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Epidemic models characterize 
seizure propagation and the effects 
of epilepsy surgery in individualized 
brain networks based on MEG 
and invasive EEG recordings
Ana P. Millán1*, Elisabeth C. W. van Straaten1, Cornelis J. Stam1, Ida A. Nissen1, 
Sander Idema2, Johannes C. Baayen2, Piet Van Mieghem3 & Arjan Hillebrand1

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-
freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed 
an individualized computational model based on MEG brain networks to explore seizure propagation 
and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized 
models to optimize resection strategy and outcome. We have modelled seizure propagation as an 
epidemic process using the susceptible-infected (SI) model on individual brain networks derived 
from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the 
surgery outcome at least one year after surgery was known. The model parameters were tuned in in 
order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. 
We defined a personalized search algorithm that combined structural and dynamical information to 
find resections that maximally decreased seizure propagation for a given resection size. The optimal 
resection for each patient was defined as the smallest resection leading to at least a 90% reduction in 
seizure propagation. The individualized model reproduced the basic aspects of seizure propagation 
for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 
10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, 
the optimal resection was smaller than the resection area, and for 4 patients we also found that a 
resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for 
two cases these alternative resections included nodes outside the resection area. Epidemic spreading 
models fitted with patient specific data can capture the fundamental aspects of clinically observed 
seizure propagation, and can be used to test virtual resections in silico. Combined with optimization 
algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, 
can be determined with the ultimate goal to improve surgery outcome. MEG-based networks 
can provide a good approximation of structural connectivity for computational models of seizure 
propagation, and facilitate their clinical use.

Epilepsy is one of the most common neurological disorders, affecting between 4 and 10 per 1000 people 
worldwide1. There is not one single cause of epilepsy: it often occurs as an associated symptom of an underlying 
disease, but many other times it is produced by unknown causes2. This complicates the understanding of seizure 
dynamics, and to this day the microscopic mechanisms that lead to seizure generation and propagation are not 
fully understood3. It is generally assumed that a shift from normal neuronal activity to excessive synchronization4 
occurs due to decreased inhibition5, but the actual nature of this transition is not clear.
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Epilepsy is initially treated by anti-epileptic drugs (AEDs), but this approach is not effective for roughly 1 out 
of 3 people6. For these drug-resistant patients, epilepsy surgery is an optional treatment if a focal origin of the 
seizures can be found. The surgery then aims to remove or disconnect the brain regions thought to be involved 
in seizure generation. Currently, seizure freedom is achieved in up to 2 out of 3 patients who undergo epilepsy 
surgery, although surgery outcome varies greatly depending on epilepsy type7. Even when surgery is not com-
pletely successful, the majority of patients will still experience a reduction in seizure frequency or intensity after 
surgery. However, side-effects and cognitive complaints can also occur after surgery. These depend on the brain 
areas resected, but are difficult to predict accurately8.

Traditionally, efforts to improve epilepsy surgery have aimed to better characterize the epileptogenic zone (EZ, 
defined as the minimal brain area or areas that need to be removed or disconnected to achieve seizure freedom9; 
by definition, this can only be confirmed after surgery, and prior to it only a hypothesis can be made). However, 
in recent years -and in line with the increasingly common view of the brain as a complex network- epilepsy is 
seen as a network disorder. Attention is thus shifting towards the definition of epileptogenic networks that can 
capture more details of seizure dynamics and the distribution of epileptiform activity10–12. An increasing number 
of findings support this perspective: topological properties of epileptogenic brain networks have been found to 
deviate from those seen in healthy controls13,14, and abnormal patterns of functional connectivity emerge15–17 
(although the results of different imaging modalities are sometimes contradictory15–20). A common finding in 
pathological brain networks is the association of disease with network hubs21,22. In the case of epilepsy, hubs 
may facilitate the propagation of epileptiform activity to the rest of the brain23–25. Moreover, several studies have 
pointed out the existence of pathological hubs: abnormal, hyperconnected regions in the vicinity of the epileptic 
focus, which may facilitate seizure propagation25–27.

Importantly, the network perspective of epilepsy implies that the effect of a resection cannot be predicted 
directly from the location of the removed region alone28: local resections can have widespread effects, but at the 
same time might not prevent the epileptogenic network from forming a new EZ eventually29. Computer models 
are then necessary to help predict the effect of a given resection30. Integrating patient specific data of different 
modalities, computer models allow us to test different resections in silico -i.e. using virtual resections- together 
with different markers of the EZ. Within this framework, Hebbink et al.31 showed that the resection of the 
pathological network node is not necessarily the best approach to alleviate seizures, whereas Lopes et al.32 found 
that the fraction of resected rich-club nodes correlated with surgery outcome. Going beyond topological net-
work analysis, the simulation of ictal activity on top of brain networks can aid the identification of the EZ and 
prediction of surgery outcome, as well as predict possible side-effects. Such computational models can be used 
to identify epileptogenic areas33,34 or analyze different resection strategies26,32,35–38, such that patient-specific 
resection strategies, that may lead to a better outcome or fewer side-effects than the standard surgery, can be 
tested33,39–41. Validation of the models is usually attempted by looking for differences in the model predictions 
between seizure free and non-seizure free patients42,43 or by correlating seizure propagation on the model with 
the empirical data44.

A basic consideration in the model definition is thus the nature of the underlying network. The temporal 
and spatial resolution of the resulting network-based model, and the interpretation of the connections between 
regions, will depend on the modality that was used to define the network structure. Studies on epileptogenic 
networks have considered both functional32,35,37,42,43,45 and structural33,36,40,41 networks, as they are both affected 
in patients with epilepsy40–43. However, functional networks can capture abnormalities in brain activity even in 
the absence of structural abnormalities46. Functional networks based on intracranial recordings32,35,37,42,43 usually 
include ictal data and allow for highly precise characterization of some brain areas, however spatial sampling is 
sparse and biased due to an a priori hypothesis of the EZ, which may lead to bias in the analysis. Moreover, these 
invasive recordings are not always part of the presurgical evaluation. Non-invasive methods, such as Electro- and 
Magneto-Encephalography (EEG/MEG) have no risks of complications47 and offer complementary depictions of 
brain activity: MEG is mainly sensitive to primary tangential currents, while EEG measures volume conduction 
currents. Each has drawbacks: MEG is less affected by the skull and other tissue in the head and is reference-
free, but it is more affected by head movements. The amplitude of the MEG signal is strongly affected by source 
distance, leading to worse sensitivity to deep sources than EEG48, and it is also less sensitive to radial currents 
(although the conception that MEG is blind to radial sources would only be valid if the head were a perfect 
sphere and the source currents had very small spatial extent49,50). Importantly, however, MEG has higher spatial 
resolution than clinical scalp EEG51. This allows for a more accurate estimation of functional interactions between 
brain regions, and thus a more accurate reconstruction of the functional networks. MEG interictal resting-state 
functional brain networks have been used previously to identify the EZ11,27.

In general, most of the studies cited above made use of highly detailed non-linear models, such as neural mass 
models or theta models52. These models depend on several parameters that need to be adjusted beforehand, which 
complicates the optimization of the model and makes it difficult to obtain conclusions that are generalizable. As 
it is usually the case, an interplay exists between the generalizability and accuracy of the model, such that opti-
mizing the predictive power of a model often means reducing the number of tunable parameters53. Thus, simpler 
models with few parameters might prove more reproducible, especially if the behavior of the model is understood 
mathematically. In this regard, one particular framework of relative mathematical simplicity that may capture the 
fundamental aspects of seizure propagation is that of epidemic spreading models54. These models simulate the 
propagation of an agent from some given location to other connected areas, a basic phenomenon appearing in a 
multitude of systems. Such models have been used, for instance, to study the spreading of pathological proteins 
on brain networks55, or the relation between brain structure and function56.

We propose that epidemic models can also provide a good representation of the initial steps of seizure propa-
gation, during which the anomalous highly synchronized ictal activity propagates from the EZ to other regions. 
Moreover, as it is the case in epilepsy surgery, studies on epidemic models often try to find ways to stop or limit 
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the propagation of the epidemics. Thus, epidemic models could also aid the planning of epilepsy surgery. For 
instance, the fundamental role of hubs in propagation is a well-known result of epidemic spreading57, and tar-
geting hub regions is often the most efficient way to obtain global immunization58,59. Data of outbreak patterns 
can also be used retroactively to find the location of the origin of an epidemic60,60,61. Within this framework, in a 
previous study41 we modelled seizure propagation as an epidemic spreading process and, using the eigenvector 
centrality as a surrogate measure, found that the size of the resection area could be largely reduced with only a 
small decrease in the efficacy of the virtual surgery.

