value and the 95% confidence interval (CI) are consistently
provided. In the case of a comparison between multiple groups an analysis of variance (one-way ANOVA) is
conducted, whereby differences between the group means, for example the crop yield obtained by farmers
in different Kebeles, are analysed (Pallant and Manual, 2010). Again, by testing the null hypothesis it is anal-
ysed whether Ho can be accepted, meaning there not being a significantly difference between the groups of
farmers. Hence the alternative hypothesis (H1) states the group means are significant different. In case the
p-value is smaller than 0.05, Ho gets rejected, and the group means are assumed to be significant different.
Whenever a p-value is shown in this study, these are the hypotheses tested, unless stated otherwise.

Ho :µ1 =µ2 (4.2)

H1 :µ1 6=µ2 (4.3)



4.2. Methodology 24

Subsequently, statistical tests are conducted in order to find linkages between certain variables in order to
be able to explain the differences observed and to investigate what variables could explain the behaviour of
farmers. As such, the farmer characteristics, their perceptions, and uses of information sources are linked
with their climate adaptive behaviour. Multiple (stepwise) linear regression and binary logistic regression
are conducted in order to analyse which variables significantly influence the climate adaptive behaviour of a
farmer, and are explained in more detail below.

Multiple Linear Regression Analysis
Linear regression is a frequently used model in statistics to determine the relationship between a dependent
and independent variable. Multiple linear regression is an extension of this model, in such that it is used
to analyse the relationship between a dependent variable and multiple independent variables (Pallant and
Manual, 2010). As such, it can help to assess how much of the variance in a continuous dependent variable
can be explained by a set of independent variables. In this research, (stepwise) multiple linear regression is
used to assess which farmer characteristics (i.e. the independent variables) explain the variance in crop yield
(i.e. the dependent variable) obtained by farmers in the Gumera sub-basin. Since there is no single variable in
the individual household survey capturing "crop yield" in its entirety, a MRA is conducted for the major crop
types separately. The independent variables, from which is suggested to possibly influence crop yield, that are
taken into in the MRA are: altitude, crop area, education, inputs (i.e. chemical, fertiliser, and seed use), live-
stock, access to a weather forecast, climate adaptation, labour availability, irrigation, experience, capital and
borrowing money, and the distance to the closest market. Those independent variables that classify as sig-
nificant predictor for at least two different crops are assumed to be the main predictors for crop yield. When
presenting the results of the MRAs, three statistical variables are displayed. The unstandardised coefficient
(B) of each independent variable is presented, which indicates the change in the dependent variable for every
unit increase in the independent variable. The probability level (p) is provided, which tells whether or not an
individual independent variable significantly predicts the dependent variable. At last the R-square (R2) value
is shown, which indicates how much of the variance in the dependent variable is explained by the set of inde-
pendent variables. Prior to each multiple linear regression analysis, preliminary analyses were conducted to
ensure no violation of the assumptions of normality, linearity, multicollinearity, and homoscedasticity. Each
of these assumptions are explained in Appendix C.1. In addition, an explanation of the statistical variables,
as well as the full output of each MRA is included in Appendix C.1.

Binary Logistic Regression Analysis
Binary logistic regression was used to assess how well a set of predictor variables (which can be both categor-
ical and continuous variables) predict a categorical dependent variable (Pallant and Manual, 2010). In this
research, binary logistic regression is used three times. First, it is used to determine which farmer character-
istics (i.e. the predictor variables) predict the climate adaptive capacity of a farmer and to what extent (see
Subsection 4.4.8). Hereby, farmer characteristics that during the analysis are found to be possibly influencing
the climate adaptive capacity of a farmer are included. Repetitively, each farmer characteristic showing the
highest level of significance is removed from the analysis, until only significant predictor variables within the
model. The second time binary logistic regression is conducted, only those farmers that claim to adapt to
climate variability are taken into account. As such, it can be determined which farmer characteristics predict
the adaptation strategy a farmer takes up (see Subsection 4.4.9). Hereby, for each binary logistic regression,
it was consistently checked whether the sample data fits the normal distribution of the population, and thus
represents the data you would expect to find in the actual population. Prior to conducting each binary logistic
regression the data was checked for multicollinearity, since logistic regression is sensitive to high correlations
among the predictor variables. The full output of each binary logistic regression analysis discussed in this
section, as well as an explanation of the statistical variables, is presented in Appendix C.2.
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4.3. Results and Discussion of FGDs
In this section, the results of the FGDs will be discussed. Each separate subsection describes the major ob-
servations from one FGD. Subsection 4.3.4 provides an overview of the overall conclusions from the FGDs. A
full overview of the observations of each FGD is provided in Appendix A.

4.3.1. FGD 1: Geregera
Geregera is a Kebele located in the Wet Weyna Dega ACZ (i.e. the lower ACZ) in the Southwest of the Gumera
sub-basin at 1786m AMSL. This makes it being located close to the wetlands of Lake Tana. This has allowed
farmers to grow rice, although the main crop grown is maize. The major farming practice consist of a mixed
crop-livestock farming system. In an average year, the farmers sow maize at the start of the rainy season at the
beginning, and harvest in the beginning of October just after the cessation of rains has occurred. In addition,
they work on off-farm activities whole year round. The farmers mention a bad year, which they define as a
drought with a short rainy season from the end of June till halfway September, to occur every 10 years. To deal
with a bad year farmers use irrigation from the Gumera river. However, in case the Gumera river is dry, the
farmers decide to grow a short cycle crop, such as teff, and simultaneously change the planting (to the end
of June) and harvesting date. Off-farm work is taken up if rains do not come at all. Decisions regarding the
farming practices are based on their own observations of weather patterns, such as clouds and wind, since
no weather forecast is available to them.

4.3.2. FGD: Jigena
Jigena is a Kebele located in the Wet Weyna Dega ACZ (i.e. the lower ACZ) in the Southwest of the Gumera
sub-basin at 1790m AMSL, just west of Geregera and therefore closer to the wetlands of Lake Tana. Hence, the
main crop is rice in a mixed crop-livestock farming system. In addition, farmers work on off-farm activities
whole year through. Other crops like teff, onion and maize are grown under irrigation on a different plot. The
farmers claimed not to experience rain shortage and to not have been food insecure for the last 30 years. In-
stead of droughts, the major challenge is floodings. Extreme floodings are experienced by these farmers once
every 4 to 5 years. At times of such extreme floodings, farmers will get a flood warning and start building dikes
to prevent their plot from flooding. If the dikes do not hold, the farmer demolishes its crops, ploughs the land
again after the flooding has disappeared and starts growing short cycle crops like teff, vetch, or chickpeas.

4.3.3. FGD:Shime
Shime is a Kebele located in the Wet Weyna Dega ACZ (i.e. the lower ACZ) in the south of the Gumera sub-
basin at 2210m AMSL. Just like farmers in Jigena and Geregera, the main farming system practised by farmers
in Shime is that of mixed crop-livestock. The main crop grown by the farmers is teff, besides maize, potato
and barley, due to higher altitudes. Throughout the rainy season farmers are provided with a weather forecast,
upon which they determine what crop to grow and when to sow. During an average year the rains start at the
beginning of May and last until the end of September. In comparison with farmers in Jigena and Geregera,
farmers in Shime seem to have more difficulties to become food secure. Food insecurity is experienced by
these farmers from December till March. Whenever a bad year happens, defined by the farmers as a drought
with a short rainy season, farmers will switch to a short cycle crop, such as potato or teff. In such a year, these
farmers claimed to face food insecurity all year round, reaching its peak during the rainy season from July
till September. On top of that, during a bad year, no off-farm labour is available for farmers in Shime, which
makes it impossible for them to adapt to a bad year by conducting off-farm activities, as is done by farmers
in Geregera.

4.3.4. Conclusion and Assumptions from the FGDs
By conducting the FGDs more local information is obtained regarding the farming practices, climate per-
ceptions, and climate adaptive behaviour of farmers in the Gumera sub-basin. It is observed there being
similarities between farmers in different Kebeles, but also quite some heterogeneities have been discovered.

Although Geregera, Jigena, and Shime are located relatively close to each other, large heterogeneity be-
tween farmers in these three Kebeles is observed during the FGDs. Not only do farmers in each Kebele grow
a different main crop, they also rely upon different information sources (i.e. own observations of weather
patterns or access to a weather forecast), which could induce different behaviour with respect to climate vari-
ability. In addition, farmers in, especially, Jigena face different climatic challenges. On top of that, whereas
farmers in Jigena and Geregera mention to be food secure throughout the entire year, and use irrigation as
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a coping mechanism, farmers in Shime mention to be food insecure from December till March instead. In a
drought year they even mention to be food insecure whole year through, in which food insecurity is highest
in the months July till September. At first sight, altitude and geographic location seem to play an important
role in all of these facets, as the location of farmers in Jigena and Geregera close to Lake Tana allow them to
grow rice. This makes them vulnerable to floodings, unlike farmers in Shime who experience droughts as the
main climatic challenge instead. Taking into account all of these differences observed in farmer characteris-
tics between farmers in the three different Kebeles, the assumption is made that there are largely two types
of farmers. Farmers growing rice living in the most western part of the Gumera sub-basin close to Lake Tana
and for whom floodings compose the major climatic challenge, and farmers not growing rice living at higher
altitudes and defining a bad year as a drought. However, since only three FGDs have been conducted in the
western and southern regions of the Gumera sub-basin, little is known about farmers in the northern and
eastern regions, which are just like farmers in Shime living at higher altitudes away from Lake Tana. Suggest-
ing that the type of climatic challenge (i.e. floodings or droughts) is induced by location and altitude, and that
this highly characterises a farmer and his or her agricultural behaviour, it is assumed that farmers in Shime
are the most representative farmers for farmers in the rest of the Gumera sub-basin in which no FGD has
been conducted.

Despite the differences between farmers in different Kebeles, similarities are also observed. As such, the
adaptation strategies taken up by farmers in each Kebele to cope with climate variability are rather simi-
lar. Changing crop type (albeit with different crop types) and shifting planting and harvesting dates are
amongst the major adaptation strategies. In addition, supplementary irrigation and changing to off-farm
non-agricultural activities are also adopted, but mainly by farmers in Jigena and Geregera.

4.4. Results and Discussion of Individual Household Survey
From the FGDs discussed in Section 4.3, heterogeneity between farmers in different Kebeles is observed with
respect to the types of crops grown, the climatic challenges faced, and the level of food security. This resulted
in the assumption that their are largely two groups of farmers within the Gumera sub-basin, namely rice
growing farmers located close to Lake Tana facing floodings as the major climatic challenge, and non-rice
growing farmers in the rest of the Gumera sub-basin facing droughts. On the other hand, similarities were
observed with respect to the type of adaptation strategies taken up in order to cope with climate variability,
which mainly consisted of changing the crop type and the planting and harvesting dates. However, since the
FGDs have only been conducted in the western part of the Gumera sub-basin, this is a largely fragmented
picture of farmers throughout the Gumera sub-basin.

In this section the results of the individual household survey will be presented and discussed in order
to obtain a better understanding of the climate adaptive behaviour of farmers throughout the Gumera sub-
basin. The design of this survey and how it is conducted is described in Subsection 4.2.2. In addition, it
includes an explanation of the statistical tests that are used to analyse the individual household survey.

In this section, first an overview of the demographics, socio-economic status, and farming practices of the
farmers will be presented in Subsections 4.4.1 and 4.4.2. Differences between farmers will be shown by clus-
tering upon Kebele and ACZ in order to analyse the spatial heterogeneity in the Gumera sub-basin observed
during the FGDs (see Subsection 4.4.3). Hereby, the focus is on mainly crop yield, as it is seen as the main
indicator for agricultural productivity, which is stated by the United Nations (2015) to be key to end hunger,
achieve food security and promote sustainable agriculture. Subsequently, a more thorough analysis on cli-
mate perceptions and related behavioural aspects will be discussed, as well as the information farmers use to
make their decisions (see Subsections 4.4.5 - 4.4.9).

4.4.1. Demographics, Socio-Economic Status, and Labour
This subsection provides an overview of the general characteristics of farmers in the Gumera sub-basin with
respect to demographics, experience, education, economic status, and labour.

In total 394 farmers have been interviewed. Clustering on ACZs (discussed in Section 3.1), the slight majority
of these farmers (55.3%) live in the lower Weyna Dega ACZ, and 46.7% live in the upper Dega ACZ. With
reference to Woredas (see Chapter 3, Figure 3.1), half of the farmers live in Dera (49.5%), one third lives in
Farta (31%), and 19.5% lives in East Este. Fogera is not represented in this study. The large majority of farmers
are male household heads, with only 48 being female headed (12.2%) (see Table 4.4). This corresponds to the
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Male [µ, σ] Female [µ, σ] Total [µ, σ]

Nr of farmers 346 (87.8%) 48 (12.2%) 394

Experience
<15 years 16.2% [10.1, 3.51] 33.3% [10.2, 3.0] 18% [10.1, 3.4]

15-35 years 44.9% [24.8, 5.22] 27.1% [27.8, 5.4] 43% [25, 5.3]

>35 years 38.8% 39.6% 39%

Education
Illiterate 55.7% 79.2% 58%

Literate 33.6% 16.7% 32%

Educated 10.7% 4.2% 10%

Table 4.4: Differences between female and male farmers in the Gumera sub-basin with respect to population size, farming experience,
and education. Experience is a categorical variable as explained in Subsection 4.2.2, therefore the mean (µ), and standard deviation (σ)
come from narrower bins.

13% of female headed households found in the Tana sub-basin Land Use Planning and Environmental Study
Project (ADSWE, 2015a).

The average farmer in the Gumera sub-basin is 48 years old (SD = 9.8), has 28 years of experience (SD =
11.5), and has had no education. Experience, in this research, is defined as the number of years a farmer is
farming as the head of the household. In terms of education, only 10% followed at least one year of education.
The majority (58%) was illiterate, whereas 32% was able to read and write. Here a difference is seen in gender,
in which almost 80% of female farmers was illiterate compared to 55.7% of male farmers. In terms of experi-
ence, female farmers are slightly less experienced than male farmers, albeit insignificant. Overall, almost 40%
of all farmers have more than 35 years of experience (hereafter referred to as "experienced farmers"), whereas
only 18% has less than 15 years of experience (hereafter referred to as "slightly experienced farmers"). Farm-
ers that have 15 to 35 years of experience are referred to as "moderately experienced farmers". Almost 40% of
all educated farmers are slightly experienced. This suggests that less experienced farmers are more likely to
have followed at least one year of education.

The household size ranges from 2 to 10 family members, with 5.45 family members on average, from which
2.7 members are dependents. Dependents are defined as family members outside the range of 15-65 years
and are therefore considered to be outside the workforce. Male farmers have significantly larger households
than females, with 5.59 and 4.52 family members respectively. From all respondents, only two mentioned not
to grow crops but to only rear livestock, and are thus removed from the dataset. Five farmers say to only grow
crops. Hence, the large majority (98.7%) of farmers practices a mixed crop-livestock farming system. This
agrees with what is found in literature (see Section 3.3).

Per household there are, on average, 3.8 family members working on the farm, including the household
head. Since on average 2.75 family members are within the workforce, this suggests that on an average farm
one dependent helps with on-farm agricultural activities. The total on-farm workload of a family is 15 per-
sondays per week on average, which means that each family member works approximately 4 days per week
on the farm. Most labour is spend on growing crops with 89% of the farmers spending 7-10 hours per day
on their crops. The time spend on livestock is a bit less, with 75% of the farmers spending 1-3 hours per day.
Domestic labour, such as household activities, and collecting water and firewood, also accounts for 1-3 hours
per day for 83.5% of all farmers. A clear difference on time spend per activity is seen between gender. Female
farmers spend significantly more time on domestic labour compared to male farmers, with 5.2 and 2.2 hours
per day respectively. They also spend significantly less time on cropping activities, with 6.8 hours/day and
8.4 hours/day, respectively.

Less than 2% of the households have employees working on the farm, and only 3 farmers mentioned work-
ing for another farm. Since, this is such a small percentage of the sample, employees and off-farm agricul-
tural activities will be neglected in the remaining of this study. Off-farm non-agricultural activities are more
favourable instead. Roughly 30% of all farmers say to be working on such activities for one day a week, from
which 81.5% of these farmers live in the South West of the Gumera sub-basin in the Kebeles Tebabarina, Arib-
ayitu, Wegedame, and Shime. On average they earn 46 Birr/day. Thus, a clear distinction between farmers
in different Kebeles is observed with respect to whether or not off-farm non-agricultural activities are con-
ducted. This distinction between farmers in different Kebeles was also observed during the FGDs, albeit that
the composition of Kebeles is somewhat different. During the FGDs it were mainly farmers in Jigena and
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Geregera that mentioned to work on off-farm non-agricultural activities the whole year through, whereas
farmers in Jigena and Geregera interviewed via the individual household survey barely mention to work on
such activities. This could be due to farmers attending at the FGDs living closer to a larger village or market
where more off-farm non-agricultural activities could be available.

In terms of capital, an average farmer in the Gumera sub-basin has 18.121 Birr. One fifth of all farmers
borrows money, which is 10.850 Birr/year on average. With 21.9%, male farmers show significantly higher
capital than female farmers. In addition, farmers in the lower ACZ are observed to have significantly higher
capital (21.674 Birr/household) than farmers in the upper ACZ (13.721 Birr/household), a difference of 60%.
In addition, farmers in the lower ACZ are more likely to borrow money. It can thus be suggested that farm-
ers in the lower ACZ are economically better off than farmers in the upper ACZ. This is partly induced by
rice growing farmers, which are all located in the lower ACZ, as they show significant higher capital (22.300
Birr/household) than non-rice growing farmers (17.300 Birr/household). Furthermore, a positive correlation
is observed between capital and the level of education. The relationship between farmer experience and cap-
ital shows a different trend, in which moderately experienced farmers show highest capital. The amount of
farmers borrowing money shows a negative correlation with experience, which suggests that farmers with
less experience are more likely to borrow money.

4.4.2. Farming Practices
The average farm size of a household is 1.40 hectares, with a range of 0.25 to 6.5ha. Although male farmers
have a slightly larger farm size (1.41 ha) compared to female farmers (1.31 ha) no significant difference is ob-
served. In addition, no difference in average farm size is observed between farmers in the lower and upper
ACZ. On average 1.16 hectares is assigned to crops, with a range of 0.125 to 4 hectares. Hereby, positive cor-
relations are observed with experience and education. As such, farmers with less than 15 years of experience
are observed to have significantly smaller crop area (0.83 ha) compared to farmers with more than 15 years of
experience (1.24 ha). This correlation is probably related to land reform laws introduced in the 1990s (Headey
et al., 2014). In addition, illiterate farmers show significant smaller crop area (0.95 ha) compared to farmers
that are either literate, or have had some form of education (1.45 ha). With respect to grazing land, the average
farmer has 0.26 ha assigned to grass land for livestock. However, 88 farmers (21%) rearing livestock mention
not to have a distinct grazing area. From this it can be suggested these farmers have their livestock grazing
on communal areas as described in Subsection 3.3.2. The average livestock density for farmers claiming to
have private grazing area is 16.46 TLU/ha. This is rather high compared with the observed livestock density
of 9.4 TLU/ha by Amsalu and Addisu (2014) in the Gumera-Ribb watershed. Therefore, it is assumed that all
farmers with a private grazing area also make use of communal grazing areas.

ACZ Kebele Farmers Maize Teff Barley Wheat Millet Potato Onion Rice

1 Jigena 38 97% 31% 0% 0% 0% 0% 100% 100%

Geregera 30 100% 50% 0% 0% 83% 0% 33% 76%

Tebabarina 29 100% 100% 93% 6% 17% 13% 3% 0%

Aribayitu 28 100% 82% 32% 0% 57% 10% 0% 0%

Shime 40 100% 100% 32% 7% 72% 100% 0% 0%

2 Wegedame 30 100% 96% 26% 33% 6% 46% 0% 0%

Licha arida 39 100% 100% 0% 100% 0% 46% 15% 0%

Shimagle giorgis 39 92% 100% 74% 100% 0% 100% 7% 0%

Mahirderamariyam 40 100% 100% 92% 47% 15% 87% 10% 0%

Genamechawecha 41 100% 100% 68% 0% 58% 97% 36% 0%

Werken 40 97% 92% 92% 25% 0% 60% 0% 0%

Table 4.5: Crops grown by the respondents of the household survey conducted in the Gumera sub-basin, indicated per Kebele. The
percentages represent the share of farmers within the specific Kebele claiming to grow the specific crop type. The left column indicates
in which ACZ the Kebele is located, whereby ACZ 1 indicates the lower ACZ called "Wet Weyna Dega", and ACZ 2 indicates the upper ACZ
called "Wet Dega".

Based on literature (see Section 3.3) and the FGDs (see Section 4.3) the major crop types mentioned by farm-
ers are included in the household survey. This resulted in two crop types: cereal crops, including maize, teff,
barley, wheat, millet, sorghum and rice, and root crops, including potato and onion. Table 4.5 provides an
overview of the crops grown by farmers per Kebele and ordered by ACZ.



4.4. Results and Discussion of Individual Household Survey 29

This shows that maize and teff are the major crops grown by almost all farmers. However, respectively 31%
and 50% of farmers in Jigena and Geregera do not grow teff. Instead rice is grown by almost all of these
farmers, due to them being close to the wetlands of Lake Tana, which was also observed during the FGDs.
Furthermore, barley is grown by almost 50% of all farmers, in which farmers in the upper ACZ are significantly
more likely to grow barley, X2 (1, N=394) = 9.915, p = 0.002. Wheat and millet are grown by less than 30% of all
farmers, whereas sorghum (not included in Table 4.5) is not grown by any of the surveyed farmers.

With respect to root crops, potato is the dominant crop and grown by a slight majority of all farmers
(54%). Similar to barley a clear distinction is seen between farmers in the different ACZs, in which farmers
in the upper ACZ are significantly more likely to grow potato, X2 (1, N=394) = 17.128, p = < 0.001. Onion is
less prevalent, and only grown by 19% of the farmers. For simplicity, it is decided to only keep in the most
prevailing crops for the remaining of this research. Wheat, millet, sorghum and onion are therefore not taken
into account in the further analysis. Rice, although not one of the prevailing crops, is left in as it is the main
crop for especially farmers in Jigena and Geregera as was observed in the FGD (see Subsection 4.3.2). Hence,
the crops taken into account during this research, in order of the number of farmers growing the crop, are
maize, teff, potato, barley, and rice.

Supplementary irrigation is used by 43% of all farmers, in which quite a distinct division is observed be-
tween Kebeles and crop types. Except for maize, irrigation is barely used to grow cereals. Also rice is not
irrigated as it is grown in the wetlands. Potato is the major irrigated crop. Furthermore it is observed that
almost all farmers in Jigena use irrigation for all crop types, whereas also the majority of farmers in the east-
ern part of the Gumera sub-basin (i.e. the Kebeles Licha Arida, Mahirderamariyam, Genamechawecha, and
Werken) use irrigation.

With respect to livestock, cattle is the most dominant type and owned by almost every farmer (98%). The
slight majority of farmers own sheep, and one third owns donkeys. Goats and mules are owned by 11 and
5% of all farmers respectively. No distinct differences are found between male and female farmers. However,
when converting livestock to TLU (Tropical Livestock Unit) it is observed that male farmers (M = 3.59, SD =
1.89) own significantly more TLU compared to female farmers (M = 2.81, SD = 1.80; t (393)= 2.685, p = 0.008,
two-tailed). A large difference can be noticed when comparing livestock per Kebele. A minimum of 2 TLU
per farmer is seen in the Kebeles located in Farta Woreda, in the north east of the Gumera sub-basin, whereas
farmers in Geregera own almost 6 TLU on average. This also results in a significant difference between farm-
ers in the upper ACZ (M = 3.27, SD = 1.72) and lower ACZ (M = 3.67, SD = 2.00; t (394)= 2.098, p = 0.037,
two-tailed), in which farmers in the lower ACZ own more livestock on average. The income and expenditure
are rather equal for each type of livestock and is 1500 and 1000 Birr per unit per year, respectively. A large
share of farmers, 84%, sells livestock in times of food insecurity to be able to have enough liquidities to buy
food.

4.4.3. Observed Crop Yield Obtained by Smallholder Farmers
This subsection provides an overview of the observed crop yields of the surveyed farmers in the Gumera sub-
basin. The heterogeneity observed between farmers in different Kebeles is explored.

Crop yield is one of the most important output parameters for a farmer, and has great influence on the
households food security and economic well-being. For each crop type taken into account in this research,
Table 4.6 gives the average, minimum and maximum crop yields obtained by farmers in the Gumera sub-
basin, as well as the standard deviation. This is

Mean SD Min Max Census 2015

Barley 23.8 7.6 7 39 17.3

Maize 30.7 7.7 9 60 35.8

Potato 151 48.3 30 320 154.4

Rice 40.2 1.9 30 44 29.4

Teff 13.8 4.7 3 26 15.8

Table 4.6: Average, minimum, and maximum crop yield obtained by re-
spondents of the household survey conducted in the Gumera sub-basin,
checked with average crop yields observed in the Amhara region in the
census conducted by Central Statistical Agency (2015). All crop yields pre-
sented are in Qt/ha. SD = standard deviation. 1 Qt (quintal) = 100 kg.

checked with observed average crop yields for
the Amhara region in 2015 during a sample sur-
vey conducted by the CSA of Ethiopia (Cen-
tral Statistical Agency, 2015). It can be con-
cluded that for most crops the observed average
yield is comparable with what is found by the
CSA. However, the observed production of rice
is relatively high in the Gumera sub-basin. This
could be due to the fact that rice is only grown in
Jigena and Geregera, which are supposedly high
performing Kebeles.
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Figure 4.4: Average crop yields obtained by farmers in each Kebele per crop type. The horizontal red line represents the observed average
crop yield over all respondents of the household survey conducted in the Gumera sub-basin. On top of each bar the number of farmers
within the Kebele growing the certain crop are indicated. All crop yields presented are in Qt/ha. 1 Qt (quintal) = 100 kg. Made by author.

Although the average yields show normal values, a large range of minimum and maximum crop yields is
observed. This would suggest there existing large heterogeneity in terms of crop yield obtained by farmers
throughout the Gumera sub-basin. This could be due to climate variability since most farmers fully rely
upon rainfed agriculture. A second explanation could be the large altitude differences between Kebeles in
the Gumera sub-basin, which can have large effects on crop growth. Potato and barley, for example, perform
better at higher altitudes, which could lead to large differences between farmers in the higher and lower ACZ.
For each crop type the average crop yield obtained per Kebele is indicated in a bar plot shown in Figure
4.4. It can be observed there being large differences between farmers in different Kebeles within the Gumera
sub-basin. As mentioned, this could be due to the altitude differences between the Kebeles. As such, it can
be observed that it are especially farmers in the eastern Kebeles (i.e. Shimagle Giorgis, Mahirderamariyam,
Genamechawecha, and Werken) that perform above average, with respect to barley, maize, and teff. In the
case of potato, farmers in Aribayitu (located in the lower ACZ) show exceptional high yields. However, due to
the very small sample size, the high yields are not very reliable. Hence, it are especially farmers in the upper
ACZ, living in the Kebeles Wegedame, Mahirderamariyam, and Genamechawecha that obtain high potato
yields.

However, there are multiple other factors that could induce these differences. Labour availability and the
number of livestock owned by a farmer could be important factors. In addition, input variables such as seed
usage, whether or not fertiliser and chemicals are used and in what proportions, but also crop area, irrigation
and soil fertility could have major influence on the crop yield obtained by a farmer. However, soil fertility is
out of scope of this research and therefore not taken into account.

4.4.4. Main Predictors for Crop Yield
This subsection presents and discusses the results of the (stepwise) multiple regression analyses conducted
(see Subsection 4.2.2) in order to discover which factors influence the crop yield of a farmer most. Table 4.7
shows the significant predictors for the yield of each crop type. A full overview of the output of each of the
MRAs is included in Appendix C.1.
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Predictors B p R2

Barley Constant 18.168 0.000

Climate adaptation 6.753 0.000

Fertilizer use -0.023 0.000

Labour availability 1.018 0.010 0.452

Maize Constant 25.025 0.000

Weather forecast 5.449 0.000

Crop area 2.782 0.004

Market distance -0.404 0.002

Climate adaptation 3.279 0.042 0.268

Potato Constant 178.159 0.000

Weather forecast -48.944 0.000

Irrigation -35.002 0.001

Chemical use 29.810 0.025

Experience -1.334 0.004

Seed use 0.013 0.010 0.445

Teff Constant 11.480 0.000

Weather forecast 5.304 0.000

Fertilizer use -0.016 0.000

Chemical use 2.282 0.000

Crop area 1.620 0.002

Experience 0.068 0.007

Capital -6.3E-05 0.031 0.651

Table 4.7: The main predictors for yield per crop type obtained from the
multiple regression analyses, in which all farmers are included (n=394).
Checked for all criteria. Per crop type the predictors are ranked on R2

change from top to bottom. An explanation of the statistical variables (i.e.
B, p, and R2) are explained at the end of Subsection 4.2.2. The output of
each MRA is included in Appendix C.1.

It can be observed that 6 variables are suggested
to be significant predictors for at least two dif-
ferent crops, namely access to a weather fore-
cast, fertiliser use, adaptation to climate vari-
ability, crop area, chemical use, and farmer ex-
perience. Hence, these variables are assumed to
be the main predictors for crop yield. Fertiliser
use is the only main predictor showing a nega-
tive correlation with crop yield (for barley and
teff), whereas adaptation to climate variability
(for barley and maize) and crop area (for maize
and teff) show a clear positive correlation on
crop yield. Farmer experience and access to a
weather forecast have positive effects on maize
and teff yields, but show a negative correlation
with yield of potato. The reason for farmer
experience and the access to a weather fore-
cast showing opposite correlations for potato
in comparison with the other crop types is not
completely clear. However, a possible explana-
tion could be that potato is a relatively new crop
in the Gumera sub-basin. Hence, experienced
farmers could be less familiar with growing this
type of crop compared to other crops, and the
value of having a lot of experience would there-
fore diminish. However, the negative correla-
tion of potato yield with access to a weather
forecast is hereby not explained.

