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A B S T R A C T

Nitrous oxide (N2O) emissions from wastewater treatment plants (WWTPs) exhibit significant seasonal vari
ability, making accurate predictions with conventional biokinetic models difficult due to complex and poorly 
understood biochemical processes. This study addresses these challenges by exploring data-driven alternatives, 
using long short-term memory (LSTM) based encoder-decoder models as basis. The models were developed for 
future integration into a model predictive control framework, aiming to reduce N2O emissions by forecasting 
these over varying prediction horizons. The models were trained on 12 months and tested on 3 months of data 
from a full-scale WWTP in Amsterdam West, the Netherlands. The dataset encompasses seasonal peaks in N2O 
emissions typical for winter and spring months. The best performing model, featuring a 256–256 LSTM archi
tecture, achieved the highest accuracy with test R2 values up to 0.98 across prediction horizons spanning 0.5 to 
6.0 h ahead. Feature importance analysis identified past N2O emissions, influent flowrate, NH4

+, NOx, and dis
solved oxygen (DO) in the aerobic tank as most significant inputs. The observed decreasing influence of historical 
N2O emissions over extended prediction horizons highlights the importance and significance of process variables 
for the model’s performance. The model’s ability to accurately forecast short-term N2O emissions and capture 
immediate trends highlights its potential for operational use in controlling emissions in WWTPs. Further research 
incorporating diverse datasets and biochemical process inputs related to microbial activities in the N2O pro
duction pathways could improve the model’s accuracy for longer forecasting horizons. These findings advocate 
for hybridising deep learning models with biokinetic and mechanistic insights to enhance prediction accuracy 
and interpretability.

1. Introduction

The urgency of climate change and global warming related chal
lenges have led wastewater treatment plants (WWTPs) authorities to 
critically consider their greenhouse gas (GHG) emissions and carbon 
footprint. Nitrous oxide (N2O) is one of the most potent GHG emitted 
from WWTPs, with a global warming potential 273 times greater than 
that of carbon dioxide (CO2) on a 100-year time scale (Forster et al., 
2021). In addition, its increasing atmospheric concentrations contribute 
to the depletion of the ozone layer in the stratosphere (Ravishankara 
et al., 2009). Hence, it is necessary to enhance the understanding of the 
underlying processes behind N2O production in WWTPs and develop 
effective mitigation strategies to reduce its emissions.

The production of N2O in WWTPs is associated with biological ni
trogen removal (BNR) processes. During autotrophic nitrification con
ducted by the ammonia-oxidising bacteria (AOB), the incomplete 
oxidation of hydroxylamine (NH2OH) to nitrite (NO2

- ) can cause N2O 
production (Pan et al., 2024). Additionally, under low dissolved oxygen 
(DO) conditions, NO2

- and NO accumulation can lead to N2O production, 
in a phenomenon known as nitrifier denitrification (Seshan et al., 2024). 
N2O is also an intermediate in heterotrophic denitrification, specifically 
in the final step, where N2O is reduced to N2. Incompletion or inhibition 
of this step can lead to N2O accumulation (Massara et al., 2017a). 
Detailed monitoring of N2O and related parameters is necessary to better 
understand the actual production pathways and to develop relevant 
mitigation strategies. Long duration measurement campaigns have 
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reported distinctive seasonal and diurnal variations in N2O emissions at 
various full-scale WWTPs (Daelman et al., 2013; Gruber et al., 2020; 
Kosonen et al., 2016). A significant seasonal peak has been recorded 
during the spring months (Gruber et al., 2021a), while in our previous 
work, we discussed a full-scale study reporting 54 % of the yearly N2O 
mass emitted during March and April (Seshan et al., 2024).

Hence, there is an increasing urgency to develop effective mitigation 
and operational control strategies that can be implemented in full-scale 
WWTPs to reduce N2O emissions. Models that can accurately predict 
N2O emissions, perform mitigation scenario analysis, and support 
advanced control strategies, offer a promising solution. The availability 
of long duration datasets is crucial for advancing the modelling of N2O 
production and emissions from WWTPs. Over the years, biokinetic 
models such as the activated sludge models (ASMs) have been extended 
to include N2O production pathways, to predict the emissions and 
simulate control strategies (Mampaey et al., 2013; Massara et al., 2017b; 
Ni et al., 2015; Guo and Vanrolleghem, 2013). Notably, in studies 
involving full-scale systems, the calibration process often used short to 
mid-term data, missing seasonal variations. Biokinetic models that were 
applied to long duration data revealed the active production pathways 
and plausible process conditions behind the seasonal peak. Nonetheless, 
these models struggled to predict the seasonal variations accurately 
(Seshan et al., 2024). This lack of accuracy shows that the current 
knowledge on the N2O production dynamics included in biokinetic 
models is limited in describing the changing kinetics that cause the 
strong seasonal variations in N2O emissions. Furthermore, biokinetic 
models, although comprehensive, are often over-parameterised, making 
calibration more complex (Domingo-Félez and Smets, 2016). Proper 
calibration requires monitoring intermediates of the production path
ways such as NH2OH, which can be costly and challenging (Khalil et al., 
2023). These limitations raise questions about the suitability of bio
kinetic models for N2O emissions mitigation strategies, especially 
model-based control strategies.