Here we defined an individualized seizure propagation model by making use of the Susceptible-Infectious 
(SI) model of epidemic spreading on top of a global brain network, for a group of 10 epilepsy patients who 
underwent epilepsy surgery, and for whom the surgical outcome at least one year after surgery was known. The 
network was based on the patient-specific MEG connectivity. The model parameters were tuned using infor-
mation about the patient-specific seizure propagation patterns in invasive EEG recordings and the location of 
the resection area. First, we showed that, despite its simplicity, the model provides a good approximation to 
clinically observed seizure propagation patterns, and we fit the free parameters of the model to optimize the 
reproduction of the individual seizures. Secondly, we used the individualized model to test alternative resection 
strategies and, making use of an optimization algorithm, we found optimal -in terms of reduction of seizure 
propagation- personalized resections.

Methods
Patient group.  We retrospectively analyzed 10 patients (5 females) with refractory epilepsy (Table 1). All 
patients underwent epilepsy surgery at the Amsterdam University Medical Center, location VUmc, between 
2016 and 2019. All patients had received a magnetoencephalography (MEG) recording, had undergone a SEEG 
(stereo-electro-encephalography) study, and underwent pre- and post-surgical MR imaging. All patients gave 
written informed consent and the study was performed in accordance with the Declaration of Helsinki and 
approved by the VUmc Medical Ethics Committee.

The patient group was heterogeneous with temporal and extratemporal resection locations and different etiol-
ogy. Surgical outcome was classified according to the Engel classification at least one year after the operation62. 
Patients with Engel class 1A were labelled as seizure free (SF), and patients with any other class were labelled as 
non seizure free (NSF). 3 patients were deemed NSF.

Individualized brain networks.  The individualized computer model was based on the patient-specific 
brain network (see Fig. 1) reconstructed in the Brainnetome Atlas (BNA) from MEG scans, as detailed below. 
We have considered the structural network as the substrate for the propagation of ictal activity, in agreement 
with previous studies41. However, true structural networks (e.g. DTI-Diffusion Tensor Imaging networks) typi-
cally cannot be derived from the scans that the patients undergo as part of their routine pre-surgical evaluation, 
and would thus require an extra imaging step, increasing the personal and economic burden to apply the model 
clinically. On the contrary, MEG scans are often part of the routine pre-surgical evaluation63, and thus using 
MEG data to derive a surrogate for structural networks reduces the burden and increases the applicability of 
the model. This can be done by considering a metric such as the uncorrected Amplitude Envelope Correlation 
(AEC). By not correcting for the effects of volume conduction, this metric closely resembles the underlying 
structural connectivity. In order to validate the use of AEC-MEG networks as surrogate for structural connec-

Table 1.   Patient data. Ep. = Epilepsy, y = years, SRA = number of resected ROIs, #E = number of intracranial 
electrodes, #ECP = total number of electrode contact points, NSR = number of BNA ROIs sampled by the 
SEEG electrodes. F = female, M = male, R = right, L = left, F = frontal, T = temporal, P = Parietal, TL = lateral 
temporal, TPL = posterior lateral temporal, PI = posterior insula, PL = posterior parietal, FCD = focal cortical 
dysplasia, mMCD = mild Malformation of Cortical Development, mMCD-2 = mMCD type 2, mMCD-u = 
mMCD type unknown, FCD-2A = focal cortical dysplasia type 2A, SF = seizure free, NSF = not seizure free.

Patient Sex
Age at Ep. Onset 
(y)

Duration of Ep. 
at Surgery (y)

MRI radiologic 
diagnosis Pathology Resection Area SRA Engel Score

Surgery 
Outcome #E #ECP NSR

P1 F 20− 29 10− 19 normal MRI mMCD-2 R-TL 5 2A NSF 9 99 40

P2 M 20− 30 10− 19 normal MRI mMCD-2 L-T 5 1A SF 12 106 30

P3 F 40− 50 30− 39 normal MRI mMCD-2 L-F 4 2C NSF 13 117 47

P4 F 30− 40 0− 9
Multiple caver-
noma

cavernoma & 
surrounding 
mMCD-2

L-T 5 1A SF 11 110 44

P5 M 50− 60 20− 29
Post-traumatic 
gliosis reactive changes L-F 6 1A SF 12 124 40

P6 F 20− 30 10− 19 normal MRI mMCD-2 L-P 4 1A SF 10 104 37

P7 M 20− 30 10− 19 FCD mMCD-u R-TPL, PI, PL 3 1A SF 12 102 38

P8 F 50− 60 20− 29 normal MRI FCD-2A LT-MA 6 3A NSF 15 194 60

P9 M 30− 39 10− 19 MTS hippocampal 
sclerosis RT-MA 12 1A SF 10 107 32

P10 M 20− 29 10− 19 FCD inconclusive LI 6 1A SF 14 193 49
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tivity, we have compared them with a phenomenological model for structural connectivity: the exponential dis-
tance rule (EDR). This rule states that the weights of the connections between pairs of regions in the brain decay 
exponentially with the distance between them64–66, and has been repeatedly validated in human DTI data67–69. In 
order to adapt this rule for the resolution of the BNA atlas (which is much lower than in animal studies, which 
defined brain parcelations of millions of ROIs, instead of the 246 of the BNA atlas), we computed the correlation 
with the surrogate structural networks for a range of decay-exponents, and found the one yielding the best fit for 
the AEC-MEG networks (see Supplementary Fig. S1).

Pre-operative Magnetic resonance imaging (MRI) scans were used for co-registration with the MEG data. 
MRI T1 scans were acquired on a 3T whole-body MR scanner (Discovery MR750, GE Healthcare, Milwaukee, 
Wisconsin, USA) using an eight-channel phased-array head coil. Anatomical 3D T1-weighted images were 
obtained with a fast spoiled gradient-recalled echo sequence. During reconstruction, images were interpolated 
to 1mm isotropic resolution.

MEG acquisition.  MEG recordings were obtained during routine clinical practice using a whole-head MEG 
system (Elekta Neuromag Oy, Helsinki, Finalnd) with 306 channels consisting on 102 magnetometers and 204 
gradiometers. The patients were in supine position inside a magnetically shielded room (Vacummshmelze 
GmbH, Hanau, Germany). Typically, three data-sets of 10 to 15 minutes each containing eyes-closed resting-
state recordings were acquired and used in the presurgical evaluation for the identification and localization of 
interictal epileptiform activity. Paradigms for the localization of eloquent cortex, such as voluntary movements 
and somatosensory stimulation70, as well as a hyperventilation paradigm to provoke interictal epileptiform dis-
charges, were also recorded but not analysed in this study. The data were sampled at 1250 Hz, and filtered with 
an anti-aliasing filter at 410 Hz and a high-pass filter of 0.1 Hz. The head’s position relative to the MEG sensors 
was determined using the signals from four or five head-localization coils that were recorded continuously. The 

Figure 1.   Individual Brain Networks. (a) Weighted (and thresholded) resting-state broadband-MEG 
connectivity matrix for patient 4, for θ = 0.15 . Each entry corresponds to a BNA region, and the regions have 
been re-ordered to group regions in the same hemisphere. In this representation, ROIs 1-105 correspond to the 
left cortical regions, ROIs 106-210 to the right cortical regions and ROIs 211-246 to the subcortical regions (in 
alternating hemisphere order). The strength of each connection is indicated by the colorcode. In red we show 
the connections from and to the resection area (RA). (b) Distribution of average distances to the RA according 
to eq. (S2) for patient 4, in dimensionless units. The points mark the centroids of the BNA ROIs, and the color 
scale indicates the effective distance of the ROI to the resection area (RA), which appears as black dots. (c) 
Zoom-in of the adjacency matrix: RA and surrounding nodes. (d) Illustrative representation of the RA (big 
black circles) and all the links connecting it with the rest of the network. Figures with brain representations have 
been obtained with the BrainNet Viewer78.
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positions of the head-localization coils and the outline of the scalp (roughly 500 points) were measured with a 
3D digitizer (Fastrak, Polhemus, Colchester, VT, USA), and were later used for co-registration with the anatomi-
cal MRI.

The temporal extension of Signal Space Separation (tSSS)71,72 was used to remove artifacts using Maxfilter 
software (Elekta Neuromag, Oy; version 2.1). The points on the scalp surface were used for co-registration with 
the anatomical MRI of the patient through surface-matching software. A single sphere was fitted to the outline 
of the scalp and used as a volume conductor model for the beamforming approach. For a detailed description 
and parameter settings see Ref.70.

