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Virtual acoustics in inhomogeneous 
media with single-sided access
Kees Wapenaar  1, Joeri Brackenhoff1, Jan Thorbecke1, Joost van der Neut2, Evert Slob1 & 
Eric Verschuur2

A virtual acoustic source inside a medium can be created by emitting a time-reversed point-source 
response from the enclosing boundary into the medium. However, in many practical situations the 
medium can be accessed from one side only. In those cases the time-reversal approach is not exact. 
Here, we demonstrate the experimental design and use of complex focusing functions to create virtual 
acoustic sources and virtual receivers inside an inhomogeneous medium with single-sided access. 
The retrieved virtual acoustic responses between those sources and receivers mimic the complex 
propagation and multiple scattering paths of waves that would be ignited by physical sources and 
recorded by physical receivers inside the medium. The possibility to predict complex virtual acoustic 
responses between any two points inside an inhomogeneous medium, without needing a detailed 
model of the medium, has large potential for holographic imaging and monitoring of objects with 
single-sided access, ranging from photoacoustic medical imaging to the monitoring of induced-
earthquake waves all the way from the source to the earth’s surface.

In many acoustic applications, ranging from ultrasonics to seismology, virtual sources can be created by emitting 
a focusing wave field from the boundary into the medium1–4. Time-reversal mirroring, developed by Fink and 
co-workers3,4, is a well-known approach to create a virtual source. It exploits the fact that the wave equation in 
a lossless medium is symmetric in time. In many practical situations, like in non-destructive testing5–9, medi-
cal imaging10,11, near-field acoustic holography12–14 or geophysical holography15–17, the medium can be accessed 
from one side only. In those cases the time-reversal approach is not exact, and it breaks down in inhomogeneous 
media with strong impedance contrasts. Recent work by the authors18–20 and others21–24 concerns the design 
of single-sided focusing functions. When emitted from the upper boundary into the medium, these focusing 
functions yield well-defined foci at predefined positions, which act as omnidirectional virtual sources. This work 
is inspired by the Marchenko equation of quantum mechanics25–27 and its applications in 1D autofocusing28–30.

We start this paper with a comparison of the time-reversal method and the single-sided focusing approach, 
at the hand of a number of numerical examples. Next, we discuss our approach for retrieving virtual sources 
and receivers from single-sided reflection data. We apply this methodology to ultrasonic physical model data 
and seismic reflection data. Finally, we discuss potential applications for photoacoustic medical imaging and for 
monitoring of induced-earthquake waves.

Time-reversal versus single-sided focusing
The time-reversal method is illustrated in the first column of Fig. 1, for a lossless layered medium with curved 
interfaces (denoted by the dashed lines in the grey panels) and different propagation velocities and mass densities 
in the layers between these interfaces. The top panel shows the time-reversal of the response V(x, s, t) to a point 
source at s in the third layer of the medium, as a function of receiver position x = (x, z) along the boundary and 
time t. V stands for the normal component of the particle velocity. Only the response at the upper boundary is 
shown, but the response is available along the entire enclosing boundary . The time-reversed response V(x, s, −t) 
is fed to sources (the red dots) at the original positions of the receivers, which emit the wave field back into the 
medium. The other panels in column (a) show “snapshots” (i.e., wave fields frozen at constant time) of the wave 
field propagating through the medium. For negative time (… −t2, −t1 …), the field follows the same paths as the 
original field, but in opposite direction. Then, at t = 0, the field focuses at the position s of the original source. 
Because there is no sink to absorb the focused field, the wave field continues its propagation, away from the focal 
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point. Hence, the focal point acts as a virtual source. The snapshots for positive time (… +t1, +t2 …) show the 
response to this virtual source. The virtual source is omni-directional and radiates a perfect replica of the original 
field into the inhomogeneous medium. Mathematically, time-reversal acoustics is formulated as follows31:

+ − = ∗ −


∮ � ���� ���� � ����� �����G t G t G t V tr s r s r x x s x( , , ) ( , , ) 2 ( , , ) ( , , ) d
(1)propagator secondary sources" " " "

(see Supplementary Information). On the right-hand side, the time-reversed field V(x, s, −t) is propagated through 
the medium by the Green’s function G(r, x, t) from the sources at x on the boundary  to any receiver position r 
inside the medium (the asterisk denotes convolution). The integral is taken along all sources x on the closed bound-
ary. Note that the right-hand side resembles Huygens’ principle, which states that each point of an incident wave 
field acts as a secondary source, except that here the secondary sources on  consist of time-reversed measurements 

Figure 1. Illustration of virtual-source methods. (a) A time-reversed point source response is emitted from the 
enclosing boundary into the inhomogeneous medium. For negative time, it converges towards the focal point, 
where it focuses at t = 0. Subsequently, the focal point acts as an omnidirectional radiating virtual source. (b) 
Emission of the time-reversed response from the upper boundary only. Ghost foci occur at t = 0. The virtual 
source radiates mainly downward. (c) Emission of a single-sided focusing function from the upper boundary 
only. No ghost foci occur at t = 0. The virtual source radiates mainly downward. (d) Symmetrizing the previous 
result. No ghost foci occur at t = 0. The virtual source is omnidirectional.
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rather than an actual incident field. On the left-hand side, the time-reversed Green’s function G(r, s, −t) represents 
the wave field at negative time that converges to the focal point s; the Green’s function G(r, s, t) is the response at 
positive time to the virtual source at s.

Figure 1(b) shows what happens when the time-reversed response is emitted into the medium by sources 
(red dots) at the upper boundary only. The field still focuses at t = 0, but in addition several ghost foci occur at 
t = 0. The field at positive time is a virtual-source response, contaminated by artefacts, caused by the ghost foci. 
Moreover, because the focal point is illuminated mainly from above, the virtual source is far from isotropic: it 
radiates mainly downward.

We now introduce the single-sided focusing approach, which is designed to overcome the limitations of the 
time-reversal approach in inhomogeneous media with strong impedance contrasts. The upper panel in Fig. 1(c) 
shows a 2D focusing function F(x, s, t), for the same focal point s as in the time-reversal example. Note that the 
main event (indicated in blue) is the same as that in V(x, s, −t) in the upper panel in Fig. 1(b), but the other events 
in F(x, s, t) come after the main event (instead of preceding it, like in V(x, s, −t)). The snapshots in Fig. 1(c) show 
the propagation of this focusing function through the medium. Mathematically, the emission of the focusing 
function F(x, s, t) into the medium by sources at x at the upper boundary 0 is described by


‐G t G t F tr s r x x s x( , , ) anti symmetric artefacts ( , , ) ( , , )d

(2)0
∫+ = ∗

(see Supplementary Information). The right-hand side resembles again Huygens’ principle, this time with the 
focusing function defining secondary sources on 0 only. The left-hand side represents the virtual-source response 
G(r, s, t), contaminated by artefacts that are anti-symmetric in time. Because the anti-symmetric term vanishes at 
t = 0, the panel at t = 0 in Fig. 1(c) shows a “clean” focus. Like in the time-reversal method, the focused field acts 
as a virtual source. The snapshots at positive time show that this virtual source radiates mainly downward.

Next, we symmetrize both sides of equation (2), by adding the time-reversal. This suppresses the 
anti-symmetric artefacts:

∫+ − =





∗





G t G t G t F tr s r s r x x s x( , , ) ( , , ) Symmetrize ( , , ) ( , , )d
(3)0

(see Supplementary Information). Note that the left-hand side is identical to that in equation (1). However, unlike 
equation (1), the right-hand side of equation (3) contains an integral along the accessible boundary 0 only. 
Symmetrization implies addition of the snapshots at negative times in Fig. 1(c) to those at the corresponding 
positive times and vice versa, see Fig. 1(d). Note that these superposed snapshots are nearly identical to those 
obtained by emitting the time-reversed response into the medium from the entire enclosing boundary (Fig. 1(a)). 
The remaining artefacts are caused by the finite source aperture and the fact that evanescent waves are neglected 
in equations (2) and (3) (see Supplementary Information).