The use of data-driven or machine learning (ML) models for N2O 
emissions from WWTPs has shown promise as an alternative to bio
kinetic models, given the increased availability of long-duration and 
high-resolution data. Various studies have utilised unsupervised 
learning methods such as principal component analysis (PCA) and 
clustering techniques to gain insights into the wastewater treatment 
operations and patterns associated with N2O production (Bellandi et al., 
2020; Vasilaki et al., 2018). However, these methods cannot quantita
tively predict N2O emissions. Song et al. (2020) used Random Forest 
(RF) to calculate feature importance, providing data-driven insights into 
the main contributors to N2O emissions. However, the study did not 
address the temporal forecasting of N2O emissions, a task for which RF 
models are generally not suited. More recently, Khalil et al. (2023) re
ported an ML modelling framework for developing N2O emissions soft 
sensors. Various decision tree-based models and a dense neural network 
(DNN) were trained to predict N2O emissions for the same time step as 
the model inputs. While these models provided accurate results, they are 
not capable of forecasting N2O emissions, which is crucial for imple
menting model-based or model-predictive control (MPC) frameworks 
that can steer the treatment processes to reduce N2O emissions. More 
specifically, ML models such as Artificial Neural Networks (ANNs) and 
Deep Learning (DL) have shown strong capabilities in time series fore
casting. DL models can extract valuable knowledge from complex sys
tems and identify patterns in the data (Zhang et al., 2018), offering the 
potential to utilise real-time online sensor data on the wastewater 
treatment process and operations to forecast N2O emissions. In this 
context, Xu et al. (2024) trained various Recurrent Neural Networks 
(RNNs) and Long Short-Term Memory (LSTM) models using 24 h of 
historical N2O emissions data to predict the N2O value one hour ahead. 
While the models achieved high accuracy (R2 > 0.90), they lacked 
additional operation-based model inputs essential for implementing 
MPC, such as DO and internal recycle rates, and were restricted to 
one-time-step-ahead predictions which are not sufficient for MPC 

frameworks. Hwangbo et al. (2021) trained a DNN as a process model to 
predict N2O concentrations in the liquid phase and conducted pre
liminary investigations using an LSTM model to recursively forecast N2O 
concentrations. The LSTM model demonstrated high performance (R2 >

0.94), but its evaluation was conducted on a single sample with a fixed 
prediction horizon, specifically corresponding to the last day of the 
dataset. Consequently, this assessment did not account for the model’s 
forecasting capabilities across different seasonal variations and emis
sions peaks.

This study addressed key deficiencies in existing models by propos
ing new LSTM-based models to forecast N2O emissions using long-term 
data from a full-scale WWTP, including seasonal peaks. Unlike previous 
studies, we focussed on developing models that accurately predict N2O 
emissions over extended prediction horizons, capturing complex process 
dynamics and operational settings that trigger N2O emissions over time. 
We evaluated their performance to determine the feasibility of inte
grating these models into (near) real-time MPC strategies, ultimately 
enabling effective N2O emission mitigation in WWTPs. Additionally, we 
discussed the current capabilities and limitations of these ML models 
and offered new insights leading to potential future improvements.

2. Methodology

2.1. Overview

In this study, the investigated DL models utilised an LSTM-based 
encoder-decoder architecture. The methodology for DL model training 
and evaluation comprised five stages as explained in Fig. 1. First, model 
inputs were selected, measured using online sensor data, which are 
related to the nitrogen removal process and N2O production. Based on 
the assessment of WWTP operational data and understanding the sys
tem’s response to varying control setpoints, an adequate length for the 
historical input data and prediction horizon length, which serves as the 
model outputs, was selected. In an MPC framework, the choice of the 
prediction horizon is also determined by the control variables and the 
control horizon applicable to the system. For reducing N2O production 
and emissions, optimised DO control is considered the most relevant 
variable for achieving (near) real-time reduction in N2O emissions in 
practice, given its role in the different N2O production pathways. The 
prediction horizon should be equal to, or longer than, the control hori
zon to account for process transients (Behera et al., 2015). Previous 
studies investigating MPC for DO control have utilised control horizons 
ranging from 1.25 – 2.50 h (Boruah and Roy, 2019; O’Brien et al., 2011; 
Shen et al., 2009), which can be considered an acceptable response time 
for the varying DO setpoint to influence the nitrification process. In this 
study, a longer prediction horizon of up to 6 h was considered to account 
for shorter control horizons and to test the feasibility of extending the 
prediction horizon for more extended forecasts.

2.2. Data pre-processing and preparation

Initially, the datasets underwent quality control to identify and 
address gross anomalies and sensor errors, such as values beyond sensor 
thresholds and sudden spikes. These anomalies were reviewed based on 
process-specific knowledge of the model inputs and replaced using 
linear interpolation between two known data points. The datasets were 
then resampled to a chosen data frequency to balance computational 
costs, while ensuring that the process dynamics and variations related to 
N2O production were still well represented. Additionally, the data were 
smoothed using a rolling mean with a window length of 5 data points. 
For training the LSTM-based DL models, the time series data were 
converted into a supervised learning problem, separating model inputs 
and providing labels of the outputs. The model inputs, which consisted 
of operational variables, such as ammonium (NH4

+), mixed liquor sus
pended solids (MLSS) and DO in the aerobic tank, were transformed into 
sequences with a fixed temporal length of historical data (n). The model 
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output, which is the N2O concentration in the gaseous phase, matched 
the desired prediction horizon length (h), constituting the labels of ob
servations following the input sequence. Each sample thus included 
sequences of both model inputs and outputs. Using a sliding window and 
moving 1 step at a time through the dataset, pairs of input and output 
sequences were created.

The entire dataset was split into training, validation and test sets. The 
training set was used to learn the underlying patterns and update the 
model weights, while the validation set was employed during training to 
tune hyperparameters, such as the learning rate, and save model 
checkpoints to prevent overfitting. The test set, an out-of-sample set 
completely unseen by the trained models, was used for evaluating and 
selecting the final model. Initially, the dataset was split with 80 % 
allocated to the combined model training and validation set, and 20 % 
reserved to the test set. The combined training and validation set was 
transformed into pairs of input and output sequences and was then 
randomly shuffled while retaining the elements of each sample pair. As 
illustrated in Fig. 2, for example, the model inputs and outputs se
quences of Sample 2 (purple colour boxes) were retained, even though this 
sample was placed towards the end of training and validation set after 
shuffling. This shuffling is considered acceptable as predictions over the 
prediction horizon is a function of the model inputs of the last n time
steps, and such a process can expedite the training process, leading to 
faster convergence (Kratzert et al., 2018). The shuffled dataset was 
further split into a training and validation set using an 85/15 ratio. The 
test set, which was separated prior to the shuffling, was kept unchanged 

to retain the temporal integrity of the original dataset. Finally, the 
training set, was standardised using Z-score normalisation by subtract
ing the training set’s mean and dividing by the training set’s standard 
deviation (Rahu et al., 2024). These same statistical parameters were 
then used to standardise the validation and test sets to prevent data 
leakage.