MEG processing: atlas‑based beamforming.  Neuronal activity was reconstructed using an atlas-based beam-
forming approach, modified from73, in which the time-series of neuronal activation of the centroids of the ROIs 
were reconstructed74. We considered the 246 ROIs in the BNA atlas75, including 36 subcortical ROIs, whose 
centroids were inversely transformed to the co-registered MRI of the patient. Then, a scalar beamformer (Elekta 
Neuromag Oy; beamformer; version 2.2.10) was applied to reconstruct each centroid’s time-series. The beam-
former weights were calculated for each centroid separately to form a spatial filter so as to maximally let pass 
signals that originate from the centroid of interest and to attenuate all other signals. The weights were based 
on the lead fields (using the spherical head model and an equivalent current dipole as source model), the data 
covariance and noise covariance. The broadband (0.5–48.0 Hz) data covariance was based on the entire record-
ing (on average 799.23 seconds of data (range: 309.50–908.67) were used). A unity matrix was used as noise 
covariance when estimating the optimum source orientation for the beamformer weights76. The broadband data 
were projected through the normalised beamformer weights77 in order to obtain time-series (virtual electrodes, 
VE) for each centroid74.

Brain networks.  The time-series for each VE were visually inspected for epileptiform activity and artifacts. On 
average, 53.1 (range: 19–60) interictal and artefact-free epochs of 16384 samples were selected for each patient. 
The epochs were further analyzed in Brainwave (version 0.9.151.579) and were down-sampled to 312 Hz, both in 
the broadband (0.5–48 Hz) and in the alpha-band (8–13 Hz).

Brain networks were generated using the 246 VEs as nodes (see Fig. 1a). Coupling strength (i.e. the elements 
wij of the weight matrices) was estimated by the AEC (Amplitude Envelope Correlation)80–83. The uncorrected 
AEC (i.e. without correcting for volume conduction) connectivity metric was selected as it maintains infor-
mation on the structural connectivity pattern, whilst including information on long-range connections. AEC 
values are re-scaled to range from 0 (perfect anti-correlation) to 1 (perfect correlation), with 0.5 indicating 
no-correlation82,84. The resulting networks were thresholded at different levels θ indicating the percentage of 
remaining links, and the resulting average connectivity κ = θN of the network was determined. We considered 
a non-uniform grid in θ , with values θ = 0.01, 0.02, 0.04 . . . , 0.10, 0.15, . . . 0.50 , to account for the fact that 
the model is more sensitive to connectivity changes for small θ . Notice that the networks were thresholded but 
not binerized, so that wij remains a real variable ( wij ∈ [0, 1] ). The resulting weight matrix is represented in 
Fig. 1a for a characteristic case.

Resection area.  The resection area (RA) was determined for each patient from the three-month post-operative 
MRI. This was co-registered to the pre-operative MRI (used for the MEG co-registration) using FSL FLIRT (ver-
sion 4.1.6) 12 parameter affine transformation, following previous studies27,30,35,36,41,44,85. The resection area was 
then visually identified and assigned to the corresponding BNA ROIs, namely those that were overlapping at 
least 50% with the resection area. Visual inspection confirmed that the co-registration was accurate and that any 
differences due to tissue adaptation after the surgery were small and at the sub-ROI level. In Fig. 1 we illustrate 
the resection area and its connectivity structure with the rest of the network for one patient.

Individualized propagation pattern.  All patients underwent stereo-electroencephalography (SEEG) 
electrode implantation. The number and location of the intracerebral electrodes (Ad-Tech, Medical Instrument 
Corporation, USA, 10-15 contacts, 1.12 mm electrode diameter, 5 mm intercontact spacing; and DIXIE, 10-19 
contacts, 0.8 mm electrode diameter, 2 mm contact length, 1.5 insulator length, 16–80.5 insulator spacer length) 
were planned individually for each patient by the clinical team, based on the location of the hypothesized seizure 
onset zone (SOZ) and seizure propagation pattern. Implantation was performed with a stereotactic procedure. 
The number of electrodes per patient varied between 9 and 15 (average = 11.8) and the total number of contacts 
between 99 and 194 (average = 125.6). Details of the number of electrodes and contact points for each patient 
are indicated in Table 1.

The locations of the SEEG contact points were obtained from the post-implantation CT scan (containing 
the SEEG electrodes) that was co-registered to the preoperative MRI scan using FSL FLIRT (version 4.1.6) 12 
parameter afine transformation (see Fig. 2a). Each electrode contact point (CP) was assigned the location of the 
nearest ROI mass center. Because BNA ROIs are in general larger than the separation between contact points, 
different CPs can have the same assigned ROI. We refer to the set of ROIs sampled by the SEEG CPs as SEEGROI , 
with the size of the set being NSR  ( NSR  values for all patients are reported in Table 1).

Based on the clinical recordings, a seizure propagation pattern was built indicating the order of activation of 
the electrode CPs for a typical seizure, as shown in Fig. 2b. In order to do so, the start of ictal activity of typical 
seizures was visually assessed for each SEEG CP by a clinician expert. Then, the CPs were grouped into activation 
steps according to when ictal activity was first observed. The seizure pattern was built from one typical seizure for 
each patient. This activation pattern was then translated into the BNA space (see Fig. 2b), so that each ROI i in 
the sampled set SEEGROI was assigned an activation step. Finally, we calculated the activation rank of each ROI in 
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SEEGROI, such that the SEEGROI ROIs were ordered and ranked according to their activation step, and groups with 
the same rank (i.e. in the same activation step) were assigned a rank equal to the midpoint of unadjusted values 
(see Fig. 2b). This yields the SEEG pattern RANKSEEG

i  indicating the activation rank of each ROI i in SEEGROI.

Seizure propagation model.  SI dynamics.  Seizure propagation was modelled via an epidemic spreading 
model: the susceptible-infected (SI) model54. This model depicts the propagation of an epidemic process on a 
network from a set of seed regions to the rest of the nodes. The model only accounts for the propagation process, 
as it does not include any mechanisms for the deactivation of the affected regions. It thus represents the initial 
steps of the propagation of a seizure, before inhibition takes place and the affected regions start to deactivate. 
Thus, we do not try to mimic the complicated processes involved in seizure generation and propagation with 
this model, which is used here as an abstraction that includes only the most relevant features of the initial steps 
of seizure propagation. Thanks to its simplicity, the model can be described by using only one parameter, the 
infection probability β , as described below. More complicated epidemic models, such as the SIR or SIS model54, 
which include a deactivation mechanism, introduce more parameters that either have to be assumed or fitted 
with detailed data.

Simulation of the epidemics on the network takes place as follows. Each node is characterized by its state: 
either S (susceptible) or I (infected). Initially, all nodes are in the S state, except for a set of nodes in the I state, 
which act as the seed of the epidemic (or seizure). At each time step, each infected node can propagate the infec-
tion independently to any of its neighbours with probability βwij , where β characterizes the rate of the epidemic 
spreading and wij is the connection strength between nodes i and j as given by the MEG-AEC adjacency matrix. 
The fraction of infected nodes at each time is given by I(t). If all nodes are connected, eventually the epidemic 
spreads over the whole network, I(t → ∞) = 1 , as shown in Fig. 3a. However, the speed and pattern of the 
propagation depend on β and wij (see Fig. 3).

In order to fit and validate the model, we first considered the situation of slow propagation in which only one 
new node is infected at each time step (formally corresponding to β → 0 ), and compared the propagation pattern 
of the modelled epidemic process with the clinical SEEG seizure pattern for different connectivity thresholds θ . 
The threshold was then fit to maximize the correlation between the modelled and clinical propagation patterns. 
Then, to study the effect of different virtual resections, we quantified the short-term propagation of the seizure 
as the fraction of infected nodes at time t0 . Here we set t0 = 50 and, in order to account for different network 
densities, we set βθ = const = 4 · 10−4 (so that β = 0.01 for a network with 4% of the links, for instance). For 
a standard resection size SRA of 4 nodes this would correspond, in the uniform limit, to an infection of about 
2/3 of the nodes53.

