<]
TUDelft

Delft University of Technology

Learning the Electrostatic Response of the Electron Density through a Symmetry-Adapted
Vector Field Model

Rossi, Mariana; Rossi, Kevin; Lewis, Alan M.; Salanne, Mathieu; Grisafi, Andrea

DOI
10.1021/acs.jpclett.5c00165

Publication date
2025

Document Version
Final published version

Published in
Journal of Physical Chemistry Letters

Citation (APA)

Rossi, M., Rossi, K., Lewis, A. M., Salanne, M., & Grisafi, A. (2025). Learning the Electrostatic Response of
the Electron Density through a Symmetry-Adapted Vector Field Model. Journal of Physical Chemistry
Letters, 16(9), 2326-2332. https://doi.org/10.1021/acs.jpclett.5¢c00165

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1021/acs.jpclett.5c00165
https://doi.org/10.1021/acs.jpclett.5c00165

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



Downloaded viaTU DELFT on March 11, 2025 at 10:32:13 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

THE JOURNAL OF

PHYSICAL CHEMISTRY

LETTERS

A JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JPCL

Learning the Electrostatic Response of the Electron Density through
a Symmetry-Adapted Vector Field Model

Mariana Rossi, Kevin Rossi, Alan M. Lewis, Mathieu Salanne, and Andrea Grisafi*

Cite This: J. Phys. Chem. Lett. 2025, 16, 2326-2332 I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information

ABSTRACT: A current challenge in atomistic machine learning is that of
efficiently predicting the response of the electron density under electric fields. We
address this challenge with symmetry-adapted kernel functions that are specifically
derived to account for the rotational symmetry of a three-dimensional vector field.
We demonstrate the equivariance of the method on a set of rotated water
molecules and show its high efficiency with respect to number of training
configurations and features for liquid water and naphthalene crystals. We conclude
showcasing applications for relaxed configurations of gold nanoparticles,
reproducing the scaling law of the electronic polarizability with size, up to systems
with more than 2000 atoms. By deriving a natural extension to equivariant learning
models of the electron density, our method provides an accurate and inexpensive
strategy to predict the electrostatic response of molecules and materials.

he electrostatic response of the electron density is a the amount of data necessary to train reliable models, and

fundamental property of matter. It determines vibrational typically enhances the overall accuracy by making predictions
Raman and sum-frequency cross sections,”” and the optical more robust to numerical noise. Nevertheless, building a fully
dielectric constant of materials.”* Furthermore, it defines the equivariant framework for the prediction of vector-field
induced electronic polarization of metallic systems,”° of central properties represents a current challenge of atomistic machine
interest for electrochemical energy storage’ and electrostatic learning. This problem has been tangentially faced in the
catalysis. "% This electrostatic property is defined as the static description of spin degrees of freedom, as those entering the
linear response function of the electron density under the construction of ML interatomic potentials for magnetic
application of a homogeneous electric field along the three materials.”®*’” In that case, the atomistic representation must
Cartesian directions; as such, it can be formally represented as be able to capture the symmetries of the vector-field, but the
a continuous three-dimensional vector field. learning target, i.e., the electronic energy, is invariant under

The calculation of electronic density responses via density- rotations.

functional theory (DFT) requires the evaluation of the first- In this work, we address the challenge of achieving an
order perturbative term in the density expansion around the equivariant atom-centered representation of the vector field
ground-state, in absence of any external fields. This response and preserving the rotational symmetry in the prediction

can be obtained through suitable finite-difference calculations.
Density-functional perturbation theory (DFPT), however,
provides a more elegant route to compute this quantity,
allowing the treatment of both periodic and aperiodic systems
on an equal footing."'™"* These calculations come with an
added simulation cost involving a larger prefactor with respect
to ground-state calculations, and a scaling with the number of
electrons that is the same as that of DFT; this aspect vastly

target, which is here the density response to applied electric
fields. From a ML model perspective, an advantage of directly
targeting the density response rather than its derived properties
(e.g., polarizabilities) is that the response is inherently local,
making it more likely to yield robust predictions for highly
polarizable systems. Previous works by some of the authors
have proposed methods to address this problem in the context

of symmetry-adapted Gaussian process regressionzs’28 (sA-

limits the system sizes that can be afforded, as well as the . i~
GPR), by extend the SALTED thod f dict
number of calculations that can be performed. ) Yy extending the method for predicing