2.3. Deep learning models

In this study, LSTM units within an encoder-decoder architecture 
were used to forecast N2O emissions based on historical operational 
data. The model inputs consisted of sequences of historical data of length 
n, while the outputs were sequences of future N2O values over a pre
diction horizon length h. The following sections detail the structure and 
functionality of the LSTM units and the used encoder-decoder 
architecture.

2.3.1. Long short-term memory units
Long Short-Term Memory (LSTM) units (Hochreiter and Schmid

huber, 1997), are a type of recurrent neural network (RNN) designed to 
learn long-term dependencies in sequential data, making them suitable 
for time series forecasting. Each LSTM unit comprises four gates: the 
forget gate (f), which regulates the retention of previously hidden and 
cell states’ information; the input gate (i), which determines the amount 
of current information retained after updating the current cell state via 
the cell update gate (c); and the output gate (o), which controls the 

Fig. 1. Methodology overview employed in this study: (i) evaluate WWTP operations and system performance to determine key information for model inputs and 
outputs (described in Section 2.1); (ii) data pre-processing and (iii) data preparation for LSTM-based model input (both described in Section 2.2); (iv) model training, 
and (v) model evaluation (both described in Section 2.4).

Fig. 2. Example representation of a sample-wise sequence shuffling of dataset used in model training prior to splitting into training and validation sets. For a dataset 
of X samples, each sample consist of a pair: model inputs that include historical data spanning back n timesteps, and model outputs that represent the forecasted 
values for the next h timesteps ahead, corresponding to the prediction horizon. The number of boxes shown is purely for illustrative purposes. After processing, each 
sample retains its pairs while the order of the samples is randomly shuffled.
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information output based on the internal cell state. These gates are 
represented as linear transformations that consider the inputs, recurrent 
information from previous LSTM cell states, and trainable weights and 
biases. A sigmoid activation function is utilised for the f, i and o gates, 
specific to the retention of recurrent information, and a hyperbolic 
tangent activation function is used for updating the hidden and cell 
states (see Figure S1 for a visual representation).

2.3.2. Encoder-Decoder architecture-based DL model
A sequence-to-sequence (seq2seq) model architecture can be used to 

effectively process historical input sequences of length n to forecast N2O 
concentration over a prediction horizon of length h. Originally devel
oped for natural language processing (Sutskever et al., 2014), seq2seq 
models have since been adapted for various applications, including text 
generation, conversational models (Ren et al., 2019) and time series 
prediction (Xu et al., 2021). Fig. 3 illustrates the generic seq2seq model 
architecture implemented in this study.

The model contained an encoder component that processed the input 
sequence, which includes the historical values of length n for each of the 
k number of model input variables, using an LSTM layer to generate the 
hidden and cell states. The hidden state served as the contextual and 
latent state representation of the input sequence, which is then repeated 
h times to match the output target sequence length. This state vector was 
then inputted to the decoder component, which contained another LSTM 
layer. The decoder’s states were initialised with the hidden and cell state 
from the encoder’s LSTM layer. The entire decoder output sequence was 
returned and then flattened to ensure a full connection with the output 
dense layer. This ensured that every recurrent output from the decoder 
was connected to the output layer. The model outputs N2O forecasted at 
once for the entire prediction horizon h.

2.4. DL model training and evaluation

Models using the LSTM-based encoder-decoder architecture were 
trained with the dedicated training set, containing input sequences of 
the chosen model inputs to forecast all h steps in the prediction horizon 
for N2O concentration in a one-shot manner, generating all steps 
simultaneously. A summary of the hyperparameter values and choices 
for the training is provided in Table 1. Models of different sizes and 
hence, with an increasing number of trainable weights, were trained to 
assess the necessary complexity needed for good forecasting perfor
mance. Specifically, models with varying LSTM units in the encoder and 
decoder components – 32–32; 64–64; 128–128; 256–256; 512–512 – 
were trained.

The model training utilised stochastic gradient descent optimisation 
with the AdamW optimiser (Loshchilov and Hutter, 2019), to minimise a 
mean squared error (MSE) loss function. For each iteration, the opti
misation results were backpropagated, updating the model’s trainable 
weights and biases. The batch size for each iteration of the gradient 
descent was set to 32. An adaptive learning rate procedure was 
employed, reducing the learning rate by 0.5 when the MSE loss on the 

validation set for a given epoch did not decrease by a threshold of 0.01. 
This ensured a smoother optimisation process and increased the likeli
hood of identifying the global minimum. The initial learning rate was set 
to 0.001, with a minimum learning rate of 0.00001. Furthermore, if the 
model’s validation MSE loss decreased compared to the previous epoch, 
the model was saved, and a checkpoint was created to prevent over
fitting in case of divergence during training. Each model was trained for 
100 epochs. For each model network size, 10 different models with 
varying initialised weights and biases were trained to assess the repro
ducibility and consistency of the results. Finally, dedicated performance 
metrics were calculated for the training, validation and test set for each 
time step in the prediction horizon to assess and compare the forecasting 
performance. All model development and training activities were con
ducted using the Python software library of TensorFlow (Abadi et al., 
2016).

The performance of the trained models of varying network sizes was 
assessed by comparing their forecasting performance on the test set, that 
is, the unseen data not used during the training and validation proced
ure. For this, the root mean squared error (RMSE) was used: 

RMSE =

⎧
⎨

⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i

(
yi,t − ŷi,t

)2

N

√
√
√
√

⃒
⃒
⃒
⃒
⃒
⃒
t= 1, 2, . . .…, h

⎫
⎬

⎭
(1) 

where ŷi,t and yi,t are the predicted and measured values for a given 
sample i and for a given time instance t in the prediction horizon, 
respectively. N is the total number of samples. This leads to a list of 
RMSE metrics of length h representing the individual forecasting per
formance within the prediction horizon of length h. Furthermore, the 
performance metric coefficient of determination (CoD or R2) was also 
used: 

R2 =

{

1 −

∑N
i

(
yi,t − ŷi,t

)2

∑N
i

(
yi,t − yt

)2

⃒
⃒
⃒
⃒
⃒
t=1, 2, . . .…, h

}

(2) 

where yt is the average value of the observed data for the given time 
instance t in the prediction horizon, calculated over the N data samples.