Figure 2.   Individualized Seizure Propagation Pattern. (a) SEEG electrodes for patient 4. Black and gray dots 
indicate the BNA ROIs’ mass centers, respectively for the left and right hemispheres (different colors are used 
for visualization purposes). This patient had 11 intracranial electrodes implanted, each electrode is shown in a 
different color. (b) Corresponding seizure pattern constructed from the clinical SEEG recordings. First, different 
activation steps were identified in the seizure recordings, together with the corresponding contact points (CPs). 
In the case depicted here, typical seizures consisted of 6 propagation steps, with step 1 depicting the seizure 
onset zone (as indicated by the SEEG recordings), and step 6 signalling the generalization of the seizure to all 
sampled CPs (note however that in general not all CPs need take part in the seizure propagation pattern). This 
propagation pattern was then translated into the BNA space, and the sampled ROIs are indicated here as large 
colored spheres. Thus, only the BNA ROIs sampled by the SEEG electrodes are included in the pattern, which in 
this case corresponded to a total of NRS = 49 sampled ROIs ( NRS values for all patients are reported in Table 1). 
The color code in the figure indicates the propagation step in which the corresponding CP is involved in ictal 
activity (i.e. Act. Step). Small grey dots mark the ROIs not included in the SEEG pattern. Finally, in order to 
enable comparison of the SEEG propagation pattern with the one modelled via the SI dynamics via the Mann-
Whitney U test, we calculated the activation rank (Act. Rank) of each ROI, such that the ROIs were ordered 
and ranked according to the activation step, and groups with the same rank were assigned a rank equal to the 
midpoint of unadjusted values.
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SI dynamics was simulated in custom-made Matlab algorithms using Monte-Carlo methods, with NR = 104 
iterations of the algorithm for each configuration to assure convergence.

Optimization of SI parameters: individualized propagation model.  The SI dynamics were simulated as described 
above, leading to a probability map indicating the probability pi(t) that each ROI i became infected at step t, for 
each connectivity threshold θ , as shown in Fig. 3b. The mean activation time for each ROI was then calculated as 
ti =

∑T
t=0 pi(t) , where T is the maximum integration time. ti describes the activation sequence of the ROIs dur-

ing a modelled seizure (see Fig. 3c, d). Given that not all BNA ROIs were sampled by the SEEG electrodes, ti was 
then sub-sampled to the SEEGROI set, and the included ROIs were ranked according to ti . This ranking RANKSI

i  
constitutes the modelled or SI seizure propagation pattern, which is defined upon the same set of ROIs SEEGROI 
as the clinical one ( RANKSEEG

i  ), as shown in Fig. 4.
Once the SI pattern had been constructed, the ranked correlation was computed to compare the SI and SEEG 

patterns (see Fig. 4a) via a Mann-Whitney U test. The correlation is thus defined as

(1)C =

cov
(

RANKSEEG
i , RANKSI

i

)

σ
(

RANKSEEG
i

)

σ
(

RANKSI
i

)

Figure 3.   Seizure propagation model. Exemplary SI propagation process for patient 4. (a) I(t) (red line) and 
the fraction of newly infected nodes at time t ( I(t)− I(t − 1) , blue line), as functions of time. (b) Model 
propagation pattern showing the probability pi(t) , as indicated by the color scale, that a given ROI i (y-axis) 
becomes infected at time t (x-axis). (c) Average infection time for each ROI, ti . The seed (corresponding to the 
resection area, shown in black triangles) is always infected at time 0. (d) Spatial representation of the ROIs mean 
infection time ti . Each ROI is color-coded according to its average infection time. The resection area is shown as 
black circles. The time unit is the number of simulation steps in all panels.
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where cov(x, y) and σ(x) respectively stand for the covariance and standard deviation. The connectivity threshold 
that maximized this correlation was independently found for each patient (see Fig. 4b) and used for the cor-
responding individualized virtual resection model.

Two possible seeds were considered for the SI dynamics: either the resection area (RA seed), or the hypoth-
esized Seizure Onset Zone according to the SEEG clinical recordings (SOZ seed).

Simulation of resections.  Resections R of sets of nodes were conducted in the model by the use of virtual 
resections (VRs). For this, all the connections of the corresponding nodes were set to 0, so the size of the net-
work was left unchanged, but the resected nodes became isolated. Each resection R was then characterized by 
measuring the fraction of infected nodes at a fixed time t0 after the resection had taken place, IR(t0) (see Fig. 5).

The goal of epilepsy surgery is to completely stop seizure propagation ( IR(t0) → 0 ∀t0 ) which, in the present 
model, can only be attained by (and it is always attained by86,87) complete disconnection of the assumed seed 
region. Thus, in this study the effect of each resection was measured in terms of the decrease in the speed of 
seizure propagation, and the goal was to find the smallest resection able to reduce the initial propagation at t0 
by 90%. That is, to find the smallest resection such that iR = IR(t0)/I(t0) ≤ 0.1 , where I(t0) is measured on the 
original pre-resection network41.

Figure 4.   Correlation method. Here we illustrate, for patient 3, the correlation method to validate and fit the 
seizure propagation model. For each network connectivity threshold θ , the SI dynamics was simulated over 
the whole MEG network, and the propagation pattern was constructed for the ROIs sampled by the SEEG 
electrodes and compared with the clinical SEEG pattern. Each pattern describes the activation order-or rank-of 
each sampled ROI. Given that the clinical SEEG pattern is built in terms of activation steps, different ROIs 
can have the same ranking, as described in the main text. The modelled SI pattern was correlated with the 
clinical SEEG pattern, as depicted in panel (a). This process was iterated for different connectivity thresholds 
θ leading to the correlation curve shown in panel (b), where the mean degree κ = θN is shown in the x-axis, 
and significant correlations are indicated with a black circle. Finally, the connectivity leading to the maximum 
correlation was chosen. In the depicted case, this corresponded to a mean degree of κ = 24.60 ( θ = 0.1 ) leading 
a correlation of 0.62 (red triangle). This also corresponds to the value of κ used for panel a.
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We defined a four-step method to find the optimal resection R∗ for each resection size S, R∗(S) . That is, the 
resection leading to a minimum propagation IR∗(S)(t0) . The optimization method made use of the Simulated 
Annealing algorithm88 to speed up the exploration of the space of possible resections, and it considered a sur-
rogate structural metric -the mean effective distance to the seed53,60,61- as a proxy for the SI dynamics to simplify 
the initial exploration (the method and algorithms used are described in detail in the Supplementary Information 
and Fig. S2). Then, the smallest resection leading to a 90% reduction in seizure propagation (as measured by 
IR(t0) ), R90 , was identified. We also identified, for each patient, the smallest resection leading to 100% reduction 
in propagation ( IR(t0) = 0 ), R100 . Finally, to characterize the effect of small resections in seizure propagation, 
we also defined the one-node resection, R1 , as the resection of size 1 with a maximum effect.

In principle all nodes in the network could be considered as possible targets to be resected. However, the 
effect of each node on seizure propagation decreases as it gets further from the seed (in terms of hops on the 
network). Therefore, here we considered only nodes that were at most two hops (without taking into account the 
edge weights) away from the seed (that is, the seed and its first and second neighbours), as depicted in Fig. 5a.

Statistics.  The comparison between network matrices was done via the Pearson’s correlation coefficient, 
calculated over the 1-dimensional vector of connectivity (i.e. by stacking all matrix-connectivity columns one 
after the other).

The Mann-Whitney U test was used to determine the correlation between the modelled and clinical seizure 
propagation patterns. To compare the optimal correlation obtained with different network definitions we used a 
paired Student’s t-test. Similarly, different seed definitions were compared using a paired Student’s t-test. Finally, 
for comparisons between SF and NSF patients, we used an unpaired Student’s t-test. All significance thresholds 
were set at p < 0.05.

Figure 5.   Virtual Resection Implementation. The target nodes for the virtual resection VR are all nodes at 
two steps or less from the seed, i.e. the seed and its first and second neighbours (panel a). The initial seizure 
propagation is the fraction of infected nodes at t0 = 50 , I(t0) = 0.548 (panel b). A virtual resection of 5 nodes is 
implemented in the network by setting to 0 all the links with the corresponding nodes, marked in black in panel 
c. Seizure propagation is now reduced by approximately a factor 2 ( IR(t0) = 0.280 ), and the probability that the 
seizure reaches regions outside the seed decreases considerably (panel d). This example corresponds to patient 4.
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Finally, analyzed the effect of the size and mean degree of the resection area on the size of the 90% and 100% 
resections, and on the effect of the one-node resection, with a linear least squares fit.

Data availability.  The data used for this manuscript are not publicly available because the patients did not 
consent for the sharing of their clinically obtained data. Requests to access to the datasets should be directed to 
the corresponding author. All user-developed codes are available from the corresponding author upon reason-
able request.

