ST-SimNet: STGCN for Urban Freight Forecasting

Rafal Marek Tarczynski

TU Delft

Context

- Road Freight Delivers to cities and must deal with many regulations
- There is a similarity in traffic behaviour across similar contexts and conditions
- We have access to detailed data about Roads and Built Environment

Research Question:

To what extent can insights into urban morphology, modeled with Spatio-Temporal Graph Neural Networks, enhance the accuracy and adaptability of freight transportation predictions in the Netherlands?

Related Work

Literature

Spatio-Temporal GNNs for Traffic Prediction

Xiong et al. (2024)

Graph Neural Networks for Road Networks

Jepsen et al. (2019)

Urban Morphology in Graph based Urban Analysis

Xue et al. (2021)

Tool

Digital Twin Frameworks

TNO (2023)

Timeline

Roads & Urban Morphology

Node Regression

Results

Idea

Geomatics & Architecture

Model

ST-SimNet

Challenges & Methodology

Glossary

- Feature: A characteristic or property used by the model to make predictions,
 e.g. road width, building density, or traffic flow at a location.
- Node: A point in the network intersection of road segments.
- Edge: A connection between two nodes, representing a road.
- Urban Morphology: The form and structure of urban spaces e.g. building shapes, land use, street layout.
- Training: The process of teaching a machine learning model using historical data.

Challenges

& Idea

Detailed and precise vectorised *Road Networks*

World-class data in **Built Environment**

Lack of data Connection

Data

Roads

Directed road network from MASS-GT & TNO's Digital Twin

Opportunity: Detailed network enables graph-based traffic prediction

Challenge:

Requires adjacency matrix construction and graph generation

Postcode 6

Opportunity: Captures invisible context behind freight flow patterns

Challenge: Sparse or privacy-restricted data in some zones

Detailed building data with physical, modal, and contextual features

Opportunity: Enhances traffic predictions with high-resolution morphology

Challenge: Aggregation and accurate linkage to network nodes is complex

Some Available Models

Recurrent GNNs

Convolutional GNNs

Spatio-Temporal GNNs

Adversarial GNNs

Graph Attention Networks

Graph Reinforcement Learning

Limitation of Existing Approaches

Only model dynamic or static structure

Lack of contextual understanding

Limited generalisability to new cities

Take either dynamic or static data

Pipeline

Collect Inputs
Dynamic flows
& static urban data

Build Graph
Spatial network with
node features

Learn Patterns
Temporal and
spatial convolutions

Fuse Features
Merge static
& dynamic info

Predict Flows
Forecast node-level
freight activity

Pipeline

Collect Inputs
Dynamic flows
& static urban data

Build Graph
Spatial network with
node features

Learn Patterns
Temporal and
spatial convolutions

Fuse Features
Merge static
& dynamic info

Predict Flows
Forecast node-level
freight activity

Data

Table 2: Selected Features for ST-SimNet Node Enrichment

Feature Source	Selected Features and Description
Building-Level	bouwjaar (median): Median construction year; reflects building age near each node. verblijfsobjecten, oppervlakteverblijfsobjecten, volume (sum): Indicate built intensity. gem_hoogte, gem_bouwlagen (mean): Capture vertical structure. north_shared_length, north_facade_length (sum): Estimate facade exposure.
	distance (mean): Mean distance from node to nearby buildings. ndvi_mean_100m, ntl_mean_500m, and their std. dev. (mean): Indicate environmental context. meestvoorkomendelabel, function, building_function, residential_type, non_residential_type (mode): Capture dominant usage types. building_count: Number of buildings near node; proxy for density.
PC6-Level	aantal_inwoners, aantal_woningen: Population and housing counts. percentage_koopwoningen: Home ownership indicator. aantal_part_huishoudens: Private household count.

Note: Selected variables reflect structural, functional, and contextual diversity across urban space.

Loading Data and Graph Generation

Graph

Create a directional graph linking the nodes.

Adjacency Matrix

Create an adjacency matrix and save it as a sparse matrix.