Fig. 3. A generic seq2seq model architecture adopted in this study, containing an encoder, latent state representation and decoder components. n denotes the length 
of the historical inputs, k denotes the number of inputs, and h denotes the length of the output and the prediction horizon utilised.

Table 1 
Hyperparameter values and choices used during model training.

Hyperparameter Value/Choice

LSTM units (encoder-decoder) 32–32, 64–64, 128–128, 256–256, 512–512
Epochs 100
Optimiser AdamW
Learning rate Adapted during training
Loss function Mean squared error
Activation function for LSTM layers tanh
Batch size 32
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2.5. Permutation feature importance

Permutation feature importance evaluates the significance of indi
vidual model inputs (features) in predicting a given model output 
(target). This is achieved by permuting each input and assessing its 
impact on model predictions. Specifically, in this study, this method was 
used to assess the importance of the individual operational variables 
across each step of the prediction horizon, determining their relevance 
in forecasting N2O emissions within this timeframe. The influence of the 
inputs was evaluated for each step in the prediction horizon using the 
RMSE metric, and hence, a relative increase in the RMSE upon permu
tation, compared to the baseline, indicates the level of importance of the 
respective input. To ensure robustness, the procedure was iterated 10 
times and an average RMSE value was computed.

3. Case study

3.1. Description of WWTP

The case study for this ML modelling investigation is the Amsterdam 
West WWTP with a capacity of 1.1 million population equivalent 
(average flow of 168 MLD), treating municipal wastewater. Details 
regarding the overall process configuration can be found in Seshan et al. 
(2024). Specifically, the WWTP contains seven treatment lanes that 
conduct the activated sludge (AS) process for biological nitrogen and 
phosphorous removal. The AS process configuration applied is the 
modified University of Cape Town (mUCT) process (Chen et al., 2023). 
Each treatment lane contains a bioreactor that has an 
anaerobic-anoxic-facultative-aerobic configuration in series. The facul
tative tank serves as a swing tank, providing additional denitrification or 
nitrification capacity based on the treatment requirements. The biore
actor units are covered, allowing for the capture of the off-gas emissions. 
Internal recycles are typically present for any continuous AS process 
configurations. In Amsterdam West, four internal recycles are operated; 
where one sludge recycle line returns active biomass from the secondary 
clarifier to the anoxic tank, another one returning active biomass from 
the anoxic to the anaerobic tank. The additional two internal recycles 
transfer the NOx, produced during the nitrification process in the aerobic 
tank, to the anoxic and facultative tanks, when the latter is being 
operated as an anoxic zone. This modelling study was conducted only on 
one treatment lane due to the availability of online sensors measuring 
N2O and other crucial process variables .

3.2. WWTP data

Online sensor data from the treatment lane spanning 1 year and 3 
months, from 11/2020 – 03/2022 were employed for training and 
evaluating the DL models. Process related variables were measured 
online up to a frequency of every 15 min. The N2O concentrations in the 
gaseous phase were measured in ppm every 15 min by sampling off-gases 
from the closed bioreactor, which were subsequently analysed by an 
infrared gas analyser (X-stream, Emerson, St. Louis, MO, US). The 
dataset comprised 13 model inputs, including the raw influent flowrate, 
NH4

+, DO and NOx concentrations in the aerobic tank; NOx in the anoxic 
tank; MLSS and liquid temperature in the bioreactor; two internal re
cycles transferring the NOx from the aerobic tank to the anoxic tanks 
(NOx Recycle 1 and NOx Recycle 2), the position of three aeration valves 
(two in the aerobic tank and one in the facultative tank), where 0 % 
indicates fully closed and 100 % indicates fully open; and the N2O off- 
gas concentrations. The model output was the N2O off-gas 
concentrations.

Descriptive statistics for these variables are presented in Table 2, and 
their distributions over the dataset’s duration are illustrated in Fig. 4. As 
detailed in Section 2.2, the dataset was resampled to a chosen frequency 
of 30 min. This choice was based on prior knowledge of the dynamics 
and rate of change typically observed within the wastewater treatment 

systems. This choice balanced data resolution with computational costs 
to allow for practical model training and evaluation. The datasets were 
prepared into sequences suitable for training LSTM-based models. A 
historical input length n of 48 timesteps (equivalent to the last 24 h at 30 
min-frequency) to capture diurnal patterns, including morning and 
evening peaks in total nitrogen (TN) as expected in the raw influent. As 
discussed in Section 2.1, the prediction horizon length h was set to a 
maximum of 12 data points, corresponding to 6 h. The datasets were 
split into training, validation and test sets, as explain in Section 2.2. The 
period from 01/11/2020 to 25/11/2021 were allocated to the training 
and validation sets, encompassing all four seasons, and capturing a 
significant N2O emissions peak for model training. A dedicated test set 
covered the remaining dataset from 26/11/2021 to 28/02/2022, 
capturing another distinct N2O emissions peak. This partition ensured 
robust evaluation of the DL models’ forecasting capabilities across 
varying seasonal and process conditions.

4. Results

4.1. Forecasting performance of varying model network sizes

Each of the 5 LSTM-based encoder-decoder networks was trained 10 
times, thereby yielding a distribution of performance results. All models 
performed well on the training and validation sets, with R2 values for 6 h 
ahead prediction (i.e. h = 12) exceeding 0.96. The performances of the 
models on the training and validation sets are shown in Figure S2 and 
Figure S3, respectively. The RMSE performance on the training and 
validation sets indicated that the more complex models with 128–128, 
256–256 and 512–512 LSTM units performed better than simpler 
models with 32–32 and 64–64 units, suggesting that model complexity 
enhanced learning accuracy. However, the 256–256 and 512–512 
models showed similar training results, indicating that increasing model 
complexity beyond 256 LSTM units yielded diminishing returns in terms 
of prediction accuracy. Nonetheless, further analysis is needed to assess 
whether any additional benefits arise from increasing the number of 
LSTM units, particularly when considering the trade-off with higher 
computational costs.

Fig. 5 presents the forecasting performance on the test (i.e. unseen) 
data set. Results showed that all models’ performance deteriorated with 

Table 2 
Descriptive statistics of the model inputs and outputs used for model training 
and evaluation.