Results
Preliminary results.  A total of 10 patients (5 females) were included in the study, 7 of whom were deemed 
SF one year after surgery (see Table 1 for the patient details).

We obtained the individual weighted AEC-MEG networks, with entries wij characterizing the coupling 
strength between ROIs i and j, for each patient in the alpha-band and the broad-band using the BNA atlas (246 
nodes). The tables and figures shown in the main text report the results for the broad-band networks, details 
for the alpha-band can be found in the Supplementary Information. An exemplary matrix is shown in Fig. 1. 
We found that the broad-band MEG-AEC networks were a good surrogate for structural connectivity, with an 
average correlation of 0.51± 0.06 when considering the literature-based decay exponent (equal to − 0.188) and 
of 0.71± 0.08 when considering a modified exponent of −0.052 to fit this atlas resolution.

We constructed a clinical propagation pattern from the seizures observed with SEEG, for each patient. The 
pattern was initially defined in terms of the electrodes CP, and then translated into the ROIs of the BNA atlas 
(see Fig. 2).

Reproduction of Seizure propagation patterns.  As described in the methods section (see Fig. 4), we 
estimated the correlation C between the SI seizure pattern and the SEEG pattern for a range of connectivity val-
ues κ , as shown in Fig. 6a for the broadband networks and in Fig. S4 for the alpha-band networks. Then, to fit the 
spreading model to the SEEG propagation data, we selected the connectivity value κmax that maximized C(κ) , for 
each patient. The maximum correlation Cmax obtained for each patient and the corresponding κmax are shown in 
Fig. 7a,b for the broadband networks and in Fig. S5 for the alpha-band networks, and the corresponding values 
are reported in Tables S1 and S2, respectively. Most cases presented a bimodal dependence of the correlation on 
the network density, so that there was a maximum for low density and another maximum for large density. Here 
we restrict our analyses to the first maximum, which yields only the fundamental connections that are needed 
to reproduce seizure propagation.

We found that the model significantly reproduced the seizure propagation patterns for 9/10 patients. The aver-
age correlation was Cα

= 0.38 for the alpha-band ( α ) networks and CBB
= 0.41 for the broad-band (BB) networks. 

The difference between the two settings (0.03, BB > α ) was not significant ( t(9) = 1.81 , p = 0.06 ). There were no 
significant differences in the optimal correlation between SF and NSF patients ( Cα

SF − Cα
NSF = −0.05 , p = 0.3 , 

t(8) = −0.41 ; CBB
SF − CBB

NSF = −0.01 , p = 0.5 , t(8) = −0.07 , unpaired Student t-tests). The optimal network den-
sity did not differ significantly between frequency bands ( κBB − κα = 0.99 , p = 0.4 , t(9) = 0.15 ) or between the 
sub-groups ( καSF − καNSF = 13.47 , p = 0.05 , t(8) = 1.91 ; κBBSF − κBBNSF = −16.75 , p = 0.09 , t(8) = −1.50).

Alternative definition of the seed.  Different definitions of the seed can be considered. So far, we used the resec-
tion area, but in prospective studies the actual resection area will not be known. We therefore also considered 
the SOZ, as defined by the SEEG study, as the seed for the SI spreading (seed SOZ), and repeated the fit method 
as before (see Fig. 6b). We found that now the correlation between the model and the seizure pattern was sig-
nificant for all patients, both for the alpha- and broad-band networks. The average correlations were respectively 
Cα

= 0.47 and CBB
= 0.51 . The difference ( Cα

− CBB
= −0.04 ) was significant ( p = 0.04 , t(9) = −1.99).

Figure 6.   Reproduction of seizure propagation. Correlation between the modelled and clinically observed 
seizure propagation patterns as a function of network density, for each patient, using the RA (panel a) and SOZ 
seeds (panel b). Panel (c) indicates the median curves for each case, as indicated by the legend. Circles in panels 
a and b denote significant correlations ( p < 0.05 ), and the optimal correlation for each case is marked with a 
triangle.
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We found that the optimal correlation was higher for SF than for NSF patients ( Cα
SF − Cα

NSF = 0.06 , 
CBB
SF − CBB

NSF = 0.05 ), although the difference was not significant (for α-networks: p = 0.2 , t(8) = 0.79 ; for BB 
networks: p = 0.2 , t(8) = 0.79 ). The optimal network density did not differ significantly between frequency 
bands ( κBB − κα = −6.64 , p = 0.08 , t(9) = −1.52 ) or between the sub-groups ( καSF − καNSF = 6.80 , p = 0.2 , 
t(8) = 0.79 ; κBBSF − κBBNSF = −1.51 , p = 0.4 , t(8) = −0.25).

Overall, this seed definition reproduced the clinical seizure pattern better than the RA seed 
( Cα(SOZ)− Cα(RA) = 0.09 , p = 0.07 , t(9) = 1.63 ; CBB(SOZ)− CBB(RA) = 0.10 , p = 0.04 , t(9) = 1.99 ), 
although the difference was only significant for broad-band networks.

Effect of individualized brain networks.  Is patient specific connectivity required to reproduce the clinically 
observed seizure propagation patterns? In order to answer this question, we repeated the analysis using the 
average connectivity matrix (referred to as AV− α and AV-BB respectively for the alpha-band and broadband 
networks) as the network backbone for the SI spreading dynamics for all patients.

For the broad-band network, a significant correlation was found for 8 (10) patients using the RA (SOZ) 
seed (see Figs. 7 and S5). The average optimal correlation ( CAV-BB(RA) = 0.36 , CAV−α(SOZ) = 0.48 ) was 
smaller than for the individual patient networks ( CBB(RA)− CAV-BB(RA) = 0.05 , p = 0.08 , t(9) = 1.95 ; 
CBB(SOZ)− CAV-BB(SOZ) = 0.03 , p = 0.09 , t(9) = 1.92 ), although the difference was not significant. For the 
alpha-band network, a significant correlation was found for 7 (10) patients using the RA (SOZ) seed. The aver-
age (optimal) correlation ( CAV−α(RA) = 0.34 , CAV−α(SOZ) = 0.46 ) was smaller than for the individual patient 
networks ( Cα(RA)− CAV−α(RA) = 0.05 , p = 0.2 , t(9) = 1.30 ; Cα(SOZ)− CAV−α(SOZ) = 0.01 , p = 0.8 , 
t(9) = 0.28 ) but the difference was not significant.

Average model.  Above, the optimal network connectivity was fitted independently for each patient using the 
SEEG data. In order to test if a mean model could be used for patients without SEEG recordings, we have esti-
mated the median correlation yielded by the model for each connectivity value, as depicted in Fig. 6c for BB-net-
works and Fig. S4c for α-band networks, both for the RA and SOZ seeds. For BB-networks, the maximum overall 
correlations found were CBB

m (RA) = 0.37 for κ = 36.90 for the RA seed; and CBB
m (SOZ) = 0.49 for κ = 19.68 for 

the SOZ seed. For α-band networks, the maximum overall correlations found are Cα
m(RA) = 0.33 for κ = 19.68 

for the RA seed; and Cα
m(SOZ) = 0.45 for κ = 19.68 for the SOZ seed. These values were smaller than the mean 

optimal results ( CBB(RA) = 0.41 , CBB(SOZ) = 0.51 , Cα(RA) = 0.38 , Cα(SOZ) = 0.47 ), but the decrease was 

Figure 7.   Reproduction of seizure propagation patterns. Panels (a) and (c) show the average maximum 
correlation Cmax achieved by the individual BB networks (BB, red circles), and the average BB one (AV-BB, black 
squares), and the correlation found for the fully connected network (FCN, blue diamonds), respectively for 
the RA and SOZ seeds. Panels (b) and (d) show the corresponding κmax for the individual (BB, red circles) and 
average (AV-BB, black squares) networks. Significant correlations ( p < 0.05 ) are indicated by a filled marker, 
and non-significant ones ( p > 0.05 ) by an empty marker. NSF patients are indicated by red labels.
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less than 15% on average and not significant ( t(9) = 1.95 , p = 0.08 and t(9) = 1.90 , respectively for the α-band 
and BB networks).