Retrieving virtual sources and receivers from single-sided reflection data
Virtual acoustics methodology. The snapshots in Fig. 1 (for both methods) were obtained by numerically 
modelling the medium’s response to fields emitted from (parts of) its boundary. These snapshots nicely visualise 
the propagation, scattering, focusing and defocusing of the fields inside the medium. In practical situations these 
fields are not visible, unless receivers would be placed throughout the medium, which is of course not feasible. 
However, our focusing methodology can be extended to create not only virtual sources, but also virtual receivers 
anywhere inside the medium. As input we need the reflection response of the medium, measured with sources 
and receivers at the accessible boundary 0 only (hence, no physical sources nor receivers are needed inside the 
medium). The reflection response is represented by the Green’s function G(x′, x, t), where x denotes the variable 
position of the source and x' that of the receiver, both at 0. Consider the following variant of equation (3)

∫+ − =





′ ∗ ′ ′



G t G t G t F tr x r x x x x r x( , , ) ( , , ) Symmetrize ( , , ) ( , , )d

(4)0

(see Supplementary Information). This expression shows how the recorded data G(x′, x, t), measured at the upper 
boundary of the medium, are transformed into G(r, x, t) and its time-reversal, being the response to a real source 
at x, observed by a virtual receiver at r anywhere inside the medium. The focusing function F(x′, r, t), required 
for this transformation, can be derived from the recorded data G(x′, x, t), using the multidimensional Marchenko 
method18–20,32,33. We have implemented a 2D version of the Marchenko method as an iterative process34. The 
time-reversal of the direct arriving wave between x′ and r is used as an initial estimate of the focusing func-
tion F(x′, r, t). This direct arrival, in turn, is based on an estimate of the propagation velocity of the medium. 
This does not require information about the layer interfaces, nor about the internal structure of the layers: a 
smooth background model suffices to compute the direct arrival21. Note that estimating a background model is 
state-of-the-art methodology in geophysical imaging35. Then, by evaluating equation (4) we obtain G(r, x, t) for 
any virtual receiver position r inside the medium. Next, using the retrieved virtual-receiver data G(r, x, t) in the 
right-hand side of equation (3), we obtain G(r, s, t) and its time-reversal, being the response to a virtual source at 
s, observed by virtual receivers at r.

Theoretical research shows that this methodology can be generalised for vectorial wave fields in lossless media, 
such as electromagnetic waves, elastodynamic waves (after decomposition at the surface into P- and S-waves), 
etc36,37. Small to moderate propagation losses can be accommodated by applying loss corrections to the data 
before applying the Marchenko method38.
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In the following we apply the virtual acoustics methodology for scalar wave fields in lossless media, as outlined 
above, to ultrasonic physical model data and seismic reflection data.

Application to ultrasonic physical model data. Figure 2(a) shows a 3D physical model, composed of 
silicone gel and beeswax layers with different acoustic propagation velocities (their numerical values are tabulated 
in Fig. 2(b)). The size of the model is 70 × 600 × 600 mm. The model is placed in a watertank and probed with 
ultrasound, emitted and received by piezo-electric transducers in the water. The acquisition is carried out along 
a horizontal diagonal line (indicated in Fig. 2(a)), 12 mm above the upper boundary of the model and perpen-
dicular to its main structures. A 2D cross-section of the model below the acquisition line is shown in Fig. 2(b). 
The emitting transducer sends a sweep signal in the frequency range 0.4 MHz to 1.8 MHz. The resulting wave 
field propagates through the water into the model, propagates and scatters inside the model, and propagates back 
through the water to the acquisition line, where it is recorded by a receiving transducer. The recorded response 
is deconvolved for the sweep signal, effectively compressing the source signal to a short zero-phase pulse with a 
central frequency of 1.1 MHz39. This experiment is repeated 106 times, with the source at the same position and 
the receiver moving along the acquisition line in steps of 1.25 mm. Next, the source is moved 1.25 mm along the 
line and again 106 traces are recorded. This whole process is carried out 301 times, leading to a recorded reflec-
tion response consisting of 301 × 106 = 31 906 traces. Figure 2(b) shows 51 of those traces, for 3 source positions 
and 17 receivers per source position. Before further processing, source-receiver reciprocity is applied, effectively 
doubling the number of traces, and the data are interpolated to a twice as dense spatial grid (source and receiver 
spacing 0.625 mm) to suppress spatial aliasing.