Variable Minimum Mean Median Maximum Standard 
Deviation

Influent [m3/h] 246.3 1003.3 984.4 3901.3 487.9
NH4

+- Aerobic 
[mg/L]

0 1.6 1.1 20.0 2.2

DO - Aerobic 
[mg/L]

0.06 1.4 1.2 3.8 0.7

NOx - Aerobic 
[mg/L]

0.9 5.7 5.4 19.8 2.3

NOx - Anoxic 
[mg/L]

0.05 0.7 0.5 12.5 0.8

MLSS [g/L] 2.6 4.2 4.2 6.2 0.4
Liquid Temp 

[Celsius]
10.5 16.6 15.7 22.6 3.4

Aeration Valve 1 
– Aerobic [%]

0 56.4 50.7 100 20.7

Aeration Valve 2 
– Aerobic [%]

0 55.5 50.6 93.3 19.5

Aeration Valve – 
Facultative [%]

0 9 0.4 100 24.7

NOx Recycle 1 
(m3/h)

0 4609.6 5049.9 5050 975.9

NOx Recycle 2 
(m3/h)

0 5054.0 5960.8 6092.1 1305.7

Gaseous N2O 
(ppm)

0 52.5 21.9 522.5 74.4

S. Seshan et al.                                                                                                                                                                                                                                  Water Research 268 (2025) 122754 

5 



increasing prediction horizon steps. Simpler models, using 32–32 and 
64–64 LSTM units, performed poorly, with RMSE values for the h = 12 
step ranging from 64.7 to 74.5 ppm and 63.9 to 69.4 ppm, respectively, 
and R2 values from 0.39 to 0.54 and 0.47 to 0.55. These models also 
showed larger variations in the evaluation results across the 10 trainings 
runs compared to the 128–128, 256–256 and 512–512 models. This 
suggested that more complex models containing higher number of LSTM 
units led to more robust and stable models with reproducible results. 
These findings highlighted the need for an adequate number of trainable 
weights in the model architecture to effectively learn the dynamics and 
process conditions from the model inputs, resulting in accurate forecasts 
of N2O emissions over the prediction horizon.

Consistent with the training and validation results, the 256–256 and 
512–512 models exhibited better performances on the test sets, with 
RMSE values for 6 h ahead forecasts (h = 12) ranging from 61.1 to 67.5 
ppm and 57.3 to 63.7 ppm, respectively and R2 values 0.50 to 0.59 and 
0.55 to 0.64, respectively. The best performing model with a 512–512 
network was considered an outlier. This is illustrated in Fig. 5, as the 
model’s performance did not represent the median model performance 
observed across all model training runs with the same network config
uration. This can be attributed to the stochastic nature of the training 
process and the random initialisation of the trainable weights, which 
may result in isolated instances of high performance. This raises ques
tions about the reproducibility of such model performance and it was 
excluded from further analysis. As a result, the best performing model 
chosen based on the results on the test set was a model with a 256–256 
network (RMSE = 61.1 ppm and R2 = 0.59 for h = 12), as detailed in 
Section 4.2.

4.2. Best performing model forecasts

The best model, based on performance for each step in the prediction 
horizon, was the 256–256 LSTM unit-architecture. A deterioration in 
forecasting accuracy was observed as the prediction horizon step 

increased, shown by an increase in RMSE and a decrease in R2 testing 
values; see Table 3. The model achieved high accuracy for forecasts up to 
2 h, with R2 values above 0.86, and reduced performance for forecasts 
up to 4 h and the final prediction step of 6 h ahead, with the R2 values 
being above 0.72 and 0.59, respectively. In Fig. 6, example windows are 
provided illustrating the one-shot forecasts made by the model, 
compared with the observed N2O concentrations in the gaseous phase. 
The observed N2O (x markers) leading up to the model forecasts signify 
the model inputs time period (see Section 3.2). Fig. 6a) and Fig. 6b), 
show that the model performed well in accurately forecasting the in
crease in N2O concentrations during the seasonal emissions peaks 
observed in January 2022. Examples of the model performing satisfac
torily for low to mid N2O concentrations are provided in Fig. 6c) and 
Fig. 6d).

Fig. 7 illustrates time series forecasts of N2O concentrations for each 
prediction horizon step, compared to observed N2O concentrations, 
across different emission scenarios. The darkest red line represents 
forecasts of 0.5 h ahead and the lightest red line represents forecasts of 
6.0 h ahead. The N2O forecasts for the entire test set period are provided 
in Figure S.4 and Figure S.5. As it can be seen from Fig. 7a), the model 
accurately captured the N2O peaks and responded to the fluctuation in 
N2O concentrations, including the diurnal peaks seen within a day. 
However, the model showed a sub-optimal fit for larger peaks when 
attempting to forecast across steps of the horizon, as illustrated by the 
peak observed on 21 January 2022 at 18:00, in Fig. 7a). This peak 
possibly represents an isolated incident, potentially caused by unstable 
operational conditions leading, to higher-than-normal N2O production 
during the nitrification or denitrification process. In addition, on 23 
January 2022, an interesting observation appeared: the dynamics in 
N2O concentrations showed an unusual trend compared to typically seen 
in the dataset, notably with a diminished second diurnal peak. This shift 
could be attributed to a change in flow and load patterns, as the second 
diurnal peak was missing in the influent flowrate. However, the model 
failed to anticipate this trend shift and instead forecasted a peak in N2O 

Fig. 4. Graphical representation of the distribution of the model input variables (a – m) and the model output variable (m) across the duration of the dataset used for 
model training and evaluation.
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concentrations. Therefore, it can be seen that the model is vulnerable to 
isolated incidents and sudden shift trends. These discrepancies sug
gested potential limitations in the training set, possibly due to insuffi
cient examples of similar process conditions or inadequacies in the 
current set of model inputs that captured all factors influencing N2O 
production. The model performed well for more immediate forecasts for 
low N2O emissions but showed greater variability. This could be 
attributed to the ambiguous trends observed during low emission 
periods.