In Subsection 2.1.2 it was explored that the
farmer experience and access to weather infor-
mation are related to the farmer’s climate perception, which was suggested to influence the climate adap-
tive behaviour of farmers. Since the focus of this research is on the climate adaptive behaviour of small-
holder farmers, the main predictors, namely access to a weather forecast, adaptation to climate variability
and farmer experience, are the most relevant predictors to look at. For each of these predictors the influence
on crop yield will be further analysed.

Access to a Weather Forecast
During the individual household survey the farmers
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Figure 4.5: A horizontal bar chart showing the percentage of sur-
veyed farmers per Kebele that have access to a weather forecast.
Made by author.

are asked if they receive or have access to a weather
forecast and whether or not they use it during their
decision making. Almost 30% of all surveyed farm-
ers claimed to have access to a weather forecast. Of-
ten this weather forecast is obtained via the Agricul-
tural Experts on Kebele level, which on their turn
receive the information from meteorological sta-
tions or agricultural agencies on Woreda level. Only
in Geregera (66.7%), Jigena (68.4%) and Shimagle
Giorgis (100%), the majority of farmers receives a
weather forecast (see Figure 4.5). In other Kebeles,
either none, or up to 29% of all farmers receive a
weather forecast. The weather forecast mostly com-
prises information regarding the amount of rainfall,
and the timing of the onset and cessation of the
Meher season. In Jigena also a flood warning is part
of the weather forecast. Furthermore, some farmers obtain information regarding the length of the Meher
season and what crop to grow. Almost two third of these farmers receive a weekly weather forecast all year
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round, whereas other farmers receive a weekly weather forecast only during the extend of the rainy season,
which ranges from April till September.

Two third of the farmers receiving a weather forecast fully or partly base their agricultural decisions upon
this information. Interestingly, it were especially farmers living in the upper ACZ that use the weather fore-
cast information (85.5%) for their agricultural decisions. In comparison, 92% of farmers not using weather
forecast information during their decision making live in the lower ACZ, from which the majority (73%) lives
in Jigena and Geregera. This could possibly be due to the fact that in these lower altitude regions the weather
forecast is more likely to be used as a flood warning during the growth season when agricultural decisions
prior to the growth the season are already made. This is also what was observed during the FGD conducted
in Jigena (see Subsection 4.3.2). It can thus be suggested that the large majority of non-rice growing farmers
receiving a weather forecast use the forecast information for agricultural decisions.

Adapting to Climate Variability
In total, 12.4% (i.e. 49 farmers) of all surveyed
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Figure 4.6: A horizontal bar chart showing the percentage of sur-
veyed farmers per Kebele that claim adapt to climate variability.
Made by author.

farmers claimed not to have made any adjustments
to their farming practices in the last 10 years in or-
der to cope with the year-to-year variability of the
rainy season. Hence, it is assumed these farmers do
not adapt to climate variability. This same group of
farmers (plus 7 other farmers, 14% in total) claim
not to have made any adjustments to long term
changes in the rainy season over the last 30 years.
All of these farmers are located in the western part
of the Gumera sub-basin in the Kebeles Aribayitu,
Geregera, Shime, Tebabarina, and Wegedame, from
which only the latter is located in the upper ACZ
(see Figure 4.6). In addition, the majority of farmers
who do not reconsider their farming practices every
year again, also do not take up adaptation strategies.
Comparing Figure 4.6 with Figure 4.5 it can be ob-
served that the Kebeles showing a relatively low share of adapting farmers coincide with Kebeles in which
barely any farmer has access to a weather forecast. Furthermore, none of the non-adapting farmers mention
to have access to a weather forecast. This means that all farmers receiving a weather forecast are actually
adapting to climate variability.

Farmer Experience
The average experience of a farmer in the Gumera
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Figure 4.7: A bar chart showing the average years of experience of a
farmer per Kebele. Made by author.

sub-basin is 28 years. However, as is shown in Figure
4.7, quite some variation in experience can be ob-
served between farmers in different Kebeles. A clear
division is seen by comparing farmers clustered by
the ACZ. In general, farmers in the Dera Woreda (i.e.
the lower more western part of the Gumera sub-
basin), especially rice-growing farmers in Jigena and
Geregera, have less experience compared to non-
rice growing farmers located at higher altitudes in
Farta and East Este Woreda. As an example, farm-
ers in Werken (37 years on average) have almost
twice as much experience compared to farmers in
Jigena (17.5 years on average). No clear explanation
is found for this distribution, but it again suggests
that rice-growing farmers in Jigena and Geregera are
a different type of farmer compared to the rest of the Gumera sub-basin. Comparing Figure 4.7 with Figure
4.6 it is observed that it are mostly those Kebeles with low experience who are non-adapting. This is also
what is observed when conducting an independent-samples t-test, from which can be suggested that farm-
ers adapting to climate variability (M = 28.81, SD = 11.79) are more experienced than non-adapting farmers
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(M = 22.98, SD = 7.89; t (394)= -4.507, p < 0.001, two-tailed). This difference gets even bigger if you do not
take into account non-rice growing farmers, which all claim to adapt to climate variability. No correlation
was found between farmer experience and having access to a weather forecast.

The effect of the main predictors on crop yield
Figure 4.8 presents the differences in crop yield between farmers grouped by the three main predictors for
crop yield on which is the focus in this research: access to a weather forecast, adaptation to climate vari-
ability and farmer experience. In Figure 4.8a, it can be observed that for almost all cereal crops, except for
rice, farmers with access to a weather forecast show higher yields compared to farmers without access to a
weather forecast (see Figure 4.8a). An independent-samples t-test showed the difference for maize (mean
difference = -7.45, 95% CI: -9.40 to -5.51) and teff (mean difference = -6.41, 95% CI: -7.47 to -5.36) to be sig-
nificant (p < 0.001), whereas the difference observed for barley yield (mean difference = -1.50, 95% CI: -3.44
to 0.44) was insignificant. The opposite relationship between crop yield and access to a weather forecast was
observed for potato, the major root crop grown in the Gumera sub-basin, for which farmers without access to
a weather forecast show significantly higher yields (mean difference = 31.16, 95% CI: 19.69 to 42.63) compared
to farmers with access to a weather forecast (p < 0.001).
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(a) Access to a weather forecast
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(b) Adaptation to climate variability
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(c) Farmer experience

Figure 4.8: Differences in crop yield between farmers grouped by a) access to a weather forecast, b) climate adaptation, and c) experience.
The number of farmers is shown at the top of each bar. All crop yields presented are in Qt/ha. 1 Qt (quintal) = 100 kg. Made by author.

Clustering farmers by climate adaptation (see Figure 4.8b), the group of non-adapting farmers shows signifi-
cant lower yields for all cereal crops (p < 0.001) compared to adapting farmers. In addition, adapting farmers
show higher yields for potato compared to non-adapting farmers, albeit it a insignificant difference. This is
most likely due to the small number of non-adapting farmers growing rice (n=10), causing the reliability of
crop yield to be rather low. Since only 10 potato growing farmers (4.7%) claim to be non-adapting, which is
21% of the non-adapting farmers, potato could be assumed to be and adaptive crop amongst non-rice grow-
ing farmers, from which 71% grows rice, a significant difference, X2 (1, N=333) = 43.103, p < 0.001. In the same
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way, it could be suggested that growing rice might be an adaptation strategy on itself, since all rice growing
farmers are adapting as well.

Farmer experience shows a positive correlation with crop yield for all cereal crops but rice (see Figure 4.8c).
In which farmers with more than 35 years of experience show significantly higher yields for barley, maize,
and teff, compared to farmers with less than 35 years of experience (p < 0.001). In the case of potato, the
opposite pattern is observed, as the group of farmers with less than 15 years of experience show significantly
higher yields (p < 0.01), compared to farmers with more than 15 years of experience. However, the reliability
of the potato yield obtained by slightly experienced farmers is doubtful due to the small sample size (n=22).
Therefore, the observed negative correlation between experience and potato yield is not very strong.
Figures 4.5 - 4.8 have resulted in a few interesting observations:

• Non-rice growing farmers living in the lower ACZ are most likely not to have access to weather forecast,
least likely to adapt to climate variability, and are less experienced.

• All farmers with a weather forecast adapt to climate variability.

• Potato can be suggested to be the main adaptive crop, since, in contrast with adapting farmers, it is
barely grown by non-adapting farmers.

• Climate adaptation, access to a weather forecast and farmer experience all show a positive correlation
with yield of cereal crops.

• Yield of potato shows a negative correlation with access to a weather forecast. A weak negative cor-
relation is found with farmer experience, whereas a weak positive correlation is found with climate
adaptation.

The observation that all farmers with access to a weather forecast are adapting to climate variability provides
the opportunity to analyse the effect of having access to a weather forecast on the crop yield of adapting
farmers. Hence the farmer experience is left out of this analysis. The farmers are hereby clustered into the
following three groups:

• Group 1: Non-adapting farmers without access to a weather forecast (N = 49)

• Group 2: Adapting farmers without access to a weather forecast (N = 229)

• Group 3: Adapting farmers with access to a weather forecast (N = 115)
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Figure 4.9: Difference in yield for each crop type between farmers grouped by both access to a weather forecast and climate adaptation.
The number of farmers is shown at the top of each bar. All crop yields presented are in Qt/ha. 1 Qt (quintal) = 100 kg. Made by author.
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Figure 4.9 shows the differences in crop yield after clustering the farmers accordingly. An independent-
samples t-test shows that adapting farmers with access to a weather forecast show significantly higher yields
for both maize (M = 34.78, SD = 7.59) and teff (M = 18.11, SD = 4.43), compared to adapting farmers without
access to a weather forecast (maize: M = 29.88, SD = 6.94; t (339)= -5.915, p < 0.001, two-tailed, teff: M = 12.78,
SD = 4.01; t (294)= -10.129, p < 0.001, two-tailed). In the case of barley and rice no significant differences are
observed between the two groups of adapting farmers. With respect to barley yield, non-adapting farmers ob-
tain significantly lower yields compared to adapting farmers, a difference of roughly 60%. Yields obtained for
potato show contradictory results, in which adapting farmers not having access to a weather forecast show
much higher yields compared to adapting farmers with access to a weather forecast. Even non-adapting
farmers show higher yields for potato than adapting farmers with access to a weather forecast, albeit insignif-
icant due to the small number of non-adapting farmers (n = 10) growing potato. According to W.B. Abebe
(a local agricultural ministry expert) (personal communication, October 2020), this could be due to the lo-
cation in which potato is grown and the quality of the soil. From the group of adapting farmers without a
weather forecast, over 55% lives in Aribayitu, Wegedame, Mahirderamariyam and Genamechawecha. These
are all Kebeles performing above average in terms of potato yield (see Figure 4.4). Compared with adapting
farmers with access to a weather forecast, only 21.9% lives in one of these high performing Kebeles. It could
thus be that potato is very sensitive to the location it is grown and the soil fertility, diminishing the effect of
having access to a weather forecast. However, since soil fertility is not taken into account in this research, this
relationship cannot be analysed.

To conclude this subsection, it can be suggested that having access to a weather forecast, adapting to climate
variability and farmer experience all play a positive role for most of the major crops in the Gumera sub-
basin. Hence, non-adapting farmers without having access to weather forecast perform significantly less
than adapting farmers, which is very likely to make them even more vulnerable to climate variability. The
question therefore is what keeps non-adapting farmers from taking up adaptation strategies. Is it only due
to them not having access to a weather forecast or are there other factors in play that affect the capacity to
adjust their farming practices in order to cope with climate variability? And what is the role of experience in
this situation? Are farmers with more experience better able to, for example, assess climate variability and to
act and adjust their agricultural practices accordingly? In order to get a better insight into these knowledge
gaps, the following subsections will comprise a more thorough analysis regarding the behavioural aspects of
a farmer in the Gumera sub-basin.

4.4.5. Barriers to climate adaptation
In Subsection 4.4.4 it is discovered there being a small group of farmers that does not adapt to climate vari-
ability. In this subsection, the survey question asking these farmers what the reason is to decide not to adapt
to year-to-year variability of the Meher season is analysed. Subsequently, each of the main barriers is quanti-
fied and discussed.
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Figure 4.10: Barriers to adaptation mentioned by non-adapting farmers (N = 49)
in the household survey in this research. Made by author.

Figure 4.10 shows the barriers men-
tioned by the non-adapting farmers in
this study’s individual household survey,
by which none of the farmers did not
provide an answer. Similar to what was
found in literature, a lack of land, labour,
and access to a weather forecast turn out
to be the major barriers that keep farm-
ers from adapting to climate variability.
However, a lack of credit, supposedly also
one of the main barriers, is only men-
tioned by one respondent in the indi-
vidual household survey of this research.
The same yields for the availability of
seeds. In addition, cultural purposes pre-
vent some farmers from taking up adap-
tation strategies. Interestingly enough, none of the farmers mentioned there not to be a need to adjust. This
suggests that all farmers feel the urge to adapt to climate variability but lack the capacity to do so.
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In Table 4.8, for each barrier mentioned, the average results of relating questions included in the individual
household survey are presented for both adapting and non-adapting farmers, in order to check the hypothe-
sis (which is accepted if p < 0.05) that non-adapting farmers have less access to the three main barriers: land,
labour and a weather forecast. In the paragraphs below it is discussed, for each barrier, whether this hypoth-
esis can be justified and if these barriers can validly be assumed to be real constraints to climate adaptation.

Adapting Non-adapting p-value CI 95%
Mean SD Mean SD Lower Upper

Farm area Grass area (ha) 0.22 0.18 0.08 0.12 <0.001 -0.20 -0.09

Crop area (ha) 1.19 0.70 0.96 0.61 0.021 -0.41 -0.04

Total area (ha) 1.44 0.90 1.09 0.82 0.011 -0.62 -0.08

Labour HH farmers (persons) 4.41 1.50 3.60 1.20 <0.001 -1.25 -0.37

Crops (hr/day) 8.38 1.20 7.12 1.97 <0.001 -1.86 -0.66

Livestock (hr/day) 3.84 2.89 2.96 1.26 <0.001 -1.35 -0.41

Weather forecast Yes 33.4% - 0.0% - <0.001 - -

Seed use Barley (kg/ha) 237.2 85.98 156.4 44.47 <0.001 -101.6 -60

Maize (kg/ha) 24.4 7.32 29.0 7.12 <0.001 2.45 6.83

Potato (kg/ha) 2429 1148 1398 584 <0.001 -1467 -595

Teff (kg/ha) 60.4 38.10 39.6 7.57 <0.001 -25.7 -15.9

Capital Capital (Birr) 18.341 12.782 16.582 9335 0.354 -5484 1966

Borrowing money 22.6% - 10.2% - 0.014 - -

Table 4.8: The results on an independent-samples t-test to check for differences between all adapting (N = 345) and non-adapting
farmers (N = 49), with respect to the main barriers. The average, standard deviation (SD), p-values, and the 95% confidence interval are

provided. If p < 0.05 then a significant difference between both groups of farmers is assumed.

1. Lack of land
A lack of land is mentioned most often to form a barrier for non-adapting farmers to take up adaptation
strategies in order to cope with climate variability. Land in this case can be the total farm size, or it can be
the crop or grazing area owned by a farmer. Comparing the land area owned by adapting and non-adapting
farmers (see Table 4.8) a significant difference is observed, in which adapting farmers, on average, have a total
farm size that is 0.35ha larger than that of non-adapting farmers, a significant difference. In addition, non-
adapting farmers have a significantly smaller area available for crops. The largest difference is observed for
grass area available for livestock. Two third of non-adapting farmers do not own grassland at all, compared
to only 14.2% of the adapting farmers, a significant difference (p < 0.001). It can thus be concluded that non-
adapting farmers have significantly less land available, hence it is assumed that a lack of land indeed can be
a constraint to climate adaptation.

2. Lack of labour
A lack of labour is mentioned by 28.1% of the non-adapting farmers (see Table 4.8). Labour is hereby de-
fined as the total available labour, which consists of family members that help on the farm and employees.
However, since barely any farmer has employees working on the farm, total available labour is assumed to
be solely consisting of family labour. Comparing the number of family members that work on the farm (i.e.
household farmers) between adapting and non-adapting farmers (see Table 4.8), it is observed that non-
adapting farmers have, on average, almost one family member less helping with agricultural activities. In
addition, non-adapting farmers spend significantly less time per day on growing crops and rearing livestock.
Based on these results, the hypothesis that non-adapting farmers have less labour available can be accepted.

3. Lack of access to a weather worecast
The access to a weather forecast shows a clear distinction between adapting and non-adapting farmers (see
Table 4.8). In total, just above one third of the adapting farmers receives a weather forecast, whereas none of
the non-adapting farmers have access to weather forecast information. This was also discovered in Subsec-
tion 4.4.4. From this it can be suggested that the farmers adaptive capacity is much larger when having access
to a weather forecast. Not having access to a weather forecast could thus be a real constraint. This is in line
with what was mentioned by farmers attending the FGD in Geregera (see Subsection 4.3.1). These farmers
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without access to a weather forecast mentioned that it would be very helpful to receive a weather forecast. In
their opinion, this would not only help them in making better agricultural decisions, they could also better
plan their food consumption as they would not have to save their crop storage in case a bad year is coming.
Instead they could either consume if food is scarce or sell if food is abundant. Based on their opinion, it
could be suggested they would rely less on uncertainties of the coming rainy season when having access to a
weather forecast.

4. Cultural purposes, lack of seeds and credit
For 9.4% of non-adapting farmers, cultural purposes causes them to stick with their regular farming practices
instead of adjusting to the variability of the Meher season (see Table 4.8). Although it not being a large share
of farmers, other studies have found similar results stating that cultural characteristics affect farmer’s choices
of certain strategies (Adimassu and Kessler, 2016). However, investigating in what way cultural characteristics
prevent farmers from taking up adaptation strategies falls outside the scope of this research and will not be
taken into account during the remaining of this research. The lack of seeds and credit is only mentioned
by 3.1 and 1.6% of the non-adapting farmers, respectively. This suggests that both parameters do not have
much influence on whether a farmer will adapt to climate variability or not. However, when comparing both
groups of farmers significant differences arise with respect to seed use, and borrowing money (see Table 4.8).
Except for maize, adapting farmers use a significantly higher seed rate for each crop type. Notice, that rice is
not shown here as rice is not cultivated by non-adapting farmers. In addition, capital is also in favour of the
adapting farmer, albeit an insignificant difference. In terms of borrowing money, a significant larger share of
adapting farmers borrows money compared to non-adapting farmers. This suggests that adapting farmers
not only have slightly higher capital, but are also more likely to be in the position to borrow money. Despite
having lower capital and being less likely to borrow money, non-adapting farmers do not perceive capital to
be a barrier to climate adaptation.

It can thus be concluded that a lack of land, labour and a weather forecast are the major barriers that keep
farmers from taking up adaptation strategies. However, it is not yet clear whether these parameters can in-
dividually prevent farmers from taking up adaptation strategies or that it is a combination of the three. In
addition, it is unknown at what point, for example, the labour availability reaches a critical threshold that
makes farmers unable to adapt to climate variability. On top of that, other factors could be in play as well. As
indicated in Subsection 2.1.2 the farmer perception of changes in climate and the information sources used
during the decision making is suggested to influence his or her attitude towards climate adaptation (Deressa
et al., 2011, Grunblatt and Alessa, 2017). Besides the barriers discussed, these could therefore be an additional
factor influencing the adaptive capacity of a farmer.

4.4.6. Farmer’s Perception of Climate Variability
This subsection discusses the perceptions of the surveyed farmers in the Gumera sub-basin regarding climate
variability. In the individual household survey, farmers were asked how they have perceived both climate
change and variability. Unfortunately, the answers on the perception of climate variability turned out to be
of bad quality (except for temperature), due to a supposedly misunderstanding of the question. Therefore,
these questions are excluded from the analysis, and only the perceptions of climatic changes on the long term
(i.e. over the last 30 years), except for temperature, will be discussed. The results are presented in Figure 4.11,
whereby farmers are clustered on climate adaptation and the access to a weather forecast.

Except for the almost unanimous perception of farmers that the mean temperature has increased over the last
30 years, and that the onset of rains has become later in the season, which both correspond to observations
explored in Subsection 2.1.2 by Bewket et al. (2011), quite some significant differences in climate perception
between the three groups of farmers are observed. On the short term, temperature variability is perceived to
increase by almost all farmers having access to a weather forecast, whereas only half of the farmers without
access to a weather forecast perceived an increase. For the group of farmers without access to a weather
forecast, no significant difference is observed between adapting and non-adapting farmers. The same yields
for the amount of dry spells occurring during the rainy season, in which a large share of adapting farmers
with a weather forecast perceived an increase in the number of dry spells compared to only 14% of adapting
and non-adapting farmers without a weather forecast. The timing of the cessation of Kiremt rains shows the
opposite. Almost 90% of farmers without a weather forecast perceive the cessation to have become later over
the last 30 years, compared to only 33% of farmers with access to a weather forecast. In terms of rainfall and
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Figure 4.11: The farmer’s perception of changes in weather patterns over the last 30 years, and the frequency with which a bad year is
experienced, for non-adapting farmers (N = 49), adapting farmers without access to a weather forecast (N = 229), and adapting farmers

with access to a weather forecast (N = 115). Made by author.

length of the Meher season significant differences are observed between adapting and non-adapting farmers.
Almost all non-adapting farmers have perceived an increase in annual rainfall, while 71% has perceived the
Meher season to have become shorter over time. A smaller share of adapting farmers, on the other hand,
have perceived these same trends. Therefore, with respect to trend of annual rainfall, the group of adapting
farmers is in more agreement with what is found in climate studies in the Amhara region, who discovered a
general decreasing trend of annual rainfall over the last 30 years (Skambraks, 2014, Tadesa, 2020).

On the right side of Figure 4.11 the perceived frequency with which the three groups of farmers experi-
ence a bad year is presented. A bad year, in this context, is defined as either a drought or a flood. Here, large
differences are observed between the three groups, in which adapting farmers with access to a weather fore-
cast claim to experience a bad year most frequently. This group of farmers says to experience a bad year once
every four years on average, which is roughly three and two times as often than, respectively, non-adapting
and adapting farmers without access to a weather forecast. However, within the group of adapting farmers
with access to a weather forecast, a clear split is observed between farmers in Shimagle Giorgis and all other
farmers. All farmers in Shimagle Giorgis having access to a weather forecast, who on average have 32 years
of experience, claim to never have experienced a bad year. The remaining share of adapting farmers in other
Kebeles who have access to a weather forecast claim to experience a bad year once every 3.5 years on average,
with 75% experiencing a bad year once every 2 years. For farmers growing rice, the majority experiences a bad
year once every 2-5 years. In addition, experienced farmers (i.e. > 35 years of experience) say to experience a
bad year once every 5 years, on average, which is twice as often compared to farmers with less than 35 years
of experience.

Overall, it can thus be concluded that there are large differences in the perception between these three groups
of farmers, whereby it seems like non-adapting farmers without a weather forecast have a slightly more pos-
itive view on the long term climatic changes. They have perceived less variability in temperature, more rain-
fall, and less dry spells. All supposedly positive trends for productive agriculture, although they are also more
likely to perceive the Meher season to have become shorter. In addition, it is interesting to notice the de-
flecting perceptions of farmers with access to a weather forecast. They are much more likely to perceive
increasing variability in temperature, a decrease in annual rainfall, an earlier cessation of rains, more dry
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spells during the Meher season and more bad years. This suggests that having access to a weather forecast
could make farmers more aware of changes in the climatic pattern, giving them the urge to adapt to changes
in climate. Although there deviating perceptions of climate change do not tell whether their perception on
climate variability is different as well, it could be a possible explanation why all farmers having access to a
weather forecast are actually taking up adaptation strategies to cope with climate variability. The difference
observed in occurrences of a bad year would suggest there being a correlation between how often a farmer
experiences a bad year and how likely (s)he therefore is to adapt. It thus could be that a farmer not experienc-
ing a bad year for a long time may not be sufficiently triggered to take up adaptation strategies when bad year
predictors are observed. On the other hand, it could be that farmers with a weather forecast are more likely
to classify a rainy season as a bad year, compared to farmers without access to a weather forecast. From the
results discussed it can therefore be suggested that the perception of changes in climate can indeed influence
the adaptive capacity of a farmer as was indicated by Deressa et al. (2011), Grunblatt and Alessa (2017).

4.4.7. Information sources used to make agricultural decisions
In addition to a lack of land, labour, and a weather forecast, and the climate perception of a farmer, the
information on which a farmer bases his or her agricultural decisions could possibly influence the adaptive
capacity of a smallholder farmer. This subsection describes the information sources used by the surveyed
farmers in the Gumera sub-basin in order to decide what agricultural practices to take up.
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Figure 4.12: Information sources for agricultural decision making by non-adapting farmers (N = 49), adapting farmers without access to
a weather forecast (N = 229), and adapting farmers with access to a weather forecast (N = 115) in the Gumera sub-basin. Made by author.

Figure 4.12 shows the information sources used by each of the three groups of farmers. Overall, the most
used sources of information are own observations of soil moisture, onset, and the previous rainy season.
The own observations of wind and temperature, and the climatic trend over the last 5 to 10 years are less
prevailed. However, between the three groups significant differences are apparent. Whereas soil moisture is
used by a large share of farmers in each group, the onset of rains and the previous rainy season show large
differences between especially adapting and non-adapting farmers. Compared to adapting farmers, from
which 83% bases their agricultural decisions on the onset of rains, a much smaller share of the group with
non-adapting farmers (29%) is using the onset of rains, a significant difference, X2 (1, N=394) = 65.549, p <
0.001. Similarly, adapting farmers (74.5%) are much more likely to use the onset the previous rainy season to
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decide upon their agricultural decisions, compared to non-adapting farmers (12.2%), X2 (1, N=394) = 72.130,
p < 0.001. Comparing the group of adapting farmers with and without access to a weather forecast, especially
large differences are seen for the use of own observations of wind and temperature. In addition, the use of
both the previous rainy season and previous 5-10 rainy seasons is less for farmers with access to a weather
forecast compared to adapting farmers without a weather forecast. On the one hand, this could suggest that
having access to a weather forecast makes farmers less dependent on their own observations of such weather
characteristics, causing them to fully rely upon the weather forecast. On the other hand, it could be that this
group of farmers, due to them relying upon the weather forecast, has not developed the ability to perceive the
importance of weather characteristics such as wind and temperature.

4.4.8. Predictors for the Climate Adaptive Capacity
This subsection describes which farmer characteristics are suggested to significantly influence the climate
adaptive capacity of a farmer, by the use of a binary logistic regression. From the analysis so far, it is observed
there are three factors that could possibly explain the capacity of a farmer to adapt to climate variability: 1)
the main barriers (i.e. lack of land, labour, and a weather forecast), 2) the farmers’ perception on climatic
changes, and 3) the information upon which a farmer bases his or her agricultural decisions. In Subsection
4.4.4, it was assumed that all farmers having access to a weather forecast have the capacity to adapt to climate
variability. Hence, only for those farmers not having access to a weather forecast, a binary logistic regression
analysis is conducted, as is explained at the end of Subsection 4.2.2. A full overview of the output of the binary
logistic regression is provided in Appendix C.2.2.

Figure 4.13 shows the result of the binary logistic regression analysis. An explanation of each of the statistical
variables is provided in Appendix C.2.1. In total, three variables (i.e. farm size, household labour availability,
and the use of onset of rains during the agricultural decision making) come out as significant predictors for
the climate adaptive capacity of a farmer in the Gumera sub-basin. Other variables that were considered
in the analysis but found to be insignificant were capital, farmers’ climate perception with respect to onset,
cessation, annual rainfall, dry spells, and temperature, and the information sources, except for the onset of
rains, discussed in Subsection 4.4.7. The full model was statistically significant with a Chi-square value of
60.54 and p < 0.001, which indicates that the model is able to distinguish between farmers who do and do
not have the capacity to adapt to climate variability. Together, the three predictors explain between 19.6%
and 32.3% of the variance in the climate adaptive capacity of farmers in the Gumera sub-basin, and correctly
predict the climate adaptive capacity of 82.4% of all farmers. In total, 30 farmers are predicted not to have
the capacity to adapt to climate variability, compared to 49 farmers that mentioned in the household survey
not to adapt to climate variability. From the predictors, the use of onset is the strongest predictor. If a farmer
bases his or her agricultural decisions upon the onset of rains this farmer is 8.339 times more likely to have the
capacity to adapt to climate variability compared to a farmer who does not use the onset of rains. Also, farm
size and household labour availability show positive correlations with climate adaptive capacity. Since both
variables are continuous variables, this means that if farm size and household labour availability increase by
one unit, and all other independent variables remain constant, the probability of a farmer to adapt to climate
variability increases with, respectively, 1.733 and 1.035.

Figure 4.13: A binary logistic regression analysis showing the main predictors for the climate adaptive capacity of surveyed farmers in
the Gumera sub-basin (N = 278). Surveyed farmers with access to a weather forecast are excluded from this analysis.
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4.4.9. Adaptation Strategies to Climate Variability
This subsection explains and discusses the adaptation strategies taken up by the surveyed farmers in the
Gumera sub-basin. Differences between the three groups of farmers, clustered on climate adaptation and
access to a weather forecast, are explored, as well as the differences between Kebeles. In addition, the main
predictors for adaptation by changing the crop type, and changing the planting and harvesting dates are
explored by conducting a binary logistic regression. For a full overview of the output of each binary logistic
regression see Appendix C.2.