Comparison with fully connected networks.  We also compared the correlation results with those obtained using 
a trivial fully connected network. Correlation results for this structure are shown in Figs. 7 and S5, together 
with the results obtained with individual broad-band networks (averaged) and when using the average broad-
band network. Although the fully connected network achieved a significant correlation for some patients 
(3 patients for the RA seed and 5 for the SOZ seed), the correlation was always lower than for the individ-
ually optimised model, except for one patient using the SOZ seed, and the average was significantly smaller 
( CBB(RA)− CFCN(RA) = 0.29 , p = 1.4 · 10−4 , t(9) = −6.27 ; CBB(SOZ)− CFCN(SOZ) = 0.22 p = 0.005 , 
t(9) = 3.72 ; Cα(RA)− CFCN(RA) = 0.27 , p = 7 · 10−4 , t(9) = 5.01 ; Cα(RA)− CFCN(SOZ) = 0.18 , p = 0.013 , 
t(9) = 3.09).

Virtual resection analysis.  We made use of the VR optimization method illustrated in Figs. 5 and S2 to 
find optimal virtual resections of increasing size S, for each patient. Results of the virtual resection analysis are 
shown in Fig. 8 for all patients. Propagation after the resection (as measured by IR(t0) ) decreased as S increased 
for all patients. However, the exact trend that was followed depended on the individual network structure and 
seed size. Patients 3, 5− 7 showed a rapid decrease of IR(t0)(S) for small S, whereas patient 9 showed a slower 
(parabolic) decrease. The remaining patients showed approximately linear decreases.

Complete stop of seizure propagation was found for the trivial resection of size S = SRA , which corresponds 
to complete removal of the seed, for all patients. However, in some cases the 100% resection R100 (i.e. the 
smallest resection leading to a 100% decrease in seizure propagation) was smaller than resection area. This 
resection is indicated by black squares in Fig. 8. We found that R100 whas smaller than the resection area for 4 
patients (patients 4, 6, 7 and 10). Moreover, for 7/10 patients we were able to find a resection R90 , of smaller size 
than the actual resection, yet that achieved over 90% decrease in propagation, as indicated by red triangles in 
Fig. 8. The sizes of the R90 and R100 resections relative to the size of the resection area, i.e. s90 = SR90

/SRA and 
s100 = SR100

/SRA , are shown in Fig. 9a for all patients. On average, s90 was 74% (range: 33–100%), whereas the 
s100 was 90% (range: 67–100%).

The IR(S) curves shown in Fig. 8 indicate that, for some patients, performing just a one-node resection, R1 , 
already had a large effect on (reducing) seizure propagation. This is explicitly shown by iR1 = IR1(t0)/I(t0) in 
Fig. 9b. The average effect of the 1-node resection was a 58% reduction in seizure propagation, although this 
number varied greatly among patients (range: 4–97%).

We analyzed the effect of the seed size and its connectivity on these results (see Supplementary Information, 
Fig. S6) by correlating s90 , s100 and iR1 respectively with the number of links with nodes that were in the resec-
tion area, ERA = SRA ∗ κRA . We found that s90 and s100 correlated positively with ERA ( r(8) = 0.81 , p = 0.005 
and r(8) = 0.61 , p = 0.07 , for s90 and s100 , respectively), although the correlation was only significant for s90 . 
On the contrary, iR1 correlated negatively with ERA ( r(8) = −0.71 , p = 0.02 ). These results indicate that larger 
seed regions required a comparatively larger resection.

Figure 8.   Optimal Virtual Resection. (a) Reduction in epidemic spreading for virtual resections of increasing 
size S, as quantified by the decrease in IR(t0) . Each curve corresponds to one patient, as indicated in the 
legend. Red triangles mark the resection that achieved a 90% decrease in propagation, R90 , and black squares 
the smallest resection that stopped seizure propagation, R100 . (b) In order to enable comparison of the VRs 
performance between patients, we depict the normalized decrease in propagation, IR(t0)/I(t0) , as a function of 
the normalized resection size, S/SRA . The black dashed line indicates a 90% decrease in propagation.
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Finally, we analysed the location of the optimal resections found by the model (data not shown). We found 
that, for 1 patient, the optimal resection R90 included nodes outside of the resection area and, similarly, R100 
was also found to include nodes outside of the resection area for another patient.

Discussion
We have defined a patient-specific seizure-propagation model based on the SI spreading dynamics. The model 
considers the patient-specific AEC-MEG connectivity matrix as a surrogate for the structural network and makes 
use of clinical SEEG data to define stereotypical seizure propagation patterns for each patient. Seizure propagation 
was then modeled as an SI process propagating from a seed -which we initially took to be the patient’s resec-
tion area (RA)- to the rest of the network. Comparing the propagation patterns in the model to those observed 
clinically, we showed that this simple model reproduces the main aspects of the individual seizure propagation 
patterns, and that an alternative definition of the seed -based on the SEEG recordings- might provide a better 
reproduction of the observed propagation patterns. The main free parameter of the model -the network mean 
connectivity- was fitted to maximally reproduce the clinical seizure pattern, independently for each patient.

Using the model settings that optimally reproduced the clinically observed patterns, we then made use of the 
virtual resection technique to study alternative resections of smaller size or at different locations relative to the 
clinical resection area. The model suggested smaller virtual resections that were usually confined to the resection 
area, but in some cases included regions outside of it.

Modeling considerations.  In this study we considered how individualized computer models, integrating 
patient-specific data from different modalities, can aid epilepsy surgery26,32–40,42,43,89. As opposed to previous 
studies which considered highly detailed, non-linear, stochastic models to simulate the activity of each brain 
region in detail35,37,40,43,90–92, here we considered an abstract model of epidemic spreading, the SI model, as a 
proxy for seizure propagation dynamics (see Figs. 3 and 4). Epidemic models capture the basic mechanisms of 
processes that propagate on networked systems, and have been used, for example, to study the propagation of 
pathological proteins on brain networks55 and of ictal activity41.

Moreover, epidemic models are supported by a well-grounded mathematical framework that can aid the 
exploration of the model. For instance, the fundamental role of hubs in seizure propagation is expected from 
a spreading perspective: hubs can act as super spreaders, being responsible for a disproportionate number of 
infections57,93, and their existence enhances epidemic spreading, both increasing the speed of propagation and 
decreasing the epidemic threshold54. On the contrary, a strong community structure can help control the epi-
demic, which may remain trapped in one community94,95. This result also aligns with the clinical observation 
that often seizure propagation can be restricted to one or a few brain lobes1, in the case of focal epilepsy. This is 
characterized by focal seizures that remain within some regions and only sometimes brake through the inhibi-
tory “wall” and generalize. Interestingly, seizures originating in certain regions (such as the temporal lobes) are 
more likely to remain focal than others (such as frontal seizures). Similarly, other network characteristics such 
as temporal changes in connectivity96,97 or degree correlations can also alter behavior of spreading processes98.

Epidemic models can thus help us studying seizure propagation processes. Of the large family of such mod-
els, we have selected the SI model as it captures the basic nature of epidemic spreading processes, including 
seizure propagation54. It only considers one mechanism: the propagation of an infectious process (or a seizure) 
from one region to another. Consequently, there is only one free parameter in the model -the probability that 
the infection is transmitted. This comes at the cost of not allowing for region deactivation: the model can only 

Figure 9.   Analysis of optimal virtual resections. (a) Normalized size of the 90% ( s90 , dark blue asterisks) and 
100% ( s100 , turquoise crosses) resections for each patient. (b) Normalized effect iR1 = IR1(t0)/I(t0) of the one 
node resection, for each patient. NSF patients are indicated by red labels in both panels.
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describe the initial steps of seizure propagation, when the activity starts to spread out. More detailed propagation 
models -such as the Susceptible-Infected-Susceptible (SIS) or Susceptible-Infected-Recovered (SIR) models- do 
include deactivation mechanisms, but in doing so extra parameters are introduced that would need to be fine 
tuned or assumed upon. Moreover, the early propagation-dominated phase of the SIR model is highly similar to 
the SI model, and this is the regime of interest here.

As the backbone for seizure propagation in the model, we used the broad-band AEC-MEG connectivity 
network as a proxy for the structural brain network (see Fig. 1). By not correcting for the effect of volume con-
duction/field spread, short-range connections are present in the network80–83, yet it also captures long-range 
functional connections that might be difficult to capture with DTI-based tractography. Both AEC-MEG and 
structural networks are strongly influenced by the underlying geometrical embedding, which causes a strong 
correlation between ROI distance and link weight and can have strong implications on emerging dynamics on a 
complex network99,100. We validated the use of AEC-MEG networks as surrogates for structural connectivity by 
comparing them with the structural connectivity model of the exponential-distance rule (EDR), and we found 
a high correlation between the two network descriptions. Moreover, the AEC-MEG network provides a good 
indicator of how activity propagates on the network and, as we have shown, it suffices to reproduce the SEEG 
seizure propagation patterns when used in combination with the SI model.