We denote the recorded reflection response by Green’s function G(x′, x, t), where x denotes the variable posi-
tion of the source and x′ that of the receiver (actually the recorded response is the Green’s function convolved 
with the compressed source pulse, but for the sake of simplicity we treat the recorded data as a Green’s function). 
We apply the methodology discussed above to this response. Figure 3 shows snapshots of the virtual acoustic 

Figure 2. (a) 3D physical model. The grey-levels indicate different propagation velocities and mass densities. 
Ultrasonic reflection experiments are carried out along the diagonal line above the model. (b) 2D cross-section 
of the physical model (with modelled snapshots, for visualisation only) and the actually recorded response at the 
surface, G(x′, x, t) (here shown for 3 source positions x and 3 × 17 receiver positions x′).

Figure 3. Virtual response G(r, s, t) + G(r, s,−t), retrieved from the single-sided ultrasonic reflection response 
G(x′, x, t) of the physical model in Fig. 2(a). (a) t = 0 μs. (b) t = 9.2 μs. (c) t = 18.2 μs. (d) t = 27.4 μs. (e) t = 40.2 μs. 
(f) t = 53.8 μs.
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response G(r, s, t) + G(r, s, −t), for a fixed virtual source inside the second layer of the 3D physical model and 
variable virtual receiver positions r throughout the 2D cross-section of the model. The different colours in the 
background of this figure indicate the different layers. We used the velocities of these layers to model the direct 
arrivals, as initial estimates for the focusing functions. Note, however, that we did not use information about 
the layer interfaces for the retrieval of the virtual response: all scattering information comes directly from the 
recorded reflection response. The figure clearly shows the evolution of the wave field through the medium, includ-
ing scattering at the layer interfaces. Imperfections are explained by the finite aperture, the limited radiation 
angles of the piezo-electric transducers, the negligence of evanescent waves and the fact that we used a 2D method 
to retrieve this virtual wave field in a 3D medium.

Application to seismic reflection data. The proposed methodology can be applied to reflection data at 
a wide range of scales. Next we apply our methodology to vintage seismic reflection data, acquired in 1994 over 
the Vøring Basin by SAGA Petroleum A.S. (currently part of Statoil ASA). We use a smooth background model to 
define the initial estimates of the focusing functions. Figure 4 shows snapshots of G(r, s, t) + G(r, s, −t) obtained 
from these seismic data. Again, the evolution of the retrieved wave field clearly includes the primary and multiply 
scattered events, which have been obtained directly from the recorded reflection data. In the background these 
snapshots show an independently obtained seismic image of the interfaces between the geological layers, for vis-
ualisation only. Note the consistency between the position of these interfaces and the apparent origin of scattering 
in the snapshots.