From the FGDs, discussed in Section 4.3, it is known that farmers adapt to climate variability by changing
the crop type, and the date at which they sow their seeds (i.e. the planting date), and harvest their crops (i.e.
harvesting date). Furthermore, farmers in Jigena and Geregera mentioned to also take up off-farm labour
in case a bad year occurred and the crops had failed. In the household survey, adapting farmers were asked
with what adaptation strategies they adapt to climate variability. The results are shown in Figure 4.14. Note
that non-adapting farmers are excluded from this analysis, hence 345 adapting farmers are included in this
analysis.
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Figure 4.14: The share of adapting farmers (N = 344) in the Gumera sub-basin adapting by each adaptation strategy. Adapting farmers
without access to a weather forecast (N = 229) are compared with adapting farmers with access to a weather forecast (N = 115). Made by

author.

From Figure 4.14, it can be observed there being four adaptation strategies taken up by more than half of all
adapting farmers in the Gumera sub-basin, namely soil conservation (80.6%), planting trees (79.4%), chang-
ing to a short season crop (74.2%), and changing planting and harvesting dates (57.4%). This corresponds
very well with what was explored from literature in Subsection 2.1.2. Changing to a drought tolerant crop
(46%), water harvesting (34%) and irrigation (39%) are also relatively frequently used adaptation strategies.
Changing to a long season, or water demanding crop is not preferred at all and only taken up by as much as
11.3% and 7% respectively. This also corresponds with the overall perception of farmers, observed in Sub-
section 4.4.6, that the rainy season has become shorter over the last 30 years. Taking up off-farm labour is
also not a very preferred strategy to cope with climate variability, and only taken up by 8.7% of all adapting
farmers. This might be due to there not being off-farm labour available during years in which adaptation
strategies are required (i.e. in a bad year), as was mentioned by farmers in Shime during the FGD, which is
discussed in Subsection 4.3.3.
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Since the focus in this research is on the adaptation of farmers to year-to-year climate variability, the focus
is on adaptation strategies regarding the yearly recurring (short-term) agricultural choices a farmer has to
make. Adaptation strategies such as soil conservation, planting trees, water harvesting and irrigation are
therefore not further investigated since they are seen as long term solutions for which serious investments
are needed. Hence, the focus in this research is on changing crop type, changing planting and harvesting
dates, and switching to off-farm labour. Herein, significant differences can be observed between adapting
farmers with and without access to a weather forecast. Having a weather forecast seems to make farmers
significantly more likely to adapt by changing to a drought tolerant (X2 (1, N=344) = 43.265, p < 0.001) and
short season crop (X2 (1, N=344) = 11.963, p = 0.001). On the other hand, adapting farmers without access
to a weather forecast are significantly more likely to adapt by changing the planting and harvesting dates, X2

(1, N=344) = 20.001, p < 0.001. From the small number of farmers switching to off-farm labour (N=31), 90%
does not receive a weather forecast, a significant difference with X2 (1, N=344) = 6.995, p = 0.008. This could
suggest that farmers without a weather forecast find themselves more often in the situation in which crop
production has failed, at which point the only option to earn money is off-farm labour. However, since this is
only a very small sample size the reliability of this correlation is not very strong.
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Figure 4.15: The share of adapting farmers (N = 344) in the Gumera sub-basin, grouped by Kebele, and ACZ, that claims to adapt by
changing to a drought tolerant crop (N = 159), changing to a short season crop (N = 255), changing the planting and harvesting dates (N

= 197), and changing to off-farm labour (N = 31). Made by author.

In addition, clear differences are seen when comparing adaptation strategies taken up by farmers in different
Kebeles. Figure 4.15 shows the differences for the four adaptation strategies we focus on. From this we can
conclude that it are mostly farmers in the eastern more elevated part of the Gumera sub-basin (i.e. Licha
Arida, Mahirderamariyam, Genamechawecha) who are adapting by changing the planting and harvesting
dates, whereas changing to a drought tolerant crop is much less preferred. This is also shown by clustering
the farmers upon the ACZ they are in. In the lower ACZ (i.e. Wet Weyna Dega) farmers are more likely to adapt
by changing to a short season crop (X2 (1, N=345) = 11.868, p = 0.001), whereas farmers in the upper ACZ (i.e.
Wet Dega) are more likely to adapt by changing planting and harvesting dates (X2 (1, N=345) = 8.173, p =
0.004). This would suggest that altitude is an important factor influencing the type of adaptation strategies
a farmer adapts with. Off-farm labour is basically only taken up by farmers in Licha Arida located in the
upper ACZ. The pattern observed during the FGD in Shime, where no off-farm labour is said to be available
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during bad years, can thus be justified for most Kebeles. However, this does not agree with what is observed
during the FGDs in Jigena and Geregera, in which farmers mentioned to take up off-farm labour, in case crop
production failed. It could thus be that either surveyed farmers do not see off-farm labour as an adaptation
strategy, or the farmers joining the FGD in Jigena and Geregera were not representative for the population in
Jigena and Geregera.

Overall, it can thus be concluded that quite some heterogeneity exists between farmers with respect to the
type of adaptation strategies taken up. The access to a weather forecast seems to play an important role but
also farmers at different altitudes show deviating behaviour. However, it is likely there being more factors
influencing the type of adaptation strategy a farmer takes up. In order to determine which factors can be
assumed to be major predictors for the type of adaptation strategy taken up by a farmer, binary logistic re-
gression analyses have been conducted for each adaptation strategy separately, as explained at the end of
Subsection 4.2.2. Hereby it is chosen to only focus on adaptation by changing to a short season crop and by
changing the planting and harvesting dates, since these are the two major adaptation strategies taken up by
farmers in the Gumera sub-basin. Furthermore, farmers that say not to adapt to climate variability are left
out of the analyses. Also rice growing farmers are not taken into account since, based on the FGDs and the
results discussed, this group of farmers experiences very different climatic challenges, which might induce
significant different climate adaptive behaviour compared to farmers in the rest of the Gumera sub-basin. It
would therefore affect the analyses. Hence, in total 285 adapting non-rice growing farmers are included in
the analyses.

Adapting with a short cycle crop
Figure 4.16 shows the results of the binary logistic regression analysis in order to determine the likelihood
of a farmer to adapt by changing to a short cycle crop. An explanation of each of the statistical variables is
provided in Appendix C.2.1.

In total, five variables (i.e. elevation, education, farm size, number of livestock (in TLU), and capital) come
out as significant predictors for this type of adaptation strategy. Other variables that were considered in the
analysis but found to be insignificant were gender, farmer experience, household labour availability, market
distance, weather forecast, information sources discussed in Subsection 4.4.7, and farmers’ climate percep-
tions discussed in Subsection 4.4.6. The full model was statistically significant with a Chi-square value of
37.77 and p < 0.001, which indicates that the model is able to distinguish between farmers who do and do
not change to a short cycle crop in order to cope with climate variability. Together, the five predictors explain
between 12.4% and 17.5% of the variance in this type of adaptation strategy, and correctly classified 69.1%
of farmers. As such, 240 farmers where predicted to adapt by changing to a short cycle crop, whereas 196
surveyed farmers claimed to take up this adaptation strategy.

Educational status
Level 1 Illiterate
Level 2 Able to read and write
Level 3 1-4 grades completed
Level 4 5-8 grades completed
Level 5 9-10 grades completed
Level 6 11-12 grades completed

Level 7
Technical and vocational
college diploma

Level 8 Degree and above

Table 4.9: Levels of education

From the predictors, farm size turns out to be the strongest predictor.
For every additional hectare of available land a farmer is 1.72 times
more likely to switch to a short cycle crop in order to cope with cli-
mate variability. Also, education and the number of livestock owned
show positive correlations with adapting with a short cycle crop. Dif-
ferent from the other variables, education is a categorical variable in-
stead of a continuous variable. In Table 4.9 the categories by which
farmers could answer are presented. The odds ratio EXP(B) of edu-
cation thus means that the probability of a literate farmer to adapt
by changing the crop type is 1.467 higher than an illiterate farmer.
For the continuous variables the odds ratio represents the increase
in probability with every unit increase in the continuous variable.
Elevation and capital are the only predictors showing a negative cor-
relation, which suggests that farmers at higher altitudes or with more capital available are less likely to adjust
with a short cycle crop. This is somewhat counter-intuitive as potato was assumed to be the major adaptive
crop (see Subsection 4.4.4) and is mainly grown in the upper regions of the Gumera sub-basin. Therefore, one
would expect farmers at higher altitudes to be more likely to change crop type in order to cope with climate
variability.
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Figure 4.16: A binary logistic regression analysis showing the variables significantly influencing the choice of a farmer to adapt by
changing to a short cycle crop. Surveyed non-adapting farmers and rice growing farmers are excluded from this analysis, hence the
analysis is conducted for 285 farmers in the Gumera sub-basin. A full output of the binary logistic regression and explanation of the

statistic variables can be found in Appendix C.2.3.

Adapting by changing planting and harvesting dates
The results of the binary logistic regression, conducted to assess the factors having significant influence on
the farmer’s choice of changing the planting and harvesting dates due to climate variability, are shown in
Figure 4.17. An explanation of each of the statistical variables is provided in Appendix C.2.1.

Figure 4.17: A binary logistic regression analysis showing the variables significantly influencing the choice of a farmer to adapt by
changing the planting and harvesting dates. Surveyed non-adapting farmers and rice growing farmers are excluded from this analysis,

hence the analysis is conducted for 285 farmers in the Gumera sub-basin. A full output of the binary logistic regression and explanation
of the statistic variables can be found in Appendix C.2.4.

Similar to what is observed for the change to a short cycle crop, elevation, education, and the number of
livestock are significant predictors. In addition, farmer experience, access to a weather forecast, and labour
availability turn out to have significant influence on the farmer’s choice whether or not to change his or her
planting and harvesting dates in times of climate variability. Other variables that were considered in the
analysis but found to be insignificant were gender, farm size, capital, market distance, information sources
discussed in Subsection 4.4.7, and farmers’ climate perceptions discussed in Subsection 4.4.6. The full model
is statistically significant with a Chi-square value of 161.32 and p < 0.001. The model, thus, has the ability
to distinguish between farmers who do and do not shift the planting and harvesting dates in order to cope
with climate variability. Together, the six predictors explain between 43.3% and 59.1% of the variance in this
type of adaptation strategy, and correctly classified 81.3% of farmers. As such, 177 farmers where predicted
to adapt by changing the planting and harvesting dates, whereas 178 surveyed farmers claimed to take up
this adaptation strategy. From the predictors, education shows the strongest influence on whether or not a
farmer changes its planting and harvesting dates. With every extra level of education (see Table 4.9) a farmer
is 2.75 times more likely to adapt to climate variability by changing his or her planting and harvesting dates.
In addition, the access to a weather forecast has quite some influence, such that a farmer having access to



4.5. Conclusion 45

a weather forecast is 0.25 times less likely to adapt by this strategy than farmers without access to a weather
forecast. Elevation, and the number of livestock (in TLU) show a negative correlation as well, whereas farmer
experience and labour availability show a positive relationship with changing planting and harvesting dates
in order to cope with climate variability.

4.5. Conclusion
This section provides an overview of the main conclusions drawn from the results from the FGDs and the
individual household survey discussed in Sections 4.3 and 4.4, respectively.

Basically all farmers in the Gumera sub-basin (98.4%) practice a mixed crop-livestock farming system. The
major crops grown are maize, teff, potato, barley and rice. However, from the FGDs it was discovered there
being quite some heterogeneity between farmers in different Kebeles with respect to the type of crop grown,
climatic challenges faced, and the level of food insecurity. Based on these differences, it is assumed there be-
ing largely two groups of farmers within the Gumera sub-basin. The first and somewhat smaller group exists
of rice growing farmers who live in the lower altitude western part of the Gumera sub-basin for which flood-
ings compose the major climatic challenge, but never face food insecurity. All of these farmers are observed
to adapt to climate variability. The second, much larger group exists of non-rice growing farmers living at a
higher altitude throughout the rest of the Gumera sub-basin for which droughts compose the major climatic
challenge. These farmers claim to face food insecurity during the months December till March, each year
again.

Heterogeneity is especially observed in the crop yield obtained by farmers in different Kebeles, with some
Kebeles showing yields twice as high as others. The access to a weather forecast, fertiliser and chemical use,
adaptation to climate variability, crop area, and farmer experience are found to be main predictors for the
variance in crop yield. For all cereal crops, except for rice, adaptation to climate variability, farmer experience,
and the access to a weather forecast are suggested to positively influence crop yield. In the case of potato, the
only root crop taken into account in this research, only a positive correlation is found between yield and
adaptation to climate variability. Farmers without access to a weather forecast, and those who are slightly
experienced show significantly higher yields for potato.

Although adaptation to climate variability shows large positive results on crop production for each type of
crop, 12.4% of the surveyed farmers say not to have adopted strategies to cope with climate variability in the
last 10 years. Neither have they adopted strategies to cope with climate change in the last 30 years. Each
of the non-adapting farmers live in Kebeles located in the western part of the Gumera sub-basin (i.e. in the
lower ACZ) and experience droughts as the major climatic challenge. Droughts are defined by these farmers
as a bad year with a short rainy season and a late onset. These farmers feel the urge to take up adaptation
strategies but are constrained by especially a lack of land, labour and not having access to a weather forecast.
Especially, having access to a weather forecast seems to have a major influence on the adaptive capacity
of a farmer since all farmers receiving a weather forecast are taking up adaptation strategies. Furthermore,
those farmers that adapt to climate variability have, on average, 0.35 hectares of land and one family member
working on the farm more compared to non-adapting farmers. It is therefore suggested that the availability
of land, labour and a weather forecast positively influence the climate adaptive capacity of a farmer in the
Gumera sub-basin.

In addition, large differences are observed with respect to both the long term climate perception and the
sources of information farmers use to determine what agricultural practices to take up. Over the last 30 years,
almost all surveyed farmers have perceived a temperature increase, and the onset of rains to have become
later. However, in general, farmers with access to a weather forecast seem to be better aware of the actual
changes in climate as their perception is in more agreement with what is concluded by several climate stud-
ies. Non-adapting farmers seem to have a more optimistic perception of changes in climate instead. They
perceived less variability in temperature, more rainfall, later cessation of rains and less dry spells. All of which
are opposite perceptions from what is perceived by adapting farmers with access to a weather forecast. The
group of adapting farmers without access to a weather forecast find themselves more or less in the middle
of both groups. The same trend is seen for the frequency with which a bad year occurs, in which adapting
farmers having access to a weather forecast mention a bad year to occur roughly three times as often (once
every 4 years) compared to what is mentioned by non-adapting farmers (almost once every 14 years). Also
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the farmer experience showed a positive correlation with the frequency with which a bad year occurs. It can
therefore be suggested that adapting farmers, especially those with access to a weather forecast, are better
aware of climate variability, which seems to increase their climate adaptive capacity.

With respect to the information sources used by farmers to make agricultural decisions large differences
are observed between adapting farmers and non-adapting farmers. Whereas all farmers take soil moisture
into account, adapting farmers are much more likely to base their agricultural decisions upon the onset of
rains and the previous rainy season compared to non-adapting farmers. It is therefore suggested that not
using such sources of information limits the climate adaptive capacity of non-adapting farmers. Within the
group of adapting farmers, farmers with access to a weather forecast seem to rely upon this information.
They make less use of own observations of certain weather characteristics, such as wind and temperature,
compared to adapting farmers without access to a weather forecast.

It can thus be concluded that the barriers to climate adaptation, the farmer’s climate perception, and the
type of weather information used by a farmer are all suggested to influence the climate adaptive capacity of
a farmer. Together, the farm size, labour availability within the household, and the use of own observations
of the onset of rains positively influence the climate adaptive capacity of farmers in the Gumera sub-basin.
The most preferred adaptation strategies of surveyed farmers that claim to adapt to climate variability are
changing to a short cycle crop, and changing the planting and harvesting dates. These are the same adap-
tation strategies that were mentioned by farmers during the FGDs. The likelihood of a farmer to adapt by
changing to a short cycle crop is found to be positively influenced by the farm size, level of education, and
the number of livestock owned, whereas altitude and capital show a negatively correlation. Hereby, potato
is assumed to be the main crop with which farmers adapt, since (differently from other crops) a much larger
share of adapting farmers (60%) grows potato compared to non-adapting farmers (20%). In addition, potato
is a short cycle crop. The likelihood of a farmer to adjust the planting and harvesting dates in order to cope
with climate variability is also positively influenced by the level of education, and negatively by the altitude.
Furthermore, it is found that farmer experience, and labour availability positively influence the likelihood of
a farmer to change planting and harvesting dates, whereas the number of livestock owned, and access to a
weather forecast show a negative correlation.



5
Incorporating Climate Adaptive Behaviour

in a Socio-Hydrological Model

In this chapter a socio-hydrological model is presented which can be used to simulate the system dynamics of
smallholder farmers in the Gumera sub-basin with respect to climate variability. The methodology presented
shows how our knowledge on the climate adaptive behaviour of farmers, obtained from Focus Group Discus-
sions and the individual household survey, is used to incorporate these behavioural aspects into the socio-
hydrological model. Examples of how this influences the agricultural practices of farmers are shown, as well as
an illustration of what the impact of climate adaptation could be on the farmer economic well-being.

5.1. Introduction
In Chapter 4 it was discovered that there exists large differences between farmers in terms of crop yield ob-
tained. Climate adaptation, having access to a weather forecast, and experience were amongst the main
predictors that were able to explain the variance in crop yield (see Subsection 4.4.4). The vulnerability of
farmers to climate variability causes a large share of farmers to adjust their farming practices in order to cope
with these variabilities. However, the way in which farmers adapt can vary and is influenced by multiple
factors, such as experience, education, and capital, as well as their perception of climate change and the
weather information available to them. This results in farmers taking up different adaptation strategies, such
as changing the crop type and/or changing the planting and harvesting dates, which creates a heterogeneous
environment. On the other hand, there is a relatively small group of farmers for which the adaptive capacity
is constrained by certain barriers, such as land and labour availability. This withholds them from taking up
adaptation strategies. All of these factors influence the system dynamics of a farmer, causing each farmer to
perform differently in terms of crop yield obtained and their economic well-being.

In Section 2.2 it was explained how socio-hydrology can be used to simulate the system dynamics of small-
holder farmers by taking into account the ‘environmental awareness’. Although the experience of a farmer,
which can be linked to the environmental awareness, was observed to significantly influence the climate
adaptive behaviour of farmers in the Gumera sub-basin (see Section 4.4), the aspect of environmental aware-
ness is not taken into account in this research. This is due to current social theories being underdeveloped or
contested and might therefore not be capable of underlying mathematically based socio-hydrological models
(see Subsection 2.2.2). Hence, there exists a lack of understanding of how the environmental awareness ex-
actly influences the climate adaptive behaviour of a farmer. This chapter therefore presents a novel method-
ology to incorporate the climate adaptive behaviour of smallholder farmers within a socio-hydrological model.
Hereby, the climate adaptive behaviour of farmers in the Gumera sub-basin is incorporated based on ob-
servations from the FGDs and the individual household survey, and is accounted for by the use of a logit
model. In this way the co-evolutionary dynamics of coupled human-water systems are taken into account
via a bottom-up approach. The framework of Pande and Savenije (2016) is hereby used as a starting point
(see Figure 5.1). In this framework six main assets of a typical smallholder farmer are coupled: water storage
capacity, capital, livestock, soil fertility, grazing access, and labour availability. Hydro-climatic variability is
hereby incorporated as a main driver and source of uncertainty for the smallholder system, such that the sen-
sitivity of a smallholder’s well-being and his or her resilience can be studied. This research aims to improve
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the socio-hydrological modelling framework of Pande and Savenije (2016) by incorporating the climate adap-
tive behaviour of smallholder farmers in the Gumera sub-basin. Hence, the model is applied to a different
study area compared to Pande and Savenije (2016), which focussed on smallholder farmers in Maharashtra,
India. Since it is likely that Ethiopian farmers act differently from Indian farmers, as they might face differ-
ent challenges and have different cultures, some of the assumptions made by Pande and Savenije (2016) are
adjusted.

Figure 5.1: The socio-hydrological modelling framework of Pande and Savenije (2016). "An illustration of feedbacks between dominant
socio-hydrological state variables and fluxes. The dashed feedbacks (in black) are activated when the capital stock falls below or close
to 0. Two examples are shown of factors that are external to the dynamic system; climatic variability and off-farm wage rate. Six socio-
hydrological state variables are shown: water storage, soil fertility, capital, livestock, fodder, and labour availability. Socio-hydrologic flux
variables are crop production, livestock sales, expenditure, livestock production costs, crop production costs, labour factor, and fertiliser
factor that influence the co-evolution of socio-hydrological state variables."

In Sections 5.2 and 5.3 the set up and use of the socio-hydrological model is explained. Section 5.2 describes
the main aspects of the socio-hydrological modelling framework of Pande and Savenije (2016). It includes
a brief description of the major mechanisms apparent, the input data used for the model, assumptions and
adjustments made. For the remaining of this research, the model described in Section 5.2 will be referred
to as the "reference model". Section 5.3 describes what we call the "behavioural model". This model differs
from the reference model since it also incorporates the climate adaptive behavioural aspects of smallholder
farmers in the Gumera sub-basin. This section presents a methodology that can be used to incorporate the
climate adaptive behaviour of smallholder farmers in the Gumera sub-basin in a socio-hydrological model.
In Section 5.4, examples of how the climate adaptive behaviour of farmers incorporated in the behavioural
model influences their agricultural practices are presented and discussed. In addition, the corresponding
results with respect to the crop yield obtained and the economic well-being of farmers is presented in com-
parison with the reference model and with what was observed in the household survey. A conclusion of the
performance of, especially, the behavioural model is included in Section 5.5.
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5.2. Methodology - Reference Model
In this section the reference model will be described according to the six state variables that are also taken
into account by Pande and Savenije (2016). The first two subsections describe the farming practices that are
assumed to be taken up by the farmers in the reference model, and the model input parameters. Subsection
5.2.3 describes the state variables, which are water storage, capital, livestock, grazing area, soil fertility and
labour availability. All but labour availability are influenced by external factors, such as climatic variability,
and socio-hydrological flux variables, such as crop production, income from crop and livestock sales and ex-
penditure due to crop and livestock costs, and therefore co-evolve over time. Hence, the labour availability
is, other than is assumed by Pande and Savenije (2016), assumed to be at steady state throughout the simu-
lation period. This assumption is based on two observations in this research’s individual household survey.
First of all, it was observed that barely any farmer hires employees (see Subsection 4.4.1), hence the available
labour solely comes from household members. Second, it is observed that during a bad year farmers barely
switch to off-farm non-agricultural activities instead of growing crops and rearing livestock. From this it is
concluded that labour availability of farmers in the Gumera sub-basin is not influenced by external factors,
such as climatic variability. The simulation period for which this model is ran is from 2000-2018.

5.2.1. Farming practices
In the reference model, a distinction is made between two groups of farmers. The first group consists of
what we call rice-growing farmers. These are farmers living in the western part of the Gumera sub-basin who
cultivate rice. All other farmers belong to the second group of farmers and are referred to as non-rice growing
farmers. The reason for this split are the substantial differences observed between these two groups during
both the FGDs (see Section 4.3) and the individual household survey (see Section 4.4). Each group of farmers
were observed to take up different farming practices, face different climatic challenges and experienced a
different level of food insecurity. For a large part, these differences are induced by the location rice growing
farmers are in, as they live close to the wetlands of Lake Tana, making them able to grow rice. Hence, for
the reference model, it is assumed the farming practices taken up by farmers cultivating rice deviate at some
points from all other farmers in the Gumera sub-basin. Furthermore, since it has not been able to conduct
a FGD in the eastern part of the Gumera sub-basin, the farming practices of non-rice growing farmers are
based on what is observed during the FGD conducted in Shime, as was assumed that farmers in Shime best
represent farmers in the rest of the Gumera sub-basin (see Subsection 4.3.4).

In the reference model, all farmers follow the exact same farming practices year after year throughout the
length of the simulation period. The farming practices farmers conduct are based on observations during
the FGDs (see Section 4.3), the individual household survey (see Subsection 4.4.2), and a study from ADSWE
(2015a) conducted in the Lake Tana basin (see Section 3.3). Hereby, the farming practices of the two groups
of farmers are different in terms of the crops grown and the cropping sequence. An overview of the farming
practices, comprising the farming system, cropping pattern followed, and planting and harvesting dates, is
provided in Table 5.1. Behavioural aspects regarding adaptation to climate variability are not yet incorporated
in the reference model. Furthermore, note that other than the framework of Pande and Savenije (2016), the
reference model incorporates multiple crops. As is explained in Subsection 4.4.9, irrigation is not taken into
account in this research, and is therefore left out of the model.

Table 5.1 presents the farming practices per group of farmers. For the reference model, it is assumed that all
farmers in the Gumera sub-basin follow a crop-livestock rainfed farming system, in which they use rotational
cropping. This means they grow one crop a year, whereby non-rice growing farmers change the crop type
every year in order to enhance soil fertility. The hereby followed cropping sequence is maize - teff - barley.
Farmers growing rice do not switch crop type every year, but grow rice three years in a row, after which they
grow teff. Hence, these farmers do not grow barley, and maize. The planting and harvesting dates are set for
each crop based on observations during the FGDs and in agreement with W. B. Abebe (personal communica-
tion, October 20, 2020), and do not differ per year.

5.2.2. Model inputs
In order to simulate the system dynamics of farmers in the Gumera sub-basin, area specific data is very valu-
able for the accuracy of outcomes of the socio-hydrological model. Therefore, a large part of the individual
household survey constitutes of parameters that yield as input for the model. The majority of these parame-
ters are of socio-economic nature such as family size, crop area, and initial capital, which can differ per farmer
and can directly be used as input for the model. For other parameters assumptions are required before they
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Non-rice growing farmers Rice growing farmers

Farming system Crop-livestock rainfed farming Crop-livestock rainfed farming

Crops grown Barley, Maize, Teff Rice, Teff

Cropping pattern Rotational cropping Rotational cropping

Repeating cropping order Maize, Teff, Barley Rice, Rice, Rice, Teff

Planting date Barley = May 1 Rice = June 1

Maize = May 1 Teff = June 15

Teff = June 15

Harvesting date Barley = Aug 31 Rice = Nov 1

Maize = Oct 1 Teff = Oct 15

Teff = Oct 15

Table 5.1: The standard farming practices that are assumed to be taken up by farmers in the Gumera sub-basin in the reference model,
distinguished between the two groups of farmers. The assumptions are based on the FGDs, the individual household survey, the study
of ADSWE (2015a) conducted in the Lake Tana basin, and discussions with W. B. Abebe (personal communication, October 20, 2020).

can be used. Examples of such parameters are the minimum and maximum crop yield a farmer can obtain,
which are assumed to be same for each farmer. The minimum yield is assumed to be 0, as it is associated
with the crop having failed due to pests, diseases, and/or extreme flooding or a drought, leaving no yield left
for farmers to consume, sell, or store. The maximum (or potential) yield, is set equal to the maximum of the
maximum yield obtained amongst the respondents of this research’s household survey. It is assumed to be
the maximum or potential yield a farmer can obtain under the most ideal circumstances within the Gumera
sub-basin. The maximum value observed for each type of crop is verified with literature in order to make
sure these are valid values to use (see Table 4.6 in Subsection 4.4.3). All data obtained from this research’s
individual household survey and used as input for the model is described in the following subsections.

In addition, remote sensing data for geographical and hydrological data specifically for the Gumera sub-
basin is obtained and used as input for the socio-hydrological model. These are important characteristics
for determining the water balance that indirectly affects the system dynamics of a farmer. Datasets of daily
precipitation and potential evapotranspiration for the length of the simulation period, and geographical data,
such as soil depth and type, are used to determine the soil moisture content over time. In addition, crop
specific input parameters are obtained in order to be able to calculate crop yield. The source and type of each
of these data types will be discussed below separately.

Precipitation
Beck et al. (2017) evaluated the performance of 22 satellite rainfall products globally by comparing satellite
estimate against gauge measurement.

Figure 5.2: Average annual precipitation (in mm) in the Gumera sub-basin
with 500m spatial resolution obtained from CHIRPS precipitation dataset
for the period 2000-2018 (Funk et al., 2014). Made by author.

Results from this study showed that CHIRPS
Version 2 outperformed other satellite rainfall
products in the case of Ethiopia. In addition,
Alemu and Wimberly (2020) concluded that
Climate Hazards Group InfraRed Precipitation
with Station (CHIRPS) rainfall data showed the
least bias and error, and the best agreement
with station rainfall data. Therefore, daily rain-
fall from the CHIRPS product is used in this
research as input for the socio-hydrological
model. The CHIRPS data archive is a quasi-
global (50S-50N) time series that expands from
1981 to near-real time precipitation with a
gridded resolution of 0.05 degree and units of
mm/day (Funk et al., 2014). Figure 5.2 shows the spatial distribution of average annual rainfall in the Gumera
sub-basin for the period from 2000 to 2018. The average annual rainfall in the Gumera sub-basin ranges from
1308 and 1588 mm, and averages to 1420 mm.
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Potential evapotranspiration
The MOD16A2 Version 6 Evapotranspiration/Latent Heat Flux product is used in this research as potential
evapotranspiration input for the socio-hydrological model (Running et al., 2017). This is the only global
readily-available open-source evapotranspiration product providing real-time evapotranspiration estimates.
It is an 8-day composite dataset with a 500 meter pixel resolution, and is based on the Penman-Monteith
equation. For the socio-hydrological model the Potential Evapotranspiration (PET) layer, with unit 0.1 kg/m2/8day
(which is equal to mm/8day), is used for the period from 2001 to 2018. Hereby, each pixel value represents the
cumulative PET over the eight days within the composite period. Before this dataset can be used as input for
the socio-hydrological model it needs some pre-processing. First, the pixel values are transformed from 8day
to daily values, in which leap years are taken into account. In addition, the Moderate Resolution Imaging
Spectroradiometer (MODIS) product does not calculate PET for non-vegetated pixels, such as water bodies,
and urban or barren areas. Instead, these pixels are given a value ranging from 32761 to 32767. To deal with
these large values, the monthly average of the Gumera sub-basin is assigned to non-vegetated pixels. The
average annual potential evapotranspiration for the Gumera sub-basin is 2423 mm.