Reproduction of seizure propagation patterns.  In many patients, seizures follow stereotypical acti-
vation patterns. In this study we selected 10 patients who showed clear patterns on the SEEG recordings (see 
Fig. 2), and compared seizure propagation in the model with those clinically observed patterns, as depicted in 
Fig. 4. Despite its simplicity, we found that the model reproduces the main characteristics of the individual sei-
zure propagation patterns in 9/10 patients when the resection area was considered as the seed (see Figs.  6a and 
7a,b). Moreover, by using the possible seizure onset zone, as indicated by the SEEG recordings, as the seed for 
epidemic spreading, we showed that the model is sensitive to different definitions of the seed, and that alternative 
definitions can improve on the reproduction of the clinical patterns (see Figs. 6b and 7c,d). We also found that 
patient specific connectivity reproduces seizure propagation better than fully connected networks, and margin-
ally (although not significantly) better than the average connectivity network (see Fig. 7). This result is in line 
with previous studies36,41 in which possible benefits of using patient-specific connectivity were suggested, but 
could not be corroborated by a significant difference in the model. Likely, larger data sets would be necessary to 
unravel how the models benefit from considering patient-specific connectivity.

The density of connections of the network was set for each patient to fit the SEEG seizure propagation pat-
tern. Higher density levels imply a more extended or homogeneous propagation pattern, whereas smaller ones 
are associated with a more well-defined propagation. Then, the SI propagation rate β was adjusted accordingly 
for each patient for the subsequent virtual resection analysis.

The model parameters were fitted to the patient’s SEEG data, hence the current definition of the model relies 
on the use of SEEG recordings to infer the patient-specific seizure-propagation patterns and fit the model free 
parameters. However, these are not always part of standard clinical practice, as they are highly invasive for the 
patient and not always needed during pre-surgical planning. In order to show the feasibility of applying the model 
to patients without such recordings, we have shown in Fig. 6c that the average optimal model parameters can 
be used as an approximate solution. The propagation of seizures typically makes use of existing pathways, many 
of which are not patient-specific and can be recovered by the average model parameters. In the current setting, 
considering the overall best threshold for the connectivity matrix, instead of the individual one, led to less that a 
15% decrease in correlation between the modeled and clinical seizure-propagation patterns. Within this configu-
ration, the model is still personalized, as it is still fitted specifically for each patient via the patient’s MEG based 
connectivity matrix and seed for the SI propagation dynamics. Moreover, if a larger data-base is constructed, 
the patients could be grouped by epilepsy type and different optimal type-specific thresholds could be defined.

For seizure-free (SF) patients the resection area is, by definition, a better representation of the epileptogenic 
zone than for non-seizure-free ones (NSF). Thus, one might expect that modelled epidemics spreading from the 
resection area might also reproduce the clinically observed seizure propagation patterns better for SF patients 
than for NSF ones. In order to test this hypothesis, we compared the correlations between the modelled and the 
clinical propagation patterns for SF and NSF patients. We found no significant differences for any of the cases 
considered (i.e. using either the resection area or the SEEG-based SOZ as seed). The limited spatio-temporal 
resolution of the clinical propagation profile might be partially accountable for this result. The small group size 
(10 patients, only 3 of whom were NSF) prevents any further interpretations of this result. It is still worth not-
ing, however, that in the current setting all patients had a big improvement in the frequency and severity of the 
seizures2,62, so the resection area provided a reasonable approximation for the EZ, even for the NSF patients.

Modelling resections.  The effect of different resections on seizure propagation can be studied with the 
model by implementing virtual resections (see Fig. 5). One can then search for optimal resections that minimize 
seizure propagation for a given resection size. This can be used to aid epilepsy surgery by either finding resec-
tions that are smaller than the standard clinical approach, but have the same or almost the same effect41, to find 
alternative resections that avoid specific regions40, such as eloquent cortex, or to propose alternative resections, 
including regions outside the hypothesized SOZ, that might lead to a better outcome for NSF patients.

The problem of optimization of virtual resections is highly computationally demanding. We found that a 
method that combines topological -using a surrogate structural measure60,61- and dynamical properties can find 
optimal resections on the network. The use of this surrogate measure allows for a fast exploration of the space 
of possible resections, which is followed by a slower analysis using the SI dynamics to fine-tune the solution and 
measure the actual decrease in seizure propagation. In future studies exact results of the SI propagation on a 
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network could also be implemented to avoid the need for random search methods86,101, taking advantage of the 
mathematical tractability of the SI model.

The effect of a resection in the model was measured as the decrease in propagation at a given time t0 . That 
is, we measured the slowing down of seizure propagation due to the resection. In the model, a complete stop of 
propagation can only be achieved with-and is always achieved by-the complete disconnection of the seed from the 
rest of the network (this may not imply complete seed removal, in some cases removal of the nodes connecting 
the seed to the rest of the network might be enough and more efficient). This is because in the SI model activity 
always spreads to every connected region, eventually, regardless of any other network or model parameter. How-
ever, this model is only an approximation of actual seizure propagation, which is assumed to hold only for small 
times in which seizure dynamics are dominated by the activity propagation processes. After that, deactivation 
mechanisms kick in and the epileptiform activity eventually dies out. Within this paradigm, a sufficient decrease 
in seizure propagation at a given (early) time t0 would be enough to indicate an effective resection (that is likely 
to lead to seizure freedom); here this threshold was set to 90% of the original infection rate at time t0 . Thus, we 
defined the optimal resection for each patient as the smallest resection leading to at least 90% decrease in seizure 
propagation. We found in the model that this optimal resection was smaller than the actual resection area for 
7 out of 10 patients. Moreover, for four patients we found that it was possible to stop seizure propagation at the 
fixed time t0 with a resection smaller than the resection area. We found that cases with a larger or more densely 
connected epileptogenic region (i.e. a larger seed for the SI dynamics) required a larger portion of the seed to be 
removed to consistently reduce seizure propagation.

These findings highlight the need to devise patient-specific models to aid epilepsy surgery planning, so that 
optimized individualized resections with minimal side-effects can be found. In this study we allowed the search 
algorithm to consider nodes outside the resection area as targets for the virtual resections. We found that, for 
one patient, the optimal 90% resection included one node outside the RA, and similarly for another patient the 
100% resection also included one node outside the resection area. Thus, individualized models could in some 
cases suggest alternative resections outside of the suspected epileptogenic zone that might be more beneficial 
than standard surgery.

The 90% threshold for the reduction in seizure propagation was set ad-hoc and was equal for all patients, 
which might not be realistic. Future studies could include a patient-specific estimation of the propagation thresh-
old by analyzing the individual intracranial EEG recordings: often epileptiform activity appears in a confined 
region but does not propagate to the rest of the network. Information about the size of this region could be used 
to estimate the threshold for which a reduction in seizure propagation in the model is considered sufficient, that 
is, for which the modelled activity remains within this local region. Alternatively, de-activation mechanisms could 
be introduced in the dynamical model, such as in the SIR model41. By setting the model initially in the super-
critical regime-in which seizures have a non-zero probability of propagating, the optimal resection would be the 
one that takes the model to the subcritical regime with the minimum resection size. However, the parameters of 
the model-namely the propagation and de-activation probabilities-would strongly affect this result: if the system 
is initially far into the super-critical regime, a larger resection will be necessary compared to when it is close to 
the critical transition. In fact, the SI model as it was used here corresponds to the highly-super critical case in 
which seizures always spread. Thus, in order to avoid more assumptions that would hinder the interpretation of 
the outcomes of such a model, the SIR parameters would need to be tuned with clinical data, using for instance 
high-resolution spatio-temporal seizure-propagation patterns36,44,102.

Alternative resections for NSF patients.  Another implication of the model definition is the fact that complete 
removal or isolation of the seed always leads to complete stop of seizure propagation, because seizures, in the 
model, only generate within the seed. Within the current formulation of the model, the seed is defined ad-hoc 
from the clinical data, either according to the resection area (RA seed) or the pre-surgical clinical information 
(SOZ seed). This implies that the resection model cannot distinguish situations where the selected seed is not a 
good representation of the EZ, such as is the case for NSF patients, and suggest a better resection. The first part 
of the model, i.e. the reproduction of seizure propagation patterns, could be of aid: the plausibility of different 
seeds can be judged from the maximum correlation that they yield between the modelled seizure patterns and 
the clinical SEEG patterns. Thus, optimal seed definitions that maximally reproduce the observed seizure propa-
gation patterns could be suggested. This hypothesis implies that a higher correlation should be found for SF than 
for NSF patients when considering the resection area as the seed, which we were not able to validate in this study 
due to the small group size. Future studies should tackle this issue with larger patient groups and possibly more 
detailed spatio-temporal seizure propagation patterns, to increase the model resolution. Moreover, this would 
also validate whether the model can provide independent information prospectively-that is, prior to surgery-and 
suggest optimal seed definitions.