Bypassing the need for large computational resources is one
of the central goals of machine-learning (ML) methodologies
in atomistic simulations. In this context, ML models that are
made equivariant under three-dimensional spatial symmetries
have proved to be very efficient in learning electronic densities
of molecules,"*™"” solids,'®*’ liquids,zo’21 and surfaces.”>™%
The equivariant nature of these methods drastically decreases
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electron densities." ' These methods relied on a modification
of the descriptor of the local atomic environment (features), in
order to encode the information about the direction (and the
strength) of the applied electric field. Recently, a similar
approach has been adopted in the context of neural-network
architectures,” which also makes use of field-induced
embedded atom density (FI-EAD) features.”” In refs 23 and
25, these models were successfully applied to predict the
density response of metallic slabs along the direction
perpendicular to the surface, thus representing, effectively,
the prediction of a scalar field. In ref 28, the prediction target
was the full vector field of the density response of molecules
and insulating solids or liquids. However, the prediction of
each Cartesian component was obtained through independent
SA-GPR models. Learning and prediction were proven to be
successful, but the rotational equivariance of the model was not
formally obeyed.

As we will see, an equivariant formulation of the learning
problem capable of consistently taking into account the vector-
field symmetries presents significant advantages over previous
methods. We will show the superior accuracy of our approach
in predicting the density response of benchmark data sets that
include isolated water molecules, as well as supercells of liquid
water and molecular crystals. Additionally, we will demonstrate
applications to metallic nanoparticles of increasing size that
display a nonlocal polarization, enabling the inexpensive
calculation of polarizability tensors at large length scales.

In line with electron-density learnin% methods based on a
linear atomic-orbital representation, ”'**° the response
function of the electron density n, under an applied electric
field E; can be written as a linear combination over a set of
atom-centered basis functions ¢,,,. Assuming a nonperiodic
system for simplicity, we can express the continuous vector
field at any given point r as

ane(r) k
0B, = 2 Gy, (r — R)

(1)

where k, n and Au are the Cartesian, radial and spherical
harmonics indexes, respectively, and R; are atomic positions.
Reference quantum-chemistry calculations of this quantity can
be performed using a DFPT approach, as well as by finite
differences of the electron density under a sufficiently small
electric field along the three Cartesian directions. For periodic
charge densities, these calculations need to be performed
taking into account the modern theory of polarization.”® The
set of expansion coefficients, cﬁw, can then be extracted by
using standard density-fitting techniques. Our goal is to derive
a kernel-based approximation of the coefficients ci-‘,,,m, by
extending well-established SA-GPR methods for the prediction
of n, 141821

We start by noticing that the vectorial character of eq 1 can
be equivalently expressed in terms of |1k) angular momentum
states. This property allows us to represent the rotational
symmetry of the expansion coeflicients within the tensor
product space Iy, 1k) = lAu) ® I1k). A similar scenario is
encountered in the context of molecular Hamiltonians,*
where the matrix elements between atomic orbitals transform
under rotations as the tensor product between pairs of angular
momenta. In that case, one can take advantage of an
orthogonalization procedure to recast the learning target into
a set of irreducible angular components that can be regressed
independently of each other. Because of the nonorthogonal

indp
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nature of the basis functions used for the expansion of eq 1,
however, this strategy cannot be effectively adopted for the
present problem.”’ The rotational symmetry of the coefficients
cf—c,l,lﬂ must be handled altogether in the learning model.

From the previous discussion, the problem of providing an
equivariant approximation of the cfmw can be addressed by
deriving kernel functions that express the structural similarity
between pairs of atomic environments i and j, together with
the geometric correlation between spherical tensors of order
A ® 1. Following the rationale of refs 32 and 33, this can be
achieved with SO(3) integrals that include tensor products of
Wigner D-matrices associated with the rotational symmetries
we aim to enforce. After some algebraic manipulations,
detailed in the Supporting Information (SI), we find that
kernel functions adapted to 4 @ 1 symmetries can be written in
terms of an irreducible angular momentum decomposition.
Specifically, we obtain the central result:

A+1
Ki®le= D (u, kllm)(y', 16lIm K},
=1l ()

where (Ay, 1kllm) are the Clebsch-Gordan coefficients used for
the composition of angular momenta, such that I = {I1 — 1], 4,
A+ 1} and m = p + k. Crucially, the irreducible components K'
in eq 2 can be recognized as spherical tensor kernels of order |,
like those originally derived in the prediction of molecular
tensors,”” and later used for the prediction of electron
densities."* This makes the calculation of eq 2 straightforward
by accessing the relevant triplets of K' for each value of A that
enters the representation of eq 1. Equivariance in O(3) can be
finally achieved by enforcing A @ 1 inversion symmetry, which
implies considering symmetric K' for [ A + 1l and
antisymmetric K’ for [ = A.