Soil characteristics
Soil depth is an important input parameter for the socio-hydrological model, as it largely determines the soil
moisture storage capacity and therefore the water availability for the vegetation. The soil depth dataset of the
African Soil Information Service (AfSIS) is used in this research (Hengl et al., 2015). Enabling new types of soil
analysis and statistical methods AfSIS develops continent-wide digital soil maps for sub-Saharan Africa at 250
meter spatial resolution. By developing these maps both remote sensing imagery and ground observations
are used. The soil depth in the Gumera sub-basin ranges from 57 to 175 cm, and is on average 153 cm.

Figure 5.3: The soil depth (in cm) in the Gumera sub-basin with 250m spatial res-
olution obtained from AfSIS (Hengl et al., 2015). Made by author.

In addition, the AfSIS dataset on soil
type fractions is used in this research
(Hengl et al., 2015). This dataset provides
the fractions of clay, sand, silt and coarse
fragments at six standard soil depths at a
250 meter spatial resolution. This dataset
is used in order to determine the soil type
of the study area, which is done by fol-
lowing the method of the soil texture tri-
angle (USDA, 2017). This is a widely-
used tool developed by the United States
Department of Agriculture (USDA), with
which soil types can be identified ac-
cording to the fractions of sand, silt, and
clay particles. From the AfSIS dataset on
soil type fractions the average fractions of
clay, sand, and silt over both the area and depth are found to be 54%, 21% and 25% respectively for the Gumera
sub-basin. Utilising the soil texture triangle the soil type in the Gumera sub-basin can be classified as clay.
This corresponds with what is found in literature (Mamo and Jain, 2013, Van Landtschoote, 2017).

Crop specific parameters
For each crop the yield is calculated following the framework of AquaCrop (Raes et al., 2012). This approach
requires a set of crop specific parameters in order to calculate the crop yield. The majority of crop specific
parameters are obtained from the FAO, unless more area specific data is available from studies conducted
in the Amhara region. For all crops but teff (i.e. barley, maize, potato, and rice) basal crop coefficients (Kcb)
and length of growth stages (i.e. t_ini, t_dev, t_mid, t_end) are obtained from Allen et al. (1998). Since no
data is available on Kcb values for teff, it is approximated from crop coefficient (Kc) values by lowering the Kc

values in proportion to what is seen for comparable crops such as barley and wheat (Araya et al., 2011, Yihun,
2015). In the case of potato, area specific values are obtained from studies conducted by Demelash (2013),
Steduto et al. (2012). The total crop cycle length (t_grow) and the number of days after which 90% of the
crops has emerged (t_CCo) are obtained via multiple studies conducted in Ethiopia and the FGDs. For maize,
the duration of senescence (in days) is obtained from Gebreselassie et al. (2015). For all other crops, the
duration of senescence is approximated to be 10 days shorter than the final growth stage (i.e. t_end). Other
crop parameters, required to calculate crop yield, such as crop water productivity (CWP), the canopy growth
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coefficient (CGC), the canopy decline coefficient (CDC), maximum canopy cover (CCx), harvest index (HI_o),
minimum and maximum effective rooting depth (Z_n, and Z_max), root zone shape factor (n), soil water
stresses (P_lower and P_upper), and base temperature (T_base), are obtained from FAO Aquacrop manuals
(Raes et al., 2012, Steduto et al., 2012). However, since the reference model does not yet accept growing
degree days as input, the CGC and CDC values of the FAO Aquacrop manual cannot be used. Therefore, the
generic values of c3 and c4 crops, as indicated by Steduto et al. (2012), are assigned to each crop according
(accordingly) to whether it is a c3 or c4 crop. In general, c4 crops have higher water use efficiency, or in other
words crop water productivity (CWP). In case of this research, the only c4 crop taken into account is maize.
An overview of all crop specific parameters is presented in Table 5.2.

Units Barley Maize Potato Rice Teff

#plants plants/ha 2250000 (1) 31250 (3) 60000 (2) 900000 (1) 19000000 (4)

CC_o % 3.38 (1) 0.097 (3) 1.20 (1) 4.95 (1) 2.85 (4)

CCx % 75 (1) 90 (3) 95 (1) 90 (1) 80 (4)

CGC % 12.4 (2) 14.6 (3) 10.5 (2) 10.5 (2) 9.9 (4)

CDC % 7.7 (2) 11.4 (3) 2.0 (2) 5.0 (2) 16.2 (4)

CWP gram/m2 15 (1) 32 (3) 20 (6) 19 (1) 20 (4)

HI_o % 47.5 (2) 50 (2) 85 (2) 37.5 (2) 25 (4)

f_hi - 1 1 1 1 1

Z_max cm 1250 (7) 1800 (3) 600 (2) 750 (2) 450 (2)

Z_n cm 300 (1) 300 (1) 300 (1) 300 (1) 300 (1)

n - 1.5 (1) 1.3 (1) 1.5 (1) 2.5 (1) 1.5 (1)

P_upper - 0.65 (1) 0.72 (3) 0.6 (1) 0.4 (1) 0.79 (4)

P_lower - 0.2 (1) 0.14 (3) 0.2 (1) 0 (1) 0.5 (4)

T_base °C 2 (1) 8 (1) 2 (1) 8 (1) 10 (1)

Kcb_ini - 0.15 (7) 0.15 (7) 0.15 (7) 1 (7) 0.15 (5)

Kcb_mid - 1.1 (7) 1.15 (7) 1.1 (7) 1.15 (7) 1 (5)

Kcb_end - 0.15 (7) 0.15 (7) 0.65 (7) 0.58 (7) 0.7 (5)

t_ini days 15 (7) 30 (7) 15 (7) 30 (7) 15 (5)

t_dev days 30 (7) 40 (7) 30 (7) 30 (7) 25 (5)

t_mid days 65 (7) 50 (7) 35 (7) 60 (7) 50 (5)

t_end days 40 (7) 30 (7) 30 (7) 30 (7) 30 (5)

t_CCo days 15 (7) 7 (3) 15 (6) 30 6 (4)

t_Ss days 30 37 (3) 20 20 20

t_grow days 150 (7) 150 (3) 110 (6) 150 (7) 120 (4)

t_x days 105 93 75 (6) 90 97

Max yield qt/ha 48 80 350 48 40

Table 5.2: Crop specific parameters used as input for the socio-hydrological model. Sources: 1 Raes et al. (2012), 2 Steduto et al. (2012), 3

Gebreselassie et al. (2015), 4 Araya et al. (2011), 5 Yihun (2015), 6 Haverkort et al. (2012), 7 Allen et al. (1998). Maximum yields are
obtained from the household survey.
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5.2.3. The State Variables
In this subsection the way each state variable is calculated in the reference model will be discussed. It will be
explained by which parameters it is influenced, and how the state variables are interacting with each other.
All variables are based on the outcomes of the individual household survey conducted in this research (see
Section 4.4), and are verified upon discussions with a local agricultural ministry expert (W.B. Abebe, personal
communication, June-December, 2020).

Water storage
The hydrological part of the socio-hydrological reference model is in the form of a single layer bucket model.
All water in excess of the water storage capacity (Smax) is assumed to be removed from the smallholder system
as excess runoff. Furthermore, percolation from the root zone storage is neglected, which is according to Kuil
et al. (2019) a valid assumption as areas with sloping terrains and clayey soils are not conducive to deep
percolation. Interception is neglected as well, causing all precipitation to infiltrate into the soil.

In this research a brief overview is provided of the main mechanisms of the methodology with which the
attainable crop biomass and harvestable yield are calculated. For a full overview of the methodology used
I would like to refer to the master thesis of D. Djohan (Djohan, 2021). The methodology is based on the
Aquacrop framework, whereby is accounted for variation in soil moisture in the root zone (Raes et al., 2012).
Due to the lack of local daily minimum and maximum temperature data, stresses due to temperature are
neglected. The stresses that affect the growth of the canopy cover and the biomass respectively are therefore
solely represented by water shortage in the root zone. The total available water (TAW) for a crop changes over
time and is influenced by the root zone development throughout the growing period. The TAW is defined
as the total amount of water that can be stored in the soil and is available to plants. In other words, it is the
difference between the amount of water that is in the soil at field capacity (FC), and the amount of water that
is in the soil at wilting point (WP). According to the FAO, typical values for FC and WP for clayey soils are 0.36,
and 0.22 respectively (Allen et al., 1998). The soil moisture is calculated on a daily basis using Eq. 5.1. The
other state variables are calculated at a yearly basis.

SMt+1 = max(0,mi n(SMt +P −Em ,SM f c,max )) (5.1)

Here, SMt is the soil moisture at time t in mm, P is the precipitation in mm/day, Em is the evaporation
met in mm/day, and SMfc,max is the maximum soil moisture defined as field capacity in mm. In addition to
the soil moisture calculation, each time step the daily biomass increase (m) per unit area per mm of water
transpired (g/m2/day) is calculated using Eq. 5.2.

mt = KT ∗CW P ∗ Tat

ETc,t
(5.2)

Here, KT is the temperature stress coefficient [-], which is a value between 0 and 1 depending on the air
temperature with respect to the upper and lower air temperature threshold. Due to the temperature stress
being neglected in this research, KT is always 1, and therefore does not affect the biomass production. Fur-
thermore, CWP is the normalized crop water productivity in g/m2, Ta is the actual transpiration in mm, and
ETc is the reference evapotranspiration in mm. The total biomass B (g/m2/year) is the sum of m over the
entire crop growth period (i.e. from planting until harvesting).

Once the water balance is solved, and the total biomass is calculated, the crop yield Y [kg/ha/year] is
obtained from the total biomass at harvest by multiplying the total biomass B with the harvest index HI [-]
(see Eq. 5.3). Following this procedure gives the crop yield obtained at the end of the cropping season at a
yearly basis.

Y = (H Io ∗B)/10 (5.3)

Capital
The farmer’s capital C(T) in Birr is given by a differential equation, which is a function of yearly income (m(T)
[Birr/year]), expenditure (z(T) [Birr/year]) and loans of the farmer from off-farm non-agricultural activities
(w(T) [Birr/year]), and a depreciation rate δ (see Eq. 5.4).

dC

dT
(T ) =−δC (T )

∆T
+m(T )− z(T )+w(T ) (5.4)
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The income generated by a farmer consist of incomes from livestock, crop and labour sales, as well as sales
of non-agricultural products. Labour sales are hereby defined as the income earned by working on off-farm
agricultural and non-agricultural activities. However, based on the results of the individual household survey
conducted in this research, from which less then 1% of the respondents mentioned to work on off-farm agri-
cultural activities (see Subsection 4.4.1), it is assumed none of the farmers is working on off-farm agricultural
activities. Off-farm non-agricultural activities are apparent though, with the average wage earned by a farmer
being 46 Birr/day. Livestock sales exist of income generated by selling livestock and annual incomes from
selling livestock products (e.g. milk). The annual income from selling livestock products, which is a constant
throughout the simulation period, is based on the average income from cattle mentioned by farmers in the
individual household survey, since cattle are the dominant livestock species in the Gumera sub-basin, and is
verified with W. B. Abebe (personal communication, December 17, 2020). The price of livestock is determined
the same way and based on the minimum and maximum price of cattle, and is each year adjusted with the
rate of inflation.

Crop sales consist purely out of the income generated from selling own grown crops. It is assumed a
farmer only sells his or her crops if the crop production (after subtracting post harvest losses of 15% (ADSWE,
2015a)) is larger than the required crop consumption by the household. If this is the case, the farmer will sell
all of the remaining crops produced. The required consumption per person per day is based on the required
food basket set by the World Bank (2020). According to the World Bank the threshold for minimum required
daily calorie intake to meet energy requirements is 2200 calories per person per day (World Bank, 2020).

The expenditures of a farmer consist of expenses on food bought for the household, labour costs, the interest
on loan, taxes on crop and livestock sales, and other expenses, as well as the costs of purchased non-food
items. The costs of non-food items exists of costs for crop production inputs, such as seeds, fertiliser and
chemicals, and livestock costs, such as regular annual costs (e.g. veterinary costs and fodder) and costs of
buying additional livestock. Note, additional livestock is only bought if capital is above zero. Expenses on
investments and school fees are neglected in this research. Since it is assumed farmers not having employees,
labour costs are 0. The expenditure on food for consumption depends on the farmer’s crop production. As
such, the farmer will only buy food in case his or her crop production is insufficient to provide each family
member of 2200 kilocalories per day. In addition, the farmer’s capital needs to be larger than 0.

Livestock
In this research, multiple livestock types are taken into account. As such, it differes from the framework of
Pande and Savenije (2016), in which only cattle is taken into account. The livestock types accounted for
are cattle, sheep, goats, donkeys, and mules, and are converted to Tropical Livestock Units (TLU). This is a
common unit frequently used by the FAO. The TLU conversion factors used by the FAO (FAO, 2018a) are used
in this research: cattle = 0.7, goat = 0.1, sheep = 0.1, donkey = 0.5, and mule = 0.7. Since cattle is the dominant
livestock type in the Gumera sub-basin, it is used as the reference livestock type. This means that all variables
and rates that are linked to livestock are based on cattle, and therefore converted with a factor 0.7 in order to
account for the conversion of cattle to TLU.

Besides livestock providing nutritional sources, manure and power for ploughing, it can also function as
a source of capital in times of crop failure. In Subsection 4.4.2 it was discovered that a large share of farmers
(84%) sells livestock in times of food insecurity to be able to have enough liquidities to buy food. For simplic-
ity, in the reference model it is assumed that all farmers will use this kind of coping strategy when capital falls
below zero.

The amount of livestock owned by a farmer L(T) in TLU varies according to the net birth rate, purchases
and selling of livestock, and the carrying capacity, which is influenced by the available grass biomass (G(T))
(see Eq. 5.6). The number of livestock owned by a farmer is hereby limited to the maximum number of live-
stock observed in the household survey, being 9.1 TLU. Ethiopian farmers often do not have their own grazing
land but make use of communal grazing areas (Tahir et al., 2018). The grazing area of a farmer therefore is a
summation of the share from communal grazing land and own grazing area. The share of communal grazing
land assigned to a farmer is a function of livestock density and the amount of TLU owned (see Eq. 5.5).

Ag = Ag ,pr i vate + (
L− (Ag ,pr i vate ∗Ld )

Ld
) (5.5)

Where Ag is total grass area of a farmer (ha), and is the sum of private and communal grass area. Ag, private

is the grass area owned by a farmer (ha), and L is the number of livestock in TLU. The livestock density (Ld
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[TLU/ha]) is assumed to be equal to 9.4 TLU/ha and is based on a study by Amsalu and Addisu (2014) con-
ducted in the Gumera-Ribb watershed.

In this research, the carrying capacity, which is the maximum number of TLU that a given area of grass
land can support on a sustainable basis, does not play a major role since Ethiopian households often keep
livestock beyond the carrying capacity of the land (Amsalu and Addisu, 2014). Therefore, to prevent the carry-
ing capacity from affecting the number of livestock owned by a farmer, it is assumed that the available grass
biomass is not limited by water stress and assumed to be met the whole year through. Such, the carrying
capacity barely functions as a limitation to livestock growth. The total number of livestock owned by a farmer
(in TLU) is calculated by Eq. 5.6.

dL

dT
(T )∆T = max(L(T )+ (rL ∗L(T )∗ (1− L(T )

KL
)+ Ib(T )+ Is (T ))∆T,0)−L(T ) (5.6)

Here, rL is the biological rate of growth, which includes the birth and death rates, as well as the growth
in livestock size due to weight gain. The variable KL is the carrying capacity [-], Ib is the amount of livestock
purchased, which is 0 if the farmer’s capital is below or equal to 0. The amount of livestock sold is represented
by Is and is only larger than 0 if the farmer’s capital is equal or below 0.

Grass biomass
The grass biomass is given by equation 5.7. It is assumed that grass growth is not constrained by water short-
age and grows the whole year through. The grazing land drives the fodder availability, in which it is assumed
that the farmer does not buy additional fodder from other sources. Hence, the grass biomass stock (G [kg]) of
a farmer is a function of grass yield, grass area, and consumption of grass by livestock (see Eq. 5.7).

dG

dT
(T )∆T = mi n(G(T )+ (Ag ∗Yg − cL(T ))∆T, Ag ∗Yg ,max∆T )−G(T ) (5.7)

Here, Ag is the grass area in ha, Yg,max is the maximum grass yield possible in kg/ha/year, Yg is the actual
grass yield in kg/ha/year in year T, which is calculated under the assumption that the water demand is always
met (see Eq. 5.9). Furthermore, cL(T) is the consumed grass by livestock and is given by Eq. 5.8).

cL(T ) = mi n(G(T ),L(T )∗nL, f ∗ (1−nL,r )) (5.8)

Here, L(T) is the amount of livestock in TLU owned by a farmer in year T. In addition, nL,f is the feed
requirement rate in kg/TLU/year and nL,r is the feed residue rate [-].

The actual grass yield (Yg) is a function of the yield water response rate (Kyg [-]) and the water demand of
grass (WDg(T) [mm]), which is a function of the Kc of grass and the potential evapotranspiration.

Yg (T ) = max(0,mi n(1,1−K yg ∗ (1−W Dg (T ))))∗Yg ,max (5.9)

Soil fertility
The soil fertility is a function of the amount of nitrogen in the soil and affects the crop yield obtained (see
Eq. 5.11). The nitrogen amount is influenced by the use of commercial fertiliser and manure applied by
the farmer, nitrogen fixation, and the removal of nitrogen due to the nitrogen uptake by crops and grass.
Subsequently, it is converted to a fertiliser factor , which has a value between 0 and 1, and directly affects the
crop yield obtained. The fertiliser factor is calculated by Eq. 5.10. The way in which it influences the crop
yield is given by equation 5.12.

f f er t =
Ymi n

Ymax
+mi n(

fapp +manur eapp

Ac ∗Fmax
,1)∗ (1− Ymi n

Ymax
) (5.10)

Here, ffert is the fertiliser factor [-]. Ymin is the minimum yield in kg/ha and for each crop equal to 0,
whereas Ymax is the maximum yield in kg/ha. An overview of maximum crop values is presented in Table 5.2.
Furthermore, fapp and manureapp are the amount of fertiliser and manure applied by the farmer in kg nitrogen
respectively, Ac is the crop area in ha, and Fmax is the maximum nitrogen application rate in kg nitrogen per
ha. Since Ymin is equal to 0, the fertiliser factor is solely influenced by the amount of fertiliser and manure
applied per unit area relative to the maximum nitrogen application rate. As such, it is negatively correlated
with crop yield.
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dF

dT
(T ) = max( f (T )−u(T )∗ Ac ,0) (5.11)

Here, f(T) is the fertilisation in kg/year due to the sum of fertiliser and manure application by the farmer
and nitrogen fixation through for example rain. In addition, u(T) is the nitrogen uptake by crops in kg/year.
In this research, nitrogen loss due to soil erosion losses is not taken into account.

Labour availability
In this research, the amount of labour available to a farmer is constant over time. Hence, a farmer does not
make a trade-off between on-farm and off-farm work, as is done in the framework of Pande and Savenije
(2016). The labour availability is equal to the amount of family members that help on the farm plus the
household head multiplied by the amount of days in a year the household head works on the farm. Hereby it
is assumed that all other family members working on the farm, work the same amount of days on the farm as
the household head. The maximum amount of days a person can work in a year has been set to 260 (i.e. all
days in a year except weekend days).

In addition to the soil fertility, the labour availability also affects the crop yield obtained. The labour factor
affecting crop yield is the ratio between labour availability and maximum labour for crop production. Just like
the fertiliser factor, the labour factor has a value between 0 and 1, and negatively correlates with crop yield.
The final crop yield obtained by a farmer is calculated by Eq. 5.12.

Y f i nal = f f er t ∗ fl abour ∗Y (5.12)

5.2.4. Adaptation strategies
Within the socio-hydrological modelling framework of Pande and Savenije (2016) two adaptation strategies
are incorporated that change the dynamics of the smallholder farmer system once certain thresholds are
exceeded. The two thresholds incorporated are related to the capital of a farmer and the marginal value of
on- and off-farm labour.

Capital deficit
The first threshold is activated whenever the farmer’s capital reaches below zero. In this case, it is assumed the
farmer will save money by cutting down on expenses. However, prior to reducing expenses the farmer will try
to get the capital deficit back to 0 by selling livestock. If this is not sufficient, (s)he will cut down on expenses
in the following order: investments, school fees, interest payments on loans, tax on agricultural income, live-
stock costs, and crop costs. The farmer will stop this sequence once the capital deficit is brought back to zero.
If the capital deficit cannot be brought back to 0 by these expenditure cuts the farmer is considered to be
unsustainable.

Labour trade-off
The second adaptation strategy is based on the choice for the most profitable occupation. Every year the
farmer makes a trade-off between on-farm crop production and off-farm non-agricultural activities. How-
ever, during the FGDs it was discovered that this trade-off is not always as straightforward for farmers in the
Gumera sub-basin (see Section 4.3) unlike for farmers in Maharahstra, India Pande and Savenije (2016). In
case crops fail during a bad year, farmers in the Gumera sub-basin mentioned there often not being off-farm
work available, in case this trade-off does not exist. In addition, only 11% of the respondents of the individ-
ual household survey mentioned to adapt to climate variability by shifting towards off-farm non-agricultural
activities (see Subsection 4.4.9, Figure 4.15), from which 83% were all located in the same Kebele (i.e. Licha
Arida). Hence, it is assumed that a farmer in the Gumera sub-basin does not consider this trade-off, and thus
does not choose for off-farm activities in favour of crop production.
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5.2.5. Assumptions
In building the reference model, multiple assumptions are made whenever data is not available. These are
backed by the results of the FDGs or the individual household survey, or expert consultations. Table 5.3 shows
the most important assumptions made in the reference model. All of these assumptions are also incorporated
in the behavioural model described in Section 5.3.

# Assumptions

1 Seepage at the bottom of the reservoir is neglected

2 Interception is neglected, all precipitation infiltrates into the soil

3 Moisture in excess of maximum storage is removed from the smallholder system as runoff

4 Soil degradation is neglected

5 Grass growth is not constrained by water shortage and grows the whole year through

6 Temperature stress on crop growth is neglected

7 Farmers do not have employees

8 Farmers do not work on off-farm agricultural activities

9 Each family member that works on the farm works the same amount of hours per week

on the farm as the household head

10 Farmers do not use irrigation

11 Minimum yield is equal to zero

12 Maximum yield is equal to the maximum yield observed in the household survey

13 Farmers grow only one crop a year

Table 5.3: An overview of the main assumptions made in the socio-hydrological model.

5.3. Methodology - Behavioural model
In this section the so called "behavioural model" will be discussed. This model is an extension of the refer-
ence model that also models the climate adaptive behaviour of smallholder farmers in the Gumera sub-basin.
Hence, although the main farming practices (see Table 5.1) remain the same, in the behavioural model farm-
ers have the opportunity to take up adaptation strategies in order to cope with climate variability. Hence, each
individual farmer makes his or her own choices based on his or her adaptive capacity, which is determined by
enabling a logit model. Both, the farmer adaptive capacity and the related decisions are influenced by factors
that were found to significantly affect the climate adaptive behaviour of smallholder farmers in the Gumera
sub-basin in Section 4.4. The agricultural decisions farmers make in order to cope with climate variability
are solely linked to the agricultural practices reconsidered by a farmer every year again (i.e. what crop type
to grow and when to plant and harvest). Hence, only one time in the year (i.e. prior to the start of the rainy
season) the farmer decides whether to adapt to climate variability and in what manner. In case the farmer
does not have the capacity to adapt, (s)he will stick with the main farming practices presented in Table 5.1.

By incorporating the climate adaptive behaviour of a farmer in the behavioural model, it allows us to anal-
yse the influence of climate adaptive behaviour on the agricultural performance and economic well-being of
a farmer compared to non-adaptive patterns simulated by the reference model. In the following subsections,
the behavioural aspects of a farmer in the Gumera sub-basin in terms of adaptation strategies incorporated
in the behavioural model will be explained step by step following the flowchart indicated in Figure 5.4. Sub-
section 5.3.1 describes the adjustments to the farming practices with respect to the reference model. The
way in which the climate adaptive capacity of a farmer is determined by the model is explained in Subsec-
tion 5.3.2. In Subsection 5.3.3 the adaptation strategies taken up by farmers, and how this is incorporated
in the behavioural model is explained. At last, Subsection 5.3.4 presents a methodology used to evaluate the
long-term effect of climate adaptation on the economic well-being of farmers in the behavioural model.
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Figure 5.4: A flow chart describing the climate adaptive behavioural aspects of non-rice growing farmers in the Gumera sub-basin
incorporated in the behavioural model. In part A, it is determined whether or not a farmer has the capacity to adapt. Part B and C

describe the behaviour of adapting farmers with respect to changing the crop type and the planting and harvesting dates respectively.

5.3.1. Adjustments to the Farming Practices
In Subsection 5.2.1 the standard farming practices taken up by farmers in the Gumera sub-basin are ex-
plained. For a large part these farming practices remain the same for the behavioural model compared to
the reference model. Also the distinction between rice growing farmers and non-rice growing is the same
in both models. However, there are two adjustments to these standard farming practices in the behavioural
model.

First of all, farmers that have the capacity to adapt to climate variability have the choice to do so by taking up
two adaptation strategies. They can either adapt by changing the crop type, and/or by changing the planting
and harvesting dates. Whenever a farmer does not have the capacity to adapt, (s)he will follow the standard
farming practices as indicated in Subsection 5.2.1. In this case, there is no difference between a farmer in the
reference model and a non-adapting farmer in the behavioural model.

Secondly, besides the crops incorporated in the reference model (i.e. barley, maize, rice, and teff), one
additional crop is taken into account in the behavioural model. This is potato, which, in Subsection 4.4.9, was
assumed to be the major adaptive crop. Teff is assumed to be the second adaptive crop, based on observations
during the FGDs (see Section 4.3) and it being a short cycle crop. Hence, in case a non-rice growing farmer
adapts to climate variability two years in a row by changing the crop type, teff will be used as the adaptive crop
in the second year. As such, the rotational cropping pattern, in which a different crop is grown each year, is
still followed. Since none of the rice growing farmers grows potato, the only adaptive crop for this group of
farmers is teff. This assumption is based on what was mentioned during the FGDs conducted in Jigena and
Geregera.
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In Subsections 5.3.2 and 5.3.3 the way in which these climate adaptive behavioural aspects are incorporated
in the behavioural model are further explained. Hereby, the focus is mainly on non-rice growing farmers,
since all rice growing farmers were, in Subsection 4.4.8, assumed to have the capacity to adapt. Hence, the
implementation of their climate adaptive behaviour in the behavioural model is rather simple. Whenever
this group of farmers experiences a bad year they grow teff and shift the planting and harvesting date by 45
days. This assumption is based on the FGD conducted in Jigena (see Subsection 4.3). The climate adaptive
behaviour of non-rice growing farmers is presented by the flowchart shown in Figure 5.4. This shows a simpli-
fied overview of all climate behavioural aspects of non-rice growing farmers incorporated in the behavioural
model, and is followed step by step in the following subsections.

5.3.2. Determining the Climate Adaptive Capacity

Variable Coefficient (B)

β0 -1.355

X1 Farm size [ha] 0.550

X2 Use of onset of rains 2.121

X3 Household labour [days/year] 0.034

Table 5.4: Variables and coefficients included in the logistic model to
determine the probability of a farmer to adapt to climate variability

The first step in the behavioural model regarding
the climate adaptive behavioural aspects of non-
rice growing farmers is indicated by part A of the
flowchart presented in Figure 5.4. Here it is de-
termined whether or not a farmer has the capac-
ity to adapt. In Subsection 4.4.8 it was assumed
farmers having access to a weather forecast have
the capacity to adapt to climate variability. For all
other farmers, three variables turned out to sig-
nificantly influence the climate adaptive capacity. It was discovered that farmers having a larger farm size,
more labour available, and who base their agricultural decisions upon their own observations of the onset of
rains, were more likely to adapt to climate variability. Hence, in the behavioural model, the climate adaptive
capacity of non-rice growing farmers without access to a weather forecast depend on these three factors, and
is calculated with a logistic model function given by equation 5.13.

P = 1

1+e−(β0+∑n
n=1βi∗Xi )

(5.13)

Here, P is the probability of a farmer to adapt, n is the number of variables included in the model, and Xi

are the predictors for the climate adaptive capacity of a farmer: farm size, labour available, and usage of own
observations of onset of rains. The latter in this case is either 0 if a farmer does not make use of the onset of
rains, or 1 if (s)he does use the onset of rains for agricultural decisions. The variables farm size and labour
available are continuous variables, and constant for each farmer throughout the simulation period. The val-
ues for βi are the coefficients related to each predictor and are obtained from the binary logistic regression
analysis conducted in Subsection 4.4.8.

Figure 5.5: A logistic regression curve showing the probability of adaptation to
climate variability of each farmer in the Gumera sub-basin that took part of the
individual household survey. Made by author.