Discussion
The ability to create virtual sources and receivers inside a medium from single-sided reflection data opens new 
ways for imaging and monitoring. An exciting new field in medical imaging is photoacoustic (PA) imaging40, 
a method which employs the conversion of optical energy into acoustic energy at those locations inside the 
medium where light is absorbed. The resulting acoustic wave field may be very complex because usually many PA 
sources go off simultaneously and inhomogeneities in the medium may cause reflection artefacts41. Our proposed 
virtual acoustics methodology could be applied to ultrasonic reflection measurements to predict the direct and 
scattered wave fields of (clusters of) virtual PA sources, thus improving the interpretation and imaging of the 
complex wave field of actual PA sources. With the emergence of dual-modality ultrasound and photoacoustic 
imaging tools42 this becomes feasible and the first steps in this direction have already been made33. Note that in 
medical applications it is often sufficient to use a homogeneous background model, which means that analytical 
expressions can be used for the initial estimate of the focusing functions. Real-time application of our virtual 
acoustics methodology for medical imaging therefore seems feasible, particularly when the imaging is restricted 
to a finite region of interest.

Another exciting potential application is the investigation of induced seismicity. By acquiring high-resolution 
seismic reflection data in areas prone to induced seismicity, our virtual acoustics approach could forecast the wave 
field and the associated ground motion caused by possible future earthquakes. Moreover, when the same acquisi-
tion system is also used to passively record the response to actual induced earthquakes, our method could be used 
to create virtual seismometers in the subsurface around the actual earthquake and use these to retrieve accurate 
knowledge of the source mechanism of the earthquake, insight in the evolution of the geomechanical state of the 
subsurface (horizontal and vertical stress distribution, fault and fracture properties etc.), and deep understanding 
of the link between the earthquake and the observed ground motion.

Data availability. The source code that was used to generate Fig. 1, including the Marchenko method, can be 
downloaded from https://github.com/JanThorbecke/OpenSource. The physical model dataset analysed in Figs 2 
and 3 is available from the corresponding author on reasonable request. The seismic reflection data analysed in 
Fig. 4 are available from Statoil ASA, but restrictions apply to the availability of these data, which were used under 
license for the current study, and so are not publicly available. Data are however available from the authors upon 
reasonable request and with permission of Statoil ASA.

Figure 4. Virtual response G(r, s, t) + G(r, s,−t), retrieved from the single-sided seismic reflection response 
G(x′, x, t) of the Vøring Basin. (a) t = 0 ms. (b) t = 152 ms. (c) t = 300 ms. (d) t = 456 ms. (e) t = 644 ms. (f) 
t = 844 ms.

https://github.com/JanThorbecke/OpenSource


www.nature.com/scientificreports/

6Scientific REPORTS |  (2018) 8:2497  | DOI:10.1038/s41598-018-20924-x

References
 1. Porter, R. P. & Devaney, A. J. Holography and the inverse source problem. J. Opt. Soc. Am. 72, 327–330 (1982).
 2. Oristaglio, M. L. An inverse scattering formula that uses all the data. Inverse Probl. 5, 1097–1105 (1989).
 3. Fink, M. Time-reversal of ultrasonic fields: Basic principles. IEEE Trans. Ultrason., Ferroelect., and Freq. Control 39, 555–566 (1992).
 4. Cassereau, D. & Fink, M. Time-reversal of ultrasonic fields - Part III: Theory of the closed time-reversal cavity. IEEE Trans. Ultrason., 

Ferroelect., and Freq. Control 39, 579–592 (1992).
 5. Langenberg, K. J., Berger, M., Kreutter, T., Mayer, K. & Schmitz, V. Synthetic aperture focusing technique signal processing. NDT Int. 

19, 177–189 (1986).
 6. Saenger, E. H., Kocur, G. K., Jud, R. & Torrilhon, M. Application of time reverse modeling on ultrasonic non-destructive testing of 

concrete. Appl. Math. Mod. 35, 807–816 (2011).
 7. Cai, J., Shi, L., Yuan, S. & Shao, Z. High spatial resolution imaging for structural health monitoring based on virtual time reversal. 

Smart Mater. Struct. 20, 055018 (2011).
 8. Müller, S., Niederleithinger, E. & Bohlen, T. Reverse time migration: A seismic imaging technique applied to synthetic ultrasonic 

data. Int. J. Geophys. 2012, 128465 (2012).
 9. Zhu, R., Huang, G. L. & Yuan, F. G. Fast damage imaging using the time-reversal technique in the frequency-wavenumber domain. 