4.3. N2O forecasting for varying prediction horizon lengths

Among WWTPs, process dynamics and system response times can 
vary significantly in response to operational and control changes. 
Therefore, different prediction horizon lengths can be utilised in model 
development and training, to forecast N2O emissions. The proposed 
methodology can be applied for various wastewater treatment systems, 
where shorter prediction horizons allow adequate time for control ad
justments, influencing the process. Fig. 8 illustrates the performance of 
various models, each having the 256–256 LSTM-unit architecture, on 
the test set. These models were trained with different prediction horizon 
lengths as outputs. When comparing the RMSE values (Fig. 8a), a trade- 
off can be seen in making immediate forecasts up to 1.5 h ahead. Models 
targeting shorter horizons showed higher performance compared to 
those with longer horizons. For example, a model trained to forecast 0.5 
h ahead (h = 1) achieved an RMSE of 4.4 ppm, while models trained to 
forecast 5 or 6 h ahead (h = 10 or h = 12) achieved RMSEs of 13.7 and 
13.6 ppm, respectively, for the 0.5-hour prediction horizon step. How
ever, it became clear that choosing a longer prediction horizon length 
resulted in only a marginal decrease in model performance for forecasts 
spanning from 2.0 to 6.0 h ahead, where for example, RMSE (Fig. 8a) 
and R2 (Fig. 8b) values for the 3.0-hours prediction horizon step, there 
was only an increase of 2.1 ppm in RMSE and a decrease in 0.02 in R2. 
Such changes can be considered statistically insignificant and inconse
quential in practice. As a result, selecting a longer prediction horizon 
length for the model does not significantly compromise the model’s 
performance for intermediate forecasts.

Performance metrics such as RMSE and R2 provide valuable in
dicators of how these models might perform when integrated into 

Fig. 5. Forecasting performance on the test set of 5 model network sizes and complexity over the prediction horizon using the a) RMSE (in ppm) and b) R2 metrics.

Table 3 
RMSE (ppm) and R2 values by the best performing model with a 256–256 LSTM 
unit-architecture.

Prediction horizon (hours) RMSE (ppm) R2

0.5 13.6 0.98
1.0 21.1 0.95
1.5 29.0 0.91
2.0 35.9 0.86
2.5 41.4 0.81
3.0 45.5 0.77
3.5 48.4 0.74
4.0 50.7 0.72
4.5 52.8 0.69
5.0 55.2 0.67
5.5 58.0 0.63
6.0 61.1 0.59
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Fig. 6. Examples of comparing the N2O observed concentrations (x markers) and one-shot N2O emissions forecasts (red line) made 6 h ahead (h = 12) by the 
256–256 LSTM-unit architecture, using data from the last 24 h (n = 48) with multiple model inputs. Panels a) and b) show high N2O emissions peaks, and c) and d) 
illustrate low to mid- N2O emissions peaks.

Fig. 7. Time series representation of N2O forecasts at each prediction horizon step (h) compared to observed N2O concentrations (blue line). Panel a) shows high N2O 
emissions, while panel b) shows mid to low N2O emissions.. The forecast for h = 1 is represented by the darkest red line and h = 12 by the lightest red line.
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control strategies. RMSE penalizes large errors more heavily and thus 
reflects the model’s ability to forecast high N₂O emission events, espe
cially important for shorter prediction horizons where rapid responses 
are needed. In contrast, R2 measures how well the model captures 
variability and predicts fluctuations in N₂O emissions, providing insight 
into how accurately the model can forecast trends over the prediction 
horizon. Together, these metrics offer confidence in the model’s capa
bilities and reveal its limitations in terms of accuracy and robustness 
when applied to operational control, particularly when considering 
different system response times to control changes over various pre
diction horizons.

4.4. Feature importance for forecasting N2O emissions

Fig. 9 illustrates the permutation feature (i.e. model input) impor
tance results as a relative change in RMSE on the test set, compared to 
the baseline where no model inputs were permuted. The importance of 
each input is computed for every prediction horizon step, providing 
insights into the individual impact they have in making subsequent 
forecasts for N2O emissions. As expected, due to the strong autore
gressive nature, the N2O concentrations in the gaseous phase had a very 
high impact on the model’s immediate forecasts. However, there is a 
significant drop in this input’s influence as the prediction horizon step 
increases, from 747 % to 29 % relative RMSE change, suggesting the 

Fig. 8. Performance of models with 256–256 LSTM-unit architecture when trained with varying prediction horizon lengths and using the a) RMSE and b) R2 metrics 
for each prediction horizon step.

Fig. 9. Heatmap of permutation feature importance showing the relative change in RMSE for each prediction horizon step across all model inputs, compared to the 
baseline where no inputs are permuted. The colour intensity represents the magnitude of RMSE change.
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necessity of including other inputs that represented related process dy
namics to adequately explain the N2O emissions.

The NH4
+ input in the aerobic tank showed an influence on imme

diate forecasts, impacting RMSE changes of 44 % and 35 %, for 0.5 and 
1.0 h ahead, respectively. For the intermediate forecasts up to 4.5 h 
ahead, the NH4

+ input maintained a constant influence, with RMSE im
pacts between 25 % and 29 %, followed by a drop in its influence for the 
remaining horizon steps. Similarly, the influent flowrate impacted im
mediate forecasts, with RMSE changes of 32 % and greater for forecasts 
up to 1.0 h ahead. Interestingly, the influent flowrate was observed to 
increase in importance with subsequent prediction horizon steps, 
eventually becoming more important than the autoregressive input of 
the N2O concentrations at the 4.5-hour mark. The influences of NH4

+ and 
influent flowrate could be attributed to the fact that the N2O emissions 
were largely a response to the NH4

+ load received by the WWTP and, 
subsequently, the bioreactor. The NOx and DO inputs in the aerobic tank 
showed limited influence on the N2O forecasts and a significant decrease 
in importance across the prediction horizon. This could be attributed to 
the fact that the N2O emissions primarily followed the NOx and DO 
trends. Consequently, historical NOx and DO inputs had limited impacts 
on forecasting N2O emissions in the chosen frequency, as they were 
more reflective of present conditions rather than predictive for future 
changes.