The exact values are presented in Table
5.4. The value of β represents the in-
crease or decrease in the probability that
a farmer adapts by a one unit increase
of the predictor. In this case, all of the
β coefficients are positive, except for β0,
meaning an increase in any of the three
predictors will have a positive effect on
the probability of a farmer to adapt. It is
assumed that whenever P is larger than
0.5 a farmer has the capacity to adapt to
climate variability. A probability smaller
than or equal to 0.5, indicates the farmer
does not have the capacity to adapt and
will follow the standard farming prac-
tices. Since all three predictors do not
change over time and are therefore con-
stant throughout the entire simulation
period, a non-adapting farmer cannot become an adapting farmer over time. The calculated probability
to adaptation for each farmer is shown in Figure 5.5 by the logistic regression curve.
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5.3.3. Adaptation Strategies
The second step in the behavioural model is to determine what adaptation strategy a farmer takes up once
(s)he has the capacity to adapt to climate variability. This is shown by part B and C of the flowchart presented
in Figure 5.4. In Subsection 4.4.9 it was discovered there are two major adaptation strategies that farmers in
the Gumera sub-basin take up to cope with climate variability:

1. Adaptation by changing the crop type

2. Adaptation by changing the planting and harvesting dates

Hereby, a farmer can adapt by just one or both adaptation strategies. For each adaptation strategy the prob-
ability of a farmer to adapt by taking up this strategy is determined via the corresponding logistic model
described in Subsection 4.4.9. Hereby, the choice of a farmer for a certain adaptation strategy is independent
from other farmers. The behavioural aspects that correspond to each of the adaptation strategies is explained
in the following two subsections.

Changing the crop type
In the behavioural model, the first adaptation strategy with which a farmer can adapt to climate variability is
changing the crop type. Part B of the flowchart shows in which case a farmer that has the capacity to adapt to
climate variability will actually adapt by changing the crop type.

The first step is to determine the likelihood of a farmer to adapt by changing the crop type. In Subsection
4.4.9, it was discovered that there are five variables that seem to significantly influence the probability of a
farmer to adapt to climate variability by changing the crop type: the altitude, the farmer’s level of education,
the farm size, the number of livestock owned, and the farmer’s capital (see Table 5.5). The first three variables
are constants, whereas the number of livestock and capital will change over time as described in Subsection
5.2.3. Therefore, the probability of a farmer to adapt by changing the crop type can change throughout the
simulation period. Hence, the adaptive behaviour of a farmer is dynamic. Looking at the negative coefficient
for capital, shown in Table 5.5, this, for example, means that a farmer that is becoming more rich (in terms of
capital) over time, will become less likely to adapt by changing the crop type, and vice versa. The probability
of a farmer to change the crop type is determined by equation

Variable Coefficient (B)

β0 10.153

X1 Altitude [m] -0.005

X2 Education 0.383

X3 Farm size [ha] 0.543

X4 Livestock [TLU] 0.231

X5 Capital [Birr] -0.000044

Table 5.5: Variables and coefficients included in the lo-
gistic model to determine the probability of a farmer
to adapt by changing the crop type. The values are ob-
tained from the binary logistic regression conducted in
Subsection 4.4.9.

5.13, in which the threshold for adaptation is 0.5. The values
for β for each variable are given in Table 5.5 and correspond to
the values of B obtained in the binary logistic regression con-
ducted in 4.4.9. Hence, if the probability of a farmer is lower
than or equal to 0.5, the farmer will not adapt by changing the
crop type and will grow the next crop in the repeating cropping
order given in Table 5.1. On the other hand, if P is higher than
0.5, the farmer will change the crop type to adapt to climate
variability. However, (s)he will only do so whenever a bad year
occurs, or when the onset of rains is exceptionally early. Hence,
the second step to determine if a farmer adapts by changing the
crop type is to determine whether or not an exceptional year is
occurring.

During the FGDs farmers in Geregera and Shime defined a bad year as a drought year when the rains also
start late. This definition is used in this research and translated in the model by stating that a bad year occurs
whenever the onset of rains occurs later than one standard deviation of the mean. Hence, to be able to classify
a year as a bad year, we first need to determine the onset of rains. Hereby, the methodology used in studies
of Mellander et al. (2013), Segele and Lamb (2005) is followed, which both showed good performance for
determining the onset and cessation of kiremt rains in Ethiopia, and the Upper Blue Nile basin, respectively.
The first step is to characterise the region as ‘wet’ or ‘dry’, since this influences the definition of onset and
cessation. A wet region is defined as a region receiving at least 30 rainy days (i.e. a day with > 0.1 mm of
rainfall) during the months July and August. From CHIRPS rainfall data it is determined that the Gumera
sub-basin receives 30 rainy days or more in 97% of the time, hence the definition of onset and cessation for a
wet region is followed.
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Subsequently, the onset and cessation are determined based on a set of criteria. However, by trial and error
it is found that the criteria provided by the FAO (2019) give better estimates for both the onset and cessation
of rains. Hence, in this research, the following criteria for determining the onset of rains are followed. The
onset starts at the first day of a 7-day period, in which at least 25 mm of precipitation occurs and 4 rainy days
are included. Furthermore, it should not be followed by and 8 day (or more) dry spell in the next 30 days. A
dry spell is hereby defined as a contiguous series of non-rainy days. In order to prevent these criteria to give
a very early or late onset, the onset is restricted to occur two months before or after the climatological onset.
For the Gumera sub-basin the climatological onset is estimated on findings of Segele and Lamb (2005) and
set on June 10 (see Figure 5.6).

Figure 5.6: Long-term Kiremt onset and cessation patterns. (a) Mean onset date, and (b) its standard deviation (days). (c) Mean
cessation date, and (d) its standard deviation (days). The red rectangles indicate the Gumera sub-basin, and are added to the original

figure created by Segele and Lamb (2005).

In the case of cessation, the following criteria are followed. The cessation starts at the first day of the first 15
day dry spell occurring after the onset. Hereafter no persistent rains should occur. Just like the climatological
onset, the climatological cessation is estimated based on findings of Segele and Lamb (2005) and is set at Oc-
tober 10 for the Gumera sub-basin (see Figure 5.6). To prevent the occurrence of a very early or late cessation,
the cessation of Kiremt rains is assumed to occur within 2 months before or after the climatological cessation.
For the Gumera sub-basin this means the cessation occurs within the period of August 10 until December 10.

By incorporating the criteria for determining the onset and cessation of rains, it can be determined whether
or not a bad year occurs. Hence, in the behavioural model, for each farmer each year it is checked whether
the onset of rains occurs one standard deviation later than the mean. If this is the case, a bad year occurs, and
the farmer will adapt by growing potato, or teff in case potato is already grown in the previous year. In case
the onset of rains is exceptionally early instead (i.e. more than one standard deviation prior to the mean), it
is assumed the farmer will expect a long rainy season, and decides to grow a long cycle crop. The farmer will
therefore decide to grow maize, or barley in case maize is already grown in the previous year. In case the onset
of rains falls within one standard deviation of the mean, the farmer will not adapt by changing the crop type,
and will follow the standard farming practices by growing the next crop in the cropping order as indicated in
Table 5.1.
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Changing the planting and harvesting dates
Besides changing the crop type, farmers can also choose to cope with climate variability by changing the
planting and harvesting dates (see part C of Figure 5.4).

The first step is to determine the likelihood of a
Variable Coefficient (B)

β0 9.680

X1 Altitude [m] -0.006

X2 Education [-] 1.011

X3 Experience [years] 0.064

X4 Livestock [TLU] -0.736

X5 Weather forecast [-] -1.389

X6 Household labour [days/year] 0.105

Table 5.6: Variables and coefficients included in the logistic model to
determine the probability of a farmer to adapt by changing the planting
and harvesting dates.

farmer to adapt by changing the planting and
harvesting dates. In Subsection 4.4.9, it was dis-
covered that there are six variables that seem to
significantly influence the probability of a farmer
to adapt to climate variability by changing the
planting and harvesting dates. As was the case for
the choice of changing the crop type, the choice
of changing the dates seems to be significantly
influenced by the altitude, the farmer’s level of
education, and the number of livestock owned.
However, where livestock showed a positive cor-
relation with changing the crop type, it shows a
negative correlation with changing the planting
and harvesting dates. In addition, the choice for a farmer to adapt by changing these dates depends on the
farmer experience, the labour availability and whether or not the farmer has access to a weather forecast. The
choice of a farmer to adapt by changing the planting and harvesting dates being influenced by the number
of livestock owned, which is a dynamic variable, induces the adaptive behaviour of a farmer to be dynamic.
Looking at the negative coefficient for livestock, shown in Table 5.6, this, for example, means that a farmer
experiencing an increase in the number of livestock owned will become less likely to adapt by changing the
planting and harvesting dates, and vice versa. The probability of a farmer to adapt by changing the plant-
ing and harvesting dates is calculated with equation 5.13, whereby a farmer will only adapt if the probability
P is larger than 0.5. If P is lower than or equal to 0.5, the farmer will stick with the standard planting and
harvesting dates as indicated in Table 5.1. The corresponding values for β are given in Table 5.6.

In the behavioural model, a farmer adapting to
Planting date Harvesting date

Barley Onset Cessation - 30 days

Maize Onset Cessation + 30 days

Potato Onset Cessation - 30 days

Teff Onset + 45 days Cessation + 45 days

Table 5.7: For each crop the planting and harvesting dates based
on, respectively, the onset and cessation of rains. These dates are
followed by a farmer that adapts to climate variability by chang-
ing the planting and harvesting dates. These assumptions are
based observations during the FGDs, and upon discussions with
W. B. Abebe (personal communication, October 20, 2020).

climate variability by changing the planting and har-
vesting dates will do so based on the timing of the on-
set and cessation of rains. The date at which each crop
is planted and harvested with respect to, respectively,
the onset and cessation of rains, is determined from
observations during the FGDs, and upon discussions
with W. B. Abebe (personal communication, October
20, 2020). An overview of these planting and harvest-
ing dates are shown in Table 5.7. Note that, different
from adapting by changing the crop type, a farmer can
change the planting and harvesting dates each year re-
gardless of it being a bad year.

5.3.4. Methodology to Evaluate the Long-term Effect of Climate Adaptation
In this subsection, a methodology to show the effect of climate adaptation on the long run is presented. Be-
sides the assumed short-term benefits of adapting to climate variability, in terms of increasing yields during
a bad year, climate adaptation is also assumed to generate long-term benefits such as reducing the variability
in both crop yield and income, and making production and livelihoods more resilient to climate change and
variability (FAO, 2015). Due to the reduction in crop yield variability, the average crop production, and there-
fore crop income, might be lower compared to a non-adapting farmer, but more stable. The expected effect of
climate adaptation therefore is that a farmer will find him or herself, in the long run, in an economically more
stable situation. In order to show this effect of climate adaptation on the long run, the socio-hydrological
model is simulated multiple times, with each simulation based on a different time series of both precipita-
tion and potential evapotranspiration. As such, not only the long-term effect of climate adaptation can be
evaluated, also the impact of randomness on the outcomes of the socio-hydrological model can be reduced.
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A modified SIMGEN, based on the method developed by Greene et al. (2012), is used in order to generate mul-
tiple time series of precipitation and PET. The algorithm is a multivariate stochastic weather generator and
has been successfully applied in the Western Cape province of South Africa and in the south-eastern region
of South America. The algorithm generates stochastic synthetic projections of the variable conditions based
on daily precipitation, and minimum and maximum temperature data. Whereas Greene et al. (2012) dis-
tinguishes between three process classes, being the anthropogenic trend component, an annual-to-decadal
component, and a sub-annual component, this study only takes into account the latter two. The sub-annual
component accounts for both the seasonal cycle and daily variations, whereas the annual-to-decadal compo-
nent incorporates the variability on annual to decadal time scales by utilizing a vector autoregressive model.
Since the precipitation and PET time series, used in this research, only cover 18 years, long-term climatic
trends (i.e. over multiple decades) are neglected.

Before the time series are stochastically generated, the daily CHIRPS precipitation dataset and minimum
and maximum temperature datasets are processed into the right format such that it fulfils the requirements
of the SIMGEN package. However, due to a lack of accurate local daily minimum and maximum temperature
data from the Gumera sub-basin extending the simulation period, the daily MOD16A2 PET time series is used
to derive daily temperature data for the entire simulation period. The conversion is realised by utilising the
Hamon equation for calculation of potential evapotranspiration, given by equation 5.14 (Allen et al., 1998, Lu
et al., 2005). The obtained temperature time series is used as the maximum temperature. In order to create
a time series for the minimum temperature, the minimum temperature of one historical year is stacked 18
times in order to create a time series equal to the length of the simulation period. Hence, each year in this
time series of minimum temperature is the same.

PET = k ∗0.165∗216.7∗N ∗ (
es

T +273.3
) (5.14)

Here, PET is the potential evapotranspiration in mm/day, k is a proportionality coefficient equal to 1 [-],
N is the daytime length [x/12hours] and calculated by N = (24 / π) * ω, where ω is the sunset hour angle in
radians. Furthermore, T is the daily temperature [°C], and es is the saturation vapour pressure [mb], which is
defined by equation 5.15.

es = 6.108e( 17.27T
T+237.3 ) (5.15)

The sunset hour angle ω depends on the latitude and declination (both in radians) and is given by equation
5.16.

ω= cos−1[−t an(δ)t an(φ)] (5.16)

The declination is determined by equation 5.17, where J is the Julian Day of the year.

d = 1+0.033cos(
2π

365
J ) (5.17)

Once the daily temperature dataset has been obtained, both the precipitation and temperature datasets are
used as input for the SIMGEN algorithm in order to stochastically generate multiple time series (Greene et al.,
2012). Subsequently, the stochastically generated
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Figure 5.7: The mean of the farmers’ capital at the end of the simulation
period for multiple simulations of the behavioural model. Made by author.

temperature time series are converted to PET
in order to be able to use it as input for the
socio-hydrological model. This conversion
is again done with the Hamon equation (see
equations 5.14 - 5.17).

With the set of stochastically generated time
series for both precipitation and PET the re-
quired number of simulations, in order to
characterise the sensitivity of the model out-
puts to uncertainty in weather data, is deter-
mined. The required number of simulations
is determined based on the number of simula-
tions after which the mean of the farmers’ av-
erage capital at the end of the simulation pe-
riod (i.e. in the year 2018) gets stable. Figure
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5.7 shows mean after every additional simula-
tion, from which can be concluded that after 25 simulations the mean remains rather stable. Hence, the
required number of simulations in order to characterise the randomness in the model is 25.

In order to observe the effect of climate adaptation on the long-term, the mean and standard deviation of a
farmer’s capital at the end of the simulation period in the behavioural model, averaged over 25 simulations,
is compared with the reference model. As such, it can be evaluated whether climate adaptive behaviour has
the expected effect on the long-term economic situation of a farmer, which is a lower (on average) but more
stable economic situation.

5.4. Results and Discussion of the Socio-Hydrological Model
In this section the influence of the climate adaptive behaviour, incorporated in the behavioural model, on the
farming practices of farmers in the Gumera sub-basin is presented and discussed by means of a few examples.
In addition, the performance of farmers with respect to the crop yield obtained and their economic well-being
is presented and discussed in comparison with the reference model. Hereby, the values presented represent
the average value over 25 simulations. In addition, this is compared with what was observed in the household
survey in Sections 4.3 and 4.4. The four groups identified in these sections, which were observed to perform
different with respect to the crop yield obtained and behave different with respect to climate variability, are
repeatedly compared with each other:

1. Group 1: Rice growing farmers, which are all adapting to climate variability

2. Group 2: Non-rice growing farmers who do not adapt to climate variability, and do not have access to a
weather forecast

3. Group 3: Non-rice growing farmers who adapt to climate variability, but do not have access to a weather
forecast

4. Group 4: Non-rice growing farmers who adapt to climate variability, and have access to a weather fore-
cast

Group of farmers Nr of farmers
Behavioural
model

Household
survey

Rice growing farmers 61 61

Non-rice

growing farmers

Non-adapting farmers 30 48

Adapting farmers without

a weather forecast
227 209

Adapting farmers with

a weather forecast
76 76

Table 5.8: The number of farmers per group in the behavioural model, compared with what was
observed in the household survey.

Table 5.8 shows the num-
ber of farmers that were
observed to belong to each
group of farmers in the
household survey, and com-
pares this with the size
of each group in the be-
havioural model. This
shows deviating group sizes
for both non-adapting farm-
ers, and adapting farm-
ers without access to a
weather forecast, which is
the result of determining the climate adaptive capacity of a farmer via a logit model. This causes 18 farmers
to be classified as an adapting farmer in the behavioural model, while, in the household survey, these farmers
claimed not to be adapting to climate variability. Despite these deviations, the size of each group remains in
the same order of magnitude.

5.4.1. Crop Yield Obtained by Farmers
This subsection analyses the simulated crop yield obtained by farmers in the Gumera sub-basin by both
the reference and behavioural model. Comparing both models with each other gives an indication of the
influence of the climate adaptive behaviour incorporated in the behavioural model. In addition, the crop
yield obtained by farmers in the model is compared with the results from the household survey.

Table 5.9 shows the simulated crop yield in both the reference and behavioural model. The average, mini-
mum, and maximum crop yields are presented for each crop, and compared with the results from the house-
hold survey conducted in the Gumera sub-basin. For clarity, the crop yield shown is the harvestable yield,
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hence it is the calculated crop yield after correction for labour and fertiliser factors (see equation 5.12). Both
the reference and behavioural model show rather similar results, in which farmers in the reference model
obtain slightly higher yields for barley and teff, but lower yields for maize. Note that potato is not grown in
the reference model and therefore does not show better any results. Compared with what is observed in the
household survey, for all cereal crops (i.e. barley, maize, rice, and teff) both models overestimate the aver-
age and maximum crop yield obtained by farmers. Especially, the average yield of maize includes a large
error, overestimating the average yield by a factor 2.5, compared to the average maize yield observed in the
household survey. On the other

Avg Min Max Household survey

Avg Min Max

Barley Reference 3350 170 4600

Behaviour 3100 35 4600 2380 700 3900

Maize Reference 7630 260 9350

Behaviour 7700 230 9350 3070 900 6000

Potato Reference

Behaviour 3010 0,5 6590 15.100 3000 32.000

Rice Reference 5060 4150 5070

Behaviour 5060 4150 5070 4021 3000 4400

Teff Reference 2380 140 2720

Behaviour 2210 30 2720 1380 300 2600

Table 5.9: Simulated crop yield in kg/ha by both the reference and behavioural model, and
compared with the average observed crop yield in kg/ha in the household survey conducted
in the Gumera sub-basin.

hand, the yield of potato is
underestimated instead. The
average potato yield, obtained
by farmers in the behavioural
model, is 5 times lower com-
pared to the observed average
potato yield in the household
survey. However, it is not un-
likely that crop yields observed
in the household survey contain
some error. It could be that
farmers are unwilling to reveal
total crop yield, which is likely
to lead to underestimates of
crop yield (Dorward and Chirwa,
2010). This would mean the ac-
tual crop yield to be closer to the
results of the model, except for
potato.

Due to the crop yield not being predicted well by both the reference and behavioural model, the relation-
ship between the three groups of non-rice growing farmers, with respect to crop yield obtained, is different
compared to what was observed in the household survey. In Subsection 4.4.4, it was discovered that non-
adapting farmers obtained significantly lower yields for all cereal crops compared to adapting farmers. In
addition, adapting farmers with a weather forecast obtained significantly higher yields compared to adapt-
ing farmers without a weather forecast for the two major crops grown in the Gumera sub-basin, maize and
teff, and performed similar with respect to barley. In the case of potato, adapting farmers without a weather
forecast showed significantly lower yields compared to adapting farmers with access to a weather forecast.

If we compare this with the results of the model, a rather different pattern arises. Figure 5.8 shows the
average crop yield obtained by each group of farmers per crop type, for both the reference and behavioural
model. Opposite from what was observed in the household survey, the non-adapting farmers in both the
reference and behavioural model show similar or even higher average yields for each crop type compared
to both groups of non-rice growing adapting farmers. In addition, where non-rice adapting farmers with
a weather forecast showed significantly higher crop yields for maize and teff in the household survey, in the
model they show the lowest yields of all groups. From this it can be concluded that the crop yield predicted by
the model is not mimicking the pattern observed in the household survey. The model highly underestimates
potato yield and overestimates yield of cereal crops, which, to a certain extent, causes the model to show
an almost opposite relationship between the three groups of non-rice growing farmers. This makes that we
cannot rely on the system dynamics in the behavioural model induced by incorporating the climate adaptive
behaviour. Therefore, in the following subsection the system dynamics will not be analysed, but examples are
shown of how incorporating the climate adaptive behaviour influences the agricultural practices of farmers
in the behavioural model.
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Figure 5.8: The average harvestable crop yield obtained by each group of farmers per crop type for both the reference (left figure) and
behavioural model (right figure). Made by author.

5.4.2. The Influence of Climate Adaptation on the Farming Practices
Farmers in the behavioural model can adapt to climate variability depending on whether they have the ca-
pacity to adapt. If they do, they can adapt by changing the planting and harvesting dates and/or changing
the crop type. As such, farmers can adapt by changing the crop type to a short cycle crop (i.e. potato or teff)
in case of a bad year, which was defined as a drought year in which rains also start late, or to a long cycle
crop (i.e. maize or barley) in case of an exceptionally early onset of rains. In addition, farmers can change the
planting and harvesting dates based on, respectively, the onset and cessation of rains. In this subsection, four
examples will be presented of a year in which an adapting farmer, in the behavioural model, adjusts his or
her farming practices to cope with climate variability. The first example will show how an adapting farmer re-
sponds to an exceptionally early onset, whereas the other three examples will show how an adapting farmer
responding to a bad year. Hereby, one example of each adaptation strategy or combination of strategies is
presented. These examples are consistently compared with the same farmer in the reference model, in which
each farmer follows the pre-defined standard farming practices indicated in Table 5.1.

Mean Std Range (µ +/- σ)

Onset June 9 24 days May 16 - July 3

Cessation October 8 22 days Sept 16 - Oct 30

Season length 121 days 34 days 87 - 155 days

Table 5.10: The mean, and standard deviation of the main characteristics
of the rainy season in the Gumera sub-basin: onset, cessation, and sea-
son length. The range indicates the period within which a farmer expects a
"normal" year to occur.

In the behavioural model, the timing of plant-
ing and harvesting crops of adapting farmers
fully depends on the onset and cessation of
rains. In addition, whether or not a farmer
adapts by changing the crop type depends on
the timing of the onset of rains with respect to
the mean onset and cessation of rains expe-
rienced in the Gumera sub-basin throughout
the simulation period. Table 5.10 presents the
average characteristics of the rainy season in
the Gumera sub-basin from 2001 to 2018 (i.e. throughout the simulation period), as well as the standard de-
viation. The range presented is especially important for the onset of rains, since this forms the boundaries
outside which a farmer expects an exceptional year to occur. If, for example, the onset of rains occurs later
than July 3, a farmer classifies this year as a bad year, expects a short rainy season to occur, and takes up one
or two adaptation strategies, but only if (s)he has the capacity to do so.

Changing to a long cycle crop
Figure 5.9 shows an example of the farming practices of an adapting farmer with access to a weather forecast
in the year 2014. This year has a very early onset of rains, occurring at April 26, which is roughly one and a
half month prior to the average onset of rains. Hence, the rainy season starts exceptionally early. On the other
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hand, the cessation, occurring at October 8, coincides with the average cessation of rains (see Table 5.7). Due
to the very early onset of rains, the length of the rainy season is very long with 165 days.

In Figure 5.9a the farming practices taken up in the reference model are shown. It can be observed that the
farmer grows teff, and sows seeds at the corresponding pre-defined planting and harvesting dates, which are
June 15, and October 15. Although, the farmer obtains rather high crop yield an income he only makes use of
roughly two third of the rainy season. Since teff is a short cycle crop, requiring only 120 days to fully mature, it
would be more profitable for a farmer to grow a long cycle crop with higher yields in case of such a long rainy
season.

This is exactly what happens in the behavioural model (see Figure 5.9b). The farmer expects a long rainy
season due to the very early onset of rains, and decides to adapt by changing to the long cycle crop maize.
Since maize requires 150 days to fully mature, the farmer makes full profit of the long rainy season, obtaining
high crop yield and income. Although the highly overestimated maize yield might give a distorted picture
looking at crop yield and income, the behaviour of the farmer in the behavioural model with respect to cli-
mate variability, in which (s)he changes the crop type based on the expected type of rainy season, seems to
be in more agreement with what is observed in the FGDs and the household survey.
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(b) Behavioural model

Figure 5.9: An example of the farming practices of a farmer in a year with a long rainy season, for both a) the reference model and b)
the behavioural model. In the behavioural model the farmer is adapting to climate variability by changing to the long cycle crop, maize.
Wilting point is related to the axis of soil moisture. Made by author.
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Changing to a short cycle crop
Figure 5.10 shows an example of the farming practices of an adapting farmer with access to a weather forecast
in the year 2003. This year the onset of rains is late, occurring at July 3, and is therefore classified as a bad year.
On the other hand, the cessation of rains occurs quite early in the year, at September 17 with respect ot the
average cessation (see Table 5.7). This causes the length of the rainy season to be only 76 days.

In Figure 5.10a shows the situation in the reference model. It can be observed that the farmer grows barley,
which is a long cycle crop requiring 150 days to fully mature. This is twice as long as the length of the rainy
season in this year, hence it is unlikely for a farmer to grow barley in such a short rainy season. In addition, the
pre-defined planting date of barley does not match the start of the rainy season, as it is approximately 60 days
prior to the onset of rains, at which point only few rain events have occurred. The farmer would therefore be
very likely to obtain low yields. However, due to the model overestimating the yield of barley, the farmer still
obtains a very high yield, and high income.

In the behavioural model (see Figure 5.10b), the farmer acknowledges the late onset of rains, expects a
short rainy season to occur, and adapts by changing to a short cycle crop, which in this case is teff. Since
teff only requires 120 days to fully mature it better corresponds to the length of the rainy season. On top of
that, the pre-defined planting and harvesting dates better match the onset and cessation of rains respectively,
since teff is regularly sown and harvested after the onset and cessation. As such, the farmer makes better use
of the short rainy season, and obtains the maximum yield for teff (see Table 5.9).
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(b) Behavioural model

Figure 5.10: An example of the farming practices of a farmer in a bad year, for both a) the reference model and b) the behavioural model.
In the behavioural model the farmer is adapting to climate variability by changing to the short cycle crop, teff. Wilting point is related to
the axis of soil moisture. Made by author.
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Shifting planting and harvesting dates
Figure 5.11 shows an example of the farming practices of an adapting farmer without access to a weather
forecast in the year 2001, which is the first year of the simulation period. This year has a late onset of rains,
occurring at July 14, and therefore is classified as a bad year. On the other hand, the cessation of rains occurs
quite early in the year, at September 19 (see Table 5.7). This causes the length of the growing season to be
only 67 days.
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(b) Behavioural model

Figure 5.11: An example of the farming practices of a farmer in a bad year, for both a) the reference model and b) the behavioural model.
In the behavioural model the farmer is adapting to climate variability by changing the planting and harvesting dates. Wilting point is
related to the axis of soil moisture. Made by author.

In Figure 5.11a shows the situation in the reference model. It can be observed that the farmer grows maize,
and sows seeds at the corresponding pre-defined planting date (i.e. the first of May). However, due to the
onset of rains being very late in the year (i.e. at July 14), the farmer sows seeds 74 days prior to the onset
of rains, whereas it is observed from the FGDs that farmers normally sow maize seeds simultaneously with
the onset. This causes the farmer to sow seeds at the time only few small rain events have occurred and soil
moisture is still below wilting point, hence there is no water available to the plant. A very unlikely timing
for a farmer to sow seeds. It is roughly 50 days later that soil moisture exceeds the wilting point, and their
being water available to the plant in order to gain biomass. In addition, although the farmer is harvesting the
crop after cessation, (s)he does so at a time soil moisture is almost at its maximum, and therefore does not
make use of the residual moisture that is still available in the soil. It can thus be concluded that this farmer, by
following the standard farming practices, does not make good use of the type of rainy season that is occurring.
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In the behavioural model (see Figure 5.11b), the adapting farmer classifies this year as a bad year due to the
late onset of rains, hence (s)he is expecting a short rainy season to occur. To cope with this variability in
climate, the farmer adapts by solely changing the planting and harvesting dates. Note, the farmer still grows
maize. The farmer therefore shifts the planting date such that it coincides with the onset of rains, whereas
(s)he waits with harvesting until 30 days after the cessation has occurred (as was assumed in Subsection
5.3.3, see Table 5.7). It can be observed that, opposite from what was the case in the reference model, the soil
moisture is much higher than wilting point at the time of sowing seeds. In addition, the farmer harvests the
crop at the time soil moisture is just above wilting point. As such, it makes full use of the residual moisture that
is left in the soil after cessation. In comparison with the reference model, the farmer in the behavioural model
makes better use of the very short rainy season by shifting the planting and harvesting dates. As such, the
farmer obtains higher crop yield and higher income compared to the situation in the reference model. From
this example it can thus be concluded that the behavioural model is able to capture the farming practices
with respect to climate variability which were observed during the FGDs and in the household survey.

Changing to a short cycle crop and shifting planting and harvesting dates
Figure 5.12 shows an example of the farming practices of an adapting farmer without access to a weather
forecast in the year 2012. This year has a very late onset, occurring at July 10, and is therefore classified as a
bad year. Similarly, the cessation occurs rather late in the year, at October 31, causing the season length to
be 112 days. Hence the rainy season is not only rather short, but also has shifted by roughly one month with
respect to the average timing of the rainy season.