Strengths.  The main strength of our approach is the simplicity of the model considered. Epidemic spreading 
models do not intent to capture the details of the underlying biological basis of seizure generation and propaga-
tion, only the stereotypical patterns of seizure propagation89. The simplicity of the model not only allows for 
faster calculations and fewer free parameters, but it also comes with a large body of theoretical and computa-
tional studies that can be used to interpret the results and design the study54.

We integrated data from different modalities that are commonly measured in clinical practice: MEG and 
SEEG recordings, and the location of the resection area. The use of MEG networks as a proxy for structural 
networks avoids the computation of structural DTI networks, which are not part of standard clinical care and 
also time-consuming, limiting the flexibility with which the choice of atlas can be changed. Using AEC-MEG 
networks to define the backbone for the dynamical model allows for more versatility, as well as the ability to use 



16

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4086  | https://doi.org/10.1038/s41598-022-07730-2

www.nature.com/scientificreports/

our approach in patients for whom DTI data are not available, reducing the burden associated with the use of 
computational models in clinical practice.

The model was fitted with patient-specific data and optimized independently for each patient. The varying 
results for different patients, both for the reproduction of seizure propagation patterns and the analysis of alter-
native resections, highlight the need for using personalized models of seizure propagation36,41,102.

Moreover, the model could be easily extended to include more clinical presurgical information, such as the 
existence of MRI or MEG abnormalities. Similarly, the model could be used prospectively by using alternative 
definitions of the seed, that do not depend on the resection area, as we have already shown here by using seeds 
based on the SOZ as determined from SEEG (see Figs. 6 and 7).

Limitations.  The main limitations of the current study are the limited number of patients considered and 
the low-resolution of the clinical seizure propagation patterns. The small cohort prevents further validation of 
the model to distinguish between SF and NSF patients. Meanwhile, the low resolution implies that few param-
eters of the dynamical model can be fit to the data. Future studies should consider larger patient cohorts in order 
to validate the model performance. In this study a small cohort was used as proof-of-concept, since both the 
manual processing of the data and the computational analyses are highly temporally expensive.

Another important limitation is that the seed of seizure propagation was assumed from the data -being 
either the resection area or the SOZ as estimated from the SEEG recordings. This, in conjunction with the fact 
that complete removal of the seed always leads to a stop of seizure propagation, implies that the model cannot 
suggest better resections for NSF patients, and it also limits its prospective use. To be of more clinical use, the 
model should be able to suggest the seed of seizure propagation. This could be done by finding the set of nodes 
that maximally reproduces the clinical seizure propagation patterns. However, in order to do this realistically 
and in a systematic manner, more detailed spatio-temporal patterns of seizure propagation are needed for each 
patient. These could be obtained from the SEEG recordings directly36,44,102.

Another limitation is the nature of the SI model: it reproduces adequately the initial steps of seizure propaga-
tion, but the lack of a de-activation mechanism means that it cannot fit the whole seizure. Including a mecha-
nism for de-activation would circumvent this issue, provided that the extra parameters can be adequately fitted. 
Similarly, in this study we have used MEG-AEC networks as surrogates for structural networks, instead of actual 
structural networks as those derived from DTI.

The use of SEEG data to fit the model can be another limitation for its clinical use, as SEEG recordings are 
highly invasive and not always part of the presurgical evaluation. However, we have shown that the model 
parameters can be extrapolated from the overall best fit (see Fig. 6c) and used for patients without SEEG. In the 
current setting, this led to a less than 15% decrease in the reproducibility of the seizure patterns, as measured by 
the correlation between the SI and SEEG propagation patterns. Information from other modalities could also 
potentially be included, such as epileptiform abnormalities found in MEG imaging. These can be used to set the 
probability for a region being a seed region.

An inherent limitation of all studies analyzing the functional effect of different resections is modeling the 
resection itself. Here we have employed the commonly used virtual resection technique, such that the weights of 
all resected links are set to 037,90,103,104. This does not account for the generalized effect that a local resection can 
have on the network105. It does not consider any plasticity mechanisms either106,107, which are known to occur 
following a lesion in the brain11,108 -and in particular following a resection85,109–111. These appear as a consequence 
of the network disruption, and can have widespread effects. They will play a significant role in the cognitive func-
tioning following the resection, and can also affect the long-term outcome of the surgery. These effects should 
be included in future studies for a more comprehensive modelling of epilepsy surgery.

In this study we decided to identify the resection areas by applying an affine transformation of the post-surgi-
cal MRI to the pre-surgical MRI, as is common practice in computational studies of epilepsy surgery27,30,35,36,41,44,85. 
Recent studies using multi-modal imaging or intra-surgical imaging have found a (slightly) better characteriza-
tion of resection areas using more general transformations such as elastic models63,112,113. Potential differences 
arise in particular for large resections, but are unlikely to be significant at an atlas-level resolution, and visual 
inspection in our data-set identified only small variations at the sub-ROI level. Future studies should characterize 
the actual significance of brain tissue adaptation after the surgery and the potential utility of elastic coregistra-
tions when characterizing resection cavities.

A final limitation of the study, and of similar studies using the virtual resection technique, is the difficulty 
of the validation of the results, as the different resections cannot be tested clinically. Typically, virtual resection 
models are validated by comparing the overlap between the suspected EZ as generated by the model with the 
resection area for both SF and NSF patients, where a valid model should provide a good match for SF patients 
and a poor match for NSF patients32,35,37,38,42. Alternatively, the propagation pathways simulated by the model 
are compared with those recorded with SEEG36,102. We have undertaken the later approach in this work to tune 
the model parameters and for validation, and the first approach was used for validation, although the small 
group sizes do not allow us to draw strong conclusions in this proof-of-principle study. Moreover, using surgi-
cal outcome to validate the model is only a first step, as the ultimate goal is to improve surgical outcome, i.e. to 
perform the analysis proposed in this work before surgery has taken place.

Outlook.  In recent years there have been increasing efforts to develop individualized computer models to 
study brain disorders. In particular, in the case of epilepsy surgery, it is expected that such models might help 
improve surgery outcome and decrease the cognitive side-effects associated with epilepsy surgery, by proposing 
targeted, individualized resections for each patient. Currently, the greatest challenge remains in the validation of 
the models, as the ground truth is inherently missing and the actual effect of a resection can only be known sev-
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eral months -or years- after the surgery has taken place. Thus, extensive retrospective validation of the models is 
necessary before prospective (or even pseudo-prospective) studies can take place. Here, the seizure propagation 
model ought to be validated in future studies by increasing the number of included patients, and the resolution 
of the SEEG seizure propagation pattern should be increased in order to increase the sensitivity to the model 
parameters. Then, if a better relation between the model and the clinical data can be found for SF than for NSF 
patients, as we have hypothesized, the model could be used to find the seed regions that maximally reproduce the 
seizure patterns. Similarly, future studies could explicitly include forbidden areas that cannot be removed during 
the surgery, such as the eloquent cortex, or avoid surgeries that are not possible in clinical practice. Finally, here 
we have considered AEC-MEG networks as the backbone for seizure propagation, as surrogates for structural 
connectivity. AEC-MEG networks combine aspects of structural and functional connections, and future stud-
ies should establish the role that each one, and indeed the underlying geometrical embedding, play in seizure 
propagation.

Conclusions
Patient-specific epidemic models can capture the fundamental aspects of seizure propagation as observed clini-
cally with invasive SEEG recordings. The models, optimized specifically for each patient, can then be used to test 
the effect that different resection strategies may have on seizure propagation in silico. Our results highlight the 
need for individualized computer models to aid epilepsy surgery planning by defining smaller targeted resections 
with potentially fewer side-effects and better outcome than standard surgery.

Data availability
The raw patient data cannot be shared as the patients did not consent to data sharing. Metadata are available 
upon reasonable request under the condition of an existing collaboration agreement (contact Ana P Millan: 
a.p.millanvidal@amsterdamumc.nl). Codes used to simulate and fit the seizure dynamics are publicly available 
in GitHub.
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