Smart Mater. Struct. 22, 075028 (2013).
 10. Tanter, M. & Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason., Ferroelect., and Freq. Control 61, 102–119 (2014).
 11. Sapozhnikov, O. A., Tsysar, S. A., Khokhlova, V. A. & Kreider, W. Acoustic holography as a metrological tool for characterizing 

medical ultrasound sources and fields. J. Acoust. Soc. Am. 138, 1515–1532 (2015).
 12. Maynard, J. D., Williams, E. G. & Lee, Y. Nearfield acoustic holography: I. Theory of generalized holography and the development of 

NAH. J. Acoust. Soc. Am. 78, 1395–1413 (1985).
 13. Wu, S. F. Hybrid near-field acoustic holography. J. Acoust. Soc. Am. 115, 207–217 (2004).
 14. Wu, H., Jiang, W. & Zhang, H. A mapping relationship based near-field acoustic holography with spherical fundamental solutions 

for Helmholtz equation. J. Sound and Vibr. 2016, 66–88 (2016).
 15. Esmersoy, C. & Oristaglio, M. Reverse-time wave-field extrapolation, imaging, and inversion. Geophysics 53, 920–931 (1988).
 16. Lindsey, C. & Braun, D. C. Principles of seismic holography for diagnostics of the shallow subphotosphere. Astrophys. J. Suppl. Series 

155, 209–225 (2004).
 17. Gajewski, D. & Tessmer, E. Reverse modelling for seismic event characterization. Geophys. J. Int. 163, 276–284 (2005).
 18. Wapenaar, K., Broggini, F., Slob, E. & Snieder, R. Three-dimensional single-sided Marchenko inverse scattering, data-driven 

focusing, Green’s function retrieval, and their mutual relations. Phys. Rev. Lett. 110, 084301 (2013).
 19. Slob, E., Wapenaar, K., Broggini, F. & Snieder, R. Seismic reflector imaging using internal multiples with Marchenko-type equations. 

Geophysics 79, S63–S76 (2014).
 20. Wapenaar, K., Thorbecke, J. & van der Neut, J. A single-sided homogeneous Green’s function representation for holographic imaging, 

inverse scattering, time-reversal acoustics and interferometric Green’s function retrieval. Geophys. J. Int 205, 531–535 (2016).
 21. Broggini, F., Snieder, R. & Wapenaar, K. Data-driven wavefield focusing and imaging with multidimensional deconvolution: 

Numerical examples for reflection data with internal multiples. Geophysics 79, WA107–WA115 (2014).
 22. Meles, G. A., Löer, K., Ravasi, M., Curtis, A. & da Costa Filho, C. A. Internal multiple prediction and removal using Marchenko 

autofocusing and seismic interferometry. Geophysics 80, A7–A11 (2015).
 23. Ravasi, M. et al. Target-oriented Marchenko imaging of a North Sea field. Geophys. J. Int. 205, 99–104 (2016).
 24. Singh, S. & Snieder, R. Source-receiver Marchenko redatuming: Obtaining virtual receivers and virtual sources in the subsurface. 

Geophysics 82, Q13–Q21 (2017).
 25. Marchenko, V. A. Reconstruction of the potential energy from the phases of the scattered waves (in Russian). Dokl. Akad. Nauk SSSR 

104, 695–698 (1955).
 26. Lamb, G. L. Elements of soliton theory (John Wiley and Sons, Inc., New York, 1980).
 27. Chadan, K. & Sabatier, P. C. Inverse problems in quantum scattering theory (Springer, Berlin, 1989).
 28. Rose, J. H. “Single-sided” focusing of the time-dependent Schrödinger equation. Phys. Rev. A 65, 012707 (2001).
 29. Rose, J. H. ‘Single-sided’ autofocusing of sound in layered materials. Inverse Probl. 18, 1923–1934 (2002).
 30. Broggini, F. & Snieder, R. Connection of scattering principles: a visual and mathematical tour. Eur. J. Phys. 33, 593–613 (2012).
 31. Derode, A. et al. Recovering the Green’s function from field-field correlations in an open scattering medium (L). J. Acoust. Soc. Am. 