In Figure 5.12a the farming practices taken up by the farmer in the reference model are shown. It can be
observed that the farmer grows barley, which requires 150 days to fully mature, and therefore does not really
suit the rather short rainy season. In addition, the farmer sows at the pre-defined dates for barley, which are
May 1 and August 31, respectively. This causes the farmer to sow seeds 70 days prior to the onset, and harvests
60 days prior to the cessation, whereas barley is regularly sown at the onset and harvested 30 days prior to the
cessation. By not adapting to the climate variability this farmer does not make full profit of the rainy season.

Comparing this with the farming practices of the same farmer in the behavioural model (see Figure 5.12b),
it can be observed that the farmer adapts to climate variability by both changing to a short cycle crop, in this
case potato, and shifts the planting and harvesting dates. As such, the farmer takes up farming practices that
better fit the rainy season. However, due to the model overestimating yield of barley, and highly underesti-
mating potato yield, in the reference model the farmer still obtains a high yield and high income, whereas in
the behavioural model this farmer is left without any income.

Based on the examples discussed in this subsection, it can be concluded that, despite the model not being
able to give good estimates for crop yield, incorporating the climate adaptive behaviour of farmers success-
fully account for the climate adaptive behaviour of farmers in the Gumera sub-basin. The agricultural prac-
tices taken up by farmers in the behavioural model better coincide with what is observed during the FGDs
and the household survey, compared to the reference model. In comparison with reference model, adapting
farmers in the behavioural model show to choose the crop type that better fits the rainy season, and the more
appropriate dates to plant and harvest with respect to the type of rainy season that is occurring.
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(a) Reference model
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(b) Behavioural model

Figure 5.12: An example of the farming practices of a farmer in a bad year, for both a) the reference model and b) the behavioural model.
In the behavioural model the farmer is adapting to climate variability by both changing to the short cycle crop, potato, and changing the
planting and harvesting dates. The biomass growth is in kg/ha/day. Made by author.

5.4.3. The Effect of Adaptation
This subsection illustrates that making use of multiple stochastic simulations, as described in Subsection
5.3.4, provides the opportunity to analyse the effect of climate adaptation on the economic well-being of
smallholder farmers in the Gumera sub-basin. The effect of climate adaptation was suggested to work on
the long run, in which the average income from crops of adapting farmers would be lower but more stable
compared to that of non-adapting farmers. Hence, by adapting to climate variability, the economic situation
of a farmer would become more resilient with respect to climate variability.

Figure 5.13 is only used for illustration purposes. It illustrates the effect of adaptation, induced by incor-
porating the climate adaptive behaviour of smallholder farmers in the Gumera sub-basin, captured by the
behavioural model. It shows a boxplot of both the mean (see Figure 5.13a) and standard deviation (see Figure
5.13b) of the income from crops for 30 non-rice growing adapting farmers over 25 simulations of 18 years for
both the reference and behavioural model. As such, it is accounted for the long-term effect of climate adapta-
tion. Each of these farmers shows a lower mean and standard deviation in the behavioural model compared
to the reference model. Hence, the overall average mean and standard deviation of crop income for these 30
farmers is, respectively, 7.2% and 24.2% lower in the behavioural model compared to the reference model.
This would suggest that these farmers show the desired effect of adaptation to climate variability, in which
they obtain a more stable income from crops. However, due to the crop yields not being predicted well in this
model, this suggestion cannot be relied upon. Hence, Figure 5.13 only functions as an illustration that shows
what the effect of climate adaptation would look like and how it can be evaluated. Therefore, if one would
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(a) Standard deviation of crop income
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(b) Mean of crop income

Figure 5.13: An illustration of the effect of climate adaptation on a) the mean and b) the standard deviation of crop income for 30 non-
rice growing adapting farmers. Each of these farmers shows a lower mean and standard deviation with respect to crop income after 25
simulations of 18 years in the behavioural model compared to the reference model. Reference model: mean = 12.524 Birr, SD = 11.378
Birr. Behavioural model: mean = 9497 Birr, SD = 10.565 Birr. Made by author.

implement this model with the right yields, following this methodology would provide the opportunity to
assess the simulated impact of climate adaptation on the farmers economic well-being. From this, it is then
possible to conclude why farmers are adapting.

5.5. Conclusion
This section provides conclusions on the methodology and corresponding results described and discussed in
Sections 5.2, 5.3 and 5.4. It has been observed that the socio-hydrological model highly underestimates yield
of potato, which is the adaptive crop, and overestimates yield of cereal crops. Therefore the system dynamics
of farmers, induced by incorporating the climate adaptive behaviour of a farmer, cannot be relied on. Despite
the socio-hydrological model not being able to give good estimates of crop yield, it has the ability to better
describe the agricultural practices of farmers with respect to climate variability. As such, it is shown that the
climate adaptive behaviour of a farmer can be successfully incorporated in a socio-hydrological model by the
use of a logit model. Based on the main drivers of climate adaptive capacity, obtained via a bottom-up ap-
proach, the socio-hydrological model can distinguish between adapting and non-adapting farmers. Hereby,
based on the onset of rains and farmer characteristics, adapting farmers adapt to climate variability by either
changing to a long or short cycle crop, or shifting the planting and harvesting dates. By doing so, the agri-
cultural practices with respect to climate variability simulated by the model better coincide with what is ob-
served during the FGDs and the household survey. Unlike the reference model, the behavioural model shows
adapting farmers to choose the crop type that better fits the rainy season, and the more appropriate dates
to plant and harvest with respect to the type of rainy season that is occurring. In addition, since the climate
adaptive behaviour is influenced by continuous variables that change over time, the model is able to account
for the dynamic adaptive capacity of a farmer with respect to climate variability. In addition, the method-
ology to evaluate the real effect of climate adaptation on the economic well-being of a farmer is shown to
be feasible. By stochastically creating multiple time series of precipitation and potential evapotranspiration,
and simulating the model multiple times for each time series, it can be evaluated what the long-term effect
of climate adaptation is on the economic well-being of a farmer, by just focusing on the mean and standard
deviation of the income from crops.



6
Discussion

The results presented in Sections 4.3, 4.4 and 5.4, which provide an answer to the research questions stated
in Section 1.4, come with several uncertainties and/or limitations. These uncertainties could be introduced
by the methodologies used and assumptions that are made throughout the process. This chapter discusses
the main uncertainties and limitations of each methodology used (i.e. FGDs, household survey, and socio-
hydrological model) and how this might have influenced the answers on the research questions. For some of
these limitations future recommendations are provided in Chapter 7.

6.1. Focus Group Discussions
The first methodology used in this study in order to gain local-level knowledge from smallholder farmers in
the Gumera sub-basin was in the from of FGDs, discussed in Subsection 4.2.1. By conducting these FGDs in
different regions of the Gumera sub-basin, a good indication of the farmers’ perceptions, characteristics and
behaviours with respect to climate variability, representative for the entire population, would have been ob-
tained. However, due to COVID-19 related restrictions, constraints were introduced on time and movement.
Hence, it was only possible to conduct three FGDs, all in the lower ACZ in the western part of the Gumera sub-
basin. Furthermore, the participating farmers were all male farmers, and predominantly quite intelligent and
experienced farmers claiming to adapt to climate variability. Although it was observed from the household
survey the majority of farmers in the Gumera sub-basin to be adapting to climate variability, experienced,
and male farmers, the farmer perspective obtained from the FGDs might have been biased and not represen-
tative for the entire population of the Gumera sub-basin. Therefore, deviating perceptions, characteristics,
and behaviours of, for example, farmers in the upper ACZ, female farmers or farmers with less experience,
might have been missed out on.

Since the FGDs form the basis of both the household survey and the socio-hydrological model, it is likely
that the perspective of experienced male farmers in the lower ACZ is dominant in this research. As such,
agricultural practices of farmers in especially the upper ACZ could be underexposed in this research. An
example of this is that farmers in the Gumera sub-basin in high altitude lands, particularly in Farta (located
in the North East of the Gumera sub-basin), practice double cropping. They, for example, grow barley just
after potato or vice versa (ADSWE, 2015a). However, based on the FGDs it was assumed all farmers in the
Gumera sub-basin to practice rotational cropping, in which farmers grow one crop a year. Therefore, double
cropping, which is suggested to make farmers less vulnerable to climate variability (Meza et al., 2008), has not
been taken into account in both the household survey and the socio-hydrological model.

6.2. Household survey
With respect to the household survey, there are a few aspects that might introduce some error or uncertain-
ties in the data. This largely consists of two aspects. First, there is uncertainty whether the respondents of
the household survey are a good representation of the entire population in the Gumera sub-basin, which is
related to limitations of the FGDs discussed in Section 6.1. Second, assumptions to determine the sample size
might have introduced some uncertainties in the results. Each of these aspects is discussed below in further
detail.

73
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First of all, one of the known disadvantages of a household survey is that it basically reflects the ‘world view’
or perceptions from the researchers on the topic to be examined by means of the household survey. The
respondents, hereby, merely answer the questions thought to be important and relevant by those designing
and canvassing the household survey (Mukherjee, 1997). As such, the real perspectives of local farmers might
be missed out on. In this study, this effect is tried to be minimised by adjusting the household survey based
on the observations during the FGDs. As such, the farmer perspective is tried to be incorporated as much as
possible. However, as is discussed in Section 6.1, the farmers attending the FGDs might not have been a good
representation of the entire population. Therefore, the perspective of farmers incorporated in the household
survey might be biased towards experienced male farmers in the lower ACZ. Furthermore, the farmers at-
tending the FGDs were rather intelligent, answering questions including rates such as kg/ha, with ease. It
was therefore assumed to be possible to incorporate such questions in the household survey. However, when
analysing the data, a large share of surveyed farmers was observed to be illiterate, suggesting they have a
lower level of intelligence compared to farmers attending the FGDs. Some questions in the household sur-
vey, including rates, could therefore have been too complicated for some farmers to give an accurate answer,
which could have introduced some error in the data.

Another uncertainty affecting the reliability of the data obtained by the household survey, is that it can-
not be assured that the household survey is conducted by random sampling. The household survey was
conducted by several local Agricultural Experts who are experienced in conducting such a survey, and are
in close contact with the local farmers. However, due to the abrupt ending of the field campaign, induced
by COVID-19 related restrictions, it was not possible to check whether the Agricultural Experts indeed con-
ducted the household surveys by random sampling. However, acknowledging their experience in conducting
surveys it is assumed a good representation of the population is obtained. This is also partly validated by the
average age of the household head, family size, and the share of adapting and female farmers in the house-
hold survey, which are all very similar to what is found in studies conducted within or close to the Gumera
sub-basin (ADSWE, 2015a, Bryan et al., 2009).

Second, for determining the required sample size of the household survey an average effect size (d) of 0.4,
based on two large-scale behavioural studies (Brysbaert, 2019), was used. This average effect size was used
due to it being rather difficult to give a better estimate for the effect size of climate adaptive behaviour of
smallholder farmers a priori, and collecting data from a very large sample was not feasible within the scope
of this study. Knowing that behavioural effects are often small, the effect size of 0.4 used in this study might
not have been sufficient to pick up certain effects of behavioural aspects of farmers with respect to climate
variability. A smaller effect size, and therefore a bigger sample size, would therefore improve the analysis on
farmers and the reliability, especially for the smaller groups of non-adapting and female farmers. An example
of an effect that might have been missed out on due to the average effect size of 0.4, is the effect of capital
on climate adaptation. From literature it is known that a lack of capital can be a real constraint to climate
adaptation (Gezie, 2019), indicating that non-adapting farmers experience a lack of capital. Although a rather
large difference in capital (10%) was observed in the household survey between adapting and non-adapting
farmers, no significant effect was found in this research. With a larger sample size this difference might have
been significant, resulting in a possible different outcome of the barriers to climate adaptation.

An additional comment must be made on the scope of this research. Certain factors that might be of sig-
nificance for the climate adaptive behaviour of a farmer are, due to the scope, not included in this research.
Hence, this research does not provide a complete picture of all factors possible influencing the climate adap-
tive behaviour of smallholder farmers in the Gumera sub-basin. For example, soil degradation, which is
known to be a big issue in the Gumera sub-basin, the interaction between farmers, as well as the influence
of pests and diseases, such as the most recent threat in the from of COVID-19, are assumed to influence the
climate adaptive behaviour of a farmer, but are not included in this research. To create an overarching view
of the influence of all of these aspects on the climate adaptive behaviour further research that links these
different aspects is needed.

Overall, it can be concluded that the combination of limitations might have introduced some uncertainties
in the data obtained from the household survey. This is likely to have influenced the results obtained in this
research, especially with respect to the groups of farmers representing a small proportion of the population
(i.e. non-adapting and female farmers). The conclusions drawn on the climate perception of non-adapting
farmers and the information used to make agricultural decisions (both assumed to be important drivers for
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the climate adaptive behaviour of a farmer), are based on small samples and therefore prone to uncertainties
in the data. On the other hand, the results obtained regarding adapting farmers and the influence of, for
example, having access to a weather forecast are rather strong. However, one has to be very careful with
drawing conclusions on what is observed from the household survey. Concluding on causations, for example,
is not possible, hence each significant influence found in this research can only suggest a correlation (and its
direction) between variables.

6.3. Socio-Hydrological model
In Chapter 5 a methodology is presented to incorporate the climate adaptive behaviour of smallholder farm-
ers in a socio-hydrological model. Enabling this methodology has been shown to improve the simulation of
agricultural practices of farmers with respect to climate variability. However, the question why farmers adapt
to climate variability and how it impacts their economic well-being could not be answered due to the model
not being capable of giving good estimates of crop yield. This section describes limitations of the model that
influence the crop yield calculation. In addition, the methodology with which the climate adaptive behaviour
of farmers in the Gumera sub-basin is incorporated, and its shortcomings are discussed.

6.3.1. Crop yield calculations
In Section 5.4 it was observed that the calculated yield of cereal crops was highly overestimated by the model,
whereas the yield of potato, which is the major adaptive crop, was highly underestimated. As a consequence,
the system dynamics of smallholder farmers represented by the model, which are highly influenced by crop
yield, cannot be relied upon. The reason for the socio-hydrological model not being capable of calculating
crop yield estimates that are comparable with what is found in literature and observed in the household
survey, is due to some limitations in the model, as described below.

First of all, the soil moisture is described by a one bucket model, without seepage at the bottom of the reser-
voir. In addition, all precipitation is assumed to fully infiltrate into the ground, whereby moisture in excess
of the maximum storage is removed from the smallholder system as runoff. Interception is hereby neglected,
even though interception is found to be an important process in the water balance (De Groen and Savenije,
2006, Love et al., 2010). The combination of neglecting both seepage and interception causes moisture in
the ground to be only removed from the system by soil evaporation and water uptake from plants, and gets
replenished rather quickly by small
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Figure 6.1: An example of the farming practices of a farmer in a bad year, for the reference
model, showing that the soil moisture content remains high after the cessation of rains
has occurred. Wilting point is related to the axis of soil moisture. Made by author.

rain events. This causes the soil
moisture content to remain high
even after the long dry season. Fig-
ure 6.1 and 6.2 show examples in
which, prior and after the rainy sea-
son, soil moisture remains at the
maximum storage capacity despite
the occurrence of only few small
rain events. As a consequence,
there is always water available for
the plants even if a farmer sows
seeds two months prior to the on-
set of rains, as was observed in Sub-
section 5.4.2. As a result, the model
overestimates crop yields even in
the case of a bad year or in the case
of bad timing of planting and har-
vesting dates. To make the model more realistic, and to prevent very high yields even in the case of a mis-
match between planting date and onset, a better approach of modelling the soil moisture content might be to
start each year with an ‘empty bucket’ (i.e. zero soil moisture in the ground). Figure 6.1 shows an example of
how this would look like. As such, planting seeds too early would coincide with very low soil moisture content
and the crop suffering from water stress.
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A third aspect that might contribute to the overestimation of crop yield is temperature. In this model temper-
ature stresses are not taken into account, due to a lack of accurate daily temperature data from local meteo-
rological stations. Although it is uncertain to what extent temperature stresses affect crop yield calculations
by the model, with the observed increasing trend of temperature in Ethiopia (Legesse, 2017) it becomes more
and more important to take into account temperature in such models. Not only due to it influencing crop
yield, but also due to it being an important source of information for farmers, as is suggested from the house-
hold survey. Almost 80% of adapting farmers without access to a weather forecast claim to use their own
observations of temperature to determine what agricultural practices to conduct.

Another factor that is likely to introduce some error in the crop yield calculation is the fertiliser factor. This is
a factor between 0 and 1, and is defined as the amount of fertiliser applied by a farmer (in terms of Nitrogen)
divided by the maximum Nitrogen application rate, and influences crop yield directly. As such, a fertiliser
overuse does not affect crop yield, but using a fertiliser rate lower than the maximum application rate (causing
the fertiliser factor to be smaller than 1) negatively affects the crop yield obtained by a farmer. As such, the
model predicts higher crop yields for farmers using higher rates of fertiliser. This is the exact opposite from
what is observed in the household survey, in which fertiliser was found to be a significant predictor for crop
yield, showing a negative correlation. Due to the large influence of the fertiliser factor on crop yield in the
model, and it introducing a correlation in the opposite direction from what was observed in the household
survey, an error in the crop yield calculation might be introduced. Hence, to reduce the error in crop yield
calculations within this model, the influence of fertiliser use should be critically looked at. Related to this
aspect of fertiliser use is soil fertility, which is not taken into account, although it being observed to compose
a major limitation to crop production in the Lake Tana sub-basin (Abera, 2017).

At last, uncertainties in crop yield calculations could be introduced by the input data. In this research, the
MOD16A2 potential evapotranspiration dataset (Running et al., 2017) is used as input for the model. Al-
though MOD16A2 does not provide the best performance of PET estimates, it is used in this research due to
it being the only global readily-available open-source evapotranspiration product providing real-time evap-
otranspiration estimates. For further studies, better performing higher spatial resolution products, such as
Landsat (Vogels et al., 2020), or, if available, daily temperature data from local meteorological stations are
recommended. Furthermore, in order for the model to calculate crop yield, crop specific parameters are re-
quired as input. For maize, and teff these are based on studies conducted in comparable regions in Ethiopia.
However, due to a lack of local studies, parameter values for barley, potato and rice are based on more gen-
eral values used by the FAO. This could introduce some error in the crop yield calculation as parameter values
could differ between regions. The highly underestimated yield of potato could be introduced by this.

6.3.2. Limitations to Climate Adaptive Behaviour
The methodology presented in this
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Figure 6.2: An example of the farming practices of an adapting farmer in a bad year, for
the behavioural model, showing soil moisture to be very high prior to the onset of rains,
and planting and harvesting dates to be very close to each other. Wilting point is related
to the axis of soil moisture. Made by author.

research has been shown to suc-
cessfully account for the climate
adaptive behaviour of smallholder
farmers in a socio-hydrological model.
By enabling a logit model the socio-
hydrological model can distinguish
between adapting and non-adapting
farmers based on their farmer char-
acteristics that are suggested from
the household survey to signifi-
cantly influence the climate adap-
tive capacity of a farmer. As such,
with respect to climate variabil-
ity, the agricultural practices taken
up by farmers in the behavioural
model, better coincide with what is
observed during the FGDs and in
the household survey, compared to the reference model. However, a limitation to the current model is that
the climate adaptive behaviour of farmers in the Gumera sub-basin is triggered solely by the onset of rains.
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Although this has been observed, both during the FGDs and in the household survey, to be a very important
indicator influencing the choice of a farmer to adjust his or her agricultural practices, and such adapt to cli-
mate variability, there are several other factors influencing the behaviour of adapting farmers with respect to
climate variability. Own observations of the previous rainy season, wind, and temperature have all been ob-
served to be largely used information sources by adapting farmers without access to a weather forecast. Solely
using the onset of rains is therefore a rather simplified way of triggering climate adaptive behaviour. How-
ever, it is a first step in the development of a methodology that enables to better simulate the climate adaptive
behaviour of smallholder farmers in a socio-hydrological model. Another limitation to this approach is the
way in which the planting and harvesting dates depend on the strict definitions of the onset and cessation of
rains, which can introduce odd behaviour by adapting farmers. Figure 6.2 shows the agricultural practices of
a farmer adapting by changing the planting and harvesting dates. Hereby, the timing of planting and harvest-
ing are determined by the strict definitions of both events, causing the time between planting and harvesting
to be only 43 days. It is very unlikely a farmer would harvest crops so soon after planting. Furthermore, by
enabling a logit model an arbitrary threshold of 0.5 is used upon which is determined whether or not a farmer
adapts and with what adaptation strategy. This influences the number of farmers that have the capacity to
adapt to climate variability and, subsequently, the number of farmers taking up one of the two adaptation
strategies. In this research, this threshold gave an adequate division of the number of farmers adapting to
climate variability. However, using a somewhat lower or higher threshold would influence this division, and
should carefully be chosen in further research.

Another limitation to the current model is that it can only simulate droughts. Instead of droughts, rice grow-
ing farmers are mostly affected by floodings as was observed during the FGDs. This causes this group of farm-
ers to adapt to climate variability in different ways. However, due to the socio-hydrological model not being
able to simulate floodings, the climate adaptive behaviour of rice-growing farmers cannot be represented by
the model very well. The socio-hydrological model is therefore only capable of simulating the behaviour of
the vast majority of farmers for whom droughts compose the major climatic challenge.

6.3.3. Long-term Effect of Climate Adaptation
In this research a methodology is presented to evaluate the long-term effect of climate adaptation on the eco-
nomic well-being of a smallholder farmer. Hereby, the model is simulated multiple times, each time with a
different time series of precipitation and potential evapotranspiration. To generate these time series a multi-
variate stochastic weather generator (SIMGEN) has been applied, based on daily time series of precipitation
and minimum and maximum temperature. Due to the lack of temperature data from local meteorological
stations, the temperature time series were obtained by converting the MOD16A2 Evapotranspiration into
temperature via the Hamon equation, despite the MOD16A2 Evapotranspiration being based on the Penman
Monteith equation. By mixing up two different approaches for calculating evaporation, an error might have
been introduced, affecting crop yield calculations.



7
Conclusion and Recommendations

Smallholder farmers in the Gumera sub-basin mostly rely on rainfed agriculture, in which the majority of
farmers grow one crop a year. The main crops grown are maize, teff, potato, barley, and rice. Rainfall vari-
ability and changes in rainfall patterns, induced by climate change, could increase the frequency and occur-
rence of floods and droughts. Due to farmers mostly relying on rainfed agriculture, this highly influences the
agricultural production with corresponding negative effects on food security and their economic well-being,
leaving farmers highly vulnerable to year-to-year climate variability. A large share of smallholder farmers
claim to take up adaptation strategies in order to cope with these year-to-year variabilities in climate.

The main objective of this study was to determine how farmers behave with respect to climate variabil-
ity and what factors drive the climate adaptive capacity of smallholder farmers in the Gumera sub-basin,
Ethiopia. In addition, the aim was to establish a methodology to incorporate the climate adaptive behaviour
of smallholder farmers in socio-hydrological modelling, which provides the opportunity to create a better
understanding of why farmers adapt to climate variability and its impact on their economic well-being.

Which factors drive the climate adaptive capacity of a farmer was analysed by the use of Focus Group Dis-
cussions and an individual household survey. This revealed that the majority of farmers indeed adjust their
agricultural practices in order to cope with climate variability. They especially do so whenever a bad year
occurs, which is defined by farmers as a drought when the onset of rains also occur late, inducing a very
short rainy season. The mostly applied (short-term) adaptation strategies with respect to climate variability
are changing to a short cycle crop, such as potato and teff, and adjusting the planting and harvesting dates.
However, there is also a small group of farmers that do not take up adaptation strategies, but rather stick with
conventional agricultural practices.

The drivers that determine whether or not a farmer has the capacity to adapt to climate variability is found
to be three fold. The assets of a farmer for a large part determine the climate adaptive capacity. As such, a
lack of land, labour, and a weather forecast were observed to compose main barriers to climate adaptation.
In addition, large differences between adapting and non-adapting farmers were observed with respect to
their long-term climate perception. Non-adapting farmers seemed to have a more optimistic perception of
the changes in climate compared to adapting farmers. They perceived less variability in temperature, more
rainfall, later cessation of rains and less dry spells. In addition, they were observed to experience a bad year
3 times less often than adapting farmers. At last, the information sources used by farmers to decide upon
their agricultural practices, seem to highly influence the capacity of a farmer to adapt to climate variability.
Especially the use of the onset of rains is suggested to be an important driver for farmers to adapt. By each
of these three aspects, the access to a weather forecast seems to play a central role. It seems to influence the
climate perception of a farmer as well as the information sources used. On top of that, all farmers having
access to a weather forecast adapt to climate variability, suggesting that a weather forecast highly influences
the climate adaptive capacity and behaviour of a farmer.

With this knowledge on the climate adaptive behaviour of smallholder farmers in the Gumera sub-basin, ob-
tained from Focus Group Discussions and an individual household survey, a methodology is developed to in-
corporate this behaviour into socio-hydrological modelling. By enabling a logit model it has been shown that
a socio-hydrological model can successfully account for the climate adaptive behaviour of a farmer. Based
on the main drivers of the climate adaptive capacity of a farmer it can distinguish between adapting and
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non-adapting farmers. Hereby, based on the onset of rains, adapting farmers adapt to climate variability by
either changing to a long or short cycle crop, or shifting the planting and harvesting dates. By doing so, the
agricultural practices with respect to climate variability simulated by the model better coincide with what
is observed during the FGDs and the household survey. In addition, the methodology used to evaluate the
long-term effect of climate adaptation on the economic well-being of a farmer has the potential to help in
creating a better understanding of why farmers adapt to climate variability. However, due to the model lack-
ing the ability to accurately calculate crop yield estimates, the model cannot yet be used to create a better
understanding of how climate adaptive behaviour influences the system dynamics of smallholder farmers.

7.1. Recommendations
Based on the results from the FGDs, the individual household survey and the socio-hydrological model, some
recommendations for further research are made.

During this research the data gathered from smallholder farmers in the Gumera sub-basin was influenced by
COVID-19 restrictions. Although a large part of the Gumera sub-basin has been covered by the household
survey, only in the western part FGDs have been conducted. Due to these restrictions certain behavioural as-
pects with respect to climate variability of farmers in, especially, the eastern and northern part of the Gumera
sub-basin might have been missed out on. For further research, it is recommended to conduct FGDs in these
parts of the Gumera sub-basin as well. This would result in a more comprehensive understanding of the
climate adaptive behaviour of smallholder farmers.

The methodology presented in this study is a first step in incorporating the climate adaptive behaviour of
smallholder farmers in socio-hydrological modelling. However, to really be able to use this model to create
a better understanding of the system dynamics of smallholder farmers with respect to climate adaptation,
one should critically look at the crop yield calculations in order to improve the reliability of the model. Local
values for crop specific parameters are required, as well as how the soil moisture content is described espe-
cially during the dry season. Furthermore, daily temperature data from local weather stations and calculating
evapotranspiration upon this might give better estimates for crop yield. At last, the way in which the fertiliser
factor directly influences crop yield calculations is rather simplistic and introduces a supposedly wrong cor-
relation. It is therefore recommended for further research to analyse the relationship between the fertiliser
factor and crop yield in more detail, such that, for example, an overuse of fertiliser can also influence crop
yield negatively.

At last, it is recommended to create a less rigid way of determining the planting and harvesting dates. One way
of doing this, is to incorporate more factors, in addition to the onset of rains, that trigger the climate adaptive
behaviour of a farmer. The ‘environmental awareness’ is such a factor which is already researched in several
studies (see Subsection 2.2.2), and linked to the farmer experience, which, in this research, is observed to
influence the climate adaptive behaviour. However, to date, the way in which the ‘environmental awareness’
exactly influences the agricultural choices of a farmer is unknown and rather complex, hence further research
is required. Another factor that can be used is temperature, since this has been observed to be an important
factor upon which adapting farmers without access to a weather forecast determine their choice for certain
agricultural practices. Incorporating temperature in the model has as additional effect that it might improve
both crop yield calculations, and stochastically generated time series of evapotranspiration that are used to
evaluate the long-term effect of climate adaptation on the economic well-being of farmers.



Bibliography

Abebe, W. B., Leggesse, E. S., Beyene, B. S., Nigate, F., et al. (2017). Climate of Lake Tana Basin. In Social and
Ecological System Dynamics, pages 51–58. Springer.

Abera, M. (2017). Agriculture in the Lake Tana Sub-basin of Ethiopia. In Social and Ecological System Dynam-
ics, pages 375–397. Springer.

Adimassu, Z. and Kessler, A. (2016). Factors affecting farmers’ coping and adaptation strategies to perceived
trends of declining rainfall and crop productivity in the central Rift valley of Ethiopia. Environmental Sys-
tems Research, 5(1):13.

Ado, A. M., Savadogo, P., Pervez, A. K., and Mudimu, G. T. (2019). Farmers’ perceptions and adaptation strate-
gies to climate risks and their determinants: insights from a farming community of Aguie district in Niger.
GeoJournal, pages 1–21.

ADSWE (2015a). Land use planning of Lake Tana basin development corridor, Volume VI: Crop Resource
Assessment. Bahir Dar, Ethiopia (unpublished).

ADSWE (2015b). Tana Sub Basin Integrated Land Use Planning and Environmental Impact Study Project.

Alemu, T. and Mengistu, A. (2019). Impacts of climate change on food security in Ethiopia: adaptation and
mitigation options: a review. In Climate Change-Resilient Agriculture and Agroforestry, pages 397–412.
Springer.

Alemu, W. G. and Wimberly, M. C. (2020). Evaluation of Remotely Sensed and Interpolated Environmen-
tal Datasets for Vector-Borne Disease Monitoring Using In Situ Observations over the Amhara Region,
Ethiopia. Sensors, 20(5):1316.