Urban Morphology Descriptors

Select and assign UMD to nodes.

UMD Assignment

Algorithm 3.3: Assign building data to nearest graph nodes and compute aggregated morphological descriptors

Input: Graph nodes (GeoDataFrame), buildings dataset with morphological attributes (CSV)

Output: Node-level urban morphology profiles

- 1 Load the building data and convert it into a GeoDataFrame with CRS EPSG:28992;
- 2 Load the graph node data from shapefile with the same CRS;
- 3 For each building, find the nearest graph node using spatial join;
- 4 Assign the building and its attributes to that node;
- 5 Group buildings by their assigned node;
- 6 foreach node do
- Aggregate building attributes:
 - Use median for temporal features (e.g. construction year)
 - | Use sum for quantities (e.g. volume, units)
 - Use mode for categorical fields (e.g. function type)
- 8 Attach the aggregated attributes to the corresponding nodes in the graph;
- 9 foreach node without buildings do
- 10 Assign a zero vector as morphological input;

Pipeline

Collect Inputs
Dynamic flows
& static urban data

Build Graph
Spatial network with
node features

Learn Patterns
Temporal and
spatial convolutions

Fuse Features
Merge static
& dynamic info

Predict Flows
Forecast node-level
freight activity

ST-SimNet's Architecture

ST-SimNet's Architecture

Fusion Block – Convex Fusion

$$\mathbf{z}_i = (1 - \sigma(\alpha)) \cdot \mathbf{h}_i + \sigma(\alpha) \cdot \text{MLP}_{\text{umd}}(\mathbf{s}_i)$$

- \mathbf{h}_i dynamic spatio-temporal embedding of node i
- \mathbf{s}_i static urban morphology features of node i
- MLP_{umd} two-layer Multi-Layer Perceptron projecting s_i into the latent space of h_i
- α trainable scalar controlling the fusion balance
- $\sigma(\cdot)$ sigmoid function ensuring output in [0,1]
- \mathbf{z}_i fused node representation used for prediction

Where:

Let it sink

Outcomes & Future Work

ST-SimNet Results

Areas of Interest

Experiment Design

STGCN vs. ST-SimNet

Baseline STGCN (only static) vs. enhanced with dynamic data

Training time

50 epochs – West

100 epochs – Centre

Numeric and Visual Validation

Metrics check and visual inspection in QGIS

Areas of Interest

-0

Amsterdam West – Dynamic (no UMD)

50 epochs

Amsterdam West – Dynamic + <u>Static</u>

50 epochs

Visual Inspection

Visual Inspection

Areas of Interest

Amsterdam Centrum – Dynamic + Static

100 epochs

Visual Inspection

8.16

MAE

36.13

RMSE

0.53

WMAPE

0.57

UMD Weight

0.25

Test Loss

0.27

Validation Loss

Research Question:

To what extent can insights into urban morphology, modeled with Spatio-Temporal Graph Neural Networks, enhance the accuracy and adaptability of freight transportation predictions in the Netherlands?

Visual Inspection

UMD vs. MAE

UMD Richness vs Prediction Error (Binned Mean)

9

8

7

100

101

102

103

104

105

106

UMD Feature Norm (per node)

50 epochs, Ams West

100 epochs, Ams Centre

Tool for TNO (MASS-GT+VMA)+ST-SimNet Once trained, ST-SimNet can extend

Once trained, ST-SimNet can extend freight flow predictions to regions without dynamic traffic data, offering a scalable, morphology-informed solution for national-level logistics modelling.

Future Work

02 03 04 05 Application-Topographic **Improved** Generalisation Probabilistic specific augmentation fusion and transfer and multiintegration mechanisms learning modal forecasting

Want to know more?

Please refer to a written version of my Master Thesis

Thank you for your support!

Finn Winkelmann

Martijn Meijers

Azarakhsh Rafiee

Amin Jalilzadeh

Saeed Rahmani

Herman de Wolff

Thank you for your attention

Rafal Marek Tarczynski