113, 2973–2976 (2003).
 32. Brackenhoff, J. Rescaling of incorrect source strength using Marchenko redatuming. M.Sc. thesis, Delft University of Technology 

(repository.tudelft.nl) (2016).
 33. Van der Neut, J. et al. A Marchenko equation for acoustic inverse source problems. J. Acoust. Soc. Am. 141, 4332–4346 (2017).
 34. Thorbecke, J., Slob, E., Brackenhoff, J., van der Neut, J. & Wapenaar, K. Implementation of the Marchenko method. Geophysics 82, 

WB29–WB45 (2017).
 35. Harlan, W. S., Langan, R. T. & Nemeth, T. Introduction to the supplement on velocity estimation for depth imaging. Geophysics 73, 

VE1–VE3 (2008).
 36. Wapenaar, K. Single-sided Marchenko focusing of compressional and shear waves. Phys. Rev. E 90, 063202 (2014).
 37. da Costa Filho, C. A., Ravasi, M., Curtis, A. & Meles, G. A. Elastodynamic Green’s function retrieval through single-sided 

Marchenko inverse scattering. Phys. Rev. E 90, 063201 (2014).
 38. Alkhimenkov, Y. Redatuming and quantifying attenuation from reflection data using the Marchenko equation: A novel approach to 

quantify Q-factor and seismic upscaling. M.Sc. thesis, Delft University of Technology (repository.tudelft.nl) (2017).
 39. Blacquière, G. & Koek, A. E. 3-D seismic experiments with the Delft modeling facility. In SEG, Expanded Abstracts, 16–19 (1997).
 40. Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nature Meth. 13, 627–638 (2016).
 41. Singh, M. K. A., Jaeger, M., Frenz, M. & Steenbergen, W. In vivo demonstration of reflection artifact reduction in photoacoustic 

imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion). Biomed. Opt. Express 7, 2955–2972 (2016).
 42. Daoudi, K. et al. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual 

modality imaging. Opt. Express 22, 26365–26374 (2014).

Acknowledgements
The authors thank Statoil ASA for giving permission to use the vintage seismic reflection data of the Vøring 
Basin. This project has received funding from the European Research Council (ERC) under the European Union’s 
Horizon 2020 research and innovation programme (grant agreement No: 742703).

Author Contributions
K.W., E.S. and J.v.d.N. conceived the methodology. J.B. developed software and applied the methodology to the 
physical model data (Figure 3) and the vintage seismic data (Figure 4). J.T. developed software and conducted 
the numerical experiment (Figure 1). E.V. was responsible for preprocessing of the two datasets. K.W. wrote the 
paper. All authors reviewed the manuscript.



www.nature.com/scientificreports/

7Scientific REPORTS |  (2018) 8:2497  | DOI:10.1038/s41598-018-20924-x

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-20924-x.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-20924-x
http://creativecommons.org/licenses/by/4.0/

	Virtual acoustics in inhomogeneous media with single-sided access

	Time-reversal versus single-sided focusing

	Retrieving virtual sources and receivers from single-sided reflection data

	Virtual acoustics methodology. 
	Application to ultrasonic physical model data. 
	Application to seismic reflection data. 

	Discussion

	Data availability. 

	Acknowledgements

	Figure 1 Illustration of virtual-source methods.
	Figure 2 (a) 3D physical model.
	Figure 3 Virtual response G(r, s, t) + G(r, s,−t), retrieved from the single-sided ultrasonic reflection response G(x′, x, t) of the physical model in Fig.
	Figure 4 Virtual response G(r, s, t) + G(r, s,−t), retrieved from the single-sided seismic reflection response G(x′, x, t) of the Vøring Basin.