Following the latest formulation of the SALTED method,*!
the 4 ® 1 kernels so derived can be used to perform
equivariant predictions of the coefficients cf, Ju Dy recasting the
learning problem into a low dimensional reproducing kernel
Hilbert space (RKHS). This is done by first selecting a sparse
set of M atomic environments that best represent the structural
variability in the data set, following the subset of regressor
approximation commonly used in GPR methods.”* Upon
including this selection within the construction of K'®' we
find that the dimensionality of the learning problem is
increased by roughly a factor of 3 with respect to the case of
the electron density, consistently with having incorporated into
the model the vectorial symmetry of the density response. To
limit the curse of dimensionality, we introduce in this work a
Gaussian damping factor that decreases the value of M for

increasing values of angular momentum, ie., M; = Moe_o'osjlz,
thus considerably reducing the final RKHS size. A thorough
discussion about the learning method reported in the SI.

We test our method on a data set of 1000 isolated water
molecules presenting 100 rigid configurations that are
randomly rotated, plus 900 that have a distorted geometry
with a dipole moment aligned along the z-axis. This data set
has proven to be a useful benchmark for testing various
equivariant methods,”"** as it allows us to simultaneously
assess the learning capability of the model and the effective
incorporation of the desired rotational symmetries. Reference
calculations of the density response function were obtained
from DFPT, using the FHI-aims electronic-structure pack-
age.""*> An example of the computed vector field representing

https://doi.org/10.1021/acs.jpclett.5c00165
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the density response between two mutually rotated water
molecules is depicted in Figure 1-a.
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Figure 1. (a) Visualization of the vector field rotation corresponding
to the electron density response of a water molecule to an applied
homogeneous electric field. Vectors at a distance of 2 A from the
closest atomic position are shown. (b) Percentage root-mean-square
errors (% RMSE) of the density response prediction on five water
conformers that are only rotated with respect to one another. The
equivariant method of this work correctly yields the same error for
these structures, while the method from ref 28 (SALTER) displays
larger errors which are different for each conformer. (c) Box plot of all
errors on the validation set of 900 structures, including rotated and
distorted structures. While the average errors are small for both
methods, the equivariant method of this work presents errors that are
1 order of magnitude smaller.

We train our model on a data set of N = 100 randomly
selected configurations—thus leaving the remaining 900 for
testing—and compare the results with those that can be
obtained using the SALTER method from ref 28. As both
methods are derived as an extension of SALTED, we are able
to perform this comparison with completely equivalent
parameters, most notably a rather small number of sparse
environments (M, = 100). As a consequence of learning
independent models for each Cartesian component of the
density response, SALTER is not capable of automatically
recognizing pairs of vector fields that are simply rotated with
respect to each other.

This problem is well illustrated in Figure 1-b by a
comparison of the prediction errors reported for five water
molecule configurations that are rigidly rotated with respect to
one another. While SALTER displays inhomogeneous errors
that fluctuate around 1% RMSE, our method correctly
produces entirely equivalent predictions that are almost 100
times more accurate. This highlights the effectiveness of
symmetry adaptation in capturing the otherwise complex
variations of the vectorial field under a three-dimensional
rotation of the atomic structure. For completeness, we report
in Figure 1-c a summary of the prediction errors of all the 900
test configurations, 90% of which are aligned along the Zz
direction. We observe a 50-fold improvement in prediction
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accuracy, when comparing SALTER with the fully equivariant
approach of this work. We expect that if most of the molecules
were not aligned, we would observe a more pronounced
difference between the accuracy of both methods.

We continue by comparing the performance of the
equivariant approach and SALTER for more realistic systems,
namely the liquid water and naphthalene data sets described in
ref 28. The liquid water data set consists of cubic cells of side
9.67 A, containing 32 water molecules; the naphthalene
structures are 2 X 2 X 1 supercells of the P2,/a naphthalene
crystal, with 8 molecules per supercell. Each data set contains
500 structures, of which 100 are reserved for validation. The %
RMSE in the electron density responses predicted by each
method are summarized in Table 1. Once again, we see a

Table 1. % RMSE in the Predicted Electron Density
Responses across a Test Set of 100 Liquid Water Structures
and 100 Naphthalene Crystal Structures Using Both
SALTER and the Symmetry-Adapted Vector Field Method
Presented in This Work”

Liquid Water Naphthalene
Method \ N 40 200 40 200
SALTER 1322 11.64 472 457
This work 9.26 8.87 2.86 2.78