The MLSS input had a minor influence on the N2O forecasts, which 
could be due to this input representing slow dynamic processes such as 
the sludge retention time (SRT). The aeration valve inputs also showed 
minor influences on N2O forecasts, particularly for immediate forecasts, 
and had no influence on subsequent prediction horizon steps. The 
aeration valves indirectly represented the amount of airflow received by 
the aerobic and facultative tanks. Therefore, the minor influence seen 
for immediate forecasts could be partly attributed to the stripping of 
N2O concentrations from the liquid to the gaseous phase. When 
considering other model inputs, such as the NOx in the anoxic tank and 
temperature, they had negligible impact in making the N2O forecasts 
over the prediction horizon. The insignificance of the anoxic NOx con
centrations suggests that intermediates NO3

- and NO2
- are being reduced 

to N2 during heterotrophic denitrification. Apparently, any inhibition 
preventing the reduction of N2O, leading to its accumulation during this 
process, was not represented in the inputs. The insignificance of tem
perature may be due to this input representing seasonal variations and 
hence, no variations are seen in these inputs within the time windows 
used for the model inputs and the prediction horizon.

The decrease in forecasting performance, combined with the lack of 
highly impactful inputs for the 4 to 6-hour prediction horizon steps, 
suggested missing inputs that could have improved the forecasting of 
N2O emissions for these timeframes. For example, at the 6-hour pre
diction horizon step, all model inputs contributed to less than a 60 % 
change in RMSE, suggesting the absence of critical inputs.

5. Discussion

The best performing LSTM-based encoder-decoder model of 256–256 
architecture achieved relatively high accuracy in forecasting N2O con
centrations across different time steps of the prediction horizon (see 
Table 3). Specifically, on a fully sequentially separated and unshuffled 
test set, the model attained R2 values of 0.98, 0.95, 0.86, 0.72 and 0.59 
for 0.5, 1.0, 2.0, 4.0 and 6.0 h ahead, respectively.

A key advantage of the LSTM-based encoder-decoder model pre
sented in this study is its ability to seamlessly utilise historical sequential 
data to forecast all timesteps within the prediction horizon in a single 
model run. Therefore, this model effectively captured slower process 
dynamics and time lags within the system, considering the non- 
instantaneous triggers of N2O production and subsequent emissions. In 
contrast, other predictive methods, such as Random Forest or Support 
Vector Machines, often require extensive feature engineering to account 
for temporal dependencies and need the training of separate models for 

each prediction horizon step. This makes the LSTM-based encoder- 
decoder model more efficient and well-suited for real-time control ap
plications in WWTPs.

In addition, the best performing LSTM-based encoder-decoder model 
reported in this work outperformed the existing models reported in the 
literature. For the one-step-ahead prediction (0.5 h ahead), the model’s 
performance was slightly better than the soft sensor models based on 
Random Forest, XGBoost, DNN, and AdaBoost developed by Khalil et al. 
(2023), which achieved R2 values of 0.91, 0.93, 0.94 and 0.95, respec
tively, on a randomly split test set from the same dataset, used to predict 
N2O emissions for the same time instance as the inputs. It is noteworthy 
that in that work, the soft sensors were not designed as time series 
models and did not consider any temporal dependencies. Hence, they 
lack the capabilities for N2O forecasting and are therefore not suitable 
for MPC of N2O emissions.

The model presented here also outperformed a Support Vector Ma
chine regression model predicting dissolved N2O concentrations in an 
aerobic tank, as reported in Vasilaki et al. (2020), which achieved an R2 

of 0.72. The best LSTM based encoder-decoder model developed in this 
study also outperformed the model trained by Xu et al. (2024), who 
reported a best performance of R2 = 0.915 from their LSTM model 
forecasting N2O emissions one step (i.e. one hour) ahead. Similarly, 
Hwangbo et al. (2021) trained an LSTM model using only liquid-phase 
N2O concentrations to forecast one-step-ahead. The model was used 
recursively to predict subsequent steps, achieving an overall R2 of 0.94. 
However, this evaluation was based on a limited sample, where a fixed 
one-day prediction horizon was used. In contrast, our study evaluated 
the model using several months of seasonally varying N2O emissions 
data, providing a more comprehensive assessment of forecasting 
capabilities.

The best model provided accurate forecasts by capturing operational 
and seasonal variations within the unseen test dataset (see Figure S4 and 
S5). Notably, as the test set included one of the two emission peaks 
observed in the full dataset, the model demonstrated its ability to predict 
this previously unseen peak. Furthermore, the best model of this study 
provided accurate forecasts for high N2O emissions, particularly during 
seasonal peaks, while exhibiting greater variations in forecasting low 
N2O emissions (see Fig. 7). This is desirable within an MPC framework, 
since the primary objective of optimising the control of wastewater 
treatment processes is to avoid the high N2O emissions. Additionally, 
measuring low N2O concentrations can be highly uncertain due to the 
detection limits of the analytical equipment and the small mass fraction 
of N2O compared to the overall nitrogen balance. Therefore, if only the 
model’s performance in predicting high N2O emissions is considered, 
such a model shows promise for operational use within an MPC 
framework.

The best performing model reported in this work identified slightly 
different key model inputs than previously reported in the literature. 
The feature importance analysis shown in Section 4.4 identified the key 
model inputs as past N2O emissions followed by influent flowrate, NH4

+, 
NOx, and DO in the aerobic tank, indicating the influence of the fast and 
dynamic nitrification process and AOB-related N2O production path
ways. The minor importance of NOx and the lack of influence of tem
perature in making short-term N2O forecasts differ from previous 
findings in the literature (Hwangbo et al., 2020; Khalil et al., 2023), 
where NO2

- and NO3
- were identified as critical and temperature was 

concluded to be the most influential input for making N2O predictions. 
These discrepancies can be attributed to differences in modelling ob
jectives. Prior studies focussed on predicting N2O for the current situa
tion, whereas our study focused on historical temporal dependencies 
and predicting future situations. Therefore, NOx can have limited in
fluence in our forecasting model as it reflects immediate N2O levels and 
lacks predictive information for future concentrations. Similarly, the 
influence of temperature is minimal, since it represents slow and sea
sonal changes, making it unlikely to affect N2O emission forecasts for 
immediate timesteps. Thus, the primary objective of the DL model 
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(predict present/actual vs. future/forecast) influences the necessary 
model inputs for optimal performance. As the prediction horizon ex
tends, the impact of the autoregressive input decreased, while the 
importance of inputs like influent flowrate increased, highlighting the 
need for process variables for accurate N2O forecasts. The significant 
drop in the autoregressive input’s influence suggests that past N2O 
concentrations become less predictive of future concentrations over 
longer prediction horizons. This could be due to the changing dynamics 
in N2O production, driven by operational changes such as varying 
influent loads or adjustments to aeration, which can lead to the acti
vation of different N2O production pathways. Thus, including process 
variables as inputs becomes critical for reliable forecasting of N2O 
emissions over longer horizons.