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., et al. (1998). Crop evapotranspiration-Guidelines for computing
crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9):D05109.

Amsalu, T. and Addisu, S. (2014). Assessment of grazing land and livestock feed balance in Gummara-Rib
Watershed, Ethiopia. Current Agriculture Research, 2(2).

Aniah, P., Kaunza-Nu-Dem, M. K., and Ayembilla, J. A. (2019). Smallholder farmers’ livelihood adaptation
to climate variability and ecological changes in the savanna agro ecological zone of Ghana. Heliyon,
5(4):e01492.

Araya, A., Stroosnijder, L., Girmay, G., and Keesstra, S. (2011). Crop coefficient, yield response to water stress
and water productivity of teff (Eragrostis tef (Zucc.). Agricultural water management, 98(5):775–783.

Asrat, P. and Simane, B. (2017). Characterizing vulnerability of crop-based rural systems to climate change
and variability: agro-ecology specific empirical evidence from the Dabus watershed, north-West Ethiopia.
American Journal of Climate Change, 6(4):643–667.

Ayal, D. Y. and Leal Filho, W. (2017). Farmers’ perceptions of climate variability and its adverse impacts on
crop and livestock production in Ethiopia. Journal of Arid Environments, 140:20–28.

Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A. I., Weedon, G. P., Brocca, L., Pappenberger,
F., Huffman, G. J., and Wood, E. F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge
observations and hydrological modeling. Hydrology and Earth System Sciences, 21(12):6201.

Beck, T. W. (2013). The importance of a priori sample size estimation in strength and conditioning research.
The Journal of Strength & Conditioning Research, 27(8):2323–2337.

Berhane, A. and Tesfay, T. (2020). Impact of El Niño and La Niña on Agriculture in Ethiopia: Implications for
El Niño and La Niña Adaptation and Food Security in Ethiopia.

80



Bibliography 81

Bewket, W., Alemu, D., et al. (2011). Farmers’ perceptions of climate change and its agricultural impacts in
the Abay and Baro-Akobo River Basins, Ethiopia. Ethiopian Journal of Development Research, 33(1):1–28.

Brief, F. L. S. (2004). Ethiopia. FAO, Livestock Information, Sector Analysis and Policy Branch AGAL: Rome,
Italy.

Bryan, E., Deressa, T. T., Gbetibouo, G. A., and Ringler, C. (2009). Adaptation to climate change in Ethiopia
and South Africa: options and constraints. Environmental science & policy, 12(4):413–426.

Brysbaert, M. (2019). How many participants do we have to include in properly powered experiments? A
tutorial of power analysis with reference tables. Journal of cognition, 2(1).

Cavestro, L. (2003). PRA-participatory rural appraisal concepts methodologies and techniques. Padova Uni-
versity. Padova PD. Italia.

Central Statistical Agency (2015). Agricultural Sample Survey 2014/2015 (2007 E.C.) Volume I, Report on Area
and Production of Major Crops. Adis Ababa, Ethiopia: Central Statistical Agency.

Chambers, R. (1992). Rural apprasial: rapid, relaxed and participatory. Institute of Development Studies
(UK).

Cohen, J. (1992a). A power primer. Psychological bulletin, 112(1):155.

Cohen, J. (1992b). Things I have learned (so far). In Annual Convention of the American Psychological Associa-
tion, 98th, Aug, 1990, Boston, MA, US; Presented at the aforementioned conference. American Psychological
Association.

Cunningham, J. B. and McCrum-Gardner, E. (2007). Power, effect and sample size using GPower: practical
issues for researchers and members of research ethics committees. Evidence-Based Midwifery, 5(4):132–
137.

De Groen, M. M. and Savenije, H. H. (2006). A monthly interception equation based on the statistical charac-
teristics of daily rainfall. Water Resources Research, 42(12).

Demelash, N. (2013). Deficit irrigation scheduling for potato production in North Gondar, Ethiopia. African
J. Agric. Res, 8(11):1144–1154.

Deressa, T. T., Hassan, R. M., and Ringler, C. (2011). Perception of and adaptation to climate change by farmers
in the Nile basin of Ethiopia. The Journal of Agricultural Science, 149(1):23–31.

Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., and Blöschl, G. (2015). De-
bates—Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. Wa-
ter Resources Research, 51(6):4770–4781.

Dile, Y. T., Karlberg, L., Temesgen, M., and Rockström, J. (2013). The role of water harvesting to achieve
sustainable agricultural intensification and resilience against water related shocks in sub-Saharan Africa.
Agriculture, ecosystems & environment, 181:69–79.

Dile, Y. T., Tekleab, S., Ayana, E. K., Gebrehiwot, S. G., Worqlul, A. W., Bayabil, H. K., Yimam, Y. T., Tilahun,
S. A., Daggupati, P., Karlberg, L., et al. (2018). Advances in water resources research in the Upper Blue Nile
basin and the way forward: A review. Journal of Hydrology, 560:407–423.

Djohan, D. (2021). Improvement to Theoretical Underpinning of the Socio-hydrological Model in "Water
Efficiency in Sustainable Cotton-based Production Systems". Project in Maharashtra, India. (Unpublished
master’s thesis). TU Delft, Netherlands.

Dorward, A. and Chirwa, E. (2010). A review of methods for estimating yield and production impacts.

ENTRO (2007). Eastern Nile Watershed Management Project Cooperative Regional Assessment (CRA) for
Watershed Management Transboundary Analysis Abay-Blue Nile Sub-Basin.

Erkossa, T., Awulachew, S. B., Hagos, F., and Denekew, A. (2009). Characterization and productivity assess-
ment of the farming systems in the upper part of the Nile Basin. Ethiopian Journal of Natural Resources,
11(2):149–167.



Bibliography 82

FAO (1996). Agro-ecological zoning: Guidelines. Number 73. Food & Agriculture Org.

FAO (2015). The economic lives of smallholder farmers: An analysis based on household data from nine
countries. Food and Agriculture Organization of the United Nations, Rome, Italy.

FAO (2016). AQUASTAT Country Profile - Ethiopia. Food and Agriculture Organization of the United Nations
(FAO). Rome, Italy.

FAO (2018a). Ethiopia: Report on feed inventory and feed balance, 2018. Rome, Italy. 160 pages. Licence: CC
BY-NC-SA 3.0 IGO.

FAO (2018b). FAO’s work on family farming.

FAO (2018c). Postharvest Management Strategy In Grains In Ethiopia.

FAO (2019). Handbook on climate information for farming communities – What farmers need and what is
available. Rome. 184 pp. Licence: CC BY-NC-SA 3.0 IGO.

FAO, IFAD, UNICEF, WFP, and WHO (2019). The state of food security and nutrition in the world 2019. Safe-
guarding against economic slowdowns and downturns.

Fiedler, A., Bender, L., Büchler, B., and Seelaff, A. (2018). Supporting inclusive rural transformation in
Ethiopia: The case of the GIZ sustainable land management project in the Amhara region.

Freudenberger, K. (2008). Rapid Rural Appraisal (RRA) and Participatory Rural Appraisal (PRA): A Manual for
CRS Field Workers and Partners (Catholic Relief Services).

Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak,
G. J., Michaelsen, J. C., Verdin, A. P., et al. (2014). A quasi-global precipitation time series for drought
monitoring. US Geological Survey data series, 832(4):1–12.

Gebreselassie, Y., Ayana, M., and Tadele, K. (2015). Field experimentation based simulation of yield response
of maize crop to deficit irrigation using AquaCrop model, Arba Minch, Ethiopia. African Journal of Agricul-
tural Research, 10(4):269–280.

Gezie, M. (2019). Farmer’s response to climate change and variability in Ethiopia: A review. Cogent Food &
Agriculture, 5(1):1613770.

Gleixner, S., Keenlyside, N., Viste, E., and Korecha, D. (2017). The El Niño effect on Ethiopian summer rainfall.
Climate Dynamics, 49(5-6):1865–1883.

Global Food Security Index (2019). Global Food Security Index 2019. Retrieved December 01 2020, from
https://foodsecurityindex.eiu.com/index.

Greene, A. M., Hellmuth, M., and Lumsden, T. (2012). Stochastic decadal climate simulations for the Berg and
Breede water management areas, western Cape province, South Africa. Water Resources Research, 48(6).

Gro Intelligence (2015a). El Niño and Ethiopia. https://gro-intelligence.com/insights/

infographics/el-nino-ethopia-droughts, last accessed on 2020-09-10.

Gro Intelligence (2015b). Spotlight on Ethiopia’s Drought. https://gro-intelligence.com/insights/

articles/spotlight-on-ethiopia-drought, last accessed on 2020-09-10.

Grunblatt, J. and Alessa, L. (2017). Role of perception in determining adaptive capacity: communities adapt-
ing to environmental change. Sustainability Science, 12(1):3–13.

Hagos, F., Makombe, G., Namara, R. E., and Awulachew, S. B. (2009). Importance of irrigated agriculture to the
Ethiopian economy: Capturing the direct net benefits of irrigation, volume 128. IWMI.

Harmer, N. and Rahman, S. (2014). Climate change response at the farm level: A review of farmers’ awareness
and adaptation strategies in developing countries. Geography Compass, 8(11):808–822.

https://gro-intelligence.com/insights/infographics/el-nino-ethopia-droughts
https://gro-intelligence.com/insights/infographics/el-nino-ethopia-droughts
https://gro-intelligence.com/insights/articles/spotlight-on-ethiopia-drought
https://gro-intelligence.com/insights/articles/spotlight-on-ethiopia-drought


Bibliography 83

Hartung, C., Lerer, A., Anokwa, Y., Tseng, C., Brunette, W., and Borriello, G. (2010). Open data kit: tools to build
information services for developing regions. In Proceedings of the 4th ACM/IEEE international conference
on information and communication technologies and development, pages 1–12.

Haverkort, A. J., Van Koesveld, M., Schepers, H., Wijnands, J., Wustman, R., and Zhang, X. X. (2012). Potato
prospects for Ethiopia: on the road to value addition. Technical report, Ppo Agv.

Headey, D., Dereje, M., and Taffesse, A. S. (2014). Land constraints and agricultural intensification in Ethiopia:
A village-level analysis of high-potential areas. Food Policy, 48:129–141.

Hengl, T., Heuvelink, G. B., Kempen, B., Leenaars, J. G., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A.,
de Jesus, J. M., Tamene, L., et al. (2015). Mapping soil properties of Africa at 250 m resolution: Random
forests significantly improve current predictions. PloS one, 10(6).

Herrmann, S. M. and Mohr, K. I. (2011). A continental-scale classification of rainfall seasonality regimes in
Africa based on gridded precipitation and land surface temperature products. Journal of Applied Meteorol-
ogy and Climatology, 50(12):2504–2513.

IBM Corp. (2017). IBM SPSS Statistics for Windows. Armonk, NY: IBM Corp. Retrieved from
https://hadoop.apache.org.

IPCC (2014). Annex II: glossary. Climate change, pages 117–130.

IPCC (2018). Annex I: Glossary [Matthews, J.B.R. (ed.)]. In: Global Warming of 1.5°C. An IPCC Special Report
on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas
emission pathways, in the context of strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D.
Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews,
Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.

Kahsay, H. T., Guta, D. D., Birhanu, B. S., and Gidey, T. G. (2019). Farmers’ Perceptions of Climate Change
Trends and Adaptation Strategies in Semiarid Highlands of Eastern Tigray, Northern Ethiopia. Advances in
Meteorology, 2019.

Karfakis, P., Ponzini, G., and Rapsomanikis, G. (2017). On the costs of being small: Case evidence from Kenyan
family farms. FAO Agricultural Development Economics Working Paper 17-03.

Karki, S., Burton, P., and Mackey, B. (2020). The experiences and perceptions of farmers about the impacts of
climate change and variability on crop production: a review. Climate and Development, 12(1):80–95.

Kelley, K., Clark, B., Brown, V., and Sitzia, J. (2003). Good practice in the conduct and reporting of survey
research. International Journal for Quality in health care, 15(3):261–266.

Kleih, U. and Wilson, I. (2001). Methodological framework integrating qualitative and quantitative ap-
proaches for socio-economic survey work. Final technical report (NRI report no. 2590).

Krejcie, R. V. and Morgan, D. W. (1970). Determining sample size for research activities. Educational and
psychological measurement, 30(3):607–610.

Kuil, L., Carr, G., Viglione, A., Prskawetz, A., and Blöschl, G. (2016). Conceptualizing socio-hydrological
drought processes: The case of the Maya collapse. Water resources research, 52(8):6222–6242.

Kuil, L., Evans, T., McCord, P., Salinas, J., and Blöschl, G. (2019). Reply to Comment by Zhang on "Exploring the
Influence of Smallholders’ Perceptions Regarding Water Availability on Crop Choice and Water Allocation
Through Socio-hydrological Modeling". Water Resources Research, 55(3):2536–2543.

Legesse, S. A. (2017). Environmental Protection in the Lake Tana Basin, pages 433–452. Springer International
Publishing, Cham.

Love, D., Uhlenbrook, S., Corzo-Perez, G., Twomlow, S., and van der Zaag, P. (2010). Rainfall–interception–
evaporation–runoff relationships in a semi-arid catchment, northern Limpopo basin, Zimbabwe. Hydro-
logical Sciences Journal, 55(5):687–703.



Bibliography 84

Lu, J., Sun, G., McNulty, S. G., and Amatya, D. M. (2005). A Comparison of Six Potential Evapotranspiration
Methods for Regional Use in the Southeastern United States 1. JAWRA Journal of the American Water Re-
sources Association, 41(3):621–633.

Maddison, D. (2007). The perception of and adaptation to climate change in Africa. The World Bank.

Makate, C., Makate, M., and Mango, N. (2017). Smallholder farmers’ perceptions on climate change and the
use of sustainable agricultural practices in the Chinyanja Triangle, Southern Africa. Social Sciences, 6(1):30.

Mamo, K. H. M. and Jain, M. K. (2013). Runoff and sediment modeling using SWAT in Gumera catchment,
Ethiopia. Open journal of modern hydrology, 2013.

Marsland, N., Wilson, I., Abeyasekera, S., and Kleih, U. (2000). A methodological framework for combining
quantitative and qualitative survey methods. Draft Best Practice Guideline submitted to DFID/NRSP Socio-
Economic Methodologies.

Mayr, S., Erdfelder, E., Buchner, A., and Faul, F. (2007). A short tutorial of GPower. Tutorials in quantitative
methods for psychology, 3(2):51–59.

Mellander, P.-E., Gebrehiwot, S. G., Gärdenäs, A. I., Bewket, W., and Bishop, K. (2013). Summer rains and dry
seasons in the Upper Blue Nile Basin: the predictability of half a century of past and future spatiotemporal
patterns. PloS one, 8(7):e68461.

Meza, F. J., Silva, D., and Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean
climates: evaluation of double cropping as an emerging adaptation alternative. Agricultural systems,
98(1):21–30.

Montanari, A., Young, G., Savenije, H., Hughes, D., Wagener, T., Ren, L., Koutsoyiannis, D., Cudennec, C., Toth,
E., Grimaldi, S., et al. (2013). "Panta Rhei—everything flows": change in hydrology and society—the IAHS
scientific decade 2013–2022. Hydrological Sciences Journal, 58(6):1256–1275.

Motbainor, A., Worku, A., and Kumie, A. (2016). Level and determinants of food insecurity in East and West
Gojjam zones of Amhara Region, Ethiopia: a community based comparative cross-sectional study. BMC
public health, 16(1):503.

Mukherjee, N. (1997). Participatory rural appraisal and questionnaire survey. Concept Publishing Company.

Norman, D. W. (1995). The farming systems approach to development and appropriate technology generation.
Number 10. Food & Agriculture Org.

O’Keeffe, J., Moulds, S., Bergin, E., Brozovic̈, N., Mijic, A., and Buytaert, W. (2018). Including farmer irrigation
behavior in a sociohydrological modeling framework with application in North India. Water Resources
Research, 54(7):4849–4866.

Pallant, J. and Manual, S. S. (2010). A step by step guide to data analysis using SPSS. Berkshire UK: McGraw-
Hill Education.

Pande, S. and Savenije, H. H. (2016). A sociohydrological model for smallholder farmers in Maharashtra,
India. Water Resources Research, 52(3):1923–1947.

Pouladi, P., Afshar, A., Afshar, M. H., Molajou, A., and Farahmand, H. (2019). Agent-based socio-hydrological
modeling for restoration of Urmia Lake: Application of theory of planned behavior. Journal of Hydrology,
576:736–748.

Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E. (2012). Reference Manuel, Annex I, AquaCrop Version 4.0,
June 2012, http://www.fao.org/nr/water/docs/AquaCropV40Annexes.pdf .

Regassa, S., Givey, C., and Castillo, G. (2010). The Rain Doesn’t Come on time anymore: Poverty, vulnerability,
and climate variability in Ethiopia. Oxfam Policy and Practice: Climate Change and Resilience, 6(1):90–134.

Running, S. W., Mu, Q., Zhao, M., and Moreno, A. (2017). MODIS Global Terrestrial Evapotranspiration (ET)
Product (NASA MOD16A2/A3) NASA Earth Observing System MODIS Land Algorithm. NASA: Washington,
DC, USA.



Bibliography 85

Sani, S. and Kemaw, B. (2019). Analysis of households food insecurity and its coping mechanisms in Western
Ethiopia. Agricultural and Food Economics, 7(1):5.

Savenije, H. H. and Van der Zaag, P. (2008). Integrated water resources management: Concepts and issues.
Physics and Chemistry of the Earth, Parts A/B/C, 33(5):290–297.

Segele, Z. T. and Lamb, P. J. (2005). Characterization and variability of Kiremt rainy season over Ethiopia.
Meteorology and Atmospheric Physics, 89(1-4):153–180.

Singh, C., Osbahr, H., and Dorward, P. (2018). The implications of rural perceptions of water scarcity on
differential adaptation behaviour in Rajasthan, India. Regional Environmental Change, 18(8):2417–2432.

Sivapalan, M., Savenije, H. H., and Blöschl, G. (2012). Socio-hydrology: A new science of people and water.
Hydrological Processes, 26(8):1270–1276.

Skambraks, A. (2014). Smallholder Farmers’ Adaptation to Climate Change in Zenzelima, Ethiopia.

Stave, K., Goshu, G., and Aynalem, S. (2017). Social and Ecological System Dynamics. Springer.

Steduto, P., Hsiao, T. C., Fereres, E., Raes, D., et al. (2012). Crop yield response to water, volume 1028. Food and
Agriculture Organization of the United Nations Rome.

Stewart, R., Langer, L., Da Silva, N. R., and Muchiri, E. (2016). Effects of training, innovation and new technol-
ogy on African smallholder farmers’ economic outcomes and food security. Systematic Review Summary,
6:10–15.

Sullivan, G. M. and Feinn, R. (2012). Using effect size—or why the P value is not enough. Journal of graduate
medical education, 4(3):279–282.

Tadesa, E. (2020). Review on Climate Change Adaptation Strategies in Ethiopia. International Journal of
Energy and Environmental Science, 5(3):51.

Taffesse, A. S., Dorosh, P. A., Asrat, S., et al. (2012). Crop production in Ethiopia: Regional patterns and trends:
Summary of ESSP working paper 16. Technical report, International Food Policy Research Institute (IFPRI).

Tahir, M. B., Wossen, A. M., and Mersso, B. T. (2018). Evaluation of livestock feed balance under mixed crop–
livestock production system in the central highlands of Ethiopia. Agriculture & Food Security, 7(1):19.

The World Bank Group (2011). Variability, risk reduction, and adaptation to climate change: Ethiopia.

United Nations (2015). Transforming our World: The 2030 Agenda for Sustainable Development.

USDA (2017). Soil survey manual. Soil Science Division Staff. Agriculture Handbook No. 18.

Van Emmerik, T., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H., Chanan, A., and Vigneswaran, S.
(2014). Socio-hydrologic modeling to understand and mediate the competition for water between agricul-
ture development and environmental health: Murrumbidgee River basin, Australia. Hydrology and Earth
System Sciences.

Van Landtschoote, A. (2017). Hydrogeological investigation and recharge estimation of Gumera river catch-
ment in Lake Tana basin, northern Ethiopia. PhD thesis, Master’s Thesis, Ghent University, Ghent, Belgium.

Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4):359–392.

Vogels, M. F., de Jong, S. M., Sterk, G., Wanders, N., Bierkens, M. F., and Addink, E. A. (2020). An object-
based image analysis approach to assess irrigation-water consumption from MODIS products in Ethiopia.
International Journal of Applied Earth Observation and Geoinformation, 88:102067.

Wassie, A. (2017). Forest Resources in Amhara: Brief Description, Distribution and Status. In Social and
Ecological System Dynamics, pages 231–243. Springer.

Wood, S. A., Jina, A. S., Jain, M., Kristjanson, P., and DeFries, R. S. (2014). Smallholder farmer cropping deci-
sions related to climate variability across multiple regions. Global Environmental Change, 25:163–172.



Bibliography 86

World Bank (2010). Economics of Adaptation to Climate Change : Ethiopia. Washington, DC. © World Bank.
https://openknowledge.worldbank.org/handle/10986/12504 License: CC BY 3.0 IGO.

World Bank (2020). Ethiopia Regional Poverty Report: Promoting Equitable Growth for All Regions. Washing-
ton DC. (C) World Bank.

Worldometer (n.d.). Current world population. Retrieved December 01 2020, from
https://www.worldometers.info/.

Yihun, Y. M. (2015). Agricultural water productivity optimization for irrigated Teff (Eragrostic Tef) in water
scarce semi-arid region of Ethiopia. CRC Press/Balkema.



A
Focus Group Discussions

A.1. FGD 1: Geregera
The first FGD is conducted in Geregera, located in the southwest of the Gumera sub-basin. In total, six male
farmers joined the FGD. Overall, there was a lot of consensus between the farmers, and no real discussion
points or disagreements became apparent. Although, no females took part of the FGD, it is assumed the
information obtained and the trend of the answers given during the FGD provide a good indication for the
entire population in the kebele. This assumption is assumed to be valid as only 13% of the household heads
(in 2007) in the Lake Tana sub-basin is female (ADSWE, 2015a).

The major crops grown in Geregera (1786m amsl) are sorghum, teff, millet, rice and maize. The reason
rice is grown by these farmers is because of the location close to the wetlands of Lake Tana. The average
smallholder farmer household size is 8-10 persons, and has a mixed crop-livestock farming system, which
means farmers grow crops and rear livestock simultaneously. The farmsize ranges from 0.5 to 3 hectares with
1 hectare on average.

The farmers define an average year as a year in which the onset of the kiremt rains start at the beginning
of May and end in the 3rd week of September. In such a year the main crop grown by these farmers is maize.
Besides growing crops, they also undertake off-farm activities during the entire year. This mostly consist of
buying products, such as sugar, oil etc., from a wholesaler and selling it as a retailer at village level.

In contrast to an average year, a bad year is defined as a drought. The kiremt rains start late at the end
of June and stop before mid September. The rainy season thus becomes very short. However, according to
the farmers, such a year only occurs once every 10 years. In order to deal with a bad year farmers make use
of irrigation. The farmers use water from the Gumara river to water their crops. By doing this they prevent
themselves from having to food insecurity. However, whenever the Gumara river runs out of water, irrigation
is not possible anymore, and they switch to other coping mechanisms. One of the options is to start growing
vetch and chickpeas which can grow from residual moisture. Another option is to grow teff instead of maize,
as teff has a shorter growth cycle. Instead of sowing maize in the 1st week of May, they now sow teff at the
end of June when the onset of rains occur. The farmers thus change the crop type and the planting date. If no
irrigation is possible and rainfall stays out, the farmers go for labour downstream instead of growing crops.
They dig up sand from the river bed and sell it for 2000 - 4000 BIRR/vehicle (=10MT).

The decision making on what crop to grow and when is based on the farmer’s own weather observations,
such as clouds and wind. For example, cold northerly winds mean rainfall is coming and they expect early
sowing. The farmers do not receive a weather forecast from an external organisation. However, in their opin-
ion it would be very valuable to obtain a weather forecast. It would help them to better plan on whether to
store, consume or sell their yield. They do not have to save their storage in case a bad year is coming. They
can thus consume or sell their full production instead of saving it.

A.2. FGD 2: Jigena
The second FGD is conducted in Jigena (1790m amsl), which is located west of Geregera and even closer to
the wetlands of Lake Tana compared to Geregera. It therefore is no surprise, one of the main crops is rice.
Other crops grown are vetch, millet, teff, onion, and maize, of which the latter three are irrgiated crops. Maize
and onion are grown on a different plot which is only used for irrigation. This field is used twice a year, first
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onion is grown whereafter it is swapped with maize. Rice is grown on a separate plot because this needs to be
flooded most of the time.

Farmers in this Kebele do not experience rain shortage, and mention not to have been food insecure for
the last 30 years. The main problem farmers face in this area is flooding instead of drought. This is because of
Jigena being located in a low lying area close to Lake Tana and its wetlands. Therefore it is the ideal conditions
for growing rice. However, due to extensive rainfall floodings can occur causing huge damage to the crops.
Whenever such a flood occurs, the farmers demolish their crops, prepare the land again by ploughing and sow
other crops like vetch and chickpea. Sowing of these crops mainly starts in October, sometimes September.
The floodings are occuring every year, which is the reason farmers grow rice. Once every 4 to 5 years these
floodings are extreme and the rice production is likely to fail. To prevent the rice production from failing, the
farmers start building dikes. However, if this is not sufficient, they will demolish the crops, plough the land
again after flooding has dissapeared, and start sowing other crops like legumes (e.g. vetch and chickpeas).
An early warning system from the agricultural office at woreda level or the meteorological station tells the
farmers via phone when such a flooding is expected to occur. Upon this information farmers start acting
accordingly.

Only sometimes this area faces long dryspells (i.e. no rain for a month) in september. If such periods
happen to occur, the farmers use additional irrigation to prevent crops to fail and obtain a good yield.

Throughout the year, farmers also undertaking off-farm activities besideds growing crops and rearing
livestock. These activities encompass trading, owning a shop, brokery works (i.e. selling and buying products
for others), maintenance of pumps, and making furniture from wood.

A.3. FGD 3: Shime Kebele
In Shime (2210m amsl) the main crop grown is teff. Other crops grown are maize, potato, barley, and sorghum.
The major difference in types of crops grown compared to Jigena and Geregera is due to the difference in alti-
tude. The farmers obtain weather information from extension agents, who on their turn receive information
from meteorologists. This weather information contains forecasts on the onset of rains, soil moisture content,
what seed to use (improved seeds), and the duration of rains. This information is provided starting in April
until the agricultural practices come to an end. Farmers buy their seeds from farm associations. However, for
teff there often is not enough seeds, which makes the appliance of teff seeds lower than desired (roughly 12
kg/ha).

In an average year the rains start at the beginning of May, and end at the end of September. In such
years farmers encounter food insecurity in the months outside the growing season (i.e. December till March).
During a bad year, which is defined as a drought, rains come late (June) and end early (end of August). The
farmers mainly grow teff and potato since these crops have a short growth cycle. During a bad year food
insecurity is experienced all year round, but most intense from July till September.

During an average year off-farm activities, such as building houses, are mainly practiced from June till
January. In a bad year, no off-farm activities are practiced as there is almost no work available.



B
Individual Household Survey

B.1. Quantitative part

Question Units
Name of enumerator /
Name of the head of the household who is being interviewed /
Date /
GPS location /
Name of the village /
Woreda /
Kebele /

What is your age? /
What is your gender? /
What is the highest level of education you completed? /
How large is your household (including yourself)? persons / household
How many household members are outside the range
of 15-65 years (including yourself)?

persons / household

How many years have you worked as a farmer since
you are the head of the household?

years

How many persons from your household help you farm? persons / household
How many days per week do you and your household
members work on the farm?

mandays / week / household

How many employees do you have? employees / household
How many days per week do your employees work on
the farm?

mandays / week / employee

Do you grow crops? /
Are you rearing livestock? /
How many hours per day do you spend on on-farm
cropping activities?

hours / day / person

How many hours per day do you spend on on-farm
livestock activities?

hours / day / person

Do you work for another farmer? /
How many days per week do you spend on off-farm
agricultural activities?

days / week / person

How much do you earn if you work for another farm? Birr / day / person
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Question Units
How many days per week do you spend on off-farm
non-agricultural activities?

days / week / person

How much do you earn for off-farm non-agricultural
activities?

Birr / day / person

How many hours per day do you spend on domestic
household activities?

hours / day / person

How large is your total farm area in hectares? ha / household
How large is the area on which you cultivate your crops
in hectares?

ha / household

How large is the area on which you hold your livestock
(grass area) in hectares?

ha / household

What crops do you grow? /
Do you use irrigation? /
For which crops do you use irrigation? /
How high is your average yield of maize in quintals/hectare? Qt/ha
How high is your minimum yield of maize in quintals/hectare? Qt/ha
How high is your maximum yield of maize in quintals/hectare? Qt/ha
How high is your average yield of teff in quintals/hectare? Qt/ha
How high is your minimum yield of teff in quintals/hectare? Qt/ha
How high is your maximum yield of teff in quintals/hectare? Qt/ha
How high is your average yield of barley in quintals/hectare? Qt/ha
How high is your minimum yield of barley in quintals/hectare? Qt/ha
How high is your maximum yield of barley in quintals/hectare? Qt/ha
How high is your average yield of sorghum in quintals/hectare? Qt/ha
How high is your minimum yield of sorghum in quintals/hectare? Qt/ha
How high is your maximum yield of sorghum in quintals/hectare? Qt/ha
How high is your average yield of wheat in quintals/hectare? Qt/ha
How high is your minimum yield of wheat in quintals/hectare? Qt/ha
How high is your maximum yield of wheat in quintals/hectare? Qt/ha
How high is your average yield of rice in quintals/hectare? Qt/ha
How high is your minimum yield of rice in quintals/hectare? Qt/ha
How high is your maximum yield of rice in quintals/hectare? Qt/ha
How high is your average yield of millet in quintals/hectare? Qt/ha
How high is your minimum yield of millet in quintals/hectare? Qt/ha
How high is your maximum yield of millet in quintals/hectare? Qt/ha
How high is your average yield of potatoes in quintals/hectare? Qt/ha
How high is your minimum yield of potatoes in quintals/hectare? Qt/ha
How high is your maximum yield of potatoes in quintals/hectare? Qt/ha
How high is your average yield of onion in quintals/hectare? Qt/ha
How high is your minimum yield of onion in quintals/hectare? Qt/ha
How high is your maximum yield of onion in quintals/hectare? Qt/ha
How high is the average maize consumption of the household
in quintals/year?