“Results are shown for different training set sizes N, highlighting the
data-efficiency obtained through symmetry adaptation against the
more data-hungry SALTER method.

significant improvement upon moving to the fully equivariant
method, which is clearly manifested by requiring a smaller
amount of data to achieve a comparable prediction accuracy. In
particular, we find that predictions that can be obtained by
training our model on N = 40 configurations are more accurate
than those associated with training SALTER on N = 200
configurations. This property is observed not only in the size of
the training set, but also in the number of sparse atomic
environments used to define the RKHS of the learning
problem. In fact, while SALTER models were defined using a
relatively large value of M, i.e, M = 3000 for water and M =
2000 for naphthalene for every value of A, our symmetry-
adapted method uses for both systems M = 500 environments
when A = 0, falling to just M = 42 environments when 1 = 4.

We conclude our discussion by applying the method on a
data set of gold nanoparticles of various sizes, reaching
prediction targets that are challenging to calculate with full ab
initio theory. These systems are expected to display a large
polarization effect that is related to a nonlocal charge
rearrangement when approaching the metallic limit of a
vanishing HOMO—-LUMO gap. %37 For this reason, we
include long-distance equivariant (LODE) features®® into the
construction of each K, a choice that has already proven
successful to predict the electronic polarization of metallic
slabs.”® To investigate different size regimes, we generated a
data set of 255 relaxed nanoparticles, ranging from 28 to 139
atoms. We consider magic-size archetypes (icosahedra,
decahedra, and fcc-truncated octahedra), as well as geometries
obtained by randomly eliminating atoms from the cluster
surface, and a successive geometry relaxation. Details about
reference DFT calculations are reported in the SI.

We train our vector-field model on 200 randomly selected
configurations and retain the remaining S5 for validation. The
learning problem is then recast into a low dimensional space of

https://doi.org/10.1021/acs.jpclett.5c00165
J. Phys. Chem. Lett. 2025, 16, 2326—2332
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M, = 200 sparse atomic environments, following the Gaussian
decay already described for M, up to A = 7 spherical
harmonics. A collective 15% RMSE is measured over the
entire test set, which we find to result in highly accurate
predictions. As an example, we report in Figure 2 the predicted

0.0075 — ML (x, y)
— ML (2)

0.00501 bRt

0.0025

0.0000

okne) [a.u.]

2 -0.0025+

—0.0050+

-0.00751 x Y

0 20 40 60
re [a.u.]

Figure 2. Comparison between the reference and predicted electron
density response (J;n,), along a given Cartesian direction k, for a test
nanoparticle made of 55 gold atoms. Response profiles along the three
Cartesian directions are obtained by averaging the vectorial field
components along the other two complementary Cartesian directions.
Dashed black lines: DFT reference. Red and blue lines: ML
predictions.

density response in real space for a test 55 atoms
cuboctahedron. We observe an excellent agreement with
DFT by comparing the density response along the 3 Cartesian
axes, reproducing the expected symmetry property of the
selected structure along the xy-plane.

As a relevant application of the model previously trained, we
consider the calculation of the electronic polarizability of the
Au nanoparticles. When considering isolated systems—or
systems presenting a distribution of electronic charge that
vanishes before the cell periodic boundaries—the polarizability
tensor can in fact be directly computed as the first moment of
the density-response function:

pubs.acs.org/JPCL
on,(r
akk' = / dr rk e( )
R OE, (3)

Notably, analytical formulas can be derived that allows us to
inexpensively compute oy from the predicted A =0 and 4 = 1
density-response coeflicients; an explicit derivation is reported
in the SI. We remark, however, that all spherical harmonics
components of the density response (up to 4 = 7 in this
example) must still be considered during the training phase to
account for the spatial overlap between basis functions.

An exemplary important question is that of assessing the
capability of our model to reproduce the scaling law of the
isotropic component of the polarizability tensor, defined as
a, = %(axx +a, + azz), with an increasing system size.”” For
this purpose, we perform reference DFT calculations for an
additional set of 30 test relaxed configurations that include
larger nanoparticles than those used for training the model, up
to 201 atoms. These serve as benchmarks of our prediction
accuracy in the extrapolative regime. Five unrelaxed
cuboctahedron geometries of 309, 561, 923, 1415, and 2057
atoms are finally included to the prediction targets, in order
explore an asymptotically large size regime. For these, no
reference value is computed because of the large computational
cost.