The best LSTM-based encoder-decoder model identified still has 
certain limitations. Notably, there is a significant decline in forecasting 
performance across the prediction horizon in the test set. This could 
stem from the absence of specific inputs representing the underlying 
biochemical processes driving N2O production. For example, the roles of 
free nitrous acid (HNO2) during nitrifier denitrification and its inhibi
tion of the last step of heterotrophic denitrification are not represented 
in the model inputs. Additionally, the model inputs lack direct infor
mation on the AOB and nitrite oxidation bacteria (NOB) activities, 
which could provide insights into the microbial dynamics and potential 
NOB washout that causes NO2

- accumulation (Gruber et al.,2021b). 
Other model inputs specific to the raw influent quality characteristics 
such as TKN, chemical oxygen demand (COD) and its fractions (slowly 
biodegradable COD [sbCOD] and readily biodegradable COD [rbCOD]), 
total suspended solids (TSS) and volatile suspended solids (VSS), could 
provide key information for the model to learn how different influent 
conditions affect the magnitude of N2O emissions. Incorporating these 
additional inputs would provide the DL models with more relevant data, 
enabling them to learn the underlying patterns and relationships be
tween these inputs and N₂O emissions. These inputs could represent 
potential causes of N₂O emissions, allowing the model to capture com
plex interactions more effectively and forecast emissions with greater 
accuracy, ultimately improving overall model performance.

Moreover, the training dataset might still be inadequate in terms of 
length and data balance, lacking sufficient varied scenarios of opera
tional conditions that influence N2O production and emission. Given the 
dynamic nature of factors contributing to N2O emission peaks, such as 
the activation of different production pathways in varying operational 
conditions, providing ample data samples for the DL model training is 
crucial for enhancing forecasting accuracy. Another limitation of the 
LSTM-based model proposed here is its “black-box” nature, offering 
limited insights into the active production pathways. This limitation 
could hinder the implementation of targeted control strategies or in
terventions aimed at mitigating specific production pathways. These 
challenges suggest the need for improving the DL models to effectively 
learn the underlying processes from data, and to achieve better model 
generalisation and transparency. Addressing these issues could facilitate 
broader application of DL models in full-scale WWTPs with N2O control 
strategies such as MPC.

Finally, while the DL models investigated in this study demonstrate 
potential as alternatives to biokinetic models for N2O forecasting, they 
could potentially benefit from integration with biokinetic models to 
form hybrid models. Some early work along these lines has already 
started. For example, Li et al. (2022) combined a first-principle ASM1 
model with a teacher-forcing LSTM model in series, using the biokinetic 
model outputs as inputs to the DL model to predict N2O. However, even 
though their results indicated improved performance of 22.5 % by the 
hybrid model compared to the standalone DL model, the dataset used 
was restricted to a rather short, 23-day monitoring campaign, i.e. the 
hybrid model was not tested on seasonal variations. In addition, this 
hybrid model has limitations in interpreting the specific active pathways 
responsible for N2O production. Mehrani et al. (2022) developed 
another hybrid model in which simulated data from a mechanistic 

model for a lab-scale sequencing batch reactor (SBR) was used to train 
various ML models. However, their study reported sub-optimal results 
with an ANN achieving an R2 = 0.67. Therefore, there is plenty of scope 
and need for the development of better hybrid models for N2O emis
sions, possibly by investigating different hybridisation strategies (Khalil 
et al., 2024). Incorporating biokinetic and mechanistic information can 
enhance the accuracy of N2O emissions forecasts by including relevant 
attributes related to N2O production and emissions. Additionally, these 
novel models can promote greater generalisability and transparency, 
thereby increasing their robustness and applicability to various WWTP 
configurations. In this context, integrating domain knowledge biases 
(Cicirello et al., 2024), such as biokinetic constraints (inductive biases) 
and biochemical processes that fully or partially represent N2O pro
duction, into the DL model architecture and training, represents a 
promising avenue for future research.

6. Conclusions

This study developed LSTM-based deep learning (DL) models to 
forecast N2O emissions in the gaseous phase using data from a treatment 
lane of a full-scale WWTP in Amsterdam. The models were evaluated 
over a prediction horizon ranging from 0.5 to 6 h and were designed for 
integration within a model predictive control (MPC) framework to 
optimise key control variables, such as the dissolved oxygen (DO), with 
the aim to reduce N2O production and emissions. Based on the results 
obtained, the key findings are as follows: 

• The LSTM-based encoder-decoder model architecture performed 
well, with the best model (256–256 LSTM units) achieving test set 
RMSE values of 13.6–61.1 ppm, and R2 values of 0.98–0.59 for 
prediction horizon steps of 0.5-6.0 h ahead, respectively. Models 
with higher complexity outperformed the simpler ones, delivering 
more robust and reproducible results. Despite the promising results, 
the developed LSTM model exhibited reduced performance as the 
prediction horizon length increased.

• The best LSTM-based encoder-decoder model outperformed existing 
N2O emissions models published in the literature, particularly with 
regard to one-step-ahead predictions (0.5 h ahead).

• The feature importance analysis suggests that past N2O emissions, 
influent flowrate, NH4

+, NOx, and DO in the aerobic tank were the 
most significant model inputs. The importance of recent N2O emis
sions decreases over the prediction horizon, highlighting the 
increasing significance of process-related inputs.

To further improve N2O forecasting, future research should explore 
hybridising DL models with biokinetic models. This approach would 
leverage domain-specific knowledge of mechanistic and biochemical 
processes, alongside the strengths of data-driven modelling, to enhance 
both model robustness and interpretability, offering a promising avenue 
for more reliable N2O emissions predictions in wastewater treatment 
systems.
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