Qt / year / household

How high is the average teff consumption of the household
in quintals/year?

Qt / year / household

How high is the average barley consumption of the household
in quintals/year?

Qt / year / household

How high is the average sorghum consumption of the household
in quintals/year?

Qt / year / household

How high is the average wheat consumption of the household
in quintals/year?

Qt / year / household

How high is the average rice consumption of the household
in quintals/year?

Qt / year / household

How high is the average millet consumption of the household
in quintals/year?

Qt / year / household
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Question Units
How high is the average potatoe consumption of the household
in quintals/year?

Qt / year / household

How high is the average onion consumption of the household
in quintals/year?

Qt / year / household

Does your maize production meet your family’s
food requirement?

/

Does your teff production meet your family’s
food requirement?

/

Does your barley production meet your family’s
food requirement?

/

Does your sorghum production meet your family’s
food requirement?

/

Does your wheat production meet your family’s
food requirement?

/

Does your rice production meet your family’s
food requirement?

/

Does your millet production meet your family’s
food requirement?

/

Does your potatoe production meet your family’s
food requirement?

/

Does your onion production meet your family’s
food requirement?

/

For how many months does your maize production cover
your household’s consumption?

months / year

For how many months does your teff production cover
your household’s consumption?

months / year

For how many months does your barley production cover
your household’s consumption?

months / year

For how many months does your sorghum production cover
your household’s consumption?

months / year

For how many months does your wheat production cover
your household’s consumption?

months / year

For how many months does your rice production cover
your household’s consumption?

months / year

For how many months does your millet production cover
your household’s consumption?

months / year

For how many months does your potatoes production cover
your household’s consumption?

months / year

For how many months does your onion production cover
your household’s consumption?

months / year

What is the distance to the closest market? km
For how much do you sell your maize at the market
in birr/kilogram?

Birr/kg

For how much do you sell your teff at the market
in birr/kilogram?

Birr/kg

For how much do you sell your barley at the market
in birr/kilogram?

Birr/kg

For how much do you sell your sorghum at the market
in birr/kilogram?

Birr/kg

For how much do you sell your wheat at the market
in birr/kilogram?

Birr/kg

For how much do you sell your rice at the market
in birr/kilogram?

Birr/kg

For how much do you sell your millet at the market
in birr/kilogram?

Birr/kg
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Question Units
For how much do you sell your potatoes at the market
in birr/kilogram?

Birr/kg

For how much do you sell your onion at the market
in birr/kilogram?

Birr/kg

What types of livestock do you have? /
How many cattles do you have? cattle / household
How many sheep do you have? sheep / household
How many goats do you have? goats / household
How many donkeys do you have? donkeys / household
How many mules do you have? mules / household
How much do you expend on one cattle in Birr/one year? Birr/ cattle / year
How much do you expend on one sheep in Birr/one year? Birr / sheep / year
How much do you expend on one goat in Birr/one year? Birr / goat / year
How much do you expend on one donkey in Birr/one year? Birr / donkey / year
How much do you expend on one mule in Birr/one year? Birr / mule / year
How much is your income from one cattle in Birr/one year?
(excluding selling of cattle)

Birr/ cattle / year

How much is your income from one sheep in Birr/one year?
(excluding selling of sheep)

Birr / sheep / year

How much is your income from one goat in Birr/one year?
(excluding selling of goats)

Birr / goat / year

How much is your income from one donkey in Birr/one year?
(excluding selling of donkeys)

Birr / donkey / year

How much is your income from one mule in Birr/one year?
(excluding selling of mules)

Birr / mule / year

What is the minimum price of one cattle in Birr/cattle? Birr / cattle
What is the maximum price of one cattle in Birr/cattle? Birr / cattle
What is the minimum price of one sheep in Birr/cattle? Birr / sheep
What is the maximum price of one sheep in Birr/cattle? Birr / sheep
What is the minimum price of one goat in Birr/goat? Birr / goat
What is the maximum price of one goat in Birr/goat? Birr / goat
What is the minimum price of one donkey in Birr/donkey? Birr / donkey
What is the maximum price of one donkey in Birr/donkey? Birr / donkey
What is the minimum price of one mule in Birr/mule? Birr / mule
What is the maximum price of one mule in Birr/mule? Birr / mule

Do you use chemicals or pesticides? /
What type of chemicals or pesticides do you use? /
If you use liquid chemicals, how much do you use
in liter/year?

L / year / household

If you use powder chemicals, how much do you
use in kilogram/year?

kg / year / household

Do you use fertilizer? /
What type of fertilizer do you use? /
How much fertilizer do you use on average in kilogram/year? kg / year / household
How much maize seeds do you use each year on average
in kilogram/hectare?

kg/ha

How much teff seeds do you use each year on average
in kilogram/hectare?

kg/ha

How much barley seeds do you use each year on average
in kilogram/hectare?

kg/ha

How much sorghum seeds do you use each year on average
in kilogram/hectare?

kg/ha
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Question Units
How much wheat seeds do you use each year on average
in kilogram/hectare?

kg/ha

How much rice seeds do you use each year on average
in kilogram/hectare?

kg/ha

How much millet seeds do you use each year on average
in kilogram/hectare?

kg/ha

How much potatoes seeds do you use each year on average
in kilogram/hectare?

kg/ha

How much onion seeds do you use each year on average
in kilogram/hectare?

kg/ha

Do you have access to extension services? /
What type of extension services do you make use of? /

What is your initial capital? Birr / household
Do you borrow money? /
How much money do you borrow? Birr / household
If you experience food insecurity, do you sell as much
livestock as needed to be able to have enough
money to buy food?

/

How much do you spend on food in an average year? Birr / household / year
How much do you pay your employees in Birr/day? Birr / day / employee

Table B.1: The quantitative part of the household survey that is conducted with smallholder farmers in the Gumera sub-basin

B.2. Qualitative part

Climate change perception
Have you noticed any long term changes in the mean temperature over the last 30 years?
Have you noticed changes in the mean temperature over the last 10 years?
Have you noticed any long term changes in the annual amount of rainfall over the last 30 years?
Have you noticed any long term changes in the onset of the rainy season over the last 30 years?
Have you noticed any long term changes in the cessation of the rainy season over the last 30 years?
Have you noticed any long term changes in the duration of the rainy season over the last 30 years?
Have you noticed any long term changes in the number of dryspells over the last 30 years?
Indicate your perception on the year-to-year variability of the onset of the rainy season in the last 10 years:
Indicate your perception on the year-to-year variability of the total amount of rainfall in the last 10 years:
Indicate your perception on the year-to-year variability of the cessation of the rainy season in the last 10 years:
Indicate your perception on the year-to-year variability of the duration of the rainy season in the last 10 years:
Indicate your perception on the year-to-year variability of the number of dryspells in the rainy season
in the last 10 years:
How important is the timing of the onset of the rainy season for getting a good yield?
How important is the amount of rainfall for getting a good yield?
How important is the timing of the cessation of the rainy season for getting a good yield?
How important is the duration of the rainy season for getting a good yield?
How important is it that there are no dryspells in the rainy season for getting a good yield?
How often does a bad year occur?
Do you face food insecurity in a bad year?

Weather information
Do you receive a weather forecast?
In what month do you receive the weather forecast?
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Climate change perception
How often do you receive the weather forecast?
What does the weather forecast include?
Does the weather forecast influence your crop-related decisions?
What farming-related decisions get influenced by the weather forecast?
What are the constraints that prevent you from adjusting your decisions?
What information would you need in a weather forecast in order to be able to make better farming
practice related decisions?
What would you do different in your farming practices if you would receive this weather information?

Adaptation strategies
Have you made adjustments in your farming practices in the last 30 years in order to cope with the long
term changes in the rainy season?
Have you made adjustments in your farming practices in the last 10 years in order to cope with the
year-to-year variabilities of the rainy season?
What adjustments have you made in your farming practices in the last 30 years in order to cope with the
long term changes in the rainy season?
What adjustments have you made in your farming practices in order to cope with the year-to-year variability
of the rainy season?
In what month do you plant your seeds during a bad year?
What is the reason you did not adjust your farming practices in the last 30 years in order to cope with the
long term changes in the rainy season?
What is the reason you did not adjust your farming practices in the last 10 years in order to adapt to the
year-to-year variability in the rainy season?
Are you reconsidering your farming practices every year again in order to cope with the year-to-year
variability of the rainy season?
Upon what information do you base your farming practice decisions?
What additional adjustments to your farming practices would you consider in the future in order to cope with
the year-to-year variability of the rainy season?
If you would receive a detailed weather forecast on the onset and duration of the rainy season, would you
then change your crop type?
If you would receive a detailed weather forecast on the onset and duration of the rainy season, would you
then change your planting and harvesting dates?

Table B.2: Qualitative part of the household survey that is conducted with smallholder farmers in the Gumera sub-basin.

B.3. Processed outliers
Prior to the actual analysis of the household survey, the dataset is checked inadequate surveys and errors,
such as outliers. Outliers are either corrected or deleted as they can highly influence the outcome of the
statistical analysis. Outliers are defined as data points that differ significantly from other observations. They
can be introduced by wrongly interpreting the question, it can be a type, or it can be a right answer but from
a very atypical or unique farmer that is not representing the rest of the population. In general farmers who
do not grow crops are excluded from the dataset.

In total 441 household surveys were conducted. Each survey is checked on the percentage of questions filled
in, and the time of completion. A share of the respondents only filled in less than 30% of the questions, hence
these are removed from the dataset. All other surveys, answered at least 90% of the questions and are kept
in. Furthermore, surveys that were completed within 10 minutes were assumed to be inaccurate and were
removed from the dataset as well. In addition, two respondents were found not growing crops, hence both
respondents are removed from the dataset. This resulted in a dataset containing 394 household surveys. After
deletion of inadequate household surveys, each survey is checked for outliers.

Conversion errors

For some questions it is assumed conversion errors were made, as the answers were a factor 10 or 100 higher
than the average observed. These cases were assumed to be conversion errors and were divided by 10 or 100,
respectively, to correct for this. These conversion errors were observed in questions for crop yield, livestock
prices, fertiliser use, and seed usage.
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Errors on working days

In the household survey farmers were asked how many family members help on the farm, as well as how
many days per week they together work on the farm. In some cases these questions were filled in such that a
family member would work more than 7 days per week on the farm. If this was the case, the number of days
a family member was working on the farm was set back to 7, which is the maximum possible. Hereby it is
assumed that the number of family members working on the farm was filled in correctly.

Double answers

In the second part of the questionnaire questions are asked regarding the farmer’s long term perception of
changes in onset, cessation and duration of the rainy season. An example of such a question was: "Have you
noticed any long term changes in the onset of the rainy season over the last 30 years?". Hereby, the farmer
could answer with: "1. Yes, earlier onset", "2. Yes, later onset", or "3. No". Some farmers filled in both answer
1 and 2, which are opposite from each other.



C
Statistical analysis

In this appendix the statistical tests conducted to analyse the individual household survey and relevant vari-
ables (see Chapter 4) are explained. Hereby, the textbook of Julie Pallant is followed (Pallant and Manual,
2010).

C.1. Multiple Regression Analysis
In this section the assumptions that are needed to be met in order to conduct a multiple regression analysis
(MRA) are explained, as well as all variables incorporated. Subsequently, the output of each MRA is presented.

C.1.1. Assumptions of MRA
Prior to each multiple linear regression analysis, preliminary analyses were conducted to ensure no violation
of the assumptions of normality, linearity, multicollinearity, and homoscedasticity. Each of these assump-
tions are explained below.

Outliers

Outliers are defined as data points that differ significantly from other observations. They can be detected
from the a scatterplot of the standardised residuals. Each case that shows a standardised residual of more
than 3.3 or less than -3.3 is considered to be an outlier. The "Casewise Diagnostics" table presents each of
these outliers. In the sample is normally distributed, not more than 1% of the cases is expected to fall out fall
outside of this range. The influence of the outlier on the results of the model can be checked by the value of
Cook’s Distance, which is shown in the bottom of the "Residuals Statistics" table. Each case with a value large
than 1 can be assumed to be a potential problem, and is removed from the dataset.

Homoscedasticity

Homoscedasticity, or homogeneity of variances, refers to whether the residuals are equally distributed, or
whether they tend to bunch together at some values, and at other values, spread far apart. The data is ho-
moscedastic if the residuals are randomly distributed in the scatterplot of standardised residuals. The oppo-
site of homoscedasticity is heteroscedasticity, which is the case if the scatterplot shows a cone or fan shape.

Linearity, and Normality

Linearity and normality are checked with the Normal Probability Plot of the Regression Standard Residual (P-
P plot) and the Scatterplot. The residuals are simply the error terms, or the differences between the observed
value of the dependent variable and the predicted value. If the residuals lie in a reasonable straight line from
bottom left to top right, it can be assumed the residuals to be normally distributed. Only if there are drastic
deviations this assumption is violated. Linearity means that the predictor variables in the regression have
a linear relationship with the outcome variable. In most cases linearity can be assumed if the residuals are
normally distributed and homoscedastic.

Multicollinearity

Multicollinearity exists when the independent variables are highly correlated (i.e. r > 0.9). This can be checked
by the values of Tolerance and VIF. Tolerance is an indicator of how much of the variability of the specified

96
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independent variable is not explained by the other independent variables in the model is calculated using
the formula 1 - R-squared for each variable. If this value is smaller than 0.10 it indicates that the multiple
correlation with other variables is high, suggesting the possibility of multicollinearity. The other value given
is the VIF (Variance inflation factor), which is the inverse of the Tolerance value. VIF values above 10 would
be a concern here, indicating multicollinearity.

C.1.2. MRA: Barley Yield
For barley none of the assumptions are violated. The scatterplot of residuals (see Figure C.8) does not show
any values outside the range of -3.3 and 3.3. Hence, it is assumed no outliers are present in the dataset that
might violate the outcome of the model. In addition, homoscedasticity can be assumed since the residuals do
not show a particular shape. Although the residuals show some deviation from the straight diagonal line in
the P-P plot (see Figure C.7) no drastic deviations are present. Hence, normality is assumed. Therefore, since
normality and homoscedasticity are assumed, also linearity can be assumed. At last, the coefficients table
(see Table C.4) shows the tolerance and VIF values of each variable included in the model. The tolerance
values are within 0.868 and 1, and thus remain above the minimum threshold of 0.1, whereas the VIF values
range from 1 to 1.152, and thus remain below the maximum threshold of 10. Hence, multicollinearity is not
present in the model.

Figure C.1: "Descriptive statistics" table: the descriptive statistics, including the mean and standard deviation, for the dependent
variable, barley yield, and all independent variables taken into account in the MRA.

Figure C.2: "Model Summary" table: a summary of the model containing the significant predictors for barley yield, namely climate
adaptation, fertiliser use, and labour availability, with R2 = 0.45. Together, these three variables account for 45% of the variance in barley

yield.
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Figure C.3: "ANOVA" table: the overall regression model was significant, F(3, 83) = 22.81, p < 0.001, R2 = 0.45.

Figure C.4: "Coefficients" table showing the direction and value of the significant predictors for barley yield. In addition, the tolerance
and VIF values are shown, and exceed the thresholds of 0.1 and 10, respectively. Hence, there is no violation of multicollinearity in the

model.

Figure C.5: "Residuals Statistics" table
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Figure C.6: A histogram showing a normal distribution of the standardised residuals for the dependent variable, barley yield, with
sample size = 187, mean = 0.25 and standard deviation = 1.045.

Figure C.7: A P-P plot showing the residuals for the dependent variable, barley yield. No major deviations are apparent, hence normality
can be assumed.



C.1. Multiple Regression Analysis 100

Figure C.8: A scatterplot of the standardised residuals. Since none of the standardised residuals are outside the range of -3.3 and 3.3, it
can be assumed there are no outliers present.
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C.1.3. MRA: Maize Yield
Below the output of the MRA conducted with maize yield as the dependent variables is shown. For maize
none of the assumptions are violated. The scatterplot of residuals (see Figure C.15) shows a few values out-
side the range of -3.3 and 3.3, from which the statistics are shown in Table C.13. However, since the Cook’s
Distance indicated in Table C.14 is 0.131, and thus lower than 1, it is assumed the outliers are not causing any
problems for the outcome of the model. Furthermore, homoscedasticity can be assumed since the residuals
do not show a particular shape in the scatterplot (see Figure C.15). Also normality can be assumed, since the
residuals barely show any deviation from the straight diagonal line in the P-P plot (see Figure C.17). Therefore,
since normality and homoscedasticity are assumed, also linearity can be assumed. At last, the coefficients ta-
ble (see Table C.12) shows the tolerance and VIF values of each variable included in the model. The tolerance
values of the final model are within 0.781 and 0.915, and thus remain above the minimum threshold of 0.1,
whereas the VIF values range from 1.093 to 1.280, and thus remain below the maximum threshold of 10.
Hence, multicollinearity is not present in the model.

Figure C.9: "Descriptive statistics" table: the descriptive statistics, including the mean and standard deviation, for the dependent
variable, maize yield, and all independent variables taken into account in the MRA.

Figure C.10: "Model Summary" table: a summary of the model containing the significant predictors for maize yield, namely access to a
weather forecast, crop area, market distance, and climate adaptation, with R2 = 0.27. Together, these four variables account for 27% of

the variance in maize yield.
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Figure C.11: "ANOVA" table: the overall regression model was significant, F(4, 221) = 20.18, p < 0.001, R2 = 0.27.

Figure C.12: "Coefficients" table showing the direction and value of the significant predictors for maize yield. In addition, the tolerance
and VIF values are shown, and exceed the thresholds of 0.1 and 10, respectively. Hence, there is no violation of multicollinearity in the

model.

Figure C.13: "Casewise Diagnostics" table showing all outliers in the model with the dependent variable maize yield.
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Figure C.14: "Residual Statistics" table showing the statistics of the residuals. Cook’s Distance is 0.097, from which it can be concluded
that the outliers are no potential problem for the outcome of the MRA.

Figure C.15: A scatterplot of the standardised residuals, showing only few standardised residuals are outside the range of -3.3 and 3.3.
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Figure C.16: A histogram showing a normal distribution of the standardised residuals for the dependent variable, maize yield, with
sample size = 388, mean = 0.01 and standard deviation = 0.964.

Figure C.17: A P-P plot showing the residuals for the dependent variable, maize yield. No major deviations are apparent, hence
normality can be assumed.

C.1.4. MRA: Potato Yield
Below the output of the MRA conducted with potato yield as the dependent variables is shown. For potato
none of the assumptions are violated. The scatterplot of residuals (see Figure C.26) shows a few values out-
side the range of -3.3 and 3.3, from which the statistics are shown in Table C.22. However, since the Cook’s
Distance indicated in Table C.23 is 0.160, and thus lower than 1, it is assumed the outliers are not causing any
problems for the outcome of the model. Although, the scatterplot of residuals does not show a complete ran-
dom distribution, it also does not show a clear shape (see Figure C.26). Hence, homoscedasticity is assumed.
Also normality can be assumed, since the residuals barely show any deviation from the straight diagonal line
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in the P-P plot (see Figure C.25). Therefore, since normality and homoscedasticity are assumed, also linearity
can be assumed. At last, the coefficients table (see Table C.21) shows the tolerance and VIF values of each
variable included in the model. The tolerance values of the final model are within 0.639 and 0.876, and thus
remain above the minimum threshold of 0.1, whereas the VIF values range from 1.191 to 1.566, and thus
remain below the maximum threshold of 10. Hence, multicollinearity is not present in the model.

Figure C.18: "Descriptive statistics" table: the descriptive statistics, including the mean and standard deviation, for the dependent
variable, potato yield, and all independent variables taken into account in the MRA.

Figure C.19: "Model Summary" table: a summary of the model containing the significant predictors for potato yield, namely access to a
weather forecast, irrigation, chemical use, experience, and seed use, with R2 = 0.45. Together, these five variables account for 45% of the

variance in potato yield.
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Figure C.20: "ANOVA" table: the overall regression model was significant, F(5, 89) = 14.277, p < 0.001, R2 = 0.45.

Figure C.21: "Coefficients" table showing the direction and value of the significant predictors for potato yield. In addition, the tolerance
and VIF values are shown, and exceed the thresholds of 0.1 and 10, respectively. Hence, there is no violation of multicollinearity in the

model.
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Figure C.22: "Casewise Diagnostics" table showing all outliers in the model with the dependent variable potato yield.

Figure C.23: "Residual Statistics" table showing the statistics of the residuals. Cook’s Distance is 0.160, from which it can be concluded
that the outliers are no potential problem for the outcome of the MRA.

Figure C.24: A histogram showing a normal distribution of the standardised residuals for the dependent variable, potato yield, with
sample size = 143, mean = -0.10 and standard deviation = 1.084.
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Figure C.25: A P-P plot showing the residuals for the dependent variable, potato yield. No major deviations are apparent, hence
normality can be assumed.

Figure C.26: A scatterplot of the standardised residuals, showing few of the standardised residuals to be outside the range of -3.3 and 3.3.

C.1.5. MRA: Teff yield
Below the output of the MRA conducted with teff yield as the dependent variables is shown. For teff none of
the assumptions are violated. The scatterplot of residuals (see Figure C.35) shows a few values outside the
range of -3.3 and 3.3, from which the statistics are shown in Table C.30. However, since the Cook’s Distance
indicated in Table C.32 is 0.617, and thus lower than 1, it is assumed the outliers are not causing any prob-
lems for the outcome of the model. In addition, homoscedasticity can be assumed since the residuals do not
show a particular shape. The residuals in the P-P plot follow the straight diagonal line rather well, without
showing major deviations (see Figure C.34). Hence, normality is assumed. Therefore, since normality and
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homoscedasticity are assumed, also linearity can be assumed. At last, the coefficients table (see Table C.31)
shows the tolerance and VIF values of each variable included in the model. The tolerance values of the final
model are within 0.465 and 0.888, and thus remain above the minimum threshold of 0.1, whereas the VIF val-
ues range from 1.126 to 2.152, and thus remain below the maximum threshold of 10. Hence, multicollinearity
is not present in the model.

Figure C.27: "Descriptive statistics" table: the descriptive statistics, including the mean and standard deviation, for the dependent
variable, teff yield, and all independent variables taken into account in the MRA.

Figure C.28: "Model Summary" table: a summary of the model containing the significant predictors for teff yield, namely access to a
weather forecast, fertiliser use, chemical use, crop area, experience, and capital, with R2 = 0.65. Together, these three variables account

for 65% of the variance in teff yield.
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Figure C.29: "ANOVA" table: the overall regression model was significant, F(6, 175) = 54.406, p < 0.001, R2 = 0.65.

Figure C.30: "Casewise Diagnostics" table showing all outliers in the model with the dependent variable teff yield.



C.1. Multiple Regression Analysis 111

Figure C.31: "Coefficients" table showing the direction and value of the significant predictors for teff yield. In addition, the tolerance
and VIF values are shown, and exceed the thresholds of 0.1 and 10, respectively. Hence, there is no violation of multicollinearity in the

model.

Figure C.32: "Residual Statistics" table showing the statistics of the residuals. Cook’s Distance is 0.617, from which it can be concluded
that the outliers are no potential problem for the outcome of the MRA.
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Figure C.33: A histogram showing a normal distribution of the standardised residuals for the dependent variable, teff yield, with sample
size = 235, mean = 0.18 and standard deviation = 1.070.

Figure C.34: A P-P plot showing the residuals for the dependent variable, teff yield. No major deviations are apparent, hence normality
can be assumed.
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Figure C.35: A scatterplot of the standardised residuals, showing a few standardised residuals falling outside the range of -3.3 and 3.3.

C.2. Binary Logistic Regression Analysis
In this section the output of each binary logistic regression analysis conducted in Section 4.4 is presented. In
addition, the statistical variables included in the results of the binary logistic regression shown in this Section
are explained. Hereby, the textbook of Julie Pallant is followed (Pallant and Manual, 2010).

C.2.1. Explanation of Statistical Variables
The figures showing the results of the binary logistic regression in Subsection 4.4.9 include a few statistical
variables. Each of these statistical variables are explained in this subsection. As an example, we look at Figure
C.38.

The regression coefficients are indicated by B. The statistical variable B represent the value for the logistic
regression equation for predicting the dependent variable from the independent variable, and are in log-
odds units. The value for B indicates the relationship between the independent variable and the dependent
variable, whereby the independent variable is on a logit scale. They indicate the amount of change in the
predicted log odds of, in this example, the climate adaptive capacity that would be predicted by a 1 unit
increase in the predictor, holding all other predictors constant.
Since the value for B is often difficult to interpret, they are often converted into odds ratios, indicated by
Exp(B), which are the exponentiation of the coefficients B. The value for Exp(B) indicates the increase in
the log-odds ratio of, in this example, the climate adaptive capacity by a one unit increase of one of the
independent variables, holding all other independent variables constant. It is assumed that the independent
variable with the highest odds ratio, is the strongest predictor.

The standard errors associated with the coefficients B are indicated by S.E. The standard error is used to test
whether the parameter is significantly different from 0.

The Wald column provides the Wald chi-square values. The Wald test is used to determine statistical sig-
nificance for each of the independent variables. The statistical significance of the test is found in the Sig.
column. If the sig. value is smaller than 0.05, the independent variable adds significantly to the prediction of
the dependent variable. The df column lists the degree of freedom for each variable for the Wald chi-square
test.
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The 95% C.I. (Confidence Interval) for EXP(B) are ranges of values that are likely to contain the true values of
the odds ratio.

C.2.2. Climate Adaptive Capacity
In this binary logistic regression analysis only those farmers without access to a weather forecast are taken
into account, hence N = 278.

(a) Model summary (b) Omnibus test of model coefficients

Figure C.36: Figure a) shows the model to be statistically significant with a chi-square value of 60.54 and p < 0.001. Figure b) shows the
combined predictive capacity of the independent variables, hence the independent variables explain between 19.6% and 32.3% of the
variance in climate adaptive capacity.

(a) Hosmer and Lemeshow Test (b) Classification table

Figure C.37: Figure a) presents the Hosmer and Lemeshow test with a p-value larger than 0.05, from which can be assumed the model
is not a poor fit of the data. Figure b) presents the classification table, which indicates the number of correctly and wrongly predicted
farmers by the model with respect to the climate adaptive capacity.

Figure C.38: The three variables significantly predicting the dependent variable, climate adaptive capacity. The use of onset is the
strongest predictor as it has the highest odds ratio indicated by Exp(B).
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Figure C.39: An overview of observed groups and the predicted probabilities. The threshold is set at 0.5.

C.2.3. Changing Crop Type
In this binary logistic regression analysis the probability of a farmer to adapt by changing the crop type is as-
sessed. Hereby, only non-rice growing farmers claiming to adapt to climate variability are taken into account,
hence N = 285.

(a) Model summary (b) Omnibus test of model coefficients

Figure C.40: Figure a) shows the model to be statistically significant with a chi-square value of 37.77 and p < 0.001. Figure b) shows the
combined predictive capacity of the independent variables, hence the independent variables explain between 12.4% and 17.5% of the
variance in climate adaptive capacity.
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(a) Hosmer and Lemeshow Test (b) Classification table

Figure C.41: Figure a) presents the Hosmer and Lemeshow test with a p-value larger than 0.05, from which can be assumed the model
is not a poor fit of the data. Figure b) presents the classification table, which indicates the number of correctly and wrongly predicted
farmers by the model with respect to the climate adaptive capacity.

Figure C.42: The five variables significantly predicting the dependent variable, climate adaptive capacity. The farm size is the strongest
predictor as it has the highest odds ratio indicated by Exp(B).

Figure C.43: An overview of observed groups and the predicted probabilities. The threshold is set at 0.5.
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C.2.4. Changing Planting and Harvesting Dates
In this binary logistic regression analysis the probability of a farmer to adapt by changing the planting and
harvesting dates is assessed. Hereby, only non-rice growing farmers claiming to adapt to climate variability
are taken into account, hence N = 285.

(a) Model summary (b) Omnibus test of model coefficients

Figure C.44: Figure a) shows the model to be statistically significant with a chi-square value of 161.32 and p < 0.001. Figure b) shows the
combined predictive capacity of the independent variables, hence the independent variables explain between 12.4% and 17.5% of the
variance in climate adaptive capacity.

(a) Hosmer and Lemeshow Test (b) Classification table

Figure C.45: Figure a) presents the Hosmer and Lemeshow test with a p-value larger than 0.05, from which can be assumed the model
is not a poor fit of the data. Figure b) presents the classification table, which indicates the number of correctly and wrongly predicted
farmers by the model with respect to the climate adaptive capacity.

Figure C.46: The six variables significantly predicting the dependent variable, climate adaptive capacity. Education is the strongest
predictor as it has the highest odds ratio indicated by Exp(B).
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Figure C.47: An overview of observed groups and the predicted probabilities. The threshold is set at 0.5.