Figure 3 reports prediction results for the whole set of 90
test structures considered. We find that our model can be used
to accurately predict the expected value of @, both within the
training and extrapolation size domains with a comparable
level of accuracy, achieving a collective error of only 1.2%
RMSE. In agreement with the classical electrodynamic
response of ideal metallic spheres, @ is expected to follow a
cubic scaling law with the nanoparticle radius, which manifests
as a linear increase of the polarizability with the number of
gold atoms. At a fundamental level, this result derives from the
localization of the density response at the nanoparticle surface
when approaching the classical metallic limit.*” A local model
that relies on nearsighted SOAP descriptors cannot capture
this collective surface effect and shows a sublinear scaling of o,
with respect to the number of gold atoms, as shown in

10° .

o DFT training regime | extrapolation regime .
o ML/SOAP — i
* ML/LODE !
—— linear fit i
i
—_ i
] i
5 10% ; !
= / |
S '

103<

Natoms

Figure 3. Isotropic components (a) of the polarizability tensors of 90 gold nanoparticles of increasing size, as obtained from the corresponding
electron density response coefficients. Empty circles: DFT reference. Blue dots: ML prediction based on SOAP descriptors. Red dots: ML
prediction based on LODE descriptors. Gray line: linear fit of &, on the reference DFT values. The vertical dashed line separates the domain of
sizes used for training the vector-field model (1, < 140) from the large-scale domain of sizes used to validate the model under extrapolation
conditions (s > 140). No DFT reference is reported for the S largest nanoparticles, which are chosen as unrelaxed cuboctahedron

configurations made of 309, 561, 923, 1415, and 2057 atoms.
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Figure 3. Instead, when including long-range information into
the model through LODE structural features, the expected
linear behavior is recovered throughout the whole extrap-
olation set, which includes a 10-fold increase in size with
respect to the training geometries (see also Figure SI in the
SI). To estimate the computational speedup obtained with our
model, we parallelize the calculation on 192 AMD EPYC 9654
2.4 GHz CPU-cores. The observed prediction times are of 1.5
s for foms = 309 and of 11.6 s for n,,, = 2057. These timings
represent a remarkable acceleration compared to DFPT or
finite-field DFT calculations, estimated to be >10° using
comparable computational settings.

Accurate results are also found in predicting the anisotropic
part of the electronic polarizability. In order to obtain a single
measure of this quantity, we compute the Frobenius norm of
the traceless a-tensor. While most configurations present a
relatively small anisotropic component, a few nanoparticles
display a strong anisotropic response. We find that our method
can effectively reproduce both limits, including, once again,
those configurations that fall outside the regime of sizes used
for training. A collective error of 11.9% RMSE on the
anisotropic part is obtained throughout the test set. A more in-
depth discussion is reported in the SI (section VI).

Following benchmarks ranging from molecular and periodic
systems with diverse chemistry, to metallic clusters of
increasing size that exhibit nonlocal polarizability, we conclude
that our equivariant vector-field approach offers an accurate
and scalable framework for predicting the electrostatic linear
response of the electron density in a cost-efficient manner. In
particular, we confirm the vastly superior performance of this
method with respect to similar approaches that do not
incorporate equivariance with the learning target. A key feature
of our method is the streamlined incorporation of the vector-
field rotational symmetry by a single Clebsch-Gordan sum over
state-of-the-art spherical tensor kernels. We recognize that an
iterative version of this procedure has been similarly adopted in
the context of increasing the structural body-order within the
construction of kernel-based ML potentials.*' Looking ahead,
unifying these two approaches could enhance the capabilities
of kernel methods in predicting generic electronic-structure
properties within a shared mathematical framework. Moreover,
training on highly heterogeneous data sets will require the
implementation of suitable strategies aimed at reducing the
size of the learning problem.””

When it comes to the calculation of derived properties, the
local nature of the density response allows us to perform highly
transferable predictions of dipolar polarizability tensors via
suitable integral procedures. While these tensors can directly
enter the calculation of standard Raman signals, higher order
polarizability moments could also be similarly computed to
enable the calculation of surface-enhanced Raman spectra.*>**
Furthermore, having access to the real-space distribution of the
response function could make it possible to treat spatially
inhomogeneous induced polarizations, such as those encoun-
tered in tip-enhanced Raman scattering.”” Beyond optical
dielectric properties, the prediction of spatially inhomogeneous
responses could also be used for tuning dielectric-consistent
DFT functionals,” relevant for improving the performance of
DFT applied to semiconductor interfaces. Finally, we envisage
the application of our method to model the induced nonlocal
polarization at electrified metal/electrolyte interfaces,”” thus
enhancing the capabilities of first-principles atomistic simu-
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lations of electrochemical systems and electrocatalytic
processes.
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